#### UNION PACIFIC RAILROAD COMPANY

K. R. (KEN) WELCH Assistant Vice President Environmental Management



Mailing Address: Room 930 1416 Dodge Street Omaha, Nebraska 68179 Fax No. (402) 271-4461

February 13, 1998

G. (GLENN) THOMAS
Director-Environmental Operations South
S. W. (STEVE) BERKI
Director-Environmental Operations-Central
L. A. (LANNY) SCHMID
Director-Environmental Operations-West
B. A. (BROCK) NELSON
Director-Environmental Operations-North
R. L. (RICK) EADES
Director-Environmental Site Remediation

Mr. Ray S. Risner
Corrective Action Section
Industrial & Hazardous Waste Division
Texas Natural Resource Conservation Commission
12118 North I-35, Building D
MC 127
Austin, Texas 78753

Mr. Stephen M. Omo
Permits Section
Industrial & Hazardous Waste Division
Texas Natural Resource Conservation Commission
12015 Park 35 Circle
MC 130
Austin, Texas 78753

Subject:

Transmittal, Phase 2 Report - RCRA Facility Investigation and Extent of

Contamination Investigation; Houston Wood Preserving Works; Houston, Texas

Dear Sirs:

Enclosed, please find copies of the referenced report. If you have any questions regarding the enclosed report, please call me at (402) 271-5979.

Sincerely,

UNION PACIFIC RAILROAD

Ed Honig, P.E.

Environmental Site Remediation Manager

cc: Marsha Hill, TNRCC - Houston Allyn Davis, EPA Region VI - Dallas

# Phase 2-A Report RCRA Facility Investigation and Extent of Contamination Investigation

Houston Wood Preserving Works Houston, Texas

February 13, 1998 W.O. #422-09

ERM-SOUTHWEST, INC.

16300 Katy Freeway, Suite 300 Houston, Texas 77094-1611 (281) 579-8999



# Phase 2-A Report RCRA Facility Investigation and Extent of Contamination Investigation

Houston Wood Preserving Works Houston, Texas

February 13, 1998

W.O. #422-09

Robin Mann

Room mann

Thomas D. Pacioni, P.G.

Thomas M. Whitehurst, P.G.

Principal

ERM-SOUTHWEST, INC.

16300 Katy Freeway, Suite 300 Houston, Texas 77094-1611 (281) 579-8999

# TABLE OF CONTENTS

| EXECU | TIVE SUN    | IMARY          |                                     | . 1 |
|-------|-------------|----------------|-------------------------------------|-----|
| 1.0   | INT         | RODUCTIO       | ON .                                |     |
|       | 1.1         | SITE H         | HSTORY                              | j   |
|       | 1.2         | REGUL          | LATORYSTATUS                        | 3   |
|       |             | 1.2.1          | REVIEW OF RFI REQUIREMENTS          | 4   |
|       |             | 1.2.2          |                                     |     |
|       |             | 1.2.3          |                                     | ) 4 |
|       | 1.3         | OBJEC          | CTIVES AND TECHNICAL APPROACH       | 2   |
|       | 1.4         | SCOPE          | OF PHASE 2-A                        |     |
|       | 1.5         | LIMITA         | ATIONS                              | 9   |
| 2.0   | REG         | IONAL WA       | ATER USAGE                          | 10  |
|       | 2.1         | HYDRO          | OGEOLOGY                            | 10  |
|       | 2.2         | <b>GROU</b> N  | ND WATER USAGE                      | 10  |
|       | 2.3         | SURFA          | CE WATER USAGE                      | 10  |
| 3.0   | FIEL        | D PROCE        | DURES                               | 11  |
| 4.0   | SITE        | GEOLOG         | Y AND HYDROGEOLOGY                  | 12  |
|       | 4.1         | FILL M         | IATERIAL                            | 12  |
|       | 4.2         | A-COH          | ESIVE ZONE                          | 12  |
|       | 4.3         | A-TRAN         | NSMISSIVE ZONE                      | 12  |
|       | 4.4         | B-COHI         | ESIVE ZONE                          | 13  |
|       | 4.5         | B-TRAN         | NSMISSIVE ZONE                      | 13  |
|       | 4.6         |                | ESIVE ZONE                          | 13  |
|       | <b>4.</b> 7 | C-TRAN         | NSMISSIVE ZONE                      | 13  |
|       | 4.8         | AQUIFI         | ER SLUG TEST RESULTS                | 14  |
|       | 4.9         | GROUN          | D WATER FLOW                        | 14  |
|       |             | 4.9.1          | Horizontal Ground Water Flow        | 14  |
|       |             | 4.9.2          | Vertical Ground Water Flow          | 15  |
| 5.0   | ANAI        | LYTICAL R      | ESULTS                              | 16  |
|       | <i>5.1</i>  | <b>SURFA</b> ( | CE SOIL ANALYTICAL RESULTS          | 16  |
|       |             | <i>5.1.1</i>   | Area 1 - Off-site Drainage Area     | 17  |
|       |             | 5.1.2          | Area 2 - Tie Storage Area           | 17  |
|       |             | 5.1.3          | Area 3 - Former Process Areas       | 17  |
|       |             | 5.1.4          | Area 4 - Closed Surface Impoundment | 17  |
|       | <i>5.2</i>  | SUBSUR         | RFACE SOIL ANALYTICAL RESULTS       | 17  |
|       |             | 5.2.1          | Area 1 - Off-site Drainage Area     | 18  |
|       |             | 5.2.2          | Area 2 - Tie Storage Area           | 18  |
|       |             | 5.2.3          | Area 3 - Former Process Areas       | 18  |
|       |             | 5.2.4          | Area 4 - Closed Surface Impoundment | 19  |

# TABLE OF CONTENTS (Cont'd)

|                | <i>5.3</i> | SOIL I       | LEACHATE TESTING RESULTS                | 1        |
|----------------|------------|--------------|-----------------------------------------|----------|
|                | 5.4        |              | GEOTECHNICAL RESULTS                    | 1        |
|                | 5.5        |              | ND WATER ANALYTICAL RESULTS             | 1        |
|                |            | <i>5.5.1</i> | Area 1 - Off-site Drainage              | 20       |
|                |            | 5.5.2        |                                         | 20       |
|                |            | 5.5.3        |                                         | 20       |
|                |            | 5.5.4        | Area 4 - Closed Surface Impoundment     | 2        |
| 6.0            | SOIL       | ASSESSM      | MENT                                    | 22       |
|                | 6.1        | SOIL T       | PH AND ROST CORRELATION                 | 22       |
|                |            | 6.1.1        | QUALITATIVE COMPARISON                  | 22       |
|                |            | 6.1.2        | QUANTITATIVE COMPARISON                 | 23       |
|                | 6.2        |              | SES OF CREOSOTE MOBILITY, FLUID MOTIONS | 23       |
|                |            | AND N        | ATURAL ATTENUATION PROCESSES            | 23       |
| 7.0            | PHA!       | SE 2-A CO    | NCLUSIONS                               | 24       |
|                | 7.1        |              | ARY OF HYDROGEOLOGY                     | 24       |
|                | 7.2        |              | ARY OF SOIL CHARACTERISTICS             | 24       |
|                | 7.3        | ~ 0 1/11/11  | ND WATER CHARACTERISTICS                | 24<br>25 |
| 8.0            | DATL       | I FORWAR     |                                         |          |
| 0.0            | 8.1        |              |                                         | 26       |
|                | 8.2        |              | ARY OF ACTIVITIES                       | 26       |
|                | 0.2        | PROPO        | SED PLAN                                | 27       |
| 9.0            | REFE       | ERENCES      |                                         | 29       |
|                |            |              |                                         |          |
| A <i>PPEND</i> | ICES       |              |                                         |          |
| 4              | FIELI      | D PROCED     | OURES REPORT                            |          |
|                |            |              |                                         |          |

| $\boldsymbol{A}$ | • | FIELD PROCEDURES REPORT       |
|------------------|---|-------------------------------|
| В                |   | LABORATORY ANALYTICAL REPORTS |

 $\boldsymbol{C}$ AQUIFER SLUG TEST RESULTS

 $\boldsymbol{D}$ PRELIMINARY OUTLINE FOR RISK REDUCTION IMPLEMENTATION **PLAN** 

# TABLE OF CONTENTS (Cont'd)

# List of Figures

| 1-1        | Site Map                             |
|------------|--------------------------------------|
| 1-2        | SWMUs and AOCs                       |
| <i>1-3</i> | Four Investigative Areas             |
| 4-1        | Cross-Section Locations              |
| 4-2        | Cross-Section A-A'                   |
| 4-3        | Cross-Section B-B'                   |
| 4-4        | Cross-Section C-C'                   |
| 4-5        | Cross-Section D-D'                   |
| 4-6        | Static Water Level Elevations - A-TZ |
| 4-7        | Static Water Level Elevations - B-TZ |
| 4-8        | Static Water Level Elevations - C-TZ |
| <i>5-1</i> | Surface Soil - Chrysene              |
| <i>5-2</i> | Subsurface Soil - Benzo(A)Anthracene |
| <i>5-3</i> | Subsurface Soil - Naphthalene        |
| <b>5-4</b> | Ground Water - A-TZ - Naphthalene    |
| 5-5        | Ground Water - B-TZ - Naphthalene    |
| 5-6        | Ground Water - C-TZ - Naphthalene    |
| 6-1        | TPH/ROST Correlation                 |
|            |                                      |

# List of Tables

| <i>5-1</i> | Constituents of Concern                  |
|------------|------------------------------------------|
| 5-2        | Surface Soil Sample Results              |
| <i>5-3</i> | Subsurface Soil Sample Results           |
| 5-4        | Soil Leachate Sample Results             |
| <i>5-5</i> | Geotechnical Soil Sample Results         |
| <i>5-6</i> | Well Completion Information              |
| <i>5-7</i> | Ground Water Sample Results - Wells      |
| 5-8        | Ground Water Sample Results - Hydropunch |
| 6-1        | ROST/TPH Correlation Data                |

#### **EXECUTIVE SUMMARY**

This report documents Phase 2-A of a permit-required RCRA facility investigation (RFI) to investigate solid waste management units and areas of concern, and an Extent of Contamination (EOC) investigation completed as part of post-closure care for a former surface impoundment at the Houston Wood Preserving Works site in Houston, Texas. The site was utilized for wood treating operations until 1985, and is currently utilized for railroad storage.

As part of the investigations, the site has been segregated into four areas:
1) Off-Site Drainage Area; 2) Tie Storage Area; 3) Former Process Areas; and 4)
Closed Surface Impoundment. The Phase 2-A activities were completed in accordance with the scope and methods described in Section 5.0 of the Phase 1 report. The scope of Phase 2-A included the following:

- completion of seven deep soil borings, eleven monitor wells, eight CPT soundings, and five Hydropunch points;
- collection of 45 surface soil samples, 68 subsurface soil samples, and 20 ground water samples;
- leachability and geotechnical analyses of soil samples; and
- aquifer slug tests to measure hydraulic conductivity.

The site is underlain mostly by clay, with two continuous and one discontinuous sandy transmissive zones present within the upper 100 feet. Ground water in the upper two transmissive zones appears to flow away (radially) from a relative ground water high in the southwest corner of the site with Darcian velocities on the order of 1 ft/yr. Ground water in the third transmissive zone flows east-southeast with a Darcian velocity on the order of 1 ft/yr.

Site conditions were assessed relative to benchmark quantitation limits in order to develop an understanding of potential impacts to soil and ground water. Soil impacts were observed throughout portions of the soil column in the Off-site Drainage Area, the Tie Storage Area and the Former Process Areas. Ground water impacts were observed within the two upper transmissive zones near the Off-site Drainage Area, the Tie Storage Area, the Former Process Areas, and the Closed Surface Impoundment Area. Minor ground water impacts were observed within the third transmissive zone near the Former Process Areas. Ultimately, the extent of affected media will be determined relative to site-specific concentration limits.

Future activities include development of a Risk Reduction Implementation Plan (RRIP). The RRIP will include a work plan for completing Phase 2 and will describe the conceptual approach to implementing the Risk Reduction Standards to help determine appropriate corrective measures.

#### 1.0 INTRODUCTION

ERM-Southwest, Inc. has prepared this report to document the results of Phase 2-A of a RCRA Facility Investigation (RFI) and an Extent of Contamination (EOC) investigation. The RFI is being completed at the former Houston Wood Preserving Works (HWPW) site pursuant to Texas Natural Resource Conservation Commission (TNRCC) Permit No. HW-50343-000 issued to Southern Pacific Transportation Company (SPTCo) on June 20, 1994. Concurrent with the RFI, the EOC investigation is being completed in the area of a closed permitted surface impoundment pursuant to TNRCC Compliance Plan CP-50343-000 issued to SPTCo on June 20, 1994.

The site consists of a 33-acre tract of land located at 4910 Liberty Road, Houston, Harris County, Texas. The site is approximately 1.5 miles northeast of the intersection of U.S. Highway 59 and Interstate Highway 10 (Figure 1-1).

The site was utilized for wood treating operations until 1985, and is currently utilized for railroad storage and other railroad operations. Based on the conclusions of a RCRA Facility Assessment completed on behalf of the U.S. EPA (PRC EMI, 1993) and as described in Provision VIII of the permit, ten solid waste management units (SWMUs) and six areas of concern (AOCs) are subject to the RFI. The EOC investigation is part of the post-closure care requirements described in Section VIII of the Compliance Plan.

#### 1.1 SITE HISTORY

An RFI Work Plan was submitted to the TNRCC (IC, 1994d) and subsequently approved with modifications on October 16, 1995. Based on the technical approach described in the work plan, the ten SWMUs and two AOCs listed below are subject to investigation. The locations of the SWMUs and AOCs are shown on Figure 1-2.

| SWMU/AOC No. | Description                                     |
|--------------|-------------------------------------------------|
| SWMU 2       | Northern and Southern Drainage Ditches          |
| SWMU 4       | Recent Process Area                             |
| SWMU 5       | Original Process Area                           |
| SWMU 6       | Water Treatment and Boiler System               |
| SWMU 7       | Tank Car Storage Area                           |
| SWMU 8       | Aboveground Storage Tank Area                   |
| SWMU 9       | Location of the Former UST No. 44-023-05        |
| SWMU 10      | Location of the Former Sap Water Treatment Tank |
| SWMU 11      | Oil/Water Separators                            |
| SWMU 12      | Railroad Tie Storage Area                       |
| AOC 1        | Diesel Storage Tank                             |
| AOC 6        | Inactive Wastewater Lagoon                      |
|              |                                                 |

An EOC Work Plan was also submitted to the TNRCC (IC, 1994c) and subsequently approved with modifications on September 29, 1995. For the RFI/EOC, the site was grouped into the four investigation areas listed below. The locations of the four areas are shown on Figure 1-3.

| Area No. | Area Name                  | SWMU/AOC Included       |
|----------|----------------------------|-------------------------|
| Area 1   | Off-Site Drainage Area     | SWMU 2, AOC 6           |
| Area 2   | Tie Storage Area           | SWMU 12                 |
| Area 3   | Former Process Area        | SWMU 4, SWMU 5, SWMU 6, |
|          |                            | SWMU 7, SWMU 8, SWMU 9, |
|          |                            | SWMU 10, SWMU 11, AOC 1 |
| Area 4   | Former Surface Impoundment | closed permitted unit   |
|          |                            |                         |

The following list is a summary of significant documents relating to the RFI/EOC Investigations, and dates of submittals and approvals (if appropriate). Also, an upcoming schedule of activities and tentative submittals to be performed at the site is included.

| Date               | Description                                                                            |
|--------------------|----------------------------------------------------------------------------------------|
| October 1993       | RCRA Facility Assessment completed on behalf of U.S. EPA                               |
| June 20, 1994      | Permit No. HW-50343-000 and Compliance Plan CP-50343-000 issued by TNRCC               |
| August 19, 1994    | Operation and Maintenance Plan and Compliance<br>Schedule submitted on behalf of SPTCo |
| September 7, 1994  | Revised Compliance Schedule submitted on behalf of SPTCo                               |
| September 16, 1994 | EOC Work Plan submitted on behalf of SPTCo                                             |
| October 14, 1994   | RFI Work Plan submitted on behalf of SPTCo                                             |
| November 3, 1994   | Revised Compliance Schedule approved by TNRCC                                          |
| January 10, 1995   | Operation and Maintenance Plan approved by TNRCC                                       |
| September 29, 1995 | EOC Work Plan approved by TNRCC                                                        |
| October 16, 1995   | RFI Work Plan approved by TNRCC                                                        |
| May 23, 1996       | Phase 1 RFI/EOC Report submitted on behalf of SPTCo                                    |

| Date              | Description                                                                                                                                       |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| November 26, 1996 | EOC portion of the Phase 1 RFI/EOC Investigation Report approved by TNRCC                                                                         |
| January 13, 1997  | RFI portion of the Phase 1 RFI/EOC Investigation<br>Report approved by TNRCC                                                                      |
| February 13, 1998 | Phase 2-A RFI/EOC Investigation Report submitted to TNRCC on behalf of SPTCo                                                                      |
| March 31, 1998    | Tentative date for submittal of the Risk Reduction Implementation Work Plan to TNRCC on behalf of SPTCo                                           |
| July 29, 1998     | Tentative date to begin the Phase 2-B field investigation activities                                                                              |
| February 24, 1999 | Tentative date for submittal of the Phase 2-B RFI/EOC Investigation Report to TNRCC on behalf of SPTCo                                            |
| June 24, 1999     | Tentative date to begin RFI Risk Assessment                                                                                                       |
| August 23, 1999   | Tentative date for submittal of the RFI Risk Assessment to TNRCC on behalf of SPTCo                                                               |
| December 21, 1999 | Tentative date to begin the Corrective Measures Study                                                                                             |
| February 19, 2000 | Tentative date for submittal of the Corrective Measures<br>Study to TNRCC on behalf of SPTCo                                                      |
| June 20, 2000     | Tentative date for submittal of the proposed permit modification and the Corrective Measures Implementation Work Plan to TNRCC on behalf of SPTCo |

#### NOTE:

The above summary does not include routine activities such as semiannual ground water reports.

# 1.2 REGULATORY STATUS

In order to facilitate a mutual understanding (between the TNRCC and SPTCo) of the site's position within the regulatory process, the current regulatory status of the site was reviewed. The purpose of this section is to: a) summarize the permit-related regulatory requirements that the site is subject to; b) outline those requirements which have been satisfied by SPTCo prior to submission of this report; and c) outline those requirements which will be addressed in this report and as part of future activities.

The RFI-related regulatory requirements are based primarily on Provision VIII of the permit. The EOC-related regulatory requirements are based primarily on the Compliance Plan, which was issued in conjunction with the permit.

# 1.2.1 REVIEW OF RFI REQUIREMENTS

Provision VIII is designed to facilitate completion of an investigation to determine whether constituents of concern have been released into the environment from SWMUs or AOCs at the site. Prior to initiation of investigative activities, the permit requires submittal of an RFI Work Plan. The purpose of this Work Plan is to characterize the physical layout and operational history of the site, to present a plan for conducting an investigation of the nature and extent of constituent releases in soil (and initially in ground water), and to discuss provisions for developing a full-scale Ground Water Investigation Plan, if warranted.

The permit requires SPTCo to conduct the RFI activities in accordance with the RFI Work Plan following TNRCC's approval of the Work Plan. The data generated through these activities is (in part) intended to determine the need for additional investigative activities at the site. An RFI Report, including a discussion of the findings of the RFI, is required subsequent to completion of investigation activities.

According to the permit, if it is determined that a release to soil or ground water from any of the subject SWMUs or AOCs has occurred, then a Ground Water Investigation Plan is required. The purpose of this Plan is to identify the procedures for conducting supplemental investigations of soil and ground water at the site, as needed. In addition, a Preliminary Ground Water Report, containing a summary of the known ground water conditions at the site is required. The permit then requires that a schedule for a Final Ground Water Report be submitted to the TNRCC.

Subsequent to completion of investigation activities at the site, the permit requires that either a Corrective Measures Study (CMS) or Risk Reduction Standards implementation plan be submitted to the TNRCC. The CMS or Risk Plan is required for any SWMU or AOC at which a release has been documented through the RFI. Finally, a permit modification is required as appropriate, to incorporate any proposed corrective actions and/or changes in Ground Water Protection Standards.

# 1.2.2 REVIEW OF EOC REQUIREMENTS

Compliance Plan No. CP-50343 is designed to facilitate implementation of a corrective action program in the area of the permitted unit (i.e., Closed Surface Impoundment, NOR Unit No. 01). The Compliance Plan requires submittal of a schedule for implementation of the required activities. In addition, an Operation

and Maintenance Plan for the ground water monitoring and recovery system is required.

After submittal of the Compliance Schedule, an EOC Work Plan is required. The purpose of this Work Plan is to outline the objectives of the EOC investigation, describe the methods to be utilized during the investigation, characterize the physical layout and operational history of the permitted unit, and outline the proposed schedule for completion of the investigation.

Subsequent to approval of the EOC Work Plan, the Compliance Plan requires implementation of the investigative activities described therein. Following completion of the EOC investigation, the Compliance Plan requires submittal of an EOC Investigation Final Report. The purpose of the Final Report is (in part) to discuss the information obtained during the investigation and to provide recommendations for further investigation.

Following approval of the EOC Investigation Final Report, the Compliance Plan requires submittal of a Corrective Action Work Plan. The purpose of the Corrective Action Work Plan primarily is to present the methods by which potential corrective action alternatives will be evaluated. Subsequent to approval of the Corrective Action Work Plan, the Compliance Plan requires implementation of the Work Plan.

The Compliance Plan requires submittal of a Corrective Action Report following completion of the Corrective Action Work Plan activities. The primary purpose of the corrective Action Report is to identify a selected corrective action alternative for ground water in the area of the permitted unit. Following approval of the Corrective Action Report (and the final selected corrective action alternative) the Compliance Plan requires submittal of detailed engineering design plans and timeframes for implementation of the alternative. Subsequent to approval of the proposed design plans and timeframes, the Compliance Plan requires that the corrective action alternative be implemented in accordance with the approved schedule.

# 1.2.3 REQUIREMENTS THAT HAVE BEEN SATISFIED

A summary of regulatory requirements that have been satisfied prior to submittal of this report is provided below. The summary is based on documented activities completed by SPTCo and approved by the TNRCC.

As required by the Compliance Plan, SPTCo submitted a Compliance Schedule on August 19, 1994 (IC, 1994b). Additionally, as required by Provision XI.C of the Compliance Plan, SPTCo provided notice to TNRCC of its intent to install two new point-of-compliance (POC) wells between existing wells MW-2 and MW-7. The Compliance Schedule was revised by SPTCo and resubmitted on

September 7, 1994. The two new POC wells were installed on September 19, 1994. The TNRCC approved the installation of the two new POC wells and the Compliance Schedule on November 3, 1994.

Concurrent with submittal of the Compliance Schedule, SPTCo submitted an Operation & Maintenance Plan (IC, 1994a) to TNRCC. The Operation & Maintenance Plan was approved by TNRCC on January 10, 1995. Amendments 2 and 3 to the Operation & Maintenance Plan were submitted to TNRCC on May 21, 1995 and August 8, 1995, respectively.

In accordance with permit requirements, SPTCo submitted an RFI Work Plan, dated October 14, 1994 (IC, 1994d), which addressed the SWMUs and AOCs identified in the permit. The RFI Work Plan was approved, with modifications, by the TNRCC on October 16, 1995. Similarly, an EOC Work Plan was submitted on September 16, 1994 (IC, 1994c), and was approved with modifications by the TNRCC on September 29, 1995.

The RFI and EOC investigations have been combined and the initial field activities were completed by SPTCo during November and December 1995. A Phase 1 RFI/EOC Report was submitted to the TNRCC on May 23, 1996 (Terranext, 1996). The purpose of the Phase 1 report was to summarize the findings of initial investigation activities completed at the site, and to identify areas within the site where further investigation was warranted to fully characterize the nature and/or extent of releases. The EOC portion of the Phase 1 report was approved by the TNRCC on November 26, 1996. The RFI portion of the Phase 1 report was approved by the TNRCC on January 13, 1997.

The Phase 1 report included a summary of known ground water conditions at the site based on the Phase 1 results and information obtained during investigations in the area of the permitted unit. This portion of the Phase 1 RFI/EOC Report was intended to satisfy the permit requirement for submittal of a Preliminary Ground Water Report.

Based on indications that releases had occurred from SWMUs/AOCs at the site, the Phase 1 report also included a proposal for additional (i.e., Phase 2) investigation. In addition to further defining the extent of releases in soil, the Phase 2 proposal included a plan, based on soil and ground water analytical results, to conduct additional ground water investigation. This section of the Phase 1 report was intended to satisfy the permit requirements for submittal of a Ground Water Investigation Plan. Accordingly, an outline of the sequence of future reports was described as required by the permit in the Phase 2 proposal section of the Phase 1 report. The outline included submittal of a Phase 2 RFI/EOC Report.

It should be noted that one of the stated goals of Phase 2 was to fully characterize the nature and extent of releases to ground water at the site; the Phase 2 RFI/EOC Report was thereby intended to fulfill the permit requirement for submittal of a Final Ground Water Report and an EOC Investigation Final Report. Although broad in scope, the Phase 2 field activities completed during 1997 have not provided sufficient data to fully characterize the nature and extent of releases in soil and ground water at the site. Accordingly, this report is not intended to fulfill the requirements for submittal of a Final Ground Water Report or an EOC Investigation Final Report. As described in Section 8.0 herein, additional investigation is proposed for portions of the site and off-site areas (i.e., AOC 6).

# 1.3 OBJECTIVES AND TECHNICAL APPROACH

The objective of the RFI process is to investigate impacts and/or releases from waste management units associated with wood treating operations. The data collected during the RFI will be utilized for the following:

- to help understand current site conditions, including the hydrogeology of the site and the nature and extent of impacts;
- to complete a baseline risk assessment for the site; and
- to help design corrective measures, if warranted.

The objective of the EOC investigation is evaluate the extent of affected ground water outside the closed impoundment's boundary. These data will be utilized to evaluate remedial alternatives that will result in ground water conditions protective of human health and the environment.

The technical approach for the investigations is to collect sufficient, quality data to meet the goals described above. In order to meet these goals more effectively, the investigations have been implemented in a phased approach. A report which documented Phase 1 of the RFI and EOC investigation was submitted to the TNRCC on May 23, 1996 (Terranext, 1996). The Phase 1 report outlined the objectives for Phase 2 activities, and a proposed scope to meet these objectives. The specific objectives of Phase 2 include the following:

- determine the vertical extent of benzene, toluene, ethylbenzene and xylenes (BTEX), polynuclear aromatic hydrocarbons (PAH), and creosote migration in soil within areas shown to be significantly impacted from past releases;
- confirm, compare and if possible, correlate soil borings and soil sampling data with existing cone penetrometer technology (CPT) and Rapid Optical Screening Tool (ROST) data;

- determine the lateral extent of off-site impact attributable to the inactive wastewater lagoon (AOC-6);
- collect representative ground water samples and obtain hydrogeologic data across the entire site;
- develop and apply fate and transport analyses to predict possible contaminant levels off site and support natural attenuation of contaminants in the subsurface;
- collect data to assess natural attenuation processes in soil and ground water;
- obtain an understanding of the relationship between concentrations of contaminants in soil, and how these concentrations have or may affect ground water quality;
- derive risk-based concentrations through risk assessment using available site data; and
- subsequently modify the Compliance Plan and Permit as necessary to assure that site-specific elements form the basis for any further investigation, corrective measures, and post-closure activities required under the Permit.

This report documents the methods and results of the RFI/EOC field activities completed during 1997 and outlines the steps required to complete Phase 2. This first step of Phase 2 is hereinafter referred to as Phase 2-A.

#### 1.4 SCOPE OF PHASE 2-A

The Phase 2-A activities were completed in accordance with the scope and methods described in Section 5.0 of the Phase 1 report. The scope of Phase 2-A included the following:

- completion of seven deep soil borings, eleven monitor wells, eight CPT soundings, and five Hydropunch points;
- collection of 45 surface soil samples, 68 subsurface soil samples, and 20 ground water samples;
- leachability and geotechnical analyses of soil samples; and
- aquifer slug tests to measure hydraulic conductivity.

In addition to describing the methods and results of Phase 2-A, the scope of this report includes addressing a path forward for the remaining permit requirements.

# 1.5 LIMITATIONS

The data and results presented herein were collected by Terranext and their predecessor company, Industrial Compliance (IC). ERM-Southwest has reviewed existing site data to the extent practical and made inferences regarding site conditions based on the field notes and other files from Terranext. ERM-Southwest makes no warranties regarding the accuracy, completeness or validity of the data and results collected to date.

# 2.0 REGIONAL WATER USAGE

### 2.1 HYDROGEOLOGY

According to the latest U.S. Geological Survey nomenclature, the formations that supply water in the Harris County area are, from oldest to youngest: the Goliad Sand of Pliocene Age; the Willis Sand, the Bentley Formation, the Montgomery Formation, and the Beaumont Clay of Pleistocene Age; and Alluvium of Pleistocene and Recent Ages. These formations are grouped into two aquifer subdivisions, which are, from oldest to youngest, the Evangeline Aquifer and the Chicot Aquifer. The Evangeline Aquifer is composed of the Goliad Sand, Willis Sand, and Bentley Formation; and, the Chicot Aquifer is composed of the Montgomery and Beaumont formations.

# 2.2 GROUND WATER USAGE

The investigation site overlies the aquifers of the Chicot hydrogeologic unit, which yield small to moderate quantities of fresh water in Harris County. However, based on information from the City of Houston Water Production/ Water Quality Division, local drinking water in this section of Harris County is obtained only from Lake Houston or the Trinity River (pc, 1997).

A records search was completed in 1995 to identify water wells within one mile of the site (AIC, 1995). The search indicated that nine wells had been installed. Two of the wells are owned by the City of Houston (one screened from 1,142 to 1,969 feet below grade and the other screened from 641 to 1,279 feet below grade), six wells are owned by the Harris-Galveston Coastal Subsidence District for observation (screened from depths ranging from 283 to 2,119 feet below grade), and one was a privately-owned well which has been plugged and abandoned.

# 2.3 SURFACE WATER USAGE

Based on a review of USGS topographic quadrangle maps, no significant surface water bodies suitable for water supply, recreational, or industrial usage are located within one mile of the site.

# 3.0 FIELD PROCEDURES

The field activities associated with Phase 2-A were completed on behalf of SPTCo by Terranext. The scope of the field activities, and the field procedures and investigation tools that were utilized are described in a report prepared by Terranext entitled "*Phase 2 RFI/EOC Field Procedures*". The field procedures report dated December 8, 1997 is included as Appendix A.

# 4.0 SITE GEOLOGY AND HYDROGEOLOGY

Based on a review of the CPT logs and soil boring logs completed as part of previous (including Phase 2-A) hydrogeologic investigations, the subsurface has been characterized to a depth of approximately 75 feet. One deeper boring was advanced for the installation of a monitor well, but no log was generated. The subsurface is characterized by a series of low-permeability zones (i.e., cohesive soils) and water-transmissive zones.

For simplicity and organizational reasons, the nomenclature to designate strata has been modified somewhat. The native cohesive and transmissive zones underlying the site have been re-designated alphabetically from shallowest to deepest. For example, the shallowest or uppermost transmissive zone is referred to as the A-Transmissive Zone or A-TZ.

From shallowest to deepest, the lithologic zones that underlie the site include fill material, the A-Cohesive Zone (A-CZ), the A-Transmissive Zone (A-TZ), the B-Cohesive Zone (B-CZ), the B-Transmissive Zone (B-TZ), the C-Cohesive Zone (C-CZ), the C-Transmissive Zone (C-TZ), and the D-Cohesive Zone (D-CZ). Geologic cross-sections and a cross-section location map are provided in Figures 4-1 through 4-5. The general characteristics of each zone are described below.

## 4.1 FILL MATERIAL

Fill material is present at ground surface and has an average thickness of approximately 3 feet. Visual observations of the fill material indicate that the fill is primarily a mixture of gravel, clay, construction debris, and railroad ties. The layer of fill is underlain by the A-CZ.

### 4.2 A-COHESIVE ZONE

The A-CZ ranges in thickness from 8 to 15 feet and was encountered in all the CPT soundings and monitor well borings. Based on lithologic descriptions from boring logs for MW-10A, MW-10B, and MW-11A, the A-CZ in the western portion of the site consists of gray silty clay. The silty clay is stiff to very stiff, laminated, moist, and contains indications of plant material, calcium carbonate, iron oxide nodules, roots, and sandy clay lenses. The A-CZ is underlain by the A-TZ.

# 4.3 A-TRANSMISSIVE ZONE

According to CPT soundings and boring log descriptions, the A-TZ is a continuous sandy layer present across the site. The A-TZ is thickest on the eastern portion of the property (approximately 10 feet thick), and gradually thins from east to west (to less than 4 feet thick). Based on lithologic descriptions from

boring logs for MW-10A, MW-10B, and MW-11A, the A-TZ beneath the western portion of the site consists of light greenish-gray to light gray sand and silty sand that is very fine-grained, wet, and contains plant material and 10 to 25 percent clay. The A-TZ overlies the B-CZ.

#### 4.4 B-COHESIVE ZONE

The B-CZ is a layer of cohesive soils (mostly clays, silty clays, sandy clays, and clayey silts) ranging in thickness from approximately 10 feet beneath the eastern portion of the site to 16 feet beneath the western portion of the site. The B-CZ was encountered in all the CPT soundings and POC well nest borings. Based on the boring logs from the POC well nests (MW-10A, MW-10B, and MW-11A, MW-11B) the B-CZ beneath the site is clay, silty clay, and sandy clay. It is mottled gray and reddish brown, very stiff to hard, and moist with a high plasticity. The unit also contains lenses of silty sand, and slickensides. The B-CZ overlies the B-TZ or C-CZ where the B-TZ is absent.

# 4.5 B-TRANSMISSIVE ZONE

The B-TZ is a sandy layer that underlies the B-CZ in the western portion of the site only, and is not present in the eastern portion of the site. Where present, the B-TZ is approximately 7 feet thick and is present at approximately 25 to 35 feet below ground surface. Based on the POC boring logs, the B-TZ consists of silty sand and sand that is mottled brown and gray, very fine-grained, and very dense in consistency.

### 4.6 C-COHESIVE ZONE

The C-CZ is a layer of cohesive soils (primarily) that underlie the B-TZ to the west and the B-CZ to the east. The C-CZ is approximately 8 feet thick. Based on boring logs from MW-12C and MW-18C, the C-CZ consists of silt and clayey silt that is reddish brown, firm in consistency, has low plasticity, and contains minor amounts of sand.

### 4.7 C-TRANSMISSIVE ZONE

The C-TZ is a silty sand layer 7 feet thick that underlies the C-CZ at an approximate depth of 65 to 66 feet below ground surface. Based on the boring logs from MW-12C and MW-18C, the C-TZ consists of silty sand that is reddish brown, very fine-grained and wet. The C-TZ overlies reddish brown clay. The underlying clay has been designated the D-CZ: Only the upper 2 feet of the D-CZ has been characterized.

# 4.8 AQUIFER SLUG TEST RESULTS

Aquifer slug tests (rising head) were performed on 10 monitor wells on May 1 and 2, 1997. The slug tests data were analyzed using the Bouwer and Rice method (Bouwer and Rice, 1976) and the solutions are included in Appendix C. The results of the rising head test are listed below.

| Monitor Well ID | Transmissive Zone | Hydraulic<br>Conductivity (cm/sec) |
|-----------------|-------------------|------------------------------------|
| MW-10A          | A-TZ              | $4.2 \times 10^{-4}$               |
| MW-10B          | B-TX              | $5.3 \times 10^{-5}$               |
| MW-12A          | A-TZ              | $3.1 \times 10^{-3}$               |
| MW-12B          | B-TZ              | $3.7 \times 10^{-3}$               |
| MW-13           | A-TZ              | $7.9 \times 10^{-4}$               |
| MW-14 [B]       | B-TZ              | $1.2 \times 10^{-4}$               |
| MW-15           | A-TZ              | $6.9 \times 10^{-4}$               |
| MW-16           | A-TZ              | $4.5 \times 10^{-4}$               |
| MW-17           | A-TZ              | $2.8 \times 10^{-4}$               |
| MW-18           | A-TZ              | $1.3 \times 10^{-3}$               |

Based on the slug test data gathered from seven monitor wells screened in the A-TZ, the hydraulic conductivity of the A-TZ ranges from  $2.8 \times 10^{-4}$  to  $1.3 \times 10^{-3}$  cm/sec, with an average conductivity of  $7.0 \times 10^{-3}$  cm/sec (2.8 ft/day) and a geometric mean of  $7.6 \times 10^{-4}$  cm/sec. Based on the slug test data gathered from three monitor wells screened in the B-TZ, the hydraulic conductivity of the B-TZ ranges from  $5.3 \times 10^{-5}$  to  $3.7 \times 10^{-3}$  cm/sec, with an average conductivity of  $1.2 \times 10^{-3}$  cm/sec (3.7 ft/day). and a geometric mean of  $2.8 \times 10^{-4}$  cm/sec.

#### 4.9 GROUND WATER FLOW

Ground water elevations were measured from each monitor well on September 25, 1997 to help assess ground water flow direction and gradient. Potentiometric surface contour maps for the A-TZ, B-TZ and C-TZ are provided in Figures 4-6, 4-7 and 4-8, respectively.

### 4.9.1 Horizontal Ground Water Flow

Based on interpretation of the contour maps for both the A-TZ and B-TZ, ground water appears to flow radially away from a relative ground water high in the southwest corner of the Tie Storage Area. The horizontal hydraulic gradient is typically 0.001 ft/ft in both the A-TZ and the B-TZ. Based on the horizontal gradient and the hydraulic conductivity described in Section 4.8 above, the calculated Darcian velocity is 0.8 ft/yr in the A-TZ and 0.3 ft/yr in the B-TZ.

Based on interpretation of the C-TZ contour map, ground water flows toward the east-southeast with a horizontal hydraulic gradient of 0.003 ft/ft.

#### 4.9.2 Vertical Ground Water Flow

Monitor well nests were constructed at five locations at the site. The well nests consist of two or three monitor wells that are located as near as practical to each other (i.e., less than 10 feet apart) but are screened in separate transmissive zones. The well nest locations, screened intervals, and ground water elevations measured on September 25, 1997 are summarized below:

# Tie Storage Area

| MW-12A | A-TZ | 41.88 ft MSL |
|--------|------|--------------|
| MW-12B | B-TZ | 41.70 ft MSL |
| MW-12C | C-TZ | 13.44 ft MSL |

# Closed Surface Impoundment

| MW-10A | A-TZ | 41.43 ft MSL |
|--------|------|--------------|
| MW-10B | B-TZ | 41.28 ft MSL |
|        |      |              |
| MW-11A | A-TZ | 41.34 ft MSL |
| MW-11B | B-TZ | 41.23 ft MSL |

#### Former Process Areas

| MW-15A | A-TZ | 40.66 ft MSL |
|--------|------|--------------|
| MW-15C | C-TZ | 16.24 ft MSL |
| L      |      | 1012111102   |

| MW-18A | A-TZ | 36.42 ft MSL |
|--------|------|--------------|
| MW-18C | C-TZ | 19.94 ft MSL |

At each location where the A-TZ and B-TZ are screened, the measured ground water elevations for the two zones are within one foot. As a result, the horizontal flow direction and gradient for the two zones are similar. The A-TZ and B-TZ are separated by approximately 5 feet of clay with interlaminated silty and/or sandy seams: that is, the upper portion of the B-CZ. These observations suggest that the A-TZ and B-TZ have substantial hydraulic communication.

Based on the measured ground water elevations, the vertical hydraulic gradient between the A-TZ/B-TZ and the C-TZ appears to be downward. The C-TZ is overlain by 25 to 40 feet of clay, and the potentiometric surface of the C-TZ is an average of 23 feet lower than the A-TZ or B-TZ (where present).

# 5.0 ANALYTICAL RESULTS

The Phase 2-A field activities were conducted between February 25, 1997 and May 13, 1997. The field activities included collection of 45 surface soil samples, 68 subsurface soil samples, and 20 ground water samples for laboratory analyses. Ground water samples were collected both from monitor wells and through Hydropunch technology.

Subsurface soil samples and ground water samples were analyzed for the constituents of interest (COI) listed in the Compliance Plan (Tables I and II). The COI are provided in Table 5-1 and include volatile organic compounds (VOCs) analyzed by SW-846 Method 8260 and semivolatile organic compounds (SVOCs) analyzed by SW-846 Method 8270. The surface soil samples were analyzed for a subset of the COI as described in Section 5.1 below.

In addition, 28 discrete subsurface soil samples were collected from locations that had been characterized through CPT/ROST during Phase 1. These samples were split and analyzed for total petroleum hydrocarbons (TPH) by EPA Method 418.1 (modified) and bench-scale ROST. The objective of this task was to evaluate the relationship between TPH concentration and the fluorescence data obtained during Phase 1.

# 5.1 SURFACE SOIL ANALYTICAL RESULTS

As an initial step in understanding overall site conditions, the Limits of Quantitation (LOQs) were utilized as a benchmark for assessing which areas had been impacted through historical site activities at the SWMUs and AOCs. Ultimately, the extent of affected surface soil will be assessed relative to concentration limits appropriate for the site in accordance with the permit during development of a site conceptual model. The site conceptual model will be presented under separate cover.

A total of 31 surface soil samples were collected from a pre-set grid in accordance with U.S. EPA guidance (U.S. EPA, 1989). Additionally, 14 surface soil samples were collected during completion of soil borings and/or monitor wells. The laboratory analytical results for the surface soil samples are summarized in Table 5-2 and the laboratory analytical reports are provided in Appendix B.

The 31 surface soil samples collected from the grid pattern were analyzed for the SVOCs included on the COI list (Table 5-1) by SW-846 Method 8270. The additional surface soil samples from the soil borings and wells were analyzed for the COI listed in Table 5-1.

Bubble plots were developed from the comprehensive database of surface soil results (i.e., Phase 1 and Phase 2-A) to show the relative distribution of selected

COI. A surface soil bubble plot of soil chrysene concentrations is provided in Figure 5-1. Chrysene was selected because its distribution and range of detected concentrations are representative of the SVOCs reported in surface soil samples. The comprehensive set of surface soil analytical results is described by area below.

# 5.1.1 Area 1 - Off-site Drainage Area

No surface soil samples were collected in the Off-site Drainage Area as part of the Phase 2-A investigation. A description of observed impacts is included in the Phase 1 RFI/EOC report.

# 5.1.2 Area 2 - Tie Storage Area

A total of 20 surface soil samples were collected within the Tie Storage Area as part of the Phase 2-A investigation. Based on the reported laboratory results, unimpacted areas are present near MW-12, CPT30R, CPT28, and MW-15.

# 5.1.3 Area 3 - Former Process Areas

A total of 11 Phase 2-A surface soil samples were collected within the Former Process Areas. The Phase 2-A surface soil sample analytical results indicate two areas of impact, however their extent has not been fully assessed. The analytical results suggest historical impacts are greatest around the location of grid node G8 in the northeast area of the Former Process Area as shown on Figure 5-1.

# 5.1.4 Area 4 - Closed Surface Impoundment

The former impoundment was backfilled with imported fill material as part of closure activities in 1980. Accordingly, no surface soil samples were collected in the Closed Surface Impoundment as part of the Phase 2-A investigation.

# 5.2 SUBSURFACE SOIL ANALYTICAL RESULTS

As an initial step in understanding overall site conditions, the LOQs were utilized as a benchmark for assessing which areas had been impacted through historical site activities at the SWMUs and AOCs. The extent of affected subsurface soil ultimately will be assessed relative to concentration limits appropriate for the site in accordance with the permit during development of a site conceptual model. As previously mentioned, the site conceptual model will be presented under separate cover.

Soil borings SB02 through SB08 and monitor well borings MW-12 through MW-18 were completed as part of the Phase 2-A investigation to assess the extent of COI. In addition, CPT soundings (CPT35 through CPT42) were completed to

further assess site lithology. The soil boring logs and CPT logs are included as Attachment 1 to Appendix A. A total of 68 subsurface soil samples were collected and analyzed for the COI listed on Table 5-1. The analytical results are summarized on Table 5-3 and the laboratory analytical reports are provided in Appendix B.

Bubble plots were developed from the comprehensive database of subsurface soil results (i.e., Phase 1 and Phase 2-A) to show the relative distribution of selected COI. Subsurface soil bubble plots of benzo(a)anthracene and naphthalene are provided in Figures 5-2 and 5-3. Benzo(a)anthracene and naphthalene were selected because the range and distribution of concentrations are representative of the SVOCs reported on site. The comprehensive set of subsurface soil analytical results is described by area below.

# 5.2.1 Area 1 - Off-site Drainage Area

No subsurface soil samples were collected in the Off-site Drainage Area as part of the Phase 2-A investigation. A description of observed impacts is included in the Phase 1 RFI/EOC report.

# 5.2.2 Area 2 - Tie Storage Area

Based on the RFI/EOC investigation results, COI are present from ground surface to the silty clay of the A-CZ (approximately 7 feet below ground surface) in the Tie Storage Area. In addition, COI have been detected within the A-TZ and B-TZ soil matrix at depths of approximately 20 and 35 feet below grade. As shown on Figures 5-2 and 5-3; however, soil impacts are limited to a small area in the southeastern portion of the Tie Storage Area.

The Phase 1 report suggested that a potential creosote source may be present in a localized area near CPT25R. The ROST profile for CPT25R showed measurable fluorescence from 0 to 30 feet below grade and from 42.5 to 45 feet below grade, which corresponds to the fill, A-CZ, A-TZ, and B-TZ. As part of Phase 2-A, soil boring SB05 was advanced adjacent to CPT25R. The laboratory analytical results from samples collected from SB05 indicated that no COI were detected.

# 5.2.3 Area 3 - Former Process Areas

Based on the subsurface analytical results, as well as the relatively high fluorescence intensities recorded, COI are present in the Former Process Areas from ground surface to the clay in the C-CZ (approximately 60 feet below ground surface). A minimum of one COI was detected in each sample collected from the soil borings and well borings located in the Former Process Areas.

# 5.2.4 Area 4 - Closed Surface Impoundment

No subsurface soil samples were collected in the Closed Surface Impoundment as part of the Phase 2-A investigation. A description of observed impacts is included in the Phase 1 RFI/EOC Report.

### 5.3 SOIL LEACHATE TESTING RESULTS

Five subsurface soil samples were submitted for the Synthetic Precipitation Leaching Procedure (SW-846 Method 1312) and subsequent analysis of COI using SW-846 Methods 8260 and 8270. The samples were collected from soil borings SB03, SB04 and SB06, which are located in the Former Process Areas. A summary of the soil leachate testing results is provided in Table 5-4.

#### 5.4 SOIL GEOTECHNICAL RESULTS

A total of 10 soil samples were submitted for analysis of the following geotechnical parameters: dry density, moisture content, specific gravity, fraction organic carbon, and pH. A summary of the soil geotechnical results is included in Table 5-5.

Based on the reported data, several general trends are observed. First, the transmissive zones have lower dry densities and lower specific gravity than the cohesive zones which is a result of differing mineral content, and to a lesser degree, packing and relatively larger grain size. The transmissive zones also have higher moisture content and lower fractions of organic carbon.

### 5.5 GROUND WATER ANALYTICAL RESULTS

As an initial step in understanding overall site conditions, the LOQs were utilized as a benchmark for assessing which areas had been impacted through historical site activities at the SWMUs and AOCs. Ultimately, the extent of affected ground water will be assessed relative to concentration limits appropriate for the site in accordance with the permit during development of a site conceptual model. The site conceptual model will be presented under separate cover.

As part of the Phase 2-A field activities, 11 monitor wells were installed to facilitate ground water sampling and to provide information regarding hydraulic gradient, hydraulic conductivity, lithology, and constituent concentrations in the transmissive zones. Of the 11 Phase 2-A wells, six were completed in the A-TZ, two were completed in the B-TZ and three were completed in the C-TZ. Currently, 23 wells and 3 piezometers are present at the site. A comprehensive well completion table for the wells on site, including the area and zone of completion is provided in Table 5-6.

In addition, nine ground water samples were collected using the Hydropunch sampling system. The overall objective of this phase of the Hydropunch program was to determine if the Inactive Wastewater Lagoon (AOC-6) is a source of impact to the ground water in the off-site area west of the site, and to assess the extent of any impact.

During Phase 2-A, ground water samples were collected from monitor wells on site and from Hydropunch locations on site and off site. The ground water samples were collected and analyzed for the COI listed in Table 5-1. The laboratory analytical results for the ground water samples are summarized in Tables 5-7 and 5-8, and the laboratory analytical reports are provided in Appendix B. Bubble plots which show the relative distribution of selected COI in ground water are provided in Figures 5-4, 5-5 and 5-6 within the A-TZ, B-TZ and C-TZ, respectively. The following subsections describe the ground water analytical results by area.

# 5.5.1 Area 1 - Off-site Drainage

Based on the comprehensive analytical database, the A-TZ appears to be impacted in the off-site drainage area near HP02, HP08, and HP18. The B-TZ is impacted at HP18STZ and HP21STZ. The northern portion of the Off-site Drainage Area shows no impact to the A-TZ (no data is available for the B-TZ and C-TZ in this area).

The reported results for well MW-12C, which is completed in the C-TZ near the center of the Off-site Drainage Area, has no detected COI.

# 5.5.2 Area 2 - Tie Storage Area

Based on the comprehensive analytical database, the A-TZ and B-TZ appear to be impacted in the southwest portion of the Tie-Storage Area near MW-05 and in the center of the western boundary near MW-12. The A-TZ and C-TZ also appear to be impacted in the northeast portion of the area at MW-15; whereas the B-TZ is not present in the northeast.

# 5.5.3 Area 3 - Former Process Areas

Based on the comprehensive analytical database, the A-TZ appears to be impacted in the Former Process Areas. No COI were detected at HP12. The B-TZ is not present in this area of the site. Constituents of interest were also detected in the C-TZ near MW-18. It should be noted that limited data is available relating to ground water in the Former Process Areas.

# 5.5.4 Area 4 - Closed Surface Impoundment

The A-TZ and B-TZ appear to be impacted in the area of the Closed Surface Impoundment. No data is available for the C-TZ in this area.

# 6.0 SOIL ASSESSMENT

Section 5.0 of the Phase 1 report described several soil assessment activities to be completed as part of Phase 2, including a comparison of soil TPH and ROST data, numerical simulation of creosote mobility and fluid motions, and assessment of potential natural attenuation processes. Based on the data collected, only the soil TPH and ROST data comparison is appropriate at this time. Each soil assessment activity is briefly described below.

# 6.1 SOIL TPH AND ROST CORRELATION

During Phase 1, a substantial set of soil fluorescence data was collected using CPT/ROST technology. Because the ROST tool was used *in situ* and adjacent soil samples were not collected, direct comparison to constituent concentrations could not be made. In order to assess the relative sensitivity of the ROST data to soil constituent concentrations, soil samples were collected during Phase 2 and analyzed concurrently for TPH and fluorescence.

In order to collect appropriate data, selected soil borings were sampled at various depths and samples were split for analysis. A portion of each sample was sent to Pace Analytical, Inc. of Houston, Texas for TPH analysis, and a portion was sent to Fugro Geosciences of Houston, Texas for bench-scale ROST analysis. A summary of the results is provided in Table 6-1.

A similar study was performed recently and is described in a document entitled *The Rapid Optical Screening Tool (ROST*<sup>TM</sup>) *Laser-Induced Fluorescence (LIF) System for Screening of Petroleum Hydrocarbons in Subsurface Soils* (U.S. EPA, 1997). In that document, a qualitative correlation was demonstrated between TPH (a.k.a., TRPH) results and ROST results at two different environmental investigation sites. However, quantitative correlation was not discussed. Hence, both a quantitative and a qualitative correlation between TPH and ROST data is presented herein.

# 6.1.1 QUALITATIVE COMPARISON

As a first step, a qualitative analysis was performed to evaluate whether a positive ROST detection is reproducible as a positive TPH detection. The results suggest a very good correlation between TPH detects and LIF detects was observed to the extent that only one discrepancy was noted in 31 observations.

The qualitative analysis included a review of TPH and ROST detection limits. The TPH LOQ for this data set was reported at 20 mg/kg. Background fluorescence is typically established for each sounding based on the average minimum LIF response (a detection limit is then calculated by adding 2.58 standard deviations of the minimum response to the background value). However, because

the ROST probe was exposed to a batch sample for this analysis, rather than a continuous soil column, no background measurement could be obtained. Whereas a detection limit could not be calculated for a specific sample, an approximate background intensity (i.e., detection limit) of 2.65 was estimated based on the entire set of data.

# 6.1.2 QUANTITATIVE COMPARISON

Prior to numerical comparison, the data sets were transformed to natural logarithms. In addition, a value equal to one-half the TPH LOQ (i.e., 10 mg/kg) was assigned for non-detect results.

Visual inspection of the data shows an obvious trend, and an R<sup>2</sup> value of 0.7 is calculated through linear regression analysis (Figure 6-1). For comparison purposes, the data sets were then segregated by soil class to help account for potential variability resulting from soil texture differences. Very strong correlations were calculated for the segregated data sets. For example, an R<sup>2</sup> value of 0.9 was calculated when the subset for clayey silt was compared.

Derivation of site-specific calibration curves and more rigorous statistical evaluation is not presented herein based on: a) the areas where ROST was employed previously have subsequently been studied using conventional techniques; and b) the results of the conventional analysis largely supported the ROST screening results. The applicability of additional comparison will be determined based on the objectives of future use of ROST technology at the site, if any.

# 6.2 ANALYSES OF CREOSOTE MOBILITY, FLUID MOTIONS AND NATURAL ATTENUATION PROCESSES

Section 5.8 of the Phase 1 report described a conceptual methodology for numerically determining the site-specific mobility of creosote. In addition, numerical simulations of fluid motion and natural attenuation processes were proposed. Based on the data collected and the overall goals of the RFI/EOC investigations, these modeling efforts appear to be premature at this time.

The goals of the RFI/EOC investigations included assessment of the extent of affected material. Thus, until that assessment is complete, or unless further investigation cannot be completed, it is not appropriate to model these processes. If, following completion of the RFI/EOC investigations, additional understanding of these processes is required to achieve permit requirements, then the modeling will be performed.

#### 7.0 PHASE 2-A CONCLUSIONS

The following general conclusions were developed based on data presented herein and in the Phase 1 report completed previously.

#### 7.1 SUMMARY OF HYDROGEOLOGY

The predominant lithology beneath the site is clay, though very fine-grained sand zones are present as thin laterally continuous layers (A-TZ and C-TZ) across the site, and as a thin discontinuous layer (B-TZ) beneath the western portion of the site (see Figures 4-1 through 4-5). The A-TZ and B-TZ appear to be interconnected to some degree, and ground water these two upper zones flows away from the southwestern portion of the site. Ground water in the C-TZ flows toward the east-southeast. The hydraulic conductivity of the sandy zones range from 10<sup>-3</sup> to 10<sup>-5</sup> cm/sec. There are no known uses of ground water from the A-TZ, B-TZ or C-TZ within one mile of the site.

#### 7.2 SUMMARY OF SOIL CHARACTERISTICS

Surface soil and subsurface soil samples were collected as part of Phase 2-A. As an initial step in understanding overall site conditions, the LOQs were utilized as a benchmark for assessing which areas had been impacted through historical site activities at the SWMUs and AOCs. The areas that appear to be impacted include the following:

- Off-site Drainage Area Site data indicates that portions of the B-TZ and C-CZ are impacted by COI.
- Tie Storage Area Site data indicates that portions of the A-CZ, A-TZ, B-CZ and B-TZ are impacted by COI. Based on laboratory analytical results from SB05, the theory of a localized creosote source near CPT25R is discounted.
- Former Process Areas Site data indicates that portions of the A-CZ, A-TZ, B-CZ and C-CZ are impacted by COI.
- Closed Surface Impoundment The former surface impoundment was a shallow pit approximately 7 feet deep, excavated and closed according to guidance from the Texas Water Commission (now the TNRCC) in 1984. Site data indicates that the A-CZ, A-TZ, and B-CZ at the surface impoundment are less impacted by constituents of concern than the deeper B-TZ.

Soil fluorescence appears to be directly proportional to soil TPH (and presumably to COI) concentrations. The extent of affected soil will be assessed relative to

concentration limits appropriate for the site in accordance with the permit during development of a site conceptual model.

# 7.3 GROUND WATER CHARACTERISTICS

Ground water samples were collected both from monitor wells and through the Hydropunch system as part of Phase 2-A. As an initial step in understanding overall site conditions, the LOQs were utilized as a benchmark for assessing which areas had been impacted through historical site activities at the SWMUs and AOCs. The areas that appear to be impacted include the following:

- Off-site Drainage Area Site data suggests that portions of the A-TZ and B-TZ are impacted by COI.
- Tie Storage Area Site data indicates that portions of the A-TZ and C-TZ are impacted by COI.
- Former Process Areas Site data indicates that portions of the A-TZ and C-TZ are impacted by COI.
- Closed Surface Impoundment Ground water near the former surface impoundment is analyzed semiannually pursuant to the Compliance Plan, and the results are provided in semiannual ground water monitoring reports submitted under separate cover. Site data indicates that the A-TZ, and B-CZ at the surface impoundment are impacted by COI.

The extent of affected ground water will be assessed relative to concentration limits appropriate for the site in accordance with the permit during development of a site conceptual model.

### 8.0 PATH FORWARD

In order to satisfy the substantive requirements of the permit and compliance plan, SPTCo proposes an aggressive path forward. Based on the extensive investigation completed on site to date, only limited additional investigation is warranted to meet the overall goals of the RFI on site. Conversely, SPTCo recognizes that the off-site data set is limited and that additional RFI/EOC investigation is warranted: for example, in the AOC-6 area and the area northeast of the site. Accordingly, a work plan to complete the RFI/EOC investigations will be submitted.

The work plan will likely incorporate by reference much of the material presented in the RFI Work Plan approved previously, except for the scope of work. The work plan will outline a detailed scope of work for Phase 2-B that will achieve the pertinent goals of Phase 2. SPTCo proposes that the goals of Phase 2 be limited hereafter to determining the lateral and vertical extent of affected media resulting from activities at SWMUs and AOCs during wood treating operations. SPTCo is confident that these objectives will be achieved during Phase 2-B; however, if the objectives are not achieved, then a Phase 2-C will be implemented. The applicability of developing fate and transport analyses to predict possible COI concentrations off site in the future (in support of natural attenuation demonstrations) will be assessed during future site activities.

#### 8.1 SUMMARY OF ACTIVITIES

This section provides a conceptual summary of the actual activities associated with the site. In addition to the RFI/EOC investigations, routine ground water monitoring and other activities associated with the Closed Surface Impoundment Compliance Plan will be performed, but are not included in this summary.

It should also be noted that Interim Stabilization Measures may be implemented during the course of site activities. For example, the off-site portion of the southern drainage ditch (i.e., SWMU 1) has been remediated and an Interim Stabilization Measures report will be submitted under separate cover during the first quarter of 1998.

#### • Phase 1 RFI/EOC

A screening-level investigation of the SWMUs and AOCs was completed to help design a full-scale investigation (i.e., Phase 1). The Phase 1 investigation results suggested that completion of a full-scale soil and ground water investigation of waste management areas was warranted.

#### Phase 2 RFI/EOC

A multi-phase, full-scale investigation was designed to determine the nature and extent of affected media. The Phase 2 investigation is in progress. A plan to complete Phase 2 will be developed and submitted as part of a Risk Reduction Implementation Plan as described below.

#### Baseline Risk Assessment

A baseline risk assessment (BRA) will be completed following completion of Phase 2. If warranted based on the conclusions of the BRA, a corrective measures study (CMS) will be completed.

#### Phase 3 Investigation

Phase 3 will be reserved for investigation related specifically to remedial design, if warranted, following completion of the BRA and CMS.

#### Corrective Measures

If warranted based on the conclusions of the BRA and following completion of the CMS, corrective measures will be implemented. Prior to implementation, a permit and compliance plan modification will be completed to incorporate the objectives and conceptual design of the corrective measures, as well as to establish the protection standards (i.e., remedial goals) that will be achieved.

#### 8.2 PROPOSED PLAN

In order to fully develop the framework for future activities at the site, a Risk Reduction Implementation Plan (RRIP) will be prepared and submitted. The RRIP will describe the conceptual approach to implementing the Risk Reduction Standards in accordance with Provision VIII.I.3 of the permit. The contents of the RRIP will include the following:

- a summary of the RFI/EOC investigation results;
- development of a site conceptual model, including a discussion of the extent of affected media relative to concentration limits appropriate for the site in accordance with the permit;
- the technical approach to addressing the SWMUs and AOCs individually or as groups of waste management units;
- development of preliminary risk goals for the site;

- a description of how the Risk Reduction Rules (or Program) will be applied at the site;
- preliminary risk assessment activities, including comprehensive evaluation of site data and selection of constituents of concern;
- assessment of site-specific risk assessment issues such as risk assessment for dermal exposure to carcinogenic PAHs, and wetlands and ecological assessment issues;
- a work plan for Phase 2-B as described above;
- a technical justification for modifying the permit and compliance following completion of Phase 2 to implement corrective action; and
- a detailed schedule for implementing the remaining requirements of the permit and compliance plan.

SPTCo proposes to submit the RRIP to the TNRCC during the first quarter of 1998. A preliminary outline for the RRIP is provided in Appendix D.

#### 9.0 REFERENCES

Agency Information Consultants, Inc. (AIC, 1995); Water and Monitor Well Search, Liberty and Cashmere, Houston, Texas; September 13, 1995.

Bouwer, H. and R.C. Rice (1976); A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers wit Completely or Partially Penetrating Wells, Water Resources Research, 12: 423-28, 1976.

City of Houston Water Production / Water Quality Division (pc, 1997) Personal Communication, Mr. Chris VanWave; October 15, 1997.

Industrial Compliance (IC, 1994a); Operation and Maintenance Plan for Groundwater Monitoring and Recovery System, Southern Pacific Transportation Company, Wood Preserving Works, 4910 Liberty Road, Houston, Texas; August 19, 1994.

Industrial Compliance (IC, 1994b); Schedule for Compliance Plan Activities, Southern Pacific Transportation Company, Wood Preserving Works, 4910 Liberty Road, Houston, Texas; August 19, 1994.

Industrial Compliance (IC, 1994c); Extent of Contamination Investigation Work Plan, Southern Pacific Transportation Company, Wood Preserving Works, 4910 Liberty Road, Houston, Texas; September 16, 1994.

Industrial Compliance (IC, 1994d); RCRA Facility Investigation Work Plan, Southern Pacific Transportation Company, Former Wood Preserving Works, 4910 Liberty Road, Houston, Texas; October 14, 1994.

PRC Environmental Management, Inc. (PRC EMI, 1993); RCRA Facility Assessment Report, Southern Pacific Transportation Company, Houston, Texas; October 1993.

Terranext (1996); Phase 1 RFI/Extent of Contamination Investigation Report, Southern Pacific Transportation Company, Houston Wood Preserving Works, 4910 Liberty Road, Houston, Texas; May 23, 1996.

TNRCC (1994a); Permit for Industrial Solid Waste Management Site, Permit No. HW-50343-000, Southern Pacific Transportation Company, Wood Preserving Works, Houston, Texas; June 20, 1994.

TNRCC (1994b); Compliance Plan for Industrial Solid Waste Management Site, Compliance Plan No. CP-50343, Southern Pacific Transportation Company, Wood Preserving Works, Houston, Texas; June 20,1994.

U.S. EPA (1989); Interim Final RCRA Facility Investigation Guidance, Volume I of IV, EPA 530/SW-89-031; May 1989.

U.S. EPA (1997); The Rapid Optical Screening Tool (ROST<sup>TM</sup>) Laser-Induced Fluorescence (LIF) System for Screening of Petroleum Hydrocarbons in Subsurface Soils, EPA/600/R-97/020: February 1997.

U.S.G.S. (1982); Settegast, Houston Heights, Bellaire, and Park Place, Texas Quadrangles, 7.5 Minute Topographic Series; 1982.

## **Figures**



Source: U.S.G.S. Quadrangle

Settegast, Texas

1982

7.5 Minute Series (Topographic)





## ERM-Southwest, Inc.

ERM.

DATE: 11/17/97

W.O.NO.: 42209A17

FIGURE 1-1 SITE LOCATION MAP Houston Wood Preserving Works Houston, Texas











NOTE: GEOLOGIC LOG CPT-24R HAS BEEN PROJECTED ONTO CROSS-SECTION LINE.



ERM—Southwest, Inc.

HOUSTON • NEW ORLEANS • AUSTIN • DALLAS • BEAUMONT

FRURE 4-3

CROSS-SECTION B-B'

Houston Wood Freas

Houston, Texas

DESIGN: RM CHECKED: RM DATE: 12/04/97 SHEET NO.

of

VERTICAL

0

200'

HORIZONTAL

10.





WATER LEVEL (MEASUREMENTS TAKEN OCTOBER 20, 1997)

BASE OF SCREEN BASE OF SAND PACK TOP OF SCREEN TOP OF SAND PACK

HORIZONTAL

200'

FIGURE 4-5
CROSS-SECTION D-D'
Houston Wood Preserving Works
Houston, Texas

SHEET NO.





















Figure 6-1. Logarithmic transformations and subsequent regression analysis of CPT/ROSTdata.

### **Tables**

TABLE 5-1

#### Constituents of Interest

#### Houston Wood Preserving Works Houston, Texas

| Constituent                 | Practical Quantitation | Method |
|-----------------------------|------------------------|--------|
| Acenaphthene                | 0.010                  | 8270B  |
| Acenaphthylene              | 0.010                  | 8270B  |
| Anthracene                  | 0.010                  | 8270B  |
| Benzene                     | 0.005                  | 8260A  |
| Benzo(a)anthracene          | 0.010                  | 8270B  |
| Benzo(a)pyrene              | 0.010                  | 8270B  |
| Bis(2-ethyl hexyl)phthalate | 0.010                  | 8270B  |
| bis(2-Chloroethoxy)methane  | 0.010                  | 8270B  |
| Chlorobenzene               | 0.005                  | 8260A  |
| 2-Chloronaphthalene         | 0.010                  | 8270B  |
| Chrysene                    | 0.010                  | 8270B  |
| Dibenzofuran                | 0.010                  | 8270B  |
| 1,2-Dichloroethane          | 0.005                  | 8260A  |
| Dichloromethane             | 0.005                  | 8260A  |
| 2,4-Dimethylphenol          | 0.010                  | 8270B  |
| Di-n-butyl phthalate        | 0.010                  | 8270B  |
| 4,6-Dinitro-o-cresol        | 0.050                  | 8270B  |
| 2,4-Dinitrotoluene          | 0.010                  | 8270B  |
| 2,6-Dinitrotoluene          | 0.010                  | 8270B  |
| 1,2-Diphenylhydrazine       | 0.010                  | 8270B  |
| Ethylbenzene                | 0.005                  | 8260A  |
| Fluoranthene                | 0.010                  | 8270B  |
| Fluorene                    | 0.010                  | 8270B  |
| 2-Methylnaphthalene         | 0.010                  | 8270B  |
| Naphthalene                 | 0.010                  | 8270B  |
| Nitrobenzene                | 0.010                  | 8270B  |
| 4-Nitrophenol               | 0.050                  | 8270B  |
| N-Nitrosodiphenylamine      | 0.010                  | 8270B  |
| Pentachlorophenol           | 0.050                  | 8270B  |
| Phenanthrene                | 0.010                  | 8270B  |
| Phenol                      | 0.010                  | 8270B  |
| Pyrene                      | 0.010                  | 8270B  |
| Toluene                     | 0.005                  | 8260A  |
| Xylenes                     | 0.005                  | 8260A  |

NOTE:

Practical Quantitation Limits are shown in mg/L.

TABLE 5-2
Surface Soil Analytical Results
Phase 2-A Investigation

| Sample Location (a)        |      | <del>\</del> 01 |       | 102   | -     | 03   | A     | 04    | A     | 05   | A(    | )6   |
|----------------------------|------|-----------------|-------|-------|-------|------|-------|-------|-------|------|-------|------|
| Analytical Result          | Conc | LOQ             | Conc. | LOQ   | Conc. | LOQ  | Conc. | LOQ   | Conc. | LOQ  | Conc. | LOQ  |
|                            | (m   | g/kg)           | (m    | g/kg) | (mg   | /kg) | (mg   | g/kg) | (mg   | /kg) | (mg   | /kg) |
| Volatile Compounds         |      | -               |       |       |       |      |       |       |       |      |       |      |
| Benzene                    | NS   | NS              | NS    | NS    | NS    | NS   | NS    | NS    | NS    | NS   | NS    | NS   |
| Chlorobenzene              | NS   | NS              | NS    | NS    | NS    | NS   | NS    | NS    | NS    | NS   | NS    | NS   |
| Ethylbenzene               | NS   | NS              | NS    | NS    | NS    | NS   | NS    | NS    | NS    | NS   | NS    | NS   |
| Methylene Chloride         | NS   | NS              | NS    | NS    | NS    | NS   | NS    | NS    | NS    | NS   | NS    | NS   |
| Toluene                    | NS   | NS              | NS    | NS    | NS    | NS   | NS    | NS    | NS    | NS   | NS    | NS   |
| Xylenes (Total)            | NS   | NS              | NS    | NS    | NS    | NS   | NS    | NS    | NS    | NS   | NS    | NS   |
| Semivolatile Compound      |      |                 |       |       |       |      |       |       |       |      |       |      |
| 1,2-Diphenylhydrazine      | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| 2,4-Dimethylphenol         | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| 2,4-Dinitrotoluene         | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| 2,6-Dinitrotoluene         | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| 2-Chloronaphthalene        | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| 2-Methylnaphthalene        | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| 4,6-Dinitro-o-cresol       | ND   | 12.80           | ND    | 12.80 | ND    | 6.40 | ND    | 32.00 | ND    | 1.60 | ND    | 6.40 |
| 4-Nitrophenol              | ND   | 12.80           | ND    | 12.80 | ND    | 6.40 | ND    | 32.00 | ND    | 1.60 | ND    | 6.40 |
| Acenaphthene               | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| Acenaphthylene             | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| Anthracene                 | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| Benzo(a)anthracene         | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| Benzo(a)pyrene             | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| bis(2-Chloroethoxy)methane | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| bis(2-Ethylhexyl)phthalate | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| Chrysene                   | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| Di-n-butyl phthalate       | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND -  | 0.33 | ND    | 1.32 |
| Dibenzofuran               | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| Fluoranthene               | ND   | 2.64            | 9.28  | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| Fluorene                   | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| N-Nitrosodiphenylamine     | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| Naphthalene                | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| Nitrobenzene               | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| Pentachlorophenol          | ND   | 12.80           | ND    | 12.80 | ND    | 6.40 | ND    | 32.00 | ND    | 1.60 | ND    | 6.40 |
| Phenanthrene               | ND   | 2.64            | 6.12  | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| Phenol                     | ND   | 2.64            | ND    | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |
| Pyrene                     | ND   | 2.64            | 8.16  | 2.64  | ND    | 1.32 | ND    | 6.60  | ND    | 0.33 | ND    | 1.32 |

#### NOTES:

Conc. = Reported Concentration LOQ = Limit of Quantitation ND = Non Detect

NS = Not Sampled

(b) Surface soil samples were collected at a depth of 0 to 2 feet.

<sup>(</sup>a) Sample locations begin with the prefix 'SSO' on site maps.

TABLE 5-2
Surface Soil Analytical Results
Phase 2-A Investigation

| Sample Location (a)        | В     | 01    | В     | 02   | В     | 03   | В     | 04   | В     | 05   | В     | 06   |
|----------------------------|-------|-------|-------|------|-------|------|-------|------|-------|------|-------|------|
| Analytical Result          | Conc. | LOQ   | Conc. | LOQ  | Conc. | LOQ  | Conc. | LOQ  | Conc. | LOQ  | Conc. | LOQ  |
|                            | (mg   | J/kg) | (mg   | /kg) |
| Volatile Compounds         |       |       |       |      |       |      |       |      |       | -    | 2 2   |      |
| Benzene                    | NS    | NS    | NS    | NS   | NS    | NS   | NS    | NS   | NS    | NS   | NS    | NS   |
| Chlorobenzene              | NS    | NS    | NS    | NS   | NS    | NS   | NS    | NS   | NS    | NS   | NS    | NS   |
| Ethylbenzene               | NS    | NS    | NS    | NS   | NS    | NS   | NS    | NS   | NS    | NS   | NS    | NS   |
| Methylene Chloride         | NS    | NS    | NS    | NS   | NS    | NS   | NS    | NS   | NS    | NS   | NS    | NS   |
| Toluene                    | NS    | NS    | NS    | NS   | NS    | NS   | NS    | NS   | NS    | NS   | NS    | NS   |
| Xylenes (Total)            | NS    | NS    | NS    | NS   | NS    | NS   | NS    | NS   | NS    | NS   | NS    | NS   |
| Semivolatile Compound      |       |       |       |      |       |      |       |      |       |      |       |      |
| 1,2-Diphenylhydrazine      | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| 2,4-Dimethylphenol         | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| 2,4-Dinitrotoluene         | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| 2,6-Dinitrotoluene         | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| 2-Chloronaphthalene        | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| 2-Methylnaphthalene        | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| 4,6-Dinitro-o-cresol       | ND    | 6.40  | ND    | 1.60 | ND    | 1.60 | ND    | 1.60 | ND    | 6.40 | ND    | 6.40 |
| 4-Nitrophenol              | ND    | 6.40  | ND    | 1.60 | ND    | 1.60 | ND    | 1.60 | ND    | 6.40 | ND    | 6.40 |
| Acenaphthene               | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| Acenaphthylene             | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| Anthracene                 | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| Benzo(a)anthracene         | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| Benzo(a)pyrene             | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| bis(2-Chloroethoxy)methane | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| bis(2-Ethylhexyl)phthalate | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| Chrysene                   | 1.80  | 1.32  | 0.38  | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| Di-n-butyl phthalate       | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| Dibenzofuran               | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| Fluoranthene               | 2.54  | 1.32  | 0.50  | 0.33 | ND    | 0.33 | 0.67  | 0.33 | ND    | 1.32 | 1.37  | 1.32 |
| Fluorene                   | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| N-Nitrosodiphenylamine     | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| Naphthalene                | ND :  | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| Nitrobenzene               | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| Pentachlorophenol          | ND    | 6.40  | ND    | 1.60 | ND    | 1.60 | ND    | 1.60 | ND    | 6.40 | ND    | 6.40 |
| Phenanthrene               | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| Phenol                     | ND    | 1.32  | ND    | 0.33 | ND    | 0.33 | ND    | 0.33 | ND    | 1.32 | ND    | 1.32 |
| Pyrene                     | ND    | 1.32  | 0.46  | 0.33 | ND    | 0.33 | 0.62  | 0.33 | ND    | 1.32 | 1.34  | 1.32 |

#### NOTES:

Conc. = Reported Concentration

ND = Non Detect

LOQ = Limit of Quantitation

NS = Not Sampled

<sup>(</sup>a) Sample locations begin with the prefix 'SSO' on site maps.

<sup>(</sup>b) Surface soil samples were collected at a depth of 0 to 2 feet.

TABLE 5-2
Surface Soil Analytical Results
Phase 2-A Investigation

| Sample Location (a)        | (    | C01   | С     | 02    | (     | 203   |                                         | 04    | C     | 05   | C     | 06    |
|----------------------------|------|-------|-------|-------|-------|-------|-----------------------------------------|-------|-------|------|-------|-------|
| Analytical Result          | Conc | . LOQ | Conc. | LOQ   | Conc  | LOQ   | Conc.                                   | LOQ   | Conc. | LOQ  | Conc. | LOQ   |
|                            | (m   | g/kg) | (mg   | J/kg) | (m    | g/kg) | (mg                                     | g/kg) | (mg   | /kg) | (mg   | ı/kg) |
| Volatile Compounds         |      |       |       |       |       |       | *************************************** |       |       |      |       |       |
| Benzene                    | NS   | NS    | NS    | NS    | NS    | NS    | NS                                      | NS    | NS    | NS   | NS    | NS    |
| Chlorobenzene              | NS   | NS    | NS    | NS    | NS    | NS    | NS                                      | NS    | NS    | NS   | NS    | NS    |
| Ethylbenzene               | NS   | NS    | NS    | NS    | NS    | NS    | NS                                      | NS    | NS    | NS   | NS    | NS    |
| Methylene Chloride         | NS   | NS    | NS    | NS    | NS    | NS    | NS                                      | NS    | NS    | NS   | NS    | NS    |
| Toluene                    | NS   | NS    | NS    | NS    | NS    | NS    | NS                                      | NS    | NS    | NS   | NS    | NS    |
| Xylenes (Total)            | NS   | NS    | NS    | NS    | NS    | NS    | NS                                      | NS    | NS    | NS   | NS    | NS    |
| Semivolatile Compound      |      |       |       |       |       |       |                                         |       |       |      |       |       |
| 1,2-Diphenylhydrazine      | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| 2,4-Dimethylphenol         | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| 2,4-Dinitrotoluene         | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| 2,6-Dinitrotoluene         | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| 2-Chloronaphthalene        | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| 2-Methylnaphthalene        | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| 4,6-Dinitro-o-cresol       | ND   | 12.80 | ND    | 1.60  | ND    | 32.00 | ND                                      | 1.60  | ND    | 1.60 | ND    | 6.40  |
| 4-Nitrophenol              | ND   | 12.80 | ND    | 1.60  | ND    | 32.00 | ND                                      | 1.60  | ND    | 1.60 | ND    | 6.40  |
| Acenaphthene               | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| Acenaphthylene             | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| Anthracene                 | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| Benzo(a)anthracene         | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| Benzo(a)pyrene             | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| bis(2-Chloroethoxy)methane | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| bis(2-Ethylhexyl)phthalate | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| Chrysene                   | ND   | 2.64  | 0.38  | 0.33  | 10.10 | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| Di-n-butyl phthalate       | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| Dibenzofuran               | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| Fluoranthene               | ND   | 2.64  | 0.54  | 0.33  | 35.20 | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| Fluorene                   | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| N-Nitrosodiphenylamine     | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| Naphthalene                | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| Nitrobenzene               | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| Pentachlorophenol          | ND   | 12.80 | ND    | 1.60  | ND    | 32.00 | ND                                      | 1.60  | ND    | 1.60 | ND    | 6.40  |
| Phenanthrene               | ND   | 2.64  | ND    | 0.33  | 12.80 | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| Phenol                     | ND   | 2.64  | ND    | 0.33  | ND    | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
| Pyrene                     | ND   | 2.64  | 0.47  | 0.33  | 20.90 | 6.60  | ND                                      | 0.33  | ND    | 0.33 | ND    | 1.32  |
|                            |      |       |       |       |       |       |                                         |       |       |      |       |       |

#### NOTES:

Conc. = Reported Concentration

ND = Non Detect

LOQ = Limit of Quantitation

NS = Not Sampled

<sup>(</sup>a) Sample locations begin with the prefix 'SSO' on site maps.

<sup>(</sup>b) Surface soil samples were collected at a depth of 0 to 2 feet.

TABLE 5-2
Surface Soil Analytical Results
Phase 2-A Investigation

| Sample Location (a)        | D     | 01    | D     | 02   | F    | -07    | F     | <del>-</del> 08 | F     | 09    | F      | 10     |
|----------------------------|-------|-------|-------|------|------|--------|-------|-----------------|-------|-------|--------|--------|
| Analytical Result          | Conc. | LOQ   | Conc. | LOQ  | Conc | LOQ    | Conc. | LOQ             | Conc. | LOQ   | Conc.  | LOQ    |
| •                          | (mo   | ı/kg) | (ma   | /kg) | (m   | g/kg)  | (m    | g/kg)           | (mo   | /kg)  | (m     | g/kg)  |
| Volatile Compounds         |       | ,,,,, | (11.5 |      |      | 3.1.37 |       | 3.1.37          | (5    | 7.197 |        | 9/119/ |
| Benzene                    | NS    | NS    | NS    | NS   | NS   | NS     | NS    | NS              | NS    | NS    | NS     | NS     |
| Chlorobenzene              | NS    | NS    | NS    | NS   | NS   | NS     | NS    | NS              | NS    | NS    | NS     | NS     |
| Ethylbenzene               | NS    | NS    | NS    | NS   | NS   | NS     | NS    | NS              | NS    | NS    | NS     | NS     |
| Methylene Chloride         | NS    | NS    | NS    | NS   | NS   | NS     | NS    | NS              | NS    | NS    | NS     | NS     |
| Toluene                    | NS    | NS    | NS    | NS   | NS   | NS     | NS    | NS              | NS    | NS    | NS     | NS     |
| Xylenes (Total)            | NS    | NS    | NS    | NS   | NS   | NS     | NS    | NS              | NS    | NS    | NS     | NS     |
| Semivolatile Compound      |       |       |       |      |      |        |       |                 |       |       |        |        |
| 1,2-Diphenylhydrazine      | ND    | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| 2,4-Dimethylphenol         | ND    | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| 2,4-Dinitrotoluene         | ND    | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| 2,6-Dinitrotoluene         | ND    | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| 2-Chloronaphthalene        | ND    | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| 2-Methylnaphthalene        | ND    | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| 4,6-Dinitro-o-cresol       | ND    | 1.60  | ND    | 1.60 | ND   | 32.00  | ND    | 6.40            | ND    | 6.40  | ND     | 160.00 |
| 4-Nitrophenol              | ND    | 1.60  | ND    | 1.60 | ND   | 32.00  | ND    | 6.40            | ND    | 6.40  | ND     | 160.00 |
| Acenaphthene               | ND    | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| Acenaphthylene             | ND    | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| Anthracene                 | 0.46  | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| Benzo(a)anthracene         | 0.39  | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | 44.60  | 33.00  |
| Benzo(a)pyrene             | 0.47  | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| bis(2-Chloroethoxy)methane | ND    | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| bis(2-Ethylhexyl)phthalate | ND    | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| Chrysene                   | 0.59  | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | 57.10  | 33.00  |
| Di-n-butyl phthalate       | ND    | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| Dibenzofuran               | ND    | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| Fluoranthene               | 1.06  | 0.33  | ND    | 0.33 | ND   | 6.60   | 1.46  | 1.32            | ND    | 1.32  | 237.00 | 33.00  |
| Fluorene                   | ND    | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| N-Nitrosodiphenylamine     | ND    | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| Naphthalene                | ND    | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| Nitrobenzene               | ND    | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| Pentachlorophenol          | ND    | 1.60  | ND    | 1.60 | ND   | 32.00  | ND    | 6.40            | ND    | 6.40  | ND     | 160.00 |
| Phenanthrene               | 0.49  | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| Phenol                     | ND    | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | ND     | 33.00  |
| Pyrene                     | 0.83  | 0.33  | ND    | 0.33 | ND   | 6.60   | ND    | 1.32            | ND    | 1.32  | 204.00 | 33.00  |

#### NOTES:

Conc. = Reported Concentration

ND = Non Detect

LOQ = Limit of Quantitation

NS = Not Sampled

(b) Surface soil samples were collected at a depth of 0 to 2 feet.

<sup>(</sup>a) Sample locations begin with the prefix 'SSO' on site maps.

TABLE 5-2
Surface Soil Analytical Results
Phase 2-A Investigation

| Sample Location (a)        | G     | 07    | G     | 808   | G     | 09    | G     | 10    | G     | 11    |       | 11    |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Analytical Result          | Conc. | LOQ   |
|                            | (mg   | g/kg) | (mg   | g/kg) | (mg   | g/kg) | (mo   | g/kg) | (mc   | J/kg) | (mo   | g/kg) |
| Volatile Compounds         |       |       |       |       |       |       |       |       |       | , 3,  |       | ,     |
| Benzene                    | NS    | NS    | NS    | · NS  | NS    | NS    | NS    | NS    | NS    | NS    | NS    | NS    |
| Chlorobenzene              | NS    |
| Ethylbenzene               | NS    |
| Methylene Chloride         | NS    |
| Toluene                    | NS    |
| Xylenes (Total)            | NS    |
| Semivolatile Compound      |       |       |       |       |       |       |       |       |       |       |       |       |
| 1,2-Diphenylhydrazine      | ND    | 1.32  | ND    | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | ND    | 8.25  |
| 2,4-Dimethylphenol         | ND    | 1.32  | ND    | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | ND    | 8.25  |
| 2,4-Dinitrotoluene         | ND    | 1.32  | ND    | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | ND    | 8.25  |
| 2,6-Dinitrotoluene         | ND    | 1.32  | ND    | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | ND    | 8.25  |
| 2-Chloronaphthalene        | ND    | 1.32  | ND    | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | ND    | 8.25  |
| 2-Methylnaphthalene        | ND    | 1.32  | ND    | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | ND    | 8.25  |
| 4,6-Dinitro-o-cresol       | ND    | 6.40  | ND    | 8.00  | ND    | 1.60  | ND    | 1.60  | ND    | 6.40  | ND    | 40.00 |
| 4-Nitrophenol              | ND    | 6.40  | ND    | 8.00  | ND    | 1.60  | ND    | 1.60  | ND    | 6.40  | ND    | 40.00 |
| Acenaphthene               | ND    | 1.32  | ND    | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | ND    | 8.25  |
| Acenaphthylene             | ND    | 1.32  | ND    | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | ND    | 8.25  |
| Anthracene                 | 4.13  | 1.32  | 2.51  | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | 13.00 | 8.25  |
| Benzo(a)anthracene         | ND    | 1.32  | 2.72  | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | 10.80 | 8.25  |
| Benzo(a)pyrene             | ND    | 1.32  | 1.69  | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | ND    | 8.25  |
| bis(2-Chloroethoxy)methane | ND    | 1.32  | ND    | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | ND    | 8.25  |
| bis(2-Ethylhexyl)phthalate | ND    | 1.32  | ND    | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | ND    | 8.25  |
| Chrysene                   | ND    | 1.32  | 3.60  | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | 10.80 | 8.25  |
| Di-n-butyl phthalate       | ND    | 1.32  | ND    | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | ND    | 8.25  |
| Dibenzofuran               | ND    | 1.32  | ND    | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | ND    | 8.25  |
| Fluoranthene               | ND    | 1.32  | 11.10 | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | 57.80 | 8.25  |
| Fluorene                   | ND    | 1.32  | ND    | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | ND    | 8.25  |
| N-Nitrosodiphenylamine     | ND    | 1.32  | ND    | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | ND    | 8.25  |
| Naphthalene                | ND    | 1.32  | ND    | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | ND    | 8.25  |
| Nitrobenzene               | ND    | 1.32  | ND    | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | ND    | 8.25  |
| Pentachlorophenol          | ND    | 6.40  | ND    | 8.00  | ND    | 1.60  | ND    | 1.60  | ND    | 6.40  | ND    | 40.00 |
| Phenanthrene               | ND    | 1.32  | 2.63  | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | 60.20 | 8.25  |
| Phenol                     | ND    | 1.32  | ND    | 1.65  | ND    | 0.33  | ND    | 0.33  | ND    | 1.32  | ND    | 8.25  |
| Pyrene                     | ND    | 1.32  | 8.93  | 1.65  | ND    | 0.33  | ND    | 0.33  | 1.51  | 1.32  | 40.00 | 8.25  |
|                            |       |       |       |       |       |       |       |       |       |       |       |       |

#### NOTES:

Conc. = Reported Concentration

ND = Non Detect

LOQ = Limit of Quantitation

NS = Not Sampled

<sup>(</sup>a) Sample locations begin with the prefix 'SSO' on site maps.

<sup>(</sup>b) Surface soil samples were collected at a depth of 0 to 2 feet.

TABLE 5-2
Surface Soil Analytical Results
Phase 2-A Investigation

| Sample Location (a)        | MW    | -12A  | MV    | V-13  | MV    | V-15  | MV    | V-16  | MV    | V-18  |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Analytical Result          | Conc. | LOQ   |
|                            | (mg   | ı/kg) | (mg   | J/kg) | (mg   | ı/kg) | (mg   | g/kg) | (mg   | g/kg) |
| Volatile Compounds         | -     |       |       |       |       |       |       |       |       |       |
| Benzene                    | ND    | 0.005 | ND    | 0.005 | ND    | 0.005 | ND    | 0.005 | ND    | 0.62  |
| Chlorobenzene              | ND    | 0.005 | ND    | 0.005 | ND    | 0.005 | ND    | 0.005 | ND    | 0.62  |
| Ethylbenzene               | ND    | 0.005 | ND    | 0.005 | ND    | 0.005 | ND    | 0.005 | 4.20  | 0.62  |
| Methylene Chloride         | ND    | 0.005 | ND    | 0.005 | 0.005 | 0.005 | ND    | 0.005 | ND    | 0.62  |
| Toluene                    | ND    | 0.005 | ND    | 0.005 | ND    | 0.005 | ND    | 0.005 | 1.40  | 0.62  |
| Xylenes (Total)            | ND    | 0.005 | ND    | 0.005 | ND    | 0.005 | ND    | 0.005 | 42.00 | 3.12  |
| Semivolatile Compound      |       |       |       |       |       |       |       |       |       |       |
| 1,2-Diphenylhydrazine      | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | ND    | 3.30  |
| 2,4-Dimethylphenol         | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | ND    | 3.30  |
| 2,4-Dinitrotoluene         | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | ND    | 3.30  |
| 2,6-Dinitrotoluene         | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | ND    | 3.30  |
| 2-Chloronaphthalene        | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | ND    | 3.30  |
| 2-Methylnaphthalene        | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | 6.90  | 3.30  |
| 4,6-Dinitro-o-cresol       | ND    | 1.60  | ND    | 1.60  | ND    | 1.60  | ND    | 16.00 | ND    | 16.00 |
| 4-Nitrophenol              | ND    | 1.60  | ND    | 1.60  | ND    | 1.60  | ND    | 16.00 | ND    | 16.00 |
| Acenaphthene               | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | 6.30  | 3.30  |
| Acenaphthylene             | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | ND    | 3.30  |
| Anthracene                 | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | 9.20  | 3.30  |
| Benzo(a)anthracene         | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | ND    | 3.30  |
| Benzo(a)pyrene             | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | ND    | 3.30  |
| bis(2-Chloroethoxy)methane | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | ND    | 3.30  |
| bis(2-Ethylhexyl)phthalate | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | ND    | 3.30  |
| Chrysene                   | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | 3.30  | 3.30  |
| Di-n-butyl phthalate       | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | ND    | 3.30  |
| Dibenzofuran               | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | 4.00  | 3.30  |
| Fluoranthene               | ND    | 0.33  | 0.40  | 0.33  | ND    | 0.33  | ND    | 3.30  | 16.00 | 3.30  |
| Fluorene                   | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | 5.60  | 3.30  |
| N-Nitrosodiphenylamine     | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | ND    | 3.30  |
| Naphthalene                | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | 46.00 | 3.30  |
| Nitrobenzene               | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | ND    | 3.30  |
| Pentachlorophenol          | ND    | 1.60  | ND    | 1.60  | ND    | 1.60  | ND    | 16.00 | ND    | 16.00 |
| Phenanthrene               | ND    | 0.33  | 0.49  | 0.33  | ND    | 0.33  | ND    | 3.30  | 17.00 | 3.30  |
| Phenol                     | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | ND    | 3.30  |
| Pyrene                     | ND    | 0.33  | ND    | 0.33  | ND    | 0.33  | ND    | 3.30  | 9.90  | 3.30  |

#### NOTES:

Conc. = Reported Concentration

ND = Non Detect

LOQ = Limit of Quantitation

NS = Not Sampled

<sup>(</sup>a) Sample locations begin with the prefix 'SSO' on site maps.

<sup>(</sup>b) Surface soil samples were collected at a depth of 0 to 2 feet.

# TABLE 5-3 Subsurface Soil Analytical Results Phase 2-A Investigation Houston Wood Preserving Works Houston, Texas

| Sample Location            | 1     | MV     | MW-12A |        |      | MV    | /-12B |             |      | MV          | V-13  |             |       |             | MW    | -14[B]      |       |             |
|----------------------------|-------|--------|--------|--------|------|-------|-------|-------------|------|-------------|-------|-------------|-------|-------------|-------|-------------|-------|-------------|
| Sample depth               | 1 2   | 20 ft  | 2      | 25 ft  | 3    | 80 ft | 4     | 0 ft        | 1    | 5 ft        | 2     | 1 ft        | 1     | 7 ft        | 3     | 5 ft        | 4     | 0 ft        |
| Analytical Result          | Conc  | LOQ    | Conc   | LOQ    | Cana | LOQ   | Conc  | 100         | Cono | 100         | 0     | 100         | C     | 1.00        | 0     | 100         | 0     |             |
| Analytical Result          |       | ig/kg) |        | ig/kg) |      | g/kg) |       |             | Conc |             | Conc  |             | Conc. |             | Conc  |             | Conc  |             |
| Petroleum Hydrocarbons     | NA NA | NA     | NA NA  | NA     | NA   | NA    | NA NA | g/kg)<br>NA | - NA | g/kg)<br>NA | NA NA | g/kg)<br>NA | NA NA | y/kg)<br>NA | NA NA | g/kg)<br>NA | NA NA | g/kg)<br>NA |
| Volatile Compound          | 14/1  | 147    | NA     | N/A    | INA  | IVA   | IVA   | IVA         | IVA  | NA          | INA   | INA         | INA   | INA         | IVA   | INA         | IVA   | IVA         |
| 1,2-Dichloroethane         | ND    | 0.005  | ND     | 0.005  | ND   | 0.005 | ND    | 0.005       | ND   | 0.005       | ND    | 0.005       | ND    | 0.005       | ND    | 0.005       | ND    | 0.005       |
| Benzene                    | ND    | 0.005  | ND     | 0.005  | ND   | 0.005 | ND    | 0.005       | ND   | 0.005       | ND    | 0.005       | ND    | 0.005       | ND    | 0.005       | ND    | 0.005       |
| Chlorobenzene              | ND    | 0.005  | ND     | 0.005  | ND   | 0.005 | ND    | 0.005       | ND   | 0.005       | ND    | 0.005       | ND    | 0.005       | ND    | 0.005       | ND    | 0.005       |
| Ethylbenzene               | ND    | 0.005  | ND     | 0.005  | ND   | 0.005 | ND    | 0.005       | ND   | 0.005       | ND    | 0.005       | ND    | 0.005       | ND    | 0.005       | ND    | 0.005       |
| Methylene chloride         | ND    | 0.005  | ND     | 0.005  | ND   | 0.005 | ND    | 0.005       | ND   | 0.005       | ND    | 0.005       | ND    | 0.005       | ND    | 0.005       | ND    | 0.005       |
| Toluene                    | ND    | 0.005  | ND     | 0.005  | ND   | 0.005 | ND    | 0.005       | ND   | 0.005       | ND    | 0.005       | ND    | 0.005       | ND    | 0.005       | ND    | 0.005       |
| Xylenes (total)            | ND    | 0.005  | ND     | 0.005  | ND   | 0.005 | ND    | 0.005       | ND   | 0.005       | ND    | 0.005       | ND    | 0.005       | ND    | 0.005       | ND    | 0.005       |
| Semivolatile Compound      | 112   | 0.000  | 110    | 0.000  | .,,  | 0.000 | 140   | 0.000       | 110  | 0.000       | 140   | 0.000       | ,     | 0.000       | ND    | 0.000       | ND    | 0.003       |
| 1,2-Diphenylhydrazine      | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        | ND    | 0.33        | ND    | 0.33        |
| 2,4-Dimethylphenol         | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        | ND    | 0.33        | ND    | 0.33        |
| 2,4-Dinitrotoluene         | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        | ND    | 0.33        | ND    | 0.33        |
| 2,6-Dinitrotoluene         | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        | ND    | 0.33        | ND    | 0.33        |
| 2-Chloronaphthalene        | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        | ND    | 0.33        | ND    | 0.33        |
| ?-Methylnaphthalene        | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | 16.00 | 1.65        | ND    | 0.33        | ND    | 0.33        |
| 4,6-Dinitro-o-cresol       | ND    | 1.60   | ND     | 1.60   | ND   | 1.60  | ND    | 1.60        | ND   | 1.60        | ND    | 1.60        | ND    | 8.00        | ND    | 1.60        | ND    | 1.60        |
| 4-Nitrophenol              | ND    | 1.60   | ND     | 1.60   | ND   | 1.60  | ND    | 1.60        | ND   | 1.60        | ND    | 1.60        | ND    | 8.00        | ND    | 1.60        | ND    | 1.60        |
| Acenaphthene               | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | 9.90  | 1.65        | ND    | 0.33        | ND    | 0.33        |
| Acenaphthylene             | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        | ND    | 0.33        | ND    | 0.33        |
| Anthracene                 | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        | ND    | 0.33        | ND    | 0.33        |
| Benzo(a)anthracene         | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        | ND    | 0.33        | ND    | 0.33        |
| Benzo(a)pyrene             | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        | ND    | 0.33        | ND    | 0.33        |
| bis(2-Chloroethoxy)methane | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        | ND    | 0.33        | ND    | 0.33        |
| bis(2-Ethylhexyl)phthalate | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        | ND    | 0.33        | ND    | 0.33        |
| Chrysene                   | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        | ND    | 0.33        | ND    | 0.33        |
| Di-n-butyl phthalate       | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        | ND    | 0.33        | ND    | 0.33        |
| Dibenzofuran               | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | 7.80  | 1.65        | ND    | 0.33        | ND    | 0.33        |
| Fluoranthene               | ND    | 0.33   | ND     | 0.33   | 0.62 | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        | ND    | 0.33        | ND    | 0.33        |
| Fluorene                   | ND    | 0.33   | ND     | 0.33   | 0.36 | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | 10.00 | 1.65        | ND    | 0.33        | ND    | 0.33        |
| N-Nitrosodiphenylamine     | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        | ND    | 0.33        | ND    | 0.33        |
| Naphthalene                | ND    | 0.33   | ND     | 0.33   | 0.33 | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | 8.60  | 1.65        | ND    | 0.33        | ND    | 0.33        |
| Nitrobenzene               | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        | ND    | 0.33        | ND    | 0.33        |
| Pentachlorophenol          | ND    | 1.60   | ND     | 1.60   | ND   | 1.60  | ND    | 1.60        | ND   | 1.60        | ND    | 1.60        | ND    | 8.00        | ND    | 1.60        | ND    | 1.60        |
| Phenanthrene               | ND    | 0.33   | ND     | 0.33   | 1.10 | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        | ND    | 0.33        | ND    | 0.33        |
| Phenol                     | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        |       |             |       | 0.33        |
| Pyrene                     | ND    | 0.33   | ND     | 0.33   | ND   | 0.33  | ND    |             |      |             |       |             |       |             | ND    | 0.33        | ND    |             |
| yrene                      | ND    | 0.33   | טאו    | 0.33   | טאו  | 0.33  | טאו   | 0.33        | ND   | 0.33        | ND    | 0.33        | ND    | 1.65        | ND    | 0.33        | ND    | 0.33        |

<sup>(</sup>a) Subsurface soil samples were collected from greater than 2 feet below ground surface.

<sup>(</sup>b) Conc. = reported concentration; LOQ = limit of quantitation.

<sup>(</sup>c) N/A = not analyzed; ND = non detect

TABLE 5-3
Subsurface Soil Analytical Results
Phase 2-A Investigation
Houston Wood Preserving Works
Houston, Texas

| Sample Location            | 1    | MV     | N-15       |              |      | M\    | <i>N</i> -16 |                  |            | M               | W-17   |       |      | MV             | V-18  |       |
|----------------------------|------|--------|------------|--------------|------|-------|--------------|------------------|------------|-----------------|--------|-------|------|----------------|-------|-------|
| Sample depti               | 1 2  | 20 ft  | 2          | 25 ft        |      | 20 ft |              | 25 ft            | 2          | 25 ft           | 3      | 30 ft | 2    | 5 ft           | 3     | 30 ft |
| Analytical Result          |      | c. LOQ | Conc<br>(m | LOQ<br>g/kg) | Cond | LOQ   |              | c. LOQ<br>ng/kg) | Conc<br>(m | :. LOQ<br>g/kg) |        | . LOQ | Conc | . LOQ<br>g/kg) | Conc  | : LOQ |
| Petroleum Hydrocarbons     | NA   | NA     | NA         | NA           | NA   | NA    | NA.          | NA               | NA         | NA              | NA.    | NA NA | NA.  | NA NA          | NA NA | NA    |
| Volatile Compound          |      |        |            |              |      |       |              |                  |            |                 |        |       |      |                |       | ,     |
| 1,2-Dichloroethane         | ND   | 0.005  | ND         | 0.005        | ND   | 0.005 | ND           | 0.005            | ND         | 0.025           | ND     | 0.025 | ND   | 0.005          | ND    | 0.005 |
| Benzene                    | ND   | 0.005  | ND         | 0.005        | ND   | 0.005 | ND           | 0.005            | 0.05       | 0.025           | ND     | 0.025 | 0.01 | 0.005          | ND    | 0.005 |
| Chlorobenzene              | ND   | 0.005  | ND         | 0.005        | ND   | 0.005 | ND           | 0.005            | ND         | 0.025           | ND     | 0.025 | ND   | 0.005          | ND    | 0.005 |
| Ethylbenzene               | ND   | 0.005  | ND         | 0.005        | ND   | 0.005 | ND           | 0.005            | 1.2        | 0.025           | 0.7    | 0.025 | 0.01 | 0.005          | ND    | 0.005 |
| Methylene chloride         | 0.01 | 0.005  | 0.01       | 0.005        | ND   | 0.005 | ND           | 0.005            | ND         | 0.025           | ND     | 0.025 | ND   | 0.005          | ND    | 0.005 |
| Toluene                    | ND   | 0.005  | ND         | 0.005        | ND   | 0.005 | ND           | 0.005            | 1          | 0.025           | 0.46   | 0.025 | 0.01 | 0.005          | ND    | 0.005 |
| Xylenes (total)            | 0.01 | 0.005  | ND         | 0.005        | ND   | 0.005 | 0.01         | 0.005            | 3.5        | 0.025           | 2.4    | 0.025 | 0.04 | 0.005          | ND    | 0.005 |
| Semivolatile Compound      |      |        |            |              |      |       |              |                  |            |                 |        |       |      |                |       |       |
| 1,2-Diphenylhydrazine      | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | ND         | 3.30            | ND     | 9.90  | ND   | 0.33           | ND    | 0.33  |
| 2,4-Dimethylphenol         | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | ND         | 3.30            | ND     | 9.90  | ND   | 0.33           | ND    | 0.33  |
| 2,4-Dinitrotoluene         | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | ND         | 3.30            | ND     | 9.90  | ND   | 0.33           | ND    | 0.33  |
| 2,6-Dinitrotoluene         | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | ND         | 3.30            | ND     | 9.90  | ND   | 0.33           | ND    | 0.33  |
| 2-Chloronaphthalene        | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | ND         | 3.30            | ND     | 9.90  | ND   | 0.33           | ND    | 0.33  |
| 2-Methylnaphthalene        | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | 32.00      | 3.30            | 76.00  | 9.90  | ND   | 0.33           | ND    | 0.33  |
| 4,6-Dinitro-o-cresol       | ND   | 1.60   | ND         | 1.60         | ND   | 1.60  | ND           | 1.60             | ND         | 16.00           | ND     | 48.00 | ND   | 1.60           | ND    | 1.60  |
| 4-Nitrophenol              | ND   | 1.60   | ND         | 1.60         | ND   | 1.60  | ND           | 1.60             | ND         | 16.00           | ND     | 48.00 | ND   | 1.60           | ND    | 1.60  |
| Acenaphthene               | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | 27.00      | 3.30            | 26.00  | 9.90  | ND   | 0.33           | ND    | 0.33  |
| Acenaphthylene             | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | ND         | 3.30            | ND     | 9.90  | ND   | 0.33           | ND    | 0.33  |
| Anthracene                 | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | 17.00      | 3.30            | 21.00  | 9.90  | ND   | 0.33           | ND    | 0.33  |
| Benzo(a)anthracene         | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | ND         | 3.30            | ND     | 9.90  | ND   | 0.33           | ND    | 0.33  |
| Benzo(a)pyrene             | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | ND         | 3.30            | ND     | 9.90  | ND   | 0.33           | ND    | 0.33  |
| bis(2-Chloroethoxy)methane | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | ND         | 3.30            | ND     | 9.90  | ND   | 0.33           | ND    | 0.33  |
| bis(2-Ethylhexyl)phthalate | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | ND         | 3.30            | ND     | 9.90  | ND   | 0.33           | ND    | 0.33  |
| Chrysene                   | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | 3.30       | 3.30            | ND     | 9.90  | ND   | 0.33           | ND    | 0.33  |
| Di-n-butyl phthalate       | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | ND         | 3.30            | ND     | 9.90  | ND   | 0.33           | ND    | 0.33  |
| Dibenzofuran               | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | 24.00      | 3.30            | 39.00  | 9.90  | ND   | 0.33           | ND    | 0.33  |
| Fluoranthene               | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | 23.00      | 3.30            | 30.00  | 9.90  | ND   | 0.33           | ND    | 0.33  |
| Fluorene                   | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | 28.00      | 3.30            | 24.00  | 9.90  | ND   | 0.33           | ND    | 0.33  |
| N-Nitrosodiphenylamine     | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | ND         | 3.30            | ND     | 9.90  | ND   | 0.33           | ND    | 0.33  |
| Naphthalene                | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | 120.00     | 8.25            | 260.00 | 16.50 | ND   | 0.33           | ND    | 0.33  |
| Nitrobenzene               | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | ND         | 3.30            | ND     | 9.90  | ND   | 0.33           | ND    | 0.33  |
| Pentachlorophenol          | ND   | 1.60   | ND         | 1.60         | ND   | 1.60  | ND           | 1.60             | ND         | 16.00           | ND     | 48.00 | ND   | 1.60           | ND    | 1.60  |
| Phenanthrene               | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND -         | 0.33             | 69.00      | 8.25            | 92.00  | 9.90  | ND   | 0.33           | ND    | 0.33  |
| Phenol                     | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | ND         | 3.30            | ND     | 9.90  | ND   | 0.33           | ND    | 0.33  |
| Pyrene                     | ND   | 0.33   | ND         | 0.33         | ND   | 0.33  | ND           | 0.33             | 14.00      | 3.30            | 17.00  | 9.90  | ND   | 0.33           | ND    | 0.33  |
|                            |      |        |            |              |      |       |              |                  |            |                 |        |       |      |                |       |       |

<sup>(</sup>a) Subsurface soil samples were collected from greater than 2 feet below ground surface.

<sup>(</sup>b) Conc. = reported concentration; LOQ = limit of quantitation.

<sup>(</sup>c) N/A = not analyzed: ND = non detect

TABLE 5-3
Subsurface Soil Analytical Results
Phase 2-A Investigation
Houston Wood Preserving Works
Houston, Texas

| Sample Location            | 1    | —      |      |       |      | S     | B02  |        |       |        |      |        |        | SE    | 303   |       |
|----------------------------|------|--------|------|-------|------|-------|------|--------|-------|--------|------|--------|--------|-------|-------|-------|
| Sample depti               | 1    | 7 ft   | 2    | 21 ft | 2    | 24 ft | 3    | 7.5 ft | 38    | 3.5 ft | -    | 49 ft  |        | 5ft   | 1     | 9 ft  |
| Analytical Result          | Conc | LOQ    | Conc | LOQ   | Conc | LOQ   | Cond | . LOQ  | Conc  | . LOQ  | Conc | LOQ    | Conc   | . LOQ | Conc  | . LOQ |
|                            | (m   | ıg/kg) | (m   | g/kg) | (m   | g/kg) | (m   | ıg/kg) | (m    | g/kg)  | (m   | ig/kg) | (m     | g/kg) | (m    | g/kg) |
| Petroleum Hydrocarbons     | 20   | 20     | 70   | 20    | ND   | 20    | ND   | 20     | 130   | 20     | ND   | 20     | 670    | 20    | 70    | 20    |
| Volatile Compound          |      |        |      |       |      |       |      |        |       |        |      |        |        |       |       |       |
| 1,2-Dichloroethane         | ND   | 0.005  | ND   | 0.005 | ND   | 0.005 | ND   | 0.005  | ND    | 0.005  | ND   | 0.005  | ND     | 0.025 | ND    | 0.005 |
| Benzene                    | ND   | 0.005  | ND   | 0.005 | ND   | 0.005 | ND   | 0.005  | ND    | 0.005  | ND   | 0.005  | ND     | 0.025 | ND    | 0.005 |
| Chlorobenzene              | ND   | 0.005  | ND   | 0.005 | ND   | 0.005 | ND   | 0.005  | ND    | 0.005  | ND   | 0.005  | ND     | 0.025 | ND    | 0.005 |
| Ethylbenzene               | ND   | 0.005  | ND   | 0.005 | ND   | 0.005 | 0.01 | 0.005  | 0.01  | 0.005  | ND   | 0.005  | ND     | 0.025 | 0.04  | 0.005 |
| Methylene chloride         | ND   | 0.005  | ND   | 0.005 | ND   | 0.005 | ND   | 0.005  | ND    | 0.005  | ND   | 0.005  | ND     | 0.025 | 0.01  | 0.005 |
| Toluene                    | ND   | 0.005  | ND   | 0.005 | ND   | 0.005 | ND   | 0.005  | ND    | 0.005  | ND   | 0.005  | ND     | 0.025 | ND    | 0.005 |
| Xylenes (total)            | ND   | 0.005  | ND   | 0.005 | ND   | 0.005 | 0.01 | 0.005  | 0.01  | 0.005  | ND   | 0.005  | ND     | 0.025 | 0.1   | 0.005 |
| Semivolatile Compound      |      |        |      |       |      |       |      |        |       |        |      |        |        |       |       |       |
| 1,2-Diphenylhydrazine      | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | ND   | 0.33   | ND    | 0.33   | ND   | 0.33   | ND     | 3.30  | ND    | 1.65  |
| 2,4-Dimethylphenol         | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | ND   | 0.33   | ND    | 0.33   | ND   | 0.33   | ND     | 3.30  | ND    | 1.65  |
| 2,4-Dinitrotoluene         | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | ND   | 0.33   | ND    | 0.33   | ND   | 0.33   | ND     | 3.30  | ND    | 1.65  |
| 2,6-Dinitrotoluene         | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | ND   | 0.33   | ND    | 0.33   | ND   | 0.33   | ND     | 3.30  | ND    | 1.65  |
| 2-Chloronaphthalene        | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | ND   | 0.33   | ND    | 0.33   | ND   | 0.33   | ND     | 3.30  | ND    | 1.65  |
| 2-Methylnaphthalene        | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | 1.40 | 0.33   | 0.59  | 0.33   | ND   | 0.33   | 78.00  | 16.50 | 11.00 | 1.65  |
| 4,6-Dinitro-o-cresol       | ND   | 1.60   | ND   | 1.60  | ND   | 1.60  | ND   | 1.60   | ND    | 1.60   | ND   | 1.60   | ND     | 16.00 | ND    | 8.00  |
| 4-Nitrophenol              | ND   | 1.60   | ND   | 1.60  | ND   | 1.60  | ND   | 1.60   | ND    | 1.60   | ND   | 1.60   | ND     | 16.00 | ND    | 8.00  |
| Acenaphthene               | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | 2.10 | 0.33   | 3.10  | 0.33   | ND   | 0.33   | 50.00  | 3.30  | 6.10  | 1.65  |
| Acenaphthylene             | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | ND   | 0.33   | ND    | 0.33   | ND   | 0.33   | ND     | 3.30  | ND    | 1.65  |
| Anthracene                 | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | 1.40 | 0.33   | 2.00  | 0.33   | ND   | 0.33   | 24.00  | 3.30  | 3.50  | 1.65  |
| Benzo(a)anthracene         | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | 0.40 | 0.33   | 0.56  | 0.33   | ND   | 0.33   | 7.90   | 3.30  | ND    | 1.65  |
| Benzo(a)pyrene             | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | ND   | 0.33   | ND    | 0.33   | ND   | 0.33   | ND     | 3.30  | ND    | 1.65  |
| bis(2-Chloroethoxy)methane | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | ND   | 0.33   | ND    | 0.33   | ND   | 0.33   | ND     | 3.30  | ND    | 1.65  |
| bis(2-Ethylhexyl)phthalate | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | ND   | 0.33   | ND    | 0.33   | ND   | 0.33   | ND     | 3.30  | ND    | 1.65  |
| Chrysene                   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | 0.40 | 0.33   | 0.53  | 0.33   | ND   | 0.33   | 8.60   | 3.30  | ND    | 1.65  |
| Di-n-butyl phthalate       | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | ND   | 0.33   | ND    | 0.33   | ND   | 0.33   | ND     | 3.30  | ND    | 1.65  |
| Dibenzofuran               | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | 1.70 | 0.33   | 2.60  | 0.33   | ND   | 0.33   | 40.00  | 3.30  | 6.40  | 1.65  |
| Fluoranthene               | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | 2.80 | 0.33   | 4.00  | 0.33   | ND   | 0.33   | 84.00  | 16.50 | 7.90  | 1.65  |
| Fluorene                   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | 1.90 | 0.33   | 3.10  | 0.33   | ND   | 0.33   | 46.00  | 3.30  | 5.60  | 1.65  |
| N-Nitrosodiphenylamine     | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | ND   | 0.33   | ND    | 0.33   | ND   | 0.33   | ND     | 3.30  | ND    | 1.65  |
| Naphthalene                | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | 3.60 | 0.33   | 12.00 | 3.30   | ND   | 0.33   | 180.00 | 16.50 | 30.00 | 1.65  |
| Nitrobenzene               | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | ND   | 0.33   | ND    | 0.33   | ND   | 0.33   | ND     | 3.30  | ND    | 1.65  |
| Pentachlorophenol          | ND   | 1.60   | ND   | 1.60  | ND   | 1.60  | ND   | 1.60   | ND    | 1.60   | ND   | 1.60   | ND     | 16.00 | ND    | 8.00  |
| Phenanthrene               | ND   | 0.33   | ND.  | 0.33  | ND   | 0.33  | 8.60 | 0.33   | 17.00 | 3.30   | ND   | 0.33   | 160.00 | 16.50 | 16.00 |       |
| Phenol                     | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | ND   | 0.33   | ND    | 0.33   | ND   | 0.33   | ND     | 3.30  |       | 1.65  |
| Pyrene                     | ND   | 0.33   | ND   | 0.33  | ND   | 0.33  | 1.20 | 0.33   | 1.80  | 0.33   | ND   | 0.33   | 40.00  | 3.30  | 4.30  | 1.65  |

<sup>(</sup>a) Subsurface soil samples were collected from greater than 2 feet below ground surface.

<sup>(</sup>b) Conc. = reported concentration; LOQ = limit of quantitation.

<sup>(</sup>c) N/A = not analyzed; ND = non detect

TABLE 5-3 Subsurface Soil Analytical Results Phase 2-A Investigation Houston Wood Preserving Works Houston, Texas

| Sample Location            | n    |        |         | SBO           | )3    |        |      |        |          |         | SB04  | ı     |       |              |
|----------------------------|------|--------|---------|---------------|-------|--------|------|--------|----------|---------|-------|-------|-------|--------------|
| Sample dep                 | th   | 24 ft  |         | 34 ft         |       | 52 ft  |      | 54 ft  |          | 2.5 ft  | 2     | 7 ft  | 2     | 29 ft        |
| Analytical Result          | Con  | c. LOQ | Cana    | 1.00          | 0     | - 100  |      |        | _        |         |       |       |       |              |
| Analytical Nesult          |      | ig/kg) | Conc.   | LOQ<br>mg/kg) |       | c. LOC |      | c LOQ  | Conc     |         | Conc. |       |       | . LOQ        |
| Petroleum Hydrocarbons     | - ND |        | 7,400   |               |       | ng/kg) | _    | ng/kg) | (mg/kg   |         |       | g/kg) |       | g/kg)        |
| Volatile Compound          | 110  | 20     | 7,400   | 1.000         | ND    | 20     | NA   | NA NA  | 19,000   | 1000    | 130   | 20    | 70    | 20           |
| 1,2-Dichloroethane         | ND   | 0.005  | ND      | 3.125         | ND    | 0.005  | 5 NE | 0.005  | ND       | 0.005   | ND    | 0.005 |       |              |
| Benzene                    | ND   | 0.005  |         | 3.125         | ND    |        |      |        | ND       | 0.025   | ND    | 0.005 |       | 0.005        |
| Chlorobenzene              | ND   | 0.005  |         | 3.125         | ND    | 0.005  |      |        | ND       | 0.025   |       | 0.005 |       | 0.005        |
| Ethylbenzene               | 0.02 |        | 46      | 3.125         | 0.03  |        |      |        | ND<br>ND | 0.025   | ND    | 0.005 |       | 0.005        |
| Methylene chloride         | ND   | 0.005  | ND      | 3.125         | ND    | 0.005  |      |        | ND       | 0.025   |       | 0.005 | 0.03  |              |
| Toluene                    | 0.03 |        | 32      | 3.125         | 0.02  |        |      |        | ND       | 0.025   | 0.007 |       | 0.01  | 0.005        |
| Xylenes (total)            |      | 0.005  | 170     | 3.125         | 0.08  |        | ND   |        | 0.07     | 0.025   | 0.028 | 0.005 | 0.02  | 0.005        |
| Semivolatile Compound      |      |        | .,,     | 0.120         | 0.00  | 0.000  | ND   | 0.005  | 0.07     | 0.025   | 0.18  | 0.005 | 0.09  | 0.005        |
| 1,2-Diphenylhydrazine      | ND   | 0.33   | ND      | 24.75         | ND    | 0.33   | ND   | 0.33   | ND       | 2.08    | ND    | 1.65  | ND    | 4.05         |
| 2,4-Dimethylphenol         | ND   | 0.33   | ND      | 24.75         | ND    | 0.33   | ND   |        | ND       | 2.08    | 2.30  | 1.65  | ND    | 1.65         |
| 2,4-Dinitrotoluene         | ND   | 0.33   | ND      | 24.75         | ND    | 0.33   | ND   | 0.33   | ND       | 2.08    | ND    | 1.65  | ND    | 1.65         |
| 2,6-Dinitrotoluene         | ND   | 0.33   | ND      | 24.75         | ND    | 0.33   | ND   | 0.33   | ND       | 2.08    | ND    | 1.65  | ND    | 1.65<br>1.65 |
| 2-Chloronaphthalene        | ND   | 0.33   | ND      | 24.75         | ND    | 0.33   | ND   | 0.33   | ND       | 2.08    | ND    | 1.65  | ND    | 1.65         |
| 2-Methylnaphthalene        | 1.10 | 0.33   | 2200.00 |               | 11.00 |        | ND   | 0.33   | 320.00   | 247.50  | 53.00 | 8.25  | 17.00 | 8.25         |
| 4,6-Dinitro-o-cresol       | ND   | 1.60   | ND      | 120.00        | ND    | 1.60   | ND   | 1.60   | ND       | 120.00  | ND    | 8.00  | ND    | 8.00         |
| 4-Nitrophenol              | ND   | 1.60   | ND      | 120.00        | ND    | 1.60   | ND   | 1.60   | ND       | 120.00  | ND    | 8.00  | ND    | 8.00         |
| Acenaphthene               | 1.10 | 0.33   | 270.00  | 24.75         | 2.90  | 0.33   | ND   | 0.33   | 370.00   | 247.50  | 16.00 | 1.65  | 13.00 | 1.65         |
| Acenaphthylene             | ND   | 0.33   | ND      | 24.75         | ND    | 0.33   | ND   | 0.33   | ND       | 247.50  | ND    | 1.65  | ND    | 1.65         |
| Anthracene                 | 0.86 | 0.33   | 160.00  | 24.75         | 1.80  | 0.33   | ND   | 0.33   | 250.00   | 247.50  | 9.70  | 1.65  | 14.00 | 1.65         |
| Benzo(a)anthracene         | ND   | 0.33   | 42.00   | 24.75         | 0.56  | 0.33   | ND   | 0.33   | 130.00   | 247.50  | 2.10  | 1.65  | 1.80  | 1.65         |
| Benzo(a)pyrene             | ND   | 0.33   | ND      | 24750.00      | ND    | 0.33   | ND   | 0.33   | 44.00    | 247.50  | ND    | 1.65  | ND    | 1.65         |
| bis(2-Chloroethoxy)methane | ND   | 0.33   | ND      | 24.75         | ND    | 0.33   | ND   | 0.33   | ND       | 247.50  | ND    | 1.65  | ND    | 1.65         |
| bis(2-Ethylhexyl)phthalate | ND   | 0.33   | ND      | 24.75         | ND    | 0.33   | ND   | 0.33   | ND       | 247.50  | ND    | 1.65  | ND    | 1.65         |
| Chrysene                   | ND   | 0.33   | 42.00   | 24.75         | 0.56  | 0.33   | ND   | 0.33   | 130.00   | 247.50  | 2.10  | 1.65  | 1.70  | 1.65         |
| Di-n-butyl phthalate       | ND   | 0.33   | ND      | 24.75         | ND    | 0.33   | ND   | 0.33   | ND       | 247.50  | ND    | 1.65  | ND    | 1.65         |
| Dibenzofuran               | 1.20 | 0.33   | 240.00  | 24.75         | 2.60  | 0.33   | ND   | 0.33   | 300.00   | 247.50  | 14.00 |       | 12.00 | 1.65         |
| Fluoranthene               | 1.80 | 0.33   | 210.00  | 24.75         | 2.90  | 0.33   | ND   | 0.33   | ND       | 247.50  | 13.00 |       | 11.00 | 1.65         |
| Fluorene                   | 1.30 | 0.33   | 250.00  | 24.75         | 3.10  | 0.33   | ND   | 0.33   | 370.00   | 247.50  | 16.00 |       | 14.00 | 1.65         |
| N-Nitrosodiphenylamine     | ND   | 0.33   | ND      | 24750.00      | ND    | 0.33   | ND   | 0.33   | ND       | 247.50  | ND    | 1.65  | ND    | 1.65         |
| Naphthalene                | 4.60 | 0.33   | 4000.00 | 500.00        | 13.00 | 1.32   | 0.82 | 0.33   | 540.00   | 2475.00 | 56.00 | 8.25  | 59.00 | 8.25         |
| Nitrobenzene               | ND   | 0.33   | ND      | 24750.00      | ND    | 0.33   | ND   | 0.33   | ND       | 247.50  | ND    | 1.65  | ND    | 1.65         |
| Pentachlorophenol          | ND   | 1.60   | ND      | 120.00        | ND    | 1.60   | ND   | 1.60   | ND       | 120.00  | ND    | 8.00  | ND    | 8.00         |
| Phenanthrene               | 3.60 | 0.33   | 2500.00 | 500.00        | 10.00 | 1.32   | ND   | 0.33   | 1600.00  | 250.00  | 47.00 |       | 46.00 | 8.25         |
| Phenoi                     | ND   | 0.33   | ND      | 24.75         | ND    | 0.33   | ND   | 0.33   | ND       | 2475.00 | ND    | 1.65  | ND    | 1.65         |
| Pyrene                     | 1.20 | 0.33   | 190.00  | 24.75         | 2.70  | 0.33   | ND . | 0.33   | ND       | 2475.00 | 10.00 | 1.65  | 9.80  | 1.65         |

<sup>(</sup>a) Subsurface soil samples were collected from greater than 2 feet below ground surface.

<sup>(</sup>b) Conc. = reported concentration; LOQ = limit of quantitation.

<sup>(</sup>c) N/A = not analyzed; ND = non detect

TABLE 5-3
Subsurface Soil Analytical Results
Phase 2-A Investigation
Houston Wood Preserving Works
Houston, Texas

| Sample Locatio             | n                |       |         | 04     |       |        |      |        |      |        |      | s     | B05  |        |      |       |      |        |
|----------------------------|------------------|-------|---------|--------|-------|--------|------|--------|------|--------|------|-------|------|--------|------|-------|------|--------|
| Sample dept                | h 3 <sup>-</sup> | 1 ft  | 3       | 19 ft  |       | 51 ft  |      | 59 ft  | 1    | 9.5 ft | 2    | 24 ft | 34   | 4.5 ft | 3    | 9 ft  | 5    | 54 ft  |
| Analytical Result          | Conc.            | LOG   | Conc.   | LOQ    | Cond  | . LOQ  | Cond | LOQ    | Conc | LOQ    | Conc | LOQ   | Conc | LOQ    | Conc | LOQ   | Conc | LOQ    |
|                            | (mg              | J/kg) | (m      | g/kg)  | (m    | ng/kg) | (m   | ig/kg) | (m   | ıg/kg) | (m   | g/kg) | (m   | g/kg)  | (m   | g/kg) | (m   | ıg/kg) |
| Petroleum Hydrocarbons     | 120              | 20    | NA      | NA     | 40    | 20     | NA   | NA     | ND   | 20     | ND   | 20    | ND   | 20     | ND   | 20    | NA   | NA     |
| Volatile Compound          |                  |       |         |        |       |        |      |        |      |        |      |       |      |        |      |       |      |        |
| 1,2-Dichloroethane         | ND               | 0.625 | NA NA   | NA     | ND    | 0.025  | ND   | 0.005  | ND   | 0.005  | ND   | 0.005 | ND   | 0.005  | ND   | 0.005 | ND   | 0.005  |
| Benzene                    | ND               | 0.625 | NA NA   | NA     | ND    | 0.025  | ND   | 0.005  | ND   | 0.005  | ND   | 0.005 | ND   | 0.005  | ND   | 0.005 | ND   | 0.005  |
| Chlorobenzene              | ND               | 0.625 | NA      | NA     | ND    | 0.025  | ND   | 0.005  | ND   | 0.005  | ND   | 0.005 | ND   | 0.005  | ND   | 0.005 | ND   | 0.005  |
| Ethylbenzene               | 1.7              | 0.625 | NA      | NA     | 0.620 | 0.025  | ND   | 0.005  | ND   | 0.005  | ND   | 0.005 | ND   | 0.005  | ND   | 0.005 | ND   | 0.005  |
| Methylene chloride         | ND               | 0.625 | NA      | NA     | ND    | 0.025  | ND   | 0.005  | ND   | 0.005  | ND   | 0.005 | ND   | 0.005  | ND   | 0.005 | ND   | 0.005  |
| Toluene                    | 0.200            | 0.625 | NA      | NA     | 0.2   | 0.025  | ND   | 0.005  | ND   | 0.005  | ND   | 0.005 | ND   | 0.005  | ND   | 0.005 | ND   | 0.005  |
| Xylenes (total)            | 1.9              | 0.625 | NA      | NA     | 1.9   | 0.025  | ND   | 0.005  | ND   | 0.005  | ND   | 0.005 | ND   | 0.005  | ND   | 0.005 | ND   | 0.005  |
| Semivolatile Compound      |                  |       |         |        |       |        |      |        |      |        |      |       |      |        |      |       |      |        |
| 1,2-Diphenylhydrazine      | ND               | 1.65  | ND      | 3.30   | ND    | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| 2,4-Dimethylphenol         | ND               | 1.65  | ND      | 3.30   | ND    | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| 2,4-Dinitrotoluene         | ND               | 1.65  | ND      | 3.30   | ND    | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| 2,6-Dinitrotoluene         | ND               | 1.65  | ND      | 3.30   | ND    | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| 2-Chloronaphthalene        | ND               | 1.65  | ND      | 3.30   | ND    | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| 2-Methylnaphthalene        | 29.00            | 8.25  | 1100.00 | 660.00 | 51.00 | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| 4,6-Dinitro-o-cresol       | ND               | 8.00  | ND      | 16.00  | ND    | 40.00  | ND   | 1.60   | ND   | 1.60   | ND   | 1.60  | ND   | 1.60   | ND   | 1.60  | ND   | 3.20   |
| 4-Nitrophenol              | ND               | 8.00  | ND      | 16.00  | ND    | 40.00  | ND   | 1.60   | ND   | 1.60   | ND   | 1.60  | ND   | 1.60   | ND   | 1.60  | ND   | 3.20   |
| Acenaphthene               | 23.00            | 1.65  | 750.00  | 660.00 | 12.00 | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| Acenaphthylene             | ND               | 1.65  | 6800.00 | 3.30   | ND    | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| Anthracene                 | 18.00            | 1.65  | 470.00  | 3.30   | ND    | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| Benzo(a)anthracene         | 4.40             | 1.65  | 38.00   | 33.00  | ND    | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| Benzo(a)pyrene             | ND               | 1.65  | 11.00   | 3.30   | ND    | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| bis(2-Chloroethoxy)methane | ND               | 1.65  | ND      | 3.30   | ND    | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| bis(2-Ethylhexyl)phthalate | ND               | 1.65  | ND      | 3.30   | ND    | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| Chrysene                   | 4.40             | 1.65  | ND      | 3.30   | ND    | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| Di-n-butyl phthalate       | ND               | 1.65  | ND      | 3.30   | ND    | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| Dibenzofuran               | 25.00            | 1.65  | 750.00  | 3.30   | 12.00 | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| Fluoranthene               | 20.00            | 1.65  | 590.00  | 660.00 | ND    | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| Fluorene                   | 20.00            | 1.65  | 620.00  | 660.00 | 9.00  | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| N-Nitrosodiphenylamine     | ND               | 1.65  | ND      | 33.00  | ND    | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| Naphthalene                | 200.00           | 8.25  | 4900.00 | 3.30   | 73.00 | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| Nitrobenzene               | ND               | 1.65  | ND      | 660.00 | ND    | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| Pentachlorophenol          | ND               | 8.00  | ND      | 3.30   | ND    | 40.00  | ND   | 1.60   | ND   | 1.60   | ND   | 1.60  | ND   | 1.60   | ND   | 1.60  | ND   | 3.20   |
| Phenanthrene               | 56.00            | 8.25  | ND      | 16.00  | 27.00 | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| Phenol                     | ND               | 1.65  | ND      | 3.30   | ND    | 8.25   | ND   | 0.33   | ND   | 0.33   | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
| Pyrene                     | 23.00            | 1.65  | 430.00  | 33.00  | 8.20  | 8.25   | ND   | 0.33   | ND   |        | ND   | 0.33  | ND   | 0.33   | ND   | 0.33  | ND   | 0.66   |
|                            |                  |       |         |        |       |        |      |        |      |        |      |       |      | -      |      | -     |      |        |

<sup>(</sup>a) Subsurface soil samples were collected from greater than 2 feet below ground surface.

<sup>(</sup>b) Conc. = reported concentration; LOQ = limit of quantitation.

<sup>(</sup>c) N/A = not analyzed; ND = non detect

TABLE 5-3
Subsurface Soil Analytical Results
Phase 2-A Investigation
Houston Wood Preserving Works
Houston, Texas

| Sample Locatio             | n      |       |           | SB      | 06   |         |      |        | SB07    |               |         |           |         |        |  |  |
|----------------------------|--------|-------|-----------|---------|------|---------|------|--------|---------|---------------|---------|-----------|---------|--------|--|--|
| Sample dept                |        |       | 19 ft     |         |      | 24 ft   |      | 49 ft  |         | 2.5 ft        |         | 19 ft     |         | 1 ft   |  |  |
| ,                          |        |       |           | "       |      | - ,     |      |        | ٤.      | <b>2.0</b> II |         | 19 11     |         | . "    |  |  |
| Analytical Result          | Conc   | . LOQ | Cond      | . LOQ   | Con  | LOQ     | Cond | LOQ    | Conc.   | LOQ           | Conc.   | LOQ       | Conc.   | LOQ    |  |  |
|                            | (m     | g/kg) | <u>(n</u> | (mg/kg) |      | (mg/kg) |      | ng/kg) | (mg     | (mg/kg)       |         | (mg/kg)   |         | g/kg)  |  |  |
| Petroleum Hydrocarbons     | 690    | 20    | 370       | 370 20  |      | ND 20   |      | NA     | 6,300   | 6,300 500     |         | 1,900 100 |         | 20     |  |  |
| Volatile Compound          |        |       |           |         |      |         |      |        |         |               |         |           |         |        |  |  |
| 1,2-Dichloroethane         | ND     | 0.005 | ND        | 0.005   | ND   | 0.005   | ND   | 0.005  | ND      | 0.025         | ND      | 0.025     | ND      | 0.025  |  |  |
| Benzene                    | ND     | 0.005 | ND        | 0.005   | ND   | 0.005   | ND   | 0.005  | 0.033   | 0.025         | 0.23    | 0.025     | 0.67    | 0.025  |  |  |
| Chlorobenzene              | ND     | 0.005 | ND        | 0.005   | ND   | 0.005   | ND   | 0.005  | ND      | 0.025         | ND      | 0.025     | ND      | 0.025  |  |  |
| Ethylbenzene               | 0.055  | 0.005 | 0.04      | 0.005   | ND   | 0.005   | ND   | 0.005  | 6.3     | 0.625         | 12      | 0.625     | 12      | 0.625  |  |  |
| Methylene chloride         | ND     | 0.005 | 0.01      | 0.005   | ND   | 0.005   | ND   | 0.005  | ND      | 0.025         | ND      | 0.025     | ND      | 0.025  |  |  |
| Toluene                    | 0.005  | 0.005 | ND        | 0.005   | ND   | 0.005   | ND   | 0.005  | 0.36    | 0.025         | 12      | 0.625     | 13      | 0.625  |  |  |
| Xylenes (total)            | 0.14   | 0.005 | 0.07      | 0.005   | ND   | 0.005   | ND   | 0.005  | 22      | 0.625         | 40      | 0.625     | 38      | 0.625  |  |  |
| Semivolatile Compound      |        |       |           |         |      |         |      |        |         |               |         |           |         |        |  |  |
| 1,2-Diphenylhydrazine      | ND     | 8.25  | ND        | 6.60    | ND   | 0.33    | ND   | 0.33   | ND      | 24.75         | ND      | 33.00     | ND      | 3.30   |  |  |
| 2,4-Dimethylphenol         | ND     | 8.25  | ND        | 6.60    | ND   | 0.33    | ND   | 0.33   | ND      | 24.75         | ND      | 33.00     | ND      | 3.30   |  |  |
| 2,4-Dinitrotoluene         | ND     | 8.25  | ND        | 6.60    | ND   | 0.33    | ND   | 0.33   | ND      | 24.75         | ND      | 33.00     | ND      | 3.30   |  |  |
| 2,6-Dinitrotoluene         | ND     | 8.25  | ND        | 6.60    | ND   | 0.33    | ND   | 0.33   | ND      | 24.75         | ND      | 33.00     | ND      | 3.30   |  |  |
| 2-Chloronaphthalene        | ND     | 8.25  | ND        | 6.60    | ND   | 0.33    | ND   | 0.33   | ND      | 24.75         | ND      | 33.00     | ND      | 3.30   |  |  |
| 2-Methylnaphthalene        | 72.00  | 8.25  | 28.00     | 6.60    | ND   | 0.33    | ND   | 0.33   | 1300.00 | 500.00        | 1700.00 | 330.00    | 260.00  | 165.00 |  |  |
| 4,6-Dinitro-o-cresol       | ND     | 40.00 | ND        | 32.00   | ND   | 1.60    | ND   | 1.60   | ND      | 120.00        | ND      | 160.00    | ND      | 16.00  |  |  |
| 4-Nitrophenol              | ND     | 40.00 | ND        | 32.00   | ND   | 1.60    | ND   | 1.60   | ND      | 120.00        | ND      | 160.00    | ND      | 16.00  |  |  |
| Acenaphthene               | 46.00  | 8.25  | 18.00     | 6.60    | ND   | 0.33    | ND   | 0.33   | 1700.00 | 500.00        | 460.00  | 330.00    | 400.00  | 6.60   |  |  |
| Acenaphthylene             | ND     | 8.25  | ND        | 6.60    | ND   | 0.33    | ND   | 0.33   | ND      | 24.75         | ND      | 330.00    | ND      | 3.30   |  |  |
| Anthracene                 | 25.00  | 8.25  | 15.00     | 6.60    | ND   | 0.33    | ND   | 0.33   | 400.00  | 24.75         | 280.00  | 330.00    | 220.00  | 3.30   |  |  |
| Benzo(a)anthracene         | 8.20   | 8.25  | ND        | 6.60    | ND   | 0.33    | ND   | 0.33   | 130.00  | 24.75         | 59.00   | 330.00    | 17.00   | 3.30   |  |  |
| Benzo(a)pyrene             | ND     | 8.25  | ND        | 6.60    | ND   | 0.33    | ND   | 0.33   | 27.00   | 24.75         | ND      | 330.00    | 5.00    | 3.30   |  |  |
| bis(2-Chloroethoxy)methane | ND     | 8.25  | ND        | 6.60    | ND   | 0.33    | ND   | 0.33   | ND      | 24.75         | ND      | 330.00    | ND      | 3.30   |  |  |
| bis(2-Ethylhexyl)phthalate | ND     | 8.25  | ND        | 6.60    | ND   | 0.33    | ND   | 0.33   | ND      | 24.75         | ND      | 330.00    | ND      | 3.30   |  |  |
| Chrysene                   | 9.90   | 8.25  | ND        | 6.60    | ND   | 0.33    | ND   | 0.33   | 130.00  | 24.75         | 56.00   | 330.00    | 17.00   | 3.30   |  |  |
| Di-n-butyl phthalate       | ND     | 8.25  | ND        | 6.60    | ND   | 0.33    | ND   | 0.33   | ND      | 24.75         | ND      | 330.00    | ND      | 3.30   |  |  |
| Dibenzofuran               | 43.00  | 8.25  | 18.00     | 6.60    | ND   | 0.33    | ND   | 0.33   | 1100.00 |               | 360.00  | 330.00    | 300.00  | 66.00  |  |  |
| Fluoranthene               | 52.00  | 8.25  | 20.00     | 6.60    | 0.36 | 0.33    | ND   | 0.33   | 2500.00 | 500.00        | 330.00  | 330.00    | 240.00  | 3.30   |  |  |
| Fluorene                   | 41.00  | 8.25  | 21.00     | 6.60    | ND   | 0.33    | ND   | 0.33   | 1600.00 | 500.00        | 430.00  | 330.00    | 360.00  | 66.00  |  |  |
| N-Nitrosodiphenylamine     | ND     | 8.25  | ND        | 6.60    | ND   | 0.33    | ND   | 0.33   | ND      | 24.75         | ND      | 330.00    | ND      | 3.30   |  |  |
| Naphthalene                | 132.00 | 8.25  | 61.00     | 6.60    | ND   | 0.33    | ND   | 0.33   | 3900.00 |               | 7600.00 | 1650.00   | 1000.00 |        |  |  |
| Nitrobenzene               | ND     | 8.25  | ND        | 6.60    | ND   | 0.33    | ND   | 0.33   | ND      | 24.75         | ND      | 330.00    | ND      | 3.30   |  |  |
| Pentachlorophenol          | ND     | 40.00 |           | 32.00   | ND   | 1.60    | ND   | 1.60   |         | 120.00        | ND      | 160.00    | ND      | 16.00  |  |  |
| Phenanthrene               | 82.00  |       |           | 6.60    | ND   | 0.33    | ND   | 0.33   | 4100.00 |               | 2600.00 | 330.00    | 730.00  | 66.00  |  |  |
| Phenol                     | ND     | 8.25  | ND        | 6.60    | ND   | 0.33    | ND   | 0.33   | ND      | 24.75         | ND      | 330.00    | ND      | 3.30   |  |  |
| Pyrene                     | 30.00  | 8.25  | 9.20      | 6.60    | ND   | 0.33    | ND   | 0.33   | 1500.00 |               | 280.00  | 330.00    | 200.00  | 3.30   |  |  |
|                            |        |       |           |         |      |         |      |        |         |               |         |           |         |        |  |  |

<sup>(</sup>a) Subsurface soil samples were collected from greater than 2 feet below ground surface.

<sup>(</sup>b) Conc. = reported concentration; LOQ = limit of quantitation.

<sup>(</sup>c) N/A = not analyzed; ND = non detect

TABLE 5-3
Subsurface Soil Analytical Results
Phase 2-A Investigation
Houston Wood Preserving Works
Houston, Texas

| Sample Location            | n        | SB      |         |       | SB08    |        |         |         |          |         |          |         |        |         |  |
|----------------------------|----------|---------|---------|-------|---------|--------|---------|---------|----------|---------|----------|---------|--------|---------|--|
| Sample dept                | th 22 ft |         | 24 ft   |       | 4 ft    |        | 14 ft   |         | 18 ft    |         | 21 ft    |         | 2      | 2 ft    |  |
| Analytical Result          | Conc     | LOQ     | Conc    | . LOQ | Conc    | . LOQ  | Conc.   | LOQ     | Conc.    | LOQ     | Conc.    | LOQ     | Conc.  | LOQ     |  |
|                            | (n       | ng/kg)  | (mg/kg) |       | (mg/kg) |        | (mg/kg) |         | (mg      | (mg/kg) |          | (mg/kg) |        | g/kg)   |  |
| Petroleum Hydrocarbons     | 1,100    | 20      | 9,200   | 1000  | 2,600   | 500    | 850     | 20      | 8,900    | 500     | 4,500    | 100     | 21,000 | 500     |  |
| Volatile Compound          |          |         |         |       |         |        |         |         |          |         |          |         |        |         |  |
| 1,2-Dichloroethane         | ND       | 0.625   | ND      | 6.250 | ND      | 0.005  | ND      | 0.005   | ND       | 0.625   | ND       | 0.005   | ND     | 0.005   |  |
| Benzene                    | ND       | 0.625   | ND      | 6.250 | ND      | 0.005  | 0.071   | 0.005   | 1.1      | 0.625   | ND       | 0.005   | 0.057  | 0.005   |  |
| Chlorobenzene              | ND       | 0.625   | ND      | 6.250 | ND      | 0.005  | ND      | 0.005   | ND       | 0.625   | ND       | 0.005   | ND     | 0.005   |  |
| Ethylbenzene               | 9.1      | 0.625   | 31      | 6.250 | 0.024   | 0.005  | 3.4     | 0.625   | 19       | 0.625   | 0.074    | 0.005   | 12     | 0.625   |  |
| Methylene chloride         | ND       | 0.625   | ND      | 6.250 | ND      | 0.005  | ND      | 0.005   | ND       | 0.625   | ND       | 0.005   | ND     | 0.005   |  |
| Toluene                    | 9.8      | 0.625   | 31      | 6.250 | ND      | 0.005  | 2.6     | 0.625   | 13       | 0.625   | 0.036    | 0.005   | 7.5    | 0.625   |  |
| Xylenes (total)            | 28       | 0.625   | 90      | 6.250 | 0.046   | 0.005  | 11      | 0.625   | 55       | 0.625   | 0.23     | 0.005   | 43     | 0.625   |  |
| Semivolatile Compound      |          |         |         |       |         |        |         |         |          |         |          |         |        |         |  |
| 1,2-Diphenylhydrazine      | ND       | 330.00  | ND      | 2.48  | ND      | 33.00  | ND      | 330.00  | ND       | 2.48    | ND       | 165.00  | ND     | 247.50  |  |
| 2,4-Dimethylphenol         | ND       | 330.00  | ND      | 2.48  | ND      | 33.00  | ND      | 330.00  | 25.00    | 2.48    | ND       | 165.00  | ND     | 247.50  |  |
| 2,4-Dinitrotoluene         | ND       | 330.00  | ND      | 2.48  | ND      | 33.00  | ND      | 330.00  | ND       | 2.48    | ND       | 165.00  | ND     | 247.50  |  |
| 2,6-Dinitrotoluene         | ND       | 330.00  | ND      | 2.48  | ND      | 33.00  | ND      | 330.00  | ND       | 2.48    | ND       | 165.00  | ND     | 247.50  |  |
| 2-Chloronaphthalene        | ND       | 330.00  | ND      | 2.48  | ND      | 33.00  | ND      | 330.00  | ND       | 2.48    | ND       | 165.00  | ND     | 247.50  |  |
| 2-Methylnaphthalene        | 790.00   | 330.00  | 3.70    | 2.48  | 420.00  | 33.00  | 360.00  | 330.00  | 400.00   | 2.48    | 350.00   | 165.00  | 420.00 | 247.50  |  |
| 4,6-Dinitro-o-cresol       | ND       | 1600.00 | ND      | 12.00 | ND      | 160.00 | ND      | 1600.00 | ND       | 12.00   | ND       | 800.00  | ND     | 1200.00 |  |
| 4-Nitrophenol              | ND       | 1600.00 | ND      | 12.00 | ND      | 160.00 | ND      | 1600.00 | ND       | 12.00   | ND       | 800.00  | ND     | 1200.00 |  |
| Acenaphthene               | 630.00   | 330.00  | 3.20    | 2.48  | 450.00  | 330.00 | ND      | 330.00  | 320.00   | 2.48    | 200.00   | 165.00  | 400.00 | 247.50  |  |
| Acenaphthylene             | ND       | 330.00  | ND      | 2.48  | ND      | 33.00  | ND      | 330.00  | ND       | 2.48    | ND       | 165.00  | ND     | 247.50  |  |
| Anthracene                 | ND       | 330.00  | ND      | 2.48  | 480.00  | 33.00  | ND      | 330.00  | 200.00   | 2.48    | 580.00   | 165.00  | ND     | 247.50  |  |
| Benzo(a)anthracene         | ND       | 330.00  | ND      | 2.48  | 160.00  | 33.00  | ND      | 330.00  | 37.00    | 2.48    | ND       | 165.00  | ND     | 247.50  |  |
| Benzo(a)pyrene             | ND       | 330.00  | ND      | 2.48  | 62.00   | 33.00  | ND      | 330.00  | ND       | 2.48    | ND       | 165.00  | ND     | 247.50  |  |
| bis(2-Chloroethoxy)methane | ND       | 330.00  | ND      | 2.48  | ND      | 33.00  | ND      | 330.00  | ND       | 2.48    | ND       | 165.00  | ND     | 247.50  |  |
| bis(2-Ethylhexyl)phthalate | ND       | 330.00  | ND      | 2.48  | ND      | 33.00  | ND      | 330.00  | ND       | 2.48    | ND       | 165.00  | ND     | 247.50  |  |
| Chrysene                   | ND       | 330.00  | ND      | 2.48  | 180.00  | 33.00  | ND      | 330.00  | 37.00    | 2.48    | ND       | 165.00  | ND     | 247.50  |  |
| Di-n-butyl phthalate       | ND       | 330.00  | ND      | 2.48  | ND      | 33.00  | ND      | 330.00  | ND       | 2.48    | ND       | 165.00  | ND     | 247.50  |  |
| Dibenzofuran               | 470.00   | 330.00  | 2.50    | 2.48  | 600.00  | 330.00 | ND      | 330.00  | 270.00   | 2.48    | 230.00   | 165.00  | 300.00 | 247.50  |  |
| Fluoranthene               | 380.00   | 330.00  | 2.50    | 2.48  | 430.00  | 33.00  | ND      | 330.00  | 250.00   | 2.48    | ND       | 165.00  | 300.00 | 247.50  |  |
| Fluorene                   | 560.00   | 330.00  | 2.70    | 2.48  | 460.00  | 330.00 | 330.00  | 330.00  | 300.00   | 2.48    | 180.00   | 165.00  | 350.00 | 247.50  |  |
| N-Nitrosodiphenylamine     | ND       | 330.00  | ND      | 2.48  | ND      | 33.00  | ND      | 330.00  | ND       | 2.48    | ND       | 165.00  | ND     | 247.50  |  |
| Naphthalene                | 5300.00  | 330.00  | 42.00   | 2.48  | 970.00  | 33.00  | 4600.00 | 330.00  | 17000.00 | 990.00  | 20000.00 | 165.00  |        | 1320.00 |  |
| Nitrobenzene               | ND       | 330.00  | ND      | 2.48  | ND      | 33.00  | ND      | 330.00  | ND       | 2.48    | ND       | 165.00  | ND     | 247.50  |  |
| Pentachlorophenol          | ND       | 1600.00 | ND      | 12.00 | ND      | 160.00 | ND      | 1600.00 | ND       | 120.00  | ND       | 800.00  | ND     | 1200.00 |  |
| Phenanthrene               | 1200.00  | 330.00  | 6.90    | 2.48  | 930.00  | 330.00 | 590.00  | 330.00  | 1400.00  | 99.00   | 610.00   | 165.00  | 840.00 | 247.50  |  |
| Phenol                     | ND       | 330.00  | ND      | 2.48  | ND      | 33.00  | ND      | 330.00  | ND       | 2.48    | ND       | 165.00  | ND     | 247.50  |  |
| Pyrene                     | ND       | 330.00  | ND      | 2.48  | ND      | 33.00  | ND      | 330.00  | 160.00   | 2.48    | ND       | 165.00  | ND     | 247.50  |  |

<sup>(</sup>a) Subsurface soil samples were collected from greater than 2 feet below ground surface.

<sup>(</sup>b) Conc. = reported concentration; LOQ = limit of quantitation.

<sup>(</sup>c) N/A = not analyzed; ND = non detect

TABLE 5-3
Subsurface Soil Analytical Results
Phase 2-A Investigation
Houston Wood Preserving Works
Houston, Texas

| Sample Location               | AOC3-W     |       | AOC3-E   |         | AOC4-SE |         | AOC4-SW |         | AOC4-NE |         | AOC4-NW |         | AOC5-E |         | AOC7    |         |  |
|-------------------------------|------------|-------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|--|
| Sample depth                  | n 5 FT     |       | 5 FT     |         | 5 FT    |         | 5 FT    |         | 5 FT    |         | 5 FT    |         | 5 FT   |         | 5 FT    |         |  |
| Applytical Beauty             | 0          |       | 0        |         | 0       |         | •       |         |         |         |         |         |        |         |         |         |  |
| Analytical Result             |            | LOQ   |          | LOQ     | Conc    |         | Con     |         | Con     | LOQ     | Con     | LOQ     |        | . LOQ   | Conc.   | LOQ     |  |
| Petroleum Hydrocarbons        |            | MA NA |          | (mg/kg) |         | (mg/kg) |         | (mg/kg) |         | (mg/kg) |         | (mg/kg) |        | (mg/kg) |         | (mg/kg) |  |
| Volatile Compound             | NA         | NA    | NA       | NA      | NA      | NA      | NA      | NA      | NA      | NA      | NA      | NA      | NA     | NA      | NA      | 1000    |  |
| 1,2-Dichloroethane            | NIA        | 0.005 | NIA      | 0.005   |         | 0.005   |         |         |         |         |         |         |        |         |         |         |  |
| Benzene                       | NA         | 0.005 | NA       |         | NA      | 0.005   | NA      |         |         | 0.005   | NA      |         | NA     | 0.005   | NA      | 0.005   |  |
| Chlorobenzene                 | NA<br>NA   | 0.005 | NA       | 0.005   | NA      | 0.005   | NA      |         | NA      |         | NA      |         | NA     | 0.005   | NA      | 0.005   |  |
| Ethylbenzene                  | NA         | 0.005 | NA       | 0.005   | NA      | 0.005   | NA      |         | NA      |         | NA      |         | NA     | 0.005   | NA      | 0.005   |  |
| Methylene chloride            | NA         | 0.005 | NA       | 0.005   | NA      | 0.005   | NA      | 0.005   | NA      |         | NA      |         | NA     | 0.625   | NA      | 0.005   |  |
| Toluene                       |            |       | NA       |         | NA      | 0.005   | NA      |         | NA      |         | NA      |         | NA     | 0.005   | NA      | 0.005   |  |
| Xylenes (total)               | NA<br>NA   | 0.005 | NA<br>NA |         | NA      | 0.005   | NA      | 0.005   | NA      | 0.005   | NA      | 0.005   | NA     | 0.005   | NA      | 0.005   |  |
| Semivolatile Compound         | INA        | 0.005 | INA      | 0.005   | NA      | 0.005   | NA      | 0.005   | NA      | 0.005   | NA      | 0.005   | NA     | 0.625   | NA      | 0.005   |  |
| 1,2-Diphenylhydrazine         | ND         | 3.30  | ND       | 0.22    | ND      | 0.00    | ND      | 0.00    | ND      | 0.00    |         |         |        |         |         |         |  |
| 2,4-Dimethylphenol            | ND         | 3.30  | ND       | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | ND      | 165.00  |  |
| 2,4-Dinitrotoluene            | ND         | 3.30  | ND       | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | ND      | 165.00  |  |
| 2,6-Dinitrotoluene            | ND         | 3.30  |          | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | ND      | 165.00  |  |
| 2-Chloronaphthalene           |            |       | ND       | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | ND      | 165.00  |  |
|                               | ND<br>E 00 | 3.30  | ND       | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | ND      | 165.00  |  |
| 2-Methylnaphthalene           | 5.00       | 3.30  | ND       | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | ND      | 165.00  |  |
| 4,6-Dinitro-o-cresol          | ND         | 16.00 | ND       | 1.60    | ND      | 3.20    | ND      | 1.60    | ND      | 1.60    | ND      | 3.20    | ND     | 16.00   | ND      | 800.00  |  |
| 4-Nitrophenol                 | ND         | 16.00 | ND       | 1.60    | ND      | 3.20    | ND      | 1.60    | ND      | 1.60    | ND      | 3.20    | ND     | 16.00   | ND      | 800.00  |  |
| Acenaphthene                  | 8.80       | 3.30  | ND       | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | 270.00  | 165.00  |  |
| Acenaphthylene                | ND         | 3.30  | ND       | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | ND      | 165.00  |  |
| Anthracene                    | 8.60       | 3.30  | ND       | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | 460.00  | 165.00  |  |
| Benzo(a)anthracene            | 3.60       | 3.30  | ND       | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | 21.50  | 3.30    | 220.00  | 165.00  |  |
| Benzo(a)pyrene                | ND         | 3.30  | ND ·     | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | 17.80  | 3.30    | ND      | 165.00  |  |
| bis(2-Chloroethoxy)methane    | ND         | 3.30  | ND       | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | ND      | 165.00  |  |
| bis(2-Ethylhexyl)phthalate    | ND         | 3.30  | ND       | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | ND      | 165.00  |  |
| Chrysene Di a butul abthalata | 3.50       | 3.30  | ND       | 0.33    | 0.92    | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | 34.00  | 3.30    | 210.00  | 165.00  |  |
| Di-n-butyl phthalate          | ND         | 3.30  | ND       | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | ND      | 165.00  |  |
| Dibenzofuran                  | 6.70       | 3.30  | ND       | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | 190.00  |         |  |
| Fluoranthene                  | 20.00      | 3.30  | ND       | 0.33    | 2.80    | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | 50.90  | 3.30    | 1100.00 |         |  |
| Fluorene                      | 12.00      | 3.30  |          | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | 330.00  |         |  |
| N-Nitrosodiphenylamine        | ND         | 3.30  |          | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | ND      | 165.00  |  |
| Naphthalene                   | ND         | 3.30  |          | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | 220.00  | 165.00  |  |
| Nitrobenzene                  | ND         | 3.30  |          | 0.33    | ND      | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | ND      | 165.00  |  |
| Pentachiorophenol             | ND         | 16.00 |          | 1.60    | ND      | 3.20    | ND      | 1.60    | ND      | 1.60    | ND      | 3.20    | ND     | 16.00   | ND      | 800.00  |  |
| Phenanthrene                  | 36.00      |       |          | 0.33    | 1.10    | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | 950.00  | 165.00  |  |
| Phenol                        | ND         | 3.30  |          | 0.33    | ND      | 0.66    |         | 0.33    | ND      | 0.33    | ND      | 0.66    | ND     | 3.30    | ND      | 165.00  |  |
| Pyrene                        | 13.00      | 3.30  | ND       | 0.33    | 3.60    | 0.66    | ND      | 0.33    | ND      | 0.33    | ND      | 0.66    | 58.30  | 3.30    | 880.00  | 165.00  |  |

<sup>(</sup>a) Subsurface soil samples were collected from greater than 2 feet below ground surface.

<sup>(</sup>b) Conc. = reported concentration; LOQ = limit of quantitation.

<sup>(</sup>c) N/A = not analyzed; ND = non detect

TABLE 5-4
Soil Leachate Testing Results
Phase 2-A Investigation

| Sample Location            | 180    | SB03   |                                    | SB04   | SB06   |
|----------------------------|--------|--------|------------------------------------|--------|--------|
| Sample depth               | 5 ft   | 19 ft  | 24 ft                              | 51 ft  | 19 ft  |
| Analytical Result          | Conc.  | Conc.  | Conc.                              | Conc.  | Conc.  |
|                            | (mg/L) | (mg/L) | (mg/L)                             | (mg/L) | (mg/L) |
| Volatile Compound          |        |        | - Character of the Landson Company |        |        |
| 1,2-Dichloroethane         | ND     | ND     | ND                                 | ND     | ND     |
| Benzene                    | ND     | ND     | 0.024                              | ND     | 0.016  |
| Chlorobenzene              | ND     | ND     | ND                                 | ND     | ND     |
| Ethylbenzene               | ND     | ND     | ND                                 | 0.036  | ND     |
| Methylene chloride         | ND     | ND     | 0.03                               | ND     | ND     |
| Toluene                    | ND     | ND     | 0.26                               | 0.12   | ND     |
| Xylenes (total)            | ND     | ND     | 0.011                              | 0.10   | ND     |
| Semivolatile Compound      |        |        |                                    |        |        |
| 1,2-Diphenylhydrazine      | ND     | ND     | ND                                 | ND     | ND     |
| 2,4-Dimethylphenol         | ND     | ND     | ND                                 | ND     | ND     |
| 2,4-Dinitrotoluene         | ND     | ND     | ND ·                               | ND     | ND     |
| 2,6-Dinitrotoluene         | ND     | ND     | ND                                 | ND     | ND     |
| 2-Chloronaphthalene        | ND     | ND     | ND                                 | ND     | ND     |
| 2-Methylnaphthalene        | ND     | 0.041  | 0.044                              | 1.6    | 0.1    |
| 4,6-Dinitro-o-cresol       | ND     | ND     | ND                                 | ND     | ND     |
| 4-Nitrophenol              | ND     | ND     | ND                                 | ND     | ND     |
| Acenaphthene               | ND     | 0.04   | 0.085                              | 0.38   | 0.1    |
| Acenaphthylene             | ND     | ND     | ND                                 | ND     | ND     |
| Anthracene                 | ND     | ND     | 0.031                              | ND     | 0.026  |
| Benzo(a)anthracene         | ND     | ND     | ND                                 | ND     | ND     |
| Benzo(a)pyrene             | ND     | ND     | ND                                 | ND     | ND     |
| bis(2-Chloroethoxy)methane | ND     | ND     | ND                                 | ND     | ND     |
| bis(2-Ethylhexyl)phthalate | ND     | ND     | ND                                 | ND     | ND     |
| Chrysene                   | ND     | ND     | ND                                 | ND     | ND     |
| Di-n-butyl phthalate       | ND     | ND     | ND                                 | ND     | ND     |
| Dibenzofuran               | ND     | 0.035  | 0.06                               | 0.35   | 0.096  |
| Fluoranthene               | ND     | 0.01   | 0.032                              | ND     | 0.035  |
| Fluorene                   | ND     | 0.028  | 0.088                              | 0.28   | 0.09   |
| N-Nitrosodiphenylamine     | ND     | ND     | ND                                 | ND     | ND     |
| Naphthalene                | ND     | 0.075  | ND                                 | 2.2    | 0.36   |
| Nitrobenzene               | ND     | ND     | ND                                 | ND     | ND     |
| Pentachlorophenol          | ND     | ND     | ND                                 | ND     | ND     |
| Phenanthrene               | ND.    | 0.054  | 0.17                               | 0.82   | 0.14   |
| Phenol                     | ND     | ND     | ND                                 | ND     | ND     |
| Pyrene                     | ND     | ND     | 0.015                              | 0.25   | 0.018  |
|                            |        |        |                                    |        |        |

TABLE 5-5
Geotechnical Sample Results
Phase 2-A Investigation

| Lithologic<br>Unit | Sample<br>Location              | Sample<br>Depth<br>(bgs) | Dry<br>Density<br>(lb/ft³)     | Moisture<br>Content<br>(%)   | Specific Gravity (g/cm <sup>3</sup> ) | Fraction<br>Organic<br>Carbon (%) | pН                       |
|--------------------|---------------------------------|--------------------------|--------------------------------|------------------------------|---------------------------------------|-----------------------------------|--------------------------|
| A-CZ               | MW-14[B]                        | 5                        | 115.0                          | 15.6                         | 2.667                                 | 3.0                               | 7.3                      |
| A-TZ               | MW-14[B]<br>SB02                | 15<br>21                 | 105.8<br>97.4                  | 20.4<br>25.9                 | 2.673<br>2.653                        | 0.4<br>0.3                        | 7.5<br>7.8               |
|                    | Average A-TZ                    | 18                       | 101.6                          | 23.15                        | 2.663                                 | 0.3                               | 7.6                      |
| B-CZ               | MW-12B<br>MW-14<br>SB06<br>SB02 | 30<br>28<br>55<br>38     | 102.6<br>109.9<br>99.3<br>96.9 | 19.7<br>18.6<br>25.3<br>25.9 | 2.680<br>2.686<br>2.779<br>2.695      | 0.6<br>1.7<br>2.1<br>1.9          | 7.7<br>7.3<br>7.5<br>7.9 |
| B-TZ               | Average B-CZ MW-14              | 38<br>35                 | 102.2<br>99.2                  | 22.4<br>23.4                 | <ul><li>2.710</li><li>2.675</li></ul> | 0.6                               | 7.6<br>7.8               |
| C-CZ               | MW-12B<br>MW-14<br>Average C-CZ | 43<br>43.5<br>43         | 102.7<br>101.8<br>101.2        | 23.0<br>24.4<br>23.7         | 2.754<br>2.755<br>2.754               | 2.5<br>2.6<br>2.5                 | 7.3<br>7.5<br>7.4        |

NOTE:

ft btgs = feet below ground surface

TABLE 5-6
Summary of Well Completion Data

| Well<br>Designation | Transmissive<br>Zone | Top Of<br>Casing Elev.<br>(ft MSL) | Installation<br>Date | Top of<br>Screen<br>(ft bgs) | Bottom of<br>Screen<br>(ft bgs) | Total Depth of<br>Boring<br>(ft bgs) |
|---------------------|----------------------|------------------------------------|----------------------|------------------------------|---------------------------------|--------------------------------------|
| MW-01               | A-TZ                 | 47.95                              | 4/17/84              | 8.5                          | 18.5                            | 18.5                                 |
| MW-02<br>MW-03      | A-TZ<br>A-TZ         | 48.03<br>48.55                     | 4/17/84              | 8.5                          | 18.5                            | 18.5                                 |
| MW-04               | A-TZ<br>A-TZ         | 49.85                              | 4/17/84              | 8.5                          | 18.5                            | 18.5                                 |
| MW-05               | A-TZ<br>A-TZ         | 49.35                              | 4/18/84<br>3/27/91   | 11<br>10                     | 21<br>25                        | 21                                   |
| MW-07               | A-TZ<br>A-TZ         | 48.86                              | 3/27/91              | 14.1                         | 19.1                            | 26                                   |
| MW-08               | A-TZ<br>A-TZ         | 49.37                              | 3/27/91              | 14.1                         | 19.1                            | 23<br>24                             |
| MW-09               | A-TZ                 | 49.29                              | 3/26/91              | 14.2                         | 19.2                            | 24                                   |
| MW-10A              | A-TZ                 | 49.90                              | 9/13/94              | 11                           | 20.5                            | 23                                   |
| MW-10B              | B-TZ                 | 49.97                              | 9/14/94              | 27.1                         | 41.6                            | 46                                   |
| MW-11A              | A-TZ                 | 50.04                              | 9/15/94              | 10                           | 19.3                            | 22                                   |
| MW-11B              | B-TZ                 | 50.19                              | 9/19/94              | 27.5                         | 41.2                            | 44                                   |
| MW-12A              | A-TZ                 | 49.96                              | 2/27/97              | 13                           | 27.5                            | 30                                   |
| MW-12B              | B-TZ                 | 50.02                              | 2/27/97              | 28                           | 42.5                            | 45                                   |
| MW-12C              | C-TZ                 | 50.14                              | 4/21/97              | 69                           | 73.5                            | 75.3                                 |
| MW-13               | A-TZ                 | 50.65                              | 2/25/97              | 9                            | 22.5                            | 25                                   |
| MW-14               | A-TZ                 | 50.66                              | 2/27/97              | 28                           | 42.5                            | 45                                   |
| MW-15A              | A-TZ                 | 50.41                              | 2/25/97              | 12                           | 26.1                            | 30                                   |
| MW-15C              | C-TZ                 | 50.01                              | 4/25/97              | 64                           | 73.5                            | 75                                   |
| MW-16               | A-TZ                 | 51.51                              | 2/26/97              | 12.5                         | 27                              | 30                                   |
| MW-17               | A-TZ                 | 50.92                              | 3/25/97              | 18                           | 32.5                            | 35                                   |
| MW-18A              | A-TZ                 | 51.57                              | 2/26/97              | 18                           | 32.5                            | 35                                   |
| MW-18C              | C-TZ                 | 51.47                              | 4/25/97              | 62                           | 76.5                            | 80.2                                 |
| P-10                | B-TZ                 | 47.72                              | 6/13/91              | 36.2                         | 38.2                            | 50                                   |
| P-11                | B-TZ                 | 49.02                              | 6/13/91              | 36.2                         | 38.2                            | 50                                   |
| P-12                | B-TZ                 | 48.82                              | 6/13/91              | 36.3                         | 38.3                            | 50                                   |

NOTES:

bgs = below ground surface MSL = mean sea level

TABLE 5-7
Gound Water Analytical Results - Monitor Wells
Phase 2-A Investigation
Houston Wood Preserving Works
Houston, Texas

| Sample Location:           |        |       | MW1    | 2     |       |       | M    | W13   | MW14[B] |       |  |  |  |
|----------------------------|--------|-------|--------|-------|-------|-------|------|-------|---------|-------|--|--|--|
| Transmissive Zone:         | A-     | ΓZ    | B-1    | ΓZ    | С     | -TZ   | A    | -TZ   |         | -TZ   |  |  |  |
| Analytical Result:         | Conc.  | LOQ   | Conc.  | LOQ   | Conc. | LOQ   | Conc | LOQ   | Conc.   | LOQ   |  |  |  |
|                            | (mg    | J/L)  | (mg    | /L)   | (m    | g/L)  | (n   | ng/L) | (m      | g/L)  |  |  |  |
| Total Disolved Solids      | 705    | 5     | 1088   | 5     | 1,566 | 10    | 738  | 5     | 1020    | 5     |  |  |  |
| Volatile Compound          |        |       |        |       |       |       |      |       |         |       |  |  |  |
| 1,2-Dichloroethane         | ND     | 0.005 | ND     | 0.005 | ND    | 0.005 | ND   | 0.005 | ND      | 0.005 |  |  |  |
| Benzene                    | ND     | 0.005 | 0.0065 | 0.005 | ND    | 0.005 | ND   | 0.005 | ND      | 0.005 |  |  |  |
| Chlorobenzene              | ND     | 0.005 | ND     | 0.005 | ND    | 0.005 | ND   | 0.005 | ND      | 0.005 |  |  |  |
| Ethylbenzene               | 0.0171 | 0.005 | 0.0276 | 0.005 | ND    | 0.005 | ND   | 0.005 | ND      | 0.005 |  |  |  |
| Methylene chloride         | ND     | 0.005 | ND     | 0.005 | ND    | 0.005 | ND   | 0.005 | ND      | 0.005 |  |  |  |
| Toluene                    | 0.0085 | 0.005 | 0.0065 | 0.005 | ND    | 0.005 | ND   | 0.005 | ND      | 0.005 |  |  |  |
| Xylenes (total)            | 0.0281 | 0.005 | 0.0287 | 0.005 | ND    | 0.005 | ND   | 0.005 | ND      | 0.005 |  |  |  |
| Semivolatile Compound      |        |       |        |       |       |       |      |       |         |       |  |  |  |
| 1,2-Diphenylhydrazine      | ND     | 0.010 | ND     | 0.010 | ND    | 0.010 | ND   | 0.010 | ND      | 0.010 |  |  |  |
| 2,4-Dimethylphenol         | 0.012  | 0.010 | ND     | 0.010 | ND    | 0.010 | ND   | 0.010 | ND      | 0.010 |  |  |  |
| 2,4-Dinitrotoluene         | ND     | 0.010 | ND     | 0.010 | ND    | 0.010 | ND   | 0.010 | ND      | 0.010 |  |  |  |
| 2,6-Dinitrotoluene         | ND     | 0.010 | ND     | 0.010 | ND    | 0.010 | ND   | 0.010 | ND      | 0.010 |  |  |  |
| 2-Chloronaphthalene        | ND     | 0.010 | ND     | 0.010 | ND    | 0.010 | ND   | 0.010 | ND      | 0.010 |  |  |  |
| 2-Methylnaphthalene        | 0.397  | 0.100 | 0.233  | 0.100 | ND    | 0.100 | ND   | 0.100 | ND      | 0.100 |  |  |  |
| 4,6-Dinitro-o-cresol       | ND     | 0.050 | ND     | 0.050 | ND    | 0.050 | ND   | 0.050 | ND      | 0.050 |  |  |  |
| 4-Nitrophenol              | ND     | 0.050 | ND     | 0.050 | ND    | 0.050 | ND   | 0.050 | ND      | 0.050 |  |  |  |
| Acenaphthene               | 0.186  | 0.100 | 0.216  | 0.100 | ND    | 0.010 | ND   | 0.100 | ND      | 0.100 |  |  |  |
| Acenaphthylene             | ND     | 0.010 | ND     | 0.010 | ND    | 0.010 | ND   | 0.010 | ND      | 0.010 |  |  |  |
| Anthracene                 | 0.016  | 0.010 | 0.020  | 0.010 | ND    | 0.010 | ND   | 0.010 | ND      | 0.010 |  |  |  |
| Benzo(a)anthracene         | ND     | 0.010 | ND     | 0.010 | ND    | 0.010 | ND   | 0.010 | ND      | 0.010 |  |  |  |
| Benzo(a)pyrene             | ND     | 0.010 | ND     | 0.010 | ND    | 0.010 | ND   | 0.010 | ND      | 0.010 |  |  |  |
| bis(2-Chloroethoxy)methane | ND     | 0.010 | ND     | 0.010 | ND    | 0.010 | ND   | 0.010 | ND      | 0.010 |  |  |  |
| bis(2-Ethylhexyl)phthalate | ND     | 0.010 | ND     | 0.010 | ND    | 0.010 | ND   | 0.010 | ND      | 0.010 |  |  |  |
| Chrysene                   | ND     | 0.010 | ND     | 0.010 | ND    | 0.010 | ND   | 0.010 | ND      | 0.010 |  |  |  |
| Di-n-butyl phthalate       | ND     | 0.010 | ND     | 0.010 | ND    | 0.010 | ND   | 0.010 | ND      | 0.010 |  |  |  |
| Dibenzofuran               | 0.148  | 0.100 | 0.158  | 0.100 | ND    | 0.010 | ND   | 0.100 | ND      | 0.100 |  |  |  |
| Fluoranthene               | 0.018  | 0.010 | 0.022  | 0.010 | ND    | 0.010 | ND   | 0.010 | ND      | 0.010 |  |  |  |
| Fluorene                   | 0.125  | 0.100 | 0.154  | 0.100 | ND    | 0.010 | ND   | 0.100 | ND      | 0.100 |  |  |  |
| N-Nitrosodiphenylamine     | ND     | 0.100 | ND     | 0.100 | ND    | 0.010 | ND   | 0.100 | ~ND     | 0.100 |  |  |  |
| Naphthalene                | 5.210  | 2.000 | 2.440  | 1.000 | ND    | 0.010 | ND   | 0.100 | ND      | 0.100 |  |  |  |
| Nitrobenzene               | ND     | 0.010 | ND     | 0.010 | ND    | 0.010 | ND   | 0.010 | ND      | 0.010 |  |  |  |
| Pentachlorophenol          | ND     | 0.050 | ND     | 0.050 | ND    | 0.050 | ND   | 0.050 | ND      | 0.050 |  |  |  |
| Phenanthrene               | 0.133  | 0.100 | 0.144  | 0.100 | ND    | 0.100 | ND   | 0.100 | ND      | 0.100 |  |  |  |
| Phenol                     | ND     | 0.010 | ND     | 0.010 | ND    | 0.010 | ND   | 0.010 | ND      | 0.010 |  |  |  |
| Pyrene                     | ND     | 0.010 | 0.010  | 0.010 | ND    | 0.010 | ND   | 0.010 | ND      | 0.010 |  |  |  |

<sup>(</sup>a) Samples collected on May 13 and 14, 1997.

TABLE 5-7
Gound Water Analytical Results - Monitor Wells
Phase 2-A Investigation
Houston Wood Preserving Works
Houston, Texas

| Analytical Result:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Location:           | MV     |       |       | V15   | MW16 |      |             | MW17  |       |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------|-------|-------|-------|------|------|-------------|-------|-------|--|--|
| Total Disolved Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Transmissive Zone:         |        |       | C-    | C-TZ  |      | A-TZ |             | A-    | -TZ   |  |  |
| Total Disolved Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analytical Result:         |        |       |       |       | Co   |      |             |       |       |  |  |
| Volatile Compound   1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | (mg    | 3/L)  | (m    | g/L)  | -    | (mg  | <u>J/L)</u> | (m    | g/L)  |  |  |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | 945    | 5     | 705   | 5     | 5    | 38   | 5           | 758   | 5     |  |  |
| Benzene         0.0068         0.005         ND         0.005         DO         0.025         CLS                                                                                                                                                                      |                            |        |       |       |       |      |      |             |       |       |  |  |
| Chlorobenzene         ND         0.005         ND         0.005         ND         0.005         DO         0.025         CLD                                                                                                                                                                          | 1,2-Dichloroethane         |        | 0.005 | ND    | 0.005 | N    | D    | 0.005       | ND    | 0.025 |  |  |
| Ethylbenzene         0.0151         0.005         ND         0.005         0.0321         0.005         ND         0.025           Methylene chloride         ND         0.005         ND         0.005         ND         0.005         ND         0.025           Toluene         ND         0.005         ND         0.005         0.0083         0.005         0.780         0.025           Xylenes (total)         0.0238         0.005         0.005         0.0666         0.005         0.105         0.025           Semivolatile Compound         1.2-Diphenylhydrazine         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           2.4-Dimethylphenol         ND         0.010         ND         0.010         ND         0.010         ND         0.10         ND         0.500           2.4-Dinitrotoluene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           2.6-Dinitrotoluene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.050           2.6-Dini                                                                                                                                                                | Benzene                    | 0.0068 | 0.005 | ND    | 0.005 | 0.0  | 101  | 0.005       | 0.580 | 0.025 |  |  |
| Methylene chloride         ND         0.005         ND         0.005         ND         0.005         ND         0.005         ND         0.005         0.0083         0.005         0.780         0.025           Toluene         ND         0.005         0.005         0.005         0.005         0.005         0.025         0.025           Xylenes (total)         0.0238         0.005         0.020         0.005         0.0666         0.005         0.105         0.025           Semivolatile Compound         1         2-Diphenylhydrazzine         ND         0.010         ND         0.010         ND         0.010         ND         0.500           2,4-Dimethylphenol         ND         0.010         ND         0.010         ND         0.010         ND         0.500           2,4-Dinitrotoluene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           2,5-Dinitrotoluene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           2,6-Dinitrotoluene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0                                                                                                                                                        |                            | ND     | 0.005 | ND    | 0.005 | N    | D    | 0.005       | ND    | 0.025 |  |  |
| Toluene         ND         0.005         ND         0.005         0.0083         0.005         0.780         0.025           Xylenes (total)         0.0238         0.005         0.02         0.005         0.0666         0.005         0.105         0.025           Semivolatile Compound         Value         Value<                                                                                                       | Ethylbenzene               | 0.0151 | 0.005 | ND    | 0.005 | 0.0  | 321  | 0.005       | 0.205 | 0.025 |  |  |
| Xylenes (total)         0.0238         0.005         0.02         0.005         0.0666         0.005         0.105         0.025           Semivolatile Compound         1,2-Diphenylhydrazine         ND         0.010         ND         0.010         ND         0.010         ND         0.050           2,4-Dimethylphenol         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.050           2,4-Dinitrotoluene         ND         0.010         ND         0.010         ND         0.010         ND         0.050           2,6-Dinitrotoluene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           2-Chloronaphthalene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           2-Methylnaphthalene         0.138         0.100         0.020         0.100         0.039         0.100         0.711         0.500           4,6-Dinitro-o-cresol         ND         0.050         ND         0.050         ND         0.050         ND         0.050         ND         0.050         ND         0.050         ND         0.050 <td>Methylene chloride</td> <td>ND</td> <td>0.005</td> <td>ND</td> <td>0.005</td> <td>N</td> <td>D</td> <td>0.005</td> <td>ND</td> <td>0.025</td> | Methylene chloride         | ND     | 0.005 | ND    | 0.005 | N    | D    | 0.005       | ND    | 0.025 |  |  |
| Semivolatile Compound   1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Toluene                    | ND     | 0.005 | ND    | 0.005 | 0.0  | 083  | 0.005       | 0.780 | 0.025 |  |  |
| 1,2-Diphenylhydrazine         ND         0.010         ND         0.010         ND         0.500           2,4-Dimethylphenol         ND         0.010         ND         0.010         0.029         0.010         7.140         2.500           2,4-Dinitrotoluene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           2,6-Dinitrotoluene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           2-Chloronaphthalene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           2-Methylnaphthalene         0.138         0.100         0.020         0.100         0.039         0.100         0.711         0.500           4,6-Dinitro-o-cresol         ND         0.050         ND         0.050         ND         0.050         ND         0.050         ND         0.500           4-Ritrophenol         ND         0.050         ND         0.050         ND         0.050         ND         0.050         ND         0.050         ND         0.500           Acenaphthylene<                                                                                                                                                                | Xylenes (total)            | 0.0238 | 0.005 | 0.02  | 0.005 | 0.0  | 366  | 0.005       | 0.105 | 0.025 |  |  |
| 2,4-Dimethylphenol         ND         0.010         ND         0.010         0.029         0.010         7.140         2.500           2,4-Dinitrotoluene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.050           2,6-Dinitrotoluene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           2-Chloronaphthalene         ND         0.010         ND         0.010         ND         0.010         ND         0.050           2-Methylnaphthalene         0.138         0.100         0.020         0.100         0.039         0.100         0.711         0.500           4-Nitrophenol         ND         0.050         ND         0.050         ND         0.050         ND         0.050         ND         2.500           Acenaphthene         0.142         0.100         ND         0.050         ND         0.050         ND         0.500           Acenaphthylene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Benzo(a)anthracene                                                                                                                                                                         | Semivolatile Compound      |        |       |       |       |      |      |             |       |       |  |  |
| 2,4-Dinitrotoluene         ND         0.010         ND         0.050           2-Chloronaphthalene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           2-Methylnaphthalene         0.138         0.100         0.020         0.100         0.039         0.100         0.711         0.500           4,6-Dinitro-o-cresol         ND         0.050         ND         0.050         ND         0.050         ND         0.050         ND         0.500           4-Nitrophenol         ND         0.050         ND         0.050         ND         0.050         ND         0.050         ND         0.500           Acenaphthylene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Benzo(a)anthracene         ND         0.010         ND         0.010         ND         0.010         ND                                                                                                                                                                       | 1,2-Diphenylhydrazine      | ND     | 0.010 | ND    | 0.010 | N    | D    | 0.010       | ND    | 0.500 |  |  |
| 2,6-Dinitrotoluene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           2-Chloronaphthalene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           2-Methylnaphthalene         0.138         0.100         0.020         0.100         0.039         0.100         0.711         0.500           4,6-Dinitro-o-cresol         ND         0.050         ND         0.050         ND         0.050         ND         0.500           4-Nitrophenol         ND         0.050         ND         0.050         ND         0.050         ND         0.500           Acenaphthene         0.142         0.100         0.038         0.100         0.139         0.100         ND         0.500           Acenaphthylene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Acenaphthylene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Benzo(a)anthracene         ND         0.010         ND         0.010         ND         0.010                                                                                                                                                                           | 2,4-Dimethylphenol         | ND     | 0.010 | ND    | 0.010 | 0.0  | 29   | 0.010       | 7.140 | 2.500 |  |  |
| 2,6-Dinitrotoluene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           2-Chloronaphthalene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           2-Methylnaphthalene         0.138         0.100         0.020         0.100         0.039         0.100         0.711         0.500           4,6-Dinitro-o-cresol         ND         0.050         ND         0.050         ND         0.050         ND         0.500           4-Nitrophenol         ND         0.050         ND         0.050         ND         0.050         ND         0.500           Acenaphthene         0.142         0.100         0.038         0.100         0.139         0.100         ND         0.500           Acenaphthylene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Acenaphthylene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Acenaphthylene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         <                                                                                                                                                                     | 2,4-Dinitrotoluene         | ND     | 0.010 | ND    | 0.010 | N    | D    | 0.010       | ND    | 0.500 |  |  |
| 2-Chloronaphthalene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           2-Methylnaphthalene         0.138         0.100         0.020         0.100         0.039         0.100         0.711         0.500           4,6-Dinitro-o-cresol         ND         0.050         ND         0.050         ND         0.050         ND         0.050         ND         2.500           4-Nitrophenol         ND         0.050         ND         0.050         ND         0.050         ND         0.500           Acenaphthene         0.142         0.100         0.038         0.100         0.139         0.100         ND         0.500           Acenaphthylene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Acenaphthylene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Acenaphthylene         ND         0.010         ND                                                                                                                                                                        | 2,6-Dinitrotoluene         | ND     | 0.010 | ND    | 0.010 | N    | D    | 0.010       | ND    |       |  |  |
| 2-Methylnaphthalene         0.138         0.100         0.020         0.100         0.039         0.100         0.711         0.500           4,6-Dinitro-o-cresol         ND         0.050         ND         0.050         ND         0.050         ND         0.250           4-Nitrophenol         ND         0.050         ND         0.050         ND         0.050         ND         0.250           Acenaphthene         0.142         0.100         0.038         0.100         0.139         0.100         ND         0.500           Acenaphthylene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Anthracene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Benzo(a)anthracene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Benzo(a)pyrene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           bis(2-Ethylhexyl)phthalate         ND         0.010                                                                                                                                                                            | 2-Chloronaphthalene        | ND     | 0.010 | ND    | 0.010 | N    | D    | 0.010       | ND    |       |  |  |
| 4,6-Dinitro-o-cresol         ND         0.050         ND         0.050         ND         0.050         ND         0.050         ND         0.050         ND         0.050         ND         2.500           4-Nitrophenol         ND         0.050         ND         0.050         ND         0.050         ND         2.500           Acenaphthene         0.142         0.100         0.038         0.100         0.139         0.100         ND         0.500           Acenaphthylene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Anthracene         ND         0.010         ND         0.016         0.010         ND         0.500           Benzo(a)anthracene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Benzo(a)pyrene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Benzo(a)pyrene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND                                                                                                                                                                                | 2-Methylnaphthalene        | 0.138  | 0.100 | 0.020 | 0.100 | 0.0  | 39   | 0.100       | 0.711 |       |  |  |
| 4-Nitrophenol         ND         0.050         ND         0.050         ND         0.050         ND         0.250           Acenaphthene         0.142         0.100         0.038         0.100         0.139         0.100         ND         0.500           Acenaphthylene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Anthracene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Benzo(a)anthracene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Benzo(a)pyrene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Benzo(a)pyrene         ND         0.010         ND         0.050         ND         0.500                                                                                                                                                                                      | 4,6-Dinitro-o-cresol       | ND     | 0.050 | ND    | 0.050 | N    | D    |             |       |       |  |  |
| Acenaphthene         0.142         0.100         0.038         0.100         0.139         0.100         ND         0.500           Acenaphthylene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Anthracene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Benzo(a)anthracene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Benzo(a)pyrene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Benzo(a)pyrene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           bis(2-Chloroethoxy)methane         ND         0.010         ND         0.500           Chrysene         ND         0.010                                                                                                                                                                               | 4-Nitrophenol              | ND     | 0.050 | ND    | 0.050 | N    | D    | 0.050       | ND    |       |  |  |
| Acenaphthylene         ND         0.010         ND         0.010         ND         0.010         ND         0.0500           Anthracene         ND         0.010         ND         0.010         0.016         0.010         ND         0.500           Benzo(a)anthracene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Benzo(a)pyrene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           bis(2-Chloroethoxy)methane         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           bis(2-Ethylhexyl)phthalate         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Chrysene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Dibenzofuran         0.042         0.100         ND         0.010         ND         0.020         ND         0.500           F                                                                                                                                                                                  | Acenaphthene               | 0.142  | 0.100 | 0.038 | 0.100 | 0.1  | 39   | 0.100       |       |       |  |  |
| Anthracene         ND         0.010         ND         0.010         0.016         0.010         ND         0.500           Benzo(a)anthracene         ND         0.010         ND         0.010         ND         0.010         ND         0.0500           Benzo(a)pyrene         ND         0.010         ND         0.0500         ND         0.500         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.0500         ND         0.0500         ND         0.010         ND         0.010         ND         0.010         ND         0.0500         ND         0.500         ND         0.010         ND         0.010         ND         0.0500         ND         0.0500         ND         0.0500         ND         0.0500         ND         0.0500         ND         0.0500         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.010<                                                                                                                                                    | Acenaphthylene             | ND     | 0.010 | ND    | 0.010 | N    | )    | 0.010       | ND    |       |  |  |
| Benzo(a)anthracene         ND         0.010         ND         0.010         ND         0.010         ND         0.0500           Benzo(a)pyrene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           bis(2-Chloroethoxy)methane         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.050           bis(2-Ethylhexyl)phthalate         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Chrysene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Di-n-butyl phthalate         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Dibenzofuran         0.042         0.100         0.104         0.020         0.080         0.020         ND         0.500           Fluorenthene         ND         0.010         ND         0.010         ND         0.026         0.010         ND         0.500           N-Nitrosod                                                                                                                                                                         | Anthracene                 | ND     | 0.010 | ND    | 0.010 | 0.0  | 16   |             |       |       |  |  |
| Benzo(a)pyrene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           bis(2-Chloroethoxy)methane         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.0500           bis(2-Ethylhexyl)phthalate         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Chrysene         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Di-n-butyl phthalate         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Dibenzofuran         0.042         0.100         0.104         0.020         0.080         0.020         ND         0.500           Fluoranthene         ND         0.010         ND         0.010         ND         0.026         0.010         ND         0.500           Fluorene         0.043         0.100         ND         0.100         ND         0.083         0.010         ND         0.500           N-Nitrosodiphenylamine         <                                                                                                                                                                     | Benzo(a)anthracene         | ND     | 0.010 | ND    |       | NI   | )    |             |       |       |  |  |
| bis(2-Chloroethoxy)methane         ND         0.010         ND         0.010         ND         0.010         ND         0.500           bis(2-Ethylhexyl)phthalate         ND         0.010         ND         0.010         ND         0.010         ND         0.050           Chrysene         ND         0.010         ND         0.010         ND         0.010         ND         0.050           Di-n-butyl phthalate         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Dibenzofuran         0.042         0.100         0.104         0.020         0.080         0.020         ND         0.500           Fluoranthene         ND         0.010         ND         0.010         ND         0.026         0.010         ND         0.500           Fluorene         0.043         0.100         ND         0.100         0.083         0.010         ND         0.500           N-Nitrosodiphenylamine         ND         0.100         ND         0.100         ND         0.010         ND         0.500           Naphthalene         1.210         0.100         0.041         0.100         0.472                                                                                                                                                                          | Benzo(a)pyrene             | ND     | 0.010 | ND    | 0.010 | NI   | )    |             |       |       |  |  |
| bis(2-Ethylhexyl)phthalate         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Chrysene         ND         0.010         ND         0.010         ND         0.010         ND         0.050           Di-n-butyl phthalate         ND         0.010         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Dibenzofuran         0.042         0.100         0.104         0.020         0.080         0.020         ND         0.500           Fluoranthene         ND         0.010         ND         0.010         ND         0.026         0.010         ND         0.500           Fluorene         0.043         0.100         ND         0.100         0.083         0.010         ND         0.500           N-Nitrosodiphenylamine         ND         0.100         ND         0.100         ND         0.010         ND         0.500           Naphthalene         1.210         0.100         0.041         0.100         0.472         0.100         12.200         2.500           Nitrobenzene         ND         0.050         ND         0.050         ND         0.                                                                                                                                                                         | bis(2-Chloroethoxy)methane | ND     | 0.010 | ND    | 0.010 | NI   | )    |             |       |       |  |  |
| Chrysene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Di-n-butyl phthalate         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Dibenzofuran         0.042         0.100         0.104         0.020         0.080         0.020         ND         0.500           Fluoranthene         ND         0.010         ND         0.010         0.026         0.010         ND         0.500           Fluorene         0.043         0.100         ND         0.100         0.083         0.010         ND         0.500           N-Nitrosodiphenylamine         ND         0.100         ND         0.100         ND         0.010         ND         0.500           Naphthalene         1.210         0.100         0.041         0.100         0.472         0.100         12.200         2.500           Nitrobenzene         ND         0.050         ND         0.050         ND         0.050         ND         0.050                                                                                                                                                                                                                                                                                                                          | bis(2-Ethylhexyl)phthalate | ND     | 0.010 | ND    | 0.010 | NI   | )    | 0.010       |       |       |  |  |
| Di-n-butyl phthalate         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Dibenzofuran         0.042         0.100         0.104         0.020         0.080         0.020         ND         0.500           Fluoranthene         ND         0.010         ND         0.010         0.026         0.010         ND         0.500           Fluorene         0.043         0.100         ND         0.100         0.083         0.010         ND         0.500           N-Nitrosodiphenylamine         ND         0.100         ND         0.100         ND         0.010         ND         0.050           Naphthalene         1.210         0.100         0.041         0.100         0.472         0.100         12.200         2.500           Nitrobenzene         ND         0.010         ND         0.050         ND         0.050         ND         0.050         ND         0.500                                                                                                                                                                                                                                                                                                                                                                                                                        | Chrysene                   | ND     | 0.010 | ND    | 0.010 | NI   | )    | 0.010       | ND    |       |  |  |
| Dibenzofuran         0.042         0.100         0.104         0.020         0.080         0.020         ND         0.500           Fluoranthene         ND         0.010         ND         0.010         0.026         0.010         ND         0.500           Fluorene         0.043         0.100         ND         0.100         0.083         0.010         ND         0.500           N-Nitrosodiphenylamine         ND         0.100         ND         0.100         ND         0.010         ND         0.050           Naphthalene         1.210         0.100         0.041         0.100         0.472         0.100         12.200         2.500           Nitrobenzene         ND         0.050         ND         0.050         ND         0.050         ND         0.050           Pentachlorophenol         ND         0.050         ND         0.050         ND         0.050         ND         0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Di-n-butyl phthalate       | ND     | 0.010 | ND    | 0.010 | NI   | )    | 0.010       |       | 0.500 |  |  |
| Fluoranthene         ND         0.010         ND         0.010         0.026         0.010         ND         0.500           Fluorene         0.043         0.100         ND         0.100         0.083         0.010         ND         0.500           N-Nitrosodiphenylamine         ND         0.100         ND         0.100         ND         0.010         ND         0.010         ND         0.500           Naphthalene         1.210         0.100         0.041         0.100         0.472         0.100         12.200         2.500           Nitrobenzene         ND         0.010         ND         0.010         ND         0.010         ND         0.050         ND         0.050         ND         0.050         ND         2.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dibenzofuran               | 0.042  | 0.100 | 0.104 | 0.020 | 0.0  | 30   | 0.020       | ND    |       |  |  |
| Fluorene         0.043         0.100         ND         0.100         0.083         0.010         ND         0.500           N-Nitrosodiphenylamine         ND         0.100         ND         0.100         ND         0.010         ND         0.500           Naphthalene         1.210         0.100         0.041         0.100         0.472         0.100         12.200         2.500           Nitrobenzene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Pentachlorophenol         ND         0.050         ND         0.050         ND         0.050         ND         0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fluoranthene               | ND     | 0.010 | ND    | 0.010 | 0.0  | 26   | 0.010       |       |       |  |  |
| N-Nitrosodiphenylamine         ND         0.100         ND         0.100         ND         0.010         ND         0.500           Naphthalene         1.210         0.100         0.041         0.100         0.472         0.100         12.200         2.500           Nitrobenzene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Pentachlorophenol         ND         0.050         ND         0.050         ND         0.050         ND         0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fluorene                   | 0.043  | 0.100 | ND    | 0.100 | 0.0  | 33   | 0.010       | ND    |       |  |  |
| Naphthalene         1.210         0.100         0.041         0.100         0.472         0.100         12.200         2.500           Nitrobenzene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Pentachlorophenol         ND         0.050         ND         0.050         ND         0.050         ND         2.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N-Nitrosodiphenylamine     | ND     | 0.100 | ND    | 0.100 | N    | )    |             |       |       |  |  |
| Nitrobenzene         ND         0.010         ND         0.010         ND         0.010         ND         0.500           Pentachlorophenol         ND         0.050         ND         0.050         ND         0.050         ND         2.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Naphthalene                | 1.210  | 0.100 | 0.041 | 0.100 | 0.4  | 72   |             |       |       |  |  |
| Pentachlorophenol ND 0.050 ND 0.050 ND 0.050 ND 2.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nitrobenzene               | ND     | 0.010 | ND    |       | NE   | )    |             |       |       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pentachlorophenol          | ND     |       |       |       |      |      |             |       |       |  |  |
| Phenanthrene 0.019 0.100 0.019 0.100 0.097 0.050 ND 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Phenanthrene               | 0.019  | 0.100 |       |       |      |      |             |       |       |  |  |
| Phenol ND 0.010 ND 0.010 ND 0.010 29.700 10.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phenol                     | ND     |       |       |       |      |      |             |       |       |  |  |
| Pyrene ND 0.010 ND 0.010 0.015 0.010 ND 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pyrene                     | ND     |       |       |       |      |      |             |       |       |  |  |

<sup>(</sup>a) Samples collected on May 13 and 14, 1997.

<sup>(</sup>b) Conc. = reported concentration; LOQ = limit of quantiation; ND = non detect

TABLE 5-7
Gound Water Analytical Results - Monitor Wells
Phase 2-A Investigation
Houston Wood Preserving Works
Houston, Texas

| Sample Location            | :      | N     | 1W18  |       |
|----------------------------|--------|-------|-------|-------|
| Transmissive Zone          | 7      | С     | -TZ   |       |
| Analytical Result          | : Cond | LOQ   | Conc  | LOQ   |
|                            | (mg/L  | _)    | (m    | g/L)  |
| Total Disolved Solids      | 1480   | 10    | 1050  | 5     |
| Volatile Compound          |        |       |       |       |
| 1,2-Dichloroethane         | ND     | 50    | ND    | 0.005 |
| Benzene                    | 0.700  | 50    | ND    | 0.005 |
| Chlorobenzene              | ND     | 50    | ND    | 0.005 |
| Ethylbenzene               | 0.919  | 50    | 0.028 | 0.005 |
| Methylene chloride         | ND     | 50    | ND    | 0.005 |
| Toluene                    | 0.805  | 50    | 0.012 | 0.005 |
| Xylenes (total)            | 0.218  | 50    | 0.067 | 0.005 |
| Semivolatile Compound      |        |       |       |       |
| 1,2-Diphenylhydrazine      | ND     | 0.200 | ND    | 0.010 |
| 2,4-Dimethylphenol         | 9.210  | 2.000 | ND    | 0.010 |
| 2,4-Dinitrotoluene         | ND     | 0.200 | ND    | 0.010 |
| 2,6-Dinitrotoluene         | ND     | 0.200 | ND    | 0.010 |
| 2-Chloronaphthalene        | ND     | 0.200 | ND    | 0.010 |
| 2-Methylnaphthalene        | 0.617  | 0.200 | 0.125 | 0.100 |
| 4,6-Dinitro-o-cresol       | ND     | 1.000 | ND    | 0.050 |
| 4-Nitrophenol              | ND     | 1.000 | ND    | 0.050 |
| Acenaphthene               | 0.350  | 0.200 | 0.054 | 0.100 |
| Acenaphthylene             | ND     | 0.200 | ND    | 0.010 |
| Anthracene                 | ND     | 0.200 | ND    | 0.010 |
| Benzo(a)anthracene         | ND     | 0.200 | ND    | 0.010 |
| Benzo(a)pyrene             | ND     | 0.200 | ND    | 0.010 |
| bis(2-Chloroethoxy)methane | ND     | 0.200 | ND    | 0.010 |
| bis(2-Ethylhexyl)phthalate | ND     | 0.200 | ND    | 0.010 |
| Chrysene                   | ND     | 0.200 | ND    | 0.010 |
| Di-n-butyl phthalate       | ND     | 0.200 | ND    | 0.010 |
| Dibenzofuran               | ND     | 0.200 | 0.049 | 0.020 |
| Fluoranthene               | ND     | 0.200 | ND    | 0.010 |
| Fluorene                   | ND     | 0.200 | 0.032 | 0.010 |
| N-Nitrosodiphenylamine     | ND     | 0.200 | ND    | 0.010 |
| Naphthalene                | 7.870  | 2.000 | 0.905 | 0.010 |
| Nitrobenzene               | ND     | 0.200 | ND    | 0.200 |
| Pentachlorophenol          | ND     | 1.000 | ND    | 0.050 |
| Phenanthrene               | ND     | 0.200 | 0.053 | 0.010 |
| Phenol                     | 1.410  | 1.000 | ND    | 0.010 |
| Pyrene                     | ND     | 0.200 | ND    | 0.010 |

<sup>(</sup>a) Samples collected on May 13 and 14, 1997.

<sup>(</sup>b) Conc. = reported concentration; LOQ = limit of quantitation; ND = non detect

TABLE 5-8

# Ground Water Analytical Results - Hydropunch Phase 2-A Investigation

# Houston Wood Preserving Works Houston, Texas

| Sample Location:           |       | HP17  |       |       |       | ŀ     | HP18  | 11    | HP19  |       |      |       |  |  |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|--|--|
| Transmissive Zone:         | A     | \-TZ  | В     | -TZ   | /     | A-TZ  | В     | -TZ   | . A   | \-TZ  | В    | -TZ   |  |  |
| Analytical Result:         |       |       | Conc. | LOQ   | Conc  | . LOQ | Conc. | LOQ   | Conc. | LOQ   | Conc | LOQ   |  |  |
|                            |       | ng/L) | (m    | ng/L) | (r    | ng/L) | (m    | ng/L) | (m    | ng/L) | (m   | ng/L) |  |  |
| Total Disolved Solids      | NA    | NA    | NA    | NA    | 914   | 5     | 881   | 5     | 748   | 5     | NA   | NA    |  |  |
| Volatile Compound          |       |       |       |       |       |       |       |       |       |       |      |       |  |  |
| 1,2-Dichloroethane         | ND    | 0.005 | ND   | 0.005 |  |  |
| Benzene                    | ND    | 0.005 | ND   | 0.005 |  |  |
| Chlorobenzene              | ND    | 0.005 | ND   | 0.005 |  |  |
| Ethylbenzene               | ND    | 0.005 | ND   | 0.005 |  |  |
| Methylene chloride         | ND    | 0.005 | ND   | 0.005 |  |  |
| Toluene                    | ND    | 0.005 | ND   | 0.005 |  |  |
| Xylenes (total)            | ND    | 0.005 | ND   | 0.005 |  |  |
| Semivolatile Compound      |       |       |       |       |       |       |       |       |       |       |      |       |  |  |
| 1,2-Diphenylhydrazine      | ND    | 0.010 | NA   | NA    |  |  |
| 2,4-Dimethylphenol         | ND    | 0.010 | NA   | NA    |  |  |
| 2,4-Dinitrotoluene         | ND    | 0.010 | NA   | NA    |  |  |
| 2,6-Dinitrotoluene         | ND    | 0.010 | NA   | NA    |  |  |
| 2-Chloronaphthalene        | ND    | 0.010 | NA   | NA    |  |  |
| 2-Methylnaphthalene        | ND    | 0.010 | ND    | 0.010 | ND    | 0.010 | 0.064 | 0.010 | ND    | 0.010 | NA   | NA    |  |  |
| 4,6-Dinitro-o-cresol       | ND    | 0.050 | NA   | NA    |  |  |
| 4-Nitrophenol              | ND    | 0.050 | NA   | NA    |  |  |
| Acenaphthene               | 0.033 | 0.010 | ND    | 0.010 | 0.218 | 0.050 | 0.185 | 0.050 | ND    | 0.010 | NA   | NA    |  |  |
| Acenaphthylene             | ND    | 0.010 | NA   | NA    |  |  |
| Anthracene                 | ND    | 0.010 | NA   | NA    |  |  |
| Benzo(a)anthracene         | ND    | 0.010 | NA   | NA    |  |  |
| Benzo(a)pyrene             | ND    | 0.010 | NA   | NA    |  |  |
| bis(2-Chloroethoxy)methane | ND    | 0.010 | NA   | NA    |  |  |
| bis(2-Ethylhexyl)phthalate | ND    | 0.010 | ND    | 0.010 | ND    | 0.010 | ND    | 0.010 | 0.032 | 0.010 | NA   | NA    |  |  |
| Chrysene                   | ND    | 0.010 | NA   | NA    |  |  |
| Di-n-butyl phthalate       | ND    | 0.010 | 0.014 | 0.010 | ND    | 0.010 | ND    | 0.010 | ND    | 0.010 | NA   | NA    |  |  |
| Dibenzofuran               | ND    | 0.010 | ND    | 0.010 | 0.110 | 0.050 | 0.145 | 0.050 | ND    | 0.010 | NA   | NA    |  |  |
| Fluoranthene               | ND    | 0.010 | NA   | NA    |  |  |
| Fluorene                   | 0.016 | 0.010 | ND    | 0.010 | 0.116 | 0.050 | 0.126 | 0.050 | ND    | 0.010 | NA   | NA    |  |  |
| N-Nitrosodiphenylamine     | ND    | 0.010 | NA   | NA    |  |  |
| Naphthalene                | ND    | 0.010 | ND    | 0.010 | 0.391 | 0.050 | 0.476 | 1.000 | ND    | 0.010 | NA   | NA    |  |  |
| Nitrobenzene               | ND    | 0.010 | NA   | NA    |  |  |
| Pentachlorophenol          | ND    | 0.050 | NA   | NA    |  |  |
| Phenanthrene               | ND    | 0.010 | ND    | 0.010 | 0.013 | 0.010 | 0.078 | 0.010 | ND    | 0.010 | NA   | NA    |  |  |
|                            | 0.018 | 0.010 | 0.021 | 0.010 | ND    | 0.010 | 0.013 | 0.010 | ND    | 0.010 | NA   | NA    |  |  |
| Pyrene                     | ND    | 0.010 | NA   | NA    |  |  |

<sup>(</sup>a) NA = Not Applicable

<sup>(</sup>b) Conc. = reported concentration; LOQ = limit of quanitation; ND = non detect

TABLE 5-8

Ground Water Analytical Results - Hydropunch
Phase 2-A Investigation

| Sample Location:           |     | HP    | 20   |       | HP21 |       |        |       |  |  |  |
|----------------------------|-----|-------|------|-------|------|-------|--------|-------|--|--|--|
| Transmissive Zone:         | Α   | -TZ   | 1    | B-TZ  |      | A-TZ  | B-     | TZ    |  |  |  |
| Analytical Result:         |     | LOQ   | Conc | . LOQ | Cond | . LOQ | Conc.  | LOQ   |  |  |  |
|                            | (m  | g/L)  | 1)   | ng/L) | (1   | mg/L) | (mg    | g/L)  |  |  |  |
| Total Disolved Solids      | 912 | 5     | 1310 | 10    | 1119 | 5     | 1054   | 5     |  |  |  |
| Volatile Compound          |     |       |      |       |      |       |        |       |  |  |  |
| 1,2-Dichloroethane         | ND  | 0.005 | ND   | 0.005 | ND   | 0.005 | ND     | 0.005 |  |  |  |
| Benzene                    | ND  | 0.005 | ND   | 0.005 | ND   | 0.005 | 0.0067 | 0.005 |  |  |  |
| Chlorobenzene              | ND  | 0.005 | ND   | 0.005 | ND   | 0.005 | ND     | 0.005 |  |  |  |
| Ethylbenzene               | ND  | 0.005 | ND   | 0.005 | ND   | 0.005 | 0.0643 | 0.005 |  |  |  |
| Methylene chloride         | ND  | 0.005 | ND   | 0.005 | ND   | 0.005 | ND     | 0.005 |  |  |  |
| Toluene                    | ND  | 0.005 | ND   | 0.005 | ND   | 0.005 | ND     | 0.005 |  |  |  |
| Xylenes (total)            | ND  | 0.005 | ND   | 0.005 | ND   | 0.005 | 0.0158 | 0.005 |  |  |  |
| Semivolatile Compound      |     |       |      |       |      |       |        |       |  |  |  |
| 1,2-Diphenylhydrazine      | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | 1.054  | 0.010 |  |  |  |
| 2,4-Dimethylphenol         | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | ND     | 0.010 |  |  |  |
| 2,4-Dinitrotoluene         | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | ND     | 0.010 |  |  |  |
| 2,6-Dinitrotoluene         | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | ND     | 0.010 |  |  |  |
| 2-Chloronaphthalene        | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | ND     | 0.010 |  |  |  |
| 2-Methylnaphthalene        | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | 0.118  | 0.050 |  |  |  |
| 4,6-Dinitro-o-cresol       | ND  | 0.050 | ND   | 0.050 | ND   | 0.050 | ND     | 0.050 |  |  |  |
| 4-Nitrophenol              | ND  | 0.050 | ND   | 0.050 | ND   | 0.050 | ND     | 0.050 |  |  |  |
| Acenaphthene               | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | 0.212  | 0.050 |  |  |  |
| Acenaphthylene             | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | ND     | 0.010 |  |  |  |
| Anthracene                 | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | 0.010  | 0.010 |  |  |  |
| Benzo(a)anthracene         | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | ND     | 0.010 |  |  |  |
| Benzo(a)pyrene             | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | ND     | 0.010 |  |  |  |
| bis(2-Chloroethoxy)methane | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | ND     | 0.010 |  |  |  |
| bis(2-Ethylhexyl)phthalate | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | ND     | 0.010 |  |  |  |
| Chrysene                   | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | ND     | 0.010 |  |  |  |
| Di-n-butyl phthalate       | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | ND     | 0.010 |  |  |  |
| Dibenzofuran               | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | 0.026  | 0.010 |  |  |  |
| Fluoranthene               | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | ND     | 0.010 |  |  |  |
| Fluorene                   | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | ND     | 0.010 |  |  |  |
| N-Nitrosodiphenylamine     | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | ND     | 0.010 |  |  |  |
| Naphthalene                | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | 0.176  | 0.050 |  |  |  |
| Nitrobenzene               | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | ND     | 0.010 |  |  |  |
| Pentachlorophenol          | ND  | 0.050 | ND   | 0.050 | ND   | 0.050 | ND     | 0.050 |  |  |  |
| Phenanthrene               | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | 0.045  | 0.010 |  |  |  |
| Phenol                     | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | ND     | 0.010 |  |  |  |
| Pyrene                     | ND  | 0.010 | ND   | 0.010 | ND   | 0.010 | ND     | 0.010 |  |  |  |

<sup>(</sup>a) NA = Not Applicable

TABLE 6-1
ROST/TPH Correlation Data
Phase 2-A Investigation
Houston Wood Preserving Works
Houston, Texas

| 1/(Y)                     | 0 32760 | 0.23733   | 0.10593   |             | 0.42194     | 0.02328     | 0.03219     | 0.02660      | 0.02814      | 0.01531 | 1 40845  | 0.37175  | 0.181.0  | 0.101.43   | 1.61290    | 2.43302    | 0.09775     | 0.29940    | 0.0000     | 0.044440   | 0.01537    | 0.38168    | 0.09217    | 0.04435 | 0 95238    | 0 92593            | 0.32333    | 0.44444    | 0.04316    | 0.05288    | 1.13636    | 2.63158    | 0.87719    | 0.02533    | 0.01806    |
|---------------------------|---------|-----------|-----------|-------------|-------------|-------------|-------------|--------------|--------------|---------|----------|----------|----------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|---------|------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 1/(X)                     | 0.00148 | 0.00143   | 0.00005   |             | 0.10000     | 0.00053     | 0.00083     | 0.00011      | 0.00022      | 0.00008 | 0.10000  | 0.01429  | 0.02500  | 0.0000     | 0.10000    | 0.000      | 0.00038     | 0.00769    | 0.00140    | 0.000      | 0.00014    | 0.10000    | 0.00270    | 0.00118 | 0.01429    | 0.1000             | 0.1000     | 0.1000     | 0.00769    | 0.01429    | 0.10000    | 0.10000    | 0.10000    | 0.00091    | 0.00011    |
| Ln (Y)                    | 1.43746 | 2.21812   | 2.24496   |             | 0.86289     | 3.76004     | 3.43624     | 3.62700      | 3.57066      | 4.17945 | -0.34249 | 0.98954  | 1.70656  | 000770     | -0.47.004  |            | 2.32532     | 1.20597    | 3 11307    | 4 17531    | 1.1.00     | 0.96317    | 2.3841/    | 5.115/4 | 0.04879    | 0.07696            | 0.81093    | 3 14286    | 202060     | 2.33303    | -0.12/83   | -0.96758   | 0.13103    | 3.67579    | 4.01422    |
| Ln (X)                    | 6.53669 | 8.74830   | 9.85219   | 0000        | 2.30259     | 7.54961     | 7.09008     | 9.09381      | 8.41183      | 9.39266 | 2.30259  | 4.24850  | 3.68888  | 2 30250    | 2.30259    |            | 7.86327     | 4.86753    | 6.50728    | 8 90924    | 20002      | 2.30239    | 6 74524    | t70t/0  | 4.24850    | 2.30259            | 230259     | 4 86753    | 7 24850    | 2000       | 2.30239    | 2.30259    | 2.30259    | 7.00307    | 9.12696    |
| Flag <sup>(c)</sup>       |         |           |           |             |             |             |             |              |              |         |          |          |          |            |            |            |             |            |            |            |            |            |            |         | ×          |                    |            |            |            |            |            |            |            |            |            |
| TPH Result <sup>(b)</sup> | ۵       | O         | Ω         | 2           | 2           | ם מ         | י כ         | Ω            | ۵            | ۵       | N        | ۵        | ۵        | QN         | QN         | ı          | Ω           | ۵          | Δ          | ۵          | S          | <u></u>    | ۵ ۵        | ì       | Q          | ND                 | ND         | Q          |            | S          | 2 2        | 2 2        | <u>S</u> ( | ۵          | ۵          |
| LIF Result <sup>(a)</sup> | ۵       | Ω         | Q         | QN          | <u></u>     | ם ב         | ם מ         | ם נ          | ם ו          | Ω !     | Q        | ۵        | ۵        | Q          | ND         | ۵          | 2           | ۵          | Ω          | ۵          | ND         | <u> </u>   | ۵ ۵        |         | Q<br>N     | ND                 | ND         | ۵          | ۵          | CN         | S          | 2 2        | <u> </u>   | 2          | ۵          |
| LIF Response (Y)          | 4.21    | 9.19      | 9.44      | 2.37        | 42 95       | 31.07       | 0.10        | 37.60        | 50.05        | 65.33   | 0.71     | 2.69     | 5.51     | 0.62       | 0.41       | 10.22      | 10.23       | 3.34       | 22.49      | 90.29      | 2.62       | 10.85      | 22.55      |         | 1.05       | 1.08               | 2.25       | 23.17      | 18.91      | 0.88       | 0.38       | 114        | 1000       | 33.48      | 55.38      |
| TPH Result (X)            | 069     | 6,300     | 19,000    | QN          | 1,900       | 1.200       | 006 8       | 4 500        | 7,000        | 000,21  | Q (      | 0/       | 40       | Q          | QN         | 2 600      | 1,000       | 130        | 0/9        | 7,400      | QN         | 370        | 850        | í       | S :        | Q.                 | Q          | 130        | 70         | QN         | QN         | QN         | 1 100      | 000,       | 9,200      |
| Soil Type                 | FIL     | HE        | SAND      | Clayey SILT | Clayey SILT | Clayey SILT | Clavev SILT | Clavey SII T | Clayey SII T | SILT    | CILT     | SIL I    | SILI     | SILI       | SILT       | Silty CLAY | Cilty Cl AV | Silty CLAT | Silty CLAY | 0.14.0  | Silty SAND | Silty SAND         | Silty SAND | Silty SAND | Silty SAND | Silty SAND | Silty SAND | Silty SAND | Silty SAND | Cilty CAND | JNIK SHIND |
| Sample ID                 | SB06-S4 | 3507-52.5 | SB04-52.5 | SB02-37.5   | SB07-S19    | SB07-S21    | SB08-S18    | SB08-S21     | SB08-S22     | SB02-49 | SB03-519 | CBOA CE1 | SEOF-331 | 3503-518.5 | SB05-S34.5 | SB08-S4    | SB02-38 F   | SB03-SE    | 00000      | SB03-S34   | SB03-S52   | SB06-S19   | SB08-S14   | CB02.21 | 25025      | 3502-24<br>SB02-24 | 3803-524   | SB04-S27   | SB04-S29   | SB05-S24   | SB05-S39   | SB06-S24   | SB07-S22   | SB07.534   | 140-1000   |

(a) Background response estimated at 2.65. Any result greater than background is a detect (D), less than background is a non-detect (ND).

<sup>(</sup>b) D - Detect, result greater than the laboratory detection limit of 10 mg/kg. ND - Non-detect, result below laboratory detection limit.(c) Flag denotes when a TPH result is in disagreement with an LIF result at the given background level.

# Field Procedures Report

Appendix A

February 13, 1998 W.O. #422-09

ERM-SOUTHWEST, INC. 16300 Katy Freeway, Suite 300 Houston, Texas 77094-1611 (281) 579-8999

#### PHASE 2 RFI/EOC FIELD PROCEDURES

Southern Pacific Transportation Company Houston Wood Preserving Works 4910 Liberty Road Houston, Texas

Terranext Project No. 17101961

Prepared For:

ERM-Southwest, Inc. 16300 Katy Freeway, Suite 300 Houston, Texas 77094-1611

December 8, 1997

# TABLE OF CONTENTS

| 1.0 | INTR                            | ODUCTION                                                                                                                                                                                                 |
|-----|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | 1.1<br>1.2<br>1.3<br>1.4<br>1.5 | Site Description Phase 2 Investigation Overview Previous Site Studies Ground Water Monitoring Offsite Access                                                                                             |
|     |                                 | 1.5.1 Private Properties                                                                                                                                                                                 |
|     | 1.6                             | Wetlands Permit                                                                                                                                                                                          |
| 2.0 | PHAS                            | E 2 INVESTIGATION ACTIVITIES                                                                                                                                                                             |
|     | 2.1<br>2.2<br>2.3               | Objectives                                                                                                                                                                                               |
|     |                                 | 2.3.1 CPT Sounding Procedure                                                                                                                                                                             |
|     | 2.4                             | Soil Boring and Sampling Program                                                                                                                                                                         |
|     |                                 | 2.4.1 Scope and Objectives112.4.2 Soil Boring Locations122.4.3 Soil Borings in AOCs142.4.4 Monitoring Well Borings152.4.5 Soil Analytical Program16                                                      |
|     | 2.5                             | Monitoring Well Program                                                                                                                                                                                  |
|     |                                 | 2.5.1 Objectives       20         2.5.2 UTZ Monitoring Wells       21         2.5.3 STZ Monitoring Wells       22         2.5.4 LSU Monitoring Wells       23         2.5.5 Drilling Procedures       24 |
|     |                                 | 2.5.5.1 UTZ Well Construction       2.5.5.2 STZ and LSU Well Construction       2.5.5.2 STZ and LSU Well Construction                                                                                    |

|                                                                    | 2.5.6 Monitori<br>2.5.7 Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ing Well Developm<br>Water Sampling Pr                                                         | ocedures .      | • • • • • | <br>• • • • | <br> | 26<br>27       |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------|-----------|-------------|------|----------------|
|                                                                    | 2.5.7.1<br>2.5.7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sampling Equipme<br>Sampling Procedur                                                          | ent             | • • • • • | <br>• • • • | <br> | 27<br>27       |
| 2.6<br>2.7<br>2.8                                                  | Slug Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ampling Program npling Program .                                                               |                 |           | <br>        | <br> | 28<br>31<br>32 |
| 3.0 REFE                                                           | RENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                | ,               |           | <br>        | <br> | 34             |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FIGUR                                                                                          | ES              |           |             |      |                |
| Figure 1-1<br>Figure 3-1<br>Figure 3-2<br>Figure 3-3<br>Figure 3-4 | Phase 2 Phase | nity Map<br>CPT & Soil Boring<br>Monitoring Well L<br>Hydropunch Locati<br>Surface Soil Locati | ocations<br>ons |           |             |      |                |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATTACHM                                                                                        | ENTS            |           |             |      |                |
| Attachment I<br>Attachment II<br>Attachment II                     | Soil Bori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s - Fugro Geoscier<br>ng Logs<br>ng Well Construction                                          |                 |           |             |      |                |

#### 1.0 INTRODUCTION

Pursuant to the Texas Natural Resource Conservation Commission (TNRCC) Corrective Action and Permits Section's approval of the Phase 2 scope of work as described in the Phase 1 RCRA Facility Investigation (RFI)/Extent of Contamination (EOC) Investigation Report (Terranext, May 23, 1996), Terranext performed field investigation activities on behalf of Southern Pacific Transportation Company (SPTCo) at the former Houston Wood Preserving Works (HWPW) site at 4910 Liberty Road; Houston, Texas.

Post-closure Care Permit Number HW-50343-000 (hereinafter, Permit) and Compliance Plan Number CP-50343 (hereinafter, Compliance Plan), issued by the TNRCC on June 20, 1994, required SPTCo to prepare two work plans to investigate the extent of affected soil and ground water at the HWPW site (Figure 1-1). Provision VIII of the Permit requires the completion of an RFI. The purpose of the RFI is to determine whether hazardous substances have been released into the environment from the industrial Solid Waste Management Units (SWMUs) and Areas of Concern (AOC) identified in the Permit. Pursuant to the Permit, an RFI Work Plan was prepared and submitted by SPTCo to the TNRCC on October 14, 1994. The RFI Work Plan was approved by TNRCC with modifications on October 16, 1995.

The EOC Work Plan was prepared by SPTCo to comply with the requirements of the Permit and to a greater extent, the Compliance Plan. The Compliance Plan requires assessment of the extent of contamination offsite in ground water attributable to past operation of the closed surface impoundment, TNRCC Permit Unit No. II.B.l, located in the southwest corner of the site and, based on the results of the investigation, an assessment of the necessity and feasibility of ground water remediation. The EOC Work Plan was submitted by SPTCo on May 19, 1995, and was approved by the TNRCC on September 29, 1995.

Phase 1 of the combined RFI/EOC Investigation was performed in November and December 1995, and the results are documented in the aforementioned Phase 1 RFI/EOC Report. The purpose of this report is to document the field procedures and activities conducted under the Phase 2 RFI/EOC investigation at the site in February through May 1997, in accordance with the approved RFI and EOC Work Plans and the Phase 2 scope of work.

# 1.1 Site Description

The site consists of a 33-acre tract of land that was formerly operated as SPTCo's Houston Wood Preserving Works, including the closed surface impoundment (TNRCC Permit Unit No. II.B.l) located in the southwest portion of the site. The facility is located at 4910 Liberty Road, Houston, Harris County, Texas, approximately 2 miles northeast of the intersection of Highway 59 and Interstate Highway 10. The property to the north and west is mixed residential and light industrial, with heavy industry further to the west. The adjacent property to the east and south is owned by SPTCo and is presently used for railroad and intermodal operations.

The closed surface impoundment is approximately 180 feet long and 106 feet wide and is currently flat, grass-covered vacant property. The southern side of the impoundment is bordered by an earthen berm, approximately 2 feet high, 3 feet wide, and 100 feet long. A portion of the property boundary contains a chain-link security fence, located along the northern and western sides of the closed surface impoundment. The permitted unit is fully enclosed by fencing and required signs are posted. The original surface impoundment dimensions were approximately 106 by 180 feet at the surface, and extended to a depth of approximately 7 feet below ground surface, yielding a potential capacity of approximately 4,950 cubic yards. A clay liner was installed during the original impoundment construction; during closure, after contaminated materials were removed, the impoundment was filled and revegetated.

# 1.2 Phase 2 Investigation Overview

The scope of work for the Phase 2 RFI/EOC Investigation is described in detail in Section 5.0 of the Phase 1 RFI/EOC Investigation Report. As an amendment to the Phase 2 scope of work outlined in the Phase 1 report, three monitoring wells were installed in a third water bearing zone at approximately 70 feet below ground surface with the prior approval of the TNRCC.

The EOC investigation portion of Phase 2 involved the use of the Hydropunch™ method to collect ground water samples offsite to delineate the extent of impacted ground water attributable to the closed surface impoundment. The onsite/RFI portion of the Phase 2 investigation involved the installation of a total of eleven ground water monitoring wells, deep CPT soundings to define the lithology below 60 feet, and a subsurface and surface soil sampling and analyses program.

#### 1.3 Previous Site Studies

Two studies were performed prior to the Phase 1 RFI/EOC investigation conducted in November and December 1995, in the vicinity of the closed surface impoundment. The first investigation was performed in 1984 by Professional Service Industries, Inc. This investigation involved the installation of four monitoring wells, designated MW-1, MW-2, MW-3, and MW-4, and collection of ground water samples for chemical analysis.

In 1991, to establish a ground water monitoring network to meet the requirements for the RCRA Part B closure permit application, Geo Associates installed four ground water monitoring wells (designated MW-5, MW-7, MW-8, and MW-9), three piezometers (designated P-10, P-11, and P-12), and drilled seven exploratory borings. Geo Associates also performed three slug tests and collected ground water and soil samples for chemical analysis.

In September 1994, pursuant to Paragraph XI the Compliance Plan, SPTCo installed two nested point of compliance (POC) wells (MW-10A, MW-10B, MW-11A, MW-11B) within the two water bearing zones, the upper transmissive zone (UTZ) and second transmissive zone (STZ), at the downgradient boundary of the surface impoundment. These wells were monitored quarterly for a one-year period, and have been integrated into the current semi-annual ground water monitoring program. Boring logs and well construction details were provided to the TNRCC in October 1994.

Pursuant to TNRCC approval of the RFI and EOC Work Plan, SPTCo contracted Terranext to perform the combined Phase 1 RFI/EOC Investigation beginning in November 1995.

#### 1.4 Ground Water Monitoring

In accordance with the provisions of Paragraph VI of the Compliance Plan, SPTCo has conducted periodic ground water monitoring for potential contaminants of concern listed in Table I of the Compliance Plan for all existing on-site wells. Having previously completed quarterly ground water monitoring for all on-site wells for approximately two years, SPTCo conducted the first semi-annual period of 1996 ground water sampling related to the closed surface impoundment area on January 23 and 24, 1996. The ground water monitoring network includes ten ground water monitor wells: MW-1a, MW-2, MW-3, MW-4, MW-5, MW-7, MW-8, MW-9, MW-10A, and MW-11A completed in the UTZ, and two monitor wells (MW-10B and MW-11B) and three piezometers (P-10, P-11, and P-12) completed in the STZ.

The results of the semi-annual ground water monitoring events are documented in Compliance Plan Semi-annual Reports due January 21, and July 21, each year. Annual Reports due each year by January 25, include a summary of ground water compliance monitoring.

#### 1.5 Offsite Access

Written authorization to access offsite areas was required prior to conducting activities under the EOC Investigation. Private property owners and the City of Houston were contacted to obtain access to areas to perform the required investigation. Access was granted to some parcels adjacent to the closed impoundment by some of the private property owners.

#### 1.5.1 Private Properties

Permission to access private properties adjacent to the HWPW site was solicited by SPTCo from approximately 48 individual property owners. SPTCo hired a Houston, Texas consulting firm (Allen, Williford, and Seale) to assist SPTCo in the identification of owners of adjacent properties along the western portion of the site near the closed surface impoundment. Since June 1995, Terranext has conducted three complete mailings on behalf of SPTCo to all non-responsive property owners. Through December 1995, a total of only 15 private property owners had granted permission for SPTCo to access their property for the environmental investigation.

#### 1.5.2 City of Houston Property

The City of Houston possesses several rights-of-way (ROW) in the EOC investigation area which currently exist as platted but unpaved streets. The pertinent ROWs consist of Ranch Street, First Street, and Second Street shown on Figure 1-2 (page 5). Permit applications to access city ROWs for environmental test borings or permanent installations (e.g., monitoring wells) were completed and submitted to the City of Houston Department of Public Works and Engineering.

The City of Houston access permits were issued on January 1997 for the work to be performed on in the offsite area west of the closed surface impoundment. These permits are

valid for one calendar year from the date of issue. Any additional work in the ROWs will require additional permits.

Prior to performing the CPT/Hydropunch™ work for the EOC Investigation, the ROWs were located by a licensed surveyor. Survcon, Inc. (Survcon) of Houston, Texas was contracted to locate and stake the ROW boundaries for Ranch Street, First Street, and Second Street. After locating the ROWs, clearing of overgrown vegetation was subcontracted and completed to allow access by the CPT vehicle. Ranch Street and First Street were accessed directly from Amboy Street. Second Street was accessed from SPTCo property.

#### 1.6 Wetlands Permit

The 0.28-acre area offsite along the southwest corner of the HWPW site, referred to as Inactive Wastewater Lagoon (AOC 6), is frequently saturated with ponding storm water. A wetlands delineation was conducted by Terranext on behalf of SPTCo in September 1994, to characterize the nature and extent of the wetlands. On May 22, 1995, SPTCo filed a permit application with the U.S. Army Corps of Engineers, Galveston District, for Nationwide Permits No. 5, 6, and 26. On June 13, 1995, the Corps of Engineers provided authorization to conduct investigation activities in this area.

The wetland area is comprised of the City of Houston ROWs (for 2nd Street and Amboy Street) and five to six privately-owned parcels of land, from which only two access agreements have been executed (as of March 1996). This area is a natural topographic depression within the local drainage basin, and was not constructed as a containment pond, wastewater lagoon or any other designed structure. In November 1995, at the start of the EOC Investigation, the lagoon area was completely dry and covered with grassy vegetation.

#### 2.0 PHASE 2 INVESTIGATION ACTIVITIES

The scope of work and technical approach to the Phase 2 RFI/EOC Investigation was developed based on the findings of Phase 1. Under Phase 2, quantitative soil, ground water and hydrogeologic data were obtained. The objectives, rationale, scope, and procedures conducted under the Phase 2 investigation are described in the following sections.

# 2.1 Objectives

The objectives of the Phase 2 Investigation as described in Section 5 of the Phase I Report (Terranext, 1996) were to:

- determine the vertical extent of BTEX, PAH, and creosote migration in soil within areas shown to be most significantly impacted from past releases;
- confirm, compare and, if possible, correlate soil borings and soil sampling data with existing CPT and ROST™ data;
- determine lateral extent of offsite impact attributable to the Inactive Wastewater Lagoon (AOC 6);
- determine if AOC's 3, 4, 5, 6 and 7 are sources of onsite contamination;
- collect representative ground water samples and obtain hydrogeologic data across the entire site;
- develop and apply fate and transport analyses to predict possible contaminant levels offsite and support natural attenuation of contaminants in the subsurface;
- collect data to assess natural attenuation processes in soil and ground water;
- obtain an understanding of the relationship between concentrations of contaminants in soil, and how these concentrations have or may affect ground water quality;
- derive risk-based concentrations through risk assessment using available site data;
   and,

• subsequently modify the Compliance Plan and the Permit as necessary to assure that site-specific elements form the basis for any further investigation, corrective measures, and post-closure activities required under the Permit.

## 2.2 Investigation Procedures

The Phase 2 investigation consisted of the following: 1) eight deep CPT soundings onsite and offsite to attempt to identify the lithology to approximately 100 feet; 2) an onsite soil boring and sampling program to provide quantitative soil data for AOCs and investigation units, and comparison to Phase 1 CPT and ROST<sup>TM</sup> data; 3) installation of eleven ground water monitoring wells (six UTZ wells, two STZ wells and three wells in the Lower Sand Unit-LSU) and collection of ground water samples from these wells to provide quantitative chemical data for onsite ground water; 4) an offsite Hydropunch ground water sampling program; 5) an aquifer slug testing program; and 6) a surface soil sampling program to collect data needed for risk analysis.

# 2.3 Cone Penetrometer Testing Program

Prior to drilling the soil borings, a total of eight CPT soundings was performed to depths below the extent of creosote contamination as indicated by existing ROST™ fluorescence data, or to a maximum depth of approximately 100 feet. The purpose of the CPT soundings was to: 1) confirm the previous site lithology based upon CPT soundings, and 2) define the site lithology at depths below the previous CPT soundings.

Four CPT soundings were proposed to be advanced to a maximum depth of 100 feet under the Phase 2 scope of work at locations CPT35, CPT36, CPT37, and CPT38. The four proposed CPT soundings were located to further investigate the following areas:

- CPT35 Inactive Wastewater Lagoon (AOC 6)
- CPT36 Tie Storage Area (SWMU 12)

- CPT37 Original Process Area (SWMU 5)
- CPT38 Recent Process Area (SWMU 4)

During the execution of the Phase 2 CPT sounding program, a dense sand layer was encountered at a depth of approximately 65 feet below ground surface in all four CPT locations. This sand was not anticipated; therefore, additional CPTs (CPT39, 40, 41, and 42) were completed to determine if this 65-foot sand layer was laterally continuous across the site and impoundment areas.

As shown in Figure 3-1, eight CPT sounding locations were completed, both onsite and offsite. Due to inclement weather and wet soil conditions, the CPTs were performed in two separate mobilizations. Soundings CPT36 through CPT41, associated with the onsite RFI investigation activities, were completed between February 25 and 26, 1997. Upon the improvement of previously very wet soil and access conditions in the area adjacent (offsite) to the closed surface impoundment, the two offsite CPTs soundings (CPT35 and CPT42) were completed between May 8 and 9, 1997.

#### 2.3.1 CPT Sounding Procedure

The CPT soundings were performed in accordance with the procedures used in the previous Phase 1 investigation as outlined in the approved EOC and RFI Work Plans. Six of the eight CPTs encountered refusal between 64.5 and 70.5 feet, corresponding to the dense sand encountered at that depth interval. Consequently, total depths of the CPT soundings ranged from 64.5 to 100 feet.

Since shallow subsurface obstructions were encountered during the previous Phase 1 CPT sounding program, a 4-inch diameter hole was pre-drilled to approximately 3 feet below surface to allow to the CPT to be advanced without damaging the equipment.

The CPT system was housed in the cabin of a 20-ton truck. The penetrometer cone was pushed into the subsurface at a constant, controlled rate of 2 centimeters per second (cm/sec) while the data acquisition system recorded and plotted the data from the instrument. The data acquisition system had a total of four recording channels to record the cone tip resistance, sleeve friction resistance, depth, and pore pressure. The electrical signals were plotted in milli-volts (mv) during the sounding and recorded to the hard drive of a lap top portable computer.

The CPT cones were laboratory-calibrated before the field activities and field-checked before each sounding. The laboratory calibration procedure consisted of applying a series of known loads and hydraulic pressures to the probe and recording the transducer outputs. The field check consisted of a zero load check and a vacuum check on the piezometer during the deairing procedure. After each sounding, the cone was decontaminated and the tip disassembled for cleaning and de-airing.

Preliminary decontamination of the CPT equipment was performed as the rods were extracted from the ground. After removal, the rods were steam-cleaned with a high-pressure washer. Wash water was stored in the temporary decontamination pad during the day and stored in 55-gallon drums at the end of each day. All open CPT holes were tremie-grouted with a bentonite cement grout from total depth to surface.

# 2.3.2 CPT Data Analysis

Field plots of the cone tip resistance, sleeve friction resistance, friction ratio, and pore pressure versus depth were made in the field and immediately interpreted so that adjustments could be made in the field, if necessary. The CPT logs produced by Fugro Geosciences, Inc. are provided in Attachment I.

Lithologic interpretations of the CPT data were performed in the field using a computer program that incorporates the Campanella and Robertson Classification method. To verify that the lithologic interpretations prepared by the computer program were consistent with site conditions, soil borings were advanced adjacent to the previous CPT soundings. A comparison of the computer's lithologic interpretation of the CPTs with the soil boring logs, indicated that the CPT sounding program correctly identified the cohesive soils (clays and silts) and granular soils (sand and silty sand) that underlie the site.

# 2.4 Soil Boring and Sampling Program

The following sections describe the soil boring program. Soil boring logs are provided in Attachment II.

# 2.4.1 Scope and Objectives

Seven exploratory soil borings, exclusive of the eleven borings related to well installation, were drilled to delineate the vertical extent of creosote impact in soils. These seven borings (SB02 through SB-08), plus one STZ monitoring well boring (well MW-12B, near CPT25R), were drilled to accomplish the following objectives:

- define the vertical extent of soil contamination;
- determine the lithology below a depth of 60 feet;
- determine the distribution of creosote with depth and within the five hydrologic units;
- confirm, compare, and possibly correlate the CPT and ROST™ fluorescence data collected during the Phase 1 investigation with data collected from the soil borings;
- determine the potential for natural attenuation; and,
- define the hydrogeologic characterization of the site.

Prior to drilling the soil borings, the CPT sounding program revealed a sand layer encountered at approximately 65 feet below grade. To minimize the potential for cross-contamination of this sand unit, the exploratory borings were terminated at depths less than 60 feet. The four soil borings (SB05, SB06, SB07, and SB08) in addition to the borings in the proposed Phase 2 scope of work were advanced to correlate the soil lithology with the additional CPT soundings added to the Phase 2 program (CPT39, CPT40, and CPT41).

#### 2.4.2 Soil Boring Locations

A total of seven soil borings, including the boring for monitoring well MW-12B, was completed from March 3 to March 6, 1997 as shown on Figure 3-1. The borings were continuously sampled and lithologic descriptions recorded. To determine the vertical extent of creosote-impacted soil, soil samples were collected from select intervals throughout each boring, depending on the objective for specific areas of investigation.

The rationale for each soil boring location is described below.

#### Boring SB01

Soil boring SB01 and CPT35 were proposed to be located in the offsite drainage area [Inactive Wastewater Lagoon (AOC 6)]. However, due to the wet soil conditions in this area, soil boring SB-01 was not completed.

#### Boring SB02

Boring SB02 and CPT36 were completed in the Tie Storage Area (SWMU 12) adjacent to CPT20R. A total of six soil samples was collected from boring SB02 for chemical analysis.

### Boring SB03

Boring SB03 and CPT37 were completed in the Original Process Area (SWMU 5) adjacent to CPT08R. A total of six soil samples was collected from boring SB03 for chemical analysis.

# Boring SB04

Boring SB04 and CPT38 were completed in the Recent Process Area (SWMU 4) adjacent to Phase 1 CPT/ROST<sup>TM</sup> CPT13R. A total of seven soil samples was collected from boring SB04 for chemical analysis.

#### Boring MW-12B

Soil boring MW-12B was installed in the Tie Storage Area adjacent to CPT25R near the North Drainage Ditch (SWMU 2), and to further characterize the hydrogeology and extent of contamination in this area of the site. Two soil samples were collected from boring MW-12B for chemical analysis.

### **Boring SB05**

Soil boring SB05 and CPT40 were advanced in close proximity to the MW-12 well nest. This boring and CPT were added to the boring program following the discovery of the third sand unit. The purpose of these investigations was to assess if the sand unit was laterally continuous across the site, determine the depth of the sand unit, if present, and establish the soil lithology below 60 feet. A total of five soil samples was collected from boring SB05 for chemical analysis.

#### Boring SB06

SB06 was completed in the southeast portion of the Tie Storage Area, adjacent to CPT30. A total of three soil samples was collected from boring SB06 for chemical analysis.

#### Boring SB07 and SB08

Borings SB07 and SB08 were completed in the Original Process Area to provide soil analytical data for comparison with high ROST™ responses detected in Phase 1 CPT/ROST™ locations CPT32R and CPT34R. Both borings were drilled to a depth of 25 feet. A total of five soil samples was collected for chemical analysis from each boring (ten total samples).

#### 2.4.3 Soil Borings in AOCs

In January 1997, the TNRCC requested that SPTCo address investigation activities for Areas of Concern: AOC3 - Contaminated Portion of the City Water Line; AOC5 - City Storm Sewer; AOC4 - Location of Former Incinerator; and AOC7 - Location of Former UST No. 44-023-21. During the onsite Phase 2 investigation in March 1997, the following scope of work was conducted specific to the AOCs.

#### AOC3 - Contaminated Portion of City Water Line

SPTCo located the area of the water line leak, and drilled two soil borings to a depth 1 foot below the bottom of the water line. From these borings, two composite soil samples (AOC3W-S00 and AOC3E-S00) were collected from 0 to 5 feet below ground surface for PAH by EPA Method 8270 and select volatile organic compounds (VOC) analyses by EPA Method 8270 at the offsite laboratory.

#### AOC4 - Location of Former Incinerator

The area occupied by the former incinerator within Unit/Tie Storage Area was delineated into four quadrants. From these quadrants, a total of four composite soil samples (AOC4-SE, SW, NE, and NW - S00) was collected from the depth interval of 0 to 5 feet below ground surface. The four soil samples were analyzed for PAH and VOC at the offsite laboratory.

#### AOC5 - City Storm Sewer

SPTCo located the subject storm sewer, and one sample of sediment (AOC5E-S00) from the bottom of a storm sewer drainage basin was collected for PAH analysis at the offsite laboratory. In addition, one soil boring was drilled to a total depth of 7 feet approximately 100 feet southwest of the storm drain inlet. One soil sample (AOC5W-S00) was composited from the depth interval of 0 to 7 feet below ground surface for PAH and VOC analyses at the offsite laboratory.

# AOC 7 Location of Former UST No. 44-023-21

One soil boring was drilled to a depth of 10 feet below ground surface in the area where the former 200-gallon capacity UST was removed. One soil sample was collected and composited from the depth interval of 0 to 5 feet for PAH and VOC analyses at the offsite laboratory.

# 2.4.4 Monitoring Well Borings

The ground water monitoring well installation program included the installation of six 2-inch PVC monitoring wells in the UTZ (MW-12A, MW-13, MW-15, MW-16, MW-17, and MW-18) and two 2-inch monitoring wells in the STZ (MW-12B and MW-14). The discovery of the lower sand unit following the completion of the CPT sounding and soil boring programs prompted a follow-up boring and well installation program for three additional wells, designated MW-12C, MW-15C, and MW-18C. These three wells were installed to characterize the lithology, contaminant concentrations, and ground water flow direction in the lower sand unit. All monitoring well locations and elevations were surveyed by a licensed professional land surveyor (Survcon, Inc.) as shown on Figure 3-2.

### 2.4.5 Soil Analytical Program

Select soil samples were collected from each soil boring for VOC analysis by EPA Method 8260 and PAH analyses by EPA Method 8270. Five soil samples were collected for the SPLP Leaching procedure to determine the potential for creosote constituents in soil to leach to ground water.

For ROST™ correlation and assessment of potential spatial variations in the creosote chemistry, the soil sample collection depths were targeted to intervals of low fluorescence (0 to 30%), medium fluorescence (30% to 70%), and high fluorescence (>70%) as determined from the Phase 1 investigation within all five lithologic units. Each soil sample collected for ROST™ correlation was homogenized and split for concurrent testing by bench scale ROST™ and modified EPA Method 418.1 for total recoverable petroleum hydrocarbons (TRPH).

#### PAH and VOC Analyses

The following soil samples were collected from the designated borings for PAH and VOC analyses. The soil boring number (e.g., MW-13) precedes the depth intervals from which soil samples were collected for analyses. The soil samples were identified by the soil boring number, followed by "S" for soil, and the depth interval from which the soil sample was collected, for example: SB03-S52 or MW-13-S021.

Soil Borings:

SB02-S07/21/24/37.5/38.5/49 (sample depths; "00" - composite 0-5 ft.)

SB03-S05/19/24/34/52/54 SB04-S2.5/29/27/31/39/51/59 SB05-S19.5/24/34.5/39/54

SB06-S04/19/24/49 SB07-S2.5/19/21/22/24 SB08-S04/14/18/21/22

# Monitoring well

Borings: MW-12A-S00/20/25

MW-12B-S30/40/ MW-13-S00/15/21 MW-14-S17/35/40 MW-15-S00/20/25 MW-16-S00/20/25 MW-17-S25/30 MW-18-S00/25/30

**AOC Borings:** 

AOC-3W/00 (composite soil sample 0-5 ft.)

AOC-3E/00 AOC4-SE/00 AOC4-SW/00 AOC4-NE/00 AOC4-NW/00

AOC-5W/00 (composite soil sample 0-7 ft.) AOC7/00 (composite soil sample 0-10 ft.)

A0C5E (grab sediment sample from storm water inlet - analyzed for

PAH only)

# TRPH and ROST™ Bench-scale Analyses

The following soil samples were analyzed for TRPH and ROST™ bench-scale analyses in an attempt to provide correlation of ROST™ to quantitative data.

Soil boring SB02:

SB02-S21 (sample collected at depth of 21 ft. below ground surface)

SB02-S24 SB02-S37.5 SB02-S38.5 SB02-S49

Soil boring SB03

SB03-S19

SB03-S24 SB03-S34 SB03-S39 SB03-S52 Soil boring SB04: SB04-S2.5

SB04-S27 SB04-S29 SB04-S51

Soil boring SB05: SB05-S19.5

SB05-S24 SB05-S34.5 SB05-S39

Soil boring SB06: SB06-S4

SB06-S19 SB06-S24

Soil boring SB07: SB07-S2.5

SB07-S19 SB07-S21 SB07-S22 SB07-S24

Soil boring SB08: SB08-S4

SB08-S14 SB08-S18 SB08-21 SB08-22

#### SPLP Leaching Procedure

The following soil samples were collected for the SPLP Leaching Procedure. The leachate from each laboratory test was analyzed for PAHs by EPA Method 8270.

- SB03-S5 (Soil boring SB03 at depth of 5 feet below ground surface)
- SB06-S19
- SB04-S51
- SB03-S19
- SB03-S24

# PAH Analysis - Surface Soil Samples

The following surface soil samples were collected and analyzed offsite for PAH constituents of concern.

| Surface soil samples  |         |               |                 |        |
|-----------------------|---------|---------------|-----------------|--------|
| Tie Storage Area:     | A1-SS0  | B1-SS0        | C1-SS0          | D1-SS0 |
| _                     | A2-SS0  | B2-SS0        | C2-SS0          | D2-SS0 |
|                       | A3-SS0  | <b>B3-SS0</b> | C3-SS0          |        |
|                       | A4-SS0  | B4-SS0        | C4-SS0          |        |
|                       | A5-SS0  | B5-SS0        | C5-SS0          |        |
|                       | A6-SS0  | B6-SS0        | C6-SS0          |        |
|                       |         |               |                 |        |
| Surface soil samples  |         |               |                 |        |
| Former Process Areas: | 7F-SS0  | 7G-SS0        | 11 <b>-</b> SS0 |        |
|                       | 8F-SS0  | 8G-SS0        |                 |        |
|                       | 9F-SS0  | 9G-SS0        |                 |        |
|                       | 10F-SS0 | 10G-SS0       |                 |        |
|                       |         | 11G-SS0       |                 |        |

### Geotechnical Analyses

Select soil samples were collected for geotechnical analyses which included dry density, pH, and total organic carbon (TOC) for the purpose of soil characterization and preliminary assessment of natural attenuation potential in soils.

MW12B-S030 MW12B-S043 MW14-S05 MW14-S015 MW14-S028 MW14-S043.5 SBO2-S021

SB02-S038 SB06-S055

### 2.5 Monitoring Well Program

The monitoring well installation program was performed as described in Section 5.4 of the Phase 1 Investigation Report. Best Drilling Services, Inc. (Best) of Friendswood, Texas under subcontract to Terranext, provided drilling services for all of monitoring well installation activities conduct during the Phase 2 investigation. Based on the findings of the Phase 2 investigations, Terranext designated the lower sand unit present at 65-70 feet below grade as the LSU. For ease of discussion and mutual understanding, this designation is used throughout this Terranext report. The UTZ and STZ wells were installed between February 25, and March 3, 1997. The three LSU wells, installed during the follow-up drilling program, were completed between April 21 and 24, 1997. Monitoring well completion diagrams are provided in Attachment III.

#### 2.5.1 Objectives

The objectives of the monitoring well installation program were to:

- characterize the soil lithology by collecting soil samples from monitor well borings;
- determine the ground water flow direction and hydraulic gradient of each waterbearing zone;
- collect representative ground water samples;
- provide an understanding of the relationship between contaminant concentrations in soil and partitioning of compounds in ground water;
- estimate the hydraulic conductivity of the UTZ, STZ, and LSU through slug testing;
- provide reproducible data over a period of time to allow for statistical evaluation of data, if warranted;
- provide ground water chemistry data near the property boundaries on the east, west, and northern portions of the site for indications of possible impact to ground water offsite; and,

• gather data for possible use in fate and transport analyses to help identify the potential degree and extent of possible offsite impact.

# 2.5.2 UTZ Monitoring Wells

The six UTZ monitoring wells were installed in locations across the site to provide information relative to the hydraulic gradient, hydraulic conductivity, geology, contaminant concentrations in the UTZ, and to assess the potential for offsite migration of contaminants.

Monitoring well MW-12A was installed adjacent to the west-central property boundary near Phase 1 CPT/ROST™, CPT25R. Well MW-12A was drilled to a total depth of 30 feet and screened in the UTZ from 25 to 15 feet bgs. Three soil samples were collected from the MW-12A boring and analyzed for VOCs by EPA Method 8260 and PAHs by EPA Method 8270.

Monitoring well MW-13 was installed in the northwest corner of the site near Phase 1 CPT/ROST™, CPT23R to provide hydrogeologic information in the Tie Storage Area. MW-13 was drilled to a total depth of 25 feet and was screened in the UTZ from 21 to 11 feet bgs. Three soil samples were collected from the MW-13 boring and analyzed for VOCs and PAH.

Monitoring well MW-15 was installed in the UTZ near the north property boundary adjacent to Phase 1 CPT/ROST™, CPT19R. The well was located in the assumed hydraulic downgradient direction from the Original Process Area (SWMU 5) and Phase 1 Hydropunch™ ground water sample HP14UTZ, which contained the highest detected concentration of dissolved PAHs. Monitoring well MW-15 was drilled to a total depth of 27 feet and screened in the UTZ from 24 to 14 feet bgs. Three soil samples were collected from the MW-15 boring and analyzed for VOCs and PAH.

Monitoring well MW-16 was installed near the south property boundary within the Original Process Area (SWMU 5) adjacent to Phase 1 CPT/ROST™, CPT07R. Monitoring well MW-16 was drilled to a total depth of 30 feet and screened in the UTZ from 24.5 to 14.5 feet bgs. Three soil samples were collected from the MW-16 boring and analyzed for VOCs and PAH.

Monitoring well MW-17 was installed near the north property boundary in the assumed hydraulic downgradient direction from the Recent Process Area. Monitoring well MW-17 was drilled to a total depth of 35 feet and screened in the UTZ from 30 to 20 feet bgs. Two soil samples were collected from the MW-17 boring and analyzed for VOCs and PAH.

Monitoring well MW-18 was installed near the east property boundary within the Recent Process Area adjacent to Phase 1 CPT/ROST™, CPT17R. Monitoring well MW-18 was drilled to a total depth of 35 feet and screened from 30 to 20 feet bgs. Three soil samples were collected from the MW-18 boring for VOCs and PAH analyses.

#### 2.5.3 STZ Monitoring Wells

Monitoring well MW-12B was installed adjacent to the west-central property boundary near Phase 1 CPT/ROST<sup>TM</sup>, CPT25R to provide information relative to the hydraulic gradient, hydraulic conductivity, geology, and contaminant concentrations in the STZ on the west property boundary. Affected soils based on field screening was observed through the entire depth of the MW-12B soil boring; therefore, surface isolation casing was not installed. Monitoring well MW-12B was drilled from surface to a total depth of 45 feet and screened in the STZ from 40 to 30 feet bgs. Two soil samples were collected from the MW-12B boring for VOCs and PAH analyses.

Monitoring well MW-14 was installed near the north property boundary adjacent to Phase 1 CPT/ROST™, CPT28R to obtain information on the hydraulic gradient, hydraulic conductivity, geology, and contaminant concentrations in the center of the STZ channel at the property boundary. Isopach maps indicated that the thickness of the STZ is greatest in this area onsite. A 10-inch diameter isolation casing was installed from surface to 56 feet bgs to minimize the potential for cross-contamination. Monitoring well MW-14 was drilled to a total depth of 45 feet and screened in the STZ from 40 to 30 feet bgs. Three soil samples were collected from the MW-14 boring and analyzed for VOCs and PAH.

#### 2.5.4 LSU Monitoring Wells

The purpose for the installation of the LSU wells is to characterize the soil lithology below 60 feet, determine the relative depth, thickness, and lateral continuity of the sand, obtain information regarding contaminant concentrations between 60 feet and the base of the LSU, and determine the direction of ground water flow. To accomplish this, three wells were installed onsite in the LSU. The wells were installed in locations in close proximity to impacted wells completed in the UTZ to provide information relative to the possible attenuation of creosote constituents with depth.

Monitoring well MW-12C was installed adjacent to the MW-12A/MW-12B well nest on the western property boundary. A 10-inch diameter isolation casing was installed from surface to 56 feet bgs to minimize the potential for cross-contamination. The well was drilled to a total depth of 75 feet and screened from 74 to 69 feet bgs. No soil samples were collected for laboratory analyses.

Monitoring well MW-15C was installed adjacent to UTZ monitoring well MW-15 on the north central property boundary. A 10-inch diameter isolation casing was installed from surface to 55 feet bgs to minimize the potential for cross-contamination. The well was

drilled to a total depth of 75 feet and screened from 74 to 64 feet bgs. No soil samples were collected for laboratory analyses.

Monitoring well MW-18C was installed adjacent to UTZ monitoring well MW-18 on the extreme northeast corner of property. A 10-inch diameter isolation casing was installed from surface to 55 feet bgs to minimize the potential for cross-contamination. The well was drilled to a total depth of 80 feet and screened from 77 to 62 feet bgs. No soil samples were collected for laboratory analyses.

### 2.5.5 Drilling Procedures

Drilling associated with the installation of wells completed in the UTZ was conducted using standard 4¼-inch inside diameter (I.D.) hollow-stem augers from surface to total depth. Due to the presence of affected soil in the upper soil horizons, surface isolation casing was installed in the wells completed in the STZ and the LSU with wet rotary techniques using a nominal 16-inch diameter bit. Well installation in the STZ and LSU monitoring wells was conducted using standard 4¼-inch hollow-stem augers by drilling through the base of the surface casing to total depth. All well materials were installed inside the augers.

Continuous soil samples were collected from each boring using 5-foot long split-barrel sampling devices. The soil samples were obtained for lithologic description and classification using the Unified Soil Classification System (USCS). Upon completion of each boring, the drilling equipment and tools were decontaminated using a high-pressure steam-cleaner at the on-site temporary decontamination pad.

Contaminated soil cuttings, drilling mud and decontamination wastewaters were transported offsite for treatment or disposal as listed hazardous wastes (F001 or F032 contaminated media).

### 2.5.5.1 UTZ Well Construction

Each permanent well was constructed of 2-inch ID, Schedule 40, flush-threaded, PVC casing and screen. The well screen was constructed of factory-slotted, Schedule 40, PVC screen with 0.010-inch slots. The well casing was cut off approximately 5 feet above the surface grade to facilitate the installation of steel protective covers.

A 20 to 40 sieve silica sand filter pack was installed around the screen to a minimum of 2 feet above the screened interval. A 2-foot thick bentonite pellet seal was installed above the filter pack and hydrated with potable water. The remaining annular space to the ground surface was filled with a tremied cement/bentonite grout. Surface completions consisted of a steel protective surface casing with lockable cap, a 4-foot by 4-foot concrete pad constructed around the base of the well riser, and four protective steel guard posts installed around each well to minimize the potential for damage to the wells.

Well construction details are provided in Attachment III.

#### 2.5.5.2 STZ and LSU Well Construction

A nominal 16-inch diameter borehole was drilled to approximately 5 feet above the STZ or LSU. To prevent downward migration of potentially contaminated material during the drilling operations, the upper soil water-bearing zones (UTZ and STZ) were isolated using 10-inch ID, Schedule 80, flush-threaded PVC casing. A plaster of paris plug was placed in the base of the surface casing to keep contaminated formation water from entering the casing and to facilitate drilling below the surface casing to install the well materials. A cement/bentonite grout was tremied into the annular space from the base of the casing to surface grade and allowed to cure for a minimum of 24 hours following placement.

From the base of the surface casing, the borings for the STZ and LSU wells were advanced from inside the 10-inch surface casing to the total depth using standard 4¼-inch augers. Soil below the surface casing was continuously sampled using 5-foot barrel samplers.

The STZ and LSU wells were constructed of 2-inch ID, Schedule 40, flush-threaded, PVC casing and screen. The well screen consisted of factory-slotted screen with 0.010-inch slots. The well casing was cut off approximately 5 feet above the surface grade to facilitate the installation of steel protective covers.

A 20 to 40 sieve silica sand filter pack was installed around the screen to a minimum of 2 feet above the screened interval. A 2-foot thick bentonite pellet seal was installed above the filter pack and hydrated with potable water. The remaining annular space to the ground surface was filled with a tremied cement/bentonite grout. Surface completions consisted of a steel protective surface casing with lockable cap, a 4-foot by 4-foot concrete pad constructed around the base of the well riser, and four protective steel bollards installed around each well to minimize the potential for damage to the wells.

Well construction details for the STZ and LSU wells are provided in Attachment III.

## 2.5.6 Monitoring Well Development

Development of the new monitoring wells was initially performed using a disposable bailer to purge the well and remove the majority of sediment remaining in the well following drilling activities. Bailing was continued until the ground water in each well appeared to be relatively free of sediment. Following bailing, the new monitoring wells were further developed using a submersible pump to purge an additional three casing volumes of ground water. Purged ground water was contained in DOT-approved 55-gallon drums and was disposed offsite as hazardous waste.

# 2.5.7 Ground Water Sampling Procedures

On May 6, 1997, QED Environmental Systems, Inc. (QED) dedicated Micropurge® bladder pumps were installed in each of the 11 new onsite wells. Ground water sampling using low flow technique provided by the dedicated bladder pumps was selected to help provide ground water samples representative of the actual dissolved-phase concentrations of contaminants. Typical bailing or pumping methods may create turbid samples that could result in false positive interferences during analytical testing due to the presence of contaminants adsorbed to colloidal material. The Micropurge® pumps are designed for low flow rate purging to minimize the turbidity of the samples and eliminate the need for purging large volumes of stagnated water from the well casing.

Ground water sampling using the Micropurge® pumps was performed on all of the new wells installed during the Phase 2 investigation between May 13 and 14, 1997. The ground water samples were submitted to Pace under standard chain-of-custody procedures. The primary objective of the sampling event was to collect ground water samples to evaluate the contaminant concentrations in the newly installed wells.

## 2.5.7.1 Sampling Equipment

Each well was equipped with a QED bladder pump, air-line and discharge tubing, and a well head cap with quick-connect fittings and access port for water level measurements. Each pump was positioned within the screened interval of each well. Nitrogen gas, regulated through a pump controller, was used to actuate the Teflon® bladder within the pump housing.

### 2.5.7.2 Sampling Procedures

Water level measurements were recorded in each well on May 13, 1997. Using the length and diameter of the discharge tubing, sampling personnel calculated the amount of water necessary to purge three volumes from the discharge tubing.

Ground water sampling was initiated on May 14, 1997. At each well, the pump controller was connected to the nitrogen bottle regulator and the well head and the discharge tubing connected from the well head into a 55-gallon drum. The nitrogen bottle valve was then opened, feeding gas to the pump controller. The flow was regulated through the pump controller at rates between approximately 100 and 200 milli-liters per minute (ml/min). Three tube volumes of water were purged from the well to help ensure collection of a representative sample.

If the discharge water was turbid or cloudy during evacuation of the tubing, purging was continued until the discharge water appeared to be clear and sediment free. Also during tubing evacuation, sampling personnel regulated (reduced) the flow rate if air bubbles were present in the discharge to minimize aeration of the sample.

Ground water samples were collected directly into clean glass sample jars provided and prepared by the laboratory. Each ground water sample was submitted to Pace and analyzed for Compliance Plan Table I constituents including VOCs by EPA Method 8260, PAHs by EPA Method 8270, TDS, and TSS.

Once the ground water samples were collected from each well, the nitrogen bottle valve was closed and the tubing disconnected from the well head. Dedicated ground water discharge tubing was used for each individual well to minimize the possibility for cross-contamination.

# 2.6 Hydropunch™ Sampling Program

The objective of the Hydropunch<sup>™</sup> sampling program under the Phase 2 investigation was to assess if the ground water impact in the offsite area west of the site. A minimum of four Hydropunch<sup>™</sup> locations were proposed to be collected from accessible property in the offsite area west and northwest of AOC 6. Two Hydropunch<sup>™</sup> locations (HP17 and HP19) were

positioned to assess AOC 6. The remaining two locations would be determined in the field based upon access to city right-of-ways (ROWs) and/or private property.

On May 8, 1997, Phase 2 Hydropunch<sup>™</sup> sampling activities were initiated and the field work was completed on May 12. A total of five Hydropunch<sup>™</sup> locations were completed in the offsite area as shown on Figure 3-3. The following provides the rationale for each Hydropunch<sup>™</sup> location:

- Hydropunch™ HP17 was located within the footprint of the Inactive Wastewater Lagoon (AOC 6), at the extreme southwest portion of the accessible property.
- Hydropunch™ HP18 was located on private property immediately adjacent to impoundment wells MW-10A and MW-10B.
- Hydropunch™ HP19 was placed in the apparent downgradient direction from the Inactive Wastewater Lagoon.
- Hydropunch™ HP20 was located in a City of Houston ROW, approximately 200 feet west of HP18.
- Hydropunch™ HP21, was located on private property north of the Ranch Street ROW.

Two ground water samples were collected at each of the five Hydropunch™ locations. One ground water sample was collected from the UTZ at each location, ranging in depth from 16.5 to 18 feet bgs. Once the UTZ sample was obtained, the Hydropunch™ was pulled from the ground, the boring was tremie-grouted to surface, and the CPT rig moved approximately 5 feet in order to obtain a sample from the STZ in a separate direct-push hole following equipment decontamination. This method was utilized to minimize the possibility for cross-contamination. Hydropunch™ samples collected from the STZ were obtained at depths ranging from 32.5 to 37 feet bgs. The following procedures were implemented in obtaining each Hydropunch™ sample.

The sampling was performed using the CPT vehicle with a 14-ton hydraulic system. Fugro utilized 1¾-inch I.D., 12-inch long stainless steel screens and 1¼-inch I.D. steel rods. Ground water samples were collected using 18-inch long stainless steel bailers.

Target intervals were selected for ground water collection based on CPT/ROST<sup>M</sup> logs. The rig was positioned over the location and the sampler was pushed to the target interval. When the desired depth was reached, the push rods were retracted to expose the screen to the water-bearing zone. Following a short waiting period, a small-diameter bailer was lowered through the push rods to collect a ground water sample. The bailer was pulled to the surface and the ground water transferred into laboratory-supplied sample containers.

If the water-bearing zone would not recharge enough to enable collection of the required volume of ground water for the samples, the Hydropunch™ location was abandoned. Of the ten Hydropunch™ samples attempted, one sample collected from the UTZ (HP17) and one sample from the STZ (HP19) did not yield sufficient water volume to fill the appropriate sample containers for separate PAH, TDS and TSS analyses.

Immediately upon retrieval of the bailer from the Hydropunch<sup>™</sup> sampler, the water sample was transferred from the bailer to the sample containers which were labeled and placed in ice filled coolers. Under chain-of-custody (COC) control, the ground water samples were submitted to the PACE, Inc. (Pace) laboratory located in Houston, Texas. All Hydropunch<sup>™</sup> samples, except as noted above, were analyzed for VOCs by EPA Method 8260, PAHs by EPA Method 8270, total dissolved solids (TDS) by EPA Method 160.1, and total suspended solids (TSS) by EPA Method 160.2.

Immediately following the collection of ground water samples, the sampler and push rods were pulled and each hole was tremie-grouted to surface. Following collection of each Hydropunch™ sample, the rods and sampler used to obtain the water sample were transported

to the decontamination pad on the SPTCo property for decontamination. The equipment was washed with a high pressure steam cleaner using potable water and Alconox<sup>®</sup>. The samplers were then rinsed with potable water.

### 2.7 Slug Tests

Slug tests were proposed in the EOC Investigation and the RFI Work Plans to be performed at monitoring wells MW-10A, MW-10B, MW-11A, and MW-11B. The purpose of the slug testing was to provide information on the hydraulic conductivity of the deposits screened in the UTZ and STZ. To provide a larger population of data, the slug testing program was modified to include additional wells completed during the Phase 2 investigation. Slug tests were performed on a total of ten monitoring wells between May 1 and May 2, 1997, consisting of seven UTZ wells: MW-10A, MW-12A, MW-13, MW-15, MW-16, MW-17, and MW-18; two STZ wells: MW-12B and MW-14; and one LSU well, MW-12C. The slug tests were performed using the following procedure.

The static water level in each monitoring well was measured using an electric sounding device. A transducer was placed in the monitoring well to a depth of 10 feet below the static water level and was connected to a Hermit 2000 data logger. After setting the transducer in the well, the water level was measured the monitoring well. Once the water level returned to the static level, the slug was lowered to approximately 1-foot above the static water level. The slug was completely submersed below the water while simultaneously starting the data logger. The data logger was operated for a period of ten minutes to collect falling-head data.

After stopping the data logger, the water level was again measured in the well. When the water level returned to static conditions, the slug was elevated above the water level and the data logger simultaneously restarted. The data logger was operated for a period of ten minutes to collect rising-head data.

At the completion of each test, the transducer and slug were removed from the well.

The transducer and slug were decontaminated with a brush using an Alconox® and distilled water solution. The equipment was then rinsed twice with distilled water.

Each slug test was analyzed using the Bouwer and Rice Method (Bouwer and Rice, 1976).

### 2.8 Surface Soil Sampling Program

Surface soil samples were collected onsite to provide necessary data to determine the distribution and concentrations of PAHs in surface soils and to allow for risk-based analyses of the data. The objectives for the collection of surface soil samples were to:

- define the nature and extent of creosote and BTEX contaminants in surface soils in the Tie Storage Area and the Former Process Areas;
- provide sufficient soil data for conducting a baseline risk assessment; and,
- provide a basis to identify areas of surface soils that meet or attain risk-based cleanup levels as calculated in the risk assessment.

In accordance with EPA RFI Guidance document EPA 530/SW89-031, a systematic grid established at 200-foot centers was used for the collection of surface soil samples from within the Former Process Area and the Tie Storage Area. Figure 3-4 shows the surface soil sample locations collected at each grid node.

A total of 20 surface soil samples were collected within the Tie Storage Area. Surface soil samples were collected at each grid node at a depth of approximately 6 inches bgs.

A total of ten surface soil samples were collected within the Former Process Areas at each grid node at a depth of approximately 6 inches bgs.

Each surface sample location was prepared by removing the asphalt or gravel surface and the upper 5 inches of soil using a pick. The soil samples were obtained from approximately 5.5 to 6 inches bgs using a decontaminated stainless steel spoon. Each soil sample was placed directly into laboratory-supplied glass soil jars with Teflon® lined lids and filled as completely as possible to minimize headspace. Upon collection, each sample was labeled and placed directly on ice in a laboratory supplied cooler. The soil samples were transported under COC control to Pace for PAH analysis.

Prior to collecting each sample, the stainless steel spoon and pick were decontaminated with a brush using an Alconox® and distilled water solution. The spoon was rinsed twice with distilled water.

### 3.0 REFERENCES

Bouwer, H., and Rice, R.C., 1976, A Slug Test For Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells; Water Resources Research, v. 12, n. 3, p. 423-428.

Terranext, Phase 1 RFI/Extent of Contamination Investigation Report, May 1996.

USEPA "Interim Final RCRA Facility Investigation Guidance; "Volume I of IV, EPA 530/SW-89-031; May, 1989.

**Figures** 











# ATTACHMENT I

**CPT LOGS - FUGRO GEOSCIENCES** 

# FUGRO GEOSCIENCES, INC.



6105 Rookin Houston, TX 77074 Phone: 713-778-5580

Fax : 713-778-5501

April 7, 1997 Report Number 0301-7031

RECEIVED

APR - 9 1997

Terranext 6200 Rothway, Suite 190 Houston, Texas 77040

Attention:

Mr. Robert Coffman

PIEZOCONE PENETRATION TESTING
AND RELATED SERVICES
FORMER WOOD PRESERVING WORKS
HOUSTON, TEXAS

Dear Mr. Coffman:

Please find enclosed herewith the final results of the piezocone penetration tests conducted at the above referenced location.

For your information, the soil stratigraphy was identified using Campanella and Robertson's Simplified Soil Behavior Chart. Please note that because of the empirical nature of the soil behavior chart, the soil identification should be verified locally.

Fugro Geosciences appreciates the opportunity to be of service to your organization. If you should have any questions, or if we can be of further assistance, please do not hesitate to contact us. We look forward to working with you in the future.

Very truly yours,

FUGRO GEOSCIENCES, INC.

Recep Yilmaz

President

RY/mdt Diskette Enclosed



# Key To Soil Classification and Symbols

#### SOIL TYPE SAMPLE TYPE (Shown in Symbol Column) (Shown in Samples Column) Sand Silt Clay Undisturbed Split Spoon **Rock Care** No Recovery Predominant Type Shown Heavy

#### TERMS DESCRIBING CONSISTENCY OR CONDITION

#### COARSE GRAINED SOILS (Major portion Retained on No. 200 Sieve)

Includes (1) clean gravels and sand described as fine, medium or course, depending on distribution of grain sizes (2) silty or clayey gravels and sands and (3) fine grained low plasticity soils (PI < 10) such as sandy silts. Condition is rated according to relative density, as determined by lab tests or estimated from resistance to sampler penetration.

| Descriptive Term | Penetration Resistance* |  | Relative Density |
|------------------|-------------------------|--|------------------|
| Loose            | 0 - 10                  |  | 0 to 40%         |
| Medium Dense     | 10 - 30                 |  | 40 to 70%        |
| Dense            | 30 - 50                 |  | 70 to 90%        |
| Very Dense       | Over 50                 |  | 90 to 100%       |

<sup>\*</sup> Blows/Foot, 140# Hammer, 30° Drop

#### FINE GRAINED SOILS (Major Portion Passing No. 200 Sieve)

Includes (1) inorganic and organic silts and clays, (2) sandy, gravelly or silty clays, and (3) clayey silts. Consistency is rated according to shearing strength, as indicated by penetrometer readings or by unconfined compression tests for soils with PI > 10.

| Descriptive | Cohesive Shear Strength |  |  |
|-------------|-------------------------|--|--|
| Term        | Tons/Square Foot        |  |  |
| Very Soft   | Less Than 0.125         |  |  |
| Soft        | 0.125 to 0.25           |  |  |
| Firm        | 0.25 to 0.50            |  |  |
| Stiff       | 0.50 to 1.00            |  |  |
| Very Stiff  | 1.00 to 2.00            |  |  |
| Hard        | 2.00 and Higher         |  |  |

Note: Slickensided and fissured clay may have lower unconfined compressive strengths than shown above because of planes of weakness or shrinkage cracks; consistency ratings of such soils are based on hand penetrometer readings.

#### TERMS CHARACTERIZING SOIL STRUCTURE

| Parting:       | paper thin in size                                  | Flocculated:           |
|----------------|-----------------------------------------------------|------------------------|
| Seam:          | 1/8" to 3" thick                                    |                        |
| Layer:         | greater than 3°                                     | Slickensided:          |
| Fissured:      | containing shrinkage cracks, frequently filled with |                        |
|                | fine sand or silt, usually more or less vertical    | Degree of Slickensided |
| Sensitive:     | pertaining to cohesive soils that are subject to    |                        |
|                | appreciable loss of strength when remolded          | Slightly Slickensided: |
| Interbedded:   | composed of alternate layers of different soil      |                        |
|                | types                                               |                        |
| Laminated:     | composed of thin layers of varying color and        | Moderately Slickenside |
|                | texture                                             |                        |
| Calcareous:    | containing appreciable quantities of calcium        | Extremely Slickensided |
|                | carbonate                                           |                        |
| Well Graded:   | having wide range in grain sizes and substantial    |                        |
|                | amounts of all intermediate particle sizes          |                        |
| Poorty Graded: | predominantly of one grain size, or having a        | Intensely Slickensided |
| 2              | range of sizes with some intermediate size miss-    |                        |
|                | ing                                                 |                        |
|                |                                                     |                        |

pertaining to cohesive soils that exhibit a loose ited:

knit or flakey structure

ided: having inclined planes of weakness that are

slick and glossy in appearance.

#### of Slickensided Development

| Slightly Slickensided:   | slickensides present at intervals of 1' to 2', soil does not easily break along these plates |  |  |  |
|--------------------------|----------------------------------------------------------------------------------------------|--|--|--|
| Moderately Slickensided: | slickensides spaced at intervals of 1' to                                                    |  |  |  |
|                          | 2', soil breaks easily along these planes                                                    |  |  |  |
| Extremely Slickensided:  | continuous and interconnected slicken-<br>sides spaced at intervals of 4° to 12',            |  |  |  |
|                          | soil breaks along the slickensides into                                                      |  |  |  |

ly Slickensided:

slickensides spaced at intervals of less than 4", continuous in all directions; soil breaks down along planes into nodules

1/4" to 2" in size.

pieces 3° to 6° in size



















URIGINAL

RECEIVED MAY 1 5 1997



TUGRO GEOSCIENCES, INC.

6105 Rookin Houston, TX 77074 Phone: 713-778-5580

Fax : 713-778-5501

May 14, 1997 Report Number 0301-7096

FILE COPY

Terra Next 6200 Rothway, Suite 190 Houston, Texas 77040

Attention:

Mr. Robert Coffman

PIEZOCONE PENETRATION TESTING AND RELATED SERVICES FORMER WOOD PRESERVING WORKS HOUSTON, TEXAS

Dear Mr. Coffman:

Please find enclosed herewith the final results of the cone penetration tests conducted at the above referenced location.

For your information, the soil stratigraphy was identified using Campanella and Robertson's Simplified Soil Behavior Chart. Please note that because of the empirical nature of the soil behavior chart, the soil identification should be verified locally.

Fugro Geosciences appreciates the opportunity to be of service to your organization. If you should have any questions, or if we can be of further assistance, please do not hesitate to contact us. We look forward to working with you in the future.

Very truly yours,

FUGRO GEOSCIENCES, INC.

Jeffery L. Ness General Manager

**CPT Operations** 

**JLN/mw** 

1 Diskette Enclosed











ATTACHMENT II

SOIL BORING LOGS

|                |                                                  |                                       |            |                      | LOG OF BORING No.:        | AOC3-E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |
|----------------|--------------------------------------------------|---------------------------------------|------------|----------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Terronext      |                                                  |                                       |            |                      |                           | SHEET NUMBER 1 OF 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
|                |                                                  |                                       |            | DRILLING CONTRACTOR: | Best Drilling Services    | Location Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| ~ <del>\</del> | vr: Southern Pacific Lines                       |                                       |            |                      |                           | Hollow Stem Auger .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200sterr Diagram          |
| NT:            |                                                  |                                       |            |                      | URILLING METACO.          | Tollow delit Auge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |
| PROJECT NAM    | Houston Wood Preserving Works                    |                                       |            |                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                         |
|                |                                                  | 102069.07                             |            |                      | SAMPLING METHOD:          | Split Scoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |
| PROJECT NUM    |                                                  |                                       |            |                      | SAMPLING METHOU:          | Spiit Scoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |
| PROJECT LOC    |                                                  | 10 Liberty Ro                         | oad        |                      | :                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | НО                                               | uston, TX                             |            |                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                |                                                  |                                       |            | <del></del>          | SURFACE ELEVATION:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| BORING LOCA    |                                                  | C3 Area of (                          |            | ated                 | TOC ELEVATION:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                |                                                  | rtion of Wate                         |            |                      | WATER LEVEL:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| START DATE:    | 03/04/9                                          | 7 FINISH DATE                         |            |                      | WATER ELEVATION:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| START TIME:    | 08:39                                            | FINISH TIME:                          | 08:5       |                      | DATE:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| SAMPLER        | SAMPLE                                           | OVM RECOVERY                          | CEPTH      | soil (               |                           | N AND CRILLING CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NOTES:                    |
| TYPE           | DEPTH (F                                         | PPM) (FT)                             | N FEET G   | RAPH !               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | 1                                                |                                       | <u>. '</u> | i                    | FILL, moist, 10YR5/       | 4, yellowish,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample Composited And     |
| SS             | 0-5                                              | - 5.0                                 | 1. F       | ILL                  | brown, ballast            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Retained For Chemical     |
| :              | i i                                              |                                       |            |                      | CLAY, silty, slightly i   | noist,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analysis                  |
|                |                                                  |                                       | 2          | CL                   | 10YR4/1, dark gray        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PP = 1.5                  |
| 1              | ı İ                                              |                                       | ;          | i                    | FILL, moist, 10YR2/       | 1, black, layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| į              |                                                  |                                       | 31 F       | ILL                  | of charred material,      | rocks, brick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |
| <u> </u>       | <del></del>                                      | :                                     |            | i                    | SILT, very slightly m     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                |                                                  | :                                     | 4.         | i                    | dark grayish brown        | and the second s |                           |
|                | <del>i i</del>                                   |                                       |            | ML                   | >50% limestone & g        | ranite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |
|                |                                                  | •                                     | -          |                      | i do // iii/loctorio u gi |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | 1                                                |                                       | 5          |                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                |                                                  |                                       | :          | i                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                |                                                  |                                       | 6          | 1                    | Boring TD @ 5.0'          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | i l                                              |                                       |            | 1                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                |                                                  | 1 1                                   | 7:         |                      | !                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                |                                                  |                                       |            | 1                    | 1                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                         |
|                | !                                                | !                                     | 8i ·       | 1                    | 1                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | !                                                | :                                     | 1          | - !                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                |                                                  |                                       | 91         | - 1                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                         |
|                | !                                                | ì                                     |            | 1                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | ;                                                |                                       | 10!        | 1                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | · i                                              |                                       |            | 1                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                |                                                  |                                       | 11         | 1                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                |                                                  |                                       | -          |                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 1              |                                                  | ;                                     | 12:        |                      | 1                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | <del>:                                    </del> |                                       | -          |                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | :                                                |                                       | 13:        | .1                   | 3                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | <del></del>                                      | · · · · · · · · · · · · · · · · · · · |            | 1                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                |                                                  | :                                     | 14.        | 1                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                |                                                  |                                       | 1-7        | 1                    | 1                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                |                                                  | 1 *                                   | 46         | į                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | <del>!!-</del>                                   |                                       | 15         | 1                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| -              |                                                  | i                                     |            |                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | 1-                                               | <u>:</u>                              | 16         |                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | j  -                                             |                                       |            | 1                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | <u>i l</u>                                       | :                                     | 17'        | 1                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                |                                                  |                                       |            | ij                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 4              | :                                                |                                       | 18:        |                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | .                                                | :                                     |            | j                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | × 2                       |
|                |                                                  | i                                     | 19:        | 1                    | 1                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| <b></b>        | <del>: i</del>                                   |                                       | -          |                      | :                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                |                                                  |                                       | 20         | :                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| eologi         | ist P                                            | Goldsby                               |            |                      |                           | LEGEND:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cl - Completion Interval  |
| checke         |                                                  | Coldaby                               |            |                      |                           | SS - Split Spoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OVM - Organic Vapor Meter |
| SHOOKE         | Jy.                                              |                                       |            |                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PP - Pocket Penetrometer  |

TOC - Top Of Casing

|             |                                       |                                                  |                                               | LCG OF BORING No.: AOC3-W                   |                                       |
|-------------|---------------------------------------|--------------------------------------------------|-----------------------------------------------|---------------------------------------------|---------------------------------------|
|             | Terro                                 | TOYP                                             | 1                                             | 10001 001111011011 71000111                 |                                       |
|             |                                       | 75.77                                            |                                               | 5 5                                         | SHEET NUMBER 1 OF 1                   |
|             |                                       |                                                  |                                               | DRILLING CONTRACTOR: Best Drilling Services | Location Diagram                      |
| ENT:        |                                       | ern Pacific                                      |                                               | DRILLING METHOD: Hollow Stem Auger          | -                                     |
| PROJECT NAM |                                       |                                                  | Preserving                                    |                                             | <u>.</u>                              |
|             | Works                                 |                                                  |                                               |                                             | •                                     |
| PROJECT NUM |                                       | 069.07                                           |                                               | SAMPLING METHOD: Split Spoon                | · 1                                   |
| PROJECT LOC |                                       | iberty Ro                                        | ad                                            |                                             |                                       |
|             | Houst                                 | on, TX                                           |                                               |                                             | <u>i</u>                              |
|             |                                       |                                                  |                                               | SURFACE ELEVATION:                          | <u>:</u>                              |
| BORING LOCA |                                       |                                                  | ontaminated                                   | TOC ELEVATION:                              | <u>!</u>                              |
|             |                                       | n of Water                                       |                                               | WATER LEVEL:                                | <u>i</u>                              |
| START DATE: | 03/04/97                              | FINISH DATE:                                     | 03/04/97                                      | WATER ELEVATION:                            | ·<br>•                                |
| START TIME: | 08:18                                 | FINISH TIME:                                     | 08:39                                         | DATE:                                       |                                       |
| SAMPLER     | SAMPLE OVM                            | RECOVERY                                         | DEPTH SOIL C                                  | SOIL DESCRIPTION AND DRILLING CONDITIONS    | NOTES:                                |
| TYPE        | DEPTH (PPM)                           | (FT)                                             | IN FEET GRAPH I                               |                                             |                                       |
|             | _                                     |                                                  |                                               | FILL, slightly moist, 10YR3/3, dark brown,  | Sample Composited And                 |
| SS          | 0-5 -                                 | 5.0                                              | 1 FILL                                        | ballast .                                   | Retained For Chemical                 |
|             |                                       |                                                  | ML                                            | SILT, moist, 10YR8/4, very pale brown       | Analysis                              |
|             |                                       |                                                  | 2 CL                                          | CLAY, silty, moist, 10YR4/1, dark gray      |                                       |
|             |                                       |                                                  |                                               | FILL, moist, 10YR2/1, black, slight odor    |                                       |
|             | i                                     |                                                  | 3 FILL                                        |                                             |                                       |
|             |                                       |                                                  | <u> </u>                                      | CLAY, silty, slightly moist,                | PP = 2.0                              |
|             |                                       |                                                  | 4 CL                                          | 10YR3/1, very dark gray                     |                                       |
|             | l i                                   |                                                  |                                               |                                             |                                       |
|             |                                       |                                                  | 5                                             |                                             |                                       |
|             |                                       |                                                  |                                               |                                             |                                       |
| !           |                                       |                                                  | 6:                                            | Boring TD @ 5.0'                            |                                       |
|             | · !                                   | -                                                | °                                             | Botting 10 @ 5.0                            |                                       |
| 1           |                                       |                                                  | -                                             |                                             | · · · · · · · · · · · · · · · · · · · |
|             |                                       |                                                  | 7                                             |                                             |                                       |
| '           |                                       |                                                  | 8                                             |                                             |                                       |
|             | !                                     |                                                  | °                                             |                                             |                                       |
|             |                                       |                                                  | 9                                             |                                             |                                       |
|             |                                       |                                                  | -                                             |                                             |                                       |
|             |                                       |                                                  | 10                                            |                                             |                                       |
|             |                                       | <del>-</del>                                     | 10                                            |                                             |                                       |
|             |                                       |                                                  | 11                                            |                                             |                                       |
|             |                                       |                                                  |                                               |                                             |                                       |
|             |                                       |                                                  | 12!                                           |                                             |                                       |
| <b> </b>    |                                       |                                                  | 14                                            |                                             |                                       |
| 1           |                                       |                                                  | 42                                            |                                             | ·                                     |
| ļ           |                                       | <del>-</del>                                     | 13                                            |                                             |                                       |
|             |                                       |                                                  | 14                                            |                                             |                                       |
| ļ           |                                       | <del></del> -                                    | 14                                            |                                             |                                       |
|             | l                                     |                                                  | 45                                            |                                             |                                       |
| <u> </u>    | · · · · · · · · · · · · · · · · · · · | <del></del>                                      | 15                                            |                                             |                                       |
|             | !                                     |                                                  | 16                                            |                                             |                                       |
| <u> </u>    |                                       |                                                  | 16                                            |                                             |                                       |
|             |                                       |                                                  |                                               |                                             |                                       |
|             |                                       | <del>!                                    </del> | 17                                            |                                             |                                       |
|             |                                       |                                                  |                                               |                                             |                                       |
|             |                                       |                                                  | 18                                            |                                             |                                       |
|             |                                       | :                                                | <u>i                                     </u> |                                             |                                       |
|             |                                       |                                                  | 19                                            |                                             |                                       |
|             | r.                                    |                                                  | ******                                        |                                             |                                       |
|             | :                                     |                                                  | 20                                            |                                             |                                       |
| eologi      |                                       | dsby                                             |                                               | LEGEND:                                     | CI - Completion Interval              |
| Checke      | d By:                                 |                                                  |                                               | SS - Split Spoon                            | OVM - Organic Vapor Meter             |
|             |                                       |                                                  |                                               | •                                           | PP - Pocket Penetrometer              |
|             |                                       |                                                  |                                               |                                             | TOC - Top Of Casing                   |

|             |        | and the second |              |          |         |   | LOG CF BORING No.: AOC4-NE                       |                                                    |
|-------------|--------|----------------|--------------|----------|---------|---|--------------------------------------------------|----------------------------------------------------|
|             |        | 110            | Rext         |          |         |   | •                                                | SHEET NUMBER 1 OF 1                                |
| - ·         |        | Por Fair       | S Frank      |          |         |   | DRILLING CONTRACTOR: Best Drilling Services      | Location Diagram                                   |
| NT:         |        |                | ern Pacif    |          |         |   | DRILLING METHOD: Hollow Stem Auger               | _                                                  |
| ROJECT NAME | E:     |                | on Wood      | Prese    | rving   |   |                                                  | _                                                  |
|             |        | Works          |              |          |         |   |                                                  |                                                    |
| ROJECT NUM  | BER:   |                | 069.07       |          |         |   | SAMPLING METHOD: Split Spoon                     | _                                                  |
| ROJECT LOCA | ATION: |                | iberty Ro    | bad      |         |   | i i                                              |                                                    |
|             |        | Housto         | on, TX       |          |         |   |                                                  |                                                    |
|             |        |                |              |          |         |   | SURFACE ELEVATION:                               | -<br>-                                             |
| ORING LOCAT | TON:   | AOC4           | Former       | Inciner  | ator    |   | TOC ELEVATION:                                   |                                                    |
|             |        | Area           |              |          |         |   | WATER LEVEL:                                     | •                                                  |
| TART DATE:  | 03/0   | 3/97           | FINISH DATE  |          | 3/03/97 |   | WATER ELEVATION:                                 |                                                    |
| TART TIME:  | 11     | :39            | FINISH TIME  | : 12     | 2:00    |   | DATE:                                            | • · · · · · · · · · · · · · · · · · · ·            |
| SAMPLER :   | SAMPLE | · OVM          | RECOVERY     | OEPTH    | SOIL    | C | SOIL DESCRIPTION AND DRILLING CONDITIONS         | NOTES:                                             |
| TYPE        | DEPTH  | (PP4)          | (FT) :       | IN FEET  | GRAPH   | 1 |                                                  |                                                    |
| :           |        | :              |              | I        | FILL    | I | FILL, moist, 10YR3/6, dark yellowish brown       | Sample Composited And                              |
| SS          | 0 - 5  | :              | 5.0          | 1        | ML      | - | 0.5-0.75' - ASH, burned material, 10YR2/1, black | Retained For Chemical                              |
| ř           |        | i              |              |          | i       | 1 | 0.75-1.00' - SILT, moist, 10YR5/3, brown         | Analysis                                           |
| !           |        | į              |              | 2        | SP      | 1 | 1.00-1.50' - SHELL, moist, crushed up            |                                                    |
| :           |        | 1              |              |          | i       | 1 | 1.50-2.00 - SAND, silty, moist,                  |                                                    |
|             |        | i<br>•         |              | 3;       | i       |   | 10YR5/8, yellowish brown                         |                                                    |
|             | · ·    | i              | ī :          | 1        | 1       | 1 |                                                  |                                                    |
|             |        | •              | 1            | 4        | CL      | 1 | 2.00 - 5.00 - CLAY, silty, 10YR2/2,              | PP = 2.0                                           |
|             |        |                | :            |          |         | i | very dark brown, wood pieces                     |                                                    |
|             |        | •              |              | _        |         |   | very dark brown, wood pieces                     |                                                    |
| ·           |        |                |              | 5:       | 1       |   |                                                  |                                                    |
|             |        |                |              |          |         |   | Boring TD @ 5.0'                                 |                                                    |
| <u> </u>    |        | :              |              | 6        |         |   |                                                  |                                                    |
| !           |        |                | į ;          |          |         | 1 |                                                  |                                                    |
| 1           |        | i              |              | 7:       |         |   |                                                  |                                                    |
|             |        | :              |              | <u> </u> | į :     |   |                                                  |                                                    |
|             |        | i              |              | 8:       | ! !     |   |                                                  | 2                                                  |
| :           |        | :              |              |          |         | 1 |                                                  |                                                    |
|             |        | <u> </u>       | 1 :          | 91       |         | i |                                                  |                                                    |
|             |        | :              |              |          |         | į |                                                  | -                                                  |
|             |        | 1              |              | 10!      |         |   |                                                  |                                                    |
| :           |        |                | 1            |          | 1       |   |                                                  |                                                    |
| ı           |        | :              |              | 11       |         | 1 |                                                  |                                                    |
| i           |        | :              |              |          | i       | İ |                                                  |                                                    |
|             |        |                |              | 12:      | !       |   |                                                  |                                                    |
|             |        |                |              |          |         | 1 |                                                  |                                                    |
|             |        |                | ;            | 13       | ]       |   |                                                  |                                                    |
| ×           |        |                | 1 :          |          | Ī       |   |                                                  |                                                    |
|             |        |                | :            | 14!      |         |   |                                                  |                                                    |
|             |        |                | ı            |          |         |   |                                                  |                                                    |
| :           |        | :              | :            | 15       |         |   |                                                  |                                                    |
|             |        | :              |              |          | i :     |   |                                                  |                                                    |
| :           |        |                |              | 16       | Ī       | 1 |                                                  |                                                    |
| • .         |        | :              | 1            |          |         | ! |                                                  |                                                    |
| ;           |        | İ              |              | 17       | •       |   |                                                  |                                                    |
|             |        | :              | 1            |          | 1 0     | į |                                                  |                                                    |
|             |        |                |              | 18       | :       |   | 1                                                |                                                    |
|             |        | :              | <del>-</del> |          |         |   |                                                  |                                                    |
|             |        |                |              | 19:      |         | ! |                                                  |                                                    |
|             |        |                | <del>'</del> | 13:      |         |   |                                                  |                                                    |
|             |        |                | :            | 20:      |         | į |                                                  |                                                    |
| eologis     | +•     | B. Gold        | deby         | 201      |         | _ | LEGEND:                                          | Ci Coi i                                           |
| Checked     |        | J. GOI         | usuy         |          |         |   | SS - Split Spoon                                 | CI - Completion Interval                           |
| J. IGUNGC   | . Uy.  |                |              |          |         |   | ээ - эри эрооп                                   | OVM - Organic Vapor Meter PP - Pocket Penetrometer |

|             |                                       |              | -        |          |    | LOG OF BORING No.: AOC4-NW                                                     |       |                                                    |
|-------------|---------------------------------------|--------------|----------|----------|----|--------------------------------------------------------------------------------|-------|----------------------------------------------------|
|             | (Caro                                 | Kext         |          |          |    |                                                                                |       | CLEST MINISTER 4 OF 4                              |
| L           | 1                                     | The same of  |          |          |    | DRILLING CONTRACTOR: Best Drilling Services                                    |       | SHEET NUMBER 1 OF 1                                |
| JENT:       | Southe                                | em Pacific   | Lino     |          |    | DRILLING CONTRACTOR: Best Drilling Services DRILLING METHOD: Hollow Stem Auger | -     | Location Diagram                                   |
|             |                                       | on Wood P    | -        |          |    | DRILLING METHOD: HOHOW Sterr Auger                                             |       | <b>-</b>                                           |
| PROJECT NAM | Works                                 |              | 1636     | virig    |    |                                                                                |       |                                                    |
|             | 11100                                 | 069.07       |          |          |    | Salit Sacar                                                                    |       | -                                                  |
| PROJECT NUM |                                       |              | . d      |          |    | SAMPLING METHOD: Split Spoon                                                   |       | <u>-</u>                                           |
| PROJECT LOC |                                       | iberty Roa   | iu .     |          |    |                                                                                | -     | :<br><del>-</del>                                  |
|             | Housic                                | on, TX       |          |          |    |                                                                                |       | !                                                  |
|             | 1004                                  | <i>—</i> 1 - |          |          | _  | SURFACE ELEVATION:                                                             |       |                                                    |
| BORING LOCA |                                       | Former In    | ciner    | ator     |    | TOC ELEVATION:                                                                 |       |                                                    |
|             | Area                                  |              |          | 100107   | _  | WATER LEVEL:                                                                   |       |                                                    |
| START DATE: | 03/03/97                              | FINISH DATE: |          | 3/03/97  | _  | WATER ELEVATION:                                                               |       |                                                    |
| START TIME: | 12:00                                 | FINISH TIME: | 12       | 2:25     | _  | DATE:                                                                          |       |                                                    |
| SAMPLER     | SAMPLE OVM                            | RECOVERY     | EPTH     | SOIL     | C  | SOIL DESCRIPTION AND DRILLING CONDITIONS                                       |       | NOTES:                                             |
| TYPE        | DEPTH (PPM)                           | (FT) IN      | FEET     | GRAPH    | 11 |                                                                                | 4,500 |                                                    |
| 4,          |                                       |              |          |          | 1  | FILL, moist, 10YR3/6, dark yellowish brown                                     |       | Sample Composited And                              |
| SS          | 0-5 —                                 | 5.0          | 1        | FILL     |    |                                                                                |       | Retained For Chemical                              |
|             |                                       |              |          |          |    | SAND, silty, moist, 10YR5/8 yellowish brown                                    | n,    | Analysis                                           |
|             |                                       |              | 2!       | SP       | 1  | pieces of crushed shell & gravel                                               |       |                                                    |
|             |                                       |              |          | ML       | 4  | 2.00 - 2.25' - SILT, sandy, moist, 10YR3/3 d                                   | ark   |                                                    |
|             |                                       | <u>i i</u>   | 3!       | SP       |    | brown                                                                          |       |                                                    |
|             | :                                     |              |          | 1        |    | 2.25 - 3.00' - SAND, silty, moist                                              |       | 1 2                                                |
|             |                                       |              | 4        | CL       |    | 10YR5/8, yellowish brown                                                       |       |                                                    |
|             |                                       |              |          |          |    | 3.00 - 5.00' - CLAY, silty, very slightly moist,                               |       | PP = 2.0                                           |
|             | q                                     |              | 5        | i        |    | 10YR2/2, very dark brown                                                       |       |                                                    |
|             |                                       |              | -        | <u>'</u> | 1  | 101122, very dark blown                                                        |       |                                                    |
|             |                                       |              | _        | 79 7     |    | D. J. TD O C O                                                                 |       |                                                    |
|             |                                       | <u> </u>     | 6!       |          |    | Boring TD @ 5.0'                                                               |       |                                                    |
| ``          |                                       |              | _ _      | 1 2      | 1  |                                                                                |       |                                                    |
|             |                                       |              | 7        |          |    |                                                                                |       |                                                    |
|             | : "                                   |              | _        | 1        |    |                                                                                | •     | -                                                  |
|             |                                       | <u> </u>     | 8        |          |    |                                                                                |       |                                                    |
|             |                                       |              | _        |          |    |                                                                                |       |                                                    |
|             |                                       |              | 91_      |          | 1  |                                                                                |       |                                                    |
|             | e u                                   |              |          |          |    |                                                                                |       |                                                    |
|             |                                       |              | 10       |          |    |                                                                                |       |                                                    |
|             | * 5 ×                                 |              | _        |          |    |                                                                                |       |                                                    |
|             |                                       | - 1          | 11       |          |    |                                                                                |       |                                                    |
|             |                                       |              |          | 1        |    |                                                                                |       |                                                    |
|             |                                       |              | 12!      |          |    |                                                                                |       |                                                    |
|             | 1 2                                   | :            |          |          |    |                                                                                |       |                                                    |
|             |                                       | 1            | 131      |          |    |                                                                                |       | * 4                                                |
|             |                                       |              |          |          |    |                                                                                |       |                                                    |
|             |                                       | 1 1          | 14       | !!       |    |                                                                                |       |                                                    |
|             |                                       |              | <u> </u> | ! !      |    |                                                                                |       | y 1                                                |
|             | , , , , , , , , , , , , , , , , , , , | 1            | 15       |          |    |                                                                                |       |                                                    |
|             |                                       |              |          |          |    |                                                                                |       |                                                    |
|             |                                       | 1            | 16       |          |    |                                                                                |       |                                                    |
|             |                                       |              |          |          |    |                                                                                |       |                                                    |
|             | ×                                     | 1            | 7        |          |    |                                                                                |       |                                                    |
|             |                                       |              |          |          |    |                                                                                |       |                                                    |
|             |                                       | 1            | 18       | I i      |    |                                                                                |       |                                                    |
|             |                                       | ; i          |          |          |    |                                                                                |       |                                                    |
|             |                                       | 1            | 19!      | i        |    |                                                                                |       |                                                    |
|             |                                       | · ·          |          |          | 1  |                                                                                |       |                                                    |
| t,          |                                       |              | 20       |          |    |                                                                                |       |                                                    |
| Geologi     | st: B. Gold                           |              |          |          |    | LEGEND:                                                                        |       | Cl Completion Inter-                               |
| Checker     |                                       | addy         |          |          |    | SS - Split Spoon                                                               |       | CI - Completion Interval                           |
| Silocker    | - Uy.                                 |              |          |          |    | 33 - Spill Spoon                                                               |       | OVM - Organic Vapor Meter PP - Pocket Penetrometer |
|             |                                       |              |          |          |    |                                                                                |       | TOC - Top Of Casing                                |
|             |                                       |              |          |          |    |                                                                                |       | OU - TOD OI CASIIIQ                                |

| DRILLING CONTRACTOR: Best Drilling Services                                        | HEET NUMBER 1 OF 1                        |
|------------------------------------------------------------------------------------|-------------------------------------------|
| DRILLING CONTRACTOR: Best Drilling Services                                        |                                           |
|                                                                                    | Location Diagram                          |
|                                                                                    |                                           |
|                                                                                    |                                           |
| Works !                                                                            |                                           |
| 11100000000                                                                        |                                           |
| 10.10.1.11                                                                         |                                           |
| PROJECT LOCATION: 4910 Liberty Road Houston, TX                                    |                                           |
| SURFACE ELEVATION:                                                                 |                                           |
| BORING LOCATION: AOC4 - Former Incinerator Toc ELEVATION:                          |                                           |
| Area WATER LEVEL:                                                                  |                                           |
| START DATE: 03/03/97 FINISH DATE: 03/03/97 WATER ELEVATION:                        |                                           |
| START TIME: 11:00 FINISH TIME: 11:20 DATE:                                         |                                           |
| SAMPLER SAMPLE OVM RECOVERY! CEPTH SOIL C SOIL DESCRIPTION AND DRILLING CONDITIONS | NOTES:                                    |
| TYPE DEPTH (PPM) (FT) N FEET GRAPH                                                 | NOTES.                                    |
|                                                                                    | ample Composited And                      |
|                                                                                    | imple Composited And etained For Chemical |
|                                                                                    | alysis                                    |
| 2 SP SAND, moist, 10YR6/1, gray, coarse grained                                    | iaiy313                                   |
| ML with gravel                                                                     |                                           |
| 3 SP 2.5-2.75' SILT, sandy, moist, 10YR3/3 dark brown                              |                                           |
| 2.75 - 3.00' SAND, very moist, 10YR6/2                                             |                                           |
| light brownish gray, fine grained                                                  |                                           |
| CL light brownish gray, line grained                                               |                                           |
|                                                                                    |                                           |
|                                                                                    | 9 = 2.0                                   |
| 10YR2/2, very dark brown                                                           |                                           |
| 6: 1                                                                               |                                           |
|                                                                                    |                                           |
| 7 Boring TD @ 5.0'                                                                 |                                           |
|                                                                                    | 4                                         |
| 8:                                                                                 |                                           |
|                                                                                    |                                           |
| 9                                                                                  |                                           |
|                                                                                    |                                           |
| 10                                                                                 |                                           |
|                                                                                    |                                           |
| 11                                                                                 |                                           |
| 12                                                                                 |                                           |
| 12                                                                                 |                                           |
| 13                                                                                 |                                           |
| <b>'</b>                                                                           |                                           |
| 14                                                                                 |                                           |
|                                                                                    |                                           |
| 15                                                                                 |                                           |
|                                                                                    |                                           |
| 16                                                                                 |                                           |
|                                                                                    |                                           |
| 17                                                                                 |                                           |
|                                                                                    |                                           |
| 18                                                                                 |                                           |
|                                                                                    |                                           |
| 19                                                                                 |                                           |
|                                                                                    |                                           |
| 20                                                                                 |                                           |
|                                                                                    | Completion Interval                       |
|                                                                                    | A - Organic Vapor Meter                   |
|                                                                                    | - Pocket Penetrometer                     |
|                                                                                    | C - Top Of Casing                         |

|             |                                                |              |         |        | LOG OF BORING No.:                      | AOC4-SW                                  |                           |
|-------------|------------------------------------------------|--------------|---------|--------|-----------------------------------------|------------------------------------------|---------------------------|
|             | TOPT                                           | THEYT        |         |        |                                         |                                          | SHEET NUMBER 1 OF 1       |
|             |                                                |              |         |        | DRILLING CONTRACTOR:                    | Best Drilling Services                   | Location Diagram          |
|             | Carri                                          | the Design   |         |        |                                         | Hollow Stem Auger                        |                           |
| JENT:       |                                                | them Pacific |         |        | DRILLING METHOD:                        | Hollow Stelli Adgel                      | -                         |
| PROJECT NAM |                                                | ston Wood    | Preser  | virig  |                                         |                                          | <u>.</u>                  |
|             | Wor                                            |              |         |        |                                         | Colit Coope                              | <u>-</u> !                |
| PROJECT NUM |                                                | 02069.07     |         |        | SAMPLING METHOD:                        | Split Spoon                              | <del>-</del>              |
| PROJECT LOC |                                                | Liberty Ro   | pad     |        | -                                       |                                          | _                         |
|             | Hou                                            | ston, TX     |         |        |                                         |                                          |                           |
|             |                                                |              |         |        | SURFACE ELEVATION:                      |                                          | <u>-</u>                  |
| BORING LOCA |                                                | C4 - Former  | Incine  | rator  | TOC ELEVATION:                          |                                          | <u>-</u>                  |
|             | Area                                           |              |         |        | WATER LEVEL:                            |                                          | <del>-</del>              |
| START DATE: | 03/03/97                                       | FINISH DATE  |         | /03/97 | WATER ELEVATION:                        |                                          | <u>!</u>                  |
| START TIME: | 11:20                                          | FINISH TIME: | 11      | :39    | DATE:                                   |                                          |                           |
| SAMPLER     | SAMPLE OV                                      | M RECOVERY   | DEPTH   | SOIL   | • · · · · · · · · · · · · · · · · · · · | TON AND DRILLING CONDITIONS              | NOTES:                    |
| TYPE        | DEPTH · (PP                                    | M) (FT)      | IN FEET | GRAPH  |                                         |                                          |                           |
|             |                                                | !            |         | :      |                                         | , 10YR3/6, dark yellowish                | Sample Composited And     |
| SS          | 0-5 -                                          | - 5.0        | 1       | FILL   | brown, gravel, sand                     | d, wood debris                           | Retained For Chemical     |
|             | i                                              | i            |         |        |                                         |                                          | Analysis                  |
|             |                                                |              | 2       | SP     | SAND, moist, 10YF                       | R6/1, gray, coarse grained               |                           |
|             | !                                              |              |         | ML     | with gravel                             |                                          |                           |
|             |                                                |              | 3       | SP     | 2.5-2.75' SILT, san                     | dy, moist, 10YR3/3 dark brown            |                           |
|             |                                                |              | 1 :     | ·i     |                                         | very moist, 10YR6/2                      |                           |
|             |                                                | !            | 4 y     |        | light brownish gray                     |                                          |                           |
|             | <u> </u>                                       |              | 419     | CL     | light brownshi gray                     | , life grained                           |                           |
| 1           |                                                | i            | -       | CL     |                                         | 19 1 11 19 19 19 19 19 19 19 19 19 19 19 |                           |
|             | ! :                                            |              | 51      |        |                                         | slightly silty, very slightly moist,     |                           |
|             |                                                |              |         | 1      | 10YR2/2, very dark                      | brown                                    |                           |
| 1           |                                                |              | 6:      |        |                                         |                                          |                           |
|             | : :                                            |              |         |        |                                         |                                          | •                         |
| ٠,          |                                                |              | 7.      |        | Boring TD @ 5.0'                        |                                          |                           |
| /           | 1                                              |              |         | ¦ -    |                                         |                                          |                           |
| i           | 1.                                             |              | 8       | 1      |                                         |                                          |                           |
|             | :                                              |              |         | ŀ      |                                         |                                          |                           |
|             | į .                                            |              | 9!      |        |                                         |                                          |                           |
|             | <u>:</u>                                       |              | -       |        |                                         |                                          |                           |
|             | i                                              |              | 101     |        |                                         |                                          |                           |
|             |                                                |              | 10      |        |                                         |                                          | ,                         |
|             | :                                              |              |         |        |                                         |                                          |                           |
|             | !                                              |              | 11      |        |                                         |                                          |                           |
|             | 1                                              |              |         |        |                                         |                                          | <del></del>               |
|             | <u>:                                      </u> |              | 12:     |        |                                         |                                          |                           |
|             |                                                |              |         |        |                                         |                                          |                           |
|             |                                                |              | 13      | i      | !                                       |                                          |                           |
| 1           | :                                              |              |         |        |                                         |                                          |                           |
|             |                                                |              | 14:     |        |                                         |                                          |                           |
| 1           | :                                              |              | 1       |        |                                         |                                          |                           |
|             | !                                              | i            | 15i     |        |                                         |                                          |                           |
|             | :                                              |              | !       | !      |                                         |                                          |                           |
|             | <u> </u> :                                     |              | 16      |        | !                                       |                                          |                           |
|             |                                                |              |         |        |                                         |                                          |                           |
| 1           | 1                                              | i            | 17:     |        |                                         |                                          |                           |
|             | 1                                              |              |         |        |                                         |                                          |                           |
|             | 1                                              |              | 18:     | 1      |                                         |                                          |                           |
|             | :                                              |              |         | •      |                                         |                                          |                           |
|             | :                                              |              | 19      | •      |                                         |                                          |                           |
| -           |                                                |              |         | ;      |                                         |                                          |                           |
|             |                                                |              | 20      |        |                                         |                                          |                           |
| C-21-       | iets D (                                       | Coldoby      | 20      |        |                                         | LEGEND:                                  | CI - Completion Interval  |
| Geolog      |                                                | Goldsby      |         |        |                                         | SS - Split Spoon                         | OVM - Organic Vapor Meter |
| Checke      | su by:                                         |              |         |        |                                         | CO - Opiit Opodii                        | PP - Pocket Penetrometer  |
| 1           |                                                |              |         |        |                                         |                                          | TOC - Top Of Casing       |

|              |                                         |              |                                                  |       |          |            | TO SUCCESSION OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T | LOG OF BORING No.: AOC5-W                   |                           |
|--------------|-----------------------------------------|--------------|--------------------------------------------------|-------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------|
| l            |                                         | FFQI         | <b>lext</b>                                      |       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | SHEET NUMBER 1 OF 1       |
| <u> </u>     |                                         |              |                                                  |       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DRILLING CONTRACTOR: Best Drilling Services | Location Diagram          |
| ENT:         |                                         | Southe       | m Pacif                                          | icli  | nes      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DRILLING METHOD: Hollow Stem Auger          | Locator Diagram           |
| PROJECT NAM  | 4E.                                     |              | n Wood                                           |       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | il                                          | -                         |
| F 1000001100 |                                         | Works        |                                                  |       |          | 9          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                           | -                         |
| PROJECT NUM  | ARES.                                   | 441020       | 069.07                                           |       |          |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAMPLING METHOD: Split Spoon                |                           |
| PROJECT LOC  |                                         |              | iberty R                                         | oad   | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |
| - ROSEGI COC | arron.                                  | Housto       | n. TX                                            | -     |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | <u>.</u><br>:             |
|              |                                         | 1.0000       |                                                  |       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SURFACE ELEVATION:                          | -                         |
| BORING LOCA  | TION                                    | AOC5         | - Storm                                          | Sew   | er \     | West       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOC ELEVATION:                              | •                         |
| BONING COO   | · · · · · · · · · · · · · · · · · · ·   | 71000        | 0.0                                              | -     | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WATER LEVEL:                                | •<br>:                    |
| START DATE:  | 03/0                                    | 4/97         | FINISH CATE                                      | g.    | 03/      | 04/97      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WATER ELEVATION:                            | •                         |
| START TIME:  |                                         | :24          | FINISH TIME                                      |       | 06:      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE:                                       | <u>.</u><br>:             |
| SAMPLER      | : SAMPLE                                | OVM          | RECOVERY                                         |       |          | SOIL       | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             | NOTES:                    |
| TYPE         | DEPTH                                   | (PPM)        | (FT)                                             | IN FE | -        | GRAPH      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | 1                         |
| 1117         | 1                                       | 1 (17.14)    | 1                                                |       | 1 1      | 30011      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FILL, very slightly moist, gravel,          | Sample Composited And     |
| ss           | 0-5                                     |              | 5.0                                              | 1     |          | FILL       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | crushed limestone                           | Retained For Chemical     |
|              | i                                       | <u> </u>     | 1                                                |       |          | . 122      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Charred material, moist, 10YR6/1,           | Analysis                  |
| 1            | İ                                       |              |                                                  | 2     |          | FILL       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gray, brick, rock                           | 7 tharyon                 |
| -            | <del>.</del>                            | 1            | +                                                | _     |          | 1 16000    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SILT, moist, 10YR5/3, brown                 |                           |
|              | 1                                       |              |                                                  | 3     | -        | ML         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CIET, MOISE, TOTTED/O, DIOWIT               |                           |
| -            | <u></u>                                 | i            | +                                                | J     | -        | SP         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.00 - 3.25' - SAND, moist, 10YR7/3,        |                           |
| 1            |                                         |              |                                                  | 4     |          | MI.        | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | very pale brown                             |                           |
| -            |                                         | <u> </u>     | +                                                | _     |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.25 - 3.50' SILT, sandy, moist             |                           |
|              | :                                       | 1            |                                                  | _     | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | 00.00                     |
|              | •                                       | !            |                                                  | 5     |          | <b>C</b> 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.50 - 7.00' - CLAY, silty, slightly moist, | PP = 2.0                  |
| 00           |                                         |              | 20                                               | _     | <u>_</u> | CL         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10YR3/2, very dark                          |                           |
| SS           | 5-7                                     | <del> </del> | 2.0                                              | 6     |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | grayish brown                               | ii                        |
| 1            |                                         |              |                                                  | 7     | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |
| . ——         | <del>:</del>                            | 1            | +                                                | ′     | <u> </u> | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |
|              | •                                       |              |                                                  |       | -        | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Boring TD @ 7.0'                            |                           |
|              |                                         | <u> </u>     | +                                                | 8     | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Borning To W 7.0                            |                           |
|              |                                         | !            |                                                  | 9     |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |
|              | •                                       | !            | <del> </del>                                     | 9     |          |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                           |
| 1            | :                                       |              |                                                  | 10    |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |
|              |                                         | 1            | +                                                |       | _        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |
|              | :                                       | İ            |                                                  | 11    | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | il                                          |                           |
|              | :                                       | 1            | <del>                                     </del> | •     |          |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                           |
|              |                                         |              |                                                  | 12    | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |
|              | ·                                       | <u>:</u>     | + -                                              | 12    | -        |            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                           |
|              |                                         | !            | 1 !                                              | 13    | _        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |
|              |                                         |              | <del></del>                                      | 13    |          |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                           |
|              |                                         | i            |                                                  | 14    | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |
|              |                                         | i            | †                                                | , ,   |          |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                           |
|              |                                         | İ            |                                                  | 15    |          |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                           |
| -            |                                         | <u> </u>     | +                                                |       | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |
|              |                                         |              |                                                  | 16    | -        |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                           |
|              |                                         | 1            | 1                                                | .0    | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |
| I            |                                         | :            |                                                  | 17    |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |
|              | *************************************** | i            | +                                                | .,    | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |
|              |                                         | İ            |                                                  | 18    | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |
| -            |                                         | <del>:</del> | <del>†                                    </del> | .0    | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |
|              | 1.0                                     | !            |                                                  | 19    | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |
|              |                                         | <del>!</del> | <del></del>                                      | 13    | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                           |
| I .          |                                         |              |                                                  | 20    | -        |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                           |
| eologi       | ist:                                    | B. Gold      | dsby                                             | 20    | -        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LEGEND:                                     | Cl - Completion Interval  |
| Checke       |                                         | J. 3010      | y                                                |       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS - Split Spoon                            | OVM - Organic Vapor Meter |
|              | - J,                                    |              |                                                  |       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GG - apiit apoon                            | PP - Pocket Penetrometer  |
|              |                                         |              |                                                  |       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | TOC - Top Of Casing       |

|             |                                              |               |            |   | LOG OF BORING No.: AOC7                                      |                                       |
|-------------|----------------------------------------------|---------------|------------|---|--------------------------------------------------------------|---------------------------------------|
| 1           | Terro                                        | JOY!          | ı          |   |                                                              | CUETA NUMBER AND ASSESSED.            |
| L           | 40                                           |               |            |   | DRILLING CONTRACTOR: Best Drilling Services                  | SHEET NUMBER 1 OF 1  Location Diagram |
| ENT:        | Southe                                       | em Pacific L  | ines       |   | DRILLING METHOD: Hollow Stem Auger                           | Location Diagram                      |
| PROJECT NA  |                                              | on Wood Pr    |            |   | Tionow Stern Auger                                           | _                                     |
| PROJECT TO  | Works                                        |               | ooo. viilg |   |                                                              | <del>-</del>                          |
| PROJECT NUI | 11100                                        |               |            |   | SAMPLING METHOD: Split Spoon                                 | 1                                     |
| PROJECT LOC |                                              | iberty Road   |            | _ |                                                              | <u>-</u>                              |
|             |                                              | on, TX        |            |   |                                                              | <del>-</del>                          |
|             |                                              |               |            |   | SURFACE ELEVATION:                                           | 7                                     |
| BORING LOCA | ATION: AOC7                                  | Former US     | T          |   | TOC ELEVATION:                                               | 1                                     |
|             | No. 44                                       | -023-21 Are   | a          |   | WATER LEVEL:                                                 | •                                     |
| START DATE: | 03/03/97                                     | FINISH DATE:  | 03/03/97   |   | WATER ELEVATION:                                             | ī.                                    |
| START TIME: | 13:25                                        | FINISH TIME:  | 14:00      |   | DATE:                                                        |                                       |
| SAMPLER     | SAMPLE OVM                                   | RECOVERY! DE  | PTH SOIL   | C | SOIL DESCRIPTION AND DRILLING CONDITIONS.                    | NOTES:                                |
| TYPE        | DEPTH (PPM)                                  | (FT) IN F     | EET GRAPH  | 1 |                                                              | 1                                     |
|             |                                              |               |            |   | FILL, slightly moist, 10YR3/3, dark brown,                   | Sample 0 - 5' And                     |
| SS          | 0-5 -                                        | 5.0 1         | FILL       |   | gravel and brick pieces                                      | 5 - 10' Composited And                |
|             |                                              |               | H          |   | SILT, sandy, moist, 10YR3/3, dark brown                      | Retained For                          |
| ļ           |                                              | 2             | ML         |   |                                                              | Chemical Analysis                     |
|             |                                              |               |            | ! | CLAY sith was slightly and the                               | 155 00                                |
|             |                                              | 3             |            |   | CLAY, silty, very slightly moist,                            | PP = 2.0                              |
|             |                                              |               | <u> </u>   |   | 10YR2/2, very dark brown,<br>3" layer of treated wood @ 2.5' |                                       |
| ļ           | . :                                          | + 4           |            |   | 3 layer of treated wood @ 2.5                                | :                                     |
|             |                                              |               |            |   |                                                              |                                       |
|             | !                                            | 5             |            |   |                                                              |                                       |
|             |                                              |               |            |   | No silt, slightly moist,                                     |                                       |
| SS          | 5-10 -                                       | 5.0 6         | CL         |   | 10YR6/1, gray, mottling with                                 |                                       |
|             |                                              |               |            |   | 10YR6/8, brownish yellow, and                                |                                       |
|             |                                              |               | <u>'</u>   |   | 10YR3/1, very dark gray                                      |                                       |
|             |                                              |               |            |   |                                                              |                                       |
|             | <u> </u>                                     | 8             |            |   |                                                              |                                       |
|             |                                              |               | <u> </u>   |   |                                                              |                                       |
|             | !                                            | 1 9           | <u> </u>   |   |                                                              |                                       |
|             |                                              | 10            | <u> </u>   |   |                                                              |                                       |
|             |                                              | 10            | ;          |   |                                                              |                                       |
|             |                                              | 11            |            |   | Boring TD @ 10.0'                                            |                                       |
|             | <u> </u>                                     | <u>'</u> '    |            |   | Borning 1D @ 10.0                                            |                                       |
| ļ           | i<br>                                        | 12            | <u>;</u>   |   |                                                              |                                       |
|             |                                              | '-            |            |   |                                                              |                                       |
|             |                                              | 13            |            |   |                                                              |                                       |
|             | <u>.                                    </u> | <del></del> ' |            |   |                                                              | l .                                   |
|             |                                              | 14            |            |   |                                                              |                                       |
|             | · :                                          | 1 .           |            | : |                                                              |                                       |
|             |                                              | 15            |            |   |                                                              | ·                                     |
|             | i i                                          | '             |            | , |                                                              |                                       |
|             | !                                            | 16            |            | , |                                                              |                                       |
|             | :                                            | 1             |            |   |                                                              |                                       |
|             |                                              | 17            |            | į |                                                              | •                                     |
|             |                                              |               |            |   |                                                              |                                       |
|             | <u> </u>                                     | 18            |            |   |                                                              |                                       |
|             |                                              |               |            | , |                                                              |                                       |
|             | <u> </u>                                     | 19            |            |   |                                                              |                                       |
|             | :                                            |               |            |   |                                                              |                                       |
|             | i                                            | 20            |            |   |                                                              |                                       |
| Seologi     |                                              | dsby          |            |   | LEGEND:                                                      | CI - Completion Interval              |
| Checke      | d By:                                        |               |            |   | SS - Split Spoon                                             | OVM - Organic Vapor Meter             |
|             |                                              |               |            |   |                                                              | PP - Pocket Penetrometer              |
|             |                                              |               |            |   |                                                              | TOC - Top Of Casing                   |

|             |              |              |              |            |              | -  | LOG OF BORING No.: SB02                               |                           |
|-------------|--------------|--------------|--------------|------------|--------------|----|-------------------------------------------------------|---------------------------|
|             | To           | FFOT         | ievt         |            |              |    |                                                       | SHEET NUMBER 1 OF 3       |
|             |              | frah         | CUL          |            |              |    | Post Drilling Convices                                | Location Diagram          |
|             |              |              |              |            |              |    | DRILLING CONTRACTOR: Best Drilling Services           | Location Diagram          |
| NT:         |              |              | rn Pacifi    |            |              |    | DRILLING METHOD: Hollow Stem Auger                    | <u>-</u>                  |
| JECT NAM    | E:           |              | n Wood       | Pers       | erving       |    |                                                       | -                         |
|             |              | Works        |              |            |              |    | 21.5                                                  |                           |
| PROJECT NUM | BER:         | 441020       |              |            |              |    | SAMPLING METHOD: CME Sampler                          | _                         |
| PROJECT LOC | ATION:       |              | berty Ro     | oad        |              |    |                                                       |                           |
|             |              | Housto       | n, TX        |            |              |    |                                                       |                           |
|             |              |              |              |            |              |    | SURFACE ELEVATION:                                    |                           |
| BORING LOCA | TION:        | SB02 H       | WPW          |            |              |    | TOC ELEVATION:                                        |                           |
|             |              |              |              |            |              |    | WATER LEVEL:                                          |                           |
| START DATE: | 3/3          | /97          | FINISH DATE  | : 3/       | 3/97         |    | WATER ELEVATION:                                      |                           |
| START TIME: |              |              | FINISH TIME: |            |              |    | DATE:                                                 |                           |
| SAMPLER     | SAMPLE       | OVM          | RECOVERY     | DEPTH      | SOIL         | C  | SOIL DESCRIPTION AND DRILLING CONDITIONS              | NOTES:                    |
| TYPE        | DEPTH        | (PPM)        | (FT)         | IN FEET    | GRAPH        | 1  |                                                       |                           |
| 11176       | ) DEFIN      | 1            | 1            | I          |              | i  | Asphalt - very weathered                              | Boring Advanced with      |
| CB1         | 1-5          |              | 3.8          | 1          |              |    |                                                       | 8 1/4" O.D., 4 1/4" I.D.  |
| CBI         | 1 1-5        | 1            | 3.0          | . –        | FILL         |    | Gravel, dk. brown, loose with trace sand and          | hollow stem augers        |
|             |              |              |              | 2          |              |    | silt and cinders (Fill)                               |                           |
|             | <u> </u>     | <u> </u>     |              | 2          | -            |    | Sill allu Gilueis (Fill)                              |                           |
| l           |              |              |              |            | 4            |    |                                                       |                           |
|             |              |              |              | 3          | !            | -  | I Consulte Of AVe all a series from a series (Physics |                           |
| l           |              |              |              | L          | CL           |    | Gravelly CLAY; dk. gray; firm; moist (Fill)           |                           |
|             |              |              |              | 4          |              | 11 | II                                                    | <del>-</del>              |
|             |              |              |              |            | CL           |    | Silty CLAY; It. gray; very stiff; low plasticity;     |                           |
|             | 5.0          |              |              | 5          | 7            |    | moist; grades dk. gray at 4.7'                        |                           |
|             | 1 3.0        | !            | -            | ٦ <u>-</u> | <del>-</del> |    | moot, grades an gray at 1.7                           |                           |
|             |              |              |              | <u> </u>   | 4            |    |                                                       | Callant sail completes    |
| C82         | 5-10         | <u> </u>     | 4.8          | 6          | -            |    | Grades It. gray                                       | Collect soil sample for   |
| ł           |              |              |              |            | 4            | 1  | with sparse 1/2" dia. CaC03 nodules                   | chemical analysis at 7-8' |
|             |              | <u> -</u>    |              | 7          |              |    |                                                       |                           |
| 1           |              |              |              |            | _            |    |                                                       | -                         |
| 1           |              |              |              | 8          | _            |    | Grades with numerous peasize CaC03                    |                           |
|             |              |              |              |            | 1            |    | nodules and trace sand                                |                           |
|             |              |              |              | 9          | 7            |    |                                                       |                           |
|             | İ            | İ            | 1            |            | 7            |    | CaC03 nodules grade out                               |                           |
| 1           | 10.0         |              |              | 10         | 7            |    |                                                       |                           |
|             | 1            | 1            | 1            |            | 7            |    |                                                       |                           |
| CB3         | 10-15        |              | 5.0          | 11         | -            |    | Iron oxide staining in fractures                      |                           |
| C00         | 10010        | 1            | 1 0.0        |            | -            |    | Horr Grade Glamming in Hudsels                        |                           |
| 1           |              | .            |              | 12         | -            |    |                                                       |                           |
|             | -            | <del> </del> | +            | 12         | -            | 1  |                                                       |                           |
|             |              |              |              | 1.         | -            |    |                                                       |                           |
|             | -            | <u>!</u>     | -            | 13         | -            |    |                                                       |                           |
| 1           |              |              |              | _          | -            |    |                                                       |                           |
|             |              | !            | 1            | 14         | 1            | 1  | Oleman CH Talk come from law alandalism in            |                           |
|             |              |              |              |            | ML           |    | Clayey SILT; It. gray; firm; low plasticity; moist    |                           |
|             | 15.0         | <u> </u>     | 1            | 15         | _            |    | with trace sand                                       |                           |
|             | 1            | 1            |              |            | _            |    |                                                       |                           |
| C84         | 15-20        |              | 0.8          | 16         |              |    |                                                       |                           |
|             |              |              |              |            | <u> </u>     |    |                                                       |                           |
|             |              |              |              | 17         |              | -  |                                                       |                           |
|             | 1            | T            | I            |            | ML           |    | SILT; It. gray; firm; low plasticity; moist with      |                           |
|             |              |              |              | 18         | -            |    | trace sand; It. gray; fine grained                    |                           |
|             | i            |              | i            |            | -            | 1  |                                                       |                           |
| 1           |              |              |              | 19         | SP           |    | Silty SAND; lt. gray; very fine grained; wet          |                           |
| -           | <del>†</del> | +            | <del></del>  | 1 .5       |              |    |                                                       |                           |
| ļ           | 20.0         |              |              | 20         | -            |    |                                                       |                           |
| )           |              | 0 1          | <u> </u>     | 201        |              |    | LEGEND:                                               | CI - Completion Interval  |
| eolog       |              | R. Lan       | ID           |            |              |    | SS - Split Spoon                                      | OVM - Organic Vapor Meter |
| Checke      | ed ph:       |              |              |            |              |    | 33 - 3µii 3µ00n                                       | PP - Pocket Penetrometer  |
| 1           |              |              |              |            |              |    |                                                       |                           |
| 1           |              |              |              |            |              |    | 7                                                     | TOC - Top Of Casing       |

|             |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                |    | LOG OF BORING No.:      | SB02                              |                                |
|-------------|---------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|----|-------------------------|-----------------------------------|--------------------------------|
|             | To            |                 | Tart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                |    | LOG OF BURING NO.:      | 3602                              | SHEET NUMBER 2 OF 3            |
|             | IE            | rran            | EXL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                |    |                         | Post Deiling Continue             |                                |
|             |               |                 | Name of Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, or other Persons and Street, |             |                |    |                         | Best Drilling Services            | Location Diagram               |
| CLIENT:     |               | Souther         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                |    | DRILLING METHOD:        | Hollow Stem Auger                 | -                              |
| PROJECT NAM | £             | Houston         | 1 AAOOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pers        | erving         |    |                         |                                   | 1                              |
|             |               | Works<br>441020 | CO 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                |    |                         | CME Complet                       |                                |
| PROJECT NUM | SER:          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                |    | SAMPLING METHOD:        | CME Sampler                       | -                              |
| PROJECT LOC | ATION:        | 4910 Li         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oad         |                |    |                         |                                   |                                |
|             |               | Houston         | 1, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -           |                |    |                         |                                   | -                              |
|             | <u>.</u>      | 0000 !!         | NA/DIA/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del></del> |                |    | SURFACE ELEVATION:      | ·                                 |                                |
| BORING LOCA | TIONS         | SB02 H          | VVPVV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                |    | TOC ELEVATION:          |                                   | -                              |
|             | 0.10          | 107             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 10.107         |    | WATER LEVEL:            |                                   |                                |
| START DATE: | 3/3           | 191             | FINISH DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | /3/97          |    | WATER ELEVATION:        |                                   |                                |
| START TIME: |               | <del></del>     | FINISH TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | -              |    | DATE:                   | WALE POIL ING CONDITIONS          | NOTES:                         |
| SAMPLER     | SAMPLE        | OVM             | RECOVERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | SOIL           | C  | SUL DESCRIPTIO          | N AND DRILLING CONDITIONS:        | NOTES:                         |
| TYPE        | CEPTH         | (PPM)           | (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IN FEET     | GRAPH          | 11 |                         |                                   | Mild Crossets adam collect     |
| 005         |               |                 | 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 4              |    |                         |                                   | Mild Creosote odor, collect    |
| CB5         |               |                 | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 211         | -              |    | Conden work fine to 6   | المائح طفند فعدد فالمعادمة        | soil sample from 21.0-21.5'    |
|             |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _           | 4              | 1  |                         | ine grained; wet with mild        |                                |
|             |               |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22!_        | -!             |    | creosote odor           |                                   |                                |
|             |               | i i             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _           | 4              |    |                         |                                   |                                |
|             |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23          | -              | 1  |                         |                                   |                                |
|             |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _           | 4              | 1  |                         |                                   |                                |
|             |               |                 | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24          | -              |    |                         |                                   | Callant anil comple 24 0 24 51 |
|             | 05.0          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | -{             | 1  |                         | ······                            | Collect soil sample 24.0-24.5' |
|             | 25.0          |                 | ! !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25          |                | -  | I Cilba Ol AVa la amora | . stiffe lass all attails a maint | for chemical analysis          |
| 200         |               |                 | 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | ML             | 1  |                         | v.stiff; low plasticity; moist    |                                |
| CB6         |               |                 | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26          | -              | 1  | with some sand with     |                                   |                                |
|             |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -           | 4              |    | Grading hard; It. brov  |                                   |                                |
|             |               |                 | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27          | -              |    | Grades It. gray and It  | r prown mottled                   |                                |
|             |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -           | -              |    |                         |                                   |                                |
|             | !             |                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28          | -              |    |                         |                                   |                                |
|             |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 291         | -              |    |                         |                                   |                                |
|             | 1             | <u> </u>        | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23          | -              |    |                         |                                   |                                |
| İ           | 30.0          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30          | -              |    |                         |                                   |                                |
|             | 1 30.0        | 1               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -           | <del>-</del> i |    |                         |                                   |                                |
| C87         |               |                 | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31          | -              |    |                         |                                   |                                |
| - 687       | <u> </u>      | <u> </u>        | 1 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | -              |    |                         |                                   |                                |
| 1           |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32          | 1              |    |                         |                                   |                                |
|             | !<br>!        |                 | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32          | -              |    |                         |                                   | ·                              |
|             |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 331         | -              |    |                         |                                   |                                |
|             | <u>:</u><br>I | İ               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~_          | <del>-</del> i |    |                         |                                   |                                |
|             |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34          | 1              |    |                         |                                   |                                |
|             | Ī             | İ               | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 7              |    |                         |                                   |                                |
|             | 35.0          |                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35          | 7              |    |                         |                                   |                                |
|             |               | 1               | Ī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 7              |    |                         |                                   |                                |
| CB8         |               |                 | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36          | 7              |    |                         |                                   |                                |
|             | Ī             |                 | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 1              |    |                         |                                   |                                |
|             | İ             |                 | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37          | 7              | 1  |                         |                                   |                                |
|             | l             |                 | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | ML             | Ī  | Clayey SILT; It redd    |                                   | Collected sample 37.5-38.0'    |
|             |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 381         |                |    | moist; creosote odor    | and oil sheen                     | for chemical analysis          |
|             | İ             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | Ī              |    |                         |                                   | Collect soil sample for        |
|             | 1             |                 | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39          | Ī              | 1  |                         |                                   | chemical analysis from 38.5-   |
|             |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | CL             | 1  | Silty CLAY; reddish t   | prown; very stiff; low            | 39.0'                          |
| 1           | 40.0          | 1               | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40          |                | L  | plasticity; moist       |                                   |                                |
| eolog       |               | R. Lam          | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                |    |                         | LEGEND:                           | CI - Completion Interval       |
| Checke      | ed By:        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                |    |                         | SS - Split Spoon                  | OVM - Organic Vapor Meter      |
| 1           |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                |    |                         |                                   | PP - Pocket Penetrometer       |
|             |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                |    |                         |                                   | TOC - Top Of Casing            |

|              | 1      |                                                  |                                                  |       |                  |       | -  | LOG OF BORING No.: SB02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |
|--------------|--------|--------------------------------------------------|--------------------------------------------------|-------|------------------|-------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|              | T      | rra                                              | Jeyt                                             |       |                  |       |    | LOG OF BORING NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
|              | 43     |                                                  |                                                  |       |                  |       |    | DRILLING CONTRACTOR: Best Drilling Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SHEET NUMBER 3 OF 3 Location Diagram |
| ENT:         |        | Southe                                           | m Paci                                           | fic L | ine              | s     |    | DRILLING METHOD: Hollow Stem Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Location Diagram                     |
| INTOJECT NAM | 4E:    |                                                  | n Wood                                           |       |                  |       |    | Transfer Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Contr | <del>-</del>                         |
|              |        | Works                                            |                                                  |       |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>-</del>                         |
| PROJECT NUM  | ABER:  | 441020                                           |                                                  |       |                  |       |    | SAMPLING METHOD: CME Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |
| PROJECT LOC  | ATION: |                                                  | iberty R                                         | load  |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        | Housto                                           | n, TX                                            |       |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        | 00001                                            | 11.0 (5) 4 (                                     |       |                  |       |    | SURFACE ELEVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                    |
| BORING LOCA  | TION:  | SB02 H                                           | HVVPVV                                           |       |                  |       |    | TOC ELEVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                    |
|              | 21     | 3/97                                             |                                                  |       | 21               | 3/97  |    | WATER LEVEL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |
| START DATE:  | 3/3    | 0191                                             | FINISH DATI                                      |       | 3/.              | 3/9/  |    | WATER ELEVATION: DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                    |
| START TIME:  | SAMPLE | OVM                                              | FINISH TIME                                      | 1     | The state of     | SOIL  | C  | SOIL DESCRIPTION AND DRILLING CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NOTES:                               |
| TYPE         | DEPTH  | (РРМ)                                            | (FT)                                             | N F   |                  | GRAPH | 1  | 30.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NOTES.                               |
| 1176         | Jern   | (PPM)                                            | 1                                                |       | 1                | Grown | Ϋ́ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| CB9          |        |                                                  | 4.9                                              | 41    |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        | İ                                                |                                                  | ĺ     |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        | 1                                                |                                                  | 42    |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        |                                                  |                                                  |       |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        | ļ                                                |                                                  | 43    |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        | -                                                |                                                  |       |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        | <u> </u>                                         |                                                  | 44    |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        |                                                  |                                                  |       |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              | 45.0   |                                                  |                                                  | 45    |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        | 1                                                | 1                                                |       |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| CB10         |        |                                                  | 4.0                                              | 46    |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| 1            |        |                                                  |                                                  |       |                  |       |    | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| į.           |        |                                                  |                                                  | 47    |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        |                                                  | •                                                |       |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        | <u> </u>                                         |                                                  | 48    |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        |                                                  |                                                  |       |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                    |
|              |        | <u> </u>                                         | -                                                | 49    |                  |       |    | SUT: coddiob become feet and the site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |
|              | 50.0   |                                                  |                                                  | 50    | Н                |       |    | SILT; reddish brown; firm non-plastic; moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Collect soil sample for              |
|              | 50.0   | 1                                                |                                                  | 30    |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | chemical analysis<br>49 49.5'        |
| CB11         |        |                                                  | 3.2                                              | 51    | $\mid \mid \mid$ |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49 49.5                              |
| 0011         |        |                                                  | 1 5.2                                            | ٥,    |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        |                                                  |                                                  | 52    | H                |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        | İ                                                |                                                  |       |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        |                                                  |                                                  | 53    |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        |                                                  |                                                  |       |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        | <u> </u>                                         |                                                  | 54    |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              | 55.0   |                                                  |                                                  |       | $\vdash \vdash$  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              | 55.0   | !                                                | !!!                                              | 55    | 1 !              |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDaman of hades at 65 Ct             |
|              |        |                                                  |                                                  | 56    | $\vdash$         |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bottom of boring at 55.0'            |
|              |        | <del>                                     </del> | +                                                | 30    | $\vdash$         |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Backfilled with cement/              |
|              |        |                                                  |                                                  | 57    | $\vdash$         |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bentonite grout on 3/3/97            |
|              |        | i                                                | <del>i                                    </del> | ٠.    | $\vdash$         |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sometime grout on Group?             |
|              |        |                                                  |                                                  | 58    | $\vdash$         |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        | İ                                                |                                                  | -     |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        |                                                  |                                                  | 59    |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |        |                                                  |                                                  |       |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| <u> </u>     |        |                                                  | <u> </u>                                         | 60    |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| Geologi      |        | R. Lam                                           | b                                                |       |                  |       |    | LEGEND:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cl - Completion Interval             |
| Checke       | a RA:  |                                                  |                                                  |       |                  |       |    | SS - Spiit Spoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OVM - Organic Vapor Meter            |
|              |        |                                                  |                                                  |       |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PP - Pocket Penetrometer             |
|              |        |                                                  |                                                  |       |                  |       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOC - Top Of Casing                  |

|             |              | -                                                | -            |       |                 |        |   | LOG OF BORING No.: SB03                     |                                 |
|-------------|--------------|--------------------------------------------------|--------------|-------|-----------------|--------|---|---------------------------------------------|---------------------------------|
|             |              | rrai                                             | Pext         |       |                 |        |   |                                             | SHEET NUMBER 1 OF 3             |
|             |              | the think                                        | 27-6         |       |                 |        |   | DRILLING CONTRACTOR: Best Drilling Services | Location Diagram                |
| NT:         |              | Southe                                           | m Pacif      | ic L  | ines            | 5      |   | DRILLING METHOD: Hollow Stem Auger          |                                 |
| PROJECT NAM | €:           | Housto                                           | n Wood       | Pe    | rse             | rving  |   |                                             | -                               |
|             |              | Works                                            |              |       |                 |        |   |                                             | 1                               |
| ROJECT NUM  | BER:         | 441020                                           | 069.07       |       |                 | å      | í | SAMPLING METHOD: CME Sampler                |                                 |
| ROJECT LOC  | ATION:       | 4910 L                                           | iberty Ro    | oad   |                 |        |   |                                             | Ī                               |
|             |              | Housto                                           |              |       | -               |        |   |                                             |                                 |
|             |              |                                                  |              |       |                 |        |   | SURFACE ELEVATION:                          | 1                               |
| ORING LOCA  | TION         |                                                  |              |       | -               | -      |   | TOC ELEVATION:                              | 1                               |
|             |              |                                                  |              |       |                 |        |   | WATER LEVEL:                                | i                               |
| TART DATE:  | 03/0         | 5/97                                             | FINISH CATE  |       | 03              | /05/97 |   | WATER ELEVATION:                            | •                               |
| TART TIME:  | 00.0         |                                                  | FINISH TIME: |       |                 |        |   | DATE:                                       | 7                               |
| SAMPLER     | SAMPLE       | OVM                                              | RECOVERY     | OEP   | P4 I            | SOIL   | C | SOIL DESCRIPTION AND DRILLING CONDITIONS    | NOTES:                          |
|             |              | (PPM)                                            | (FT)         | IN FE | - 1             | GRAPH  | 1 |                                             | 1                               |
| TYPE        | CEPTH        | (bare)                                           | 1 (F1) 1     | IN PE | 1 1             | GIOGH  | 1 | Gravel                                      | Boring Advanced with 8 1/4-     |
| CB1         | 1 - 5        |                                                  | 3.1          | 1     | $\vdash$        |        |   | Graver                                      | inch O.D., 4 1/4-inch I.D. HSA  |
| CBI         | 1-5          | <del>                                     </del> | 3.1          | ٠,    | -               |        |   |                                             | 11161 O.D., 4 17-1161 1.D. 1167 |
|             |              |                                                  |              |       | $\vdash \vdash$ | SM     |   | SAND, brown, fine grained creosote impacted |                                 |
|             |              | -                                                | +            | 2     |                 | SIM    |   | moist                                       |                                 |
|             |              |                                                  |              | _     | 屵               | C11 1  | - |                                             |                                 |
|             |              | <u> </u>                                         |              | 3     |                 | FILL   | - | CINDERS: black:                             |                                 |
|             |              |                                                  |              |       | Н               | 61     |   | Cib. CLAY, dada bassas Jassaslas (Cib.      |                                 |
|             |              | <u> </u>                                         |              | 4     |                 | CL     |   | Silty CLAY; dark brown, low plasticity,     |                                 |
|             |              |                                                  |              |       |                 |        |   | moist, with creosote odor                   |                                 |
|             | 5.0          |                                                  |              | 5     | П               |        |   | ·                                           | Collect sample for chemical     |
|             | 1 0.0        | <u> </u>                                         | <del></del>  | ٠     |                 |        |   |                                             |                                 |
|             |              |                                                  | -            | _     | Н               |        |   | (                                           | analysis for 5 - 6 feet         |
| CB2         |              |                                                  | 5.0          | 6     |                 |        |   | `                                           |                                 |
|             |              |                                                  |              |       | Ш               |        |   |                                             |                                 |
|             |              |                                                  |              | 7     |                 |        |   |                                             |                                 |
|             |              |                                                  |              |       |                 |        |   |                                             | •                               |
|             |              |                                                  |              | 8     |                 |        |   |                                             |                                 |
|             |              |                                                  |              |       |                 |        |   |                                             |                                 |
|             | ĺ            |                                                  |              | 9     |                 |        |   | grades gray and brown, mottled              |                                 |
|             | İ            |                                                  |              |       |                 |        |   | light trace CaCO3 nodules                   |                                 |
|             | 10.0         |                                                  |              | 10    | $\Box$          |        |   |                                             |                                 |
|             |              | 1                                                |              |       | $\Box$          |        |   | grades with iron oxide staining             | ,                               |
| <b>CB3</b>  |              |                                                  | 5.0          | 11    |                 |        |   |                                             |                                 |
|             | 1            |                                                  |              |       |                 |        |   |                                             |                                 |
|             |              |                                                  |              | 12    |                 |        |   |                                             |                                 |
|             | <del> </del> | <del> </del>                                     |              |       |                 |        |   | ~ 1/2" sandy silt lens containing creosote  |                                 |
|             |              | İ                                                |              | 13    | H               |        |   |                                             |                                 |
|             | <u> </u>     | -                                                |              |       |                 | -      |   | ~ 1/2" sandy silt lens containing creosote  |                                 |
|             |              |                                                  |              | 14    | H               |        | 1 | The sairty six is is serial in ig a second  |                                 |
|             | 1            | <del></del>                                      | -            | ,-    |                 |        | 1 | ~ 1/4" sandy silt lens containing creosote  | <u> </u>                        |
|             |              |                                                  |              | 15    | H               |        | 1 | Julia, and January and January              |                                 |
|             | <u> </u>     | <del> </del>                                     | -            | 13    | $\vdash$        |        | 1 |                                             |                                 |
| CB4         |              |                                                  | 3.9'         | 40    | Н               |        |   |                                             |                                 |
| CB4         | <del> </del> | -                                                | 3.9          | 16    |                 | 1/61   | - | Cil T gray and raddish brown mottled        |                                 |
|             |              |                                                  |              |       | $\vdash\vdash$  | ML     |   | SILT, gray and reddish brown, mottled,      |                                 |
|             | !            |                                                  |              | 17    |                 |        |   | low plasticity, moist, varved               | <b></b>                         |
|             |              |                                                  |              |       |                 |        | 1 | with ~0.1" thick sand seams                 |                                 |
|             |              |                                                  |              | 18    |                 |        |   | creosote odor                               |                                 |
|             |              |                                                  |              |       |                 |        | 1 |                                             |                                 |
|             |              |                                                  |              | 19    |                 |        |   |                                             | Collect sample for chemical     |
|             | İ            |                                                  |              |       |                 |        |   |                                             | analysis at 19 - 20 feet        |
|             | 20.0         |                                                  |              | 20    |                 |        |   |                                             |                                 |
| eolog       |              | R. Lan                                           | dn           |       |                 |        |   | LEGEND:                                     | C1 - Completion Interval        |
| hecke       |              |                                                  |              |       |                 |        |   | SS - Split Spoon                            | OVM - Organic Vapor Meter       |
|             |              |                                                  |              |       |                 |        |   |                                             | PP - Pocket Penetrometer        |
|             |              |                                                  |              |       |                 |        |   |                                             | TOC - Top Of Casing             |

|              |              |               |             |        |          |        | - | LOG OF BORING No.: SB03                         |                                |
|--------------|--------------|---------------|-------------|--------|----------|--------|---|-------------------------------------------------|--------------------------------|
|              | Te           | fran          | PYT         |        |          |        |   | 333                                             | SHEET NUMBER 2 OF 3            |
|              | 16           |               | 16:11       |        |          |        |   | DRILLING CONTRACTOR: Best Drilling Services     | Location Diagram               |
| INT:         |              | Southe        | m Pacifi    | ic I i | nes      |        |   | DRILLING METHOD: Hollow Stem Auger              | : Location Diagram             |
| PROJECT NAM  |              |               | n Wood      |        |          |        |   | DRIEDIG METHOD. 110110W Cterri 710ger           | <del>-</del>                   |
| PROJECT TOWN | -            | Works         |             | 1 0.   | 30.      | viiig  |   |                                                 | _                              |
| PROJECT NUM  | AED-         | 441020        |             |        |          |        |   | SAMPLING METHOD: CME Sampler                    | <u> </u>                       |
| PROJECT LOC  |              |               | iberty Ro   | oad    |          |        |   |                                                 | <del>-</del>                   |
| F1.00201 600 | ATTO-IL      | Housto        |             |        |          |        |   |                                                 |                                |
|              |              |               |             |        |          |        |   | SURFACE ELEVATION:                              |                                |
| BORING LOCA  | TION:        |               |             |        |          |        |   | TOC ELEVATION:                                  | 7                              |
|              |              |               |             |        |          |        |   | WATER LEVEL:                                    |                                |
| START DATE:  | 03/0         | 5/97          | FINISH DATE | Ŀ      | 03       | /05/97 |   | WATER ELEVATION:                                | 1                              |
| START TIME:  |              |               | FINISH TIME | :      |          |        |   | DATE:                                           |                                |
| SAMPLER      | SAMPLE       | OVM           | RECOVERY    | DEP    | TH       | SOIL   | C | SOIL DESCRIPTION AND DRILLING CONDITIONS:       | NOTES:                         |
| TYPE         | DEPTH        | (PPM)         | (FT)        | IN FE  | E        | GRAPH  | ı |                                                 |                                |
|              |              |               |             |        |          |        |   |                                                 |                                |
| C85          |              |               | 3.9         | 21     |          |        |   |                                                 | `                              |
|              |              | !<br>!        |             |        |          | SP     |   | Silty SAND, grayish brown, very fined grained,  |                                |
|              |              | !             |             | 22     |          |        |   | wet, with creosote odor                         |                                |
|              |              |               |             |        |          |        |   |                                                 |                                |
|              |              | :             |             | 23     |          |        |   |                                                 |                                |
|              |              |               |             |        | Ш        |        |   | ~ 1/2" diameter clay nodules                    |                                |
|              |              |               |             | 24     |          |        |   | clay nodules grade out                          | Collect soil sample for        |
|              |              | :             |             |        |          |        |   |                                                 | chemical analysis @ 24 - 25'   |
|              | 25.0         |               |             | 25     | Н        |        |   |                                                 |                                |
|              | 23.0         | ,<br>,        | -           | 25     |          |        |   |                                                 |                                |
| 000          |              |               | 0.0         |        | $\vdash$ |        | 1 |                                                 |                                |
| CB6          | <u> </u>     | <del>:</del>  | 3.8         | 26     |          |        | 1 |                                                 |                                |
| 4            |              | !             |             |        | Н        |        | 1 |                                                 |                                |
|              |              | <u> </u>      | -           | 27     |          |        |   |                                                 |                                |
| ľ            |              | !<br>!        |             |        | H        | CL     | 1 | Silb. CLAY and brown method:                    |                                |
|              | 1            | :             |             | 28     |          | CL     |   | Silty CLAY, gray and brown mottled;             |                                |
|              |              |               |             | -      | $\vdash$ |        |   | very stiff, low plasticity, moist creosote odor |                                |
|              | 1            | <u>!</u><br>: | -           | 29     |          |        |   | Creosore oddi                                   |                                |
|              | 30.0         |               |             | 30     | H        |        |   |                                                 |                                |
|              | 1 30.0       | :             | -           | 30     |          |        |   |                                                 |                                |
| C87          |              |               | 5.0         | 31     | H        |        | 1 |                                                 |                                |
| 007          | <u> </u><br> | <u> </u>      | 1 0.0       | 31     |          |        |   |                                                 |                                |
|              |              |               |             | 32     | H        |        |   |                                                 | 1                              |
|              |              |               | -           | 52     |          |        |   |                                                 |                                |
|              |              | :             |             | 33     | H        |        |   |                                                 |                                |
|              |              | :             |             | -      |          |        |   |                                                 |                                |
|              |              | !             |             | 34     | H        |        |   |                                                 |                                |
|              | İ            | !             |             | آ ا    | T        |        |   |                                                 |                                |
|              | 35.0         | !             |             | 35     | H        |        |   |                                                 |                                |
|              | 1            | !             |             |        |          |        |   | grading with creosote in hairline fractures     |                                |
| CB8          |              |               |             | 36     | $\Box$   |        |   | comprises ~ 1% of sample                        |                                |
|              |              | I             |             |        |          |        |   |                                                 |                                |
|              |              | İ             |             | 37     | П        |        |   |                                                 |                                |
|              | İ            | i             |             |        |          |        |   |                                                 |                                |
|              |              | į             |             | 38     |          |        |   |                                                 |                                |
| -            | i -          |               |             |        |          |        |   |                                                 |                                |
| I            |              | !             |             | 39     |          |        |   |                                                 |                                |
|              | İ            |               | 1           |        |          |        |   | 0.1" thick silt/sand lenses contain creosote    | Collect soil sample for        |
| 1            | 40.0         | i             |             | 40     |          |        |   |                                                 | chemical analysis @ 39.5 - 40' |
| eologi       |              | R. Lan        | nb          |        | -        |        |   | LEGEND:                                         | Cl - Completion Interval       |
| Checke       |              |               |             |        |          |        |   | SS - Split Spoon                                | OVM - Organic Vapor Meter      |
|              | •            |               |             |        |          |        |   |                                                 | PP - Pocket Penetrometer       |

|              |        | -              | 200                                          |          |     |          |     | LCG OF BORING No.: SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03                                    |                                                    |
|--------------|--------|----------------|----------------------------------------------|----------|-----|----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------|
|              | TE     | fran           | lext                                         |          |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | SHEET NUMBER 3 OF 3                                |
|              | -      |                |                                              |          |     |          |     | DRILLING CONTRACTOR: Bes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | st Drilling Services                  | Location Diagram                                   |
| -            |        |                | m Pacif                                      | <u></u>  | ina |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | llow Stem Auger                       | Location Diagram                                   |
| ENT:         | -      |                | n Wood                                       |          |     |          |     | DRILLING METHOD: ITO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iow Sterri Auger                      |                                                    |
| PHOJECT NAM  | E:     | Works          | 11 44000                                     | Pe       | 136 | ving     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        | 441020         | 160.07                                       |          |     | ,        |     | in the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the | E Sampler                             | p <sup>at</sup>                                    |
| PROJECT NUM  |        |                |                                              |          | 1   |          |     | SAMPLING METHOD: CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C Sampler                             |                                                    |
| PROJECT LOC  | ATION: | Housto         | iberty R                                     | oau      | -   |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        | Housto         | Π, ΙΑ                                        |          |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        |                |                                              |          |     |          |     | SURFACE ELEVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                    |
| BORING LOCAT | TION:  |                |                                              |          |     |          |     | TOC ELEVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                                    |
|              | 00/0   | VC 10.7        |                                              |          |     | 10.5.107 |     | WATER LEVEL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                                    |
| START DATE:  | 03/0   | 5/97           | FINISH DATE                                  | <u> </u> | 03  | /05/97   |     | WATER ELEVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · · |                                                    |
| START TIME:  |        | -              | FINISH TIME                                  |          |     |          | -   | DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                                    |
| SAMPLER      | SAMPLE | OVM            | RECOVERY                                     | DEP      | TH4 | SOIL     | C   | SOIL DESCRIPTION AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DORILLING:CONDITIONS:                 | NOTES:                                             |
| TYPE         | DEPTH  | (PPM)          | (FT)                                         | IN F     | EET | GRAPH    | ! 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        |                |                                              |          |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
| CB9          |        | 1              | 4.2                                          | 41       |     |          |     | silt/sand lenses grade or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ut                                    |                                                    |
|              |        |                | i                                            |          |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        |                |                                              | 42       |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        | 1              | !                                            |          |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        |                |                                              | 43       |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        | Ī              | ī                                            |          |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        |                |                                              | 44       |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        | 1              | <del>-</del>                                 | ~~       |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        |                |                                              |          | -   |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              | 45     | 1              |                                              | 45       |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        |                | i                                            |          |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                     |                                                    |
| CB10         |        |                | 5.0                                          | 46       |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        | i              |                                              |          |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
| 1            |        |                |                                              | 47       |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | ·                                                  |
| -            |        | <del>i .</del> | <u> </u>                                     |          |     |          | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        |                |                                              | 48       | H   |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        | <del> </del>   | <del>!</del>                                 | 70       |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        |                |                                              | 49       |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        | !              | -                                            | 49       |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              | 50.0   |                |                                              |          | -   | ML       |     | SILT raddish beauty as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a sleetie                             |                                                    |
|              | 50.0   | -              | !                                            | 50       |     | MIL      |     | SILT, reddish brown; no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                    |
| 0044         |        |                |                                              |          |     |          |     | firm, wet; with trace of s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sand;                                 |                                                    |
| CB11         |        | <u> </u>       | 5.0                                          | 51       |     |          |     | creosote odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                                                    |
|              |        |                |                                              |          |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        | <u> </u>       | !                                            | 52       |     |          |     | Silty CLAY; reddish brow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                    |
|              |        |                |                                              |          |     | CL       |     | plasticity, very stiff, cred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | osote odor                            |                                                    |
|              |        |                | !                                            | 53       |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        |                |                                              |          |     |          |     | 3" thick sandy silt, lens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                                    |
|              |        | İ              |                                              | 54       |     |          |     | contains oil sheen & cre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                    |
|              |        |                | i                                            |          |     |          |     | 3" thick sandy silt, lens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                                    |
| 12           |        | !              | 1                                            | 55       |     |          |     | contains oil sheen & cre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | Collected soil sample for                          |
|              |        | 1              | i                                            |          |     |          |     | grading with creosote in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | fractures                             | chemical analysis from                             |
| ST12         |        |                | 1.5                                          | 56       |     |          |     | ~ 1% of mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | silt lenses                                        |
|              |        | 1              | 1                                            |          |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        |                | i                                            | 57       |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        | 1              | !                                            |          | 1 1 |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Bottom of boring @ 57.0'                           |
|              |        |                |                                              | 58       |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
|              |        | i              | $\top$                                       |          |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Borehole backfilled with                           |
|              |        |                |                                              | 59       | -   |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | cement/bentonite                                   |
|              |        | <u>.</u>       | . —                                          | -        |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | grout on 3/5/97                                    |
| •            |        |                | :                                            | 60       | H   |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 31041 011 010101                                   |
| eologi       | et·    | R. Lam         | <u>.                                    </u> | au       | -   |          |     | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LEGEND:                               | Cl - Completion Interval                           |
| Checker      |        | n. Lain        | J                                            |          |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | •                                                  |
| CHECKE       | u ⊔y.  |                |                                              |          |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | OVM - Organic Vapor Meter PP - Pocket Penetrometer |
| 1            |        |                |                                              |          |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                    |
| L            |        |                |                                              |          |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | TOC - Top Of Casing                                |

|             |              | بالمجيم مشتر | 4            |       |          | 160                                     |    | LOG OF BORING No.: S804                                                                  |                                |
|-------------|--------------|--------------|--------------|-------|----------|-----------------------------------------|----|------------------------------------------------------------------------------------------|--------------------------------|
|             | IE IE        | fra          | next         |       |          |                                         |    | l.                                                                                       | SHEET NUMBER 1 OF 3            |
|             |              | J- 18_0.     | ٠٠٠٠         |       |          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |    | Briteling Controller Deat Driming Controller                                             | Location Diagram               |
| LIENT:      |              |              | em Pacif     |       | -        | -                                       |    | DRILLING METHOD: Hollow Stem Auger                                                       | -                              |
| ROJECT NAME | E            |              | n Wood       | Pe    | rse      | rving                                   |    |                                                                                          | ÷                              |
|             |              | Works        |              |       |          |                                         | -  | CME Samples                                                                              |                                |
| ROJECT NUM  | BER:         | 44102        |              |       |          |                                         |    | SAMPLING METHOD: CME Sampler                                                             |                                |
| ROJECT LOCA | ATION:       |              | iberty R     | oad   |          |                                         |    |                                                                                          |                                |
|             |              | Housto       | on, IA       |       |          |                                         |    | SURFACE ELEVATION:                                                                       |                                |
|             |              |              |              |       |          |                                         |    | TOC ELEVATION:                                                                           |                                |
| ORING LOCAT | TIORE        |              |              |       |          |                                         |    | WATER LEVEL:                                                                             | 1                              |
| TART DATE:  | 03/0         | 5/97         | FINISH DATE  |       | 03       | /05/97                                  |    | WATER ELEVATION:                                                                         | <u>.</u><br>!                  |
| PART TIME:  | 00.0         | 0,0,         | FINISH TIME  |       |          |                                         | _  | DATE:                                                                                    |                                |
| SAMPLER     | SAMPLE       | OVM          | RECOVERY     | DEF   | тн       | SOIL                                    | C  | SOIL DESCRIPTION: AND DRILLING: CONDITIONS                                               | NOTES:                         |
| TYPE        | DEPTH        | (PPM)        | (FT)         | IN FE | 1        | GRAPH                                   | 1  |                                                                                          |                                |
| i           |              | ,            | 4            |       | 1        |                                         |    | Clayey GRAVEL                                                                            | Boring Advanced with 8 1/4-    |
| CB1         | 1 - 5        |              | 38.0         | 1     |          |                                         |    |                                                                                          | inch O.D., 4 1/4-inch I.D. HSA |
|             | ×-           |              |              |       |          |                                         |    |                                                                                          |                                |
|             |              |              | i            | 2     |          |                                         |    |                                                                                          |                                |
|             |              |              |              |       |          |                                         |    |                                                                                          |                                |
|             |              |              |              | 3     |          | SM                                      |    | SAND, black, medium grained, moist, contains creosote                                    | Collect soil sample for        |
|             |              |              | i            |       |          | FILL                                    |    | CINDERS, black, creosote odor                                                            | chemical analysis @ 2' - 3'    |
|             |              |              |              | 4     |          | SM                                      | il | SAND; It. brown, fine grained; moist, creosote odd                                       |                                |
|             |              |              |              |       | Ш        |                                         |    | Silty CLAY; black, stiff, low plasticity; moist, creos                                   | pte                            |
| !           | 5.0          | İ            |              | 5     |          | CL                                      |    | creosote odor, grading black and dark brown,                                             |                                |
|             |              |              | 1            |       |          |                                         |    | mottled                                                                                  |                                |
| CB2         |              | <u> </u>     | 5.0          | 6     |          |                                         |    |                                                                                          |                                |
|             |              |              |              |       | Щ        |                                         |    |                                                                                          |                                |
|             | <u> </u>     |              |              | 7     | $\sqcup$ |                                         |    |                                                                                          |                                |
|             |              |              |              |       | Н        | •                                       |    | ·                                                                                        |                                |
|             |              | !            |              | 8     | _        |                                         |    |                                                                                          |                                |
|             |              | İ            |              |       | Н        | •                                       |    | grading - gray and dark brown, mottled                                                   |                                |
|             |              | !            | <u> </u>     | 9     |          |                                         |    | with slight creosote odor                                                                |                                |
|             | 40.0         |              |              |       | $\vdash$ |                                         |    | landing light area and area mottled with iron oxide                                      |                                |
|             | 10.0         |              |              | 10    |          |                                         |    | grading light gray and gray, mottled with iron oxide staining, creosote odor, grades out |                                |
| 000         |              | İ            | 5.0          |       |          |                                         |    | grading with 1/10" diameter CaCO3 nodules                                                |                                |
| CB3         | <u> </u>     | !            | 1 5.0        | 11    |          |                                         |    | grading with 1710 diameter CaCOS hoddles                                                 |                                |
|             |              |              |              | 42    |          |                                         |    |                                                                                          | ·                              |
|             | <u> </u>     | <del>!</del> | -            | 12    |          |                                         |    |                                                                                          |                                |
|             | !            | İ            |              | 13    | -        |                                         | 1  |                                                                                          |                                |
|             | <u> </u>     | :            | <u>'</u>     | 1 13  |          |                                         |    |                                                                                          |                                |
|             |              | İ            |              | 14    |          |                                         |    |                                                                                          |                                |
|             |              | <u>:</u>     | <del>.</del> | 1 14  |          |                                         |    |                                                                                          |                                |
|             | 15.0         |              |              | 15    | -        |                                         |    |                                                                                          |                                |
|             | 10.0         | :            | :            |       |          |                                         |    |                                                                                          |                                |
| C84         |              |              | 2.5          | 16    |          |                                         |    |                                                                                          |                                |
| 004         | <del>i</del> | 1.           | 1            | 1.0   |          |                                         |    |                                                                                          |                                |
|             |              |              |              | 17    | -        |                                         |    |                                                                                          |                                |
|             | 1            | i            | <del> </del> | i ''  | -        |                                         |    |                                                                                          |                                |
|             |              | ļ            | !            | 18    |          |                                         |    |                                                                                          |                                |
|             | <del> </del> | <del></del>  | <del></del>  | †     |          | ML                                      | 1  | Clayey SILT; gray and reddish brown                                                      |                                |
|             |              |              | į            | 19    | -        |                                         |    | mottled, low plasticity; firm with                                                       |                                |
|             | <u> </u>     | :            | 1            | † .3  |          | i                                       |    | trace sand, moist                                                                        |                                |
|             | 20           |              | !            | 20    | -        | i                                       |    |                                                                                          |                                |
| Geologi     |              | R. Lar       | nb           |       |          | A1-1-A                                  |    | LEGEND:                                                                                  | CI - Completion Interval       |
| Checke      |              |              |              |       |          |                                         |    | SS - Spiit Spoon                                                                         | OVM - Organic Vapor Meter      |
|             | ,•           |              |              |       |          |                                         |    |                                                                                          | PP - Pocket Penetrometer       |
|             |              |              |              |       |          |                                         |    |                                                                                          | TOC Ton Of Casing              |

|             | 1            |                                                  |                                                    | :    |          |        |   | LOG OF BORING No.: SB04                           |                               |  |  |
|-------------|--------------|--------------------------------------------------|----------------------------------------------------|------|----------|--------|---|---------------------------------------------------|-------------------------------|--|--|
|             | TE           | Fran                                             | Jeyt                                               | 3    |          |        |   |                                                   | CUESTANIANCE & OF A           |  |  |
|             | -            | rra                                              |                                                    |      |          |        |   | DRILLING CONTRACTOR: Best Drilling Services       | SHEET NUMBER 2 OF 3           |  |  |
|             |              |                                                  |                                                    |      |          |        | - |                                                   | Location Diagram              |  |  |
| JENT:       |              |                                                  | m Pacif                                            |      |          |        |   | DRILLING METHOD: Hollow Stem Auger                | 4                             |  |  |
| PROJECT NAM | Æ:           |                                                  | n Wood                                             | Per  | se       | rving  |   |                                                   | -!                            |  |  |
|             |              | Works                                            | 200 07                                             |      |          |        |   | CNAT Complex                                      | -                             |  |  |
| PROJECT NUM | ABER:        | 441020                                           |                                                    |      |          |        |   | SAMPLING METHOD: CME Sampler                      | 4                             |  |  |
| PROJECT LOC | ATION:       |                                                  | iberty R                                           | oad  |          |        |   |                                                   | _                             |  |  |
|             |              | Housto                                           | n, IX                                              |      |          |        |   |                                                   | 1                             |  |  |
|             |              |                                                  |                                                    |      |          |        |   | SURFACE ELEVATION:                                |                               |  |  |
| BORING LOCA | TION:        |                                                  |                                                    |      |          |        |   | TOC ELEVATION:                                    |                               |  |  |
|             |              |                                                  |                                                    |      |          |        |   | WATER LEVEL:                                      |                               |  |  |
| START DATE: | 03/0         | 05/97                                            | FINISH DATE                                        | Ē:   | 03       | /05/97 |   | WATER ELEVATION:                                  |                               |  |  |
| START TIME: |              |                                                  | FINISH TIME                                        | :    |          |        |   | DATE:                                             | 1                             |  |  |
| SAMPLER     | SAMPLE       | OVM                                              | RECOVERY                                           | CEPT | н        | SOIL   | C | SOIL DESCRIPTION AND DRILLING CONDITIONS          | NOTES:                        |  |  |
| TYPE        | DEPTH        | (PPM)                                            | (FT)                                               | N FE | ET       | GRAPH  | 1 |                                                   |                               |  |  |
|             | 1            | 1                                                | T                                                  | i    | T        |        | ī |                                                   |                               |  |  |
| C85         | ĺ            |                                                  | 32                                                 | 21   |          |        |   |                                                   |                               |  |  |
|             | İ            | İ                                                | İ                                                  |      |          |        |   |                                                   |                               |  |  |
|             |              |                                                  |                                                    | 22   |          | SP     |   | Silty SAND; light gray, very fine to fine grained |                               |  |  |
|             |              | <del> </del>                                     | 1                                                  |      | _        | ٠.     | 1 | wet, with mild creosote odor                      |                               |  |  |
|             |              |                                                  |                                                    | 23   | $\dashv$ |        |   | Wet, With him creases addr                        |                               |  |  |
|             | 1            | -                                                | <del> </del>                                       | 23   | -        |        |   |                                                   |                               |  |  |
|             |              |                                                  |                                                    |      | $\dashv$ |        |   |                                                   |                               |  |  |
|             |              |                                                  |                                                    | 24   |          |        |   |                                                   |                               |  |  |
|             |              |                                                  |                                                    |      | -        |        |   | clay lens ~ 3" thick @ ~ 24.5                     |                               |  |  |
|             | 25           |                                                  |                                                    | 25   |          |        |   | creosote in sand lens ~ 2" thick @ ~ 24.8"        |                               |  |  |
|             | 1 20         | <del></del>                                      | i -                                                |      | _        |        |   | Greene in carre lens 2 thick & 24.0               |                               |  |  |
| 000         |              |                                                  | 1                                                  |      | -        |        |   |                                                   | collect sample not submitted  |  |  |
| CB6         | <u> </u>     | -                                                | 4.5                                                | 26   | _        |        |   | grading with strong creosote odor                 | 25.5 - 26.0' for bio analysis |  |  |
|             |              |                                                  |                                                    |      | $\dashv$ |        |   | oil sheen                                         |                               |  |  |
|             | <u> </u>     | <u> </u>                                         | -                                                  | 27   | _        |        |   |                                                   | collect soil sample for       |  |  |
|             |              |                                                  |                                                    |      | _        |        |   |                                                   | chemical analysis from        |  |  |
|             |              |                                                  |                                                    | 28   |          |        |   |                                                   | 27 - 30 feet                  |  |  |
|             | İ            | İ                                                |                                                    | . [  |          |        |   |                                                   | -                             |  |  |
|             |              | !                                                |                                                    | 29   |          |        |   |                                                   | collect sample for chemical   |  |  |
|             |              |                                                  |                                                    |      |          |        |   |                                                   | analysis @ 29.0 - 30.0'       |  |  |
|             | 1            |                                                  |                                                    | 30   |          |        |   |                                                   |                               |  |  |
|             | 1            |                                                  | i                                                  | Ī    |          |        |   | Silty CLAY; reddish brown & gray, mottled,        | ,                             |  |  |
| C87         |              |                                                  | 5.0                                                | 31   |          | CL     |   | low plasticity; moist with creosote in            | collect sample for chemical   |  |  |
|             |              | I                                                | 1                                                  |      |          |        |   | hairline fractures ~ 0.1% at mass                 | analysis @ 31.0 - 32.0'       |  |  |
|             |              |                                                  |                                                    | 32   | $\neg$   |        |   |                                                   |                               |  |  |
|             |              | I                                                | 1                                                  |      |          |        |   |                                                   |                               |  |  |
|             | 1            |                                                  | 1                                                  | 33   | -        |        |   |                                                   |                               |  |  |
|             | İ            | <del>i                                    </del> | 1                                                  |      |          |        |   |                                                   |                               |  |  |
|             | 1            |                                                  | 1                                                  | 34   | -        |        |   | creosote grades out                               |                               |  |  |
| <u> </u>    | <del>i</del> | <del>†</del>                                     | <del>†                                      </del> | -    | -        |        |   | and and and                                       |                               |  |  |
|             | 35           |                                                  |                                                    | 35   | -        |        |   | mild creosote odor                                |                               |  |  |
| -           | , JJ         | <u>;</u>                                         | <u> </u>                                           | 33   | -        |        |   |                                                   |                               |  |  |
| CB8         |              |                                                  | 5.0                                                | 20   | $\dashv$ |        |   |                                                   |                               |  |  |
| C80         | <u>!</u>     | 1                                                | 7 5.0                                              | 36   | _        |        |   |                                                   |                               |  |  |
|             |              |                                                  |                                                    | _    | $\dashv$ |        |   |                                                   |                               |  |  |
|             | <u> </u>     | 1                                                | !                                                  | 37   | _        |        |   |                                                   |                               |  |  |
|             |              |                                                  |                                                    |      | $\dashv$ |        |   | grading with creosote in hairline fractures       |                               |  |  |
|             | <u> </u>     | !                                                | <del> </del>                                       | 38   |          |        |   | ~1% at mass                                       |                               |  |  |
|             |              |                                                  |                                                    | L    | _        |        |   |                                                   |                               |  |  |
|             |              | !                                                |                                                    | 39   |          |        |   |                                                   | collect soil sample for       |  |  |
| 1           |              |                                                  |                                                    | 1    |          |        |   |                                                   | chemical analysis from        |  |  |
|             | 40.0         | !                                                |                                                    | 40   |          |        |   | 0.1" thick silt/sand lenses contains creosote     | 39.5 - 40.0'                  |  |  |
| Geologi     |              | R. Lam                                           | b                                                  |      | _        |        |   | LEGEND:                                           | CI - Completion Interval      |  |  |
| Checke      | d By:        |                                                  |                                                    |      |          |        |   | SS - Split Spoon                                  | OVM - Organic Vapor Meter     |  |  |
| 1           | -            |                                                  |                                                    |      |          |        |   |                                                   | PP - Pocket Penetrometer      |  |  |
|             |              |                                                  |                                                    |      |          |        |   |                                                   | TOC - Top Of Casing           |  |  |

|             |             |          | 501         |       |      |         |   | LOG OF BORING No.: SB04                          |                             |
|-------------|-------------|----------|-------------|-------|------|---------|---|--------------------------------------------------|-----------------------------|
|             | TE          | TO       | lext        |       |      |         |   |                                                  | SHEET NUMBER 3 OF 3         |
|             |             | A Fair   |             |       |      |         |   | DRILLING CONTRACTOR: Best Drilling Services      | Location Diagram            |
| ENT:        |             | Southe   | m Pacif     | icl   | ine  | 95      |   | DRILLING METHOD: Hollow Stem Auger               | Location Diagram            |
| JECT NAM    | <i>1</i> 2. |          | n Wood      | -     | -    |         |   | Tionow oten / tager                              | -                           |
| 30001 700   |             | Works    | 11 11000    |       |      |         |   |                                                  | †                           |
| PROJECT NUM | raco.       | 441020   | 169.07      |       |      |         | - | SAMPLING METHOD: CME Sampler                     | 1                           |
| PROJECT LOC |             |          | iberty R    | oad   | -    |         |   | THE CALLIDICAL                                   | i                           |
| PROJECT COC |             | Housto   |             | -     |      |         |   |                                                  | 1                           |
|             |             | 1100010  |             |       |      |         |   | SURFACE ELEVATION:                               | 1                           |
| BORING LOCA | TION        |          |             |       |      | -       |   | TOC ELEVATION:                                   | 1                           |
|             |             |          |             |       |      |         | - | WATER LEVEL:                                     | †                           |
| START DATE: | 03/0        | 5/97     | FINISH DATE | ·     | 03   | 3/05/97 |   | WATER ELEVATION:                                 |                             |
| START TIME: |             |          | FINISH TIME |       |      |         |   | DATE:                                            | †                           |
| SAMPLER     | SAMPLE      | OVM      | RECOVERY    | OEP   | mu . | SOIL    | C | SOIL DESCRIPTION AND DRILLING CONDITIONS         | NOTES:                      |
| TYPE        | DEPTH       | (PPM)    | (FT)        | IN FI |      | GRAPH   | 1 |                                                  | 110728.                     |
| TIPE        | i derin     | (FFm)    | (1)         | 44 11 | 1    | Goon    | Ť |                                                  |                             |
| CB9         |             |          | 5.0         | 41    | -    | 1       |   |                                                  |                             |
| - 000       |             |          | 10.0        |       |      | CL      |   | Silty CLAY reddish brown; stiff; low plasticity; |                             |
|             |             |          |             | 42    | -    | -       |   | moist; with creosote odor                        |                             |
|             | <u> </u>    | -        |             | 725   | _    | İ       |   | molet, with discourte deci                       |                             |
|             |             |          | h i         | 43    | -    |         |   |                                                  |                             |
|             | 1           | <u> </u> |             | -,0   | -    | i       | i | grading very stiff                               |                             |
|             |             |          |             |       |      | 1       |   | grading voly dur                                 |                             |
|             | 1           | <u> </u> |             | 44    | -    |         |   |                                                  |                             |
|             |             | }        |             |       | _    |         | _ |                                                  |                             |
|             | 45.0        |          |             | 45    | _    | СН      |   | CLAY; reddish brown; medium plasticity; hard;    |                             |
|             |             |          |             |       |      |         |   | moist; with creosote in fractures ~0.5% of mass  |                             |
| CB10        |             |          | 5.0         | 46    |      |         |   |                                                  |                             |
|             | İ           |          |             |       |      | Ĭ       |   |                                                  |                             |
|             |             |          |             | 47    |      |         | 1 |                                                  |                             |
| 1           |             |          |             |       |      | Ì       |   |                                                  |                             |
|             |             |          |             | 48    |      |         |   |                                                  |                             |
|             |             | 1        |             |       |      | ĺ       |   | ·                                                | -                           |
|             |             |          |             | 49    |      |         |   |                                                  |                             |
|             |             |          |             |       |      |         | 1 |                                                  |                             |
|             | 50.0        |          |             | 50    |      |         |   | SILT; reddish brown; low plasticity; firm; moist | collected sample @ 51-52'   |
|             | 1           |          |             |       |      | ML      |   | with creosote ~5% of mass in fractures           | for chemical analysis       |
| CB11        |             |          | 5.0         | 51    |      |         |   | and trace clay                                   |                             |
|             |             |          |             |       |      |         |   |                                                  |                             |
|             |             |          |             | 52    |      |         |   |                                                  |                             |
|             |             |          |             |       |      |         |   | CLAY; reddish brown, medium plasticity; hard;    |                             |
|             |             |          |             | 53    |      | CH      |   | moist, with creosote in fractures ~0.1% of mass  |                             |
|             |             |          | 100         |       |      |         |   |                                                  |                             |
|             |             | 1        |             | 54    |      |         |   |                                                  |                             |
|             |             |          |             |       |      |         |   |                                                  |                             |
|             | 55.0        | 1        |             | 55    |      |         |   |                                                  |                             |
| ,           | l           |          |             |       |      |         |   |                                                  |                             |
| CB12        |             | 1        | 5.0         | 56    |      | -       |   |                                                  |                             |
|             |             |          |             |       |      |         |   |                                                  |                             |
|             |             |          |             | 57    |      |         |   |                                                  |                             |
|             |             | 8        |             |       |      |         |   |                                                  |                             |
|             |             |          |             | 58    |      |         |   |                                                  |                             |
|             |             |          |             |       |      |         |   |                                                  |                             |
|             |             |          |             | 59    |      |         |   |                                                  |                             |
|             |             |          |             |       |      | I       |   | Bottom of boring @ 60'                           | Collect soil samples for    |
| '           | 60.0        | 1        |             | 60    |      |         |   | Boring with cement/bentonite grout               | chemical analyisis 58 - 60' |
| eologi      |             | R. Lam   | b           |       |      |         |   | LEGEND:                                          | C1 - Completion Interval    |
| Checke      | d By:       |          |             |       |      |         |   | SS - Split Spoon                                 | OVM - Organic Vapor Meter   |
|             | • • • • •   |          |             |       |      |         |   |                                                  | PP - Pocket Penetrometer    |

|             |              |          |                                                  |         |                | -  | LOG OF BORING No.: SB05                            |                           |
|-------------|--------------|----------|--------------------------------------------------|---------|----------------|----|----------------------------------------------------|---------------------------|
|             | Te           | FTON     | iext                                             |         |                |    |                                                    | SHEET NUMBER 1 OF 3       |
|             |              | - K      |                                                  |         |                |    | DRILLING CONTRACTOR: Best Drilling Services        | Location Diagram          |
| 200         |              | Souther  | n Pacifi                                         | c Line  | 25             |    | DRILLING METHOD: Hollow Stem Auger                 |                           |
| INT:        |              | Houston  |                                                  |         |                |    |                                                    | 1                         |
| PROJECT NAM |              | Works    |                                                  |         | 3,111.3        |    |                                                    | 1                         |
| PROJECT NUM |              | 441020   | 69.07                                            |         |                |    | SAMPLING METHOD: CME Sampler                       | 1                         |
| PROJECT LOC |              | 4910 Li  |                                                  | ad      |                |    |                                                    | 1                         |
| PRODUCT COC |              | Houston  |                                                  |         |                |    |                                                    | 1                         |
|             |              |          | .,                                               |         |                |    | SURFACE ELEVATION:                                 |                           |
| BORING LOCA | TIONS        | SB05 H   | WPW                                              |         |                |    | TOC ELEVATION:                                     |                           |
| BOIGHG COCK | TION.        |          |                                                  |         |                |    | WATER LEVEL:                                       |                           |
| START DATE: | 3/4          | /97      | FINISH DATE                                      | : 3     | /4/97          |    | WATER ELEVATION:                                   | 1                         |
| START TIME: |              |          | FINISH TIME:                                     |         |                |    | DATE:                                              |                           |
| SAMPLER     | SAMPLE       | OVM      | RECOVERY                                         | DEPTH   | SOIL           | C  | SOIL DESCRIPTION AND DRILLING CONDITIONS:          | NOTES:                    |
| TYPE        | ОЕРТН        | (PPM)    | (FT)                                             | IN FEET | GRAPH          | 1  |                                                    |                           |
|             |              | (1.1.1)  |                                                  | T       | F              | T  | Gravel; brown and dk. brown; loose; moist;         | Boring Advanced with      |
| CB1         | 1-5          |          | 4.0                                              | 1       | 7 1            |    | with some sand and silt (Fill)                     | 8 1/4" O.D., 4 1/4" I.D.  |
|             |              |          |                                                  |         | 7 L            | 1  |                                                    | hollow stem augers        |
|             |              |          |                                                  | 2       | 7 L            |    |                                                    |                           |
|             |              |          |                                                  |         | 1              | Π  |                                                    |                           |
|             |              |          |                                                  | 3       | CL             |    | Silty CLAY; dk. brown; very stiff; low plasticity; |                           |
|             |              |          |                                                  |         |                |    | moist; grading brownish gray with iron oxide       |                           |
|             |              |          |                                                  | 4       | 7              |    | staining; trace CaC03 nodules                      |                           |
|             |              |          | <del>                                     </del> |         | _              |    |                                                    |                           |
|             | 5.0          |          |                                                  | 5       | ML             | ╬  | Clayey SILT; brownish gray; firm; low plasticity;  |                           |
|             | 3.0          |          | <u>'</u>                                         |         |                |    | moist                                              |                           |
|             | F 40         |          | 50                                               | _       | -              | #- | Silty CLAY; brownish gray; stiff; low plasticity;  |                           |
| CB2         | 5 - 10       |          | 5.0                                              | 6       | CL             |    | moist with trace sand CaC03 nodules at approx.     |                           |
| -           |              |          |                                                  |         | - 62           |    | 6.5'                                               |                           |
|             |              |          | -                                                | 7       | -              | ∥. | 0.5                                                |                           |
|             |              |          |                                                  | 8       | -              |    |                                                    |                           |
|             |              |          |                                                  | -       |                |    | 2" layer of CaC03 nodules at approx. 8'            |                           |
| 1           |              |          |                                                  | 9       | -              |    | Grading It. brownish gray                          |                           |
|             | -            | <u> </u> |                                                  | 3       | -              |    | 3" layer of CaCO3 nodules at 10'                   |                           |
| 1           | 10.0         |          |                                                  | 10      | -              | 1  | D layer or Cacco modules at 10                     |                           |
|             | 1 10.0       |          | !                                                |         |                |    |                                                    |                           |
| CB3         | 10 - 15      |          | 5.0                                              | 11      | -              | -  | 2" thick clayey silt lens                          |                           |
| CB3         | 10-13        | 1        | 3.0                                              | • • •   | <del>-</del>   |    | Grading soft                                       |                           |
| 1           |              |          |                                                  | 12      | $\dashv$       |    | Grading stiff                                      |                           |
|             | <del> </del> | <u>!</u> | <del>                                     </del> | -       | 7              |    | Grading soft                                       |                           |
|             |              |          |                                                  | 13      | -              |    |                                                    |                           |
| <b> </b>    | <del> </del> |          | 1                                                | "       | <del>-</del> i |    | Approx. 1" thick clayey silt lens                  |                           |
|             |              |          |                                                  | 14      | -              |    | Grading very stiff                                 |                           |
|             | <del> </del> | !        | <del>                                     </del> |         | _              |    |                                                    |                           |
| 1           | 15.0         | •        |                                                  | 15      | 7              |    | Grading firm                                       |                           |
|             | 1            | l        | Ī                                                |         | 1              |    |                                                    |                           |
| C84         | 15 - 20      |          | 5.0                                              | 16      | ML             | 1  | SILT; brownish gray, soft, non-plastic; wet w/     |                           |
|             | † <u></u>    | i        | 1                                                |         |                |    | trace sand and clay                                |                           |
| 1           |              |          |                                                  | 17      | $\neg$         |    |                                                    |                           |
|             |              |          | 1                                                | I       |                |    | Trace clay nodules                                 |                           |
| 1           |              |          |                                                  | 18      |                |    |                                                    |                           |
|             | 1            | i        | Ī                                                | Ī       |                |    |                                                    |                           |
| 1           |              | 1        |                                                  | 19      |                |    |                                                    | Collect soil sample for   |
|             | 1            | <u>.</u> | T                                                |         | SP             | T  | Silty SAND; loose; It. gray; with fine grained     | chemical analysis from    |
| 1           | 20.0         |          |                                                  | 20      |                |    | wet with creosote odor                             | 19.5-20'                  |
| Geolog      |              | R. Lan   | dr                                               |         |                |    | LEGEND:                                            | CI - Completion Interval  |
| Checke      |              |          |                                                  |         |                |    | SS - Split Spoon                                   | OVM - Organic Vapor Meter |
| 1           | •            |          |                                                  |         | 343            |    |                                                    | PP - Pocket Penetmmeter   |

|             |         |          |             | :     |           |       |              | LOG OF BORING No.: SB05                            |                           |  |  |  |
|-------------|---------|----------|-------------|-------|-----------|-------|--------------|----------------------------------------------------|---------------------------|--|--|--|
|             | To      |          | iove        |       |           |       |              | COG OF BORING NO OBOO                              |                           |  |  |  |
|             | T.E     |          | vext        |       |           |       |              |                                                    | SHEET NUMBER 2 OF 3       |  |  |  |
|             |         |          |             |       |           |       |              | DRILLING CONTRACTOR: Best Drilling Services        | Location Diagram          |  |  |  |
| VENT:       |         |          | m Pacif     |       |           |       |              | DRILLING METHOD: Hollow Stem Auger                 | <u>:</u>                  |  |  |  |
| JIECT NAM   | Æ:      | Housto   | n Wood      | Pe    | rse       | rving |              |                                                    |                           |  |  |  |
| 1           |         | Works    |             |       |           |       |              |                                                    | 1                         |  |  |  |
| PROJECT NUM | GER:    | 441020   | 069.07      |       |           |       |              | SAMPLING METHOD: CME Sampler                       | <u>!</u>                  |  |  |  |
| PROJECT LOC | ATION:  | 4910 L   | iberty R    | oad   |           |       |              |                                                    |                           |  |  |  |
|             |         | Housto   |             |       |           |       |              |                                                    |                           |  |  |  |
|             |         |          |             |       |           |       |              | SURFACE ELEVATION:                                 | 1                         |  |  |  |
|             |         | SB05 F   | WPW         |       |           |       | ***          | TOC ELEVATION:                                     | •                         |  |  |  |
| BORING LOCA | HORE    | 00001    | 1001 00     |       |           |       | -            | WATER LEVEL:                                       |                           |  |  |  |
|             | 2/4     | /97      |             |       | 21/       | 4/97  | -            | WATER ELEVATION:                                   | •                         |  |  |  |
| START DATE: | 3/4     | 131      | FINISH DATE |       | 3/-       | +131  |              | DATE:                                              | :                         |  |  |  |
| START TIME: |         |          | FINISH TIME | -     |           |       | <del>-</del> |                                                    | NOTES:                    |  |  |  |
| SAMPLER     | SAMPLE  | OVM      | RECOVERY    | CEP   | тн        | SOIL  | C            | SOIL DESCRIPTION AND ORILLING CONDITIONS           | NOTES:                    |  |  |  |
| TYPE        | DEPTH   | (PPM)    | (FT)        | IN FE | ET        | GRAPH | 11           |                                                    |                           |  |  |  |
|             |         |          |             |       |           |       | 1            |                                                    |                           |  |  |  |
| CB5         |         |          | 5.0         | 21    |           |       |              |                                                    |                           |  |  |  |
|             |         |          |             |       |           |       |              | Grades very fine to fine grained                   |                           |  |  |  |
|             |         |          |             | 22    | П         |       |              |                                                    |                           |  |  |  |
|             |         |          | İ           |       |           | Ì     |              |                                                    |                           |  |  |  |
|             |         |          |             | 23    | $\vdash$  |       |              |                                                    |                           |  |  |  |
|             |         |          | i           |       |           |       |              |                                                    | Collect soil sample at    |  |  |  |
|             |         |          |             |       | $\vdash$  |       |              |                                                    | 4                         |  |  |  |
|             |         |          |             | 24    |           |       |              |                                                    | 24.0-24.5' for chemical   |  |  |  |
|             |         |          |             |       |           |       |              |                                                    | analysis                  |  |  |  |
|             | 5.0     |          |             | 25    | П         |       |              |                                                    |                           |  |  |  |
|             | 0.0     |          | 1           |       |           |       |              |                                                    |                           |  |  |  |
|             |         |          | 5.0         |       | $\square$ |       |              |                                                    |                           |  |  |  |
| CB6         | 5 - 10  |          | 5.0         | 26    |           |       | 1            |                                                    |                           |  |  |  |
| 1           |         |          |             |       | Ш         |       |              |                                                    |                           |  |  |  |
|             |         |          |             | 27    |           |       |              |                                                    |                           |  |  |  |
|             |         |          |             |       | Ш         |       |              | -                                                  |                           |  |  |  |
|             |         |          |             | 28    |           |       |              |                                                    |                           |  |  |  |
|             |         |          |             |       | П         |       |              |                                                    | -                         |  |  |  |
| 1           |         |          |             | 29    |           |       |              |                                                    |                           |  |  |  |
|             |         |          | 1           |       |           |       |              |                                                    |                           |  |  |  |
|             | 10.0    |          |             | 30    |           | ML    |              | Clayey SILT; gray and reddish brown; stiff;        |                           |  |  |  |
|             | 10.0    | i        | <del></del> |       |           |       |              | low plasticity; moist with sandy silt lens approx. |                           |  |  |  |
| C87         | 10 -15  |          | 3.5         | 31    | H         |       |              | 0.1" thick                                         |                           |  |  |  |
| C87         | 10-13   | <u> </u> | 3.3         | 31    |           |       |              | Varved                                             |                           |  |  |  |
|             |         |          |             |       | Н         |       |              | Valved                                             |                           |  |  |  |
| <u> </u>    | ļ       |          | -           | 32    |           | -     | 1            | CU T. and dish have said and a second              |                           |  |  |  |
|             |         |          |             |       | $\square$ | ML    |              | SILT; reddish brown with gray mottling; non-       |                           |  |  |  |
|             |         |          | 1           | 33    |           |       | 1            | plastic; wet with trace sand                       |                           |  |  |  |
|             |         |          |             |       |           |       |              |                                                    |                           |  |  |  |
|             |         |          |             | 34    |           | !     | 1            |                                                    | Collect soil sample for   |  |  |  |
|             |         |          |             |       |           |       |              |                                                    | chemical analysis from    |  |  |  |
| I           | 15.0    |          |             | 35    | П         |       |              |                                                    | 34.5-35.0'                |  |  |  |
|             | 1       | l        | Ī           |       |           |       |              |                                                    |                           |  |  |  |
| C88         | 15 - 20 |          | 4.0         | 36    | Н         | SP    | 1            | Silty SAND; reddish brown; loose; very fine        |                           |  |  |  |
| - 000       | 10 20   |          | 1           | -     |           | •     | 1            | to fine grained; wet                               |                           |  |  |  |
| I           |         |          |             | 37    | H         | İ     |              | to mile granies, not                               |                           |  |  |  |
| <b> </b>    | 1       | <u> </u> | +           | 31    |           |       |              |                                                    |                           |  |  |  |
| I           |         |          |             |       | $\vdash$  |       |              |                                                    |                           |  |  |  |
| ļ           |         | <u> </u> |             | 38    |           | 1     |              |                                                    |                           |  |  |  |
|             |         |          |             |       | Ш         | l     |              |                                                    |                           |  |  |  |
|             |         |          |             | 39    |           |       |              |                                                    | Collect soil sample for   |  |  |  |
|             |         |          |             | !     |           | l     |              |                                                    | chemical analysis from    |  |  |  |
| l           | 40.0    |          |             | 40    |           | 1     |              |                                                    | 39-40'                    |  |  |  |
| eologi      | ist:    | R. Larr  | dr          |       |           |       |              | LEGEND:                                            | Cl - Completion Interval  |  |  |  |
| Checke      |         |          |             |       |           |       |              | SS - Split Spoon                                   | OVM - Organic Vapor Meter |  |  |  |

PP - Pocket Penetrometer TOC - Top Of Casing

|              |          |                                                  |                                                  |         |        | -  | LOG OF BORING No.: SB05                           |                           |
|--------------|----------|--------------------------------------------------|--------------------------------------------------|---------|--------|----|---------------------------------------------------|---------------------------|
|              | TO       |                                                  | Toyt                                             |         |        |    | LOG OF BORING No.: SB05                           |                           |
|              | Ar.      | Fran                                             | ACY!                                             |         |        |    | Book Drilling Convince                            | SHEET NUMBER 3 OF 3       |
| Ι            |          |                                                  | 5                                                |         |        |    | DRILLING CONTRACTOR: Best Drilling Services       | Location Diagram          |
| IENT:        |          |                                                  | m Pacif                                          |         |        |    | DRILLING METHOD: Hollow Stem Auger                | +                         |
| -ROJECT NAM  | E:       |                                                  | n Wood                                           | Pers    | erving |    |                                                   | +                         |
|              |          | Works                                            | CO 07                                            |         |        |    | SAMPLING METHOD: CME Sampler                      | +                         |
| PROJECT NUM  |          | 441020                                           |                                                  |         |        |    | SAMPLING METHOD: CME Sampler                      | -                         |
| PROJECT LOC  | ATION:   |                                                  | berty R                                          | oau     |        |    |                                                   | <del>-</del> i            |
|              |          | Housto                                           | n, IA                                            |         |        |    | SURFACE ELEVATION:                                | ┪                         |
| <u> </u>     |          | SB05 F                                           | 1/4/12/4/                                        |         |        |    | TOC ELEVATION:                                    | 4                         |
| BORING LOCAT | TION:    | 3000 1                                           | 1001-00                                          |         |        |    | WATER LEVEL:                                      | 1                         |
|              | 2/4      | /97                                              |                                                  | . 2     | /4/97  |    |                                                   | +                         |
| START DATE:  | 3/4      | 191                                              | FINISH DATE                                      |         | 14/91  |    | WATER ELEVATION: DATE:                            | +                         |
| START TIME:  |          | i                                                | FINISH TIME                                      |         | T      | 10 | SOIL DESCRIPTION AND DRILLING CONDITIONS          | NOTES:                    |
| SAMPLER      | SAMPLE   | OVM                                              | RECOVERY                                         |         | SOIL   | C  | SOL DESCRIPTION AND URLEING CONDINONS             | NOTES.                    |
| TYPE         | DEPTH    | (PPM)                                            | (FT)                                             | IN FEET | GRAPH  | 11 |                                                   |                           |
| CB9          |          |                                                  | 5.0                                              | 41      | -      |    |                                                   |                           |
| CBS          |          |                                                  | 3.0                                              | -       | -      |    |                                                   |                           |
|              |          |                                                  |                                                  | 42      | -      |    |                                                   |                           |
|              |          | <del>                                     </del> | +                                                | 72      | CH     |    | CLAY; reddish brown; hard; medium plasticity;     | Collect soil sample at    |
|              |          |                                                  |                                                  | 43      | ⊣ ՟``  |    | moist                                             | 24.0-24.5' for chemical   |
|              |          | 1                                                | <del>                                     </del> |         | _      |    |                                                   | analysis                  |
|              |          |                                                  |                                                  | 44      | -      |    |                                                   |                           |
|              | !        | 1                                                |                                                  | 44      | -      |    |                                                   |                           |
|              |          |                                                  |                                                  | -       | -      |    |                                                   |                           |
|              | 45.0     |                                                  |                                                  | 45      |        |    |                                                   |                           |
|              |          |                                                  |                                                  |         |        |    |                                                   |                           |
| CB10         |          |                                                  | 2.0                                              | 46      |        |    | Possible sand lens (no recovery)                  |                           |
|              |          |                                                  |                                                  |         |        |    |                                                   |                           |
|              |          |                                                  |                                                  | 47      |        |    |                                                   |                           |
| 1.           |          |                                                  |                                                  |         | 4      |    |                                                   | -                         |
|              |          |                                                  |                                                  | 48      | _      |    |                                                   |                           |
|              |          |                                                  |                                                  | _       | 4      |    | Children and a second of the                      | -                         |
|              |          | !                                                |                                                  | 49      | _      |    | 2" thick silt lens at approx. 49.0                |                           |
| 1            |          |                                                  |                                                  |         | 4      | 1  |                                                   |                           |
|              | 50.0     | !                                                | !                                                | 50      | _      |    |                                                   |                           |
| 0044         |          |                                                  | 2.5                                              |         | -      | 1  |                                                   |                           |
| CB11         | <u> </u> | <u> </u>                                         | 2.5                                              | 51      | -      |    |                                                   |                           |
|              |          |                                                  |                                                  | 52      | -      |    |                                                   |                           |
|              | 1        | -                                                | -                                                | 32      | ML     |    | SILT; reddish brown non-plastic, wet; with trace  |                           |
| 1            | İ        |                                                  |                                                  | 53      | - "    |    | sand                                              |                           |
|              | i<br>İ   | <del>                                     </del> | 1                                                | 33      | _      |    |                                                   |                           |
|              |          |                                                  |                                                  | 54      | -      |    |                                                   | Collect soil sample for   |
|              | i        | <del>i</del>                                     | i                                                |         | 7      |    |                                                   | chemical analysis 54-55'  |
|              |          |                                                  |                                                  | 55      | 7      |    | <u> </u>                                          |                           |
|              |          | 1                                                | 1                                                |         |        |    |                                                   |                           |
| CB12         |          |                                                  | 3.2                                              | 56      | СН     |    | CLAY; reddish brown; medium plasticity; firm:     |                           |
|              | 5        |                                                  |                                                  |         |        |    | moist                                             |                           |
|              |          |                                                  |                                                  | 57      |        |    |                                                   |                           |
|              | 1        |                                                  |                                                  |         |        |    |                                                   | `                         |
|              | <u> </u> |                                                  |                                                  | 58      |        |    |                                                   | Bottom of boring at 60'   |
|              |          |                                                  |                                                  |         |        | -  |                                                   | Boring backfilled with    |
|              | 1        |                                                  | !                                                | 59      | ML     |    | Clayey SILT; reddish brown; low plasticity; firm; | cement/grout bentonite    |
|              |          |                                                  |                                                  |         | _      |    | wet                                               |                           |
| 1            | 60.0     |                                                  |                                                  | 60      |        | _  |                                                   | L                         |
| Geologi      |          | R. Larr                                          | dr                                               |         |        |    | LEGEND:                                           | C1 - Completion Interval  |
| Checke       | ed By:   |                                                  |                                                  |         |        |    | SS - Split Spoon                                  | OVM - Organic Vapor Meter |
|              |          |                                                  |                                                  |         |        |    |                                                   | PP - Pocket Penetrometer  |
| 1            |          |                                                  |                                                  |         |        |    |                                                   | TOC - Top Of Casing       |

|              |              |                                       | -            |       |          |          |   | LOG OF BORING No.: SB06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |
|--------------|--------------|---------------------------------------|--------------|-------|----------|----------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|              | TE           | rran                                  | iext         |       |          |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SHEET NUMBER 1 OF 3           |
|              |              | · · · · · · · · · · · · · · · · · · · |              |       |          |          |   | DRILLING CONTRACTOR: Best Drilling Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location Diagram              |
| ENT:         |              | Southe                                | m Pacifi     | c Li  | nes      |          |   | DRILLING METHOD: Hollow Stem Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i                             |
| IPROJECT NAM | · ·          |                                       | n Wood       |       |          |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | !                             |
| PROJECT NOW  | =            | Works                                 |              |       |          |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                             |
| PROJECT NUM  |              | 441020                                | 69.07        |       |          |          |   | SAMPLING METHOD: CME Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                             |
|              |              |                                       | iberty Ro    | ad    |          |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                             |
| PROJECT LOC  | ATIONS       | Housto                                | n TX         |       |          |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                             |
| -            |              | 1100010                               | 11, 17       |       |          |          |   | SURFACE ELEVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
| BORING LOCA  | 2011         | SB06 F                                | WPW          |       |          |          |   | TOC ELEVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                             |
| BOHUNG LOCA  | IION:        | 0500.                                 | ,,,,,        |       |          |          |   | WATER LEVEL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ţ <b>!</b>                    |
|              | 3/4          | 1/97                                  | FINISH DATE  |       | 3/4      | 1/97     |   | WATER ELEVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
| START DATE:  | 01-          | 701                                   | FINISH TIME: | _     |          |          |   | DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                             |
| SAMPLER      | SAMPLE       | OVM                                   | RECOVERY     | OEP   | TH       | SOIL     | C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOTES:                        |
|              | DEPTH        | (PPM)                                 | (FT)         | IN FE | 1        | GRAPH    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| TYPE         | ) DEPTH      | i (PPM)                               | 1 1          | 44 14 | 1        | FILL     | Ť | Gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Boring Advanced with          |
| CB1          | 1-5          |                                       | 3.5          | 1     |          |          | ï |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 1/4" O.D., 4 1/4" I.D.      |
| C81          | 1 1-5        | -                                     | 0.0          | •     |          | SM       |   | SAND - It. brown; loose, moist; mild creosote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | hollow stem augers            |
|              |              |                                       |              | 2     |          | 0        |   | odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |
|              | -            | 1                                     | +            | 4     | -        |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|              |              |                                       |              | 3     | H        |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| -            | -            | <del>'</del>                          | +            | ٦     | -        | 100      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|              |              |                                       |              | 4     |          | FILL     |   | Cinders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Collect samples from 4' to 5' |
|              | -            | <del> </del>                          | +            | 7     |          | CL       | ï | Silty CLAY; black; stiff; low plasticity; moist;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | for chemical analysis         |
|              |              |                                       |              | _     |          | -        |   | creosote odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |
|              | 5.0          |                                       | -            | 5     | -        |          | ı |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|              |              |                                       |              |       | _        | 1        |   | Grading dark gray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |
| CB2          | 5 -10        | <u> </u>                              | 5.0          | 6     | _        | !        | 1 | Conding It are with iron avida staining: crossate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |
| ŀ            |              |                                       |              |       | <u> </u> |          |   | Grading It. gray with iron oxide staining; creosote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |
|              |              | !                                     |              | 7     | -        | 2        | - | odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |
| 4            |              |                                       |              |       | _        | 1        | 1 | Grades out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |
|              | ļ            | <del> </del>                          | -            | 8     | -        | 1        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 1            |              |                                       |              |       | _        | -        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|              | !            | -                                     |              | 9     | -        |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|              | 400          |                                       |              | 10    |          | 1        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|              | 10.0         | !                                     | !            | 10    | -        | <u> </u> |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 000          | ŀ            |                                       | 5.0          | 11    | -        | 1        |   | Silt lens approx. 2" creosote impacted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |
| CB3          | -            | <del>-</del>                          | 1 3.0        | · ' ' | -        | 1        |   | One lend approx. 2 discoule impacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |
|              |              |                                       |              | 12    | ,        | 1        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|              | -            | <del> </del>                          | -            | 12    | -        | -        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|              |              |                                       |              | 13    |          | 1        |   | Silt lens approx. 3" creosote impacted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                             |
|              |              | <u> </u>                              | +            | 1 '3  | <u> </u> |          |   | One come approved a second company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
| 1            |              |                                       |              | 14    | -        | 1        |   | Silt lens approx. 2" creosote impacted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |
|              | -            | -                                     | -            | ┤ '~  | -        |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|              | 15.0         |                                       |              | 15    | :        | 1        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|              | 1 13.0       | -                                     | 1            | 1 "   | -        | 1        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                             |
| C84          |              |                                       | 4.5          | 16    | 3        | i        |   | Sand lens approx. 1" creosote impacted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |
| C04          | -            | +                                     | 1 7.5        | ┤ ''  | -        | i        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 1            | 1            |                                       |              | 17    | ,        | 1        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|              | +            | <del>-</del>                          |              | ┪ ''  | -        | 1        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|              |              | •                                     |              | 18    | B        | †        |   | Silt lens approx. 2" creosote impacted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |
| -            | <del> </del> | <del></del>                           |              | ┪ ¨   |          | 1        |   | Silt lens approx. 3" creosote impacted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |
| 1            | 1            | I                                     |              | 19    | او       | i        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Collected soil sample from    |
| -            | <del> </del> | <del>-</del>                          | i            | ┪¨    |          | ML       |   | SILT; gray; firm; non-plastic; moist with trace sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.5-20' for chemical         |
|              | 20.0         |                                       |              | 20    | - اه     | 1        |   | creosote impacted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lanalysis                     |
| Geolog       |              | R. Lar                                | mb           |       |          |          |   | LEGEND:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CI - Completion Interval      |
|              | ed By:       | ,                                     |              |       |          |          |   | SS - Split Spoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OVM - Organic Vapor Meter     |
| - Jonesa     | od Dy.       |                                       |              |       |          |          |   | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | PP - Pocket Penetrometer      |
| 1            |              |                                       |              |       |          |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOC - Top Of Casing           |

|               |          |                 |              | -    |             |              |      | LOG OF BORING No.: SB06                             |                             |
|---------------|----------|-----------------|--------------|------|-------------|--------------|------|-----------------------------------------------------|-----------------------------|
|               | To       |                 | <b>iext</b>  |      |             |              |      | 233 31 33                                           | SHEET NUMBER 2 OF 3         |
|               | TE       |                 | EVI          |      |             |              |      | DRILLING CONTRACTOR: Best Drilling Services         | Location Diagram            |
|               |          |                 | - Desifi     |      |             |              |      | DRILLING METHOD: Hollow Stem Auger                  |                             |
| ENT:          |          | Souther         | m Pacifi     | CLI  | nes         | oina         | _    | DRILLING METHOD. FIGURE COMP. 1090                  | 1                           |
| . ROJECT NAME |          |                 | n Wood       | Per  | Sei         | ving         |      |                                                     | 1                           |
|               |          | Works<br>441020 | CO 07        |      |             |              |      | SAMPLING METHOD: CME Sampler                        | ,                           |
| PROJECT NUME  |          |                 |              | d    |             |              |      | SAMPLING METITOD.                                   | 1                           |
| PROJECT LOCA  | TION:    | 4910 LI         | berty Ro     | bad  |             |              |      |                                                     | 1                           |
|               |          | Housto          | n, IX        |      |             |              |      | SURFACE ELEVATION:                                  | l l                         |
|               |          | 00001           | DAIDIAI      |      |             |              |      | TOC ELEVATION:                                      | l                           |
| BORING LOCAT  | ION:     | S806 H          | IVVPVV       |      |             |              |      | WATER LEVEL:                                        |                             |
|               |          |                 |              |      |             |              |      | WATER ELEVATION:                                    |                             |
| START DATE:   |          |                 | FINSH DATE   | -    |             |              |      | DATE:                                               |                             |
| START TIME:   |          |                 | FINISH TIME: |      |             |              | 10   | SOIL DESCRIPTION AND DRILLING CONDITIONS            | NOTES:                      |
| SAMPLER       | SAMPLE   | OVM             | RECOVERY     | 0EP  |             | SOIL         | C    | SOL DESCRIPTION ( )                                 |                             |
| TYPE          | ОЕРТН    | (PPM)           | (FI)         | IN F | ET          | GRAPH        | 11   |                                                     |                             |
|               |          |                 | 1.0          | -    | $\vdash$    |              | 1    | Silty SAND; It. gray; loose; very fine to fine      |                             |
| C85           |          |                 | 4.2          | 21   |             | SP           | 1    | grained; wet with mild creosote odor                |                             |
|               |          |                 |              |      | $\vdash$    |              |      | grained, wer with filling creosore odor             |                             |
|               |          |                 | 1            | 22   |             |              |      |                                                     |                             |
|               |          |                 |              |      |             | 1            |      |                                                     |                             |
|               |          |                 |              | 23   | _           | !            |      |                                                     |                             |
|               | 1000 COS |                 |              |      | -           |              |      |                                                     | Collect samples from 24' to |
|               |          |                 |              | 24   |             | 1            |      |                                                     |                             |
|               |          |                 |              |      |             | CL           | 1    |                                                     | 25' for chemical analysis   |
|               |          |                 |              | 25   |             |              | 1    |                                                     |                             |
|               | 1        | İ               | Ī            | 1    |             | i            |      |                                                     |                             |
| 000           | F 40     |                 | 3.1          | 26   |             | 1            |      |                                                     |                             |
| CB6           | 5 - 10   | -               | 1 3.1        | 20   | -           | -            |      |                                                     |                             |
| 1 .           |          |                 |              | 27   | ,           | CL           | ╢    | Silty CLAY; light gray; very stiff; low plasticity; |                             |
|               |          | <u> </u>        |              | 21   | -           |              | 1    | moist with iron oxide staining                      | ·                           |
| 1             |          |                 |              | 20   |             | 1            | 1    | most war non oxide daming                           |                             |
|               | !        | -               |              | 28   | -           | -            |      |                                                     | -                           |
|               |          | 1               |              | 1    | $\vdash$    | -            |      |                                                     |                             |
|               |          | -               |              | 29   | <b>'</b>  - | 4            | 1    |                                                     |                             |
|               | l        |                 |              | 1    | $\vdash$    | 4            |      |                                                     |                             |
|               |          |                 | !            | 30   | -           | -            |      |                                                     |                             |
|               |          |                 |              | -    | .  -        | 4            | 1    |                                                     |                             |
| C87           |          |                 | 2.0          | 31   | -           | -            |      |                                                     |                             |
|               |          |                 |              |      |             | -            |      |                                                     |                             |
|               |          | -               |              | 32   | ۷.          | <del>-</del> |      |                                                     |                             |
|               |          |                 |              |      |             | SP           | -  - | Silty SAND; It. gray; very fine to fine grained;    | Collect soil sample for     |
|               | !        |                 |              | 33   | - ا د       | - 37         |      | wet; with creosote odor                             | geotech analysis            |
|               |          |                 |              | -    | <u>.</u>  - | 4            |      | Mer' Mint creasore addi                             |                             |
|               |          | -               |              | ] 34 | 4           | -            |      |                                                     |                             |
|               | 1        |                 |              | -    | _ -         | -            |      |                                                     |                             |
|               | 1        | !               |              | _ 3  | 2  -        | <del></del>  | - -  | "                                                   |                             |
|               |          |                 |              | 1    | Ļ           |              |      | CLAY; reddish brown; hard; medium plasticity;       |                             |
| CB8           | <u> </u> |                 | 5.0          | - 3  | 6 <u> </u>  | □ сн         |      | moist; with trace hairline fractures; creosote in   |                             |
|               |          |                 |              | 1.   | _ _         | - -          |      |                                                     | 1                           |
|               |          |                 |              | 3 ا  | 7           | -            |      | fractures                                           |                             |
|               |          |                 |              | 1    | L           | -            |      | 1" thick lens CaC03 nodules                         |                             |
|               |          |                 |              | _  3 | 8 _         | _            |      | I THICK IETS CACOS HOUGES                           |                             |
|               |          |                 |              |      | _           | _            |      |                                                     |                             |
|               |          |                 |              | _] 3 | 9           | _            |      | Constants in fractions and as sub                   |                             |
|               |          |                 |              |      | L           | 4            |      | Creosote in fractures grades out                    |                             |
|               | 40.0     |                 |              | 4    | 10          |              |      | LEGEND:                                             | CI - Completion Interval    |
| Geolo         |          | R. La           | mb           |      |             |              |      | SS - Split Spoon                                    | OVM - Organic Vapor Meter   |
| Check         | ed By:   |                 |              |      |             |              |      | 55 - Spilt Spoot                                    | PP - Pocket Penetrometer    |
| 1             | 700      |                 |              |      |             |              |      |                                                     | TOC - Top Of Casing         |

|             |          | -            | رجعت           |      |          |              |                                                  | LOG OF BORING No.: SB06                         |                               |
|-------------|----------|--------------|----------------|------|----------|--------------|--------------------------------------------------|-------------------------------------------------|-------------------------------|
|             |          | in a         | <b>lext</b>    |      |          |              |                                                  |                                                 | SHEET NUMBER 3 OF 3           |
|             |          | The same of  |                |      |          |              |                                                  | DRILLING CONTRACTOR: Best Drilling Services     | Location Diagram              |
| 'ENT:       |          |              | m Pacif        |      |          |              |                                                  | DRILLING METHOD: Hollow Stem Auger              |                               |
| JECT NAM    | E:       |              | n Wood         | Pe   | rse      | rving        |                                                  |                                                 | _                             |
|             |          | Works        |                |      |          |              |                                                  |                                                 | _                             |
| PROJECT NUM | GER:     | 441020       |                |      |          |              |                                                  | SAMPLING METHOD: CME Sampler                    | _                             |
| PROJECT LOC | ATION:   |              | iberty R       | oad  |          |              |                                                  |                                                 | _                             |
|             |          | Housto       | n, TX          |      |          |              |                                                  |                                                 | -                             |
|             |          |              | 13.4.45533.4.4 |      |          |              |                                                  | SURFACE ELEVATION:                              | _                             |
| BORING LOCA | TION:    | SB06 H       | HWPW           |      |          |              |                                                  | TOC ELEVATION:                                  | _                             |
|             |          |              |                |      |          |              |                                                  | WATER LEVEL:                                    | -                             |
| START DATE: |          |              | FINISH DATE    |      |          |              |                                                  | WATER ELEVATION:                                | -                             |
| START TIME: | ,        | T            | FINISH TIME    |      |          | 1            | T-                                               | DATE:  SOIL DESCRIPTION AND DRILLING CONDITIONS | NOTES:                        |
| SAMPLER     | SAMPLE   | OVM          | RECOVERY       | 1    |          | SOIL         | C                                                | SOIL DESCRIPTION AND DRILLING CONDITIONS        | NOTES.                        |
| TYPE        | DEPTH    | (PPM)        | (FT)           | IN F | LEI      | GRAPH        | <del>                                     </del> |                                                 |                               |
| CB9         |          |              | 5.0            | 41   | -        | i            | 1                                                | Grading with creosote in hairline fractures     |                               |
| CD3         | 1        | <del> </del> | 1 3.0          | 71   | -        | :            |                                                  | Crading war orcoods in namine nastares          |                               |
|             |          |              |                | 42   | -        | 1            |                                                  |                                                 | 1                             |
|             |          | 1            | +              | 42   | -        | 1            |                                                  |                                                 |                               |
|             |          |              |                | 43   | -        | 1            |                                                  |                                                 |                               |
|             | <u> </u> | <u> </u>     | -              | 43   | -        |              | 1                                                |                                                 |                               |
|             |          |              |                |      | -        | ł            |                                                  |                                                 | -                             |
|             | !        |              |                | 44   | -        | !            |                                                  |                                                 |                               |
|             |          |              |                |      |          |              |                                                  | Approx. 2" thick layer of CaC03 nodules         |                               |
|             | 45.0'    | 1            |                | 45   |          | }            |                                                  |                                                 |                               |
|             | 1        | i            |                |      |          | i            |                                                  |                                                 |                               |
| CB10        |          |              | 4.7            | 46   | -        | 1            |                                                  | Creosote in fractures grades out                |                               |
| CBIU        | 1        | -            | 1 4.7          | 40   | -        | 2            |                                                  | Creosote in nactures grades out                 |                               |
|             |          |              |                | 47   | -        | 1            |                                                  |                                                 |                               |
|             | !        | -            | 1              | 41   | -        |              | 1                                                | -                                               |                               |
|             |          |              |                | 48   | -        | 1            | -                                                |                                                 |                               |
|             | 1        |              | -              | 40   | -        |              |                                                  |                                                 |                               |
|             |          |              |                | 49   | -        | ML           |                                                  | Clayey SILT; reddish brown; low plasticity;     | Collect soil sample from 49   |
|             | -        | <del> </del> | -              | 49   | -        | IVIL         |                                                  | moist                                           | to 50' for chemical analysis  |
|             | 50.0     |              |                | 50   | -        | 1            |                                                  | Moist                                           | 10 50 for chermical arranysis |
|             | 1 50.0   | -            | -              | 1 30 | -        | <del> </del> | ╢                                                |                                                 |                               |
|             |          |              |                | -4   | -        | 1            |                                                  |                                                 |                               |
|             | <u> </u> | -            | -              | 51   | -        | !            |                                                  |                                                 |                               |
|             |          |              | 1              |      | _        | -            |                                                  |                                                 |                               |
|             | !        | -            | -              | 52   | _        | -            |                                                  |                                                 |                               |
|             |          |              |                |      | _        | 1            |                                                  |                                                 |                               |
|             | !        | 1            |                | 53   | <u> </u> |              |                                                  |                                                 |                               |
|             |          |              |                |      | _        | ļ            |                                                  |                                                 |                               |
|             | <u> </u> |              |                | 54   | -        | į            |                                                  |                                                 |                               |
|             |          |              |                |      |          | -            |                                                  |                                                 |                               |
|             | !        | 1            | -              | 55   | 1        | 1            | -                                                |                                                 | Collect soil sample for       |
|             |          |              |                |      | _        | 77           |                                                  |                                                 |                               |
| ST11        | !        |              | 2.0            | 56   | -        | 1            |                                                  |                                                 | geotech analysis              |
|             | A        |              |                | _    |          | -            |                                                  |                                                 |                               |
|             | 57.0'    | !            |                | 57   | 1        | !            | -                                                |                                                 |                               |
|             |          |              |                |      | -        | -            |                                                  |                                                 |                               |
|             | 1        |              |                | 58   | -        | !            |                                                  |                                                 |                               |
|             | İ        |              |                |      | _        | -            |                                                  |                                                 | Power of basics of 571        |
|             |          |              |                | 59   | <u> </u> | į            | 1                                                |                                                 | Bottom of boring at 57'       |
|             |          |              | 140            |      | _        | 4            | 1                                                |                                                 | Backfilled with bentonite     |
| I.          | 60.0     |              |                | 60   | )        | i            |                                                  |                                                 |                               |
| eolog       |          | R. Lan       | nb             |      |          |              |                                                  | LEGEND:                                         | CI - Completion Interval      |
| Checke      | ed By:   |              |                |      |          |              |                                                  | SS - Split Spoon                                | OVM - Organic Vapor Meter     |
|             |          |              |                |      |          |              |                                                  |                                                 | PP - Pocket Penetrometer      |
| 1           |          |              |                |      |          |              |                                                  |                                                 | TOC - Top Of Casing           |

|              | !           | يد سيعون     | -                                                |      |          |        |   | LOG OF BORING No.: SB07                                                     |                                |
|--------------|-------------|--------------|--------------------------------------------------|------|----------|--------|---|-----------------------------------------------------------------------------|--------------------------------|
|              | E           | Fran         | <b>iext</b>                                      |      |          |        |   |                                                                             | SHEET NUMBER 1 OF 2            |
|              | -           |              |                                                  |      |          |        |   | DRILLING CONTRACTOR: Best Drilling Services                                 | Location Diagram               |
| " ENT:       |             | Southe       | m Pacifi                                         | icli | ine      | 2      |   | DRILLING METHOD: Hollow Stem Auger                                          | !                              |
|              |             |              | n Wood                                           | -    | _        |        |   | DRILLING METHOD. THORAT STORY STORY AND AND AND AND AND AND AND AND AND AND | <del>†</del>                   |
| ECT NAM      | £:          |              | 11 44000                                         | re   | 136      | ville  |   |                                                                             | <del>'</del>                   |
|              |             | Works        | CO 07                                            |      |          |        |   | SAMPLING METHOD: CME Sampler                                                |                                |
| PROJECT NUM  | BER:        | 441020       |                                                  |      |          |        |   | SAMPLING METHOD: CME Sampler                                                | -                              |
| PROJECT LOC  | ATION:      |              | berty Ro                                         | oad  |          |        |   |                                                                             | 4                              |
|              |             | Housto       | n, IX                                            |      |          |        |   |                                                                             | <u>.</u>                       |
|              |             |              |                                                  |      |          |        |   | SURFACE ELEVATION:                                                          | 4                              |
| BORING LOCAT | TON:        | SB07 H       | WPW                                              |      |          |        |   | TOC ELEVATION:                                                              |                                |
|              |             |              |                                                  |      |          |        |   | WATER LEVEL:                                                                | <u>.</u>                       |
| START DATE:  | 3/06        | 3/97         | FINISH DATE                                      | Ŀ    |          | 3/06/9 | 7 | WATER ELEVATION:                                                            |                                |
| START TIME:  |             |              | FINISH TIME:                                     |      |          |        |   | DATE:                                                                       |                                |
| SAMPLER      | SAMPLE      | OVM          | RECOVERY                                         | OEP  | тн       | SOIL   | C | SOIL DESCRIPTION AND DRILLING CONDITIONS                                    | NOTES:                         |
| TYPE         | CEPTH       | (PPVI)       | (FT) :                                           | N FE | EET      | GRAPH  | 1 |                                                                             |                                |
|              |             | i            |                                                  |      | П        |        | T | Gravel (Fill)                                                               | Boring advanced with 8 1/4"    |
|              |             |              |                                                  | 1    |          |        |   |                                                                             | O.D. 4 1/4" I.D. hollow stem   |
|              |             | İ            | <del>                                     </del> |      |          | -      |   | Railroad Ties (Fill)                                                        | augers                         |
|              |             |              | !                                                | 2    | H        |        |   |                                                                             | 1                              |
| CB1          |             | :            | 2.8'                                             | _    |          |        | - |                                                                             | <del> </del>                   |
| 001          |             | 1            | 2.0                                              | -    | H        |        |   | Gravel (Fill)                                                               | Collect soil sample for        |
|              |             | !            | <del>                                     </del> | 3    | -        | SM     | - |                                                                             |                                |
|              |             |              |                                                  |      | $\vdash$ | SIM    |   | SAND; Black; fine grained; moist with creosote                              | Chernical alialysis 2.5-3.0    |
|              |             |              |                                                  | 4    |          |        |   | odor; grading brown (Fill)                                                  |                                |
|              |             |              | i                                                |      | П        |        | 1 |                                                                             |                                |
|              | 5.0         |              |                                                  | 5    |          | CL     | T | Silty CLAY; dk. brown/black mottled; stiff; low                             |                                |
|              | 0.0         | <u> </u>     | <del></del>                                      |      |          |        |   | plasticity; moist; creosote odor                                            |                                |
| 000          |             |              | 0.41                                             | _    | $\vdash$ |        | 1 | plasticity, moist, creosote odor                                            |                                |
| CB2          |             | <u> </u>     | 3.4'                                             | 6    |          |        |   | Conding block contact                                                       |                                |
|              |             |              |                                                  |      | Н        |        |   | Grading black very stiff                                                    |                                |
|              |             |              |                                                  | 7    |          |        |   |                                                                             |                                |
|              |             |              |                                                  |      | Ш        |        |   |                                                                             |                                |
|              |             |              |                                                  | 8    |          |        |   |                                                                             |                                |
| •            |             |              |                                                  |      |          |        |   |                                                                             | -                              |
|              |             |              |                                                  | 9    |          |        |   | Grading - gray with iron oxide staining                                     |                                |
|              |             |              | ] ;                                              |      |          |        |   |                                                                             |                                |
|              | 10.0        |              |                                                  | 10   |          |        |   |                                                                             |                                |
|              | i           | l            | 1                                                | ,    |          | ì      |   |                                                                             |                                |
| CB3          |             |              | 4.1'                                             | 11   |          |        | 1 |                                                                             |                                |
| 000          | !           | <del> </del> | 1                                                | : '' |          |        |   | Grading It. gray; stiff                                                     |                                |
|              |             |              |                                                  | 12   |          |        |   | Grading it gray; our                                                        |                                |
|              | :           | -            | -                                                | 14   | -        |        |   |                                                                             |                                |
|              | !           |              | 1 .                                              |      | -        |        |   |                                                                             |                                |
|              | 1           | !            |                                                  | 13   | -        |        |   |                                                                             |                                |
|              | i           |              |                                                  |      | -        |        | 1 |                                                                             |                                |
|              | !           |              |                                                  | 14   | _        | !      |   |                                                                             |                                |
|              |             |              |                                                  |      |          |        |   |                                                                             |                                |
|              | 15.0        | 1            |                                                  | 15   |          | !      |   |                                                                             |                                |
|              |             |              |                                                  | •    |          |        |   |                                                                             |                                |
| CB4          |             |              | 3.5                                              | 16   |          |        |   |                                                                             |                                |
|              | Ī           |              |                                                  | į    |          |        |   |                                                                             |                                |
|              |             |              |                                                  | 17   |          | 1      |   |                                                                             |                                |
|              | i           | <del> </del> | 1                                                |      |          | i      |   | ,                                                                           |                                |
|              |             |              |                                                  | 18   |          | 1      |   |                                                                             |                                |
|              | <u>:</u>    | <del> </del> | 1                                                |      | -        | ML     | 1 | Clayey SILT; It. gray; firm; low plasticity; moist;                         | Collect soil sample 19-20' for |
|              |             |              |                                                  | 19   | -        | .41-   |   | contains oil sheen; creosote odor                                           | chemical analysis              |
|              | <del></del> | <u> </u>     | -                                                | : 13 | -        |        |   | Contains on Sheeti, Greedete addi                                           | - Indian dilayolo              |
|              | 000         |              |                                                  |      | -        | 1      |   |                                                                             |                                |
| Ļ            | 20.0        | 1            |                                                  | 20   |          | 1      |   | LECEND.                                                                     | Cl. Completion Internal        |
| eolog        |             | R. Lam       | מו                                               |      |          |        |   | LEGEND:                                                                     | CI - Completion Interval       |
| Linecke      | ed By:      |              |                                                  |      |          |        |   | SS - Split Spoon                                                            | OVM - Organic Vapor Meter      |
|              |             |              |                                                  |      |          |        |   |                                                                             | PP - Pocket Penetrometer       |
| j            |             |              |                                                  |      |          |        |   |                                                                             | TOC - Top Of Casing            |

|             |                  |              |              | -        |          |        |   | LOG OF BORING No.: SB07                                                        |                               |
|-------------|------------------|--------------|--------------|----------|----------|--------|---|--------------------------------------------------------------------------------|-------------------------------|
|             | 57               |              | javt         |          |          |        |   | LOG OF BORING No.                                                              | 0.55                          |
|             | Tre              | rran         | EVI          |          |          |        |   |                                                                                | SHEET NUMBER 2 OF 2           |
| 1           |                  | 0 4          | - David      |          |          |        | _ | DRILLING CONTRACTOR: Best Drilling Services DRILLING METHOD: Hollow Stem Auger | Eocation Diagram              |
| ENT:        |                  |              | m Pacif      |          |          |        |   | DRILLING METHOD: Hollow Stem Auger                                             | -                             |
| PROJECT NAM | <b>E</b> :       | Works        | n Wood       | Pe       | 156      | iving  |   |                                                                                | <del>-</del>                  |
|             |                  | 441020       | 60 07        |          |          |        |   | SAMPLING METHOD: CME Sampler                                                   | <del>-</del>                  |
| PROJECT MUM |                  | 4910 L       | harty D      | cad      |          |        |   | SAMPLING METHOD. CITIE CENTIFICE                                               |                               |
| PROJECT LOC | ATION:           | Housto       |              | Cau      |          |        |   |                                                                                | <b>-</b>                      |
|             |                  | Housio       | 11, 17       |          |          |        |   | SURFACE ELEVATION:                                                             | <del>-</del>                  |
|             |                  | SB07 F       | WEN          |          |          |        |   | TOC ELEVATION:                                                                 | i i                           |
| BORING LOCA | TION:            | 3007 1       | 1441 44      | -        |          |        |   | WATER LEVEL:                                                                   | _                             |
| START DATE: | 3/0              | 6/97         | FINISH DATE  | <b>.</b> |          | 3/06/9 | 7 | WATER ELEVATION:                                                               | <del>-</del>                  |
| START TIME: | 3,0              | 9/9/         | FINISH TIME  |          |          | 0,00,0 | - | DATE:                                                                          | 7                             |
| SAMPLER     | SAMPLE           | OVM          | RECOVERY     |          | 734      | SOIL   | C | SOIL DESCRIPTION AND DRILLING CONDITIONS                                       | NOTES:                        |
| TYPE        | DEPTH            | (PPM)        | (FT)         | N FE     |          | GRAPH  | 1 |                                                                                |                               |
| IIPE        | i ogran          | 1 (FF-34)    | 1            |          | 1        |        | i |                                                                                | Collect soil sample at 21-22' |
| CB5         |                  |              | 4.2          | 21       |          |        | 1 |                                                                                | for chemical analysis         |
| - 000       | İ                | i            |              | •        |          |        |   |                                                                                |                               |
|             |                  |              |              | 22       |          | SP     |   | Silty SAND; brownish gray; fine grained; wet                                   | Collect soil sample at 22-23' |
|             | i<br>I           |              | i            | •        |          |        |   | Contains creosote                                                              | for chemical analysis         |
|             |                  |              |              | 23       |          |        |   |                                                                                |                               |
|             | İ                | İ            | İ            | :        |          |        |   |                                                                                |                               |
| 1           |                  |              |              | 24       |          |        |   |                                                                                |                               |
|             | <u> </u>         | +            | <del> </del> | - 47     |          |        | 1 |                                                                                | Collect soil sample at 24-25' |
|             |                  |              |              |          | -        |        | 1 |                                                                                |                               |
|             | 25.0             |              | 1            | 25       |          |        |   | 2" laver cemented sand - contains creosote                                     | for chemical analysis         |
|             |                  |              |              |          |          |        |   |                                                                                | Bottom of boring @ 25.0'      |
|             | <u> </u>         |              |              | 26       |          |        |   |                                                                                | 1 - 1 - 1 - 21 - 1 - 21       |
| l,          |                  |              |              |          |          |        | 1 |                                                                                | boring backfilled with        |
|             |                  |              |              | 27       |          |        | 1 |                                                                                | cement/bentonite grout        |
| 1           |                  |              |              |          | <u> </u> |        |   |                                                                                |                               |
|             |                  |              |              | _ 28     |          |        |   |                                                                                |                               |
|             |                  |              |              |          | _        |        |   |                                                                                |                               |
|             | <u>!</u>         | <del> </del> | <del> </del> | 29       |          |        | 1 |                                                                                |                               |
| 1           |                  |              |              |          | -        |        |   |                                                                                |                               |
|             | <u> </u>         | -            | -            | -        | -        |        |   |                                                                                |                               |
| 1           |                  |              |              | 1        | -        |        |   |                                                                                |                               |
|             | !                | 1            |              | -        | -        |        |   |                                                                                |                               |
| 1           |                  |              |              |          | -        |        |   |                                                                                |                               |
| <u></u>     | !                | <u> </u>     | -            | -        | -        |        |   |                                                                                |                               |
| 1           | İ                | -            |              |          |          |        |   |                                                                                |                               |
|             | <u> </u>         | -            | +            | -        |          |        | H |                                                                                |                               |
| 1           |                  | İ            |              |          |          |        | 1 |                                                                                |                               |
| -           | !                | <del> </del> | +            | -        |          | ;      |   |                                                                                |                               |
| 1           |                  |              |              | :        |          |        |   |                                                                                |                               |
|             | <del> </del>     | -            | <del></del>  | -        |          |        | 1 |                                                                                |                               |
| 1           | İ                | İ            |              |          | -        |        | 1 |                                                                                |                               |
| -           | <del> </del>     | <del></del>  | <del> </del> | -        |          | İ      |   |                                                                                |                               |
|             |                  |              |              |          |          | 1      |   |                                                                                |                               |
|             | 1                | <del></del>  | +            | -        | -        | i      |   |                                                                                |                               |
| 1           |                  |              |              |          | -        |        |   |                                                                                |                               |
|             | 1                | +            | +            | -        | -        |        |   |                                                                                |                               |
|             | İ                |              |              |          | -        |        |   |                                                                                |                               |
|             | <u> </u>         | <del>'</del> | +            | -        | -        | i      |   |                                                                                |                               |
| 1           |                  |              |              |          | -        | 2      |   |                                                                                |                               |
| Seolog      | ist <sup>*</sup> | R. Lan       | nb.          |          | -        |        |   | LEGEND:                                                                        | Cl - Completion Interval      |
| Checke      |                  | 1 10 106111  |              |          |          |        |   | SS - Split Spoon                                                               | OVM - Organic Vapor Meter     |
| - Cone      | - J,             |              |              |          |          |        |   | and the server.                                                                | PP - Pocket Penetrometer      |

|              |         | مية المالكين. | -                                       |       |           |          | - | LOG OF BORING No.: SB08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                     |
|--------------|---------|---------------|-----------------------------------------|-------|-----------|----------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|              | Te      | Fran          | lext                                    |       |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SHEET NUMBER 1 OF 2                   |
|              | 4       | - Fig.        | 10411                                   |       |           |          |   | DRILLING CONTRACTOR: Best Drilling Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location Diagram                      |
| ENT:         |         | Southe        | m Pacif                                 | icli  | ne        | <u> </u> |   | DRILLING METHOD: Hollow Stem Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l Locator Diagram                     |
| PROJECT NAM  |         |               | n Wood                                  |       |           |          |   | DRIEDING METHOD. FIGHEW OLEH Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| PROJECT NAME |         | Works         | ., ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1 0.  | -         | · viiig  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| PROJECT NUM  |         | 441020        | 69.07                                   |       |           |          |   | SAMPLING METHOD: CME Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del>- </del>                         |
| PROJECT LOC  |         |               | berty R                                 | oad   |           | -        |   | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | -                                     |
| PROSECT COC  | Allon.  | Housto        | n. TX                                   |       |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|              |         |               |                                         |       |           |          |   | SURFACE ELEVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| BORING LOCA  | TION    | SB08 F        | WPW                                     |       | ********* |          |   | TOC ELEVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
|              |         |               |                                         |       |           |          | - | WATER LEVEL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                     |
| START DATE:  | 3/6/    | /97           | FINISH DATE                             | <br>Ŀ | 3/6       | 3/97     |   | WATER ELEVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                     |
| START TIME:  |         |               | FINISH TIME                             | -     |           |          |   | DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del>- </del>                         |
| SAMPLER      | SAMPLE  | QVM           | RECOVERY                                | 257   | ПН        | SOIL     | C | SOIL DESCRIPTION AND DRILLING CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NOTES:                                |
| TYPE         | DEPTH   | (PPM)         | (FT)                                    | IN FE | - 1       | GRAPH    | 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| · · · ·      | 32      | (7.7.4)       |                                         |       |           | FILL     | 1 | Gravel; Railroad ties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Boring advanced with 8 1/4"           |
| 1            |         |               |                                         | 1     |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O.D. 4 1/4" I.D. hollow stem          |
|              |         |               |                                         |       |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | augers                                |
| 1            |         |               |                                         | 2     |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 3 1                                 |
|              |         |               | i                                       |       |           | SM       |   | SAND; black; fine grained; moist, creosote odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| CB1          | 2-5     |               | 2.5                                     | 3     |           |          |   | S. II. I. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. C. S. |                                       |
|              |         |               | 1                                       | ·     |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| l            |         |               |                                         | 4     |           | CL       |   | Silty SANDY CLAY; black; firm; low plasticity;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
|              |         |               | 1                                       | 7     |           | -        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Callest seil comple et 4 5'           |
| 1            |         |               |                                         |       | $\vdash$  |          |   | moist; strong creosote odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Collect soil sample at 4-5'           |
|              | 5.0     |               |                                         | 5     |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for chemical analysis                 |
| 1            |         |               |                                         |       |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| C82          | 5 - 10  |               | 5.0                                     | 6     |           | CL       |   | Silty CLAY; black; very stiff;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
|              |         |               |                                         |       |           |          |   | low plasticity; moist; strong creosote odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| 1            |         |               |                                         | 7     |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|              |         |               |                                         |       |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|              |         |               |                                         | 8     |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|              |         |               |                                         |       |           |          |   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                     |
|              |         |               |                                         | 9     |           |          |   | Grading gray with iron oxide staining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|              |         |               |                                         |       |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|              | 10.0    |               |                                         | 10    |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|              |         |               | 1                                       |       |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| C83          | 10 - 15 |               | 4.5                                     | 11    |           |          |   | Grading with creosote in hairline fractures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
|              |         |               |                                         |       |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|              |         |               |                                         | 12    |           |          |   | Grading with pea to gravel size CaC03 nodules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · · · · · · · · · · · · · · · · · · |
|              |         |               |                                         |       |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|              |         |               |                                         | 13    |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|              |         |               |                                         |       |           |          |   | grading with varved bedding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
|              |         |               |                                         | 14    |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Collect soil sample 14-15' for        |
|              |         |               |                                         |       |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | chemical analysis                     |
|              | 15.0    |               | 1                                       | 15    |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|              |         |               |                                         |       |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| C84          | 15 - 20 |               | 4.2                                     | 16    |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|              |         |               |                                         |       |           |          |   | Clayey SILT; brownish gray; firm; low plasticity;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
|              |         |               |                                         | 17    |           | ML       |   | moist; creosote odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
|              |         |               |                                         |       |           | 9        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Collect soil sample 18-19' for        |
|              |         |               |                                         | 18    |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | chemical analysis                     |
|              |         |               |                                         |       |           |          | 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 1            |         |               |                                         | 19    |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|              |         |               |                                         |       |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|              | 20.0    |               |                                         | 20    |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Seologi      |         | R. Lam        | ib                                      |       |           |          |   | LEGEND:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CI - Completion Interval              |
| hecke        |         |               |                                         |       |           |          |   | SS - Split Spoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OVM - Organic Vapor Meter             |
|              | •       |               |                                         |       |           |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PP - Pocket Penetrometer              |

|              |          |        | ÷.                                               |        |                |          |     | LOG OF BORING No.:                      | SB08                  |                                         |                                         |
|--------------|----------|--------|--------------------------------------------------|--------|----------------|----------|-----|-----------------------------------------|-----------------------|-----------------------------------------|-----------------------------------------|
|              |          | Fra    | vext                                             |        |                |          | ;   | 220 01 201/11/01/01                     |                       |                                         |                                         |
| 1            | T.       |        | 10.01                                            |        |                |          |     |                                         | D                     | ·····                                   | SHEET NUMBER 2 OF 2                     |
|              | <u> </u> |        |                                                  |        |                |          | _   | DRILLING CONTRACTOR:                    | Best Drilling Serv    | rices                                   | Location Diagram                        |
| LENT:        |          |        | m Pacif                                          |        |                |          |     | DRILLING METHOD:                        | Hollow Stem Aug       | er                                      | <u></u> i                               |
| PROJECT NAM  | e        |        | n Wood                                           | Per    | servin         | <u>g</u> | !   |                                         |                       |                                         | _!                                      |
|              |          | Works  |                                                  |        |                |          |     |                                         |                       |                                         |                                         |
| PROJECT NUM  | BER:     | 441020 |                                                  |        |                |          | - 1 | SAMPLING METHOD:                        | CME Sampler           |                                         | <u>_1</u>                               |
| PROJECT LOC. | ATION    | 4910 L | iberty R                                         | oad    |                |          |     |                                         |                       |                                         |                                         |
|              |          | Housto | n, TX                                            |        |                |          | !   |                                         |                       |                                         |                                         |
|              |          |        |                                                  |        |                |          | :!: | SURFACE ELEVATION:                      |                       |                                         |                                         |
| BORING LOCAT | TON:     | SB08 F | HWPW                                             |        |                |          |     | TOC ELEVATION:                          |                       |                                         |                                         |
|              |          |        |                                                  |        |                |          | _   | WATER LEVEL:                            |                       |                                         |                                         |
| START DATE:  | 3/6      | /97    | FINISH DATE                                      | £ (    | 3/6/97         |          |     | WATER ELEVATION:                        |                       |                                         | 1                                       |
| START TIME:  |          |        | FINISH TIME                                      | Ŀ      |                |          |     | DATE:                                   |                       |                                         | 7                                       |
| SAMPLER      | SAMPLE   | OVM    | RECOVERY                                         | OEPTI- | SOI            | .        | C   | SOIL DESCRIPT                           | ION AND DRILLING COND | ITIONS                                  | NOTES:                                  |
| TYPE         | DEPTH    | (PPM)  | (FT)                                             | IN FEE | T GRA          | PH :     | 1   |                                         |                       |                                         | :                                       |
|              |          | 1      |                                                  | I      |                | 1        | ,;  |                                         |                       |                                         |                                         |
| CB5          |          |        | 4.1'                                             | 21     | $\neg$         | 1        | ſ   |                                         |                       |                                         | 1                                       |
|              |          |        | 1                                                |        |                |          | 1   |                                         |                       |                                         | 1                                       |
|              |          |        |                                                  | 22     |                |          | 1   |                                         |                       |                                         | 1                                       |
|              |          |        |                                                  |        | ISI            | 5        | 1   | Silty SAND; It. gray;                   | very fine to fine of  | rained: wet:                            |                                         |
|              |          |        |                                                  | 23     | ┪ ゙.           |          | ,   | with creosote odor                      | and oil sheen         |                                         |                                         |
|              |          |        | i                                                |        | _              | i        | 1   |                                         |                       |                                         |                                         |
|              |          |        |                                                  | 24     | -              |          | 1   |                                         |                       |                                         |                                         |
|              |          |        | <del> </del>                                     | 24     | -              |          | +   |                                         |                       |                                         | -                                       |
|              |          |        |                                                  | 25     | $\dashv$       | i        | 1   |                                         |                       |                                         |                                         |
|              |          | <br>   | !                                                | 251    | <del>-</del>   |          | -   |                                         |                       |                                         | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|              |          |        |                                                  | 26     | -              | 1        | 1   |                                         |                       |                                         | Bottom of boring at 25.0'               |
|              |          |        | 1                                                | 26     | _              |          | 1   |                                         |                       |                                         | Boring backfilled with                  |
| L            |          |        |                                                  |        | -              |          | 1   |                                         |                       |                                         | cement/bentonite grout                  |
|              |          |        | !                                                | 27     | _              | 1        | 1   |                                         |                       |                                         |                                         |
|              |          |        |                                                  | L      | _              | 1        | 1   |                                         |                       |                                         |                                         |
|              |          |        |                                                  | 281    | _              |          | 1   |                                         |                       |                                         |                                         |
|              |          |        |                                                  | L      | _              | 1        | 1   |                                         |                       |                                         | <u>-</u>                                |
|              |          |        |                                                  | 291    | _              |          | 1   |                                         |                       |                                         |                                         |
|              |          |        |                                                  | L      | _              | 1        | 1   |                                         |                       |                                         |                                         |
|              |          |        |                                                  | 301    | _              |          | 1   |                                         |                       |                                         | ·                                       |
|              |          |        |                                                  | L      | _              | i        | L   |                                         |                       |                                         |                                         |
|              |          |        |                                                  | 31     |                | 1        | L   |                                         |                       |                                         |                                         |
|              |          |        |                                                  |        |                | 1        |     |                                         |                       |                                         |                                         |
|              |          |        |                                                  | 32!_   |                |          | L   |                                         |                       |                                         |                                         |
|              |          |        | i                                                | Γ      |                |          | ı   |                                         |                       |                                         |                                         |
|              |          |        |                                                  | 33:    |                |          | ŀ   |                                         |                       |                                         |                                         |
|              |          |        |                                                  |        |                |          | Ī   |                                         |                       |                                         |                                         |
|              |          |        |                                                  | 341    |                |          |     |                                         |                       | *************************************** |                                         |
|              |          |        |                                                  |        |                |          | 1   |                                         |                       |                                         |                                         |
|              |          |        |                                                  | 351    |                |          | 1   |                                         |                       |                                         |                                         |
|              |          |        |                                                  |        |                |          | 1   | *************************************** |                       |                                         |                                         |
|              |          |        |                                                  | 36     | 7              |          | t   |                                         |                       |                                         |                                         |
|              |          |        | 1                                                |        | _              |          | 1   |                                         |                       |                                         |                                         |
|              |          |        |                                                  | 37     | -              |          | ŀ   |                                         |                       |                                         |                                         |
|              |          |        | <del>i                                    </del> | -      | <del>-</del> i |          | 1   |                                         |                       |                                         |                                         |
|              |          |        |                                                  | 38     | $\dashv$       |          | 1   |                                         |                       |                                         |                                         |
|              |          |        | <del>;                                    </del> | 30     | -              |          | 1   |                                         |                       |                                         |                                         |
|              |          |        |                                                  | 201    | -              |          | -   |                                         |                       |                                         |                                         |
|              |          |        | <del>                                     </del> | 391    | -              |          | -   |                                         |                       |                                         |                                         |
|              |          |        |                                                  |        | -              |          | }   |                                         |                       |                                         |                                         |
|              | -4-      | 5      | .                                                | 401    |                | _!       |     |                                         |                       |                                         | L                                       |
| eologis      |          | R. Lam | D                                                |        |                |          |     |                                         | LEGEN                 |                                         | CI - Completion Interval                |
| hecked       | a By:    |        |                                                  |        |                |          |     |                                         | SS - Split S          | Spoon                                   | OVM - Organic Vapor Meter               |
| l            |          |        |                                                  |        |                |          |     |                                         |                       |                                         | PP - Pocket Penetrometer                |
|              |          |        |                                                  |        |                |          |     |                                         |                       |                                         | TOC - Top Of Casing                     |

|                                         |              | a since | 70           |         |        | 1   | LOG OF BORING No .:              | MW-12A                                  |                                                                                                                |                           |
|-----------------------------------------|--------------|---------|--------------|---------|--------|-----|----------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|
|                                         | E            | 10      | <b>Yext</b>  | !       |        | į   |                                  |                                         |                                                                                                                | SHEET NUMBER 1 OF 2       |
|                                         |              | TAC.    |              |         |        |     | DRILLING CONTRACTOR:             |                                         |                                                                                                                | Location Diagram          |
| ENT:                                    |              |         | ern Pacif    |         |        |     | DRILLING METHOD:                 | Hollow Ste                              | m Auger                                                                                                        |                           |
| PROJECT NA                              |              |         | on Wood      | Prese   | rving  |     |                                  |                                         |                                                                                                                | :                         |
|                                         |              | Works   | 200 07       |         |        |     |                                  |                                         |                                                                                                                | <u>.</u>                  |
| PROJECT NUI                             |              |         | 069.07       |         |        |     | SAMPLING METHOD:                 | Split Spoor                             | <u> </u>                                                                                                       | ;<br>                     |
| PROJECT LOC                             |              |         | iberty R     | bad     |        |     |                                  |                                         |                                                                                                                |                           |
|                                         |              | Housic  | on, TX       |         |        |     |                                  |                                         |                                                                                                                | <del>!</del>              |
|                                         |              | West S  | Sido         |         |        |     | SURFACE ELEVATION:               |                                         |                                                                                                                |                           |
| BORING LOCA                             | ATION:       | west 3  | olue         |         |        |     | TOC ELEVATION:                   | 5.52'                                   |                                                                                                                | <u></u> !                 |
|                                         | 02/2         | 7/07    |              | . 02    | /27/97 |     | WATER LEVEL:<br>WATER ELEVATION: | J.J2                                    |                                                                                                                |                           |
| START DATE:                             | 07:          |         | FINISH CATE  |         | :40    | -   | DATE:                            | 03/25/97                                |                                                                                                                |                           |
| SAMPLER                                 | SAMPLE :     | OVM     | RECOVERY!    |         | SOIL   | C   |                                  | TION AND DRILLIN                        | IG CONDITIONS                                                                                                  | NOTES:                    |
| TYPE                                    | DEPTH        | (PPM)   | (FT)         | IN FEET | GRAPH  | 1   |                                  |                                         | 15 CONDITIONS                                                                                                  | NOTES:                    |
| 1775                                    | i derin      | (PPM)   | : (P1)       | : ;     | Grouph |     | FILL, moist, 10YR                | 3/1                                     |                                                                                                                | Sample Retained For       |
| SS                                      | 0-5          | -       | 3.75         | 1       | į      |     | very dark gray, gra              |                                         |                                                                                                                | Chemical Analysis         |
|                                         | 1 1          |         |              |         | FILL   |     | brick, slight odor               | 2, 0, , , , , , , ,                     |                                                                                                                | Chemical Analysis         |
|                                         |              |         |              | 2       |        | li  |                                  |                                         |                                                                                                                |                           |
|                                         | T            |         | 1            |         | į      |     |                                  |                                         | A The second second second second second second second second second second second second second second second |                           |
|                                         | !            |         |              | 3       | i      |     | Slightly moist                   |                                         |                                                                                                                |                           |
| *************************************** | 1 :          |         | 1 1          | ! 1     | j      |     | CLAY, silty, slightly            | y moist.                                |                                                                                                                | PP = 2.0                  |
|                                         |              |         |              | 4       | į      |     | 10YR4/1, dark gra                |                                         | s nodules                                                                                                      |                           |
|                                         | 1            |         | +-+          |         |        | 1   | To Treat your                    | y, calcarcou                            | 3 HOGGICS                                                                                                      |                           |
|                                         |              |         |              | _       |        |     |                                  | ···                                     |                                                                                                                |                           |
|                                         | 1 1          |         |              | 5       |        | 1   |                                  |                                         |                                                                                                                |                           |
|                                         |              |         |              |         |        |     | Moist, 10YR5/1, gr               | ray,silt seams                          | S                                                                                                              |                           |
| SS                                      | 5 - 10       |         | 5.0          | 6       | i      |     |                                  | *************************************** |                                                                                                                |                           |
|                                         | !            |         |              |         |        |     |                                  |                                         |                                                                                                                |                           |
|                                         |              |         |              | 7       |        |     |                                  |                                         |                                                                                                                |                           |
|                                         | -            |         |              |         | 0.     |     | Silt content decrea              |                                         |                                                                                                                |                           |
|                                         | -            |         |              | 8       | CL     | 1   | calcareous nodule                |                                         | - la !! !                                                                                                      |                           |
|                                         |              |         |              |         | !      |     | Light gray with 10               |                                         |                                                                                                                |                           |
|                                         | !            |         | <del>-</del> | 9       |        | 1   | 10YR4/1 dark gray                | / mottling, sill                        | seams                                                                                                          |                           |
|                                         |              |         | i i          | 10      |        |     |                                  |                                         |                                                                                                                |                           |
|                                         | 1 :          |         | <del>-</del> | 10      |        | 1   | silt seams                       |                                         |                                                                                                                |                           |
| SS                                      | 10 - 15      |         | 5.0          | 11      | İ      | lŀ  | JIII JEAINS                      |                                         |                                                                                                                |                           |
|                                         | 1 10 - 13    |         | 3.0          | -       |        |     |                                  |                                         |                                                                                                                |                           |
|                                         | !            |         |              | 12      |        |     |                                  |                                         |                                                                                                                |                           |
|                                         | <del> </del> |         | <del></del>  |         |        |     |                                  |                                         |                                                                                                                |                           |
|                                         | :            |         |              | 13      |        | 1 1 |                                  |                                         | ***************************************                                                                        |                           |
|                                         | i .          |         | ; ;          |         | •      | li  |                                  |                                         |                                                                                                                |                           |
|                                         |              |         | ;            | 14      |        |     |                                  |                                         |                                                                                                                |                           |
|                                         | <u> </u>     |         | : 1          |         | :      |     | SILT, clayey, slight             | ly moist.                               |                                                                                                                |                           |
|                                         |              |         | :            | 15      |        |     | 10YR5/1, gray, odd               |                                         | IS                                                                                                             |                           |
|                                         | !            |         | <del></del>  |         | ML     |     |                                  |                                         |                                                                                                                |                           |
| SS                                      | 15 - 20:     |         | 3.75         | 16      |        |     |                                  |                                         |                                                                                                                |                           |
|                                         | !            |         | : 1          |         |        |     |                                  |                                         | ***************************************                                                                        |                           |
|                                         | !            |         | 1.           | 17      |        | it  | SAND, wet, 10YR7                 | 7/1, light gray                         |                                                                                                                |                           |
|                                         | 1            |         |              |         |        | lī  | with greenish tint,              | fine grained.                           |                                                                                                                |                           |
|                                         | <u> </u>     |         | <u> </u>     | 18      |        |     | odor, staining with              | 10YR2/1, bla                            | ack,                                                                                                           |                           |
|                                         | :            |         | :            |         |        |     | and 10YR3/3 dark                 | brown                                   |                                                                                                                |                           |
|                                         |              |         |              | 19      | SP     | [   |                                  |                                         |                                                                                                                |                           |
|                                         | :            |         |              |         | :      | 1 : |                                  |                                         |                                                                                                                |                           |
| 1                                       |              |         |              | 20      |        |     |                                  |                                         |                                                                                                                |                           |
| Geologi                                 |              | B. Gold | dsby         |         |        |     |                                  |                                         | EGEND:                                                                                                         | CI - Completion Interval  |
| Checke                                  | ed By:       |         |              |         |        |     |                                  | SS                                      | - Split Spoon                                                                                                  | OVM - Organic Vapor Meter |
|                                         |              |         |              |         |        |     |                                  |                                         |                                                                                                                | PP - Pocket Penetrometer  |
|                                         |              |         |              |         |        |     |                                  |                                         |                                                                                                                | TOC - Top Of Casing       |

|             |          |          |             |          |          |       |            | LOG OF BORING No.: MW-12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |
|-------------|----------|----------|-------------|----------|----------|-------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|             |          | TO       | <i>sext</i> | •        |          |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SHEET NUMBER 2 OF 2       |
|             |          | Par Fal. | 1           |          |          |       |            | DRILLING CONTRACTOR: Best Drilling Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location Diagram          |
| ENT:        |          |          | ern Pacif   |          |          |       |            | DRILLING METHOD: Hollow Stem Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |
| ECT NA      | 4E:      |          | on Wood     | Pre      | eser     | ving  |            | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |
|             | ·        | Works    |             |          |          |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| PROJECT NUM |          | 441020   |             |          |          |       |            | SAMPUNG METHOD: Split Spoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                         |
| PROJECT LOC | ATION:   | Housto   | iberty R    | oad      |          |       |            | il                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                         |
|             |          | Housic   | )n, 1A      |          |          |       |            | SURFACE ELEVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                         |
| BORING LOCA | TON      | West S   | Side        |          |          |       |            | TOC ELEVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                         |
| BONING COC  | iiion,   | 770010   | ,,,,,,      |          |          |       | -          | WATER LEVEL: 5.52'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                         |
| START DATE: | 02/2     | 7/97     | FINISH DATE |          | 02/      | 27/97 | _          | WATER ELEVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>.</u>                  |
| START TIME: |          | :45      | FINISH TIME | :        | 09:      |       |            | DATE: 03/25/97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                         |
| SAMPLER     | SAMPLE   | OVM      | RECOVERY    | OEP      | тн       | SOIL  | ·C         | SOIL DESCRIPTION AND DRILLING CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NOTES:                    |
| TYPE        | OEPTH    | (PPM)    | (FT)        | IN FE    | EET !    | GRAPH | <u>' 1</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | į        |          |             |          |          |       | :          | SAND, wet, 10YR7/1, light gray,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Retained For       |
| SS          | 20 - 25  | <u> </u> | 5.0         | 21       |          | •     |            | with greenish tint, fine grained, odor,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chemical Analysis         |
|             |          |          |             |          | Ш        |       |            | staining with 10YR2/1 black and 10YR3/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
|             | !        | !        | -           | 22       |          | 60    |            | dark brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
|             |          | į        |             | 23       | $\vdash$ | SP    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | <u>.</u> | <u> </u> | -           | 23       |          |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |          |             | 24       | $\vdash$ |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | !        | <u>!</u> |             | 24       |          |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |          |             |          | $\vdash$ |       | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | !        | <u> </u> |             | 25       |          |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          | !        |             |          |          |       |            | CLAY, slightly silty, very slightly moist, 10YR7/1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PP = 4.0                  |
| SS          | 25 - 30  |          | 5.0         | 26       |          |       |            | light gray, >25% mottling with 10YR6/8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
|             |          |          |             |          | $\sqcup$ |       |            | brownish yellow, green and black staining,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample Retained For       |
|             | i<br>:   | !        | -           | 27       |          |       |            | odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chemical Analysis         |
|             |          |          |             | 28       |          | CL    | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | <u> </u> |          |             | 20       |          |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |          |             | 29       | H        |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | l        | i.       | i i         |          |          |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | i<br>    |          |             | 30       |          |       |            | Silt content = 50%, strong odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |          |             |          |          |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | !        |          |             | 31       |          |       |            | Boring TD @ 30.0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |
|             |          |          |             |          | L        |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | <u> </u> | !        | -!!         | 32       |          |       |            | , and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |                           |
|             | !        |          |             | 20       |          |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          | <u> </u> | +           | 33       | -        |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | :        |          |             | 34       |          |       | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | i        | <u> </u> | +           | <b>J</b> |          |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | !        | !<br>:   |             | 35       |          |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | i        | İ        | 1           | -        |          |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |          |             | 36       |          |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | İ        |          |             |          |          |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          | <u> </u> |             | 37       |          |       | ]          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |          |             |          |          |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |          | <u> </u>    | 38       |          |       | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |          |             |          | Щ        |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | !        | !        |             | 39       |          |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 1           |          |          |             | 40       |          |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| eologi      | st.      | B. Gold  | ishy        | 40       |          |       |            | LEGEND:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cl - Completion Interval  |
| Checke      |          | J. 3010  | astry y     |          |          |       |            | SS - Split Spoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OVM - Organic Vapor Meter |
|             | ,.       |          |             |          |          |       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PP - Pocket Penetrometer  |

|                  |              | State        |                                                  |          |          |       |   | LOG OF ECRING No.: MW-12B                       |                           |
|------------------|--------------|--------------|--------------------------------------------------|----------|----------|-------|---|-------------------------------------------------|---------------------------|
|                  |              | 10           | <b>XEXC</b>                                      | <b>9</b> |          |       |   | i<br>!                                          | SHEET NUMBER 1 OF 1       |
|                  |              |              | D hand                                           |          |          |       |   | DRILLING CONTRACTOR: Best Drilling Services     | Location Diagram          |
| JENT:            |              |              | ern Pacif                                        |          |          |       |   | DRILLING METHOD: Hollow Stern Auger             |                           |
| JJECT NA         | ME:          |              | on Wood                                          | Pre      | esen     | ving  |   |                                                 | _                         |
|                  |              | Works        |                                                  |          |          |       |   |                                                 | -                         |
| PROJECT NU       | MBER:        | 441020       |                                                  |          |          |       |   | SAMPLING METHOD: Split Spoon                    |                           |
| PROJECT LO       | CATION:      |              | iberty R                                         | oad      |          |       |   |                                                 |                           |
|                  |              | Housto       | on, IX                                           |          |          |       |   |                                                 | <del>-</del>              |
|                  |              | West S       | Sida                                             |          |          |       | _ | SURFACE ELEVATION:                              | -                         |
| BORING LOCA      | ATIONS       | West C       | olue                                             |          |          |       | - | TOC ELEVATION: water level: 5.60'               | <del>-</del>              |
| START DATE:      | 02/          | 27/97        | FINISH DATI                                      | E.       | 02/2     | 27/97 | _ | WATER LEVEL: 5.00                               | <del>_</del>              |
| START TIME:      |              | ):15         | FINISH TIME                                      |          | 13:      |       | - | DATE: 03/25/97                                  |                           |
| SAMPLER          | SAMPLE       | OVM          | RECOVERY                                         |          | -        |       | _ | SOIL DESCRIPTION AND DRILLING:CONDITIONS        | NOTES:                    |
| TYPE             | DEPTH        | (PPM)        | 1                                                | IN FE    | i        | 1     | 1 |                                                 | NOTES.                    |
|                  | !            | I            | 1                                                |          | i i      |       | i | CLAY, slightly silty, very slightly moist,      | 0 - 25' not logged        |
| SS               | 25 - 30      | <b>—</b>     | 5.0                                              | 26       |          |       |   | 10YR7/1, light gray, >25% mottling with 10YR6/8 | because of close          |
|                  | 1            | Ī            |                                                  |          |          |       |   | brownish yellow, green and black staining,      | proximity to MW-12A       |
|                  |              |              |                                                  | 27       |          |       |   | creosote @ 30', strong odor                     |                           |
|                  |              | 1            | 1                                                |          |          | :     | 1 |                                                 |                           |
|                  | <u> </u>     | <u> </u>     | İ                                                | 28       |          | CL    |   |                                                 |                           |
|                  | İ            |              |                                                  |          |          |       |   |                                                 |                           |
|                  | 1            |              |                                                  | 29       |          |       |   |                                                 |                           |
|                  | 1            |              |                                                  |          |          |       |   |                                                 |                           |
|                  | İ            |              | -                                                | 30       |          | -     |   |                                                 |                           |
| <b></b>          | <del> </del> | <del> </del> | <del>'</del>                                     | 30       | -        |       |   | CAND                                            |                           |
| CT.              | 20 25        |              | 25                                               | -        |          |       |   | SAND, saturated, 7.5YR4/6,                      | Sample Retained For       |
| ST               | 30 - 35      | <del> </del> | 2.5                                              | 31       |          |       |   | strong brown with 7.5YR6/1                      | Chemical and              |
| I.,              | İ            |              |                                                  | 32       | -        | :     |   | gray, fine grained, silt nodules,               | Geotechnical Analysis     |
| -                | <del> </del> | 1            | -                                                | 32       |          | 1     |   | sheen, strong odor                              |                           |
| ľ                | İ            |              |                                                  | 33       | $\vdash$ | 1     | i |                                                 |                           |
|                  | !            | <del> </del> | -                                                | 33       |          |       |   |                                                 |                           |
|                  | į            |              |                                                  | 34       |          |       |   |                                                 |                           |
|                  | <del>i</del> | <u> </u>     | <del>-</del>                                     |          |          | il    |   |                                                 |                           |
|                  | 1            |              |                                                  | 35       |          | i     |   |                                                 |                           |
|                  | İ            | i –          | i                                                |          |          | SP    |   |                                                 |                           |
| SS               | 35 - 40      | -            | 5.0                                              | 36       | -        |       |   |                                                 |                           |
|                  | <del></del>  | 1            | ī                                                | -        |          | 1     | i |                                                 |                           |
|                  |              |              |                                                  | 37       |          |       |   |                                                 |                           |
|                  | İ            | !            | 1                                                |          |          | 1     | į |                                                 |                           |
|                  | <u> </u>     |              | !                                                | 38       |          | 1     |   |                                                 |                           |
|                  |              |              |                                                  | į        | -        |       |   |                                                 |                           |
|                  | i            |              |                                                  | 39       |          | 1     | i |                                                 |                           |
|                  |              |              |                                                  |          |          | 1     |   |                                                 |                           |
|                  | <u> </u>     | <u> </u>     | <u> </u>                                         | 40       | i        |       |   |                                                 |                           |
|                  |              |              |                                                  | į        |          | 1     |   | CLAY, very slightly moist, 10R4/6,              | Sample Retained For       |
| SS               | 40 - 45      | -            | 5.0                                              | 41       |          | -     | - | red, hard, firm, fat, scattered                 | Chemical and              |
|                  |              |              |                                                  | . !      |          |       | į | small calcareous nodules                        | Geotechnical Analysis     |
|                  | <u> </u>     |              | !                                                | 42!      |          |       |   |                                                 |                           |
|                  |              |              |                                                  | [        | _        | ~ .   |   |                                                 | PP = 4.5                  |
|                  | <u>:</u>     | 1            | <del>                                     </del> | 43!      | _        | CH    |   |                                                 |                           |
|                  |              |              |                                                  | _        | _        |       | 1 |                                                 |                           |
|                  | <u> </u>     |              | !                                                | 44       |          |       | į |                                                 |                           |
|                  |              |              | !                                                |          | !        |       | 1 | Perion TD O45 0                                 |                           |
| Soolse:          | ot:          | D C-1-       | !                                                | 45       |          |       | ! | Boring TD @45.0'                                |                           |
| eologi<br>checke |              | B. Gold      | ispy                                             |          |          |       |   | LEGEND:                                         | CI - Completion Interval  |
| CHECKE           | d by.        |              |                                                  |          |          |       |   | SS - Split Spoon                                | OVM - Organic Vapor Meter |
|                  |              |              |                                                  |          |          |       |   |                                                 | PP - Pocket Penetrometer  |

• .

|             | !            | -            | 9-1:        |       |              |             |   | LOG OF BORING No.: MW-12C                                                       |                                |
|-------------|--------------|--------------|-------------|-------|--------------|-------------|---|---------------------------------------------------------------------------------|--------------------------------|
| l           | Te           | rran         | jext        |       |              |             |   | 9                                                                               | SHEET NUMBER 1 OF 1            |
| L           | 17           |              | 12.16       |       |              |             |   | DRILLING CONTRACTOR: Best Drilling Services                                     | Location Diagram               |
| -           |              |              | rn Pacif    |       | nos          |             |   | DRILLING CONTRACTOR: Dest Drilling Services  PRILLING METHOD: Hollow Stem Auger | Location Diagram               |
| ENT:        |              |              | n Wood      |       |              |             |   | through 10" PVC casing                                                          |                                |
| PROJECT NAM | <b>E</b> :   | Works        | 11 44000    | 176   | 361          | VIIIG       |   | anough to 1 vo casing                                                           |                                |
| PROJECT NUL |              | 441020       | 169.07      |       | <del>-</del> |             | - | SAMPLING METHOD: CME 5-foot Sampler                                             | <del></del> i                  |
| PROJECT LOC |              |              | iberty R    | oad   |              | -           |   | SAMPLING METHOD. GIVIL G-100t Garripidi                                         |                                |
| PROJECT COC | ATIONS       | Housto       |             | oaa   |              |             |   |                                                                                 |                                |
| <b> </b>    |              | 110000       | 11, 17      |       |              | <del></del> |   | SURFACE ELEVATION:                                                              |                                |
| BORING LOCA | TON          | MW-12        | 2C          |       |              |             |   | TOC ELEVATION:                                                                  | <del></del>                    |
| BOIGHO COO  |              |              |             |       | <del></del>  |             |   | WATER LEVEL:                                                                    |                                |
| START DATE: | 4/2          | 1/97         | FINISH DATE | E:    |              | 4/21/9      | _ | WATER ELEVATION:                                                                |                                |
| START TIME: |              |              | FINISH TIME |       |              |             | - | DATE:                                                                           |                                |
| SAMPLER     | SAMPLE       | OVM          | RECOVERY    | DEP   | TH !         | SOIL        | C | SOIL DESCRIPTION AND DRILLING CONDITIONS                                        | NOTES:                         |
| TYPE        | ОЕРТН        | (PPM)        | (FT)        | IN FI | EET          | GRAPH       | 1 |                                                                                 |                                |
|             | 1            |              |             |       | li           |             |   |                                                                                 | Boring Advanced with 8 1/4-    |
| CB1         |              |              | 4.2         | 61    |              | ML          |   | Clayey SILT; reddish brown; firm;                                               | inch O.D., 4 1/4-inch I.D. HSA |
|             |              |              |             | İ     |              |             |   | low plasticity; moist                                                           |                                |
|             |              |              |             | 62    |              |             |   |                                                                                 |                                |
|             |              |              |             |       |              |             |   |                                                                                 | ·                              |
|             |              | 1            |             | 63    |              |             |   |                                                                                 |                                |
|             |              |              |             |       |              |             |   |                                                                                 |                                |
|             |              |              |             | 64    |              |             |   |                                                                                 |                                |
|             |              |              |             |       |              |             |   | grading with trace sand                                                         |                                |
|             | 65.0         |              | <u> </u>    | 65    |              |             |   |                                                                                 |                                |
|             |              |              |             |       |              |             | _ |                                                                                 |                                |
| CB2         |              |              | 1.5         | 66    |              | SP          | 1 | Silty SAND; reddish brown; very fine grained;                                   |                                |
|             |              |              |             |       | $\square$    |             |   | wet with nodules of cemented sand.                                              | Sand heaves ~ 1.0 foot         |
| _           |              | <u> </u>     | -           | 67    |              |             |   |                                                                                 | into auger                     |
|             |              |              |             | 68    | $\vdash$     |             |   |                                                                                 |                                |
|             | -            | !            | -           | 00    |              |             |   |                                                                                 |                                |
| 1           |              |              |             | 69    | H            |             |   |                                                                                 |                                |
| -           | <del> </del> | <del> </del> | +           | 1 00  |              |             |   |                                                                                 |                                |
|             | 70.0         |              |             | 70    | H            |             |   |                                                                                 |                                |
|             | 1 70.0       | <u> </u>     | i           | 1     |              |             |   |                                                                                 |                                |
| CB3         |              |              | 2.7         | 71    | H            |             |   |                                                                                 |                                |
|             | İ            | İ            |             |       |              |             |   |                                                                                 |                                |
|             |              |              |             | 72    |              |             |   |                                                                                 |                                |
|             |              |              | 1           |       |              |             |   |                                                                                 |                                |
|             |              | 1            |             | 73    |              |             | 1 |                                                                                 |                                |
|             | 1            |              | I           |       |              | СН          | 1 | CLAY; reddish brown; hard;                                                      |                                |
|             |              |              |             | 74    |              |             |   | medium plasticity                                                               |                                |
|             |              |              |             |       |              |             |   |                                                                                 |                                |
|             | 75.0         |              | 1           | 75    |              |             | - |                                                                                 |                                |
|             |              |              |             |       | Ш            |             |   |                                                                                 | Bottom of boring @ 75.0        |
|             |              | <u> </u>     |             | 76    |              |             |   |                                                                                 | Install MW-12C                 |
|             |              | İ            |             |       |              |             |   |                                                                                 |                                |
|             | !            | <u> </u>     | -           | 77    |              | v           |   |                                                                                 |                                |
|             |              |              |             |       |              |             |   |                                                                                 |                                |
|             |              | <u> </u>     |             | 78    |              |             |   |                                                                                 |                                |
| 1           |              |              |             | -     | $\vdash$     |             |   |                                                                                 |                                |
|             | !            |              |             | 79    |              |             |   |                                                                                 |                                |
|             |              |              |             |       | $\vdash$     |             |   |                                                                                 |                                |
| 300/00      | l<br>iota    | <u> </u>     | 1           | 80    |              |             | 1 | LEGEND:                                                                         | Cl - Completion Interval       |
| hecke       |              | R. Larr      | ID          |       |              |             |   | SS - Split Spoon                                                                | OVM - Organic Vapor Meter      |
| THECKE      | a by.        |              |             |       |              |             |   | 3g - opin opodii                                                                | PP - Pocket Penetrometer       |

|             |              |              |               |      |          |       |    | LOG OF BORING No.: MW-12C                     |                                |
|-------------|--------------|--------------|---------------|------|----------|-------|----|-----------------------------------------------|--------------------------------|
|             | TIE          | 200          | iove          |      |          |       |    | LOC OF DOTHING THE TELES                      |                                |
| l           | IE           |              | iext          |      |          |       |    |                                               | SHEET NUMBER 2 OF 2            |
|             |              | 37 Ban .     |               |      |          | ii ii |    | DRILLING CONTRACTOR: Best Drilling Services   | Location Diagram               |
| IT:         |              | Southe       | rn Pacif      | ic L | ines     | 3     |    | DRILLING METHOD: Hollow Stem Auger            | •                              |
| PROJECT NAM | ıs.          | Housto       | n Wood        | Pe   | rse      | rvina | -  | through 10" PVC casing                        | :                              |
|             |              | Works        |               |      |          |       | -  |                                               | 1                              |
|             |              | 441020       | 160 07        | -    |          | -     |    | SAMPLING METHOD: CME 5-foot Sampler           |                                |
| PROJECT NUM |              |              | _             |      | -        |       |    | SAMPLING METHOD. CIVIL 3-1001 CEITIPIEI       |                                |
| PROJECT LOC | ATION:       |              | iberty R      | oad  |          |       |    |                                               |                                |
|             |              | Housto       | n, TX         |      |          |       |    |                                               |                                |
|             |              |              |               |      |          |       |    | SURFACE ELEVATION:                            |                                |
| BORING LOCA | TION:        | MW-12        | 2C            |      |          |       |    | TOC ELEVATION:                                |                                |
|             |              |              |               |      |          |       | -  | WATER LEVEL:                                  | ı                              |
|             |              |              | FINISH DATE   | ·    |          |       |    | WATER ELEVATION:                              | 2                              |
| START DATE: |              |              |               | -    |          |       |    | DATE:                                         | · ·                            |
| START TIME: |              | 1            | FINISH TIME   | -    |          |       | 1- |                                               | NOTES:                         |
| SAMPLER     | SAMPLE       | OVM          | RECOVERY      | DEP  | TH       | SOL   | C  | SOIL DESCRIPTION AND DRILLING CONDITIONS      | NOTES.                         |
| TYPE        | DEPTH        | (PPM)        | (FT)          | IN F | EET      | GRAPH | 11 |                                               | iii:                           |
|             |              | 1            | İ             |      | Ш        |       |    |                                               | Boring Advanced with 8 1/4-    |
| CB1         |              |              | 4.2           | 61   | $\sqcap$ | ML    |    | Clayey SILT; reddish brown; firm;             | inch O.D., 4 1/4-inch I.D. HSA |
|             |              | Ì            | i             | ĺ    |          |       |    | low plasticity; moist                         |                                |
| 1           |              |              |               | 62   | H        |       |    |                                               |                                |
|             | 1            | !            | -             | 02   |          |       |    |                                               |                                |
|             |              |              |               |      | $\vdash$ |       | 1  |                                               |                                |
|             |              | <u> </u>     |               | 63   |          |       |    |                                               |                                |
|             |              |              |               |      |          |       |    |                                               |                                |
|             |              |              |               | 64   |          |       |    |                                               |                                |
|             | l            | I            | 1             | İ    |          |       |    | grading with trace sand                       |                                |
|             | 65.0         |              |               | 65   | $\Box$   |       |    |                                               |                                |
|             | , 00.0       |              |               |      |          |       |    |                                               |                                |
| 000         |              |              | 4 =           |      | 1        | SP    | -  | Cib. CAND: raddish brown: year fine aminade   |                                |
| CB2         |              | !            | 1.5           | 66   | -        | 36    |    | Silty SAND; reddish brown; very fine grained; |                                |
|             |              | İ            |               |      |          |       | 1  | wet with nodules of cemented sand.            | Sand heaves ~ 1.0 foot         |
|             |              | <u> </u>     |               | 67   | <u> </u> |       |    |                                               | into auger                     |
| į.          | ŀ            | 1            | -             |      |          |       |    | •                                             |                                |
| •           |              | ٠.           |               | 68   | П        |       | 1  |                                               |                                |
|             | İ            | !            | 1             |      |          |       |    |                                               |                                |
|             |              | i            |               | 69   |          |       | 1  |                                               |                                |
|             | -            | <del> </del> | -             | 03   |          |       |    |                                               |                                |
| l           | 70.0         |              |               |      | $\vdash$ |       |    |                                               |                                |
|             | 70.0         | !            | 1             | 70   |          | ,     |    |                                               |                                |
|             | 1            | !            | İ             |      |          |       |    |                                               |                                |
| C83         |              |              | 2.7           | 71   |          |       |    |                                               |                                |
|             |              | i            |               | 1    | П        |       |    |                                               |                                |
| 1           |              |              | ļ             | 72   |          |       |    |                                               |                                |
|             | i            | <u> </u>     | i             | 1 -  |          |       |    |                                               |                                |
| 1           |              |              |               | 73   | $\vdash$ |       |    |                                               |                                |
|             | -            | ·            | -             | 1 13 |          | СН    | -  | CLAV: raddish brown: bard:                    |                                |
| 1           | İ            |              |               | _    | Н        | CH    |    | CLAY; reddish brown; hard;                    |                                |
|             |              | !            |               | 74   |          |       |    | medium plasticity                             |                                |
|             |              |              |               |      |          |       |    | 2                                             |                                |
|             | 75.0         | :            | 1             | 75   |          |       |    |                                               |                                |
|             |              | !            |               | Ī    | T        |       | 1  |                                               | Bottom of boring @ 75.0        |
| 1           |              | ļ            |               | 76   |          | İ     |    |                                               | Install MW-12C                 |
|             | 1            | <del>i</del> | +             | 1    |          | i     |    |                                               |                                |
| 1           |              | 1            |               | -    | ,        |       |    |                                               |                                |
|             | ļ            | <del>!</del> |               | 77   |          |       |    |                                               |                                |
| 1           |              | į            |               | 1    |          |       |    |                                               |                                |
|             |              |              |               | 78   |          | l     |    |                                               |                                |
|             | 1            | Ī            | 1             | 1    |          | Ī     |    |                                               |                                |
| 1           | į            | İ            |               | 79   |          | i     |    |                                               |                                |
| -           | <del> </del> | i            | <del>-i</del> | 1 '  |          | !     | 1  |                                               |                                |
| 1           |              | i            |               |      | -        | -     |    |                                               |                                |
| _           | !            |              |               | 80   | !!       |       |    | LEGEND:                                       | Ci. Completion Interest        |
| eolog       |              | R. Lan       | no on         |      |          |       |    |                                               | CI - Completion Interval       |
| hecke       | ed By:       |              |               |      |          |       |    | SS - Split Spoon                              | OVM - Organic Vapor Meter      |
| 1           |              |              |               |      |          |       |    |                                               | PP - Pocket Penetrometer       |

|           |         | A Alex                                  |                                                  |      |          |         |      | LOG OF BORING No.: MW-13                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|-----------|---------|-----------------------------------------|--------------------------------------------------|------|----------|---------|------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|           |         | -110                                    | кех                                              | 3    | !        |         |      | 4                                           | SHEET NUMBER 1 OF 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|           |         | 4323                                    |                                                  |      | <u>.</u> |         |      | DRILLING CONTRACTOR: Best Drilling Services | Location Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| CLIENT:   |         |                                         | em Paci                                          |      |          |         |      | DRILLING METHOD: Hollow Stem Auger          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ROJECT NA | ME:     |                                         | on Wood                                          | d Pi | rese     | erving  |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           |         | Works                                   |                                                  |      |          |         |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ROJECT NU |         |                                         | 069.07                                           | 1    |          |         |      | SAMPLING METHOD: Split Spoon                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| ROJECTLO  | CATION: |                                         | Liberty Fon, TX                                  | toa  | <u>u</u> |         |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           |         | Housid                                  | )n, 1A                                           |      |          |         |      |                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| ORING LOC |         | NIM C                                   | omer of                                          | Cit  |          | -       |      | SURFACE ELEVATION:                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| MING LOC  | AHONE   | 1444 CC                                 | Jillei OI                                        | Site | =        | -       |      | TOC ELEVATION:                              | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| ART DATE  | 02/2    | 25/97                                   | FINISH DAT                                       |      | 00       | 2/25/97 |      | WATER LEVEL: 9.43' WATER ELEVATION:         | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |  |  |
| ART TIME: |         | :00                                     | FINISH TIME                                      |      |          | 2:00    |      | DATE: 03/25/97                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| SAMPLER   | SAMPLE  | OVM                                     | RECOVERY                                         | -    | PTH      | SOIL    | C    | SOIL DESCRIPTION AND DRILLING CONDITIONS    | 10770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| TYPE      | OEPTH   | (peu)                                   | (FT)                                             |      | FEET     | GRAPH   | ,    | SOLUTIONS OF THE SOLUTIONS                  | NOTES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|           |         | ;                                       | . (+1)                                           | i    | ree!     | GROPH   |      | 0 - 4" Fill, asphalt gravel                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| SS        | 0-5     | _                                       | 5.0                                              | 1    | -        | :       |      | SILT, very slightly moist, odor,            | Sample Submitted For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| -         | !       | i                                       | 1                                                |      |          | •       |      | 10YR3/1 very dark gray                      | Chemical Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|           | !       |                                         |                                                  | 2    | :        | ML      |      | l lotter very dark gray                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           | :       | i -                                     | İ                                                | i    |          |         |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           | ;       |                                         |                                                  | 3    |          | i       |      |                                             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|           | :       | I                                       | i                                                | •    |          |         |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           | İ       | į                                       | !                                                | 4    |          |         |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           | :       | i                                       | -                                                | 7    | -        |         |      | OLAY - TE BUILDING                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           | •       | i<br>I                                  |                                                  |      | -        |         |      | CLAY, silty, very slightly moist,           | PP = 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|           | !       | !                                       |                                                  | 5    |          |         |      | 10YR3/1 very dark gray, firm odor           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           |         |                                         |                                                  |      |          |         | !    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| SS        | 5 - 10  |                                         | 5.0                                              | 6    |          |         |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           |         |                                         |                                                  |      |          |         |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           | !       |                                         |                                                  | 7    | 1        |         |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           | :       | -                                       |                                                  |      |          |         |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           |         | <u> </u>                                |                                                  | 8    | _        | CL      |      | 10YR6/1 Gray with dark green staining;      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           |         |                                         | 1                                                |      |          |         |      | 1/4" - 1/2" calcium nodules                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|           |         |                                         | -                                                | 9    |          |         |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           |         |                                         |                                                  |      | -        | i       |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           |         |                                         |                                                  | 10   | _        | !       |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| SS        | 10 15   |                                         | -                                                |      | _        | !       |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 33        | 10 - 15 |                                         | 5.0                                              | 11   |          |         |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           |         |                                         | ! !                                              | 40   | -        |         |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           |         |                                         | -                                                | 12   | -        |         |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           |         |                                         |                                                  | 13   | -        |         |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           |         |                                         | -                                                | 13   | -        | i       |      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           |         |                                         |                                                  | 14   | -        | i       | 1    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           |         | *************************************** |                                                  | 14   | _        |         | 1    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ;         |         |                                         |                                                  | 15   | -        |         | 1    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           |         | *************************************** | +-+                                              | 13   | _        |         | 1    | SAND, wet, loose, fine-grained,             | Samula C. b '''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ss        | 15 - 20 | -                                       | 5.0                                              | 16   |          |         | 1    | 10YR7/1 - light gray                        | Sample Submitted For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|           | 10 20   |                                         | 0.0                                              |      | -        |         | ŀ    | 1011(77) - light gray                       | Chemical Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|           | İ       |                                         |                                                  | 17   | <u> </u> |         | ⊪    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           | 1       |                                         |                                                  | .,   | -        |         | ŀ    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           | i       |                                         |                                                  | 18   |          | SP      | ŀ    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           | :       |                                         | <del>                                     </del> | 10   | -        | ٠.      | 1    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           | i       |                                         |                                                  | 19   |          |         | 1    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           |         |                                         | <del>:  </del>                                   | . 3  | -        |         | -  - |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           | :       |                                         |                                                  | 20   |          |         | -    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| eologis   | st      | B. Gold:                                |                                                  | 20   |          |         |      | LEGEND:                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| necked    |         |                                         | ,                                                |      |          |         |      | SS - Split Spoon                            | C: - Completion Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|           | - , .   |                                         |                                                  |      |          |         |      | 33 - 3piil 3poon                            | CVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|           |         |                                         |                                                  |      |          |         |      |                                             | PP - Pocket Penetrometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|           |         |                                         |                                                  | -    |          |         |      |                                             | TOC - Top Of Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |

|             |              |              |             |        | LOG OF BORING No.: MW-13 |                           |                         |                           |
|-------------|--------------|--------------|-------------|--------|--------------------------|---------------------------|-------------------------|---------------------------|
| 1           | Terro        | JAYF         |             |        | -                        |                           | <del>.</del>            | OLIGINA MILLIANDO         |
|             |              |              |             |        | į                        |                           | at Daillian Consisses   | SHEET NUMBER 2 OF 2       |
|             |              |              | <del></del> |        | -                        |                           | st Drilling Services    | Location Diagram          |
| NT:         |              | em Pacifi    |             |        |                          |                           | llow Stem Auger         | <u>'</u>                  |
| CTNA        |              | on Wood      | Prese       | rving  | ii                       |                           |                         |                           |
|             | Works        |              |             | ····   |                          |                           |                         |                           |
| PROJECT NUM |              | 069.07       |             |        |                          | SAMPLING METHOD: Sp       | lit Spoon               | <u>i</u>                  |
| PROJECT LOC |              | iberty Ro    | oad         | yes    | 4.                       |                           |                         | <u>.</u>                  |
|             |              | on, TX       |             |        | - 1                      |                           |                         |                           |
|             |              |              |             |        |                          | SURFACE ELEVATION:        |                         |                           |
| BORING LOCA | TION: NW CO  | omer of S    | Site        |        |                          | TOC ELEVATION:            |                         | <u>-</u>                  |
|             | <u></u>      |              |             |        | -                        | WATER LEVEL: 9.4          | 3'                      | 7                         |
| START DATE: | 02/25/97     | FINISH DATE  | . 02        | /25/97 | -                        | WATER ELEVATION:          |                         | ī                         |
| START TIME: | 10:00        | FINISH TIME: |             | :00    |                          |                           | 25/97                   | <del>†</del>              |
| SAMPLER     | SAMPLE OVM   | RECOVERY     |             |        |                          | SOIL DESCRIPTION AN       |                         | NOTES:                    |
|             |              | 1            |             |        |                          |                           |                         | 1 10125.                  |
| TYPE        | OEPTH (PPVI) | (FT)         | IN FEET     | GRAPH  |                          | SAND wet loose fine       | -grained, 10YR7/1 gray  |                           |
| SS          | 20 - 25 —    | 5.0          | 21          | SP     |                          | OCIAD, Mer. 10026, IIII6  | -grained, TOTICITI gray |                           |
| 33          | 20-20        | 3.0          | 41          | 35     |                          | CLAV aliabely int 4       | 0VD7/4                  | 55 - 4.0                  |
|             |              |              |             | 1      |                          | CLAY, slightly moist, 1   | UTK// I                 | PP = 4.0                  |
|             |              |              | 22          |        |                          | Light gray, mottling with | מיסאלטו וו              | Sample Submitted For      |
|             |              |              |             |        |                          | brownish yellow, firm     |                         | Chemical Analysis         |
|             |              |              | 23          | ۵ ا    |                          |                           |                         |                           |
|             |              |              |             | СН     |                          |                           |                         |                           |
|             |              |              | 24          |        |                          |                           |                         |                           |
|             |              | 1            |             | #      | Ì                        |                           |                         |                           |
|             |              |              | -           | 1      |                          | DDV                       |                         |                           |
|             |              |              | 25          |        |                          | DRY                       |                         |                           |
|             |              |              |             | 1      |                          |                           |                         |                           |
|             |              |              | 26          |        |                          | Boring TD = 25.0 Feet     |                         |                           |
|             |              |              |             | . 1    |                          |                           |                         |                           |
| )           |              | .            | 27          |        |                          |                           |                         |                           |
|             |              | T            | $\Box$      |        | i                        | •                         | •                       | -                         |
|             |              |              | 28          |        |                          |                           |                         |                           |
|             |              |              |             |        |                          |                           |                         | -                         |
|             |              |              | 29          | - 1    |                          |                           |                         |                           |
|             | i            |              |             | 1      |                          |                           |                         |                           |
|             |              | l i          | 30          | - 1    |                          |                           |                         |                           |
|             |              | 1            |             | 1      | li                       |                           |                         |                           |
|             |              |              | 31          | #      |                          |                           |                         |                           |
| <b> </b>    |              | +            | 31          | 4      |                          |                           |                         |                           |
|             |              |              | 32          | 1      |                          |                           |                         |                           |
| <b> </b>    |              |              | ٥٧          | 1      |                          |                           |                         |                           |
| 1           |              |              |             |        |                          |                           |                         |                           |
| <b> </b>    | : 1          |              | 33          |        |                          |                           |                         |                           |
|             |              |              |             | i      |                          |                           |                         |                           |
|             |              | -            | 34          | ;      |                          |                           | ·                       |                           |
|             |              |              |             | .1     |                          |                           |                         |                           |
|             |              | 1            | 35          | - 1    |                          |                           |                         |                           |
|             |              |              |             | 1      |                          |                           |                         |                           |
|             |              |              | 36          | 1      |                          |                           |                         |                           |
|             |              |              |             | 1      |                          |                           |                         |                           |
|             |              |              | 37          | , i    |                          |                           |                         |                           |
|             |              |              |             | :      |                          |                           |                         |                           |
| l           |              |              | 38          |        |                          |                           |                         |                           |
|             |              |              |             | 1      |                          |                           |                         |                           |
|             | •            |              | 39          | 1      |                          |                           |                         |                           |
| <b> </b>    | <u></u>      | <del></del>  | -           |        |                          |                           | 7                       |                           |
| 1           |              |              | 40          |        | 1                        |                           |                         |                           |
| 2010-       | ott C = 1    | dobie        | 40          |        |                          |                           | LEGEND:                 | Cl. Completies lates of   |
| eologi      |              | asny         |             |        |                          |                           |                         | CI - Completion Interval  |
| Checke      | a by:        |              |             |        |                          |                           | SS - Split Spoon        | OVM - Organic Vapor Meter |
|             |              |              |             |        |                          |                           |                         | PP - Pocket Penetrometer  |
| 1           |              |              |             |        |                          |                           |                         | TOC - Top Of Casing       |

|             |                                 | A.       |               |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | LOG OF BORING No.: MW-14                          |                           |
|-------------|---------------------------------|----------|---------------|------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------|---------------------------|
|             |                                 | 1101     | Next          |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | .1<br>1<br>!                                      | SHEET NUMBER 1 OF 3       |
|             | 8. 3                            |          | No.           |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | DRILLING CONTRACTOR: Best Drilling Services       | Location Diagram          |
| NT:         |                                 | Southe   | ern Pacifi    | c Li | nes      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | DRILLING METHOD: Hollow Stem Auger                |                           |
| - WECT NA   | ME:                             |          | n Wood        | -    | _        | - Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of |   |                                                   | -                         |
|             |                                 | Works    |               | -    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                                   | -                         |
| PROJECT NUI | MBER:                           | 441020   |               |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | SAMPLING METHOD: Split Spoon                      | -                         |
| PROJECT LOC | DECTLOCATION: 4910 Liberty Road |          |               |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                                   |                           |
|             | Houston, TX                     |          |               |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                                   | <del>-</del>              |
|             | <del></del>                     |          |               |      | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | SURFACE ELEVATION:                                | <del>-</del><br>:         |
| BORING LOCA | ATION:                          |          |               | -    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 | TOC ELEVATION:                                    | 1                         |
|             |                                 |          | -             |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | WATER LEVEL: 7.71'                                | <del>-</del><br>!         |
| START DATE: | 02/2                            | 7/97     | FINISH DATE   | :    | 02       | /27/97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | WATER ELEVATION:                                  | -                         |
| START TIME: |                                 | :45      | FINISH TIME:  |      | _        | :30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - | DATE: 03/25/97                                    | <del>-</del> .            |
| SAMPLER     | SAMPLE                          | CVM      | RECOVERY      | CEP  |          | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C |                                                   | NOTES:                    |
| TYPE        | DEPTH                           | (Pour)   | (FT)          | N FE | ET       | GRAPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 |                                                   | 1                         |
|             | i                               | 1        | 1             |      | 1 1      | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | FILL, moist, 10YR4/6 dark yellowish brown         |                           |
| SS          | 0-5                             |          | 3.75          | 1    |          | FILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | grades to 10YR3/1 very dark gray, wood pieces     |                           |
|             | 1                               | i        | 1 3           | •    | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 1.5 - 1.75' SAND, slightly moist, 10YR6/4         |                           |
|             |                                 |          |               | 2    | -        | SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | light yellowish brown, fine-grained               |                           |
|             | <u> </u>                        | <u> </u> | +             | 4    | $\vdash$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 1.75 - 5 CLAY, silty, very slightly moist,        | PP = 2.75                 |
|             |                                 | 1        |               | 3    | $\vdash$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 10YR2/2 very dark brown grades to                 | 1 2./3                    |
|             | 1                               | <u>:</u> | -             | 3    | -        | CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 10YR4/1 dark gray, odor                           |                           |
|             | İ                               |          |               |      |          | UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | TOTINAN I Galk gray, OGOF                         |                           |
|             | <u> </u>                        | !        |               | 4    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                                   |                           |
|             |                                 | 1        |               |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                                   |                           |
|             |                                 | İ        |               | 5    | П        | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                                   |                           |
|             | !                               | 1        | <del> </del>  | •    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | CLAV                                              |                           |
|             |                                 | <u> </u> |               | _    | $\vdash$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | CLAY                                              | Sample Collected In A     |
| ST          | 5-7                             |          | 2.0           | 6    |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                                   | Shelby Tube For           |
|             |                                 |          |               | _    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                                   | Geotechnical Analysis     |
|             | <u> </u>                        | <u> </u> | <u> </u>      | 7    |          | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                                   |                           |
|             |                                 |          |               |      | Щ        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | CLAY, silty, moist, 10YR6/2 light yellowish gray, | PP = 2.5 °                |
| SS          | 7 - 10                          |          | 3.0           | 8    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | mottling with 10YR6/8 brownsih yellow and         |                           |
|             |                                 | 1        |               |      |          | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 10YR4/1 dark gray, calcareous nodules.            |                           |
|             | <u> </u>                        |          | <u> </u>      | 9    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | Fe nodules, greenish tint, interbedded            |                           |
|             | i                               | į        | i             |      |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | silt lenses                                       | 4                         |
|             | i                               | !        |               | 10   |          | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                                   |                           |
|             |                                 | İ        |               |      | П        | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                                   |                           |
| SS          | 10 - 15                         |          | 5.0           | 11   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                                   |                           |
|             | :                               | i        | 1 .           |      |          | CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                   |                           |
|             | !                               | 1        |               | 12   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                                   |                           |
|             | :                               | !        | i             | -    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                                   |                           |
|             |                                 |          | İ             | 13   | $\vdash$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                                   |                           |
|             | :                               |          | <del></del>   |      | _        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                                   |                           |
|             | :                               |          |               | 14   | H        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ! |                                                   |                           |
|             |                                 | 1        | <del></del> - | 14   | _        | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                                   |                           |
|             | 1                               |          |               | 15   | $\vdash$ | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | ODOR                                              |                           |
|             | <del> </del>                    | !        | !             | 13   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | SAND                                              | Sample Callected In A     |
| CT          | 45 4-                           |          | 20            |      | $\vdash$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | JANU                                              | Sample Collected In A     |
| ST          | 15 - 17                         | i        | 2.0           | 16   | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                                   | Shelby Tube For           |
|             |                                 |          | :             | 300  | 4        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                                   | Geotechnical Analysis     |
|             | 1                               | !        | !             | 17   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                                   |                           |
|             | i                               |          |               |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | SAND, wet, 10YR6/1, gray, odor, sheen,            | Sampe Retained For        |
| SS          | 17 - 20                         |          | 3.0           | 18   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | greenish tint                                     | Chemical Analysis         |
|             |                                 |          |               |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                                   |                           |
|             | !                               |          |               | 19   |          | SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                   |                           |
|             | i                               | I        |               |      |          | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 2" Clay seam with creosote staining               |                           |
|             | i                               |          | İ             | 20   | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - | and globules                                      |                           |
| eologi      | ist                             | B. Gold  | dsby          |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | LEGEND:                                           | CI - Completion Interval  |
| Checke      |                                 |          |               |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | SS - Split Spoon                                  | OVM - Organic Vapor Meter |
| J           | ,.                              |          |               |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | apin apadii                                       | PP - Pocket Penetrometer  |
|             |                                 |          |               |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                                   | TOC - Top Of Casing       |

|                                   | Terrolloye     |               |                                                  |          |                                         |       | LOG CF BORING No.: MW-14                          |                           |  |
|-----------------------------------|----------------|---------------|--------------------------------------------------|----------|-----------------------------------------|-------|---------------------------------------------------|---------------------------|--|
|                                   | and the second |               | 10                                               |          |                                         |       |                                                   | SHEET NUMBER 2 OF 3       |  |
| 'ENT:                             |                | South         | em Paci                                          | fic L in | 00                                      |       | DRILLING CONTRACTOR: Best Drilling Services       | Location Diagram          |  |
| ECT NA                            | ME.            |               | on Wood                                          |          |                                         |       | DRILLING METHOD: Hollow Stem Auger                | _                         |  |
|                                   |                | Works         |                                                  | 11100    | Ct vii ig                               |       |                                                   | <u> </u>                  |  |
| OJECT NL                          | MBER:          |               | 069.07                                           |          | *************************************** |       | SAMPLING METHOD: Split Spoon                      | -                         |  |
| OJECT LOCATION: 4910 Liberty Road |                |               |                                                  |          |                                         |       | Spin Gpoon                                        | <del>-</del>              |  |
|                                   | -              |               | on, TX                                           |          |                                         | -     |                                                   | <del>-</del> !            |  |
|                                   |                |               |                                                  |          |                                         |       | SURFACE ELEVATION:                                |                           |  |
| RING LOC                          | ATION:         |               |                                                  |          |                                         |       | TOC ELEVATION:                                    | <del>-</del> !            |  |
|                                   |                |               |                                                  |          |                                         |       | WATER LEVEL: 7.71'                                | <del>-</del>              |  |
| RT DATE                           | 02/2           | 27/97         | FINISH CAT                                       | E: 0     | 2/27/9                                  | 7     | WATER ELEVATION:                                  | <del>-</del>              |  |
| ART TIME:                         | 13             | :45           | FINISH TIME                                      | : 1      | 5:30                                    |       | DATE: 03/25/97                                    | <del>-</del>              |  |
| AMPLER                            | SAMPLE         | OVM           | RECOVERY                                         | OEPTH    | SOIL                                    | ; c   |                                                   | NOTES:                    |  |
| TYPE                              | OEPTH          | [<br>(PP4)    | · (FT)                                           | IN FEET  | GRAPH                                   | , : , |                                                   | NOTES.                    |  |
|                                   | :              |               | .                                                | : !      | i                                       | 1     | SAND, wet, 10YR6/1, gray, slight odor,            |                           |  |
| SS                                | 20 - 25        | <u> </u>      | 5.0                                              | 21!      | ]                                       | į     | no staining                                       |                           |  |
|                                   |                |               |                                                  |          |                                         |       |                                                   |                           |  |
| -                                 | <u> </u>       | <u> </u>      |                                                  | 22:      |                                         |       |                                                   |                           |  |
|                                   |                |               |                                                  |          | 1                                       |       |                                                   |                           |  |
|                                   | :              |               | <u> </u>                                         | 231_     | SP                                      |       |                                                   |                           |  |
|                                   |                |               |                                                  |          | 1                                       |       |                                                   |                           |  |
|                                   | İ              | !             |                                                  | 24       | _                                       | -     |                                                   |                           |  |
|                                   | ŀ              |               |                                                  |          | 7                                       | 1     |                                                   |                           |  |
|                                   |                |               |                                                  | 25       | i                                       |       |                                                   |                           |  |
|                                   | i              | <u>;</u><br>: | 1                                                | 23       | 1                                       | -     | CI AV III II II I                                 |                           |  |
| SS                                | 25 - 30        | İ             | 50                                               |          | -                                       |       | CLAY, silty, slightly moist                       | PP = 4.0                  |  |
| 33                                | 23 - 30        | :             | 5.0                                              | 26       | -                                       |       | 10YR7/2, light gray, with 10YR6/8                 |                           |  |
|                                   |                | <u> </u>      |                                                  | 27       | CL                                      |       | brownish yellow mottling, firm, hard              |                           |  |
| -                                 |                | <u> </u>      | 1                                                | 21       | -                                       |       |                                                   |                           |  |
|                                   |                |               |                                                  | 28       | 1                                       |       |                                                   |                           |  |
|                                   |                |               | <del>†                                    </del> | 20!      | <del></del>                             | -     | CLAY                                              |                           |  |
|                                   |                | ,             |                                                  | 291      | 1                                       |       |                                                   | Sample Retained For       |  |
|                                   |                |               | 1                                                |          | 1                                       |       |                                                   | Geotechnical Analysis     |  |
|                                   |                |               |                                                  | 301      | †                                       |       |                                                   |                           |  |
|                                   |                |               | 1 1                                              |          | 1                                       |       | CLAY, slightly moist, 10R4/8, red with            | PP = 2.0                  |  |
| SS                                | 30 - 35        |               | 5.0                                              | 31       | 1                                       |       | 10YR7/1; light gray mottling, calcareous seams.   | PP = 2.0                  |  |
|                                   |                |               | T :                                              |          | 1                                       |       | 1/2 - 3/4" thick, moist @ 31', 32', 33', and 34'. |                           |  |
|                                   |                |               | ]                                                | 32:      | i                                       |       | Very silty 31 - 35'                               |                           |  |
|                                   |                |               | 1                                                | !        |                                         |       |                                                   |                           |  |
|                                   |                |               |                                                  | 33!      | CL                                      |       |                                                   |                           |  |
|                                   | !              |               |                                                  | !        |                                         |       |                                                   |                           |  |
|                                   | i              |               | 1                                                | 34       | 1                                       | 1 1   |                                                   |                           |  |
| !                                 | i              |               | 1 :                                              |          | !                                       |       |                                                   |                           |  |
|                                   |                |               |                                                  | 35       | i                                       | 1 1   |                                                   |                           |  |
| !                                 | i              |               |                                                  |          |                                         |       | SAND, slightly silty, wet, 2.5 YR5/8, red,        | Sample Retained For       |  |
| SS                                | 35 - 40        |               | 2.5                                              | 36:      | !                                       | 1 [   | fine grained, clay nodules, 2" clay @ bottom.     | Chemical Analysis         |  |
| į                                 | . !            |               |                                                  |          | Ī                                       |       | then 2" hard cemented sandstone or claystone.     |                           |  |
|                                   | !              |               |                                                  | 37'      | 1                                       |       | 2.5YR5/8, red, with 10YR7/2, light gray mottling  |                           |  |
| i                                 | İ              |               |                                                  |          | !                                       |       |                                                   |                           |  |
| - :                               | !              |               |                                                  | 381      | SP                                      |       |                                                   |                           |  |
| i                                 | i              |               |                                                  |          | 2.5                                     |       |                                                   |                           |  |
| :                                 |                | -             | 1                                                | 39       |                                         |       |                                                   |                           |  |
| :                                 |                |               | 1                                                |          |                                         | ] [   |                                                   |                           |  |
|                                   |                |               |                                                  | 40       |                                         |       |                                                   |                           |  |
| plogis                            |                | B. Gold       | sby                                              |          |                                         |       | LEGEND:                                           | Cl - Completion Interval  |  |
| ecked                             | By:            |               |                                                  |          |                                         |       |                                                   | OVM - Organic Vapor Meter |  |
|                                   |                |               |                                                  |          |                                         |       |                                                   | PP - Pocket Penetrometer  |  |
|                                   |                |               |                                                  |          |                                         |       |                                                   | TOC - Top Of Coping       |  |

|             |                                                |               |                | LOG OF BORING No.:     | MW-14                                  |                           |
|-------------|------------------------------------------------|---------------|----------------|------------------------|----------------------------------------|---------------------------|
|             | Torres                                         | TOVE          |                | l cod or bolking hou   | 10144-1-4                              |                           |
|             | (lerral                                        |               |                |                        |                                        | SHEET NUMBER 3 OF 3       |
| 1           |                                                |               |                |                        | Best Drilling Services                 | Location Diagram          |
| ENT:        |                                                | rn Pacific    |                | DRILLING METHOD:       | Hollow Stem Auger                      |                           |
| PROJECT NAM | e: Housto                                      | n Wood F      | reserving      | 1                      |                                        |                           |
|             | Works                                          |               |                | 1                      |                                        |                           |
| PROJECT NUM | 48ER: 441020                                   | 069.07        |                | SAMPLING METHOD:       | Split Spoon                            |                           |
| PROJECT LOC |                                                | iberty Roa    | ad             | :                      |                                        |                           |
| PROJECTEDA  | Housto                                         |               |                |                        |                                        | <del></del>               |
|             | 1100310                                        | 11, 17        | <u></u>        | SURFACE ELEVATION:     | <del>- i</del>                         | <del>-i</del>             |
|             |                                                |               |                |                        | ************************************** |                           |
| BORING LOCA | ATION:                                         |               |                | TOC ELEVATION:         | 7 741                                  |                           |
|             |                                                |               | 20/07/07       | WATER LEVEL:           | 7.71'                                  |                           |
| START DATE: | 02/27/97                                       | FINISH DATE:  | 02/27/97       | WATER ELEVATION:       |                                        |                           |
| START TIME: | 13:45                                          | FINISH TIME:  | 15:30          | DATE:                  | 03/25/97                               |                           |
| SAMPLER     | SAMPLE OVM                                     | RECOVERY      | CEPTH : SOIL : | C SOIL DESCRIPTI       | ON AND DRILLING CONDITIONS             | NOTES:                    |
| TYPE        | DEPTH (PPM)                                    | ! (FT) :      | FEET GRAPH     |                        |                                        |                           |
|             | i İ                                            |               | 1 : 4          | CLAY, dry, 2.5YR5/     |                                        |                           |
| ST          | 40 - 43 —                                      | 3.0           | 41             | mottling with 10YR7    | 7/2. light grav.                       |                           |
|             |                                                | Ī             | CH             |                        | ning (probably manganese               |                           |
|             |                                                | :             | 42             | oxide) scattered three | oughout.                               |                           |
|             | <u> </u>                                       |               |                | ondo) doditored and    |                                        |                           |
|             |                                                |               |                | <b></b>                |                                        |                           |
|             | <u> </u>                                       | <del></del> ' | 43             | OLAY                   |                                        | Consolo Collegio di La A  |
|             |                                                |               |                | CLAY                   |                                        | Sample Collected In A     |
| ST          | 43 - 45 -                                      | 2.0           | 44             | 1                      |                                        | Shelby Tube For           |
|             | <u> </u>                                       |               |                |                        |                                        | Geotechnical Analysis     |
|             |                                                |               |                |                        |                                        | - Geoteorinoai Analysis   |
|             | !. !                                           | <u> </u>      | 45             |                        |                                        |                           |
|             |                                                |               |                | }                      |                                        |                           |
|             | !                                              |               | 46             | Boring TD @ 45.0'      |                                        |                           |
| <del></del> | : 1                                            | 1             |                |                        |                                        |                           |
|             |                                                |               | 47             |                        |                                        |                           |
| 1           |                                                | <del> </del>  | -              |                        |                                        |                           |
|             |                                                |               |                |                        |                                        |                           |
|             |                                                |               | 481            |                        |                                        |                           |
|             |                                                |               |                |                        |                                        |                           |
|             |                                                | <u> </u>      | 491            |                        |                                        |                           |
|             |                                                |               |                |                        |                                        |                           |
|             | <u>:                                      </u> |               | 50             |                        |                                        |                           |
|             |                                                | 1             |                | 1                      |                                        |                           |
| l           | i .                                            |               | 51             |                        |                                        |                           |
|             | :                                              |               |                |                        |                                        |                           |
| 1           | i                                              | į             | 52!            |                        |                                        |                           |
|             | <del></del>                                    | 1             |                | -                      |                                        |                           |
|             |                                                | İ             | 531            |                        |                                        |                           |
|             | <u> </u>                                       |               | 53             |                        |                                        |                           |
|             |                                                |               |                |                        |                                        |                           |
|             | : <u>I</u>                                     | !             | 54:            | <u> </u>               |                                        |                           |
|             | <u> </u>                                       |               |                |                        |                                        |                           |
|             | !                                              |               | 55             |                        |                                        |                           |
|             | ; ;                                            |               |                |                        |                                        |                           |
|             | !                                              |               | 56             |                        |                                        |                           |
| <u> </u>    | 1                                              |               |                |                        |                                        |                           |
|             | <u>.</u>                                       |               | 57             |                        |                                        |                           |
| <u></u>     | 1                                              | <del>-</del>  | ·              |                        |                                        |                           |
| 1           |                                                | 1             | -              |                        |                                        |                           |
|             |                                                | :             | 58             |                        |                                        |                           |
| 1           |                                                |               |                |                        |                                        |                           |
|             | i                                              | 1             | 59             |                        |                                        |                           |
|             |                                                |               |                |                        |                                        |                           |
| . [         | 1                                              | i             | 50:            |                        |                                        |                           |
| Seolog      | ist: B. Gol                                    |               |                |                        | LEGEND:                                | Cl - Completion Interval  |
| Checke      |                                                | ,             |                |                        | SS - Split Spoon                       | OVM - Organic Vapor Meter |
| 1           | ; .                                            |               |                |                        | <b></b>                                | PP - Pocket Penetrometer  |
| 1           |                                                |               |                |                        |                                        | TOC - Top Of Casing       |
|             |                                                |               |                |                        |                                        | , 00 - 100 01 0431119     |

|             |             |              |          |          |    | LOG OF BORING No.: MW-15                    |                           |
|-------------|-------------|--------------|----------|----------|----|---------------------------------------------|---------------------------|
|             | CETTO       | Next         |          |          |    | •                                           | SHEET NUMBER 1 OF 2       |
|             |             | and the      |          |          |    | DRILLING CONTRACTOR: Best Drilling Services | Location Diagram          |
| LIENT:      | Southe      | em Pacifi    | c Lines  | <u> </u> |    | DRILLING METHOD: Hollow Stem Auger          |                           |
| ROJECT NAM  |             | on Wood      |          |          |    | · · · · · · · · · · · · · · · · · · ·       | •                         |
| ACCECT FOR  | Works       |              | . 1000   | viiig    |    |                                             |                           |
| PROJECT NUM |             | 069.07       |          |          |    | SAMPLING METHOD: Split Spoon                | i                         |
| PROJECT LOC |             | iberty Ro    | nad      |          |    | Shirt Charles                               | <u> </u>                  |
| PROJECT LOC |             | on, TX       | <u> </u> |          |    |                                             |                           |
| -           | 1100310     | JII, 17      |          |          |    | SURFACE ELEVATION:                          | •<br>!                    |
|             | Fast or     | f Entranc    | e Gate   | <u> </u> |    | TOC ELEVATION:                              | 1                         |
| BORING LOCA |             | Side of C    |          |          |    | WATER LEVEL: 8.22'                          | !<br>                     |
|             | 02/25/97    |              |          | /25/97   |    |                                             | •<br>•                    |
| START DATE: | 13:30       | FINISH DATE  |          | :00      |    | WATER ELEVATION: 03/25/97                   | :<br>•                    |
| START TIME: |             | FINISH TIME: |          |          |    |                                             | NOTES:                    |
| SAMPLER     | SAMPLE OVM  | RECOVERY     |          | SOIL     |    | * · · · · · · · · · · · · · · · · · · ·     | NOTES.                    |
| TYPE        | DEPTH (PPM) | (FT)         | N FEET   | GRAPH    | 11 |                                             |                           |
| 000         | 0.5         | 100          |          |          | -  | Fill, moist, sandy, 10YR5/3 brown           | DD = 4.0                  |
| SS          | 0-5 —       | 3.5          | 1        |          |    | CLAY, silty, slightly moist,                | PP = 1.0                  |
|             |             |              | _ ا      |          |    | 10YR3/1 very dark gray                      | Sample Submitted For      |
|             | ! !         |              | 2        | ~        |    |                                             | Chemical Analysis         |
|             | !           |              |          | CL       | 1  |                                             |                           |
|             | <u> </u>    |              | 3:       |          |    |                                             |                           |
|             | :           |              |          |          | 1  |                                             |                           |
|             |             | !            | 4        |          |    |                                             |                           |
|             | <u> </u>    |              |          |          |    | CLAY, very slightly moist, 10YR3/1          | PP = 1.0                  |
|             |             |              | 5        |          |    |                                             |                           |
|             | <u> </u>    | +            | 5        |          |    | Very dark gray                              |                           |
|             |             |              |          |          |    |                                             | PP = 1.5                  |
| SS          | 5 - 10 -    | 5.0          | 6:       |          |    |                                             |                           |
| 1           | !           |              |          |          |    |                                             |                           |
|             |             | <u> </u>     | 7        | CH       |    |                                             |                           |
| 1           |             |              |          |          |    |                                             | •                         |
|             |             |              | 8:       |          |    | 10YR6/1 Gray with 10YR6/8 brownish yellow   |                           |
|             |             |              |          |          |    | mottling + 10YR4/1 dark gray Fe nodules;    |                           |
| ļ           | !           |              | 9        |          |    | 8.5 - 9.0 calcareous nodule seam            | PP = 3.0                  |
|             | ! .         |              |          |          |    |                                             |                           |
|             | :           |              | 10       |          |    |                                             |                           |
|             |             |              |          |          |    |                                             |                           |
| SS          | 10 - 15 -   | 3.5          | 11       |          |    |                                             |                           |
|             |             |              |          |          |    |                                             |                           |
|             | :           |              | 12       |          |    |                                             |                           |
|             |             | 1            |          |          |    |                                             |                           |
|             | i           |              | 13       |          |    | Very silty                                  |                           |
|             | !           | 1 :          |          |          |    |                                             |                           |
|             |             |              | 14       | CL       |    |                                             |                           |
|             |             |              |          |          |    |                                             |                           |
|             |             |              | 15       |          |    |                                             |                           |
|             | <del></del> | 1            |          |          |    | SAND, saturated, 10YR7/1 light gray         |                           |
| ss          | 15 - 20 —   | 5.0          | 16       |          |    | Critis, saturated, 10 11 (171 light gray    |                           |
| -00         | 10-20       | 1 3.0        |          |          |    |                                             |                           |
|             |             | ! !          | 17       |          |    |                                             |                           |
|             | <del></del> |              | " -      | SP       |    |                                             |                           |
|             |             |              | 40       | 35       |    |                                             |                           |
|             | <u> </u>    |              | 18       | !        |    |                                             |                           |
|             |             |              | 40       |          |    |                                             |                           |
|             | !           | ! :          | 19       | •        |    |                                             |                           |
|             | 1           | 1            |          |          |    |                                             |                           |
|             | !           | 1            | 20       |          |    |                                             |                           |
| Geolog      |             | idsby        |          |          |    | LEGEND:                                     | CI - Completion Interval  |
| Checke      | ed By:      |              |          |          |    | SS - Split Spoon                            | OVM - Organic Vapor Meter |
| 1           |             |              |          |          |    |                                             | PP - Pocket Penetrometer  |
| 1           |             |              |          |          |    |                                             | TOC - Top Of Casing       |

|             |                                                  | All and a second                        |                                                  |               |          |     | LOG OF BORING No.: MW-15                    |                                        |
|-------------|--------------------------------------------------|-----------------------------------------|--------------------------------------------------|---------------|----------|-----|---------------------------------------------|----------------------------------------|
|             | TE                                               | fra                                     | lext                                             |               |          |     | LOG OF BORING NO IVIVV-13                   | CHEET MINDER 2 OF 2                    |
|             | 2                                                |                                         |                                                  |               |          |     | DRILLING CONTRACTOR: Best Drilling Services | SHEET NUMBER 2 OF 2  Location Diagram  |
| JENT:       |                                                  | Southe                                  | ern Pacii                                        | ic Line       | S        |     | DRILLING METHOD: Hollow Stem Auger          | : Cocation Diagram                     |
| PROJECT NA  |                                                  |                                         | n Wood                                           |               |          |     |                                             | •                                      |
|             |                                                  | Works                                   |                                                  |               |          |     |                                             |                                        |
| PROJECT NU  |                                                  | 441020                                  | 069.07                                           |               |          |     | SAMPLING METHOD: Split Spoon                | -                                      |
| PROJECT LOC | CATION:                                          | 4910 L                                  | iberty R                                         | oad           |          |     |                                             | ì                                      |
|             |                                                  | Housto                                  |                                                  |               |          |     |                                             | i                                      |
|             |                                                  |                                         | 93                                               |               |          |     | SURFACE ELEVATION:                          |                                        |
| BORING LOCA | ATTON:                                           | East of                                 | f Entrand                                        | ce Gat        | е        |     | TOC ELEVATION:                              |                                        |
|             |                                                  | North                                   | Side of                                          | Office        |          |     | WATER LEVEL: 8.22'                          |                                        |
| START DATE: | 02/2                                             | 5/97                                    | FINISH DATE                                      | E: 02         | 2/25/97  | •   | WATER ELEVATION:                            |                                        |
| START TIME: | 13:                                              | 30                                      | FINISH TIME                                      | : 15          | 5:00     |     | DATE: 03/25/97                              |                                        |
| SAMPLER     | SAMPLE                                           | OVM                                     | RECOVERY                                         | DEPTH         | SOIL     | C   | SOIL DESCRIPTION AND DRILLING CONDITIONS    | NOTES:                                 |
| TYPE        | DEPTH                                            | (PPM)                                   | (FT)                                             | IN FEET       | GRAPH    |     |                                             |                                        |
|             | ! !                                              |                                         |                                                  |               | ;        |     | SAND, saturated, 10YR7/1, light gray        | Sample Submitted For                   |
| SS          | 20 - 25                                          |                                         | 5.0                                              | 21            | ī        |     |                                             | Chemical Analysis                      |
|             | li                                               |                                         | 1                                                |               | i        |     |                                             |                                        |
| 1           |                                                  |                                         |                                                  | 22            | SP       |     |                                             |                                        |
|             | ī                                                |                                         | 1                                                |               |          |     |                                             |                                        |
|             |                                                  |                                         |                                                  | 23            | •        |     |                                             |                                        |
|             |                                                  |                                         | 1                                                |               | •        |     |                                             |                                        |
|             |                                                  |                                         |                                                  | 24            | 1        |     |                                             |                                        |
|             | 1 1                                              |                                         | -                                                | <sup>24</sup> | <u> </u> |     | OLAY                                        |                                        |
|             |                                                  |                                         |                                                  |               | <u>:</u> |     | CLAY, very slightly moist, 10YR 7/1         | PP = 3.0                               |
|             |                                                  |                                         | 1                                                | 25            |          |     | Light gray with 10YR6/8                     |                                        |
|             |                                                  |                                         |                                                  |               | i        |     | Browish yellow mottling, firm               | Sample Submitted For                   |
| SS          | 25 - 27                                          | -                                       | 2.0                                              | 26            | CH       |     |                                             | Chemical Analysis                      |
| -           | 1 1                                              |                                         | İ                                                |               |          |     | •                                           |                                        |
|             |                                                  |                                         |                                                  | 27            |          |     |                                             |                                        |
|             | i i                                              |                                         | i                                                |               | i        | 1   |                                             |                                        |
|             |                                                  |                                         |                                                  | 28            |          | 1   | Boring TD @ 27'                             |                                        |
|             | 1                                                |                                         | T                                                | ageophore.    | •        |     |                                             |                                        |
|             |                                                  |                                         |                                                  | 29            | i        |     |                                             |                                        |
|             | 1 1                                              | *************************************** | 1                                                | -             |          |     |                                             |                                        |
|             | i i                                              |                                         |                                                  | 30            | :        |     |                                             |                                        |
|             | i i                                              | *****                                   | $\dagger$                                        |               |          |     |                                             |                                        |
|             |                                                  |                                         | i                                                | 31            | ×        |     |                                             |                                        |
|             | <del>                                     </del> |                                         | <del>-</del>                                     | -             | •        |     |                                             |                                        |
|             |                                                  |                                         |                                                  | 32            |          |     |                                             |                                        |
|             |                                                  |                                         | <del></del>                                      | -             | •        |     |                                             | ************************************** |
|             |                                                  |                                         |                                                  | 33            |          | 1   |                                             |                                        |
|             | 1 !                                              |                                         | -                                                | -             | •        |     |                                             |                                        |
|             | į                                                |                                         |                                                  | 34            |          |     |                                             |                                        |
|             | <del> </del>                                     |                                         | <del>†</del>                                     |               | ·<br>•   |     |                                             |                                        |
| 1           |                                                  |                                         |                                                  | 35            | !        |     |                                             |                                        |
| <b></b>     | + +                                              |                                         | <del>                                     </del> | 30            | •        |     |                                             | _                                      |
|             |                                                  |                                         |                                                  | 26 -          | i<br>•   | 1 ! |                                             |                                        |
|             | <del>!                                    </del> |                                         | <del></del>                                      | 36            | •        |     |                                             |                                        |
|             | !                                                |                                         |                                                  |               |          | 1   |                                             |                                        |
|             | :                                                |                                         |                                                  | 37            |          |     |                                             |                                        |
|             |                                                  |                                         |                                                  |               |          |     |                                             |                                        |
|             | <u> </u>                                         |                                         |                                                  | 38            | ;<br>•   |     |                                             |                                        |
|             |                                                  |                                         | !                                                |               | •        |     |                                             |                                        |
|             | ! !                                              |                                         |                                                  | 39            | :        | 1   |                                             |                                        |
| •           |                                                  |                                         |                                                  |               | :        |     |                                             |                                        |
| 1           | !                                                |                                         | <u>i  </u>                                       | 40            |          |     |                                             |                                        |
| Geologi     |                                                  | B. Gold                                 | sby                                              |               |          |     | LEGEND:                                     | Cl - Completion Interval               |
| Checke      | ed By:                                           |                                         |                                                  |               |          |     | SS - Split Spoon                            | OVM - Organic Vapor Meter              |

TOC - Top Of Casing

|             |          | £2           |             |       | -         |         |   | LOG OF BORING No.: MW-15C                           |                                                    |
|-------------|----------|--------------|-------------|-------|-----------|---------|---|-----------------------------------------------------|----------------------------------------------------|
| L           | TE       | rra          | <b>lext</b> |       |           |         |   |                                                     | SHEET NUMBER 1 OF 2                                |
|             | -        | - F          |             |       |           |         |   | DRILLING CONTRACTOR: Best Drilling Services         | Location Diagram                                   |
| CLIENT:     |          | Southe       | m Pacif     | ic L  | ines      | 3       |   | DRILLING METHOD: Hollow Stem Auger                  |                                                    |
| PROJECT NAM | Æ        | Housto       | n Wood      | Pe    | rse       | rving   |   |                                                     |                                                    |
|             |          | Works        |             |       |           |         |   |                                                     |                                                    |
| PROJECT NUM | GER:     | 441020       |             |       |           |         |   | SAMPLING METHOD: CME 5-foot Sampler                 |                                                    |
| PROJECT LOC | ATION:   |              | iberty R    | oad   |           |         |   |                                                     |                                                    |
|             |          | Housto       | n, TX       |       |           |         |   |                                                     |                                                    |
|             |          |              |             |       |           |         |   | SURFACE ELEVATION:                                  | 4                                                  |
| BORING LOCA | TION:    |              |             |       |           |         |   | TOC ELEVATION:                                      | <b>-</b>                                           |
|             |          |              |             |       |           |         |   | WATER LEVEL:                                        | -                                                  |
| START DATE: |          |              | FINISH CATE |       |           |         |   | WATER ELEVATION:<br>DATE:                           | -                                                  |
| START TIME: | SAMPLE   | OVM          | RECOVERY    |       | nu l      | SOIL    | C | SOIL DESCRIPTION AND DRILLING CONDITIONS            | NOTES:                                             |
| TYPE        | CEPTH    | (PPM)        | (FT)        | IN FI | 1         | GRAPH   | 1 |                                                     | NOTES.                                             |
|             | 00 111   | 1            | 1           |       |           | 0.00.11 | İ |                                                     | Boring advanced with 14-inch                       |
|             |          |              |             | 50    | П         |         |   |                                                     | rotary bit using water as drilling                 |
|             |          |              |             | 51    |           |         |   |                                                     | fluid                                              |
|             |          |              |             | 52    |           |         |   |                                                     |                                                    |
|             |          |              |             |       |           | CH      |   | CLAY, reddish brown; hard; medium                   |                                                    |
|             | <u> </u> |              |             | 53    |           |         |   | plasticity                                          |                                                    |
|             |          |              |             |       |           |         |   |                                                     |                                                    |
|             |          |              |             | 54    |           |         |   |                                                     |                                                    |
|             |          |              |             |       |           |         |   |                                                     |                                                    |
|             | <u> </u> |              |             | 55    |           |         |   |                                                     |                                                    |
|             |          |              |             |       | Н         |         |   |                                                     |                                                    |
| ļ           | <u> </u> | <u> </u>     | +           | 56    | $\vdash$  |         |   |                                                     |                                                    |
|             |          |              |             | 57    | Н         |         |   |                                                     |                                                    |
|             | 1        | <del> </del> | -           | 31    |           |         |   |                                                     |                                                    |
|             |          |              |             | 58    | Н         | ML      |   | SILT, reddish brown; firm; non-plastic;             | Boring advanced with 8 1/4-                        |
|             | i        | 1            | 1           |       |           |         |   | wet with trace clay and sand                        | inch O.D., 4 1/4-inch I.D. HSA                     |
|             |          |              |             | 59    | $\Box$    |         |   |                                                     |                                                    |
|             |          | Ī            |             |       |           |         |   |                                                     |                                                    |
| CB1         | <u> </u> |              | 4.2         | 60    |           |         |   |                                                     |                                                    |
|             | İ        |              |             |       |           |         |   |                                                     |                                                    |
|             | <u> </u> |              |             | 61    |           |         |   |                                                     |                                                    |
|             |          |              |             |       | Ш         |         |   |                                                     |                                                    |
|             | <u>i</u> |              |             | 62    |           |         |   |                                                     |                                                    |
|             | [        |              |             |       | Н         |         |   | 28 Abiela leves et CaCC2                            |                                                    |
|             | <u> </u> | <u> </u>     | +           | 63    | $\vdash$  |         |   | 2" thick layer at CaCO3 cemented sand @ 63.5'       |                                                    |
|             | •        |              |             | 64    | H         | 180     |   | Contented Sand (# 05.5                              |                                                    |
|             | <u> </u> | <u> </u>     | 1           | U44   | $\vdash$  |         |   | grades with some sand                               |                                                    |
|             | 65.0     |              |             | 65    | H         |         |   | g. case man come cana                               |                                                    |
|             | 1        | Ī            | I           |       | $\vdash$  |         |   |                                                     |                                                    |
| C82         | !        |              |             | 66    |           | SP      |   | Silty SAND; reddish brown, very fine grained;       |                                                    |
|             | !        |              |             |       |           |         |   | wet                                                 |                                                    |
| 121         | <u> </u> |              |             | 67    |           |         |   |                                                     |                                                    |
|             | !        |              |             |       |           |         |   |                                                     |                                                    |
|             | !        | 1            |             | 68    |           |         |   | grading very fine to fine grained                   |                                                    |
|             | !        |              |             |       | Ш         |         |   |                                                     |                                                    |
| <b></b>     | ļ        |              | !           | 69    | $\square$ |         |   |                                                     |                                                    |
|             | 70.0     |              |             |       | Ш         |         |   | 28 45 24 12 22 22 22 22 22 22 22 22 22 22 22 22     |                                                    |
| . )         | 70.0     | 0            | 1           | 70    | !!!       |         |   | ~2" thick layer CaCO3 cemented sand @ 70.0' LEGEND: |                                                    |
| eologi      |          | R. Lam       | ID.         |       |           |         |   | SS - Split Spoon                                    | CI - Completion Interval                           |
| Checke      | u by.    |              |             |       |           |         |   | 33 - Spill Spoon                                    | OVM - Organic Vapor Meter PP - Pocket Penetrometer |
|             |          |              |             |       |           |         |   |                                                     | TOC - Top Of Casing                                |

|             |                  |              |             |          |        |      | LOG OF BORING No.: MW-15C             |             |                             |
|-------------|------------------|--------------|-------------|----------|--------|------|---------------------------------------|-------------|-----------------------------|
|             | 1                | 11.          | TOY         |          |        |      | LOG OF BORING No.: MW-15C             |             |                             |
| Ļ           | . 16             | rra          | ACYL        |          |        |      | Back Baillian Co.                     |             | SHEET NUMBER 2 OF 2         |
| 1- }        |                  |              |             |          |        |      | DRILLING CONTRACTOR: Best Drilling Se | rvices      | Location Diagram            |
| LUENT:      |                  |              | m Pacif     |          |        |      | DRILLING METHOD: Hollow Stem Au       | iger        | -                           |
| PROJECT NAM | <b>4</b> :       |              | n Wood      | Perse    | erving |      |                                       |             | <u>i</u>                    |
|             |                  | Works        |             |          |        |      | 01/5//                                |             | 1                           |
| PROJECT NUM | BER:             | 441020       |             |          |        |      | SAMPLING METHOD: CME 5-foot San       | npier       | -                           |
| PROJECTLOC  | ATION:           |              | iberty R    | oad      |        |      |                                       |             |                             |
|             |                  | Housto       | n, TX       |          |        |      |                                       |             | 4                           |
|             |                  |              |             |          |        |      | SURFACE ELEVATION:                    |             | _                           |
| BORENG LOCA | TION:            |              |             |          |        |      | TOC ELEVATION:                        |             | 1                           |
|             |                  |              |             |          |        |      | WATER LEVEL:                          |             | 1                           |
| START DATE: | 4/2              | 5/97         | FINISH DATE | E:       | 04/25  | /97  | WATER ELEVATION:                      | ****        |                             |
| START TIME: |                  |              | FINISH TIME | <u> </u> |        |      | DATE:                                 |             |                             |
| SAMPLER     | SAMPLE           | OVM          | RECOVERY    | DEPTH    | SOIL.  | C    | SOIL DESCRIPTION AND DRILLING CON     | DITIONS     | NOTES:                      |
| TYPE        | ОЕРТН            | (PPM)        | (FT)        | IN FEET  | GRAPH  | 11   |                                       |             |                             |
|             |                  |              |             |          | ]      | 1    |                                       |             | For geolog, to 50 feet, see |
| CB3         |                  |              | 4.2         | 701      |        |      |                                       |             | log of boring MW-15         |
|             |                  |              |             |          |        |      |                                       |             |                             |
|             |                  |              |             | 71       | 1      |      |                                       |             |                             |
|             |                  |              |             |          | I      |      |                                       |             |                             |
|             |                  |              |             | 72       | 1      |      |                                       |             |                             |
|             |                  |              |             |          |        |      |                                       |             |                             |
|             |                  |              |             | 731      | ]      |      |                                       |             |                             |
|             |                  |              | 1           |          | ]      | -  - |                                       |             |                             |
|             |                  |              |             | 74       | CL     |      | Silty CLAY; reddish brown; hard       |             | ·                           |
|             |                  |              |             |          | Ī      | 1    | low plasticity; moist                 |             |                             |
|             | 75.0             |              |             | 75       | 7      |      |                                       |             |                             |
| I.,         |                  |              |             |          |        | 1    |                                       |             | Bottom of boring @ 75.0°    |
|             |                  |              |             | 76       | ]      |      |                                       |             | Install MW-15C on 4/28/97   |
| 1           |                  | Ι.           |             |          | ]      |      | •                                     |             | •                           |
|             |                  |              |             | 77       | ]      | 1    |                                       |             |                             |
|             |                  |              |             |          |        |      | •                                     |             | -                           |
|             |                  |              | -           | 78       |        |      |                                       |             |                             |
|             | 1                |              |             | i        |        |      |                                       |             |                             |
|             | 1                |              |             | 79       | ]      |      |                                       |             |                             |
|             |                  | Ī            |             | i i      |        |      |                                       |             |                             |
|             |                  |              |             | 80       | 7      |      |                                       |             |                             |
|             | 1                | ĺ            | 1           |          | 1      | 1    |                                       |             |                             |
|             |                  |              |             | 81       | 7      |      |                                       |             |                             |
|             | İ                | İ            | Ī           |          | 7      |      |                                       |             |                             |
|             |                  |              |             | 82       | 7      | Ì    |                                       |             |                             |
|             |                  | İ            | T           |          | 1      |      |                                       |             |                             |
| 1           |                  | 1            |             | 83       | 7      | -    |                                       |             |                             |
| 1           |                  | T            | 1           |          | 7      |      |                                       |             |                             |
|             |                  |              |             | 84       | 7      |      |                                       |             |                             |
|             |                  | İ            |             |          | 7      |      |                                       |             |                             |
| 1           |                  |              |             | 85       | 1      |      |                                       |             |                             |
|             | 1                |              |             | i        | 7      |      |                                       |             |                             |
| 1           |                  |              |             | 86       | 7      |      |                                       |             |                             |
|             |                  | 1            |             |          | 7      |      |                                       |             |                             |
|             |                  |              |             | 87       | 7      |      | ·                                     |             |                             |
|             |                  |              | 1           |          |        |      |                                       |             |                             |
| 1           |                  |              |             | 88       | 7 ~    |      |                                       |             |                             |
|             | <del>i</del>     | <del>i</del> | 1           |          |        |      |                                       |             |                             |
| l .         |                  |              |             | 89       | 7      |      |                                       | <del></del> |                             |
| Seolog      | ist <sup>.</sup> | R. Lan       | nb          |          |        |      | LEGE                                  | ND:         | CI - Completion Interval    |
| Checke      |                  | 1 14 14411   |             |          |        |      | SS - Spli                             |             | OVM - Organic Vapor Meter   |
| - Conce     | J.               |              |             |          |        |      | 33 4                                  | -           | PP - Pocket Penetrometer    |

TCC - Top Of Casing

|             |            | 4        | CE DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CON |          |          |     | LOG OF BORING No.: MW-16           |            |                           |
|-------------|------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----|------------------------------------|------------|---------------------------|
|             |            | rra      | <b>lext</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |     |                                    |            | SHEET NUMBER 1 OF 2       |
| L           |            | on the   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |     | DRILLING CONTRACTOR: Best Drilling | Services   | Location Diagram          |
| IENT:       |            | Southe   | rn Pacif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ic Line  | s        |     | DRILLING METHOD: Hollow Stem       |            |                           |
| PROJECT NAM | <b>Æ</b> : |          | n Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Prese    | rving    |     |                                    |            | •                         |
|             |            | Works    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |     |                                    |            |                           |
| PROJECT NUM | MER:       | 441020   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |     | SAMPLING METHOD: Split Spoon       |            |                           |
| PROJECT LOC | ATION:     |          | iberty Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oad      |          |     |                                    |            | ·                         |
|             |            | Housto   | n, TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |          |     |                                    |            |                           |
|             |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |     | SURFACE ELEVATION:                 |            |                           |
| BORING LOCA | TION:      | Adjace   | nt to Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in Line  | <u> </u> |     | TOC ELEVATION:                     |            | <u>!</u>                  |
|             |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |     | WATER LEVEL: 7.41'                 |            | <u>i</u>                  |
| START DATE: | 02/2       |          | FINISH DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 126/97   |     | WATER ELEVATION:                   |            |                           |
| START TIME: | 13:        | :50      | FINISH TIME:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15       | :30      |     | DATE: 03/25/97                     |            |                           |
| SAMPLER     | SAMPLE     | OVM      | RECOVERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DEPTH    | SOIL     | C   | SOIL DESCRIPTION AND DRILLING CO   | ONDITIONS  | NOTES:                    |
| TYPE        | DEPTH      | (PPM)    | (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IN FEET  | GRAPH    | !!  |                                    |            |                           |
|             |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1        |     | SILT, moist, 10YR3/3, dark brown   | n, gravei  | Sample Retained For       |
| SS          | 0-5        |          | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        |          | -   |                                    |            | Chemical Analysis         |
|             |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |          |     |                                    |            |                           |
|             |            |          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2        | i        |     |                                    |            |                           |
|             |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | !        |     |                                    | ·····      |                           |
|             | !          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3        |          |     |                                    |            |                           |
|             |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ML       |     |                                    |            |                           |
|             |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4        | !        |     |                                    |            |                           |
|             | 1          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | i        |     |                                    |            |                           |
|             |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | i        |     |                                    |            |                           |
|             | 1          | <u> </u> | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 -      |          | 1   |                                    |            |                           |
|             |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          | -   |                                    |            |                           |
| SS          | 5 - 10     |          | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6        |          |     | CLAY, silty, moist, 10YR3/3, dark  | brown,     |                           |
|             |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u> | 1        |     | calcareous nodules throughout      |            |                           |
|             | !          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7        | -        |     |                                    |            |                           |
|             | •          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u> | <u>!</u> |     |                                    |            | -                         |
|             |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8        |          |     |                                    |            | <u>.</u>                  |
| 1           |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | !        | 1   |                                    |            |                           |
|             |            |          | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 :      |          |     |                                    |            |                           |
|             | !          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | !        | 1   |                                    |            |                           |
|             | !          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10       | 1        |     |                                    | ****       |                           |
|             |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | CL       | 1   |                                    |            |                           |
| SS          | 10 - 15    |          | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11       |          |     |                                    |            |                           |
|             |            |          | i !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | !        | 1   |                                    |            |                           |
|             | !          |          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12       | i        | 1   |                                    |            |                           |
|             | 1          |          | : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | i        | ] : |                                    |            |                           |
|             | i          |          | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13       |          |     |                                    |            |                           |
|             |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | - 1      |     |                                    |            |                           |
|             | •          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14       |          | 1   |                                    |            |                           |
|             |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | į        |     |                                    |            |                           |
|             |            |          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15       | i        |     |                                    |            |                           |
|             |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |     | SILT, sandy, wet, 10YR7/1          |            |                           |
| SS          | 15 - 20    |          | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16       | 1        |     | light gray, green tint,odor        |            |                           |
|             | i          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |     |                                    |            |                           |
|             |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17       | ML       |     |                                    |            |                           |
|             | !          |          | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |     |                                    |            |                           |
| 1           |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18       |          |     |                                    |            |                           |
|             |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |     | SAND, silty, wet, 10YR7/1 light gr | ay,        |                           |
|             | 1          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19       | i        |     | green tint, odor                   |            |                           |
|             | i          |          | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | SM       |     |                                    |            |                           |
| 1           | :          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20       |          |     |                                    |            |                           |
| Geologi     | st:        | B. Gold  | isbv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          | _== | LEG                                | END:       | Cl - Completion Interval  |
| Checke      |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |     |                                    | alit Spaan | OVM - Organic Vapor Meter |
|             | ,.         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |     | 33 84                              |            | PP - Pocket Penetrometer  |
|             |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |     |                                    |            | TOC - Top Of Casing       |

|               |                                                |               |                | LOG OF BORING No.: MW-16                    |                                       |
|---------------|------------------------------------------------|---------------|----------------|---------------------------------------------|---------------------------------------|
|               | Ten                                            | anext         |                |                                             | SHEET NUMBER 2 OF 2                   |
|               | 200                                            |               |                | DRILLING CONTRACTOR: Best Drilling Services | Location Diagram                      |
| IENT:         | 50                                             | uthern Pacifi | c l ines       | DRILLING METHOD: Hollow Stem Auger          | : Cocation Diagram                    |
| . AOJECT NAM  |                                                | uston Wood    |                | BRILLING METHOD. THORAT CLEIN Auger         | <u>.</u>                              |
| - ACCECT FORM |                                                | orks          |                |                                             | ···········                           |
| PROJECT NUM   |                                                | 102069.07     |                | SAMPLING METHOD: Split Spoon                | :                                     |
| PROJECT LOC   |                                                | 10 Liberty Ro | oad            |                                             |                                       |
|               |                                                | uston, TX     |                |                                             |                                       |
|               |                                                |               |                | SURFACE ELEVATION:                          |                                       |
| BORING LOCA   | TION: Ad                                       | jacent to Ma  | in Line        | TOC ELEVATION:                              |                                       |
|               |                                                |               |                | WATER LEVEL: 7.41'                          | <u> </u>                              |
| START DATE:   | 02/26/9                                        |               |                | WATER ELEVATION:                            |                                       |
| START TIME:   | 13:50                                          | FINISH TIME:  | 15:30          | DATE: 03/25/97                              | <u>:</u>                              |
| SAMPLER       | SAMPLE                                         | OVM RECOVERY  | CEPTH : SOIL ( | SOIL DESCRIPTION AND DRILLING CONDITIONS    | NOTES:                                |
| TYPE          | OEPTH (                                        | PPM) (FT)     | IN FEET GRAPH  |                                             |                                       |
|               |                                                |               |                | SAND, silty, wet, 10YR7/1, light gray, odor | Sample Retained For                   |
|               | <u> </u>                                       |               | 21             |                                             | Chemical Analysis                     |
|               |                                                |               |                |                                             |                                       |
|               |                                                |               | 22 SM          |                                             |                                       |
|               |                                                |               | 22             |                                             |                                       |
| <u></u>       | <u> </u>                                       |               | 23             |                                             |                                       |
|               |                                                |               |                |                                             |                                       |
|               |                                                |               | 24             |                                             |                                       |
|               |                                                |               |                |                                             |                                       |
|               |                                                |               | 25             | CLAY, silty, slightly moist,                |                                       |
|               | İ                                              |               |                | 10YR4/8 red with 10YR7/1 light              | Sample Retained For                   |
|               | į                                              |               | 26             | gray mottling, firm, odor                   | Chemical Analysis                     |
|               | 1                                              |               |                | ·                                           |                                       |
|               | <u>                                     </u>   |               | 27 !-          |                                             | ٠.                                    |
| 1             |                                                |               | CL             |                                             | · · · · · · · · · · · · · · · · · · · |
|               | <u>i                                      </u> |               | 28             |                                             |                                       |
|               |                                                |               |                |                                             |                                       |
|               | <u> </u>                                       |               | 29             |                                             |                                       |
|               |                                                |               |                |                                             |                                       |
|               | ! !                                            |               | 30             |                                             |                                       |
|               |                                                |               | 24             | Roring TD = 20 0'                           |                                       |
|               | !                                              |               | 31             | Boring TD = 30.0'                           |                                       |
|               |                                                |               | 32             |                                             |                                       |
|               | <del></del>                                    |               | JZ             |                                             |                                       |
|               |                                                |               | 33             |                                             |                                       |
|               | <u> </u>                                       |               |                |                                             |                                       |
|               |                                                | 1             | 34             |                                             | <u> </u>                              |
|               | i i                                            |               |                |                                             |                                       |
|               |                                                |               | 35             |                                             |                                       |
|               | i                                              |               |                |                                             |                                       |
|               |                                                |               | 36             |                                             |                                       |
|               |                                                |               |                |                                             |                                       |
|               | <u> </u>                                       | !             | 37             |                                             |                                       |
|               | i I                                            |               |                |                                             |                                       |
|               | <u>i  </u>                                     |               | 38             |                                             |                                       |
|               |                                                |               |                |                                             |                                       |
|               | !!!                                            | ! ;           | 39             |                                             |                                       |
| I             |                                                |               |                |                                             |                                       |
|               | ! !                                            |               | 40             |                                             |                                       |
| Geologi       |                                                | Goldsby       |                | LEGEND:                                     | CI - Completion Interval              |
| Checke        | a By:                                          |               |                | SS - Split Spoon                            | OVM - Organic Vapor Meter             |
|               |                                                |               |                |                                             | PP - Pocket Penetrometer              |
| L             |                                                |               |                |                                             | TOC - Top Of Casing                   |

|                                         |          |                                         |                                                  |         |                                         | -  | ``````                                           | •                         |
|-----------------------------------------|----------|-----------------------------------------|--------------------------------------------------|---------|-----------------------------------------|----|--------------------------------------------------|---------------------------|
|                                         | 17       |                                         | Paul                                             |         |                                         |    | LOG OF BORING No.: MW-17                         |                           |
| 1                                       | T.       | 110                                     |                                                  |         |                                         |    |                                                  | SHEET NUMBER 1 OF 2       |
| ·                                       |          |                                         |                                                  |         |                                         |    | DRILLING CONTRACTOR: Best Drilling Services      | Location Diagram          |
| ENT:                                    |          |                                         | ern Paci                                         |         |                                         |    | DRILLING METHOD: Hollow Stem Auger               | _                         |
| PROJECT NA                              | ME:      |                                         | on Wood                                          | Prese   | erving                                  |    |                                                  | -                         |
|                                         |          | Works                                   |                                                  |         | *************************************** |    |                                                  | _                         |
| PROJECT NUM                             |          |                                         | 069.07                                           |         |                                         |    | SAMPLING METHOD: Split Spoon                     | _                         |
| PROJECT LOC                             | CATION:  |                                         | iberty R                                         | load    |                                         |    |                                                  | _                         |
|                                         |          | Housto                                  | on, TX                                           |         |                                         |    |                                                  | <u>-</u>                  |
|                                         |          |                                         |                                                  |         |                                         |    | SURFACE ELEVATION:                               |                           |
| BORING LOCA                             | ATION:   | East c                                  | of Entrar                                        | ice Ga  | ite                                     |    | TOC ELEVATION:                                   |                           |
|                                         | 00.10    |                                         |                                                  |         |                                         |    | WATER LEVEL: 9.97'                               | _*                        |
| START DATE:                             |          | 25/97                                   | FINISH DATI                                      |         | 2/25/97                                 |    | WATER ELEVATION:                                 | _                         |
| START TIME:                             |          | :30                                     | FINISH TIME                                      | 17      | 7:45                                    |    | DATE: 03/25/97                                   |                           |
| SAMPLER                                 | SAMPLE   | CVM                                     | RECOVERY                                         | DEPTH   | SOR.                                    | C  | SOIL DESCRIPTION AND DRILLING CONDITIONS         | NOTES:                    |
| TYPE                                    | DEPTH    | (bod)                                   | (FT)                                             | IN FEET | GRAPH                                   | 1  |                                                  |                           |
|                                         |          |                                         |                                                  | !_      |                                         | 11 | Fill, moist, gravel,                             |                           |
| SS                                      | 0-5      |                                         | 1.5                                              | 1       | 1                                       |    | CLAY, silty, slightly moist,                     |                           |
|                                         | İ        |                                         |                                                  |         | 1                                       |    | 10YR3/1 very dark gray                           |                           |
|                                         | :        |                                         | (                                                | 2!      | 1                                       |    |                                                  |                           |
|                                         |          |                                         |                                                  |         | CL                                      |    |                                                  |                           |
|                                         |          |                                         |                                                  | 3       | 1                                       |    |                                                  |                           |
|                                         | ;        |                                         |                                                  |         | Ī                                       |    | ,                                                |                           |
|                                         | 1        |                                         |                                                  | 4       | Ī                                       |    |                                                  |                           |
|                                         | ;        |                                         | T                                                |         | 1                                       |    | CI AV: year aliabity maint                       |                           |
|                                         | :        |                                         |                                                  | 5       | СН                                      |    | CLAY; very slightly moist                        |                           |
|                                         | :        |                                         | -                                                | 3       | · CH                                    |    |                                                  |                           |
|                                         |          |                                         |                                                  | !       |                                         |    | CLAY; silty; 10YR6/1; gray, very slightly moist; | PP = 3.0                  |
| SS                                      | 5 - 10   |                                         | 5.0                                              | 6:      | •                                       |    | mottling with 10YR6/8 brownish yellow and        |                           |
|                                         |          |                                         |                                                  |         | ļ                                       |    | 10YR3/1 very dark gray; scattered Fe nodules,    |                           |
|                                         | !        |                                         |                                                  | 7       |                                         |    | scattered calcareous nodules (1/4" - 3/4")       |                           |
|                                         |          |                                         |                                                  | _       |                                         |    |                                                  |                           |
|                                         | !        |                                         |                                                  | 8       |                                         |    |                                                  |                           |
|                                         |          |                                         |                                                  |         | CL                                      |    |                                                  |                           |
|                                         | :        |                                         | <u> </u>                                         | 9!      | 1                                       |    |                                                  |                           |
|                                         |          |                                         |                                                  |         |                                         |    |                                                  |                           |
|                                         |          |                                         |                                                  | 10:     |                                         |    |                                                  |                           |
| :                                       | :        |                                         |                                                  |         |                                         |    | Silt content increases                           | PP = 3.0                  |
| SS                                      | 10 - 15  |                                         | 3.5                                              | 11!     | ]                                       |    |                                                  |                           |
|                                         | -        |                                         |                                                  |         |                                         |    |                                                  |                           |
|                                         |          |                                         |                                                  | 12      |                                         |    |                                                  |                           |
| :                                       |          |                                         |                                                  | !       |                                         |    |                                                  |                           |
|                                         | ·        |                                         | <u> </u> i                                       | 13      |                                         |    |                                                  |                           |
|                                         | .        |                                         |                                                  |         |                                         |    |                                                  |                           |
| •                                       | ·        |                                         |                                                  | 14.     |                                         |    | SAND, moist, very silty, 10YR6/1 gray,           |                           |
|                                         |          |                                         | 1                                                |         |                                         |    | greenish tint, odor                              |                           |
| į.                                      |          |                                         | 1                                                | 15      |                                         |    |                                                  |                           |
| i                                       |          |                                         | T                                                |         |                                         |    |                                                  |                           |
| SS                                      | 15 - 20  |                                         | 5.0                                              | 16      | SM                                      |    | Saturated, slightly silty                        |                           |
|                                         |          | -                                       |                                                  |         |                                         |    |                                                  |                           |
| :                                       |          |                                         |                                                  | 17      |                                         |    |                                                  |                           |
|                                         |          |                                         |                                                  | 1       |                                         |    |                                                  |                           |
|                                         |          |                                         |                                                  | 18:     |                                         |    |                                                  |                           |
| *************************************** |          | *************************************** | <del>                                     </del> |         |                                         | 1  |                                                  |                           |
|                                         |          |                                         |                                                  | 19      |                                         | 1  |                                                  |                           |
|                                         | <u> </u> | ·                                       |                                                  | 13      |                                         |    |                                                  |                           |
| Ÿ.                                      |          |                                         |                                                  | 20      |                                         |    |                                                  |                           |
| Cooles                                  | 1        | D C-1-                                  | labu                                             | 20      | :                                       |    |                                                  |                           |
| Geologis<br>Checked                     |          | B. Gold                                 | Suy                                              |         |                                         |    |                                                  | Cl - Completion Interval  |
| CHECKE                                  | ь оу.    |                                         |                                                  |         |                                         |    |                                                  | OVM - Organic Vapor Meter |
|                                         |          |                                         |                                                  |         |                                         |    |                                                  | PP - Pocket Penetrometer  |
|                                         |          | *************************************** | _                                                |         |                                         |    |                                                  | TOC - Top Of Casing       |

| DRILLING CONTRACTOR: Bast Drilling Services  ORGENIA MEMORY 1997  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  East of Entrance Gate  Works  Works  Works  East of Entrance Gate  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Works  Wo |             |          |               |                                                  |        |              |          | -   | LOG OF BORING No.: MW-17                    |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|---------------|--------------------------------------------------|--------|--------------|----------|-----|---------------------------------------------|----------------------|
| DRILLING CONTRACTOR: Bast Drilling Services DRILLING METHOD: Hollow Stam Auger Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works Works |             |          | TO            | Next                                             |        |              |          |     |                                             | SHEET NUMBER 2 OF 2  |
| Descriptions   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description     | •           | € €      | on the        |                                                  |        |              |          |     | DRILLING CONTRACTOR: Best Drilling Services |                      |
| ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name   ModeST Name      | LENT:       |          | Southe        | ern Pacif                                        | ic Lin | ies          |          |     |                                             |                      |
| Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supplementable   Supp   | PROJECT NA  | ME:      |               |                                                  | Pres   | ervin        | g        |     |                                             |                      |
| Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mouston   Mous   |             |          |               |                                                  |        |              |          |     |                                             | <u> </u>             |
| House for   Carry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PROJECT NU  | MBER:    |               |                                                  |        |              |          |     | SAMPLING METHOD: Split Spoon                |                      |
| SUMPRISED   STANTON:   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPRISED   SUMPR   | PROJECT LO  | CATION:  |               |                                                  | oad    |              |          |     |                                             | <u>_</u> :           |
| SEAST OF ENTRANCE   15:00   Predeficies   17:00   ELEVATION:   MATER LEVATION:   MATER LEVATION:   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MATER LEVATION:   03/25/97   MA   |             |          | Housto        | on, TX                                           |        |              |          |     |                                             | :                    |
| STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STATE AND   STAT   |             |          | F4-           | 6 F-4                                            |        | -4-          |          |     |                                             | <u></u>              |
| ### STATE OF CALCET   15:30   PRINTING   17:45   CATE   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   O3/25/97   | BORING LOCA | ATION:   | East          | or entran                                        | ce G   | ate          |          |     |                                             |                      |
| State   15:30   Passes   17:45   DATE   03/25/97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 02/2     | 5/07          |                                                  |        | 12/25        | 07       |     |                                             | _                    |
| SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME      |             |          |               |                                                  | _      | ****         | 31       |     |                                             |                      |
| SS 20 - 25 1,5 2,5 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |          |               |                                                  |        |              | , ;      | C   |                                             | NOTES:               |
| SS 20 - 25 1.5 2.5 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 1        |               | 1                                                |        | i            |          |     |                                             | NOTES.               |
| SS   20 - 25   1.5   2.5   21   22   23   24   25   25   25   26   27   28   29   29   29   29   29   29   29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 1        | (,,,,,,       | 1                                                | 1      | 3.0          |          | Ė   | SAND, saturated, 10YR6/1 gray, odor         |                      |
| SS 25 - 30 — 2.5 28 SP 10YR7/3 very pale brown Sample Submitted For Chemical Analysis  CLAY, moist, 10YR4/8 red with Sample Submitted For SyR7/1 light gray mottling, Highly fractured, odor, contaminant staining  Geologist 8. Goldsby  Boring TD @ 35 Feet  CI - Completion Interval OWM - Organic Vapor Meter  Circ Campletion Interval OWM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS          | 20 - 25  | 1.5           | 2.5                                              | 21     | 7            |          |     | brown staining                              |                      |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | İ        | !             | İ                                                | Ī      |              |          |     |                                             |                      |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          |               |                                                  | 22     |              |          |     |                                             |                      |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          |               | i                                                |        |              |          |     |                                             |                      |
| SS   25 - 30   —   2.5   26     10YR7/3 very pale brown   Sample Submitted For Chemical Analysis   Chemical Analysis   Chemical Analysis   SS   30 - 35   —   5.0   31     SYR7/1 light gray mottling,   Chemical Analysis   Chemical Analysis   Highly fractured, odor,   Contaminant staining   Chemical Analysis   Boring TD @ 35 Feet   Significant of the staining   Boring TD @ 35 Feet   Significant of the staining   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical A   |             |          | 1             |                                                  | 23     |              |          |     |                                             |                      |
| SS   25 - 30   —   2.5   26     10YR7/3 very pale brown   Sample Submitted For Chemical Analysis   Chemical Analysis   Chemical Analysis   SS   30 - 35   —   5.0   31     SYR7/1 light gray mottling,   Chemical Analysis   Chemical Analysis   Highly fractured, odor,   Contaminant staining   Chemical Analysis   Boring TD @ 35 Feet   Significant of the staining   Boring TD @ 35 Feet   Significant of the staining   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical A   |             |          |               |                                                  |        |              |          |     |                                             |                      |
| SS   25 - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |          |               |                                                  | 24     |              |          |     |                                             |                      |
| SS   25 - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |          | i             |                                                  |        | T .          |          |     |                                             |                      |
| SS   25 - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |          |               |                                                  | 25     | 7            |          |     |                                             |                      |
| SS   25 - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | Ī        | <u></u>       | <del>-</del>                                     |        | S            | <b>5</b> |     | 10YR7/3 very pale brown                     | Sample Submitted For |
| SS 30 - 35 — 5.0 31 CLAY, moist, 10YR4/8 red with Sample Submitted For 5YR7/1 light gray mottling, Chemical Analysis Highly fractured, odor, contaminant staining  33 CH  Boring TD @ 35 Feet  Bering TD @ 35 Feet  CI- Completion Interval OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS          | 25 - 30  |               | 2.5                                              | 26     | 7            |          |     |                                             |                      |
| SS 30 - 35 — 5.0 31 CH Syr7/1 light gray mottling, Chemical Analysis Highly fractured, odor, contaminant staining  33 CH Soring TD @ 35 Feet  Boring TD @ 35 Feet  Geologist B. Goldsby Checked By:  CLAY, moist, 10YR4/8 red with Sample Submitted For 5YR7/1 light gray mottling, Chemical Analysis Chemical Analysis Highly fractured, odor, contaminant staining  CLAY, moist, 10YR4/8 red with Sample Submitted For 5YR7/1 light gray mottling, Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemical Analysis Chemica | 1           |          |               | 1                                                |        | -            |          |     |                                             |                      |
| SS 30 - 35 — 5.0 31 CLAY, moist, 10YR4/8 red with Sample Submitted For 5YR7/1 light gray mottling, Chemical Analysis Highly fractured, odor, contaminant staining  33 CH  Boring TD @ 35 Feet  Boring TD @ 35 Feet  CI - Completion Interval OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |          |               |                                                  | 27     |              |          |     |                                             | -                    |
| SS 30 - 35 — 5.0 31 CLAY, moist, 10YR4/8 red with Sample Submitted For 5YR7/1 light gray mottling, Chemical Analysis Highly fractured, odor, contaminant staining  33 CH  Boring TD @ 35 Feet  Boring TD @ 35 Feet  CI - Completion Interval OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | i        | i             |                                                  | •      |              |          |     |                                             |                      |
| SS 30 - 35 — 5.0 31   CLAY, moist, 10YR4/8 red with Sample Submitted For 5YR7/1 light gray mottling, Chemical Analysis Highly fractured, odor, contaminant staining   Contaminant staining   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis |             |          |               |                                                  | 28     | _            |          |     |                                             |                      |
| SS 30 - 35 — 5.0 31   CLAY, moist, 10YR4/8 red with Sample Submitted For 5YR7/1 light gray mottling, Chemical Analysis Highly fractured, odor, contaminant staining   Contaminant staining   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis   Chemical Analysis |             |          |               | i i                                              |        |              |          |     |                                             |                      |
| SS 30 - 35 — 5.0 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |          | i             |                                                  | 29     |              |          |     |                                             |                      |
| SS 30 - 35 — 5.0 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |          |               |                                                  |        | 4            |          |     |                                             |                      |
| SS   30 - 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | !        | !             |                                                  | 30     | -            |          |     | CLAV 40VD 4/0 - 1 - '''                     |                      |
| Highly fractured, odor, contaminant staining  33 CH Boring TD @ 35 Feet  37 38 39 40  Geologist: B. Goldsby Checked By:  LEGEND: C1 - Completion Interval OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 20 25    |               | 50                                               | _      | -            |          | į   | CLAY, moist, 10YR4/8 red with               | Sample Submitted For |
| Geologist: B. Goldsby Checked By:    Contaminant staining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33          | 30 - 35  |               | 1 5.0                                            | 31 _   | <del>-</del> |          |     | STR// light gray mottling,                  | Chemical Analysis    |
| Geologist: B. Goldsby Checked By:  CH  33  CH  34  Boring TD @ 35 Feet  LEGEND: C1 - Completion Interval OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          |               |                                                  | 32     | -            |          |     | contaminant staining                        |                      |
| 34 35 36 Boring TD @ 35 Feet 37 37 39 39 40 40 LEGEND: CI - Completion Interval OVM - Organic Vapor Meter OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | :        |               | -                                                |        |              | 1        |     | Containmant Statiling                       |                      |
| 34 35 36 Boring TD @ 35 Feet 37 37 39 39 40 40 LEGEND: CI - Completion Interval OVM - Organic Vapor Meter OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | :        |               |                                                  | 33     | C            | 4        |     |                                             |                      |
| Boring TD @ 35 Feet  37  38  39  40  Geologist: B. Goldsby Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By: |             | <u> </u> |               | <del>                                     </del> | -      | _            | •        |     |                                             |                      |
| Boring TD @ 35 Feet  37  38  39  40  Geologist: B. Goldsby Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By:  Checked By: |             |          |               |                                                  | 34     | -            | į        | :   |                                             |                      |
| Boring TD @ 35 Feet  37  38  39  40  Geologist: B. Goldsby Checked By:  Checked By:  Checked By:  Boring TD @ 35 Feet  Cl - Completion Interval  OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | ;        | :             | T                                                |        | -            | 1        | . ! |                                             |                      |
| 37 38 39 40  Geologist: B. Goldsby Checked By:  LEGEND: CI - Completion Interval SS - Split Spaan OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | İ        |               |                                                  | 35:    | 7            |          |     |                                             |                      |
| 37 38 39 40  Geologist: B. Goldsby Checked By:  LEGEND: CI - Completion Interval SS - Split Spaan OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 1        |               | T                                                |        | i            |          |     |                                             |                      |
| 37 38 39 39 Geologist: B. Goldsby Checked By:  LEGEND: CI - Completion Interval SS - Split Spaan OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |          |               |                                                  | 36     | -            |          |     | Boring TD @ 35 Feet                         |                      |
| Geologist: B. Goldsby Checked By:  LEGEND: CI - Completion Interval SS - Split Spaan OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | :        |               | 9                                                |        | -            | į        |     |                                             |                      |
| Geologist: B. Goldsby Checked By:  LEGEND: CI - Completion Interval SS - Split Spaan OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |          |               |                                                  | 37     |              |          |     |                                             |                      |
| Geologist: B. Goldsby Checked By:  LEGEND: CI - Completion Interval SS - Split Spaan OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |          |               |                                                  |        |              | :        |     |                                             |                      |
| Geologist: B. Goldsby  LEGEND: CI - Completion Interval  Checked By:  SS - Split Spaan OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | !        |               |                                                  | 38     |              | 1        |     |                                             |                      |
| Geologist: B. Goldsby  LEGEND: CI - Completion Interval  Checked By:  SS - Split Spaan OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |          |               |                                                  |        | -            | j        | :   |                                             |                      |
| Geologist: B. Goldsby LEGEND: C1 - Completion Interval Checked By: SS - Split Spaan OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 1        | ************* |                                                  | 39     |              |          |     |                                             |                      |
| Geologist: B. Goldsby LEGEND: C1 - Completion Interval Checked By: SS - Split Spaan OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |          |               |                                                  |        | i            |          | :   |                                             |                      |
| Checked By: SS - Split Spoon OVM - Organic Vapor Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2           |          |               | i                                                | 40     |              |          | _   |                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          | B. Gold       | dsby                                             |        |              |          |     |                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Спеске      | a By:    |               |                                                  |        |              |          |     | SS - Split Spaan                            |                      |

TOC - Top Of Casing

|                            |                                                  | 160     |                                                  |            |          |                | LOG OF BORING No.: MW-18                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------|--------------------------------------------------|---------|--------------------------------------------------|------------|----------|----------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | TE.                                              | rrai    | <b>Text</b>                                      |            |          |                |                                                     | SHEET NUMBER 1 OF 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| L.,                        | - 01                                             | er Vit. | and a                                            |            |          |                | DRILLING CONTRACTOR: Best Drilling Services         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ENT:                       |                                                  |         | ern Pacif                                        |            |          |                | DRILLING METHOD: Hollow Stem Auger                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROJECT NA                 |                                                  |         | on Wood                                          | Prese      | rving    |                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                  | Works   |                                                  |            |          |                | 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROJECT NUI                |                                                  |         | 069.07                                           |            |          |                | SAMPLING METHOD: Split Spoon                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROJECT LOC                |                                                  |         | iberty R                                         | oad        |          |                | 1                                                   | PROGRAMMA CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR C |
|                            |                                                  | Housto  | on, TX                                           |            |          |                |                                                     | Minimum colorenza e que                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                            |                                                  | East E  | ·                                                |            |          |                | SURFACE ELEVATION:                                  | Per distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BORING LOCA                | TION:                                            | East E  | na                                               |            |          |                | ITOC ELEVATION:                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | 02/2                                             | 6/07    |                                                  | 02         | 2/26/97  |                | WATER LEVEL: 15.41'                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| START DATE:<br>START TIME: |                                                  | :10     | FINISH DATE                                      |            | 2:30     |                | WATER ELEVATION: 03/25/97                           | Minimum or a service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service  |
| SAMPLER                    | SAMPLE                                           | OVM     | RECOVERY                                         |            | SOIL     | -              | SOIL DESCRIPTION AND DRILLING CONDITIONS            | NOTES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TYPE                       | DEPTH                                            | (PPVI)  | (FT)                                             | IN FEET    | GRAPH    | 1              |                                                     | NOTES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                            |                                                  | 1       | :                                                | ** ***     | G(-1.    | $\overline{1}$ | Fill, slightly moist, 10YR3/1, very dark gra        | ay Sample Retained For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SS                         | 0-5                                              | -       | 5.0                                              | 1          | i        |                | to 10YR2/1, black,                                  | Chemical Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                            |                                                  | ĺ       | ī                                                |            | FILL     |                | gravel, brick, roots                                | - Constituent / Interfere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                            |                                                  | ĺ       |                                                  | 2          |          |                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                  |         | 1                                                |            | i        |                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                  | i       |                                                  | 3          | !        | 1              | CLAY, silty, very slightly moist,                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                  |         | 1                                                |            | <u> </u> |                | very dark gray 10YR3/1                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                  | ĺ       |                                                  | 4          | :        |                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | 1                                                |         | 1                                                |            | -        | 1 :            |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                  | ĺ       |                                                  | 5          | :        |                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | <del>                                     </del> |         | <del>'</del>                                     | <b>~</b> — | :        | 1              | CUL document 40VPG/4 army adag                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ss                         | 5 - 10                                           |         | 5.0                                              |            |          |                | Silt decreases, 10YR6/1 gray, odor                  | PP = 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 33                         | 1 3 - 10 1                                       |         | 1 3.0                                            | °          | :        |                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                  | í       |                                                  | 7          |          |                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ı ———                      | <del> </del>                                     |         | <del>†                                    </del> | <i>'</i> — | :        |                | 50% calcareous nodules                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                  | i       |                                                  | 8 -        | i        |                | 30 /6 Calcareous rioquies                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | i                                                |         | <del></del>                                      |            | CL       |                | Calcareous nodules decrease, mottling               | PP = 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                            |                                                  |         | .] ;                                             | 9          |          |                | with 10YR6/8 brownish yellow and                    | 11 - 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                            |                                                  |         | :                                                |            | <i>i</i> | 1 :            | 10YR4/1 dark gray                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                  | í       |                                                  | 10         |          |                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | i                                                |         | ! ;                                              |            | ,        |                | Scattered calcareous and                            | PP = 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SS                         | 10 - 15                                          |         | 5.0                                              | 11         |          |                | FE nodules                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                  |         | i i                                              |            |          |                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | ! !                                              |         |                                                  | 12         |          |                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                  | i       | :                                                | -          |          |                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                  |         | <u> </u>                                         | 13         |          |                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                  | i       |                                                  |            |          | 1 1            |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | !                                                |         | -                                                | 14         | ,        |                | 27 91.                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                  | i       |                                                  |            | !        |                | Very silty                                          | PP = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                            | 1 !                                              |         |                                                  | 15         |          |                | CUT alover maint 40VDG/4 mans                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ss                         | 15 - 20                                          |         | 5.0                                              | 46         | : 1      |                | SILT, clayey, moist, 10YR6/1, gray,                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 33                         | 13 - 201                                         |         | : 5.0                                            | 16         | . /      |                | mottling with 10YR4/1, dark gray,                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                  | i       | İ                                                | 17         |          |                | and 2.5R4/8, red, scattered                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | +                                                |         | 1                                                | 1/         | ML       | 1              | calcareous and Fe nodules, green staining, no odor. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                  | ı       |                                                  | 18         | IVIL     |                | staining, no odor.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | 1                                                |         |                                                  | 10         |          | 1              |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                  | į       |                                                  | 19         | · /      |                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                          | <del></del>                                      |         |                                                  | 13         |          |                | SAND, silty, moist, 10YR6/1 gray,                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                  | i       | i                                                | 20         | SM       |                | green tint, odor                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Geologi                    | st:                                              | B. Gold | tshv                                             | 40         |          | -              | LEGEND:                                             | CI - Completion Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Checke                     | d Bv:                                            | <b></b> | ,00,                                             |            |          |                | SS - Solit Spoon                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

PP - Pocket Penetrometer TOC - Top Of Casing

|             | 170      | The state | CONT         |        |              |     | LOG OF BORING No.: MW-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
|-------------|----------|-----------|--------------|--------|--------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|             |          |           | AL ST        |        |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SHEET NUMBER 2 OF 2       |
|             |          |           |              | . , .  |              |     | DRILLING CONTRACTOR: Best Drilling Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location Diagram          |
| iT:         |          |           | ern Pacif    |        |              |     | DRILLING METHOD: Hollow Stem Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |
| PROJECT NA  |          |           | on Wood      | Prese  | rving        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          | Works     |              |        |              | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :<br>                     |
| PROJECT NUI |          | 441020    |              |        |              |     | SAMPLING METHOD: Split Spoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :                         |
| ROJECT LOC  | CATION:  |           | iberty R     | oad    |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          | Housto    | on, TX       |        |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |           |              |        |              |     | SURFACE ELEVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |
| SORING LOCA | TION:    | East E    | nd           |        |              |     | TOC ELEVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                         |
|             |          |           |              |        |              |     | WATER LEVEL: 15.41'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
| START DATE: | 02/2     | 6/97      | FINISH DATE  | E 02   | 2/26/97      |     | WATER ELEVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| START TIME: | 10:      | 10        | FINISH TIME  | : 12   | 2:30         |     | DATE: 03/25/97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | i                         |
| SAMPLER     | SAMPLE   | OVM       | RECOVERY     | CEPTH  | SOIL         | · C | SOIL DESCRIPTION AND DRILLING CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NOTES:                    |
| TYPE        | DEPTH    | (PPM)     | (FT)         | N FEET | GRAPH        | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          | (1)       | 1            | 1      | 1            | Ė   | SAND, saturated, 10YR6/2, light brownish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample Retained For       |
| SS          | 20 - 25  |           | 5.0          | 21     | 1            |     | gray, greenish staining, odor,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chemical Analysis         |
|             | ;        |           | 1            |        |              |     | calcareous material at bottom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Citorinoai / ulaiyaia     |
|             |          |           |              | 22     | † !          |     | January Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of th |                           |
|             | ·        |           | -            |        |              |     | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |
|             |          |           |              | 22     | -            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | ! !      |           | -            | 23     | •            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |           |              |        | !            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |           |              | 24     |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |           |              |        | SP           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                         |
|             |          |           | 9            | 25 i   | 1            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | ī        |           | 1            |        | •            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 00          | 25 - 30  |           | 2.75         | 20     | 1            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| SS          | 25 - 30  |           | 3.75         | 26     |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |           |              |        | <u> </u>     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | <u> </u> |           |              | 27     |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |           |              |        | 1            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | ! !      |           | <u> </u>     | 28     |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |           |              | _  _   |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |           |              | 29     | !            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | ! 7      | -         | İ            |        | 1            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | !        |           | !            | 30     | 1            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | ! i      |           |              |        | i i          | ĺ   | CLAY, slightly moist, 2.5R4/8, red,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PP = 3.0                  |
| SS          | 30 - 35  |           | 5.0          | 31     |              |     | with mottling 10YR7/1, light gray,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |
|             | 1 1      |           | i            |        |              |     | firm, hard, fractures, odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample Retained For       |
|             | !        |           |              | 32     | 1            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chemical Analysis         |
|             | :        |           | -            |        |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |           | !            | 33     | СН           |     | Very slightly moist, 5YR6/6 reddish yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PP = 4.0                  |
|             | , ;      |           | <u> </u>     | -      | ,            |     | with light gray 10YR7/1 mottling, hard, firm,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |
|             |          |           |              | 34     | :            |     | no fractures, no odor, silt content increases,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |
|             | . 1      |           | <del>-</del> |        | •            |     | calcareous nodules.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
|             |          |           |              | 35     | † !          |     | Gardi Godd Hodaled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
|             | !        |           | <del></del>  | 33     | <del></del>  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                  |
|             |          |           |              | 20     | <del>{</del> |     | Paring TD = 25'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |           |              | 36     |              |     | Boring TD = 35'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | :        |           | 1            | _      | i i          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |           | <u> </u>     | 37     |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | : !      |           | 1            |        |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | :        |           | 1            | 38     |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |           |              |        | <u>!</u>     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             |          |           |              | 39 :   |              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | :        |           | !            |        | :            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|             | :        | P.,       | İ            | 40     | ;            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| eolog       | ist:     | B. Gold   | dsby         |        |              |     | LEGEND:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CI - Completion Interval  |
| Checke      |          | 2. 001    | ,            |        |              |     | SS - Split Spoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OVM - Organic Vapor Meter |
|             |          |           |              |        |              |     | 23 9 9 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PP - Pocket Penetrometer  |

TOC - Top Of Casing

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TIE                                   | Fran         | ievt             |         |         | LOG OF BORING No.:   | MW-18C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SHEET NUMBER 1 OF 2            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|------------------|---------|---------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115                                   |              | ic ar            |         |         | DRILLING CONTRACTOR: | Best Drilling Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location Diagram               |
| LIENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | Southe       | m Pacifi         | c l ine | 9       | DRILLING METHOD:     | Hollow Stem Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
| OJECT NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |              | n Wood           |         |         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>7</b> ·                     |
| OJECT NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                              | Works        | 11000            | 1 0.00  |         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                              |
| ROJECT NUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | 441020       | 69.07            |         |         | SAMPLING METHOD:     | CME 5-foot Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                              |
| ROJECT LOCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |              | berty Ro         | ad      |         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| TOECT COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | II QIL                                | Housto       |                  |         |         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              | ,                |         |         | SURFACE ELEVATION:   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| ORING LOCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 704                                   | East co      | mer of           | site    |         | TOC ELEVATION:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| ALIVO COCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1014                                  |              |                  |         |         | WATER LEVEL:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| TART DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04/2                                  | 4/97         | FINISH DATE      | . 04    | 4/25/97 | WATER ELEVATION:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                              |
| TART TIME:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                     |              | FINISH TIME      |         |         | DATE:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T .                            |
| SAMPLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLE                                | OVM          | RECOVERY         |         | SOIL    | C   SOIL DESCRIP     | PTION AND DRILLING CONDITIONS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NOTES:                         |
| TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DEPTH                                 | (PPM)        | (FT)             | N FEET  | GRAPH   | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| 1114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CEPTA                                 | 1            | 1                | 1       |         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Boring Advanced with 8 1/4-    |
| l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |              |                  | 51      | 1 1     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inch O.D., 4 1/4-inch I.D. HSA |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              | +                |         | 1       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                  | 52      | †       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | See log of MW-18 for geology   |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |              |                  |         | 1       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | from 0 to 50 feet.             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                  | 53      | 1. 1    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | -            |                  |         | † 1     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                  | 54      | 1 4     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | <del> </del> | 1                |         | 1 1     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| CB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |              | 4.7'             | 55      | СН      | CLAY: reddish bro    | wn; hard; medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | <del>i</del> | 1                |         |         | plasticity; moist    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |              |                  | 56      | 1       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | <del>i</del> |                  |         | 1 1     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th |                                       |              |                  | 57      | 1 1     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | i i          | i i              |         | 7 1     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                  | 58      | 1 1     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |              |                  |         | 7       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                  | 59      | 1 :     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · | i            | <u> </u>         |         | 7       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60.0                                  |              | 1                | 60      | 7 - 1   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 3.3                                 | l            | Ī                |         | 7       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| CB 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |              | 3.7              | 61      | 1 1     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | İ            | T                |         | 7       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              | 1                | 62      | 1 1     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | İ            | 1                |         | 1       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                  | 63      | 7 1     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Ī            | 1                |         | ML I    |                      | vn; firm; non-plastic;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                  | 64      | 7       | dilatent; moist      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | i            | Ī                |         | 7       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65.0                                  |              |                  | 65      | CL      | Silty CLAY; reddis   | h brown; very stiff; low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1            | ī                |         |         | plasticity; moist    | with CaCO3 nodules, pea size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |
| CB 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |              | 3.4              | 66      |         | Silty SAND; reddis   | h brown; mild creosote odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                              | i            | <del>  •••</del> |         | SP      | very fine grained;   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                     | l            | 1                |         | 7       |                      | the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                  |         |         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |

|             | -                                                |                                                  |               |       |          |           |     |                        | AANA/ 49C                   |                             |
|-------------|--------------------------------------------------|--------------------------------------------------|---------------|-------|----------|-----------|-----|------------------------|-----------------------------|-----------------------------|
|             | 45                                               | -                                                | - A           |       |          |           |     | LOG OF BORING No.:     | MW-18C                      |                             |
|             | TE STE                                           | TO                                               | <b>lext</b>   |       |          |           |     |                        |                             | SHEET NUMBER 2 OF 2         |
|             |                                                  |                                                  |               | -     |          |           |     | DRILLING CONTRACTOR:   | Best Drilling Services      | Location Diagram            |
| CLIENT:     |                                                  |                                                  | m Pacif       |       |          |           |     | DRILLING METHOD:       | Hollow Stem Auger           | <u>-</u>                    |
| PROJECT NAM | E                                                |                                                  | n Wood        | Per   | ser      | ving      |     |                        |                             |                             |
|             |                                                  | Works                                            |               |       |          |           |     |                        | CME 5 foot Complet          |                             |
| PROJECT NUM | QJECT NUMBER: 44102069.07                        |                                                  |               |       |          |           |     | SAMPLING METHOD:       | CME 5-foot Sampler          | -                           |
| PROJECT LOC | MOITA                                            | 4910 L                                           | iberty R      | oad   |          |           |     |                        |                             | _                           |
|             |                                                  | Housto                                           | n, TX         |       |          |           |     |                        |                             | _                           |
|             |                                                  |                                                  |               |       |          |           | -   | SURFACE ELEVATION:     |                             | _                           |
| BORING LOCA | TION:                                            | East co                                          | mer of        | site  |          |           |     | TOC ELEVATION:         |                             |                             |
|             |                                                  |                                                  |               |       |          | 0.410.410 | _   | WATER LEVEL:           |                             | _                           |
| START DATE: | 04/2                                             | 3/97                                             | FINISH DATE   | Ē     |          | 04/24/9   | 7   | WATER ELEVATION:       |                             |                             |
| START TIME: |                                                  |                                                  | FINISH TIME   | 1     |          |           |     | DATE:                  | TON AND DRILLING CONDITIONS | NOTES:                      |
| SAMPLER     | SAMPLE                                           | OVM                                              | RECOVERY      | OEPT  | н        | SOIL      | C   | SOIL DESCRIPT          | ION AND URILLING CONDITIONS | NOTES.                      |
| TYPE        | DEPTH                                            | (PPM)                                            | (FT)          | IN FE | ET       | GRAPH     | 1 1 | 1                      |                             |                             |
|             |                                                  |                                                  | 0.0           |       | $\dashv$ |           |     | amding fine to you     | , fine arrived              |                             |
| CB 4        | <u> </u>                                         | <u> </u>                                         | 3.2           | 71    |          |           |     | grading fine to very   | / line grained              |                             |
|             |                                                  |                                                  |               | -     | $\dashv$ |           |     | 3" thick clay lens @   | 2 71 5'                     |                             |
|             | 1                                                | <u> </u>                                         | <del></del>   | 72    |          |           |     | 3 thick clay let is to | <u> </u>                    |                             |
|             |                                                  |                                                  |               | 70    | $\vdash$ |           |     | amding fine to med     | dium grained; creosote odor |                             |
|             |                                                  | -                                                |               | 73    | -        |           |     | grading line to med    | dum gramed, dreosote odor   |                             |
|             |                                                  |                                                  |               | 74    | $\vdash$ |           |     | grading with trace     | gravel and oil sheen        |                             |
|             | !                                                |                                                  | <del>-</del>  | 14    |          |           |     | and creosote odor      | graver and on sneem         |                             |
| 1           | 75.0                                             |                                                  |               | 75    | $\vdash$ |           |     |                        | fine grained; oil sheen     |                             |
|             | 1 73.0                                           | -                                                | <del> </del>  | 13    |          |           |     | grades out             | , mie granies, en erieer.   |                             |
| CB 5        |                                                  |                                                  | 4.1           | 76    | -        | CH        | 1   |                        | wn; hard; medium plasticity |                             |
| CB 3        | !                                                |                                                  | 1 7.1         | 10    |          | 011       |     | 00 11,1000.011 510     | viii, mara, modram praesury |                             |
|             |                                                  |                                                  | į             | 77    | H        |           |     |                        |                             |                             |
| 1           | !                                                | -                                                | -             | 1 ''  |          |           |     |                        | •                           |                             |
|             | •                                                |                                                  |               | 78    | Н        |           |     |                        |                             |                             |
|             | !                                                | -                                                | <del></del>   | 1.0   |          |           | 1   | grading reddish bro    | own; and light gray         |                             |
|             |                                                  |                                                  |               | 79    | $\vdash$ |           |     | 3                      |                             |                             |
|             | <del> </del>                                     | <del> </del>                                     | <del></del>   | 1     |          |           | 1   | grading light gray     |                             |                             |
|             | 80.0                                             |                                                  |               | 80    |          |           |     | 3                      |                             |                             |
|             | 1                                                | <del></del>                                      | i             | 1     |          |           | 1   |                        |                             | Bottom of boring @ 80.0'    |
| 1           |                                                  |                                                  |               | 81    |          | 2         |     |                        |                             |                             |
| -           | <del> </del>                                     | <del>                                     </del> | <del>-i</del> | 1     |          |           |     |                        |                             | Install monitoring well 18C |
| 1           |                                                  |                                                  |               | 82    |          |           |     |                        |                             | on 4/24/97                  |
|             | 1                                                | <del> </del>                                     | <del>-</del>  |       |          |           |     |                        |                             |                             |
| 1           |                                                  |                                                  | !             | 83    |          |           |     |                        |                             |                             |
|             | <del>:                                    </del> | <del>                                     </del> | Ī             | 1     |          |           |     |                        |                             |                             |
| 1           | !                                                |                                                  |               | 84    |          |           |     |                        |                             |                             |
|             | i                                                |                                                  | i             | 1     |          |           |     |                        |                             |                             |
|             | !                                                |                                                  |               | 85    |          |           |     |                        |                             |                             |
|             | ī                                                | i -                                              | 1             | 1     |          |           |     |                        |                             |                             |
|             |                                                  | ,                                                | į             | 86    |          |           | 1   |                        |                             |                             |
|             | İ                                                | 1                                                | Ī             | 1     |          |           |     |                        |                             |                             |
|             | 1                                                |                                                  |               | 87    |          |           |     |                        |                             |                             |
|             | !                                                | Ī                                                |               | 7     |          |           |     |                        |                             |                             |
|             | •                                                |                                                  |               | 88    |          |           |     |                        |                             |                             |
|             | 1                                                | İ                                                | 1             | 7     |          |           | 1   |                        |                             |                             |
|             | ļ                                                |                                                  | İ             | 89    |          | Ī         |     |                        |                             |                             |
|             | 1                                                | T                                                | 1             | 1     |          | Ī         |     | -                      |                             |                             |
| 1           |                                                  |                                                  |               | 90    | 1        | 1         | _!_ |                        |                             | l e                         |
| eolog       | ist.                                             | R. Lar                                           | nh            |       |          |           |     |                        | LEGEND:                     | CI - Completion Interval    |

eologist: Checked By:

SS - Split Spoon

OVM - Organic Vapor Meter PP - Pocket Penetrometer

TOC - Top Of Casing

### ATTACHMENT III

MONITORING WELL CONSTRUCTION DETAILS







JOB # 44102069 PROJECT Houston Wood Preserving Works

### MONITORING WELL INSTALLATION DIAGRAM





JOB NAME: Houston Wood Preserving Works WELL NUMBER: MW-14 JOB NUMBER: 44102069 INSTALLATION DATE: 2-27-97 LOCATION: DATUM FOR WATER LEVEL MEASUREMENT: Top of PVC Casing DATUM ELEVATION: GROUND SURFACE ELEVATION: SCREEN DIAMETER AND MATERIAL: 2" Schedule 40 PVC SLOT SIZE: 0.010" ER DIAMETER AND MATERIAL: 2" Schedule 40 PVC BOREHOLE DIAMETER: REPRESENTATIVE: Goldsby ER PACK MATERIAL: Washed Silica Sand DHILLING TECHNIQUE: Hollow Stem Auger DRILLING CONTRACTOR: Best Drilling 4 IN. DIAMETER STEEL WELL HOUSING WITH LOCKING COVER WELL CAP SURFACE CONE 40 IN, STICKUP GROUND SURFACE - 10 IN. DIAMETER SCHEDULE 40 PVC SURFACE CASING TREADED COUPLING -RISER -LENGTH OF SOLID SECTION = 33 FEET - 27 FEET - 12 IN. DIAMETER BORING LENGTH OF SLOTTED - CEMENT/BENTONITE GROUT SECTION = 10 FEET - 2 IN. DIAMETER SCHEDULE 40 DEPTH TO TOP OF PVC WELL CASING BENTONITE SEAL = 26 FEET - 2 FT. BENTONITE PELLET SEAL DEPTH TO TOP OF LOWER GRANULAR MATERIAL = 28 FEET SAND FILTER PACK (SIZE 20/40) 2 IN. DIAMETER SCHEDULE 40 STABILIZED WATER PVC WELL SCREEN (0.010" SLOT SIZE) LEVEL 7.71 FEET **BELOW GROUND** SURFACE MEASURED ON 3-25-97 **BOTTOM CAP** LENGTH OF BACKFILLED BORING = 2.5 FEET TOTAL DEPTH OF BORING = 45 FEET BACKFILLED WITH 20/40 SILICA SAND **GROUT** BENTONITE Terranex

GRANULAR BACKFILL





JOB # 44102069 PROJECT Houston Wood Preserving Works

### MONITORING WELL INSTALLATION DIAGRAM



| JOB NAME: Houston Wood Preserving Works                                      | WELL NUMBER: MW-16                                                         |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| JOB NUMBER: 44102069 INSTALLATION FOR WATER LEVEL MEASUREMEN                 | T: Top of PVC Casing                                                       |
| DATUM ELEVATION:                                                             | GROUND SURFACE ELEVATION:                                                  |
| SER DIAMETER AND MATERIAL: 2" Sche                                           | edule 40 PVC BOREHOLE DIAMETER:                                            |
| TER PACK MATERIAL: 20/40 Washed Sil<br>DRILLING TECHNIQUE: Hollow Stem Auger | ica Sand REPRESENTATIVE: Goldsby DRILLING CONTRACTOR: Best Drilling        |
|                                                                              |                                                                            |
| 38 IN. STIC                                                                  | 4 IN. DIAMETER STEEL WELL HOUSING WITH LOCKING COVER WELL CAP SURFACE CONE |
|                                                                              | GROUND SURFACE                                                             |
| TREADED COUPLING                                                             |                                                                            |
| RISER —                                                                      |                                                                            |
| LENGTH OF SOLID SECTION = 17.3 FEET                                          | 8.25 IN. DIAMETER BORING                                                   |
|                                                                              | CEMENT/BENTONITE GROUT                                                     |
| LENGTH OF SLOTTED  SECTION = 10 FEET                                         |                                                                            |
| SECTION = TO PEET                                                            | 2 IN. DIAMETER SCHEDULE 40 PVC WELL CASING                                 |
| DEPTH TO TOP OF                                                              |                                                                            |
| BENTONITE SEAL = 10.5 FEET                                                   | 2 FT. BENTONITE PELLET SEAL                                                |
| DEPTH TO TOP OF LOWER -                                                      |                                                                            |
| GRANULAR MATERIAL = 12.5 F                                                   | SAND FILTER PACK (SIZE 20/40)                                              |
|                                                                              |                                                                            |
| STABILIZED WATER<br>LEVEL 7.41 FEET<br>BELOW GROUND<br>SURFACE               | 2 IN. DIAMETER SCHEDULE 40 PVC WELL SCREEN (0.010" SLOT SIZE)              |
| MEASURED ON 3-25-97                                                          | BOTTOM CAP                                                                 |
|                                                                              | LENGTH OF BACKFILLED BORING = 3 FEET                                       |
| TOTAL DEPTH OF BORING = 30 FEET                                              | BACKFILLED WITH 20/40 SILICA SAND                                          |
| GROUT                                                                        |                                                                            |
| BENTONITE                                                                    | Terranext                                                                  |
| GRANULAR BACKFILL                                                            |                                                                            |

WELL NUMBER: MW-17 JOB NAME: Houston Wood Preserving Works LOCATION: INSTALLATION DATE: 3-25-97 JOB NUMBER: 44102069 DATUM FOR WATER LEVEL MEASUREMENT: Top of PVC Casing **GROUND SURFACE ELEVATION:** DATUM ELEVATION: SCREEN DIAMETER AND MATERIAL: 2" Schedule 40 PVC SLOT SIZE: 0.010" RISER DIAMETER AND MATERIAL: 2" Schedule 40 PVC BOREHOLE DIAMETER: 8 1/4" REPRESENTATIVE: Goldsby ER PACK MATERIAL: 20/40 Washed Silica Sand LLING TECHNIQUE: Hollow Stem Auger DRILLING CONTRACTOR: Best Drilling 4 IN. DIAMETER STEEL WELL HOUSING WITH LOCKING COVER WELL CAP SURFACE CONE 43 IN. STICKUP **GROUND SURFACE** TREADED COUPLING -RISER -LENGTH OF SOLID - 8.25 IN. DIAMETER BORING SECTION = 23.4 FEET CEMENT/BENTONITE GROUT LENGTH OF SLOTTED SECTION = 10 FEET - 2 IN. DIAMETER SCHEDULE 40 PVC WELL CASING DEPTH TO TOP OF BENTONITE SEAL = 16 FEET - 2 FT. BENTONITE PELLET SEAL DEPTH TO TOP OF LOWER GRANULAR MATERIAL = 18 FEET SAND FILTER PACK (SIZE 20/40) - 2 IN. DIAMETER SCHEDULE 40 STABILIZED WATER PVC WELL SCREEN (0.010" SLOT SIZE) LEVEL 9.97 FEET **BELOW GROUND** SURFACE MEASURED ON 3-25-97 BOTTOM CAP LENGTH OF BACKFILLED BORING = 2.5 FEET TOTAL DEPTH OF BORING = 35 FEET BACKFILLED WITH 20/40 SILICA SAND **GROUT** BENTONITE Terranext GRANULAR BACKFILL





JOB # 44102069 PROJECT Houston Wood Preserving Works

#### MONITORING WELL INSTALLATION DIAGRAM



# Laboratory Analytical Reports Appendix B

February 13, 1998 W.O. #422-09

ERM-SOUTHWEST, INC. 16300 Katy Freeway, Suite 300 Houston, Texas 77094-1611 (281) 579-8999

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661



April 07, 1997 Report No.: 00060264 Section A Page 1

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW13-S00

SAMPLE NO: H446071

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44042 PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 25-FEB-97 1020

DATE RECEIVED: 27-FEB-97

|    | TEST   |                                          |          |         |         |
|----|--------|------------------------------------------|----------|---------|---------|
| LN | CODE   | DETERMINATION                            | DILUTION |         |         |
|    |        | DETERMINATION                            | FACTOR   | RESULT  | UNITS   |
|    |        |                                          |          |         |         |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |          |         |         |
|    |        | 1,2-Dichloroethane                       | ,        |         |         |
|    |        | Benzene                                  | 1        | < 5     | -0, -0  |
|    |        | Chlorobenzene                            | 1        | < 5     | - J J   |
|    |        | Ethylbenzene                             | 1        | < 5     | -37 113 |
|    |        | Methylene chloride                       | 1        | < 5     | -37 113 |
|    |        | Toluene                                  | 1        | < 5     | G       |
|    |        | Xylenes (total)                          | 1        | < 5     |         |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil | 1        | < 5     | ug/kg   |
|    |        | 1,2-Diphenylhydrazine                    |          |         |         |
|    |        | 2,4-Dimethylphenol                       | 1        | < 330   | -3,     |
|    |        | 2,4-Dinitrotoluene                       | . 1      | < 330   |         |
|    |        | 2,6-Dinitrotoluene                       | 1        | < 330   | <b></b> |
|    |        | 2-Chloronaphthalene                      | 1        | < 330   | J       |
|    |        | 2-Methylnaphthalene                      | 1        | < 330   | -373    |
|    |        | 4,6-Dinitro-o-cresol                     | 1        | < 330   |         |
|    |        | 4-Nitrophenol                            | 1        | < 1,600 | ug/kg   |
|    |        | Acenaphthene                             | 1        | < 1,600 | • •     |
|    |        | Acenaphthylene                           | 1        | < 330   | ug/kg   |
|    |        | Anthracene                               | . 1      | < 330   | ug/kg   |
|    |        | Benzo(a)anthracene                       | 1        | < 330   | ug/kg   |
|    |        | Benzo(a)pyrene                           | 1        | < 330   | ug/kg   |
|    |        | Chrysene                                 | 1        | < 330   | ug/kg   |
|    |        | Di-n-butyl phthalate                     | . 1      | < 330   | ug/kg   |
|    |        | Dibenzofuran                             | 1        | < 330   | ug/kg   |
|    |        | Fluoranthene                             | 1        | . < 330 | ug/kg   |
|    |        | Fluorene                                 | 1        |         | ug/kg   |
|    |        | N-Nitrosodiphenylamine                   | 1        |         | ug/kg   |
|    |        | Naphthalene                              | 1        |         | ug/kg   |
|    |        | Nitrobenzene                             | 1        |         | ug/kg   |
|    | i      | Pentachlorophenol                        | 1        |         | ug/kg   |
|    | 1      | Phenanthrene                             | 1        |         | ug/kg   |
|    | ı      | Phenol                                   | 1.       |         | ug/kg   |
|    | F      | Pyrene                                   | 1        |         | ug/kg   |
|    | ł      | pis(2-Chloroethoxy)methane               | 1        |         | ug/kg   |
|    |        | V · · · · · · · · · · · · · · · · · · ·  | 1        | < 330   | ug/kg   |

## Pace Analytical

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997 Report No.: 00060264 Section A Page 2

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-MW13-S00

SAMPLE NO: H446071

TEST

N CODE DETERMINATION FACTOR RESULT UNITS

bis(2-Ethylhexyl)phthalate 1 < 330 ug/kg

April 07, 1997
Report No.: 00060264
Section A Page 3

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW13-S015

SAMPLE NO: H446072

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44042 PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 25-FEB-97 1032

DATE RECEIVED: 27-FEB-97

|    | TEST   |                                          | DILUTION |         |                |
|----|--------|------------------------------------------|----------|---------|----------------|
| LN | CODE   | DETERMINATION                            | FACTOR   | RESULT  | UNITS          |
|    |        |                                          |          |         |                |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |          |         |                |
|    |        | 1,2-Dichloroethane                       | 1        | < 5     | um /lem        |
|    |        | Benzene                                  | 1        | < 5     | ug/kg<br>ug/kg |
|    |        | Chlorobenzene                            | · 1      | < 5     | ug/kg<br>ug/kg |
|    |        | Ethylbenzene                             | 1        | < 5     | •              |
|    |        | Methylene chloride                       | 1        | < 5     | ug/kg<br>ug/kg |
|    |        | Toluene                                  | 1        | < 5     | ug/kg<br>ug/kg |
|    |        | Xylenes (total)                          | 1        | < 5     | ug/kg<br>ug/kg |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |          | ` `     | ug/ kg         |
|    |        | 1,2-Diphenylhydrazine                    | 1        | < 330   | ug/kg          |
|    |        | 2,4-Dimethylphenol                       | 1        | < 330   | ug/kg          |
|    |        | 2,4-Dinitrotoluene                       | 1        | < 330   | ug/kg          |
|    |        | 2,6-Dinitrotoluene                       | 1        | < 330   | ug/kg          |
|    |        | 2-Chloronaphthalene                      | 1        | < 330   | ug/kg          |
|    |        | 2-Methylnaphthalene                      | 1        | < 330   | ug/kg          |
|    |        | 4,6-Dinitro-o-cresol                     | 1        | < 1,600 | ug/kg          |
|    |        | 4-Nitrophenol                            | ·        | < 1,600 | ug/kg          |
|    |        | Acenaphthene                             | 1        |         | ug/kg          |
|    |        | Acenaphthylene                           | 1        |         | ug/kg          |
|    |        | Anthracene                               | . 1      |         | ug/kg          |
|    |        | Benzo(a)anthracene                       | 1        | < 330   | ug/kg          |
|    |        | Benzo(a)pyrene                           | 1        | < 330   | ug/kg          |
|    |        | Chrysene                                 | 1        |         | ug/kg          |
|    |        | Di-n-butyl phthalate                     | 1        |         | ug/kg          |
|    |        | Dibenzofuran                             | 1        |         | ug/kg          |
|    |        | Fluoranthene                             | 1        |         | ug/kg          |
|    |        | Fluorene                                 | 1        | < 330   | ug/kg          |
|    |        | N-Nitrosodiphenylamine                   | 1        |         | ug/kg          |
|    |        | Naphthalene                              | 1        |         | ug/kg          |
|    |        | Nitrobenzene                             | 1        |         | ug/kg          |
|    |        | Pentachlorophenol                        | 1 <      |         | ug/kg          |
|    |        | Phenanthrene                             | 1 ~      |         | ug/kg          |
|    |        | Phenol                                   | 1        | < 330   | ug/kg          |
|    |        | Pyrene                                   | 1        |         | ug/kg          |
|    |        | bis(2-Chloroethoxy)methane               | 1        |         | ug/kg          |
| 1  |        |                                          |          |         |                |

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997 Report No.: 00060264 Section A Page 4

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-MW13-S015

SAMPLE NO: H446072

TEST

CODE

LN

DETERMINATION

DILUTION

1

RESULT UNITS

bis(2-Ethylhexyl)phthalate

< 330 ug/kg

April 07, 1997
Report No.: 00060264
Section A Page 5

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW13-S021

SAMPLE NO: H446073

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44042

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 25-FEB-97 1034

DATE RECEIVED: 27-FEB-97

|    | TEST    |                                          | DILUTION    |         | • • • • • • • • • • • • • • • • • • • • |
|----|---------|------------------------------------------|-------------|---------|-----------------------------------------|
| LN | CODE    | DETERMINATION                            | FACTOR      | RESULT  | UNITS                                   |
|    |         |                                          |             |         | • • • • • • • • • • • • • • • • • • • • |
| 1  | OVTCS2  |                                          |             |         |                                         |
|    |         | 1,2-Dichloroethane                       | 1           | < 5     | ug/kg                                   |
|    |         | Benzene                                  | 1           | < 5     | ug/kg                                   |
|    |         | Chlorobenzene                            | 1           | < 5     | ug/kg                                   |
|    |         | Ethylbenzene                             | 1           | < 5     | ug/kg                                   |
|    |         | Methylene chloride                       | 1           | < 5     | ug/kg                                   |
|    |         | Toluene                                  | 1           | < 5     | ug/kg                                   |
| 7  | 001/700 | Xylenes (total)                          | 1           | < 5     | ug/kg                                   |
| 3  | OSVTCS  | TCL - Semi-volatile Extractables in Soil |             |         |                                         |
|    |         | 1,2-Diphenylhydrazine                    | 1           | < 330   | ug/kg                                   |
|    |         | 2,4-Dimethylphenol                       | 1           | < 330   | ug/kg                                   |
|    |         | 2,4-Dinitrotoluene                       | 1           | < 330   | ug/kg                                   |
|    |         | 2,6-Dinitrotoluene                       | 1           | < 330   | ug/kg                                   |
|    |         | 2-Chloronaphthalene                      | 1           | < 330   | ug/kg                                   |
|    |         | 2-Methylnaphthalene                      | 1 "         | < 330   | ug/kg                                   |
|    |         | 4,6-Dinitro-o-cresol                     | 1           | < 1,600 | ug/kg                                   |
|    |         | 4-Nitrophenol                            | 1           | < 1,600 | ug/kg                                   |
|    |         | Acenaphthene                             | 1           | < 330   | ug/kg                                   |
|    |         | Acenaphthylene                           | 1           | < 330   | ug/kg                                   |
|    |         | Anthracene                               | 1           | < 330   | ug/kg                                   |
|    |         | Benzo(a)anthracene                       | 1           | < 330   | ug/kg                                   |
|    |         | Benzo(a)pyrene                           | 1           | < 330   | ug/kg                                   |
|    |         | Chrysene                                 | 1           | < 330   | ug/kg                                   |
|    |         | Di-n-butyl phthalate                     | , 1         | < 330   | ug/kg                                   |
|    |         | Dibenzofuran                             | 1           | < 330   | ug/kg                                   |
|    |         | Fluoranthene                             | 1           | < 330   | ug/kg                                   |
|    |         | Fluorene                                 | 1           | < 330   | ug/kg                                   |
|    |         | N-Nitrosodiphenylamine                   | 1           | < 330   | ug/kg                                   |
|    |         | Naphthalene                              | ss <b>1</b> | < 330   | ug/kg                                   |
|    |         | Ni trobenzene                            | 1           | < 330   | ug/kg                                   |
|    |         | Pentachlorophenol                        | . 1         | < 1,600 | ug/kg                                   |
|    |         | Phenanthrene Phenol                      | 1           | < 330   | ug/kg                                   |
|    |         |                                          | 1           | < 330   | ug/kg                                   |
|    |         | Pyrene                                   | 1           | < 330   | ug/kg                                   |
|    |         | bis(2-Chloroethoxy)methane               | 1           | < 330   | ug/kg                                   |
|    |         |                                          |             |         |                                         |

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997 Report No.: 00060264 Section A Page 6

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-MW13-S021

SAMPLE NO: H446073

TEST

LN

DETERMINATION

DILUTION

**FACTOR** 

RESULT UNITS

bis(2-Ethylhexyl)phthalate

< 330 ug/kg

April 07, 1997
Report No.: 00060264
Section A Page 7

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW15-S00

SAMPLE NO: H446074

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007 PACE PROJECT: H44042

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 25-FEB-97 1330

DATE RECEIVED: 27-FEB-97

|    |        |                                          |     |          | ••••••  |       |
|----|--------|------------------------------------------|-----|----------|---------|-------|
|    | TEST   |                                          |     | DILUTION |         |       |
| LN | CODE   | DETERMINATION                            |     | FACTOR   | RESULT  | UNITS |
|    |        |                                          |     |          |         |       |
|    |        |                                          |     |          |         |       |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |     |          |         |       |
|    |        | 1,2-Dichloroethane                       |     | 1        | < 5     | ug/kg |
|    |        | Benzene                                  |     | 1        | < 5     | ug/kg |
|    |        | Chlorobenzene                            |     | 1        | < 5     | ug/kg |
|    |        | Ethylbenzene                             |     | 1        | < 5     | ug/kg |
|    |        | Methylene chloride                       |     | 1        | 5       | ug/kg |
|    |        | Toluene                                  |     | 1        | < 5     | ug/kg |
| 3  | OSVTCS | Xylenes (total)                          |     | 1        | < 5     | ug/kg |
| 3  | 054165 | TCL - Semi-volatile Extractables in Soil |     |          |         |       |
|    |        | 1,2-Diphenylhydrazine                    |     | 1        | < 330   | G G   |
|    |        | 2,4-Dimethylphenol                       |     | 1        | < 330   | ug/kg |
|    |        | 2,4-Dinitrotoluene                       |     | 1        | < 330   | ug/kg |
|    |        | 2,6-Dinitrotoluene                       |     | 1        | < 330   | ug/kg |
|    |        | 2-Chloronaphthalene                      |     | 1        | < 330   | ug/kg |
|    |        | 2-Methylnaphthalene                      |     | 1        | < 330   | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                     |     | 1        | < 1,600 | ug/kg |
|    |        | 4-Nitrophenol                            |     | 1        | < 1,600 | ug/kg |
|    |        | Acenaphthene                             |     | 1        | < 330   | ug/kg |
|    |        | Acenaphthylene                           |     | 1        | < 330   | ug/kg |
|    |        | Anthracene                               |     | 1        | < 330   | ug/kg |
|    |        | Benzo(a)anthracene                       |     | 1        | < 330   | ug/kg |
|    |        | Benzo(a)pyrene                           |     | 1        | < 330   | ug/kg |
|    |        | Chrysene                                 |     | 1        | < 330   | ug/kg |
|    |        | Di-n-butyl phthalate Dibenzofuran        | ix. | 1        | < 330   | ug/kg |
|    |        |                                          |     | 1        | < 330   | ug/kg |
|    |        | Fluoranthene                             |     | 1        | < 330   | ug/kg |
|    |        | Fluorene                                 |     | 1        |         | ug/kg |
|    |        | N-Nitrosodiphenylamine                   |     | 1        |         | ug/kg |
|    |        | Naphthalene                              |     | 1        |         | ug/kg |
|    |        | Nitrobenzene                             |     | 1        |         | ug/kg |
|    |        | Pentach lorophenol                       |     | 1        | •       | ug/kg |
|    |        | Phenanthrene                             |     | 1        |         | ug/kg |
|    |        | Phenol                                   | Na. | 1        |         | ug/kg |
|    |        | Pyrene                                   |     | . 1      |         | ug/kg |
|    |        | bis(2-Chloroethoxy)methane               |     | 1        | < 330   | ug/kg |

# Pace Analytical

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997
Report No.: 00060264
Section A Page 8

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-MW15-S00
SAMPLE NO: H446074

TEST

CODE

DETERMINATION

DILUTION

**FACTOR** 

RESULT UNITS

bis(2-Ethylhexyl)phthalate

1 < 330 ug/kg

April 07, 1997 Report No.: 00060264 Section A Page 9

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW15-S020

SAMPLE NO: H446075

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44042

PACE CLIENT: 620437 P.O. NO: 03219

DATE SAMPLED: 25-FEB-97 1345 DATE RECEIVED: 27-FEB-97

|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ••••••   |         |        |
|----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|--------|
|    | TEST   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DILUTION |         |        |
| LN | CODE   | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FACTOR   | RESULT  | UNITS  |
|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ••••••   |         |        |
|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |        |
| 1  | OVTCS2 | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |          |         | •      |
|    |        | 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 5     | ug/kg  |
|    |        | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        | < 5     | ug/kg  |
|    |        | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 1      | < 5     | ug/kg  |
|    |        | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | < 5     | ug/kg  |
|    |        | Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | 6       | ug/kg  |
|    |        | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        | < 5     | ug/kg  |
|    |        | Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | 6       | ug/kg  |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |         |        |
|    |        | 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1        | < 330   | ug/kg  |
|    |        | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 330   | ug/kg  |
|    |        | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 330   | ug/kg  |
|    |        | 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 330   | ug/kg  |
|    |        | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        | < 330   | ug/kg  |
|    |        | 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        | < 330   | ug/kg  |
|    |        | 4,6-Dinitro-o-cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1        | < 1,600 | ug/kg  |
|    |        | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        | < 1,600 | ug/kg  |
|    |        | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | < 330   | ug/kg  |
|    |        | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1        | < 330   | ug/kg  |
|    |        | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        | < 330   | ug/kg  |
|    |        | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 330   | ug/kg  |
|    |        | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1        | < 330   | ug/kg  |
|    |        | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        | < 330   | ug/kg  |
|    |        | Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1        | < 330   | ug/kg  |
|    |        | Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | < 330   | ug/kg  |
|    |        | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        |         | ug/kg  |
|    |        | Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        |         | ug/kg  |
|    |        | N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        |         | ug/kg  |
|    |        | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · 1      |         | ug/kg  |
|    |        | Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        |         | ug/kg  |
|    |        | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        |         | ug/kg  |
|    |        | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        |         | ug/kg  |
|    |        | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 1      |         | ug/kg  |
|    |        | Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        |         | ug/kg  |
|    |        | bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        |         | ug/kg  |
|    |        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | , 330   | 49/ 49 |

# Pace Analytical

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997 Report No.: 00060264 Section A Page 10

LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-MW15-S020

SAMPLE NO: H446075

TEST

LN

CODE

DETERMINATION

DILUTION

RESULT UNITS

bis(2-Ethylhexyl)phthalate

< 330 ug/kg

April 07, 1997
Report No.: 00060264
Section A Page 11

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW15-S025

SAMPLE NO: H446076

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44042

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 25-FEB-97 1347

DATE RECEIVED: 27-FEB-97

|    | TEST   |                                          | DILUTION |         |                |  |  |
|----|--------|------------------------------------------|----------|---------|----------------|--|--|
| LN | CODE   | DETERMINATION                            | FACTOR   | RESULT  | UNITS          |  |  |
|    |        |                                          |          |         |                |  |  |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |          |         |                |  |  |
|    |        | 1,2-Dichloroethane                       | 1        | < 5     | ug/kg          |  |  |
|    |        | Benzene                                  | 1        | < 5     | ug/kg          |  |  |
|    |        | Chlorobenzene                            | 1        | < 5.    |                |  |  |
|    |        | Ethylbenzene                             | 1        | < 5     | ug/kg<br>ug/kg |  |  |
|    |        | Methylene chloride                       | 1        | 6       | ug/kg<br>ug/kg |  |  |
|    |        | Toluene                                  | 1        | < 5     | ug/kg<br>ug/kg |  |  |
|    |        | Xylenes (total)                          | 1        | < 5     | ug/kg<br>ug/kg |  |  |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil | ·        | ` `     | dg/ kg         |  |  |
|    |        | 1,2-Diphenylhydrazine                    | 1        | < 330   | ug/kg          |  |  |
|    |        | 2,4-Dimethylphenol                       | ·<br>1   | < 330   | ug/kg          |  |  |
|    |        | 2,4-Dinitrotoluene                       | 1        | < 330   | ug/kg          |  |  |
|    |        | 2,6-Dinitrotoluene                       | 1        | < 330   | ug/kg          |  |  |
|    |        | 2-Chloronaphthalene                      | 1        | < 330   | ug/kg          |  |  |
|    |        | 2-Methylnaphthalene                      | 1        | < 330   | ug/kg          |  |  |
|    |        | 4,6-Dinitro-o-cresol                     | 1        | < 1,600 | ug/kg          |  |  |
|    |        | 4-Nitrophenol                            | 1        | < 1,600 | ug/kg          |  |  |
|    |        | Acenaphthene                             | 1        | < 330   | ug/kg          |  |  |
|    |        | Acenaphthylene                           | 1        | < 330   | ug/kg          |  |  |
|    |        | Anthracene                               | ·<br>1   |         | ug/kg          |  |  |
|    |        | Benzo(a)anthracene                       | 1        |         | ug/kg          |  |  |
|    |        | Benzo(a)pyrene                           | 1        |         | ug/kg          |  |  |
|    |        | Chrysene                                 | 1        |         | ug/kg          |  |  |
|    |        | Di-n-butyl phthalate                     | 1        |         | ug/kg          |  |  |
|    |        | Dibenzofuran                             | 1        |         | ug/kg          |  |  |
|    |        | Fluoranthene                             | 1        |         | ug/kg          |  |  |
|    |        | Fluorene                                 | 1        |         | ug/kg          |  |  |
|    |        | N-Nitrosodiphenylamine                   | 1        |         | ug/kg          |  |  |
|    |        | Naphthalene                              | 1        |         | ug/kg          |  |  |
|    |        | Nitrobenzene                             | 1        |         | ug/kg          |  |  |
|    |        | Pentachlorophenol                        | 1        | < 1,600 |                |  |  |
|    |        | Phenanthrene                             | 1        | < 330   |                |  |  |
|    |        | Phenol                                   | 1        |         | ug/kg          |  |  |
|    |        | Pyrene                                   | 1        |         | ug/kg          |  |  |
|    |        | bis(2-Chloroethoxy)methane               | 1        |         | ug/kg<br>ug/kg |  |  |
|    |        |                                          | '        | , 330   | 49/ 49         |  |  |

> Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997 Report No.: 00060264 Section A Page 12

LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-MW15-S025

SAMPLE NO: H446076

CODE

LN

DETERMINATION

DILUTION **FACTOR** 

RESULT UNITS

bis(2-Ethylhexyl)phthalate

< 330 ug/kg

Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997 Report No.: 00060264 Section A Page 13

PROJECT MANAGER: Elessa Sommers

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT LIMS CLIENT: 0717 0007 ADDRESS: 6200 ROTHWAY, STE 190 PACE PROJECT: H44042 HOUSTON, TX 77040-PACE CLIENT: 620437 ATTENTION: BILL GOLDSBY P.O. NO: 03219 SAMPLE ID: HWPW-MW17-S025 DATE SAMPLED: 25-FEB-97 1622 SAMPLE NO: H446077 DATE RECEIVED: 27-FEB-97 SAMPLE MATRIX: SOIL

|    |        | 45                                       |                    |                    |        |
|----|--------|------------------------------------------|--------------------|--------------------|--------|
| LN | TEST   | DETERMINATION                            | DILUTION<br>FACTOR | RESULT             | UNITS  |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |                    |                    |        |
| •  | 041002 | 1,2-Dichloroethane                       |                    |                    |        |
|    |        | Benzene                                  | 5                  | < 25 *             | -0,    |
|    |        | Chlorobenzene                            | 5                  | 50                 | -00    |
|    |        | Ethylbenzene                             | 5                  | < 25               | -0, -0 |
|    |        | Methylene chloride                       | 125                | 1,200              |        |
|    |        | Toluene                                  | 5                  | < 25               | J. J   |
|    |        | Xylenes (total)                          | 125                | 1,000              |        |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil | 125                | 3,500              | ug/kg  |
|    |        | 1,2-Diphenylhydrazine                    | 40                 | 7 700 1            |        |
|    |        | 2,4-Dimethylphenol                       | 10                 | < 3,300 *          | ug/kg  |
|    |        | 2,4-Dinitrotoluene                       | 10                 | < 3,300            |        |
|    |        | 2,6-Dinitrotoluene                       | 10                 | < 3,300            |        |
|    |        | 2-Chloronaphthalene                      | 10                 | < 3,300            | ug/kg  |
|    |        | 2-Methylnaphthalene                      | 10                 | < 3,300            |        |
|    |        | 4,6-Dinitro-o-cresol                     | 10                 | 32,000             | ug/kg  |
|    |        | 4-Nitrophenol                            | 10                 | < 16,000           | ug/kg  |
|    |        | Acenaphthene                             | 10                 | < 16,000           | ug/kg  |
|    |        | Acenaphthylene                           | 10                 | 27,000             | ug/kg  |
|    |        | Anthracene                               | 10                 | < 3,300            | ug/kg  |
|    |        | Benzo(a)anthracene                       | 10<br>10           | 17,000             | ug/kg  |
|    |        | Benzo(a)pyrene                           |                    | < 3,300            | ug/kg  |
|    |        | Chrysene                                 | 10<br>10           | < 3,300            | ug/kg  |
|    |        | Di-n-butyl phthalate                     | 10                 | 3,300              | ug/kg  |
|    |        | Dibenzofuran                             | 10                 | < 3,300            | ug/kg  |
|    |        | Fluoranthene                             | 10                 | 24,000             | ug/kg  |
|    |        | Fluorene                                 | 10                 | 23,000             | ug/kg  |
|    |        | N-Nitrosodiphenylamine                   | 10                 | 28,000             | ug/kg  |
|    |        | Naphthalene                              | 25                 | < 3,300<br>120,000 | ug/kg  |
|    |        | Ni trobenzene                            | 10                 | < 3,300            | ug/kg  |
|    |        | Pentachlorophenol                        | 10                 | -                  | ug/kg  |
|    |        | Phenanthrene                             | 25                 | < 16,000           | ug/kg  |
|    |        | Phenol                                   | 10                 | 69,000             | ug/kg  |
|    |        | Pyrene                                   | 10                 | < 3,300            | ug/kg  |
|    | 1      | bis(2-Chloroethoxy)methane               | 10                 | 14,000<br>< 3,300  | ug/kg  |
|    |        | • • • • • • • • • • • • • • • • • • • •  | 10                 | < 3,300            | ug/kg  |

### 13 REPORT OF LABORATORY ANALYSIS

> Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997 Report No.: 00060264 Section A Page 14

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-MW17-S025

SAMPLE NO: H446077

TEST

CODE

DETERMINATION

DILUTION

RESULT UNITS

bis(2-Ethylhexyl)phthalate

10

< 3,300 ug/kg

LN

COMMENTS: \* The reporting limits are elevated due to the dilution required because of the high concentration of target analytes.

April 07, 1997 Report No.: 00060264 Section A Page 15

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW17-S030

SAMPLE MATRIX: SOIL

SAMPLE NO: H446078

LIMS CLIENT: 0717 0007

PACE PROJECT: H44042

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 25-FEB-97 1640

DATE RECEIVED: 27-FEB-97

PROJECT MANAGER: Elessa Sommers

|      |        |                                          | ************* |             |        |
|------|--------|------------------------------------------|---------------|-------------|--------|
|      | TEST   |                                          | DILUTION      |             |        |
| LN   | CODE   | DETERMINATION                            | FACTOR        | RESULT      | UNITS  |
| •••• |        |                                          |               |             |        |
|      |        |                                          |               |             |        |
| 1    | OVTCS2 | The votations in soil                    |               |             |        |
|      |        | 1,2-Dichloroethane                       | 5             | < 25 *      | ug/kg  |
|      |        | Benzene                                  | 5             | < 25        | ug/kg  |
|      |        | Chlorobenzene                            | 5             | < 25        | ug/kg  |
|      |        | Ethylbenzene                             | 5             | 700         |        |
|      |        | Methylene chloride                       | 5             | < 25        |        |
|      |        | Toluene                                  | 5             | 460         |        |
| _    |        | Xylenes (total)                          | 5             | 2,400       |        |
| 3    | OSVTCS | TCL - Semi-volatile Extractables in Soil |               | • • • • • • |        |
|      |        | 1,2-Diphenylhydrazine                    | 30            | < 9,900*#   | ug/kg  |
|      |        | 2,4-Dimethylphenol                       | 30            | < 9,900     |        |
|      |        | 2,4-Dinitrotoluene                       | 30            | < 9,900     | • •    |
|      |        | 2,6-Dinitrotoluene                       | 30            | < 9,900     |        |
|      |        | 2-Chloronaphthalene                      | 30            | < 9,900     |        |
|      |        | 2-Methylnaphthalene                      | 30            | 76,000      |        |
|      |        | 4,6-Dinitro-o-cresol                     | 30            | < 50,000    |        |
|      |        | 4-Nitrophenol                            | 30            | < 50,000    |        |
|      |        | Acenaphthene                             | 30            | 26,000      |        |
|      |        | Acenaphthylene                           | 30            | < 9,900     |        |
|      |        | Anthracene                               | 30            | 21,000      |        |
|      |        | Benzo(a)anthracene                       | 30            | < 9,900     |        |
|      |        | Benzo(a)pyrene                           | 30            | < 9,900     |        |
|      |        | Chrysene                                 | 30            | < 9,900     |        |
|      |        | Di-n-butyl phthalate                     | 30            | < 9,900     |        |
|      |        | Dibenzofuran                             | 30            | 39,000      |        |
|      |        | Fluoranthene                             | 30            | 30,000      |        |
|      |        | Fluorene                                 | 30            | 24,000      | -      |
|      |        | N-Nitrosodiphenylamine                   | 30            | < 9,900     | ug/kg  |
|      |        | Naphthalene                              | 50            | 260,000     | ug/kg  |
|      |        | Nitrobenzene                             | 30            | < 9,900     | ug/kg  |
|      |        | Pentachlorophenol                        | 30            | < 50,000    | ug/kg  |
|      |        | Phenanthrene                             | 30            |             | ug/kg  |
|      |        | Phenol                                   | 30            | < 9,900     | ug/kg  |
|      |        | Pyrene                                   | 30            | 17,000      | ug/kg  |
|      |        | bis(2-Chloroethoxy)methane               | 30            | < 9,900     | ug/kg  |
|      |        |                                          | 30            | . ,,,,,,    | 721 VA |

> Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997 Report No.: 00060264 Section A Page 16

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-MW17-S030

SAMPLE NO: H446078

TEST

LN

CODE

DETERMINATION

**FACTOR** 

RESULT UNITS

bis(2-Ethylhexyl)phthalate

30

< 9,900 ug/kg

COMMENTS: \* The reporting limits are elevated due to the dilution required because of

the high concentration of target analytes.

# The internal standard recoveries were outside of QC acceptance limits due to

matrix interferences, which was confirmed by re-analysis.

### 16 REPORT OF LABORATORY ANALYSIS

April 07, 1997 Report No.: 00060264 Section A Page 17

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW18-S00

SAMPLE NO: H446079

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44042

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 26-FEB-97 1010

DATE RECEIVED: 27-FEB-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                                                | DILUTION |                      |                |
|----|--------|----------------------------------------------------------------|----------|----------------------|----------------|
| _N | CODE   | DETERMINATION                                                  | FACTOR   | RESULT               | UNITS          |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil                                    | •        |                      |                |
| •  | 011002 | 1,2-Dichloroethane                                             |          |                      |                |
|    |        | Benzene                                                        | 125      | < 620 *              | ug/kg          |
|    |        | Chlorobenzene                                                  | 125      | < 620                | ug/kg          |
|    |        | Ethylbenzene                                                   | 125      | < 620                | ug/kg          |
|    |        | Methylene chloride                                             | 125      | 4,200                | ug/kg          |
|    |        | Toluene                                                        | 125      | < 620                | ug/kg          |
|    |        | Xylenes (total)                                                | 125      | 1,400                | ug/kg          |
| 3  | OSVTCS |                                                                | 625      | 42,000               | ug/kg          |
| -  | 034163 | TCL - Semi-volatile Extractables in Soil 1,2-Diphenylhydrazine |          |                      |                |
|    |        |                                                                | 10       | < 3,300 *            | ug/kg          |
|    |        | 2,4-Dimethylphenol                                             | 10       | < 3,300              | ug/kg          |
|    |        | 2,4-Dinitrotoluene                                             | 10       | < 3,300              | ug/kg          |
|    |        | 2,6-Dinitrotoluene                                             | 10       | < 3,300              | ug/kg          |
|    |        | 2-Chloronaphthalene                                            | 10       | < 3,300              | ug/kg          |
|    |        | 2-Methylnaphthalene                                            | 10       | 6,900                | ug/kg          |
|    |        | 4,6-Dinitro-o-cresol                                           | 10       | < 3,300              | ug/kg          |
|    |        | 4-Nitrophenol                                                  | 10       | < 3,300              | ug/kg          |
|    |        | Acenaphthene                                                   | 10       | 6,300                | ug/kg          |
|    | *      | Acenaphthylene                                                 | 10       | < 3,300              | ug/kg          |
|    |        | Anthracene                                                     | 10       | 9,200                | ug/kg          |
|    |        | Benzo(a)anthracene                                             | . 10     | < 3,300              | ug/kg          |
|    |        | Benzo(a)pyrene                                                 | 10       | < 3,300              | ug/kg          |
|    |        | Chrysene                                                       | 10       | 3,300                | ug/kg          |
|    |        | Di-n-butyl phthalate                                           | 10       | < 3,300              | ug/kg          |
|    |        | Dibenzofuran                                                   | 10       | 4,000                | ug/kg          |
|    |        | Fluoranthene                                                   | 10       | 16,000               | ug/kg          |
|    |        | Fluorene                                                       | 10       | 5,600                | ug/kg          |
|    |        | N-Nitrosodiphenylamine                                         | 10       |                      | ug/kg          |
|    |        | Naphthalene                                                    | 10       |                      | ug/kg          |
|    |        | Nitrobenzene                                                   | 10       |                      | ug/kg          |
|    |        | Pentach loropheno l                                            | 10       | -                    | ug/kg          |
|    |        | Phenanthrene                                                   | 10       | Paramana Paramana    | ug/kg          |
|    |        | Phenol                                                         | 10       | and being the second | ug/kg<br>ug/kg |
|    |        | Pyrene                                                         | 10       |                      | _              |
|    |        | bis(2-Chloroethoxy)methane                                     | 10       |                      | ug/kg<br>ug/kg |

Houston, TX 77058 Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997 Report No.: 00060264 Section A Page 18

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT SAMPLE ID: HWPW-MW18-S00

SAMPLE NO: H446079

TEST

CODE

LN

DETERMINATION

DILUTION

**FACTOR** 

RESULT UNITS

bis(2-Ethylhexyl)phthalate

10

< 3,300 ug/kg

COMMENTS: \* The reporting limits are elevated due to the dilution required because of the high concentration of target analytes.

April 07, 1997 Report No.: 00060264 Section A Page 19

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW18-S025

SAMPLE MATRIX: SOIL

SAMPLE NO: H446080

LIMS CLIENT: 0717 0007

PACE PROJECT: H44042

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 26-FEB-97 1042

DATE RECEIVED: 27-FEB-97

PROJECT MANAGER: Elessa Sommers

|    | 7507   |                                          |          |         |         |
|----|--------|------------------------------------------|----------|---------|---------|
|    | TEST   |                                          | DILUTION |         |         |
| LN | CODE   | DETERMINATION                            | FACTOR   | RESULT  | UNITS   |
|    |        |                                          |          |         |         |
| 1  | OVTCS2 |                                          |          |         |         |
|    |        | 1,2-Dichloroethane                       | 1        | < 5     | ug/kg   |
|    |        | Benzene                                  | 1        | 9       |         |
|    |        | Chlorobenzene                            | 1        | < 5     | ug/kg   |
|    |        | Ethylbenzene                             | 1        | 13      | ug/kg   |
|    |        | Methylene chloride                       | 1        | < 5     |         |
|    |        | Toluene                                  | 1        | 6       |         |
|    |        | Xylenes (total)                          | 1        | 39      | ug/kg   |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |          |         | -3, 113 |
|    |        | 1,2-Diphenylhydrazine                    | . 1      | < 330   | ug/kg   |
|    |        | 2,4-Dimethylphenol                       | 1        | < 330   | ug/kg   |
|    |        | 2,4-Dinitrotoluene                       | 1        | < 330   |         |
|    |        | 2,6-Dinitrotoluene                       | 1        | < 330   |         |
|    |        | 2-Chloronaphthalene                      | 1        | < 330   | ug/kg   |
|    |        | 2-Methylnaphthalene                      | 1        | < 330   | ug/kg   |
|    |        | 4,6-Dinitro-o-cresol                     | 1        | < 1,600 | ug/kg   |
|    |        | 4-Nitrophenol                            | 1        | < 1,600 | ug/kg   |
|    |        | Acenaphthene                             | 1        | < 330   | ug/kg   |
|    |        | Acenaphthylene                           | 1        | < 330   | ug/kg   |
|    |        | Anthracene                               | . 1      | < 330   | ug/kg   |
|    |        | Benzo(a)anthracene                       | 1        | < 330   | ug/kg   |
|    |        | Benzo(a)pyrene                           | 1        | < 330   | ug/kg   |
|    |        | Chrysene                                 | 1        | < 330   | ug/kg   |
|    |        | Di-n-butyl phthalate                     | 1        |         | ug/kg   |
|    |        | Dibenzofuran                             | 1        |         | ug/kg   |
|    |        | Fluoranthene                             | 1        |         | ug/kg   |
|    |        | Fluorene                                 | 1        |         | ug/kg   |
|    |        | N-Nitrosodiphenylamine                   | 1        |         | ug/kg   |
|    |        | Naphthalene                              | 1        |         | ug/kg   |
|    |        | Nitrobenzene                             |          |         | ug/kg   |
|    |        | Pentachlorophenol                        | 1        | < 1,600 |         |
|    |        | Phenanthrene                             | 1        | < 330   |         |
|    |        | Phenol                                   | 1        |         | ug/kg   |
|    |        | Pyrene                                   | 1        |         | ug/kg   |
|    |        | bis(2-Chloroethoxy)methane               | i        |         | ug/kg   |

> Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997 Report No.: 00060264 Section A Page 20

LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-MW18-S025

SAMPLE NO: H446080

TEST

CODE

LN

DETERMINATION

DILUTION

bis(2-Ethylhexyl)phthalate

< 330 ug/kg

April 07, 1997 Report No.: 00060264 Section A Page 21

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW18-S030

SAMPLE NO: H446081

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44042

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 26-FEB-97 1050

DATE RECEIVED: 27-FEB-97

PROJECT MANAGER: Elessa Sommers

|    | TEST    |                                          | DILLITAN. |         |       |   |
|----|---------|------------------------------------------|-----------|---------|-------|---|
| LN | CODE    | DETERMINATION                            | DILUTION  |         |       |   |
|    |         |                                          | FACTOR    | RESULT  | UNITS |   |
| 1  | 0)(7000 | 00/01 000 000                            |           |         |       | - |
| 1  | OVTCS2  |                                          |           |         |       |   |
|    |         | 1,2-Dichloroethane                       | 1         | < 5     | ug/kg |   |
|    |         | Benzene                                  | 1         | < 5     |       |   |
|    |         | Chlorobenzene                            | 1         | < 5     |       |   |
|    |         | Ethylbenzene                             | , 1       | < 5     | ug/kg |   |
|    |         | Methylene chloride                       | 1         | < 5     |       |   |
|    |         | Toluene                                  | 1         |         | ug/kg |   |
| 3  | 001/700 | Xylenes (total)                          | 1         | < 5     |       |   |
| ٥  | OSVTCS  | TCL - Semi-volatile Extractables in Soil |           |         |       |   |
|    |         | 1,2-Diphenylhydrazine                    | 1         | < 330   | ug/kg |   |
|    |         | 2,4-Dimethylphenol                       | 1         | < 330   | ug/kg |   |
|    |         | 2,4-Dinitrotoluene                       | 1         | < 330   | ug/kg |   |
|    |         | 2,6-Dinitrotoluene                       | 1         | < 330   | ug/kg |   |
|    |         | 2-Chloronaphthalene                      | 1         | < 330   | ug/kg |   |
|    |         | 2-Methylnaphthalene                      | 1         | < 330   | ug/kg |   |
|    |         | 4,6-Dinitro-o-cresol                     | 1         | < 1,600 |       |   |
|    |         | 4-Nitrophenol                            | 1         | < 1,600 |       |   |
|    |         | Acenaphthene                             | 1         | < 330   | ug/kg |   |
|    |         | Acenaphthylene                           | 1         | < 330   | ug/kg |   |
|    |         | Anthracene                               | 1         | < 330   | ug/kg |   |
|    |         | Benzo(a)anthracene                       | 1         | < 330   | ug/kg |   |
|    |         | Benzo(a)pyrene                           | 1         | < 330   | ug/kg |   |
|    |         | Chrysene                                 | 1         | < 330   | ug/kg |   |
|    |         | Di-n-butyl phthalate                     | 1         | < 330   | ug/kg |   |
|    |         | Dibenzofuran                             | 1         | < 330   | ug/kg |   |
|    |         | Fluoranthene                             | i         |         | ug/kg |   |
|    |         | Fluorene                                 | 1         |         | ug/kg |   |
|    |         | N-Nitrosodiphenylamine                   | 1         |         | ug/kg |   |
|    |         | Naphthalene                              | 1         |         | ug/kg |   |
|    |         | Nitrobenzene                             | . 1       |         | ug/kg |   |
|    | 1       | Pentachlorophenol                        | 1         |         |       |   |
|    |         | Phenanthrene                             | i         |         | ug/kg |   |
|    | í       | Phenol                                   | 1         |         | ug/kg |   |
|    |         | Pyrene                                   | 1         |         | ug/kg |   |
|    | Ł       | pis(2-Chloroethoxy)methane               | 1         |         | ug/kg |   |
|    |         |                                          | ı         | < 330   | ug/kg |   |

# REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997 Report No.: 00060264 Section A Page 22

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-MW18-S030

SAMPLE NO: H446081

TEST LN CODE

DILUTION **FACTOR** 

RESULT UNITS

bis(2-Ethylhexyl)phthalate

< 330 ug/kg

April 07, 1997 Report No.: 00060264 Section A Page 23

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW16-S00

SAMPLE NO: H446082

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44042

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 26-FEB-97 1355

DATE RECEIVED: 27-FEB-97 PROJECT MANAGER: Elessa Sommers

TEST LN DILUTION DETERMINATION RESULT UNITS 1 OVTCS2 8260A TCL Volatiles in Soil 1,2-Dichloroethane Benzene < 5 ug/kg Chlorobenzene < 5 ug/kg Ethylbenzene 1 < 5 ug/kg Methylene chloride 1 < 5 ug/kg Toluene < 5 ug/kg Xylenes (total) < 5 ug/kg 3 OSVTCS TCL - Semi-volatile Extractables in Soil 1 < 5 ug/kg 1,2-Diphenylhydrazine 2,4-Dimethylphenol 10 < 3,300\* ug/kg 10 2,4-Dinitrotoluene < 3,300 ug/kg 10 2,6-Dinitrotoluene < 3,300 ug/kg 10 2-Chloronaphthalene < 3,300 ug/kg 2-Methylnaphthalene 10 < 3,300 ug/kg 10 4,6-Dinitro-o-cresol < 3,300 ug/kg 10 4-Nitrophenol < 16,000 ug/kg 10 Acenaphthene < 16,000 ug/kg < 3,300 Acenaphthylene 10 ug/kg 10 Anthracene < 3,300 ug/kg 10 Benzo(a)anthracene < 3,300 ug/kg 10 . Benzo(a)pyrene < 3,300 ug/kg 10 Chrysene < 3,300 ug/kg < 3,300 10 Di-n-butyl phthalate ug/kg 10 Dibenzofuran < 3,300 ug/kg 10 Fluoranthene < 3,300 ug/kg 10 < 3,300 Fluorene ug/kg N-Nitrosodiphenylamine 10 < 3,300 ug/kg 10 Naphthalene < 3,300 ug/kg 10 < 3,300 ug/kg Nitrobenzene Pentachlorophenol 10 < 3,300 ug/kg < 16,000 ug/kg 10 Phenanthrene < 3,300 ug/kg 10 Phenol 10 Pyrene < 3,300 ug/kg bis(2-Chloroethoxy)methane 10 < 3,300 ug/kg 10 < 3,300 ug/kg

> Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997
Report No.: 00060264
Section A Page 24

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-MW16-S00
SAMPLE NO: H446082

TEST DILUTION

LN CODE DETERMINATION FACTOR

DETERMINATION FACTOR RESULT UNITS

bis(2-Ethylhexyl)phthalate 10 < 3,300 ug/kg

COMMENTS: \* The reporting limits are elevated due to the dilution required because of matrix interferences.

April 07, 1997 Report No.: 00060264 Section A Page 25

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW16-S020

SAMPLE NO: H446083

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44042
PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 26-FEB-97 1415

DATE RECEIVED: 27-FEB-97

PROJECT MANAGER: Elessa Sommers

|      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJE | CI MANAGER:        | Elessa Sommers |
|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|----------------|
|      | EST  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | B.1.               |                |
| N C  | ODE  | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | DILUTION<br>FACTOR |                |
|      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                    | RESULT UNITS   |
| 1 ov | TCS2 | 8260A TCL Volatiles in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                    | ~              |
|      |      | 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                    |                |
|      |      | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 1                  | < 5 ug/kg      |
|      |      | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 1                  | < 5 ug/kg      |
|      |      | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 1                  | < 5 ug/kg      |
|      |      | Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 1                  | < 5 ug/kg      |
|      |      | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 1                  | < 5 ug/kg      |
|      |      | Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1                  | < 5 ug/kg      |
| OSV  |      | TCL - Semi-volatile Extractables in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 1                  | < 5 ug/kg      |
|      |      | 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                    | <b>.</b>       |
| 18   |      | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 1                  | < 330 ug/kg    |
|      |      | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 1                  | < 330 ug/kg    |
|      |      | 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 1                  | < 330 ug/kg    |
|      |      | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 1                  | < 330 ug/kg    |
|      |      | 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 1                  | < 330 ug/kg    |
|      |      | 4,6-Dinitro-o-cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 1                  | < 330 ug/kg    |
|      |      | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 1 .                | < 1,600 ug/kg  |
|      |      | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 1                  | < 1,600 ug/kg  |
|      |      | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 1                  | < 330 ug/kg    |
|      |      | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 1                  | < 330 ug/kg    |
|      | E    | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 1                  | < 330 ug/kg    |
|      |      | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 1                  | < 330 ug/kg    |
|      |      | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 1                  | < 330 ug/kg    |
|      |      | li-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 1                  | < 330 ug/kg    |
|      | D    | ibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 1                  | < 330 ug/kg    |
|      | F    | luoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 1                  | < 330 ug/kg    |
|      | F    | luorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | **    | 1                  | < 330 ug/kg    |
|      | N    | -Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 1                  | < 330 ug/kg    |
|      | Na   | aphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 1                  | < 330 ug/kg    |
|      |      | itrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 1                  | < 330 ug/kg    |
|      | Pe   | entach l oropheno l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 1                  | < 330 ug/kg    |
|      | Pł   | henanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 1                  | < 1,600 ug/kg  |
|      |      | tenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 1                  | < 330 ug/kg    |
|      | Py   | /rene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 1                  | < 330 ug/kg    |
|      | bi   | s(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 1                  | < 330 ug/kg    |
|      |      | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |       | 1                  | < 330 ug/kg    |

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997 Report No.: 00060264 Section A Page 26

LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-MW16-S020

SAMPLE NO: H446083

TEST

CODE

LN

DETERMINATION

DILUTION

**FACTOR** 

RESULT UNITS

bis(2-Ethylhexyl)phthalate

< 330 ug/kg

April 07, 1997 Report No.: 00060264 Section A Page 27

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW16-S025

SAMPLE NO: H446084

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44042

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 26-FEB-97 1420

DATE RECEIVED: 27-FEB-97

PROJECT MANAGER: Elessa Sommers

|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 210002 00 | manici S |
|----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|----------|
| LN | TEST   | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DILUTION |           |          |
|    |        | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FACTOR   | RESULT    | UNITS    |
|    |        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |           |          |
| 1  | OVTCS2 | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |          |           |          |
|    |        | 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 5       | ug/kg    |
|    |        | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        | < 5       |          |
|    |        | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        | < 5       |          |
|    |        | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | < 5       |          |
|    |        | Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 5.      | ug/kg    |
|    |        | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        | < 5       |          |
| _  |        | Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | 6         |          |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           |          |
|    |        | 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1        | < 330     | ug/kg    |
|    |        | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 330     | ug/kg    |
|    |        | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 330     | ug/kg    |
|    |        | 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 330     | ug/kg    |
|    |        | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        | < 330     | ug/kg    |
|    |        | 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        | < 330     | ug/kg    |
|    |        | 4,6-Dinitro-o-cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1        | < 1,600   | ug/kg    |
|    |        | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        | < 1,600   | ug/kg    |
|    |        | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | < 330     |          |
|    |        | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1        | < 330     | ug/kg    |
|    |        | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        | < 330     | ug/kg    |
|    |        | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 330     | ug/kg    |
|    |        | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1        | < 330     | ug/kg    |
|    |        | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        | < 330     | ug/kg    |
|    |        | Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1        | < 330     | ug/kg    |
|    |        | Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | < 330     | ug/kg    |
|    |        | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u> | < 330     | ug/kg    |
|    |        | Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        | < 330     | ug/kg    |
|    |        | N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        | < 330     | ug/kg    |
|    |        | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        | < 330     | ug/kg    |
|    |        | Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | < 330     | ug/kg    |
|    |        | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | < 1,600   | ug/kg    |
|    |        | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        |           | ug/kg    |
|    |        | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        |           | ug/kg    |
|    |        | Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        | < 330     | ug/kg    |
|    |        | bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        | < 330     | ug/kg    |
|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |          |

April 07, 1997 Report No.: 00060264 Section A Page 28

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-MW16-S025

SAMPLE NO: H446084

TEST DILUTION LN CODE DETERMINATION **FACTOR** 

bis(2-Ethylhexyl)phthalate

< 330 ug/kg

RESULT UNITS

April 07, 1997 Report No.: 00060264 Section A Page 29

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW12A-S00

SAMPLE NO: H446085

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44042

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 27-FEB-97 0808

DATE RECEIVED: 27-FEB-97

| SA | MPLE MATE | RIX: SOIL                                | PROJECT MANAGER: | Elessa So | mmers |
|----|-----------|------------------------------------------|------------------|-----------|-------|
|    |           |                                          | ±.               |           |       |
|    | TEST      |                                          | DILUTION         |           |       |
| LN | CODE      | DETERMINATION                            | FACTOR           | DECI II T | UNITS |
|    |           | •                                        |                  | KESULI    |       |
|    |           |                                          |                  |           |       |
| 1  | OVTCS2    |                                          |                  |           |       |
|    |           | 1,2-Dichloroethane                       | 1                | < 5       | ug/kg |
|    |           | Benzene                                  | 1                | < 5       | ug/kg |
|    |           | Chlorobenzene                            | 1                | < 5       | ug/kg |
|    |           | Ethylbenzene                             | 1                | < 5       | ug/kg |
|    |           | Methylene chloride                       | 1                | < 5       | ug/kg |
|    |           | Toluene                                  | 1                | < 5       | ug/kg |
| 7  | 001/700   | Xylenes (total)                          | 1                | < 5       | ug/kg |
| 3  | OSVTCS    | TCL - Semi-volatile Extractables in Soil |                  |           |       |
|    |           | 1,2-Diphenylhydrazine                    | 1                | < 330     | ug/kg |
|    |           | 2,4-Dimethylphenol                       | 1                | < 330     | ug/kg |
|    |           | 2,4-Dinitrotoluene                       | 1                | < 330     | ug/kg |
|    |           | 2,6-Dinitrotoluene                       | 1                | < 330     | ug/kg |
|    |           | 2-Chloronaphthalene                      | 1                | < 330     | ug/kg |
|    |           | 2-Methylnaphthalene                      | 1                | < 330     | ug/kg |
|    |           | 4,6-Dinitro-o-cresol                     | 1                | < 1,600   | ug/kg |
|    |           | 4-Nitrophenol                            | . 1              | < 1,600   | ug/kg |
|    |           | Acenaphthene                             | 1                | < 330     | ug/kg |
|    |           | Acenaphthylene                           | 1                | < 330     | ug/kg |
|    |           | Anthracene                               | 1                | < 330     | ug/kg |
|    |           | Benzo(a)anthracene                       | 1                | < 330     | ug/kg |
|    |           | Benzo(a)pyrene                           | 1                | < 330     | ug/kg |
|    |           | Chrysene                                 | 1                | < 330     | ug/kg |
|    |           | Di-n-butyl phthalate                     | 1                | < 330     | ug/kg |
|    |           | Dibenzofuran                             | 1                |           | ug/kg |
|    |           | Fluoranthene                             | . 1              |           | ug/kg |
|    |           | Fluorene                                 | 1                | < 330     | ug/kg |
|    |           | N-Nitrosodiphenylamine                   | 1                |           | ug/kg |
|    |           | Naphthalene                              | 1                |           | ug/kg |
|    |           | Nitrobenzene                             | 1                |           | ug/kg |
|    |           | Pentachlorophenol                        | 1                |           | ug/kg |
|    |           | Phenanthrene                             | 1                | •         | ug/kg |
|    |           | Phenol                                   | 1                |           | ug/kg |
|    |           | Pyrene                                   |                  |           | ug/kg |
|    |           | bis(2-Chloroethoxy)methane               | 1                |           | ug/kg |
|    |           |                                          |                  |           |       |

> Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997 Report No.: 00060264 Section A Page 30

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-MW12A-S00

SAMPLE NO: H446085

TEST

LN

CODE DETERMINATION DILUTION

**FACTOR** 

RESULT UNITS

bis(2-Ethylhexyl)phthalate

1

< 330 ug/kg

April 07, 1997 Report No.: 00060264 Section A Page 31

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW12A-S020

SAMPLE NO: H446086

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007
PACE PROJECT: H44042
PACE CLIENT: 620437
P.O. NO: 03219

DATE SAMPLED: 27-FEB-97 0830

DATE RECEIVED: 27-FEB-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          |          |         |       |
|----|--------|------------------------------------------|----------|---------|-------|
| LN | CODE   | DETERMINATION                            | DILUTION |         |       |
|    |        | DETERMINATION                            | FACTOR   | RESULT  | UNITS |
|    |        |                                          |          |         |       |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |          |         |       |
|    |        | 1,2-Dichloroethane                       | 1        | < .5    | ug/kg |
|    |        | Benzene                                  | 1        | < 5     | ug/kg |
|    |        | Chlorobenzene                            | 1        | < 5     |       |
|    |        | Ethylbenzene                             | 1        | < 5     |       |
|    |        | Methylene chloride                       | 1        | < 5     |       |
|    |        | Toluene                                  | 1        | < 5     | •. •  |
|    |        | Xylenes (total)                          | 1        | < 5     | • •   |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |          |         | -3,3  |
|    |        | 1,2-Diphenylhydrazine                    | 1        | < 330   | ug/kg |
|    |        | 2,4-Dimethylphenol                       | 1        | < 330   | ug/kg |
|    |        | 2,4-Dinitrotoluene                       | 1        | < 330   | ug/kg |
|    |        | 2,6-Dinitrotoluene                       | 1        | < 330   | ug/kg |
|    |        | 2-Chloronaphthalene                      | 1        | < 330   | ug/kg |
|    |        | 2-Methylnaphthalene                      | 1        | < 330   | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                     | 1        | < 1,600 | -     |
|    |        | 4-Nitrophenol                            | 1        | -       | ug/kg |
|    |        | Acenaphthene                             | 1        | < 330   | ug/kg |
|    |        | Acenaphthylene                           | 1        | < 330   | ug/kg |
|    |        | Anthracene                               | 1        | < 330   | ug/kg |
|    |        | Benzo(a)anthracene                       | 1        | < 330   | ug/kg |
|    |        | Benzo(a)pyrene                           | 1        | < 330   | ug/kg |
|    |        | Chrysene                                 | 1        | < 330   | ug/kg |
|    |        | Di-n-butyl phthalate                     | 1        | < 330   | ug/kg |
|    |        | Dibenzofuran                             | 1        | < 330   | ug/kg |
|    |        | Fluoranthene                             | 1        | < 330   | ug/kg |
|    |        | Fluorene                                 | 1        | < 330   | ug/kg |
|    |        | N-Nitrosodiphenylamine                   | 1        | < 330   | ug/kg |
|    |        | Naphthalene                              | 1        | < 330   | ug/kg |
|    |        | Nitrobenzene                             | 1        | < 330   | ug/kg |
|    |        | Pentachlorophenol                        | 1        | < 1,600 | ug/kg |
|    |        | Phenanthrene                             | 1        | < 330   | ug/kg |
|    |        | Phenol                                   | 1        | < 330   | ug/kg |
|    |        | Pyrene                                   | 1        | < 330   | ug/kg |
|    |        | bis(2-Chloroethoxy)methane               | 1        | < 330   | ug/kg |

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997 Report No.: 00060264 Section A Page 32

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-MW12A-S020

SAMPLE NO: H446086

TEST
LN CODE DETERMINATION DILUTION
FACTOR RESULT UNITS

bis(2-Ethylhexyl)phthalate

< 330 ug/kg

April 07, 1997
Report No.: 00060264
Section A Page 33

### LABORATORY ANALYSIS REPORT

| CLIENT NAME:<br>ADDRESS:                   | 6200 ROTHWAY, STE 190              | LIMS CLIENT:<br>PACE PROJECT:                       |           |
|--------------------------------------------|------------------------------------|-----------------------------------------------------|-----------|
| ATTENTION:                                 | HOUSTON, TX 77040-<br>BILL GOLDSBY | PACE CLIENT:<br>P.O. NO:                            | 620437    |
| SAMPLE ID:<br>SAMPLE NO:<br>SAMPLE MATRIX: |                                    | DATE SAMPLED:<br>DATE RECEIVED:<br>PROJECT MANAGER: | 27-FEB-97 |
| TEST                                       |                                    |                                                     |           |

|   |   | TEST   |                                          |          |         |       |  |
|---|---|--------|------------------------------------------|----------|---------|-------|--|
| L | N | CODE   | DETERMINATION                            | DILUTION |         |       |  |
|   |   |        | DETERMINATION                            | FACTOR   | RESULT  | UNITS |  |
|   |   |        |                                          |          |         |       |  |
|   | 1 | OVTCS2 | 8260A TCL Volatiles in Soil              |          |         |       |  |
|   |   |        | 1,2-Dichloroethane                       |          | _       | 1.4   |  |
|   |   |        | Benzene                                  | 1        | < 5     | ug/kg |  |
|   |   |        | Chlorobenzene                            | 1        | < 5     | ug/kg |  |
|   |   |        | Ethylbenzene                             | 1        | < 5     | ug/kg |  |
|   |   |        | Methylene chloride                       | 1        | < 5     | ug/kg |  |
|   |   |        | Toluene                                  | 1        | < 5     | ug/kg |  |
|   |   |        | Xylenes (total)                          | 1        | < 5     | ug/kg |  |
|   | 3 | OSVTCS | TCL - Semi-volatile Extractables in Soil | 1        | < 5     | ug/kg |  |
|   |   |        | 1,2-Diphenylhydrazine                    |          |         |       |  |
|   |   |        | 2,4-Dimethylphenol                       | 1        | < 330   | ug/kg |  |
|   |   |        | 2,4-Dinitrotoluene                       | . 1      | < 330   | ug/kg |  |
|   |   |        | 2,6-Dinitrotoluene                       | 1        | < 330   | ug/kg |  |
|   |   |        | 2-Chloronaphthalene                      | 1        | < 330   | ug/kg |  |
|   |   |        | 2-Methylnaphthalene                      | 1        | < 330   | ug/kg |  |
|   |   |        | 4,6-Dinitro-o-cresol                     | 1        |         | ug/kg |  |
|   |   |        | 4-Nitrophenol                            | 1        |         | ug/kg |  |
|   |   |        | Acenaphthene                             | 1        |         | ug/kg |  |
|   |   |        | Acenaphthylene                           | . 1      |         | ug/kg |  |
|   |   |        | Anthracene                               | 1        | < 330   |       |  |
|   |   |        | Benzo(a)anthracene                       | 1        |         | ug/kg |  |
|   |   |        | Benzo(a)pyrene                           | 1        |         | ug/kg |  |
|   |   |        | Chrysene                                 | 1        |         | ug/kg |  |
|   |   |        | Di-n-butyl phthalate                     | 1        |         | ug/kg |  |
|   |   |        | Dibenzofuran                             | 1        |         | ug/kg |  |
|   |   |        | Fluoranthene                             | 1        | < 330   |       |  |
|   |   |        | Fluorene                                 | 1        |         | ug/kg |  |
|   |   | 1      | N-Nitrosodiphenylamine                   | 1        |         | ug/kg |  |
|   |   |        | Naphthalene                              | 1        |         | ug/kg |  |
|   |   | ,      | Nitrobenzene                             | 1        |         | ug/kg |  |
|   |   | F      | Pentach loropheno l                      | 1        |         | ıg/kg |  |
|   |   | F      | Phenanthrene                             |          |         | ıg/kg |  |
|   |   | F      | Phenol                                   | 1        |         | ıg/kg |  |
|   |   | P      | Pyrene                                   | 1        |         | ıg/kg |  |
|   |   | b      | pis(2-Chloroethoxy)methane               | 1        |         | ıg/kg |  |
|   |   |        | ,                                        | 1        | < 330 u | ıg/kg |  |
|   |   |        |                                          |          |         |       |  |

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997 Report No.: 00060264 Section A Page 34

< 330 ug/kg

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-MW12A-S025

SAMPLE NO: H446087

TEST
LN CODE DETERMINATION FACTOR RESULT UNITS

bis(2-Ethylhexyl)phthalate

April 07, 1997
Report No.: 00060264
Section A Page 35

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW12B-S030

SAMPLE NO: H446088

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44042

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 27-FEB-97 1025

DATE RECEIVED: 27-FEB-97

PROJECT MANAGER: Elessa Sommers

|    | TEST                                    |                                                   | DILUTION |         |       |
|----|-----------------------------------------|---------------------------------------------------|----------|---------|-------|
| LN | CODE                                    | DETERMINATION                                     | FACTOR   | DECINT  | UNITS |
|    | • • • • • • • • • • • • • • • • • • • • |                                                   |          | KESULI  | ONIIS |
| 1  | OVTCS2                                  | 93/04 781 Well at the second                      |          |         |       |
| '  | 001632                                  | 8260A TCL Volatiles in Soil<br>1,2-Dichloroethane |          |         |       |
|    |                                         | Benzene                                           | 1        | < 5     | ug/kg |
|    |                                         | Chlorobenzene                                     | 1        | < 5     | ug/kg |
|    |                                         | Ethylbenzene                                      | . 1      | < 5     | ug/kg |
|    |                                         | Methylene chloride                                | 1        | < 5     | ug/kg |
|    |                                         | Toluene                                           | 1        | < 5     | ug/kg |
|    |                                         | Xylenes (total)                                   | 1        | < 5     | ug/kg |
| 3  | OSVTCS                                  | TCL - Semi-volatile Extractables in Soil          | 1        | < 5     | ug/kg |
|    |                                         | 1,2-Diphenylhydrazine                             |          |         |       |
|    |                                         | 2,4-Dimethylphenol                                | 1        | < 330   | ug/kg |
|    |                                         | 2,4-Dinitrotoluene                                | 1        | < 330   | ug/kg |
|    |                                         | 2,6-Dinitrotoluene                                | 1        | < 330   | ug/kg |
|    |                                         | 2-Chloronaphthalene                               | 1        | < 330   | ug/kg |
|    |                                         | 2-Methylnaphthalene                               | , 1      | < 330   | ug/kg |
|    |                                         | 4,6-Dinitro-o-cresol                              | 1        | < 330   | ug/kg |
|    |                                         | 4-Nitrophenol                                     | 1        | < 1,600 | ug/kg |
|    |                                         | Acenaphthene                                      | 1        |         | ug/kg |
|    |                                         | Acenaphthylene                                    | 1        | < 330   | ug/kg |
|    |                                         | Anthracene                                        | 1        | < 330   | ug/kg |
|    |                                         | Benzo(a)anthracene                                | 1        | < 330   | ug/kg |
|    |                                         | Benzo(a)pyrene                                    | 1        | < 330   | ug/kg |
|    |                                         | Chrysene                                          | 1        | < 330   | ug/kg |
|    |                                         | Di-n-butyl phthalate                              | 1        | < 330   | ug/kg |
|    |                                         | Dibenzofuran                                      | 1        | < 330   | ug/kg |
|    |                                         | Fluoranthene                                      | 1        | < 330   | ug/kg |
|    |                                         | Fluorene                                          | 1        |         | ug/kg |
|    |                                         | N-Nitrosodiphenylamine                            | 1        |         | ug/kg |
|    |                                         | Naphthalene                                       | 1        |         | ug/kg |
|    |                                         | Nitrobenzene                                      | . 1      |         | ug/kg |
|    |                                         | Pentach loropheno l                               | 1        |         | ug/kg |
|    |                                         | Phenanthrene                                      | 1        | -       | ug/kg |
|    |                                         | Phenol                                            | 1        |         | ug/kg |
|    |                                         | Pyrene                                            | 1        |         | ug/kg |
|    |                                         | ois(2-Chloroethoxy)methane                        | 1        |         | ug/kg |
|    |                                         | · · · · · · · · · · · · · · · · · · ·             | 1        | < 330   | ug/kg |

> Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997 Report No.: 00060264 Section A Page 36

LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-MW12B-S030

SAMPLE NO: H446088

TEST LN CODE DETERMINATION RESULT UNITS

bis(2-Ethylhexyl)phthalate

< 330 ug/kg

Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997 Report No.: 00060264 Section A Page 37

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW12B-S040

SAMPLE NO: H446089

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44042

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 27-FEB-97 1053

DATE RECEIVED: 27-FEB-97
PROJECT MANAGER: Elessa Sommers

| LN | TEST<br>CODE | DETERMINATION                            | DILUTION<br>FACTOR | RESULT  | UNITS |
|----|--------------|------------------------------------------|--------------------|---------|-------|
|    |              |                                          |                    |         |       |
| 1  | OVTCS2       | 8260A TCL Volatiles in Soil              |                    |         |       |
|    |              | 1,2-Dichloroethane                       | 1                  | < 5     | ug/kg |
|    |              | Benzene                                  | 1                  | < 5     | ug/kg |
|    |              | Chlorobenzene                            | 1                  | < 5     | ug/kg |
|    |              | Ethylbenzene                             | 1                  | < 5     |       |
|    |              | Methylene chloride                       | 1                  | < 5     | ug/kg |
|    |              | Toluene                                  | 1                  | < 5     | ug/kg |
| -  | 001/700      | Xylenes (total)                          | 1                  | < 5     | ug/kg |
| 3  | OSVTCS       | TCL - Semi-volatile Extractables in Soil |                    |         |       |
|    |              | 1,2-Diphenylhydrazine                    | 1                  | < 330   |       |
|    |              | 2,4-Dimethylphenol                       | 1                  | < 330   | ug/kg |
|    |              | 2,4-Dinitrotoluene                       | 1                  | < 330   | ug/kg |
|    |              | 2,6-Dinitrotoluene                       | 1                  | < 330   | ug/kg |
|    |              | 2-Chloronaphthalene                      | 1                  | < 330   | ug/kg |
|    |              | 2-Methylnaphthalene                      | 1                  | < 330   |       |
|    |              | 4,6-Dinitro-o-cresol                     | 1                  | < 1,600 | J. J  |
|    |              | 4-Nitrophenol                            | 1                  | < 1,600 |       |
|    |              | Acenaphthene                             | 1                  | < 330   |       |
|    |              | Acenaphthylene                           | - 1                | < 330   | ug/kg |
|    |              | Anthracene                               | 1                  | < 330   | ug/kg |
|    |              | Benzo(a)anthracene                       | 1                  | < 330   | ug/kg |
|    |              | Benzo(a)pyrene                           | 1                  | < 330   | ug/kg |
|    |              | Chrysene                                 | 1                  | < 330   | ug/kg |
|    |              | Di-n-butyl phthalate                     | 1                  | < 330   | ug/kg |
|    |              | Dibenzofuran                             | 1                  | < 330   | ug/kg |
|    |              | Fluoranthene                             | 1                  | < 330   | ug/kg |
|    |              | Fluorene                                 | 1                  | < 330   | ug/kg |
|    |              | N-Nitrosodiphenylamine                   | 1                  | < 330   | ug/kg |
|    |              | Naphthalene                              | 1                  | < 330   | ug/kg |
|    |              | Nitrobenzene                             | . 1                | < 330   | ug/kg |
|    |              | Pentachlorophenol                        | 1                  | < 1,600 |       |
|    |              | Phenanthrene                             | 1                  | < 330   |       |
|    |              | Phenol                                   | 1                  | < 330   | ug/kg |
|    |              | Pyrene                                   | 1                  | < 330   | ug/kg |
|    |              | bis(2-Chloroethoxy)methane               | 1                  | < 330   | ua/ka |

> Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997 Report No.: 00060264 Section A Page 38

LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-MW12B-S040

SAMPLE NO: H446089

DILUTION LN CODE DETERMINATION

bis(2-Ethylhexyl)phthalate

< 330 ug/kg

RESULT UNITS

**FACTOR** 

April 07, 1997 Report No.: 00060264 Section B Page 1

#### SUPPLEMENTAL INFORMATION

|        |                  |              |                  | • • • • • • • • • • • • • • • • • • • • |                |         |           |                                  |          |                |
|--------|------------------|--------------|------------------|-----------------------------------------|----------------|---------|-----------|----------------------------------|----------|----------------|
|        | TEST             | LCSR<br>BLNK | DUP/MS<br>MS/MSD |                                         | SAMPLE PREPAR  | RATION  |           | SAMPLE ANALYS                    | SIS      |                |
| LN     | CODE             | BATCH        | BATCH            | LR-METHOD                               | DATE/TIME      | ANALYST | LR-METHOD | DATE/TIME                        | ANALYST  | INSTRUMENT     |
| SAMPL  | E ID:            | HWPW-MW13    | -s00             |                                         |                |         |           | SAMPLE NO                        | ): H4460 | 171            |
|        |                  |              |                  |                                         |                |         |           | 57.8.1. 22                       |          |                |
|        | OVTCS2           |              | 72083            |                                         | 11-MAD-07:1070 | DD0     | 19-8260A  | 04-MAR-97 2015                   |          | GCMSY          |
| 3      | 034103           | 12147        | 16147            | 19-3330A                                | 11-MAR-97 1030 | KDQ     | 19-8270B  | 17-MAR-97 0758                   | EAY      | GCMSA          |
| SAMPL  | E ID:            | HWPW-MW13    | -\$015           |                                         |                |         |           | SAMPLE NO                        | : H4460  | 172            |
| 1      | OVTCS2           | 72004        | 72083            | NA                                      |                |         | 19-8260A  | 05-MAR-97 1254                   | .ic      | GCMSY          |
| 3      | OSVTCS           | 72149        | 72149            | 19-3550A                                | 11-MAR-97 1030 | RDQ     | 19-8270B  | 17-MAR-97 0848                   |          | GCMSA          |
| SAMPL  | ID:              | HWPW-MW13    | -\$021           |                                         |                |         |           | SAMPLE NO                        | . 44440  | 177            |
|        |                  |              |                  |                                         |                |         |           | SAMPLE NO                        | . 14400  | 13             |
|        | OVTCS2           |              | 72083            |                                         |                |         | 19-8260A  | 05-MAR-97 1328                   | JC       | GCMSY          |
| 3      | OSVTCS           | 72149        | 72149            | 19-3550A                                | 11-MAR-97 1030 | RDQ     | 19-8270B  | 17-MAR-97 0936                   | EAY      | GCMSA          |
| AMPLI  | ID:              | HWPW-MW15    | -s00             |                                         |                |         |           | SAMPLE NO                        | : H4460  | 74             |
| 1      | OVTCS2           | 72004        | 72083            | NΔ                                      |                |         | 19-8260A  | OF MAD 07 4750                   | 10       | 001101         |
|        | OSVTCS           |              |                  | 19-3550A                                | 11-MAR-97 1030 | RDQ     | 19-8270B  | 05-MAR-97 1359<br>17-MAR-97 1115 |          | GCMSY<br>GCMSA |
|        |                  |              |                  |                                         |                |         | .,        | 77 1112                          |          | dullon         |
| SAMPLE | ID:              | HWPW-MW15    | -s020            |                                         |                |         |           | SAMPLE NO                        | : H4460  | 75             |
| 1      | OVTCS2           | 72004        | 72083            | NA                                      |                |         | 19-8260A  | 05-MAR-97 1433                   | JC       | GCMSY          |
| 3      | OSVTCS           | 72149        | 72149            | 19-3550A                                | 11-MAR-97 1030 | RDQ     | 19-8270в  | 17-MAR-97 1204                   | EAY      | GCMSA          |
| SAMPLE | ID:              | HWPW-MW15    | -\$025           |                                         |                |         |           | SAMPLE NO                        | : H4460  | 76             |
|        | 017000           | 7000/        | 70.00            |                                         |                |         |           |                                  |          |                |
|        | OVTCS2<br>OSVTCS |              | 72083<br>72140   | NA<br>19-3550A                          | 11-MAR-97 1030 | , no    | 19-8260A  | 05-MAR-97 1506                   |          | GCMSY          |
| -      | 007103           | 16147        | 12147            | 19-3330A                                | 11-MAK-97 1030 | KUU     | 19-8270B  | 21-MAR-97 1546                   | EAY      | GCMSA          |
| AMPLE  | ID: I            | HWPW-MW17-   | ·\$025           |                                         |                |         |           | SAMPLE NO                        | : н4460  | 77             |
| 1      | OVTCS2           | 72161        | 72083            | NA                                      |                |         | 19-8260A  | 09-MAR-97 1839                   | ır       | GCMSY          |
| 3      | OSVTCS           | 72149        | 72149            | 19-3550A                                | 11-MAR-97 1030 | RDQ     | 19-8270B  | 03-APR-97 1355                   |          | GCMSA          |
| AMPLE  | ID: I            | HWPW-MW17-   | ·s030            |                                         |                |         |           | SAMPLE NO                        | • HYYYU. | 78             |
|        |                  |              |                  |                                         |                |         |           | OAFIF EL NO                      |          | , •            |
|        | OVTCS2           |              | 72083            |                                         |                |         | 19-8260A  | 07-MAR-97 1912                   | JC       | GCMSY          |
| 5      | OSVTCS           | 72149        | 72149            | 19-3550A                                | 11-MAR-97 1030 | RDQ     | 19-8270В  | 22-MAR-97 1837                   | EAY      | GCMSA          |

# REPORT OF LABORATORY ANALYSIS

April 07, 1997 Report No.: 00060264 Section B Page 2

### SUPPLEMENTAL INFORMATION

|         | TEST  | LCSR<br>BLNK | DUP/MS<br>MS/MSD | *********** | SAMPLE PREPAR  | RATION  | •••••     | SAMPLE ANALYSIS -  |               |
|---------|-------|--------------|------------------|-------------|----------------|---------|-----------|--------------------|---------------|
| LN      | CODE  | BATCH        | BATCH            | LR-METHOD   | DATE/TIME      | ANALYST | LR-METHOD | DATE/TIME ANAL     | YST INSTRUMEN |
| AMPLE   | ID: i | IWPW-MW18    | -500             |             |                |         |           | SAMPLE NO: H       | 1446079       |
|         | VTCS2 |              | 72083            |             |                |         | 19-8260A  | 09-MAR-97 1945 JC  | GCMSY         |
| 3 09    | SVTCS | 72149        | 72149            | 19-3550A    | 11-MAR-97 1030 | RDQ     | 19-8270B  | 22-MAR-97 1926 EAY | GCMSA         |
| MPLE    | ID: H | IWPW-MW18    | -\$025           |             |                |         |           | SAMPLE NO: H       | 446080        |
| 1 0     | VTCS2 | 72004        | 72083            | NA          |                |         | 19-8260A  | 05-MAR-97 1539 JC  | GCMSY         |
| 3 09    | SVTCS | 72149        | 72149            | 19-3550A    | 11-MAR-97 1030 | RDQ     | 19-8270в  | 21-MAR-97 1814 EAY | GCMSA         |
| AMPLE 1 | ID: H | IWPW-MW18    | -s030            |             |                |         |           | SAMPLE NO: H       | 446081        |
| 1 0\    | VTCS2 | 72004        | 72083            | NA          |                |         | 19-8260A  | 05-MAR-97 1613 JC  | GCMSY         |
| 3 09    | SVTCS | 72149        | 72149            | 19-3550A    | 11-MAR-97 1030 | RDQ     | 19-8270в  | 21-MAR-97 1903 EAY | GCMSA         |
| AMPLE 1 | ID: H | IWPW-MW16    | -\$00            |             |                |         |           | SAMPLE NO: H       | 446082        |
|         | /TCS2 |              | 72083            | 7           |                |         | 19-8260A  | 05-MAR-97 1646 JC  | GCMSY         |
| 3 08    | SVTCS | 72149        | 72149            | 19-3550A    | 11-MAR-97 1030 | RDQ     | 19-8270в  | 03-APR-97 1445 EAY | GCMSA         |
| AMPLE I | D: H  | IWPW-MW16    | -s020            |             |                |         |           | SAMPLE NO: H       | 446083        |
| 1 OV    | /TCS2 | 72004        | 72083            | NA          |                |         | 19-8260A  | 05-MAR-97 1719 JC  | GCMSY         |
| 3 08    | SVTCS | 72149        | 72149            | 19-3550A    | 11-MAR-97 1030 | RDQ     | 19-8270B  | 19-MAR-97 0353 EAY | GCMSA         |
| AMPLE I | D: H  | WPW-MW16     | -\$025           |             |                |         |           | SAMPLE NO: H       | 446084        |
| 1 ov    | TCS2  | 72004        | 72083            | NA ·        |                |         | 19-8260A  | 05-MAR-97 1752 JC  | GCMSY         |
| 3 OS    | SVTCS | 72149        | 72149            | 19-3550A    | 11-MAR-97 1030 | RDQ     | 19-8270B  | 21-MAR-97 1952 EAY | GCMSA         |
| MPLE I  | D: H  | WPW-MW12/    | A-S00            |             |                |         |           | SAMPLE NO: H       | 446085        |
| 1 ov    | TCS2  | 72004        | 72083            | NA          |                |         | 19-8260A  | 05-MAR-97 1826 JC  | GCMSY         |
| 3 os    | VTCS  | 72149        | 72149            | 19-3550A    | 11-MAR-97 1030 | RDQ     | 19-8270B  | 21-MAR-97 2042 EAY | GCMSA         |
| MPLE I  | D: H  | WPW-MW12/    | A-S020           |             |                |         |           | SAMPLE NO: H       | 446086        |
| 1 ov    | TCS2  | 72004        | 72083            | NA          |                |         | 19-8260A  | 05-MAR-97 1859 JC  | GCMSY         |
| 3 os    | VTCS  | 72149        |                  |             | 11-MAR-97 1030 | RDQ     | 19-8270B  | 21-MAR-97 2131 EAY | GCMSA         |

April 07, 1997
Report No.: 00060264
Section B Page 3

### SUPPLEMENTAL INFORMATION

|                 | LCSR<br>TEST BLNK |                    | DUP/MS<br>MS/MSD |           | SAMPLE PREPAR   | RATION  | ********* | SAMPLE ANALY   | YSIS      |            |
|-----------------|-------------------|--------------------|------------------|-----------|-----------------|---------|-----------|----------------|-----------|------------|
| LN              | CODE              | BATCH              | BATCH            | LR-METHOD | DATE/TIME       | ANALYST | LR-METHOD | DATE/TIME      | ANALYST   | INSTRUMENT |
| SAMPL           | E ID: H           | IWPW-MW12          | A-\$025          |           |                 |         |           | SAMPLE N       | NO: H4460 | 187        |
| 1               | OVTCS2            | 72004              | 72083            | NA ·      |                 |         | 10.0010   |                |           |            |
| 3               | OSVTCS            | 72149              | 72149            |           | 11 1110 07 1070 |         | 19-8260A  | 05-MAR-97 1932 |           | GCMSY      |
| ,               | 034163            | 12149              | 16149            | 19-3550A  | 11-MAR-97 1030  | RDQ     | 19-8270B  | 18-MAR-97 2132 | EAY       | GCMSA      |
| SAMPL           | E ID: H           | WPW-MW12           | 3-8030           |           |                 |         |           | SAMPLE N       | 10: H4460 | 188        |
| 1               | OVTCS2            | 72004              | 72083            | NA        |                 |         | 19-8260A  | 05-MAR-97 2005 | 1C        | GCMSY      |
| 3               | OSVTCS            | 72149              | 72149            | 19-3550A  | 11-MAR-97 1030  | RDQ     | 19-8270B  | 19-MAR-97 0303 | -         | GCMSA      |
| SAMPL           | E ID: H           | WPW-MW12           | 3-5040           |           |                 |         |           | SAMPLE N       | IO: H4460 | 189        |
| 1               | OVTCS2            | 72083              | 72083            | NA        |                 |         | 19-8260A  | 07-MAR-97 1413 | ıc        | CCHOY      |
| 3               | OSVTCS            | 72149              | 72149            | 19-3550A  | 11-MAR-97 1030  | RDQ     |           |                |           | GCMSY      |
| 3<br>' <u>R</u> |                   | 72149<br>Literatur |                  |           | 11-MAR-97 1030  | RDQ     | 19-8270в  | 19-MAR-97 0214 | EAY       | GCMSA      |

R Method Literature Reference

<sup>19</sup> EPA-Test Methods for Evaluating Solid Waste, 3rd ed, Nov. 1986 and updates

Tel: 713-488-1810 Fax: 713-488-4661



April 07, 1997
Report No.: 00060264
Section C Page 1

| LN    | CODE    | SURROGATE COMPOUND                                                                              | PERCENT<br>RECOVERY | ACCEPTANCE<br>LIMITS | REF     | LI  |
|-------|---------|-------------------------------------------------------------------------------------------------|---------------------|----------------------|---------|-----|
| AMPLE | ID:     | WPW-MW13-S00                                                                                    |                     | SAMPLE NO:           | н446071 |     |
| 2 :   | \$VOA2S | GC/MS Volatiles Surrogates (8260)                                                               |                     |                      | 1       |     |
|       |         | 4-Bromofluorobenzene                                                                            | 98                  |                      |         |     |
|       |         | Dibromofluoromethane                                                                            | 110                 |                      |         |     |
|       |         | Toluene-d8                                                                                      | 91                  | -                    |         |     |
| 4 5   | \$BNAS  | GC/MS BNA Surrogates                                                                            |                     |                      | 3       |     |
|       |         | 2,4,6-Tribromophenol                                                                            | 9*                  | -                    |         |     |
|       |         | 2-Fluorobiphenyl                                                                                | 33                  | -                    |         |     |
|       |         | 2-Fluorophenol                                                                                  | 30                  | -                    |         |     |
|       |         | Nitrobenzene-d5                                                                                 | 33                  | -                    |         |     |
|       |         | Phenol-d5                                                                                       | 32                  | -                    |         |     |
|       |         | p-Terphenyl-d14                                                                                 | 33                  | -                    |         |     |
|       |         | * The recovery of the surrogate was outside of QC acceptance limits due to matrix interference. |                     |                      |         |     |
| MPLE  | ID:     | WPW-MW13-S015                                                                                   |                     | SAMPLE NO:           | H446072 |     |
| 2 :   | \$VOA2S | GC/MS Volatiles Surrogates (8260)                                                               |                     |                      | 1       |     |
|       |         | 4-Bromofiuorobenzene                                                                            | 97                  | -                    |         |     |
|       |         | Dibromofluoromethane                                                                            | 97                  | -                    |         |     |
|       |         | Toluene-d8                                                                                      | 96                  |                      |         |     |
| 4 5   | \$BNAS  | GC/MS BNA Surrogates                                                                            |                     |                      | 3       |     |
|       |         | 2,4,6-Tribromophenol                                                                            | 28                  | -                    |         |     |
|       |         | 2-Fluorobiphenyl                                                                                | 32                  | -                    |         |     |
|       |         | 2-Fluorophenol                                                                                  | 28                  | -                    |         |     |
|       |         | Nitrobenzene-d5                                                                                 | 30                  | -                    |         |     |
|       |         | Phenol-d5                                                                                       | 30                  | -                    |         |     |
|       |         | p-Terphenyl-d14                                                                                 | 34                  | -                    |         |     |
| MPLE  | ID: I   | IWPW-MW13-S021                                                                                  |                     | SAMPLE NO:           | H446073 |     |
| 2 5   | \$VOA2S | GC/MS Volatiles Surrogates (8260)                                                               |                     |                      | 1       |     |
|       |         | 4-Bromofluorobenzene                                                                            | 100                 | -                    |         |     |
|       |         | Dibromofluoromethane                                                                            | 105                 | -                    |         |     |
|       |         | Toluene-d8                                                                                      | 93                  | -                    |         |     |
| 4 9   | BNAS    | GC/MS BNA Surrogates                                                                            |                     |                      | 3       | je. |
|       |         | 2,4,6-Tribromophenol                                                                            | 28                  | -                    |         |     |
|       |         | 2-Fluorobiphenyl                                                                                | 34                  |                      |         |     |
|       |         | 2-Fluorophenol                                                                                  | 27                  | -                    |         |     |
|       |         | Nitrobenzene-d5                                                                                 | 30                  | -                    |         |     |
|       |         | Phenol-d5                                                                                       | 30                  | -                    |         |     |
|       |         | p-Terphenyl-d14                                                                                 | 28                  |                      |         |     |

April 07, 1997
Report No.: 00060264
Section C Page 2

| LN    | CODE    | SURROGATE COMPOUND                    | PERCENT<br>RECOVERY | ACCEPTANCE<br>LIMITS | REF LN  |
|-------|---------|---------------------------------------|---------------------|----------------------|---------|
| SAMP  | LE ID:  | HWPW-MW15-s00                         |                     | SAMPLE NO:           | H446074 |
| 2     | \$VOA2S | GC/MS Volatiles Surrogates (8260)     |                     |                      |         |
|       |         | 4-Bromofluorobenzene                  | 107                 |                      | 1       |
|       |         | Dibromofluoromethane                  | 114                 | -                    |         |
|       |         | Toluene-d8                            | 93                  | -                    |         |
| 4     | \$BNAS  | GC/MS BNA Surrogates                  | 93                  | -                    | 7       |
|       |         | 2,4,6-Tribromophenol                  | 36                  | _                    | 3       |
|       |         | 2-Fluorobiphenyl                      | 41                  | _                    |         |
|       |         | 2-Fluorophenol                        | 34                  | -                    |         |
|       |         | Nitrobenzene-d5                       | 41                  | _                    |         |
|       |         | Phenol-d5                             | 38                  | _                    |         |
|       |         | p-Terphenyl-d14                       | 44                  |                      |         |
| SAMPL | E ID: I | WPW-MW15-S020                         |                     | SAMPLE NO:           | H446075 |
| 2     | \$VOA2S | GC/MS Volatiles Surrogates (8260)     |                     |                      | 1       |
|       |         | 4-Bromofluorobenzene                  | 99                  | _                    | '       |
|       |         | Dibromofluoromethane                  | 110                 |                      |         |
|       |         | Toluene-d8                            | 93                  | _                    |         |
| 4     | \$BNAS  | GC/MS BNA Surrogates                  | ,,,                 | _                    | 3       |
|       |         | 2,4,6-Tribromophenol                  | 30                  | _                    | 3       |
|       |         | 2-Fluorobiphenyl                      | 48                  | -                    |         |
|       |         | 2-Fluorophenol                        | 42                  | _                    |         |
|       |         | Nitrobenzene-d5                       | 42                  | -                    |         |
|       |         | Phenol-d5                             | 43                  | -                    |         |
|       |         | p-Terphenyl-d14                       | 43                  | -                    |         |
| AMPLE | E ID: H | WPW-MW15-S025                         |                     | SAMPLE NO:           | H446076 |
| 2     | \$VOA2S | GC/MS Volatiles Surrogates (8260)     |                     |                      |         |
|       |         | 4-Bromofluorobenzene                  | 101                 |                      | 1       |
|       |         | Dibromofluoromethane                  | 101                 | -                    |         |
|       |         | Toluene-d8                            |                     |                      |         |
| 4     | \$BNAS  | GC/MS BNA Surrogates                  | 92                  | -                    | -       |
|       |         | 2,4,6-Tribromophenol                  | 2 ***               |                      | 3       |
|       |         | 2-Fluorobiphenyl                      | 43                  |                      |         |
|       |         | 2-Fluorophenol                        | 61                  | -                    |         |
|       |         | Nitrobenzene-d5                       | 55                  | -                    |         |
|       |         | Phenol-d5                             | 63                  | -                    |         |
|       |         | p-Terphenyl-d14                       | 60                  | -                    |         |
|       |         | • • • • • • • • • • • • • • • • • • • | 60                  |                      |         |

April 07, 1997 Report No.: 00060264 Section C Page 3

| LN    | CODE    | SURROGATE COMPOUND                                                                                          | PERCENT<br>RECOVERY | ACCEPTANCE<br>LIMITS | REF LN  |
|-------|---------|-------------------------------------------------------------------------------------------------------------|---------------------|----------------------|---------|
| AMPL  | E ID:   | HWPW-MW17-S025                                                                                              |                     | SAMPLE NO:           | H446077 |
| 2     | \$VOA2S | GC/MS Volatiles Surrogates (8260)                                                                           |                     |                      | _1      |
|       |         | 4-Bromofluorobenzene                                                                                        | 101                 | -                    | •       |
|       |         | Dibromofluoromethane                                                                                        | 103                 | -                    |         |
|       |         | Toluene-d8                                                                                                  | 97                  | -                    |         |
| 4     | \$BNAS  | GC/MS BNA Surrogates                                                                                        |                     |                      | 3       |
|       |         | 2,4,6-Tribromophenol                                                                                        | *                   | -                    |         |
|       |         | 2-Fluorobiphenyl                                                                                            | *                   | -                    |         |
|       |         | 2-Fluorophenol                                                                                              | *                   | -                    |         |
|       |         | Nitrobenzene-d5                                                                                             | *                   | •                    |         |
|       |         | Phenol-d5                                                                                                   | *                   | -                    |         |
|       |         | p-Terphenyl-d14                                                                                             | *                   | -                    |         |
|       |         | *The surrogates were not recovered due to the dilution required because of high analyte concentrations.     |                     |                      |         |
| AMPL  | E ID: } | WPW-MW17-S030                                                                                               |                     | SAMPLE NO:           | H444078 |
| 2     | \$V0428 | GC/MS Volatiles Surrogates (8260)                                                                           |                     | oran LL NO:          |         |
| -     | TONES   | 4-Bromofluorobenzene                                                                                        |                     |                      | 1       |
|       |         | Dibromofluoromethane                                                                                        | 111                 | •                    |         |
|       |         | Toluene-d8                                                                                                  | 115                 | -                    |         |
| 4     | \$BNAS  | GC/MS BNA Surrogates                                                                                        | 94                  |                      | _       |
| •     | 4011710 | 2,4,6-Tribromophenol                                                                                        |                     |                      | 3       |
|       |         | 2-Fluorobi phenyl                                                                                           | *                   | •                    |         |
|       |         | 2-Fluorophenol                                                                                              | *                   | •                    |         |
|       |         | Nitrobenzene-d5                                                                                             | *                   | -                    |         |
|       |         | Phenol-d5                                                                                                   | *                   | •                    |         |
|       |         | p-Terphenyl-d14                                                                                             | *                   | -                    |         |
|       |         |                                                                                                             | *                   | •                    |         |
|       |         | * The surrogates were not recovered due to the dilution required because of<br>high analyte concentrations. |                     |                      |         |
| AMPLI | E ID: H | WPW-MW18-S00                                                                                                |                     | SAMPLE NO:           | H446079 |
| 2     | \$VOA2S | GC/MS Volatiles Surrogates (8260)                                                                           |                     |                      | -1      |
|       |         | 4-Bromofluorobenzene                                                                                        | 103                 | -                    |         |
|       |         | Dibromofluoromethane                                                                                        | 98                  | -                    |         |
|       |         | Toluene-d8                                                                                                  | 97                  | -                    |         |
| 4     | \$BNAS  | GC/MS BNA Surrogates                                                                                        |                     |                      | 3       |
|       |         | 2,4,6-Tribromophenol                                                                                        | *                   | -                    | -       |
|       |         | 2-Fluorobiphenyl                                                                                            | *                   | -                    |         |
|       |         | 2-Fluorophenol                                                                                              | *                   | -                    |         |
|       |         | Nitrobenzene-d5                                                                                             | *                   | -                    |         |
|       |         |                                                                                                             |                     |                      |         |

April 07, 1997 Report No.: 00060264 Section C Page 4

| LN COD    |                                                                             | PERCENT  | ACCEPTANCE  |                         |
|-----------|-----------------------------------------------------------------------------|----------|-------------|-------------------------|
|           | SOURCE COMPOUND                                                             | RECOVERY |             | REF I                   |
| AMPLE ID: | HWPW-MW18-S00                                                               |          |             | • • • • • • • • • • • • |
|           |                                                                             |          | SAMPLE NO:  | H446079                 |
|           | p-Terphenyl-d14                                                             |          |             |                         |
|           | * The surrogates were not recovered due to the dilution required because of | *        | •           |                         |
|           | high analyte concentrations.                                                | )Ť       |             |                         |
| AMPLE ID: | HWPW-MW18-S025                                                              |          |             |                         |
|           |                                                                             |          | SAMPLE NO:  | H446080                 |
| 2 \$VOA2  | S GC/MS Volatiles Surrogates (8260)                                         |          |             |                         |
|           | 4-Bromofluorobenzene                                                        |          |             | . 1                     |
|           | Dibromofluoromethane                                                        | 97       | -           |                         |
|           | Toluene-d8                                                                  | 110      | -           |                         |
| 4 \$BNAS  | GC/MS BNA Surrogates                                                        | 93       | -           |                         |
|           | 2,4,6-Tribromophenol                                                        |          |             | 3                       |
|           | 2-Fluorobiphenyl                                                            | 19       | -           |                         |
|           | 2-Fluorophenol                                                              | 50       | -           |                         |
|           | Nitrobenzene-d5                                                             | 41       | -           |                         |
|           | Phenol-d5                                                                   | 47       | -           |                         |
|           | p-Terphenyl-d14                                                             | 49       | •           |                         |
| MPLE ID.  | HWPW-MW18-S030                                                              | 49       | -           |                         |
|           |                                                                             | s        | SAMPLE NO:  | H446081                 |
| 2 \$VOA29 | GC/MS Volatiles Surrogates (8260)                                           |          |             |                         |
|           | 4-Bromofluorobenzene                                                        |          |             | 1                       |
|           | Dibromofluoromethane                                                        | 95       | •           |                         |
|           | Toluene-d8                                                                  | 107      | -           |                         |
| 4 \$BNAS  | GC/MS BNA Surrogates                                                        | 93       | -           |                         |
|           | 2,4,6-Tribromophenol                                                        |          |             | 3                       |
|           | 2-Fluorobiphenyl                                                            | 43       | -           |                         |
|           | 2-Fluorophenol                                                              | 49       | -           |                         |
|           | Nitrobenzene-d5                                                             | 41       | -           |                         |
|           | Phenol-d5                                                                   | 50       | -           |                         |
|           | p-Terphenyl-d14                                                             | 47       | -           |                         |
|           |                                                                             | 50       | -           |                         |
| PLE ID:   | twpw-mw16-s00                                                               |          |             |                         |
|           |                                                                             | SA       | AMPLE NO: H | 1446082                 |
| 2 \$VOA2S | GC/MS Volatiles Surrogates (8260)                                           |          |             |                         |
|           | 4-Bromofluorobenzene                                                        |          |             | 1                       |
|           | Dibromofluoromethane                                                        | 102      | -           |                         |
|           | Toluene-d8                                                                  | 108      | -           |                         |
| 4 \$BNAS  | GC/MS BNA Surrogates                                                        | 91       | -           |                         |
|           | 2,4,6-Tribromophenol                                                        |          |             | 3                       |
|           | 2-Fluorobiphenyl                                                            | *        | -           | _                       |
|           | 2-Fluorophenol                                                              | *        | -           |                         |
|           | radi opticitit                                                              |          |             |                         |

Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997
Report No.: 00060264
Section C Page 5

| LN CODE           | SURROGATE COMPOUND                                                                               | PERCENT<br>RECOVERY | ACCEPTANCE<br>LIMITS | REF LN  |
|-------------------|--------------------------------------------------------------------------------------------------|---------------------|----------------------|---------|
| SAMPLE ID:        | HWPW-MW16-S00                                                                                    |                     | SAMPLE NO:           | H446082 |
|                   | Nitrobenzene-d5                                                                                  | *                   | n (m)                |         |
|                   | Phenol-d5                                                                                        | *                   | _                    |         |
|                   | p-Terphenyl-d14                                                                                  | *                   | · .                  |         |
|                   | *The surrogates were not recovered due to the dilution required because of matrix interferences. |                     |                      |         |
| SAMPLE ID:        | HWPW-MW16-S020                                                                                   |                     | SAMPLE NO:           | H446083 |
|                   |                                                                                                  |                     | 52 1101              |         |
| 2 \$VOA2S         | GC/MS Volatiles Surrogates (8260)                                                                |                     |                      | 1       |
|                   | 4-Bromofluorobenzene                                                                             | 97                  | -                    |         |
|                   | Dibromofluoromethane                                                                             | 107                 | -                    |         |
|                   | Toluene-d8                                                                                       | 93                  | -                    |         |
| 4 \$BNAS          | GC/MS BNA Surrogates                                                                             |                     |                      | 3       |
|                   | 2,4,6-Tribromophenol                                                                             | 34                  | -                    |         |
|                   | 2-Fluorobiphenyl                                                                                 | 44                  | -                    |         |
|                   | 2-Fluorophenol                                                                                   | 33                  | -                    |         |
|                   | Nitrobenzene-d5                                                                                  | 40                  | •                    |         |
|                   | Phenoi-d5                                                                                        | 37                  | -                    |         |
|                   | p-Terphenyl-d14                                                                                  | 44                  | •                    |         |
| AMPLE ID: I       | HWPW-MW16-S025                                                                                   |                     | SAMPLE NO:           | H446084 |
| 2 \$VOA2S         | GC/MS Volatiles Surrogates (8260)                                                                |                     |                      | 1       |
|                   | 4-Bromofluorobenzene                                                                             | 95                  | _                    | 1       |
|                   | Dibromofluoromethane                                                                             | 107                 | -                    |         |
|                   | Toluene-d8                                                                                       | 91                  | -                    |         |
| 4 \$BNAS          | GC/MS BNA Surrogates                                                                             | 71                  | -                    | 3       |
|                   | 2,4,6-Tribromophenol                                                                             | 50                  | _                    | 3       |
|                   | 2-Fluorobiphenyl                                                                                 | 69                  | -                    |         |
|                   | 2-Fluorophenol                                                                                   | 60                  | -                    |         |
|                   | Nitrobenzene-d5                                                                                  | 74                  | -                    |         |
|                   | Phenol-d5                                                                                        | 65                  | -                    |         |
|                   | p-Terphenyl-d14                                                                                  | 61                  | -                    |         |
| AMPLE ID: }       | WPW-MW12A-S00                                                                                    |                     | SAMPLE NO:           | H446085 |
|                   | GC/MS Volatiles Surrogates (8260)                                                                |                     |                      |         |
| 2 \$VOA25         |                                                                                                  |                     |                      | 1       |
| 2 <b>\$VOA2</b> S |                                                                                                  |                     |                      |         |
| 2 \$VOA2S         | 4-Bromofluorobenzene Dibromofluoromethane                                                        | 98<br>109           | -                    |         |

April 07, 1997
Report No.: 00060264
Section C Page 6

| LN CODE    | SURRO                                                                      | RATE COMPOUND | PERCENT<br>RECOVERY | ACCEPTANCE<br>LIMITS | REF L    |
|------------|----------------------------------------------------------------------------|---------------|---------------------|----------------------|----------|
| AMPLE ID:  | HWPW-MW12A-S00                                                             |               |                     | SAMPLE NO:           | W444085  |
|            |                                                                            |               |                     | SAMPLE NO.           | H440005  |
| 4 \$BNAS   | GC/MS BNA Surrogates                                                       |               |                     |                      | . 3      |
|            | 2,4,6-Tribromophenol                                                       |               | 34                  | -                    |          |
|            | 2-Fluorobiphenyl                                                           |               | 46                  | -                    |          |
|            | 2-Fluorophenol                                                             |               | 30                  | -                    |          |
|            | Nitrobenzene-d5                                                            |               | 36                  | -                    |          |
|            | Phenol-d5                                                                  |               | 36                  | •                    |          |
|            | p-Terphenyl-d14                                                            |               | 50                  | -                    |          |
| AMPLE ID:  | HWPW-MW12A-S020                                                            |               |                     | SAMPLE NO:           | H446086  |
| 2 \$VOA2S  | GC/MS Volatiles Surrogates                                                 | (8260)        |                     |                      | 1        |
|            | 4-Bromofluorobenzene                                                       |               | 95                  |                      | '        |
|            | Dibromofluoromethane                                                       |               | 101                 |                      |          |
|            | Toluene-d8                                                                 |               | 92                  | _                    |          |
| 4 \$BNAS   | GC/MS BNA Surrogates                                                       |               | ,,,                 |                      | 3        |
|            | 2,4,6-Tribromophenol                                                       |               | 35                  |                      | J        |
|            | 2-Fluorobiphenyl                                                           |               | 40                  | _                    |          |
|            | 2-Fluorophenol                                                             |               | 28                  | -                    |          |
|            | Nitrobenzene-d5                                                            |               | 35                  | _                    |          |
|            | Phenol-d5                                                                  |               | 36                  | _                    |          |
|            | p-Terphenyl-d14                                                            |               | 48                  | •                    |          |
| MPLE ID: i | HWPW-MW12A-S025                                                            |               |                     | SAMPLE NO:           | H446087  |
|            |                                                                            |               |                     | SAMPLE NO.           | 11440007 |
| 2 \$VOA2S  | GC/MS Volatiles Surrogates                                                 | (8260)        |                     |                      | 1        |
|            | 4-Bromofluorobenzene                                                       |               | 97                  | -                    | •        |
|            | Dibromofluoromethane                                                       |               | 111                 | -                    |          |
|            | Toluene-d8                                                                 |               | 94                  | -                    |          |
| 4 \$BNAS   | GC/MS BNA Surrogates                                                       |               | ,-,                 |                      | 3        |
|            | 2,4,6-Tribromophenol                                                       |               | 50                  | -                    | ,        |
|            | 2-fluorobiphenyl                                                           |               | 30                  |                      |          |
|            | 2-Fluorophenol                                                             |               | 55                  |                      |          |
|            | Nitrobenzene-d5                                                            |               | 68                  |                      |          |
|            | Phenol-d5                                                                  |               | 60                  | _                    |          |
|            | p-Terphenyl-d14                                                            |               | 55                  |                      |          |
|            | WPW-MW12B-S030                                                             |               |                     | SAMPLE NO:           | H446088  |
| MPLE ID: H |                                                                            |               |                     |                      |          |
|            | GC/MS Volatiles Surrogates                                                 | 8260)         |                     |                      |          |
|            | GC/MS Volatiles Surrogates                                                 | 8260)         | 404                 |                      | 1        |
|            | GC/MS Volatiles Surrogates<br>4-Bromofluorobenzene<br>Dibromofluoromethane | 8260)         | 101<br>111          | -                    | 1        |

April 07, 1997 Report No.: 00060264 Section C Page 7

### SURROGATE STANDARD RECOVERY

| LN    | TEST<br>CODE | SURROGATE COMPOUND                | PERCENT<br>RECOVERY | ACCEPTANCE<br>LIMITS | REF LN  |
|-------|--------------|-----------------------------------|---------------------|----------------------|---------|
|       |              |                                   |                     |                      |         |
|       |              |                                   |                     |                      |         |
| SAMPI | LE ID:       | HWPW-MW12B-S030                   |                     | SAMPLE NO:           | H446088 |
| 4     | \$BNAS       | GC/MS BNA Surrogates              |                     |                      | 3       |
|       |              | 2,4,6-Tribromophenol              | 34                  |                      | 3       |
|       |              | 2-Fluorobiphenyl                  | 39                  |                      |         |
|       |              | 2-Fluorophenol                    | 32                  |                      |         |
|       |              | Nitrobenzene-d5                   | 35                  |                      |         |
|       |              | Phenol-d5                         | 35                  |                      |         |
|       |              | p-Terphenyl-d14                   | 42                  |                      |         |
| SAMPL | LE ID:       | HWPW-MW12B-S040                   |                     | SAMPLE NO:           | H446089 |
| 2     | \$VOA2S      | GC/MS Volatiles Surrogates (8260) |                     |                      | 1       |
|       |              | 4-Bromofluorobenzene              | 100                 |                      | •       |
|       |              | Dibromofluoromethane              | 104                 |                      |         |
|       |              | Toluene-d8                        | 94                  |                      |         |
| 4     | \$BNAS       | GC/MS BNA Surrogates              | , ,                 |                      | 3       |
|       |              | 2,4,6-Tribromophenol              | 29                  |                      | 3       |
|       |              | 2-Fluorobiphenyl                  | 39                  |                      |         |
|       |              | 2-Fluorophenol                    | 32                  |                      |         |
|       |              | Nitrobenzene-d5                   | 40                  | -                    |         |
|       |              | Phenol-d5                         | 37                  |                      |         |
|       |              | p-Terphenyl-d14                   | 38                  |                      |         |
|       |              |                                   | 20                  |                      |         |

April 07, 1997
Report No.: 00060264
Section D Page 1

### LABORATORY CONTROL SAMPLE RECOVERY

| TEST<br>CODE | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LCS %<br>RECOVERY | ACCEPTANCE<br>LIMITS |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                      |
| BATCH NO:    | 71950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | SAMPLE NO: H383013   |
| OVTCC        | 92404 TOL Volgation in O. II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | ,                    |
| 041632       | 8260A TCL Volatiles in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                      |
|              | 1,1-Dichloroethene<br>Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99                | •                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101               | •                    |
|              | Chlorobenzene<br>Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 103               | •                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101               | -                    |
|              | Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>87</b>         | •                    |
| BATCH NO: 7  | 72004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | SAMPLE NO: H383087   |
| OVTCS2       | 8260A TCL Volatiles in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                      |
| 21.234       | 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22                |                      |
|              | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98                | -                    |
|              | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 105               | •                    |
|              | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 105               | -                    |
|              | Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108               | -                    |
| •            | Truitoroethere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 84                | •                    |
| BATCH NO: 7  | 72083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | SAMPLE NO: H383201   |
| OVTCS2       | 8260A TCL Volatiles in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                      |
|              | 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99                | 20                   |
|              | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 104               | -                    |
|              | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102               | -                    |
|              | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | •                    |
|              | Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105               | -                    |
|              | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 82                | •                    |
| BATCH NO: 7  | 2149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | SAMPLE NO: H383310   |
| OSVTCS       | TCL - Semi-volatile Extractables in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                      |
|              | 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                      |
|              | 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54                | . <del>.</del>       |
|              | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53                | -                    |
|              | 2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73                | -                    |
|              | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55                | -                    |
|              | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50                | -                    |
|              | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59.               | -                    |
|              | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65                | -                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55.               | -                    |
|              | Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76                | -                    |
|              | n-Nitrosodi-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55                | -                    |
|              | p-Chloro-m-cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62                | -                    |

Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997
Report No.: 00060264
Section D Page 2

### LABORATORY CONTROL SAMPLE RECOVERY

|              | ,                           | *************************************** |                      |
|--------------|-----------------------------|-----------------------------------------|----------------------|
| TEST<br>CODE | DETERMINATION               | LCS %<br>RECOVERY                       | ACCEPTANCE<br>LIMITS |
| BATCH NO: 7  | 72161                       |                                         | SAMPLE NO: H383328   |
| OVTCS2       | 8260A TCL Volatiles in Soil |                                         |                      |
|              | 1,1-Dichloroethane          | 100                                     | - ·                  |
|              | Benzene                     | 104                                     | , <b>-</b>           |
|              | Chlorobenzene               | 102                                     | •                    |
|              | Toluene                     | 104                                     | -                    |
|              | Trichloroethene             | 86                                      | -                    |

Tel: 713-488-1810 Fax: 713-488-4661

April 07, 1997
Report No.: 00060264
Section E Page 1

### METHOD BLANK DATA

| TEST   | DETERMINATION                       | DECLU T | LIMET             |
|--------|-------------------------------------|---------|-------------------|
|        | DETERMINATION                       | RESULT  | UNIT              |
| CH NO: | 71950                               |         | SAMPLE NO: H38301 |
| OVTCS2 | 8260A TCL Volatiles in Soil         |         |                   |
| 011002 | 1,1,1,2-Tetrachloroethane           | ·       |                   |
|        | 1,1,1-Trichloroethane               | < 5     | ug/kg             |
|        | 1,1,2,2-Tetrachloroethane           | < 5     | ug/kg             |
|        | 1,1,2-Trichloroethane               | < 5     | ug/kg             |
|        | 1,1-Dichloroethane                  | < 5     | ug/kg             |
|        | 1,1-Dichloroethene                  | < 5     | ug/kg             |
|        | 1,1-Dichloropropene                 | < 5     | ug/kg             |
|        | 1,2,3-Trichlorobenzene              | < 5     | ug/kg             |
|        | 1,2,3-Trichloropropane              | < 5     | ug/kg             |
|        | 1,2,4-Trichlorobenzene              | < 5     | ug/kg             |
|        | 1,2,4-Trimethylbenzene              | < 5     | ug/kg             |
|        | 1,2-Dibromo-3-chloropropane         | < 5     | ug/kg             |
|        | 1,2-Dibromoethane                   | . < 5   | ug/kg             |
|        | 1,2-Dichlorobenzene                 | < 5     | ug/kg             |
|        | 1,2-Dichloroethane                  | < 5     | ug/kg             |
|        | 1,2-Dichloropropane                 | < 5     | ug/kg             |
|        | 1,3,5-Trimethylbenzene              | < 5     | ug/kg             |
|        | 1,3-Dichlorobenzene                 | < 5     | ug/kg             |
|        | 1,3-Dichloropropane                 | < 5     | ug/kg             |
|        | 1,4-Dichlorobenzene                 | < 5     | ug/kg             |
|        |                                     | < 5     | ug/kg             |
|        | 2,2-Dichloropropane 2-Chlorotoluene | < 5     | ug/kg             |
|        |                                     | < 5     | ug/kg             |
|        | 4-Chlorotoluene                     | < 5     | ug/kg             |
|        | Acetone                             | < 10    | ug/kg             |
|        | Benzene                             | < 5     | ug/kg             |
|        | Bromobenzene                        | < 5     | ug/kg             |
|        | Bromochloromethane                  | < 5     | ug/kg             |
|        | Bromodichloromethane                | < 5     | ug/kg             |
|        | Bromoform                           | < 5     | ug/kg             |
|        | Bromomethane                        | < 10    | ug/kg             |
|        | Carbon tetrachloride                | < 5     | ug/kg             |
|        | Chlorobenzene                       | < 5     | ug/kg             |
|        | Chlorodibromomethane                | < 5     | ug/kg             |
|        | Chloroethane                        | < 10    | ug/kg             |
|        | Chloroform                          | < 5     | ug/kg             |
|        | Chloromethane                       | < 10    | ug/kg             |
|        | Dibromomethane                      | < 5     | ug/kg             |
|        | Dichlorodifluoromethane             | < 5     | ug/kg             |
|        | Ethylbenzene                        | < 5     | ug/kg             |
|        | Hexachlorobutadiene                 | < 5     | ug/kg             |
|        | Isopropylbenzene                    | < 5     | ug/kg             |

April 07, 1997 Report No.: 00060264 Section E Page 2

### METHOD BLANK DATA

| TEST       |                             |        |                               |                                         |
|------------|-----------------------------|--------|-------------------------------|-----------------------------------------|
| CODE       | DETERMINATION               | RESULT | UNIT                          |                                         |
|            |                             |        |                               | • • • • • • • • • • • • • • • • • • • • |
|            | Methylene chloride          | < 5    | ug/kg                         |                                         |
|            | Naphthalene                 | < 10   | ug/kg                         |                                         |
|            | Styrene                     | < 5    | ug/kg                         |                                         |
|            | Tetrachloroethene           | < 5    | ug/kg                         |                                         |
|            | Toluene                     | < 5    | ug/kg                         |                                         |
|            | Trichloroethene             | < 5    | ug/kg                         |                                         |
|            | Trichlorofluoromethane      | < 5    | ug/kg                         |                                         |
|            | Vinyl chloride              | < 10   | _                             |                                         |
|            | Xylenes (total)             | < 5    | ug/kg                         |                                         |
|            | cis-1,2-Dichloroethene      | < 5    | ug/kg                         |                                         |
|            | m-Xylene                    | < 5    | ug/kg                         |                                         |
|            | n-Butyl benzene             | < 5    | ug/kg                         |                                         |
|            | n-Propylbenzene             | < 5    | ug/kg                         |                                         |
|            | o-Xylene                    | < 5    | ug/kg                         |                                         |
|            | p-Isopropyltoluene          | < 5    | ug/kg                         |                                         |
|            | p-Xylene                    |        | ug/kg                         |                                         |
|            | sec-Butyl benzene           | < 5    | ug/kg                         |                                         |
|            | tert-Butylbenzene           | < 5    | ug/kg                         |                                         |
|            | trans-1,2-Dichloroethene    | < 5    | ug/kg                         |                                         |
| TCU NO.    | 7700/                       | < 5    | ug/kg                         |                                         |
| ATCH NO: 7 | 72004                       | SAI    | MPLE NO:                      | H383088                                 |
| OVTCS2     | 8260A TCL Volatiles in Soil |        |                               |                                         |
|            | 1,2-Dichloroethane          | -      | 1007                          |                                         |
|            | Benzene                     | < 5    | ug/kg                         |                                         |
|            | Chlorobenzene               | < 5    | ug/kg                         |                                         |
|            | Ethylbenzene                | < 5    | ug/kg                         |                                         |
|            | Methylene chloride          | < 5    | ug/kg                         |                                         |
|            | Toluene                     | < 5    | ug/kg                         |                                         |
|            | Xylenes (total)             | < 5    | ug/kg                         |                                         |
|            |                             | < 5    | ug/kg                         |                                         |
| ATCH NO: 7 | 2083                        | SAM    | IPLE NO:                      | H383202                                 |
| OVTCS2     | 8260A TCL Volatiles in Soil |        | 3. 30000 - 0.00 <del>-0</del> |                                         |
|            | 1,2-Dichloroethane          |        |                               |                                         |
|            | Benzene                     |        | ug/kg                         |                                         |
|            | Chlorobenzene               | < 5    | ug/kg                         |                                         |
|            | Ethylbenzene                | < 5    | ug/kg                         |                                         |
|            | Methylene chloride          | < 5    | ug/kg                         |                                         |
|            | Toluene                     | < 5    | ug/kg                         |                                         |
|            | Xylenes (total)             | < 5    | ug/kg                         |                                         |
|            |                             | < 5    | ug/kg                         |                                         |
|            |                             |        |                               |                                         |

April 07, 1997
Report No.: 00060264
Section E Page 3

### METHOD BLANK DATA

|         |       |                                          |         | ••••••     |         |
|---------|-------|------------------------------------------|---------|------------|---------|
|         | TEST  |                                          |         |            |         |
|         | CODE  | DETERMINATION                            | RESULT  | UNIT       |         |
|         |       |                                          |         |            |         |
| BATCH ! | NO: 7 | 2149                                     |         | SAMPLE NO: | H383311 |
|         |       |                                          |         |            |         |
| 09      | SVTCS | TCL - Semi-volatile Extractables in Soil |         |            |         |
|         |       | 1,2-Diphenylhydrazine                    | < 330   | ug/kg      |         |
|         |       | 2,4-Dimethylphenol                       | < 330   | ug/kg      |         |
|         |       | 2,4-Dinitrotoluene                       | < 330   | ug/kg      |         |
|         |       | 2,6-Dinitrotoluene                       | < 330   | ug/kg      |         |
|         |       | 2-Chloronaphthalene                      | < 330   | ug/kg      |         |
|         |       | 2-Methylnaphthalene                      | < 330   | ug/kg      |         |
|         |       | 4,6-Dinitro-o-cresol                     | < 1,600 | ug/kg      |         |
|         |       | 4-Nitrophenol                            | < 1,600 | ug/kg      |         |
|         |       | Acenaphthene                             | < 330   | ug/kg      |         |
|         |       | Acenaphthylene                           | < 330   | ug/kg      |         |
|         |       | Anthracene                               | < 330   | ug/kg      |         |
|         |       | Benzo(a)anthracene                       | < 330   | ug/kg      |         |
| }.      |       | Benzo(a)pyrene                           | < 330   | ug/kg      |         |
|         |       | Chrysene                                 | < 330   | ug/kg      |         |
|         |       | Di-n-butyl phthalate                     | < 330   | ug/kg      |         |
|         |       | Dibenzofuran                             | < 330   | ug/kg      |         |
|         |       | Fluoranthene                             | < 330   | ug/kg      |         |
|         |       | Fluorene                                 | < 330   | ug/kg      |         |
|         |       | N-Nitrosodiphenylamine                   | < 330   | ug/kg      |         |
|         |       | Naph tha lene                            | < 330   | ug/kg      |         |
|         |       | Nitrobenzene                             | < 330   | ug/kg      |         |
|         |       | Pentachlorophenol                        | < 1,600 | ug/kg      |         |
|         |       | Phenanthrene                             | < 330   | ug/kg      |         |
|         |       | Phenol                                   | < 330   | ug/kg      |         |
|         |       | Pyrene                                   | < 330   | ug/kg      |         |
|         |       | bis(2-Chloroethoxy)methane               | < 330   | ug/kg      |         |
|         |       | bis(2-Ethylhexyl)phthalate               | < 330   | ug/kg      |         |
| BATCH N | 10: 7 | 2161                                     |         | SAMPLE NO: | н383329 |
| OV      | /TC92 | 8260A TCL Volatiles in Soil              |         |            |         |
| 34      | , 002 | 1,2-Dichloroethane                       | < 5     |            |         |
|         |       | Benzene                                  |         | ug/kg      |         |
|         |       | Chlorobenzene                            | < 5     | ug/kg      |         |
|         |       | Ethylbenzene                             | < 5     | ug/kg      |         |
|         |       |                                          | < 5     | ug/kg      |         |
|         |       | Methylene chloride<br>Toluene            | < 5     | ug/kg      |         |
|         |       |                                          | < 5     | ug/kg      |         |
|         |       | Xylenes (total)                          | < 5     | ug/kg      |         |

April 07, 1997 Report No.: 00060264 Section H Page 1

### MATRIX SPIKE AND MATRIX SPIKE DUPLICATE DATA

| TEST                             | DETERMINATION                                                                                                                                                                                                                                            | MS<br>RESULT                                         | MSD<br>RESULT                                                                          | UNITS                                                                         | RPD                                                                                  | MS PCT<br>RCVRY                                          | MSD PCT<br>RCVRY                                         |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| BATCH NO: 7                      | 72083                                                                                                                                                                                                                                                    |                                                      |                                                                                        |                                                                               | SAM                                                                                  | PLE NO: H446                                             | 089                                                      |
| OVTCS2                           | 8260A TCL Volatiles in Soil<br>1,1-Dichloroethene<br>Benzene<br>Chlorobenzene<br>Toluene<br>Trichloroethene                                                                                                                                              | 42.9<br>43.4<br>41.1<br>44.3<br>38.7                 | 43.9<br>43.0<br>41.0<br>43.5<br>38.3                                                   | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                     | 2.37<br>1.02<br>0.12<br>1.73<br>1.06                                                 | 107<br>108<br>103<br>111<br>97                           | 110<br>107<br>102<br>109<br>96                           |
| 10.5 GARAGERIA (10.715/10.4%) 4- | 72149                                                                                                                                                                                                                                                    |                                                      |                                                                                        |                                                                               | SAM                                                                                  | PLE NO: H4460                                            | 083                                                      |
| OSVTCS                           | TCL - Semi-volatile Extractables 1,2,4-Trichlorobenzene 1,4-Dichlorobenzene 2,4-Dinitrotoluene 2-Chlorophenol 4-Nitrophenol Acenaphthene N-Nitrosodi-n-propylamine Pentachlorophenol Phenol Pyrene p-Chloro-m-cresol * Recovery outside of QC acceptance | 38.0* 47.4 46.1 67.6 67.1 43.8* 33.2 70.9 70.7 50.4* | 43.6<br>45.3<br>48.0<br>60.1<br>64.0<br>42.4*<br>29.2<br>66.9<br>73.4<br>46.6*<br>91.6 | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg | 13.7<br>4.52<br>4.03<br>11.8<br>4.72<br>3.25<br>12.8<br>5.81<br>3.74<br>7.84<br>4.92 | 38<br>47<br>46<br>34<br>34<br>44<br>33<br>36<br>36<br>50 | 44<br>45<br>48<br>30<br>32<br>42<br>29<br>34<br>37<br>47 |

|                                                       | <b>PROJECT NAME</b>             | SITELOCA                       | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                             |               |                                           |
|-------------------------------------------------------|---------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------|-------------------------------------------|
| [erronext                                             | Houston                         | 4910 Liberty Rd                | ut Rel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAIN OF CUSTODY RECORD                     | ODY RECORD    | 2-27-67-1                                 |
|                                                       | Wood                            | /touston                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               | C.O.C. #                                  |
| 303/914-1700                                          | Works                           | PROJECT#102069.07              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | //// Oct                                    | SINI          | SHIP TO:                                  |
| SAMPLERS NAME & SIGNATURE BILL GOLDSBY / Bill Goldsby |                                 | CONTACT & PHONE (713)460. 4720 | IONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HIMA                                        | Z V V V Z     | ו ארב אייארו אייאר                        |
| }                                                     | - AMO                           | SAMPLE                         | # OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0000                                        | LSN3          | LAB. CONTACT & PHONE E. Somméco 4/28-1810 |
|                                                       | 00                              | LUCATION                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \dom\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ | YES NO YES NO | *REMARKS:                                 |
| HWPW.MW13.500                                         | 1/29/10:00                      | MW13                           | × +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             | ×             | 1-10-10-10-1                              |
| HW PW. MW13.5019                                      | 10:32                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               | (C)                                       |
| 14WPW-MW13.5021                                       | 10:34                           | >                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               | (3)                                       |
| HWPW-MW15.500                                         | 13:30                           | MW15                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               | 70                                        |
| 14WPW-MW15-5020                                       | 13:45                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               | 515                                       |
| - HUPW-MW15-5025                                      | 13:47                           | $\rightarrow$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               | 900                                       |
| HWPW-MW17.5025                                        | 16:22                           | MWIT                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               | May have O)                               |
| HWPW-MMIT-SOMO                                        | 04:71                           | <i>&gt;</i>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               | 8(.0)                                     |
| 14WPW-MW18-500                                        | 12497 10:10                     | MWIB                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               | 00                                        |
| KNUPW. MW18-5025                                      | 26:01                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               |                                           |
| HWPW-MW18-5030                                        | 10:50                           | ->                             | <i>J</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |               | ()<br>()                                  |
| 14WPW-MW16.500                                        | 13:55                           | MW16                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               | (SO)                                      |
| HWPW MWIG. SO 250                                     | 14:15                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               | C83                                       |
| HWPW-MW/B-S625                                        | V 14:20 V                       | <b>&gt;</b>                    | <i>\ ∧</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |               | う<br>か<br>り                               |
| RELINGUISHED BY (Signature)                           | 727/97 17:20 ( LAC.             | har                            | RELEA SED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DATE & TIME RECEIVED BY                     | *REMARKS:     | S:                                        |
|                                                       | DATE & TIME RECEIVED BY         |                                | RELEASED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DATE & TIME RECEIVED BY                     |               |                                           |
| RELINQUISHED BY (Signature)                           | DATE & TIME RECEIVED AT LAB. BY |                                | METHOD OF SHIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |               |                                           |
|                                                       |                                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               |                                           |

| Terranext                                               | HOUSTON WOOD                    | SITELOCATIC<br>4910 CIBEETY<br>Haustal, TX | z z z       | CHAIN       | CHAIN OF CUSTODY RECORD | DY RECORD         | 1                                                                                                                                   |
|---------------------------------------------------------|---------------------------------|--------------------------------------------|-------------|-------------|-------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 303/914-1700                                            |                                 | PROJECT # 4402069.07                       |             | 00/55       |                         | SAN               | SHIP TO:                                                                                                                            |
| SAMPLERS NAME & SIGNATURE BILL COUDSBY   Bill (Illabry) | alin                            | CONTACT & PHONE (713)460. 4780             | VE VE       | CHIMA       |                         | ZS 100            | / NOR CASH CALLORE                                                                                                                  |
|                                                         | DATE TIME COMP.                 | SAMPLE                                     | )F<br>INERS | 01/00/00    |                         | VES NO YES NO YES | LAB. CONTACT & PHONE L. SANNELS 488-1810 **RENARKS:                                                                                 |
| HWPW-MW12A. SOO                                         | 1/2/2 08:08                     | MWIZA                                      | 7           | X           |                         | X                 | FILIUPUSS                                                                                                                           |
| HWPW - MWIZA - SOZO                                     | 08:30                           |                                            |             | ,           |                         |                   | 300                                                                                                                                 |
| HWPW.MWIZA . 5025                                       | <i>\$</i> 5:80                  | >                                          |             |             |                         |                   | ( <del>(</del> <del>(</del> <del>(</del> <del>(</del> <del>(</del> <del>(</del> <del>(</del> <del>(</del> <del>(</del> <del>(</del> |
| HWPW. MWIZB.5030                                        | 52:01                           | MWIZB                                      |             |             |                         |                   | 920                                                                                                                                 |
| HWM. MW 1213-5040                                       | V 10:53 V                       | >                                          | <u>→</u>    | <u> </u>    |                         |                   | 520                                                                                                                                 |
|                                                         | 2                               |                                            |             |             | lgst web                | 9                 |                                                                                                                                     |
| 55                                                      |                                 |                                            |             |             |                         |                   | -                                                                                                                                   |
|                                                         |                                 |                                            |             |             |                         |                   |                                                                                                                                     |
| •                                                       |                                 |                                            |             |             |                         |                   |                                                                                                                                     |
| -                                                       |                                 |                                            |             |             |                         |                   |                                                                                                                                     |
|                                                         |                                 |                                            |             |             |                         |                   |                                                                                                                                     |
|                                                         |                                 |                                            |             |             |                         |                   |                                                                                                                                     |
|                                                         |                                 |                                            |             |             |                         | ~                 |                                                                                                                                     |
|                                                         |                                 |                                            |             |             |                         |                   |                                                                                                                                     |
| RELINOUISHED BY (Signature)                             | 2279-4:2 (1)                    | Mar                                        | RELEASED BY | DATE & TIME | RECEIVED BY             | *REMARKS:         | S:                                                                                                                                  |
| TELIMOUISHED BY (Signature)                             | PATE & TIME RECEIVED BY         | X                                          | RELEASED BY | DATE & TIME | RECEIVED BY             | T :               |                                                                                                                                     |
| RELINDUISHED BY IS                                      | DATE & TIME RECEIVED AT LAB. BY | ATLAB. BY METHO                            | HO HIPMENT  | NT          |                         | <del></del>       |                                                                                                                                     |



> Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 1

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW14-S017

SAMPLE NO: H446213

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082
PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 27-FEB-97 1428

DATE RECEIVED: 04-MAR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          |            |         | ••••• |
|----|--------|------------------------------------------|------------|---------|-------|
| LN | CODE   | DETERMINATION                            | DILUTION   |         |       |
|    |        | DETERMINATION                            | FACTOR     | RESULT  | UNITS |
|    |        |                                          | ********** |         |       |
| 1  | OVTCS2 | 11 0016                                  |            |         |       |
|    |        | 1,2-Dichloroethane                       |            | _       |       |
|    |        | Benzene                                  | 1          | < 5     | ug/kg |
|    |        | Chlorobenzene                            | 1          | < 5     | ug/kg |
|    |        | Ethylbenzene                             | 1          | < 5     | ug/kg |
|    |        | Methylene chloride                       | 1          | < 5     | ug/kg |
|    |        | Toluene                                  | 1          | < 5     | -0,   |
|    |        | Xylenes (total)                          | 1          | < 5     | 0     |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil | 1          | < 5     | ug/kg |
|    |        | 1,2-Diphenylhydrazine                    | -          |         |       |
|    |        | 2,4-Dimethylphenol                       | 5          | < 1,600 | ug/kg |
|    |        | 2,4-Dinitrotoluene                       | 5          | < 1,600 | ug/kg |
|    |        | 2,6-Dinitrotoluene                       | 5          | < 1,600 | ug/kg |
|    |        | 2-Chloronaphthalene                      | 5          | < 1,600 | ug/kg |
|    |        | 2-Methylnaphthalene                      | 5<br>5     | < 1,600 | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                     | 5          | 16,000  | ug/kg |
|    |        | 4-Nitrophenol                            | 5          | < 8,200 | ug/kg |
|    |        | Acenaphthene                             | 5          | < 8,200 | ug/kg |
|    |        | Acenaphthylene                           | 5          | 9,900   | ug/kg |
|    |        | Anthracene                               | . 5        | < 1,600 | ug/kg |
|    |        | Benzo(a)anthracene                       | 5          | < 1,600 | ug/kg |
|    |        | Benzo(a)pyrene                           | 5          | < 1,600 | ug/kg |
|    |        | Chrysene                                 | 5          | < 1,600 | ug/kg |
|    |        | Di-n-butyl phthalate                     | 5          | < 1,600 | ug/kg |
|    |        | Dibenzofuran                             | 5          | < 1,600 | ug/kg |
|    |        | Fluoranthene                             | 5          | 7,800   | ug/kg |
|    |        | Fluorene                                 | 5          | < 1,600 | ug/kg |
|    |        | N-Nitrosodiphenylamine                   | 5          |         | ug/kg |
|    |        | Naphthalene                              | 5          |         | ug/kg |
|    |        | Nitrobenzene                             | 5          |         | ug/kg |
|    |        | Pentachlorophenol                        | 5          |         | ug/kg |
|    |        | Phenanthrene                             | 5          |         | ug/kg |
|    |        | Phenol                                   | 5          |         | ug/kg |
|    |        | Pyrene                                   | 5          | < 1,600 |       |
|    |        | bis(2-Chloroethoxy)methane               | 5          |         | ug/kg |
|    |        |                                          | 5          | < 1,600 | ug/kg |

> Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 2

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-MW14-S017

SAMPLE NO: H446213

TEST DILUTION
LN CODE DETERMINATION FACTOR RESULT UNITS

bis(2-Ethylhexyl)phthalate

5 < 1,600 ug/kg

COMMENTS: The detection limits reported for semi-volatiles were elevated due to the dilution required because of the high concentration of target analytes.

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 3

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW14-S035

SAMPLE MATRIX: SOIL

SAMPLE NO: H446214

LIMS CLIENT: 0717 0007 PACE PROJECT: H44082 PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 27-FEB-97 1500

DATE RECEIVED: 04-MAR-97 PROJECT MANAGER: Elessa Sommers

| LN | TEST   | DETERMINATION                            | DILUTION<br>FACTOR | RESULT  | UNITS   |
|----|--------|------------------------------------------|--------------------|---------|---------|
|    |        |                                          |                    |         |         |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |                    |         |         |
|    |        | 1,2-Dichloroethane                       | 1                  | < 5     | ug/kg   |
|    |        | Benzene                                  | 1                  | < 5     | ug/kg   |
|    |        | Chlorobenzene                            | 1                  | < 5     | ug/kg   |
|    |        | Ethylbenzene                             | 1                  | < 5     | ug/kg   |
|    |        | Methylene chloride                       | 1                  | < 5     | ug/kg   |
|    |        | Toluene                                  | - 1                | < 5     | ug/kg   |
| -  |        | Xylenes (total)                          | 1                  |         | ug/kg   |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |                    |         | -3, 113 |
|    |        | 1,2-Diphenylhydrazine                    | 1                  | < 330   | ug/kg   |
|    |        | 2,4-Dimethylphenol                       | 1                  | < 330   | ug/kg   |
|    |        | 2,4-Dinitrotoluene                       | 1                  | < 330   | ug/kg   |
|    |        | 2,6-Dinitrotoluene                       | 1                  | < 330   | ug/kg   |
|    |        | 2-Chloronaphthalene                      | 1                  | < 330   | ug/kg   |
|    |        | 2-Methylnaphthalene                      | 1                  | < 330   | ug/kg   |
|    |        | 4,6-Dinitro-o-cresol                     | 1                  | < 1,600 | ug/kg   |
|    |        | 4-Nitrophenol                            | 1                  | < 1,600 | ug/kg   |
|    |        | Acenaphthene                             | 1                  | < 330   | ug/kg   |
|    |        | Acenaphthylene                           | 1                  | < 330   | ug/kg   |
|    |        | Anthracene                               | 1                  | < 330   | ug/kg   |
|    |        | Benzo(a)anthracene                       | 1                  | < 330   | ug/kg   |
|    |        | Benzo(a)pyrene                           | 1                  | < 330   | ug/kg   |
|    |        | Chrysene                                 | 1                  | < 330   | ug/kg   |
|    |        | Di-n-butyl phthalate                     | 1                  | < 330   | ug/kg   |
|    |        | Dibenzofuran                             | 1                  | < 330   | ug/kg   |
|    |        | Fluoranthene                             | 1                  | < 330   | ug/kg   |
|    |        | Fluorene                                 | 1                  | < 330   | ug/kg   |
|    |        | N-Nitrosodiphenylamine                   | 1                  | < 330   | ug/kg   |
|    |        | Naphthalene                              | 1                  | < 330   | ug/kg   |
|    |        | Nitrobenzene                             | 1                  | < 330   | ug/kg   |
|    |        | Pentachlorophenol                        | 1                  | < 1,600 | ug/kg   |
|    |        | Phenanthrene                             | 1                  | < 330   | ug/kg   |
|    |        | Phenol                                   | 1                  | < 330   | ug/kg   |
|    |        | Pyrene                                   | 1                  | < 330   | ug/kg   |
|    |        | bis(2-Chloroethoxy)methane               | 1                  |         | ug/kg   |

> Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 4

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-MW14-S035

SAMPLE NO: H446214

TEST DILUTION

LN CODE DETERMINATION FACTOR RESULT UNITS

bis(2-Ethylhexyl)phthalate

1 < 330 ug/kg

April 08, 1997 Report No.: 00060278 Section A Page 5

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-MW14-S040

SAMPLE NO: H446215

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 27-FEB-97 1510

DATE RECEIVED: 04-MAR-97

PROJECT MANAGER: Elessa Sommers

| LN | TEST   | DETERMINATION                            | DILUTION<br>FACTOR | RESULT  | UNITS          |
|----|--------|------------------------------------------|--------------------|---------|----------------|
|    |        |                                          |                    |         |                |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |                    |         |                |
| ·  | 011002 | 1,2-Dichloroethane                       | 1                  | < 5     | um flem        |
|    |        | Benzene                                  | 1                  | < 5     | ug/kg          |
|    |        | Chlorobenzene                            | 1                  | < 5     | ug/kg<br>ug/kg |
|    |        | Ethylbenzene                             | 1                  | < 5     | ug/kg<br>ug/kg |
|    |        | Methylene chloride                       | · i                | < 5     | ug/kg          |
|    |        | Toluene                                  | 1                  | < 5     | ug/kg          |
|    |        | Xylenes (total)                          | i                  | < 5     | ug/kg          |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil | *                  | ` ,     | ug/ kg         |
|    |        | 1,2-Diphenylhydrazine                    | 1                  | < 330   | ug/kg          |
|    |        | 2,4-Dimethylphenol                       | 1                  | < 330   | ug/kg          |
|    |        | 2,4-Dinitrotoluene                       | i                  | < 330   | ug/kg          |
|    |        | 2,6-Dinitrotoluene                       | i                  | < 330   | ug/kg          |
|    |        | 2-Chloronaphthalene                      | i                  | < 330   | ug/kg          |
|    |        | 2-Methylnaphthalene                      | i                  | < 330   | ug/kg          |
|    |        | 4,6-Dinitro-o-cresol                     | i                  | < 1,600 | ug/kg          |
|    |        | 4-Nitrophenol                            | 1                  | < 1,600 | ug/kg          |
|    |        | Acenaphthene                             | i                  | < 330   | ug/kg          |
|    |        | Acenaphthylene                           | i                  | < 330   | ug/kg          |
|    |        | Anthracene                               | i                  | < 330   | ug/kg          |
|    |        | Benzo(a)anthracene                       | 1                  | < 330   | ug/kg          |
|    |        | Benzo(a)pyrene                           | 1                  | < 330   | ug/kg          |
|    |        | Chrysene                                 | 1                  | < 330   | ug/kg          |
|    |        | Di-n-butyl phthalate                     | 1                  | < 330   | ug/kg          |
|    |        | Dibenzofuran                             | 1 .                | < 330   | ug/kg          |
|    |        | Fluoranthene                             | 1                  | < 330   | ug/kg          |
|    |        | Fluorene                                 | 1                  | < 330   | ug/kg          |
|    |        | N-Nitrosodiphenylamine                   | 1                  | < 330   | ug/kg          |
|    |        | Naphthalene                              | 1                  | < 330   | ug/kg          |
|    |        | Nitrobenzene                             | 1                  | < 330   | ug/kg          |
|    |        | Pentachlorophenol                        | 1                  | < 1,600 | ug/kg          |
|    |        | Phenanthrene                             | 1                  | < 330   | ug/kg          |
|    |        | Phenol                                   | 1                  | < 330   | ug/kg          |
|    |        | Pyrene                                   | 1                  | < 330   | ug/kg          |
|    |        | bis(2-Chloroethoxy)methane               | 1                  | < 330   | ug/kg          |
|    |        |                                          |                    |         | 3,             |

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 6

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-MW14-S040

SAMPLE NO: H446215

TEST DILUTION
LN CODE DETERMINATION FACTOR RESULT UNITS

bis(2-Ethylhexyl)phthalate

< 330 ug/kg

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 7

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-AOC4-SE-SOO

**SAMPLE NO: H446216** 

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 03-MAR-97 1110

DATE RECEIVED: 04-MAR-97

PROJECT MANAGER: Elessa Sommers

|    | • • • • • • • • • • • • • • • • • • • • |                                          |          |         |       |
|----|-----------------------------------------|------------------------------------------|----------|---------|-------|
|    | TEST                                    |                                          | DILUTION |         |       |
| LN | CODE                                    | DETERMINATION                            | FACTOR   | RESULT  | UNITS |
|    |                                         |                                          |          |         |       |
| 1  | OVTCS2                                  | 8260A TCL Volatiles in Soil              |          |         |       |
| •  | 041032                                  | 1,2-Dichloroethane                       |          |         |       |
|    |                                         | Benzene                                  | 1        | < 5     |       |
|    |                                         | Chlorobenzene                            | 1        | < 5     | ug/kg |
|    |                                         | Ethylbenzene                             | 1        | · < 5   | ug/kg |
|    |                                         | Methylene chloride                       | 1        | < 5     | ug/kg |
|    |                                         | Toluene                                  | 1        | < 5     | ug/kg |
|    |                                         | Xylenes (total)                          | 1        | < 5     | ug/kg |
| 3  | OSVTCS                                  | TCL - Semi-volatile Extractables in Soil | 1        | < 5     | ug/kg |
| •  | 001100                                  | 1,2-Diphenylhydrazine                    |          |         |       |
|    |                                         | 2,4-Dimethylphenol                       | 2        | < 660   | ug/kg |
|    |                                         | 2,4-Dinitrotoluene                       | 2        | < 660   | ug/kg |
|    |                                         | 2,6-Dinitrotoluene                       | 2        | < 660   | ug/kg |
|    |                                         | 2-Chloronaphthalene                      | 2        | < 660   | ug/kg |
|    |                                         | 2-Methylnaphthalene                      | . 2      | < 660   | ug/kg |
|    |                                         | 4,6-Dinitro-o-cresol                     | 2        | < 660   | ug/kg |
|    |                                         | 4-Nitrophenol                            | 2        | < 3,200 | ug/kg |
|    |                                         | Acenaphthene                             | 2        | < 3,200 | ug/kg |
|    |                                         | Acenaphthylene                           | 2        | < 660   | ug/kg |
|    |                                         | Anthracene                               | 2        | < 660   | ug/kg |
|    |                                         | Benzo(a)anthracene                       | 2        | < 660   | ug/kg |
|    |                                         |                                          | 2        | < 660   | ug/kg |
|    |                                         | Benzo(a)pyrene                           | 2        | < 660   | ug/kg |
|    |                                         | Chrysene                                 | 2        | 920     | ug/kg |
|    |                                         | Di-n-butyl phthalate Dibenzofuran        | 2        | < 660   | ug/kg |
|    |                                         | Fluoranthene                             | 2        | < 660   | ug/kg |
|    |                                         | Fluorene                                 | 2        | 2,800   | ug/kg |
|    |                                         | N-Nitrosodiphenylamine                   | 2        | < 660   | ug/kg |
|    |                                         | Naphthalene                              | 2        | < 660   | ug/kg |
|    |                                         | Nitrobenzene                             | 2        | < 660   | ug/kg |
|    |                                         | Pentachlorophenol                        | 2        | < 660   | ug/kg |
|    |                                         | Phenanthrene                             | 2        | < 3,200 | ug/kg |
|    |                                         | Phenol                                   | 2        | 1,100   | ug/kg |
|    |                                         | Pyrene                                   | 2        | < 660   | ug/kg |
|    |                                         | • 50.55                                  | 2        | 3,600   | ug/kg |
|    |                                         | bis(2-Chloroethoxy)methane               | 2        | < 660   | ug/kg |
|    |                                         |                                          |          |         |       |

### 53 REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

900 Gemini Avenue Houston, TX 77058

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 8

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-AOC4-SE-SOO

**SAMPLE NO: H446216** 

TEST DILUTION

LN CODE DETERMINATION FACTOR RESULT UNITS

bis(2-Ethylhexyl)phthalate

2 < 660 ug/kg

COMMENTS: The detection limits reported for semi-volatiles were elevated due to the dilution required because of the high concentration of target analytes.

April 08, 1997 Report No.: 00060278 Section A Page 9

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-AOC4-SW-SOO

SAMPLE NO: H446217

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 03-MAR-97 1130

DATE RECEIVED: 04-MAR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          |          |                |                |
|----|--------|------------------------------------------|----------|----------------|----------------|
| LN | CODE   | DETERMINATION                            | DILUTION |                |                |
|    |        | DETERMINATION                            | FACTOR   | RESULT         | UNITS          |
|    |        |                                          | ,        |                | ••••••         |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |          |                |                |
|    |        | 1,2-Dichloroethane                       | 1        | < 5            |                |
|    |        | Benzene                                  | 1        | < 5            | 0, 10          |
|    |        | Chlorobenzene                            | 1        | < 5            | ug/kg          |
|    |        | Ethylbenzene                             | 1        | < 5            | ug/kg          |
|    |        | Methylene chloride                       | 1        | < 5            |                |
|    |        | Toluene                                  | 1        | < 5            | 0. 0           |
|    |        | Xylenes (total)                          | i        | < 5            |                |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil | '        | ``             | ug/kg          |
|    |        | 1,2-Diphenylhydrazine                    | 1        | < 330          | rem flom       |
|    |        | 2,4-Dimethylphenol                       | 1        | < 330          | ug/kg          |
|    |        | 2,4-Dinitrotoluene                       | i .      | < 330          | ug/kg          |
|    |        | 2,6-Dinitrotoluene                       | 1        | < 330          | ug/kg          |
|    |        | 2-Chloronaphthalene                      | i        | < 330          | ug/kg          |
|    |        | 2-Methylnaphthalene                      | . 1      | < 330          | ug/kg          |
|    |        | 4,6-Dinitro-o-cresol                     | 1        |                | ug/kg          |
|    |        | 4-Nitrophenol                            | 1        | < 1,600        | ug/kg          |
|    |        | Acenaphthene                             | 1        | < 1,600        | ug/kg          |
|    |        | Acenaphthylene                           | , 1<br>1 | < 330          | ug/kg          |
|    |        | Anthracene                               | 1        | < 330          | ug/kg          |
|    |        | Benzo(a)anthracene                       | 1        | < 330          | ug/kg          |
|    |        | Benzo(a)pyrene                           | 1        | < 330<br>< 330 | ug/kg          |
|    |        | Chrysene                                 | 1        | < 330          | ug/kg          |
|    |        | Di-n-butyl phthalate                     | 1        | < 330          | ug/kg          |
|    |        | Dibenzofuran                             | 1        | < 330          | ug/kg<br>ug/kg |
|    |        | Fluoranthene                             | i        | < 330          |                |
|    |        | Fluorene                                 | 1        | < 330          | ug/kg          |
|    |        | N-Nitrosodiphenylamine                   | 1        | < 330          | ug/kg<br>ug/kg |
|    |        | Naphthalene                              | 1        | < 330          |                |
|    |        | Nitrobenzene                             | 1        | < 330          | ug/kg          |
|    |        | Pentachlorophenol                        | 1        |                | ug/kg          |
|    |        | Phenanthrene                             | 1        | < 1,600        | ug/kg          |
|    |        | Phenol                                   | 1        | < 330          | ug/kg          |
|    |        | Pyrene                                   | 1        | < 330<br>< 330 | ug/kg          |
|    |        | bis(2-Chloroethoxy)methane               | 1        |                | ug/kg          |
|    |        |                                          | 1        | < 330          | ug/kg          |

> Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 10

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-AOC4-SW-SOO

SAMPLE NO: H446217

TEST LN CODE

DETERMINATION

DILUTION

1

RESULT UNITS

bis(2-Ethylhexyl)phthalate

< 330 ug/kg

April 08, 1997
Report No.: 00060278
Section A Page 11

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-AOC4-NE-SOO

SAMPLE NO: H446218

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 03-MAR-97 1150

DATE RECEIVED: 04-MAR-97

PROJECT MANAGER: Elessa Sommers

| LN  | TEST    | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DILUTION<br>FACTOR | RESULT  | UNITS  |
|-----|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|--------|
|     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |         |        |
|     | 0.7500  | 20/04 704 14 14 14 14 14 14 14 14 14 14 14 14 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |         |        |
| 1   | OVTCS2  | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                    |         |        |
|     |         | 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 5     | ug/kg  |
|     |         | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                  | < 5     | ug/kg  |
|     |         | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                  | < 5     | ug/kg  |
|     |         | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  | < 5     | ug/kg  |
|     |         | Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 5     | ug/kg  |
|     |         | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                  | < 5     | ug/kg  |
| 7   | 001/200 | Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  | < 5     | ug/kg  |
| . 3 | OSVTCS  | TCL - Semi-volatile Extractables in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |         |        |
|     |         | 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                  | < 330   | ug/kg  |
|     |         | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 330   | ug/kg  |
|     |         | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 330   | ug/kg  |
|     |         | 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 330   | ug/kg  |
|     |         | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                  | < 330   | ug/kg  |
|     |         | 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                  | < 330   | ug/kg  |
|     |         | 4,6-Dinitro-o-cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                  | < 1,600 | ug/kg  |
|     |         | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                  | < 1,600 | ug/kg  |
|     |         | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  | < 330   | ug/kg  |
|     |         | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                  | < 330   | ug/kg  |
|     |         | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                  | < 330   | ug/kg  |
|     |         | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 330   | ug/kg  |
|     |         | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                  | < 330   | ug/kg  |
|     |         | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                  | < 330   | ug/kg  |
|     |         | Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                  | < 330   | ug/kg  |
|     |         | Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  | < 330   | ug/kg  |
|     |         | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  | < 330   | ug/kg  |
|     |         | Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                  | < 330   | ug/kg  |
|     |         | N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                  | < 330   | ug/kg  |
|     |         | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                  | < 330   | ug/kg  |
|     |         | Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  | < 330   | ug/kg  |
|     |         | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                  | < 1,600 | ug/kg  |
|     |         | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  | < 330   | ug/kg  |
|     |         | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                  |         | ug/kg  |
|     |         | Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                  |         | ug/kg  |
|     |         | bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                  |         | ug/kg  |
|     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  | . 220   | -3/ ~3 |

# REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 12

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-AOC4-NE-SOO

**SAMPLE NO: H446218** 

TEST

CODE

LN

DETERMINATION

RESULT UNITS

bis(2-Ethylhexyl)phthalate

< 330 ug/kg

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 13

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-AOC4-NW-SOO

SAMPLE NO: H446219

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 03-MAR-97 1209

DATE RECEIVED: 04-MAR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          |          |         |                |
|----|--------|------------------------------------------|----------|---------|----------------|
| LN | CODE   | DETERMINATION                            | DILUTION |         |                |
|    |        | DETERMINATION                            | FACTOR   | RESULT  | UNITS          |
|    |        |                                          |          |         |                |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |          |         |                |
|    |        | 1,2-Dichloroethane                       | 1        | < 5     | um /lem        |
|    |        | Benzene                                  | 1        | < 5     | ug/kg          |
|    |        | Chlorobenzene                            | 1        | < 5     | ug/kg<br>ug/kg |
|    |        | Ethylbenzene                             | 1        | < 5     |                |
|    |        | Methylene chloride                       | i        | < 5     |                |
|    |        | Toluene                                  | i        | < 5     | -0,            |
|    |        | Xylenes (total)                          | i        | < 5     | •              |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil | •        | ` `     | ug/kg          |
|    |        | 1,2-Diphenylhydrazine                    | 2        | < 660   | um /lem        |
|    |        | 2,4-Dimethylphenol                       | 2        | < 660   | ug/kg          |
|    |        | 2,4-Dinitrotoluene                       | 2        | < 660   | ug/kg          |
|    |        | 2,6-Dinitrotoluene                       | 2        | < 660   | ug/kg          |
|    |        | 2-Chloronaphthalene                      | 2        | < 660   | ug/kg<br>ug/kg |
|    |        | 2-Methylnaphthalene                      | 2        | < 660   |                |
|    |        | 4,6-Dinitro-o-cresol                     | 2        | < 3,300 | ug/kg<br>ug/kg |
|    |        | 4-Nitrophenol                            | 2        | < 3,300 |                |
|    |        | Acenaphthene                             | 2        | < 660   | ug/kg<br>ug/kg |
|    |        | Acenaphthylene                           | 2        | < 660   | ug/kg<br>ug/kg |
|    |        | Anthracene                               | 2        | < 660   |                |
|    |        | Benzo(a)anthracene                       | 2        | < 660   | ug/kg<br>ug/kg |
|    |        | Benzo(a)pyrene                           | 2        | < 660   | ug/kg          |
|    |        | Chrysene                                 | 2        | < 660   | ug/kg          |
|    |        | Di-n-butyl phthalate                     | 2        | < 660   | ug/kg<br>ug/kg |
|    |        | Dibenzofuran                             | 2        | < 660   | ug/kg          |
|    |        | Fluoranthene                             | 2        | < 660   | ug/kg          |
|    |        | Fluorene                                 | 2        | < 660   | ug/kg          |
|    |        | N-Nitrosodiphenylamine                   | 2        | < 660   | ug/kg          |
|    |        | Naphthalene                              | 2        | < 660   | ug/kg          |
|    |        | Nitrobenzene                             | 2        | < 660   | ug/kg          |
|    |        | Pentachlorophenol                        | 2        | < 3,300 | ug/kg          |
|    |        | Phenanthrene                             | 2        | < 660   | ug/kg          |
|    |        | Phenol                                   | 2        | < 660   | ug/kg          |
|    |        | Pyrene                                   | 2        | < 660   | ug/kg          |
|    |        | bis(2-Chloroethoxy)methane               | 2        | < 660   | ug/kg<br>ug/kg |
|    |        |                                          | -        | - 000   | ug/kg          |

# 69 **REPORT OF LABORATORY ANALYSIS**

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 14

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-AOC4-NW-SOO

SAMPLE NO: H446219

TEST DILUTION

LN CODE DETERMINATION FACTOR RESULT UNITS

bis(2-Ethylhexyl)phthalate

2 < 660 ug/kg

COMMENTS: The detection limits reported for semi-volatiles were elevated due to the

dilution required because of matrix interferences.

# 70 REPORT OF LABORATORY ANALYSIS

April 08, 1997 Report No.: 00060278 Section A Page 15

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437

P.O. NO: 03219

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-AOC7-S00

DATE SAMPLED: 03-MAR-97 1335 SAMPLE NO: H446220 DATE RECEIVED: -04-MAR-97 SAMPLE MATRIX: SOIL PROJECT MANAGER: Elessa Sommers

| LN        | TEST<br>CODE | DETERMINATION                            | DILUTION<br>FACTOR | RESULT    | UNITS |
|-----------|--------------|------------------------------------------|--------------------|-----------|-------|
| • • • • • |              |                                          |                    |           |       |
| 1         | OVTCS2       | 8260A TCL Volatiles in Soil              |                    |           |       |
|           |              | 1,2-Dichloroethane                       | 1                  | < 5       | ug/kg |
|           |              | Benzene                                  | 1                  | 7         | ug/kg |
|           |              | Chlorobenzene                            | 1                  | < 5       | ug/kg |
|           |              | Ethylbenzene                             | 1                  | 46        | ug/kg |
|           |              | Methylene chloride                       | 1                  | < 5       | ug/kg |
|           |              | Toluene                                  | 1                  | 11        | ug/kg |
|           |              | Xylenes (total)                          | 1                  | 82        | ug/kg |
| 3         | OSVTCS       | TCL - Semi-volatile Extractables in Soil |                    |           |       |
|           |              | 1,2-Diphenylhydrazine                    | 500                | < 165,000 | ug/kg |
|           |              | 2,4-Dimethylphenol                       | 500                | < 165,000 | ug/kg |
|           |              | 2,4-Dinitrotoluene                       | 500                | < 165,000 | ug/kg |
|           |              | 2,6-Dinitrotoluene                       | 500                | < 165,000 | ug/kg |
|           |              | 2-Chloronaphthalene                      | 500                | < 165,000 | ug/kg |
|           |              | 2-Methylnaphthalene                      | 500                | < 165,000 | ug/kg |
|           |              | 4,6-Dinitro-o-cresol                     | 500                | < 820,000 | ug/kg |
|           |              | 4-Nitrophenol                            | 500                | < 820,000 | ug/kg |
|           |              | Acenaphthene                             | 500                | 270,000   | ug/kg |
|           |              | Acenaphthylene                           | 500                | < 165,000 | ug/kg |
|           |              | Anthracene                               | 500                | 460,000   | ug/kg |
|           |              | Benzo(a)anthracene                       | 500                | 220,000   | ug/kg |
|           |              | Benzo(a)pyrene                           | 500                | < 165,000 | ug/kg |
|           |              | Chrysene                                 | 500                | 210,000   | ug/kg |
|           |              | Di-n-butyl phthalate                     | 500                | < 165,000 | ug/kg |
|           |              | Dibenzofuran                             | 500                | 190,000   | ug/kg |
|           |              | Fluoranthene                             | 500                | 1,100,000 | ug/kg |
|           |              | Fluorene                                 | 500                | 330,000   | ug/kg |
|           |              | N-Nitrosodiphenylamine                   | 500                | < 165,000 | ug/kg |
|           |              | Naphthalene                              | 500                | 220,000   | ug/kg |
|           |              | Nitrobenzene                             | 500                | < 165,000 | ug/kg |
|           |              | Pentachlorophenol                        | 500                | < 820,000 | ug/kg |
|           |              | Phenanthrene                             | 500                | 950,000   | ug/kg |
|           |              | Phenol                                   | 500                | < 165,000 | ug/kg |
|           |              | Pyrene                                   | 500                | 880,000   | ug/kg |
|           |              | bis(2-Chloroethoxy)methane               | 500                | < 165,000 | ug/kg |

### 71 REPORT OF LABORATORY ANALYSIS

> Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 16

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-AOC7-S00
SAMPLE NO: H446220

| LN | TEST  | DETERMINATION                                     | DILUTION<br>FACTOR | RESULT | UNITS          |
|----|-------|---------------------------------------------------|--------------------|--------|----------------|
| 5  | 16858 | bis(2-Ethylhexyl)phthalate Petroleum Hydrocarbons | 500<br>50          |        | ug/kg<br>mg/kg |

COMMENTS: The detection limits reported for semi-volatiles were elevated due to the dilution required because of the high concentration of target analytes.

April 08, 1997 Report No.: 00060278 Section A Page 17

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB02-S7

SAMPLE NO: H446221

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 03-MAR-97 1430

DATE RECEIVED: 04-MAR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          | DILUTION          |         |                |
|----|--------|------------------------------------------|-------------------|---------|----------------|
| LN | CODE   | DETERMINATION                            | FACTOR            | RESULT  | IINITS         |
|    |        |                                          | ***************** |         |                |
|    |        |                                          |                   |         |                |
| 1  | OVTCS2 |                                          |                   |         |                |
|    |        | 1,2-Dichloroethane                       | 1                 | < 5     | ug/kg          |
|    |        | Benzene                                  | 1                 | < 5     | ug/kg          |
|    |        | Chlorobenzene                            | 1                 | < 5     |                |
|    |        | Ethylbenzene                             | 1                 | < 5     |                |
|    |        | Methylene chloride                       | 1                 | < 5     | 0. 0           |
|    |        | Toluene                                  | 1                 | < 5     | ug/kg          |
|    |        | Xylenes (total)                          | 1                 | < 5     |                |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil | ·                 | ` ,     | ug/kg          |
|    |        | 1,2-Diphenylhydrazine                    | 1                 | < 330   | ug/kg          |
|    |        | 2,4-Dimethylphenol                       | ·<br>1            | < 330   | ug/kg<br>ug/kg |
|    |        | 2,4-Dinitrotoluene                       | 1                 | < 330   |                |
|    |        | 2,6-Dinitrotoluene                       | 1                 | < 330   | ug/kg          |
|    |        | 2-Chloronaphthalene                      | 1                 | < 330   | ug/kg          |
|    |        | 2-Methylnaphthalene                      | 1                 | < 330   | ug/kg          |
|    |        | 4,6-Dinitro-o-cresol                     | 1                 |         | ug/kg          |
|    |        | 4-Nitrophenol                            | 1                 | < 1,600 | ug/kg          |
|    |        | Acenaphthene                             | 1                 | < 1,600 | ug/kg          |
|    |        | Acenaphthylene                           | 1                 | < 330   | ug/kg          |
|    |        | Anthracene                               | 1                 | < 330   | ug/kg          |
|    |        | Benzo(a)anthracene                       | 1                 | < 330   | ug/kg          |
|    |        | Benzo(a)pyrene                           | -                 | < 330   | ug/kg          |
|    |        | Chrysene                                 | 1                 | < 330   | ug/kg          |
|    |        | Di-n-butyl phthalate                     | 1                 | < 330   | ug/kg          |
|    |        | Dibenzofuran                             | 1                 | < 330   | ug/kg          |
|    |        | Fluoranthene                             | 1                 | < 330   | ug/kg          |
|    |        | Fluorene                                 | 1                 | < 330   | ug/kg          |
|    |        | N-Nitrosodiphenylamine                   | 1                 | < 330   | ug/kg          |
|    |        | Naphthalene                              | 1                 | < 330   | ug/kg          |
|    |        | Nitrobenzene                             | 1                 | < 330   | ug/kg          |
|    |        | Pentachlorophenol                        | 1                 | < 330   | ug/kg          |
|    |        | Phenanthrene                             | 1                 |         | ug/kg          |
|    |        | Phenol                                   | 1                 |         | ug/kg          |
|    |        | Pyrene                                   | 1                 |         | ug/kg          |
|    |        | bis(2-Chloroethoxy)methane               | 1                 |         | ug/kg          |
|    |        |                                          | 1                 | < 330   | ug/kg          |

> Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997
Report No.: 00060278
Section A Page 18

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB02-S7
SAMPLE NO: H446221

| •••• |       |                                                      |                    |             |                |
|------|-------|------------------------------------------------------|--------------------|-------------|----------------|
| LN   | CODE  | DETERMINATION                                        | DILUTION<br>FACTOR | RESULT      | UNITS          |
| 10   | 1685s | bis(2-Ethylhexyl)phthalate<br>Petroleum Hydrocarbons | 1                  | < 330<br>20 | ug/kg<br>mg/kg |

April 08, 1997 Report No.: 00060278 Section A Page 19

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB02-S21

SAMPLE NO: H446222

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437 P.O. NO: 03219

DATE SAMPLED: 03-MAR-97 1440

DATE RECEIVED: 04-MAR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          | DILUTION |         |        |
|----|--------|------------------------------------------|----------|---------|--------|
| LN | CODE   | DETERMINATION                            | FACTOR   | RESULT  | LINITE |
|    |        |                                          | IACION   | KESULI  | ON112  |
|    |        |                                          |          |         |        |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |          |         |        |
|    |        | 1,2-Dichloroethane                       | 1        | < 5     | ug/kg  |
|    |        | Benzene                                  | 1        | < 5     | ug/kg  |
|    |        | Chlorobenzene                            | 1        | < 5     | ug/kg  |
|    |        | Ethylbenzene                             | 1        | < 5     | ug/kg  |
|    |        | Methylene chloride                       | 1        | < 5     | ug/kg  |
|    |        | Toluene                                  | 1        | < 5     | ug/kg  |
| _  |        | Xylenes (total)                          | 1        | < 5     |        |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |          |         | -37 (3 |
|    |        | 1,2-Diphenylhydrazine                    | 1        | < 330   | ug/kg  |
|    |        | 2,4-Dimethylphenol                       | 1        | < 330   | ug/kg  |
|    |        | 2,4-Dinitrotoluene                       | . 1      | < 330   | ug/kg  |
|    |        | 2,6-Dinitrotoluene                       | 1        | < 330   | ug/kg  |
|    |        | 2-Chloronaphthalene                      | 1        | < 330   | ug/kg  |
|    |        | 2-Methylnaphthalene                      | 1        | < 330   | ug/kg  |
|    |        | 4,6-Dinitro-o-cresol                     | 1        | < 1,600 | ug/kg  |
|    |        | 4-Nitrophenol                            | 1        | < 1,600 | ug/kg  |
|    |        | Acenaphthene                             | 1        | < 330   | ug/kg  |
|    |        | Acenaphthylene                           | - 1      | < 330   | ug/kg  |
|    |        | Anthracene                               | 1        | < 330   | ug/kg  |
|    |        | Benzo(a)anthracene                       | 1        | < 330   | ug/kg  |
|    |        | Benzo(a)pyrene                           | 1        | < 330   | ug/kg  |
|    |        | Chrysene                                 | 1        | < 330   | ug/kg  |
|    |        | Di-n-butyl phthalate                     | 1        | < 330   | ug/kg  |
|    |        | Dibenzofuran                             | 1        | < 330   | ug/kg  |
|    |        | Fluoranthene                             | 1        | < 330   | ug/kg  |
|    |        | Fluorene                                 | 1        | < 330   | ug/kg  |
|    |        | N-Nitrosodiphenylamine                   | 1        | < 330   | ug/kg  |
|    |        | Naphthalene                              | 1        | < 330   | ug/kg  |
|    |        | Nitrobenzene                             | 1        |         | ug/kg  |
|    |        | Pentachlorophenol                        | 1        |         | ug/kg  |
|    |        | Phenanthrene                             | 1        | -       | ug/kg  |
|    |        | Phenol                                   | 1        |         | ug/kg  |
|    |        | Pyrene                                   | 1        |         | ug/kg  |
|    |        | bis(2-Chloroethoxy)methane               | 1        |         | ug/kg  |
|    |        |                                          |          |         | 3,     |

> Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 20

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB02-S21
SAMPLE NO: H446222

| TEST DILUTION LN CODE DETERMINATION FACTOR RE                   | -01117      |                |
|-----------------------------------------------------------------|-------------|----------------|
|                                                                 | ESULT       | UNITS          |
|                                                                 |             |                |
| bis(2-Ethylhexyl)phthalate 1 < 5 I685S Petroleum Hydrocarbons 1 | < 330<br>70 | ug/kg<br>mg/kg |

April 08, 1997 Report No.: 00060278 Section A Page 21

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB02-S24

SAMPLE NO: H446223

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 03-MAR-97 1445

DATE RECEIVED: 04-MAR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          | DILUTION |         |       |
|----|--------|------------------------------------------|----------|---------|-------|
| LN | CODE   | DETERMINATION                            | FACTOR   | RESULT  | UNITS |
|    |        | ***************************************  |          |         |       |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |          |         |       |
| •  | 011002 | 1,2-Dichloroethane                       | _        | _       |       |
|    |        | Benzene                                  | 1        | < 5     | ug/kg |
|    |        | Chlorobenzene                            | 1        | < 5     | ug/kg |
|    |        | Ethylbenzene                             | 1        | < 5     | ug/kg |
|    |        | Methylene chloride                       | 1        | < 5     | ug/kg |
|    |        | Toluene                                  | 1        | < 5     | ug/kg |
|    |        | Xylenes (total)                          | 1        |         | ug/kg |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil | 1        | < 5     | ug/kg |
|    |        | 1,2-Diphenylhydrazine                    | 1        | < 330   | ug/kg |
|    |        | 2,4-Dimethylphenol                       | 1        | < 330   | ug/kg |
|    |        | 2,4-Dinitrotoluene                       | 1        | < 330   | ug/kg |
|    |        | 2,6-Dinitrotoluene                       | 1        | < 330   | ug/kg |
|    |        | 2-Chloronaphthalene                      | 1        | < 330   | ug/kg |
|    |        | 2-Methylnaphthalene                      | 1        | < 330   | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                     | 1        | < 1,600 | ug/kg |
|    |        | 4-Nitrophenol                            | 1        | < 1,600 | ug/kg |
|    |        | Acenaphthene                             | 1        | < 330   | ug/kg |
|    |        | Acenaphthylene                           | 1        | < 330   | ug/kg |
|    |        | Anthracene ·                             | 1        | < 330   | ug/kg |
|    |        | Benzo(a)anthracene                       | 1        | < 330   | ug/kg |
|    |        | Benzo(a)pyrene                           | 1        | < 330   | ug/kg |
|    |        | Chrysene                                 | 1        | < 330   | ug/kg |
|    |        | Di-n-butyl phthalate                     | 1        | < 330   | ug/kg |
|    |        | Dibenzofuran                             | 1        | < 330   | ug/kg |
|    |        | Fluoranthene                             | 1        | < 330   | ug/kg |
|    |        | Fluorene                                 | 1        | < 330   | ug/kg |
|    |        | N-Nitrosodiphenylamine                   | 1        | < 330   | ug/kg |
|    |        | Naphthalene                              | 1        | < 330   | ug/kg |
|    |        | Nitrobenzene                             | 1        | < 330   | ug/kg |
|    |        | Pentachlorophenol                        | 1        | < 1,600 | ug/kg |
|    |        | Phenanthrene                             | 1        | < 330   | ug/kg |
|    |        | Phenol                                   | 1        | < 330   | ug/kg |
|    |        | Pyrene                                   | 1        | < 330   | ug/kg |
|    |        | bis(2-Chloroethoxy)methane               | - 1      | < 330   | ug/kg |
|    |        |                                          |          |         |       |

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997
Report No.: 00060278
Section A Page 22

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB02-S24
SAMPLE NO: H446223

| LN | CODE  | DETERMINATION                                        | DILUTION<br>FACTOR | RESULT        | UNITS          |
|----|-------|------------------------------------------------------|--------------------|---------------|----------------|
|    |       |                                                      |                    |               |                |
| 5  | 16858 | bis(2-Ethylhexyl)phthalate<br>Petroleum Hydrocarbons | 1<br>1             | < 330<br>< 20 | ug/kg<br>mg/kg |

April 08, 1997 Report No.: 00060278 Section A Page 23

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB02-S37.5

SAMPLE NO: H446224

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 03-MAR-97 1500

DATE RECEIVED: 04-MAR-97

PROJECT MANAGER: Elessa Sommers

|    |        |                                          |          | *       |       |
|----|--------|------------------------------------------|----------|---------|-------|
|    | TEST   |                                          | DILUTION |         | ***** |
| LN | CODE   | DETERMINATION                            | FACTOR   | RESULT  | UNITS |
|    |        |                                          |          |         |       |
|    |        |                                          |          |         |       |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |          |         |       |
|    |        | 1,2-Dichloroethane                       | 1        | < 5     | ug/kg |
|    |        | Benzene                                  | 1        | < 5     | ug/kg |
|    |        | Chlorobenzene                            | 1        | < 5     | ug/kg |
|    |        | Ethylbenzene                             | 1        | 8       | ug/kg |
|    |        | Methylene chloride                       | 1        | < 5     | ug/kg |
|    |        | Toluene                                  | 1        | < 5     | ug/kg |
| _  |        | Xylenes (total)                          | 1        | 5       | ug/kg |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |          |         |       |
|    |        | 1,2-Diphenylhydrazine                    | 1        | < 330   | ug/kg |
|    |        | 2,4-Dimethylphenol                       | 1        | < 330   | ug/kg |
|    |        | 2,4-Dinitrotoluene                       | 1        | < 330   | ug/kg |
|    |        | 2,6-Dinitrotoluene                       | 1        | < 330   | ug/kg |
|    |        | 2-Chloronaphthalene                      | 1        | < 330   | ug/kg |
|    |        | 2-Methylnaphthalene                      | 1        | 1,400   | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                     | 1        | < 1,600 | ug/kg |
|    |        | 4-Nitrophenol                            | 1        | < 1,600 |       |
|    |        | Acenaphthene                             | 1        | 2,100   |       |
|    |        | Acenaphthylene                           | . 1      | < 330   | ug/kg |
|    |        | Anthracene                               | 1        | 1,400   | ug/kg |
|    |        | Benzo(a)anthracene                       | 1        | 400     | ug/kg |
|    |        | Benzo(a)pyrene                           | 1        | < 330   | ug/kg |
|    |        | Chrysene                                 | , 1      | 400     | ug/kg |
|    |        | Di-n-butyl phthalate                     | 1        | < 330   | ug/kg |
|    |        | Dibenzofuran                             | 1        | 1,700   | ug/kg |
|    |        | Fluoranthene                             | 1        | 2,800   | ug/kg |
|    |        | Fluorene                                 | 1        | 1,900   | ug/kg |
|    |        | N-Nitrosodiphenylamine                   | 1        | < 330   | ug/kg |
|    |        | Naphthalene                              | 1        |         |       |
|    |        | Nitrobenzene                             | 1        |         | ug/kg |
|    |        | Pentachlorophenol                        | 1        | < 1,600 | ug/kg |
|    |        | Phenanthrene                             | 2        | 8,600   | ug/kg |
|    |        | Phenol                                   | 1        | < 330   | ug/kg |
|    |        | Pyrene                                   | 1        | 1,200   | ug/kg |
|    |        | bis(2-Chloroethoxy)methane               | 1        | < 330   | ug/kg |
|    |        |                                          |          |         |       |

# REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 24

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-SB02-S37.5

SAMPLE NO: H446224

| LN | TEST<br>CODE | DETERMINATION              | DILUTION<br>FACTOR | RESULT | UNITS |
|----|--------------|----------------------------|--------------------|--------|-------|
|    |              | bis(2-Ethylhexyl)phthalate | 1                  |        | ug/kg |
| 5  | 1685s        | Petroleum Hydrocarbons     | 1                  | < 20   | mg/kg |

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 25

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB02-S38.5

SAMPLE NO: H446225 SAMPLE MATRIX: SOIL PACE PROJECT: H44082
PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 03-MAR-97 1505

DATE RECEIVED: 04-MAR-97
PROJECT MANAGER: Elessa Sommers

TEST DILUTION CODE LN DETERMINATION **FACTOR** RESULT UNITS 1 OVTCS2 8260A TCL Volatiles in Soil 1,2-Dichloroethane < 5 ug/kg Benzene < 5 ug/kg Chlorobenzene 1 < 5 ug/kg Ethylbenzene 1 7 ug/kg Methylene chloride 1 < 5 ug/kg Toluene 1 < 5 ug/kg Xylenes (total) 6 ug/kg 3 OSVTCS TCL - Semi-volatile Extractables in Soil 1,2-Diphenylhydrazine 1 < 330 ug/kg 2,4-Dimethylphenol < 330 ug/kg 1 2,4-Dinitrotoluene 1 < 330 ug/kg 2,6-Dinitrotoluene < 330 ug/kg 2-Chloronaphthalene 1 < 330 ug/kg 2-Methylnaphthalene 1 590 ug/kg 4,6-Dinitro-o-cresol < 1,600 ug/kg 4-Nitrophenol < 1,600 ug/kg Acenaphthene 3,100 ug/kg Acenaphthylene < 330 ug/kg Anthracene 2,000 ug/kg Benzo(a)anthracene 560 ug/kg Benzo(a)pyrene < 330 ug/kg 1 Chrysene 530 ug/kg 1 Di-n-butyl phthalate < 330 1 ug/kg Dibenzofuran 2,600 ug/kg Fluoranthene 4,000 ug/kg Fluorene 1 3,100 ug/kg N-Nitrosodiphenylamine 1 < 330 ug/kg Naphthalene 10 12,000 ug/kg Nitrobenzene 1 < 330 ug/kg Pentachlorophenol < 1,600 ug/kg Phenanthrene 10 17,000 ug/kg Phenol < 330 1 ug/kg Pyrene 1 1,800 ug/kg bis(2-Chloroethoxy)methane < 330 ug/kg

> Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 26

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB02-S38.5

SAMPLE NO: H446225

|    |       | ***************************************              |                    |              |                |
|----|-------|------------------------------------------------------|--------------------|--------------|----------------|
| LN | TEST  | DETERMINATION                                        | DILUTION<br>FACTOR | RESULT       | UNITS          |
| 5  | 1685s | bis(2-Ethylhexyl)phthalate<br>Petroleum Hydrocarbons | 1                  | < 330<br>130 | ug/kg<br>mg/kg |

April 08, 1997 Report No.: 00060278 Section A Page 27

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE NO: H446226

SAMPLE MATRIX: SOIL

SAMPLE ID: HWPW-SB02-S49

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 03-MAR-97 1525

PROJECT MANAGER: Elessa Sommers

DATE RECEIVED: 04-MAR-97

|    | TEST   |                                          | DILUTION |            |                |
|----|--------|------------------------------------------|----------|------------|----------------|
| LN | CODE   | DETERMINATION                            | FACTOR   | RESULT     | UNITS          |
|    |        |                                          |          |            |                |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |          |            |                |
| •  |        | 1,2-Dichloroethane                       | 1        |            |                |
|    |        | Benzene                                  | 1        | < 5<br>< 5 | ug/kg          |
|    |        | Chlorobenzene                            | 1        |            | ug/kg          |
|    |        | Ethylbenzene                             | 1        | < 5        | ug/kg          |
|    |        | Methylene chloride                       | 1        | < 5<br>< 5 | ug/kg          |
|    |        | Toluene                                  | 1        |            | ug/kg          |
|    |        | Xylenes (total)                          | 1        | < 5<br>< 5 | ug/kg          |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil | '        | ` ' '      | ug/kg          |
|    |        | 1,2-Diphenylhydrazine                    | 1        | < 330      | ua/ka          |
|    |        | 2,4-Dimethylphenol                       | 1        | < 330      | ug/kg<br>ug/kg |
|    |        | 2,4-Dinitrotoluene                       | 1        | < 330      | ug/kg<br>ug/kg |
|    |        | 2,6-Dinitrotoluene                       | 1        | < 330      | ug/kg          |
|    |        | 2-Chloronaphthalene                      | 1        | < 330      | ug/kg<br>ug/kg |
|    |        | 2-Methylnaphthalene                      | 1        | < 330      | ug/kg<br>ug/kg |
|    |        | 4,6-Dinitro-o-cresol                     | 1        | < 1,600    | ug/kg          |
|    |        | 4-Nitrophenol                            | . 1      | < 1,600    | ug/kg          |
|    |        | Acenaphthene                             | 1        | < 330      | ug/kg          |
|    |        | Acenaphthylene                           | 1        | < 330      | ug/kg          |
|    |        | Anthracene                               | 1        | < 330      | ug/kg          |
|    |        | Benzo(a)anthracene                       | i        | < 330      | ug/kg          |
|    |        | Benzo(a)pyrene                           | <u>i</u> | < 330      | ug/kg          |
|    |        | Chrysene                                 | · i      | < 330      | ug/kg          |
|    |        | Di-n-butyl phthalate                     | 1        | < 330      | ug/kg          |
|    |        | Dibenzofuran                             | 1        | < 330      | ug/kg          |
|    |        | Fluoranthene                             | 1        | < 330      | ug/kg          |
|    |        | Fluorene                                 | 1        | < 330      | ug/kg          |
|    |        | N-Nitrosodiphenylamine                   | 1        | < 330      | ug/kg          |
|    |        | Naphthalene                              | 1        | < 330      | ug/kg          |
|    |        | Nitrobenzene                             | 1        | < 330      | ug/kg          |
|    |        | Pentachlorophenol                        | 1        | < 1,600    | ug/kg          |
|    |        | Phenanthrene                             | 1        | < 330      | ug/kg          |
|    |        | Phenol                                   | 1        | < 330      | ug/kg          |
|    |        | Pyrene                                   | 1        | < 330      | ug/kg          |
|    |        | bis(2-Chloroethoxy)methane               | 1        | < 330      | ug/kg          |
|    |        |                                          |          |            | -3, 13         |

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 28

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB02-S49
SAMPLE NO: H446226

| LN | TEST  | DETERMINATION              | DILUTION<br>FACTOR | RESULT | UNITS |
|----|-------|----------------------------|--------------------|--------|-------|
|    |       |                            |                    |        |       |
| _  |       | bis(2-Ethylhexyl)phthalate | 1                  | < 330  | ug/kg |
| 5  | 16858 | Petroleum Hydrocarbons     | 1                  | < 20   | mg/kg |

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 29

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-AOC3W-SOO

SAMPLE NO: H446227

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 04-MAR-97 0825

DATE RECEIVED: 04-MAR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          | DILUTION |          |        |
|----|--------|------------------------------------------|----------|----------|--------|
| LN | CODE   | DETERMINATION                            | FACTOR   | RESULT   | LIMITS |
|    |        |                                          |          |          |        |
|    |        |                                          |          |          |        |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |          |          |        |
|    |        | 1,2-Dichloroethane                       | 1        | < 5      | ug/kg  |
|    |        | Benzene                                  | 1        | < 5      | ug/kg  |
|    |        | Chlorobenzene                            | 1        | < 5      | ug/kg  |
|    |        | Ethylbenzene                             | 1        | < 5      | ug/kg  |
|    |        | Methylene chloride                       | 1        | < 5      | ug/kg  |
|    |        | Toluene                                  | 1        | < 5      | ug/kg  |
|    |        | Xylenes (total)                          | . 1      | < 5      | ug/kg  |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |          |          |        |
|    |        | 1,2-Diphenylhydrazine                    | 10       | < 3,300  | ug/kg  |
|    |        | 2,4-Dimethylphenol                       | 10       | < 3,300  | ug/kg  |
|    |        | 2,4-Dinitrotoluene                       | 10       | < 3,300  | ug/kg  |
|    |        | 2,6-Dinitrotoluene                       | 10       | < 3,300  | ug/kg  |
|    |        | 2-Chloronaphthalene                      | 10       | < 3,300  | ug/kg  |
|    |        | 2-Methylnaphthalene                      | 10       | 5,000    | ug/kg  |
|    |        | 4,6-Dinitro-o-cresol                     | 10       | < 16,000 | ug/kg  |
|    |        | 4-Nitrophenol                            | 10       | < 16,000 | ug/kg  |
|    |        | Acenaphthene                             | 10       | 8,800    | ug/kg  |
|    |        | Acenaphthylene                           | 10       | < 3,300  | ug/kg  |
|    |        | Anthracene                               | 10       | 8.600    | ug/kg  |
|    |        | Benzo(a)anthracene                       | 10       | 3,600    | ug/kg  |
|    |        | Benzo(a)pyrene                           | 10       | < 3,300  | ug/kg  |
|    |        | Chrysene                                 | 10       | 3,500    | ug/kg  |
|    |        | Di-n-butyl phthalate                     | 10       | < 3,300  | ug/kg  |
|    |        | Dibenzofuran                             | 10       | 6,700    | ug/kg  |
|    |        | Fluoranthene                             | 10       | 20,000   | ug/kg  |
|    |        | Fluorene                                 | 10       | 12,000   | ug/kg  |
|    |        | N-Nitrosodiphenylamine                   | 10       | < 3,300  | ug/kg  |
|    |        | Naphthalene                              | 10       | < 3,300  | ug/kg  |
|    |        | Nitrobenzene                             | 10       | < 3,300  | ug/kg  |
|    |        | Pentachlorophenol                        | 10       | < 16,000 | ug/kg  |
|    |        | Phenanthrene                             | 10       | 36,000   | ug/kg  |
|    |        | Phenol                                   | 10       | < 3,300  | ug/kg  |
|    |        | Pyrene                                   | 10       | 13,000   | ug/kg  |
|    |        | bis(2-Chloroethoxy)methane               | 10       | < 3,300  | ug/kg  |
|    |        | a to the second                          |          | . 3,300  | -a, va |

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 30

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-AOC3W-S00

**SAMPLE NO: H446227** 

TEST DILUTION
LN CODE DETERMINATION FACTOR RESULT UNITS

bis(2-Ethylhexyl)phthalate

10 < 3,300 ug/kg

COMMENTS: The detection limits reported for semi-volatiles were elevated due to the dilution required because of the high concentration of target analytes.

April 08, 1997 Report No.: 00060278 Section A Page 31

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-AOC3E-S00

SAMPLE NO: H446228

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 04-MAR-97 0843

DATE RECEIVED: 04-MAR-97
PROJECT MANAGER: Elessa Sommers

| LN | TEST<br>CODE | DETERMINATION                                    | DILUTION<br>FACTOR | RESULT  | UNITS |
|----|--------------|--------------------------------------------------|--------------------|---------|-------|
|    |              |                                                  |                    |         |       |
|    | 0.7200       | 22/21 22/ 11/11/11/11/11/11/11/11/11/11/11/11/11 |                    |         |       |
| 1  | OVTCS2       | 8260A TCL Volatiles in Soil                      |                    |         |       |
|    |              | 1,2-Dichloroethane                               | 1                  | < 5     | ug/kg |
|    |              | Benzene<br>Shi anahanana                         | 1                  | < 5     | ug/kg |
|    |              | Chlorobenzene                                    | 1                  | < 5     | ug/kg |
|    |              | Ethylbenzene                                     | 1                  | < 5     | ug/kg |
|    |              | Methylene chloride                               | 1                  | < 5     | ug/kg |
|    |              | Toluene                                          | 1                  | < 5     | ug/kg |
| 3  | OSVTCS       | Xylenes (total)                                  | 1                  | < 5     | ug/kg |
| 3  | USVICS       | TCL - Semi-volatile Extractables in Soil         |                    |         |       |
|    |              | 1,2-Diphenylhydrazine                            | 1                  | < 330   | ug/kg |
|    |              | 2,4-Dimethylphenol                               | 1                  | < 330   | ug/kg |
|    |              | 2,4-Dinitrotoluene                               | 1                  | < 330   | ug/kg |
|    |              | 2,6-Dinitrotoluene                               | 1                  | < 330   | ug/kg |
|    |              | 2-Chloronaphthalene                              | 1                  | < 330   | ug/kg |
|    |              | 2-Methylnaphthalene                              | 1                  | < 330   | ug/kg |
|    |              | 4,6-Dinitro-o-cresol                             | 1                  | < 1,600 | ug/kg |
|    |              | 4-Nitrophenol                                    | 1                  | < 1,600 | ug/kg |
|    |              | Acenaphthene                                     | 1                  | < 330   | ug/kg |
|    |              | Acenaphthylene                                   | 1                  | < 330   | ug/kg |
|    |              | Anthracene                                       | 1                  | < 330   | ug/kg |
|    |              | Benzo(a)anthracene                               | 1                  | < 330   | ug/kg |
|    |              | Benzo(a)pyrene                                   | 1                  | < 330   | ug/kg |
|    |              | Chrysene                                         | 1                  | < 330   | ug/kg |
|    |              | Di-n-butyl phthalate                             | 1                  | < 330   | ug/kg |
|    |              | Dibenzofuran                                     | _ 1                | < 330   | ug/kg |
|    |              | Fluoranthene                                     | 1                  | < 330   | ug/kg |
|    |              | Fluorene                                         | 1                  | < 330   | ug/kg |
|    |              | N-Nitrosodiphenylamine                           | 1                  | < 330   | ug/kg |
|    |              | Naphthalene                                      | 1                  | < 330   | ug/kg |
|    |              | Ni trobenzene                                    | 1                  | < 330   | ug/kg |
|    |              | Pentachlorophenol  Phonocology                   | 1                  | < 1,600 | ug/kg |
|    |              | Phenanthrene                                     | 1                  | < 330   | ug/kg |
|    |              | Phenol                                           | 1                  | < 330   | ug/kg |
|    |              | Pyrene                                           | 1                  | < 330   | ug/kg |
|    |              | bis(2-Chloroethoxy)methane                       | 1                  | < 330   | ug/kg |

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

< 330 ug/kg

April 08, 1997 Report No.: 00060278 Section A Page 32

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-AOC3E-SOO

SAMPLE NO: H446228

TEST DILUTION LN CODE **FACTOR** RESULT UNITS bis(2-Ethylhexyl)phthalate

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 33

### LABORATORY ANALYSIS REPORT

| CLIENT NAME: | TERRANEXT             |   | LIMS CLIE  | ENT: | 0717 0007 |
|--------------|-----------------------|---|------------|------|-----------|
| ADDRESS:     | 6200 ROTHWAY, STE 190 |   | PACE PROJE | ECT: | H44082    |
|              | HOUSTON, TX 77040-    | • | PACE CLIE  | ENT: | 620437    |
| ATTENTION:   | BILL GOLDSBY          |   | P.O.       | NO:  | 03219     |
|              |                       |   |            |      |           |

| SAMPLE ID:     | HWPW-AOC5W-S00 | DATE SAMPLED:      | 04-MAR-97 0928 |
|----------------|----------------|--------------------|----------------|
| SAMPLE NO:     | H446229        | DATE RECEIVED:     | 04-MAR-97      |
| SAMPLE MATRIX: | SOIL           | PROJECT MANAGER: I | Elessa Sommers |

| LN | TEST   | DETERMINATION                                | DILUTION<br>FACTOR | RESULT   | UNITS          |
|----|--------|----------------------------------------------|--------------------|----------|----------------|
|    |        |                                              |                    |          |                |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil                  |                    |          |                |
| •  | 041032 | 1,2-Dichloroethane                           | 1                  | < 5      | ug/kg          |
|    |        | Benzene                                      | 1                  | 20       | ug/kg<br>ug/kg |
|    |        | Chlorobenzene                                | 1                  | < 5      | ug/kg<br>ug/kg |
|    |        | Ethylbenzene                                 | 125                | 6,100    | ug/kg          |
|    |        | Methylene chloride                           | 123                | < 5      | ug/kg<br>ug/kg |
|    |        | Toluene                                      | 1                  | 85       | ug/kg          |
|    |        | Xylenes (total)                              | 125                | 26,000   | ug/kg          |
| 3  | OSVTCS | • 0 20 (0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 123                | 20,000   | ug/ kg         |
| _  |        | 1,2-Diphenylhydrazine                        | 10                 | < 3,300  | ug/kg          |
|    | 0      | 2,4-Dimethylphenol                           | 10                 | < 3,300  | ug/kg          |
|    |        | 2,4-Dinitrotoluene                           | 10                 | < 3,300  | ug/kg          |
|    |        | 2,6-Dinitrotoluene                           | 10                 | < 3,300  | ug/kg          |
|    |        | 2-Chloronaphthalene                          | 10                 | < 3,300  | ug/kg          |
|    |        | 2-Methylnaphthalene                          | 10                 | 9,200    | ug/kg          |
|    |        | 4,6-Dinitro-o-cresol                         | 10                 | < 16,000 | ug/kg          |
|    |        | 4-Nitrophenol                                | 10                 | < 16,000 | ug/kg          |
|    |        | Acenaphthene                                 | 10                 | 4,300    | ug/kg          |
|    |        | Acenaphthylene                               | 10                 | < 3,300  | ug/kg          |
|    |        | Anthracene                                   | 10                 | < 3,300  | ug/kg          |
|    |        | Benzo(a)anthracene                           | 10                 | < 3,300  | ug/kg          |
|    |        | Benzo(a)pyrene                               | 10                 | < 3,300  | ug/kg          |
|    |        | Chrysene                                     | 10                 | < 3,300  | ug/kg          |
|    |        | Di-n-butyl phthalate                         | 10                 | < 3,300  | ug/kg          |
|    |        | Dibenzofuran                                 | 10                 | < 3,300  | ug/kg          |
|    |        | Fluoranthene                                 | 10                 | 5,300    | ug/kg          |
|    |        | Fluorene                                     | 10                 | 4,000    | ug/kg          |
|    |        | N-Nitrosodiphenylamine                       | 10                 | < 3,300  | ug/kg          |
|    |        | Naphthalene                                  | 10                 | 11,000   | ug/kg          |
|    |        | Nitrobenzene                                 | 10                 | < 3,300  | ug/kg          |
|    |        | Pentach lorophenol                           | 10                 | < 16,000 | ug/kg          |
|    |        | Phenanthrene                                 | 10                 | 12,000   | ug/kg          |
|    |        | Phenol                                       | 10                 | < 3,300  | ug/kg          |
|    |        | Pyrene                                       | 10                 | 5,900    | ug/kg          |
|    |        | bis(2-Chloroethoxy)methane                   | 10                 | < 3,300  | ug/kg          |
|    |        |                                              |                    |          |                |

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 34

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-AOC5W-SOO

SAMPLE NO: H446229

TEST CODE LN

DETERMINATION

DILUTION

bis(2-Ethylhexyl)phthalate

10

< 3,300 ug/kg

COMMENTS: The detection limits reported for semi-volatiles were elevated due to the dilution required because of the high concentration of target analytes.

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 35

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB05-S19.5

SAMPLE NO: H446230

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 04-MAR-97 1020

DATE RECEIVED: 04-MAR-97

PROJECT MANAGER: Elessa Sommers

| TEST   DETERMINATION   PACTOR   RESULT UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |         | ***************************************                      |           |             |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|--------------------------------------------------------------|-----------|-------------|--------|
| 1 OVTCS2   8260A TCL Volatiles in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | TEST    |                                                              | DILLITION | *********** |        |
| 1 OVTCS2 8260A TCL Volatiles in Soil  1,2-Dichloroethane 8 enzeme Chlorobenzene Ethylbenzene 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LN | CODE    | DETERMINATION                                                |           | RESULT      | LINITS |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |         |                                                              |           |             |        |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |         |                                                              |           |             |        |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1  | OVTCS2  |                                                              |           |             |        |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |         |                                                              | 1         | < 5         | ug/kg  |
| Ethylbenzene Methylene chloride Toluene Xylenes (total)  SOSVTCS TCL - Semi-volatile Extractables in Soil  1,2-Diphenylhydrazine 2,4-Dimethylphenol 2,4-Dimethylphenol 3,4-Dimethylphenol 3,4-Dimethylphenol 3,4-Dimethylphenol 3,4-Dimethylphenol 3,4-Dimethylphenol 3,4-Dimethylphenol 3,4-Dimethylphenol 3,4-Dimethylphenol 3,4-Dimethylphenol 3,4-Dimethylphenol 3,4-Dimethylphenol 3,4-Dimethylphenol 3,4-Dimethylphenol 3,4-Dimethylphenol 3,4-Dimethylphenol 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimethylene 3,4-Dimeth |    |         |                                                              | 1         | < 5         | ug/kg  |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |         |                                                              | 1         | < 5         | ug/kg  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |         | · ·                                                          | 1         | < 5         | ug/kg  |
| Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |         |                                                              | 1         | < 5         | ug/kg  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |         |                                                              | 1         | < 5         | ug/kg  |
| 1,2-Diphenylhydrazine 2,4-Dimethylphenol 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -  | 001/200 |                                                              | 1         | < 5         | ug/kg  |
| 2,4-Dimethylphenol 2,4-Dimitrotoluene 3,330 ug/kg 2,6-Dinitrotoluene 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3  | OSVICS  |                                                              |           |             |        |
| 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3,330 ug/kg 2-Chloronaphthalene 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |         |                                                              | 1         | < 330       | ug/kg  |
| 2,6-Dinitrotoluene 1 < 330 ug/kg 2-Chloronaphthalene 1 < 330 ug/kg 2-Methylnaphthalene 1 < 330 ug/kg 4,6-Dinitro-o-cresol 1 < 1,600 ug/kg 4-Nitrophenol 1 < 1,600 ug/kg 4-Nitrophenol 1 < 1,600 ug/kg Acenaphthene 1 < 330 ug/kg Acenaphthene 1 < 330 ug/kg Acenaphthene 1 < 330 ug/kg Acenaphthacene 1 < 330 ug/kg Anthracene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Fluorene 1 < 330 ug/kg N-Nitrosodiphenylamine 1 < 330 ug/kg N-Nitrosodiphenylamine 1 < 330 ug/kg Naphthalene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Pentachlorophenol 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenol 1 < 330 ug/kg Pyrene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Pyrene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Pyrene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Pyrene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg  |    |         |                                                              | 1         | < 330       | ug/kg  |
| 2-Chloronaphthalene 2-Methylnaphthalene 3 330 ug/kg 4,6-Dinitro-o-cresol 4-Nitrophenol Acenaphthene 1 < 1,600 ug/kg 4-Nitrophenol Acenaphthylene 1 < 330 ug/kg Acenaphthylene 1 < 330 ug/kg Anthracene 1 < 330 ug/kg Anthracene 1 < 330 ug/kg Benzo(a)anthracene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Chrysene 1 < 330 ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Fluoranthene 1 < 330 ug/kg Fluoranthene 1 < 330 ug/kg N-Nitrosodiphenylamine Nitrobenzene 1 < 330 ug/kg Naphthalene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 2 < 330 ug/kg Nitrobenzene 3 < 330 ug/kg Nitrobenzene 4 < 330 ug/kg Nitrobenzene 5 < 330 ug/kg Nitrobenzene 6 < 330 ug/kg Nitrobenzene 7 < 330 ug/kg Nitrobenzene 8 < 330 ug/kg Nitrobenzene 9 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 2 < 330 ug/kg Nitrobenzene 3 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |         |                                                              | 1         | < 330       | ug/kg  |
| 2-Methylnaphthalene 1 < 330 ug/kg 4,6-Dinitro-o-cresol 1 < 1,600 ug/kg 4-Nitrophenol 1 < 1,600 ug/kg 4-Nitrophenol 1 < 1,600 ug/kg 4-Nitrophenol 1 < 330 ug/kg Acenaphthylene 1 < 330 ug/kg Acenaphthylene 1 < 330 ug/kg Anthracene 1 < 330 ug/kg Benzo(a)anthracene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Ug/kg Chrysene 1 < 330 ug/kg Ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Ug/kg Fluorene 1 < 330 ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/k |    |         |                                                              | 1         | < 330       | ug/kg  |
| 4,6-Dinitro-o-cresol 4-Nitrophenol Acenaphthene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene  Anthracene  Benzo(a)anthracene Benzo(a)pyrene  Chrysene  Di-n-butyl phthalate Di-n-butyl phthalate Dibenzofuran Fluoranthene  Fluoranthene Fluoranthene  N-Nitrosodiphenylamine Naphthalene Naphthalene Nitrobenzene Nitrobenzene Pentachlorophenol Pyrene Phenol Pyrene  Nisc2-chloropathoxylamthane  Lagykg  1 < 330 ug/kg  1 < 330 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg  230 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |         | ·                                                            | 1         | < 330       | ug/kg  |
| 4,6-Dinitro-o-cresol 4-Nitrophenol 4-Nitrophenol 4-Nitrophenol 4-Nitrophenol 4-Nitrophenol 4-Nitrophenol 4-Nitrophenol 4-Nitrophenol 4-Nitrophenol 4-Nitrophenol 4-Nitrophenol 8-Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and Royal and |    |         |                                                              | 1         | < 330       | ug/kg  |
| A-Nitrophenol Acenaphthene Acenaphthylene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Chrysene Di-n-butyl phthalate Dibenzofuran Fluoranthene Fluorene N-Nitrosodiphenylamine Naphthalene Nitrobenzene Nitrobenzene Pentachlorophenol Pyrene Phenol Pyrene  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |         |                                                              | 1         | < 1,600     |        |
| Acenaphthylene 1 < 330 ug/kg Anthracene 1 < 330 ug/kg Benzo(a)anthracene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Chrysene 1 < 330 ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Fluoranthene 1 < 330 ug/kg Fluorene 1 < 330 ug/kg Fluorene 1 < 330 ug/kg N-Nitrosodiphenylamine 1 < 330 ug/kg Naphthalene 1 < 330 ug/kg Naphthalene 1 < 330 ug/kg Pentachlorophenol 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenol 1 < 330 ug/kg Pyrene 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |         |                                                              | 1         | < 1,600     |        |
| Acenaphthylene Anthracene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)py |    |         |                                                              | 1         | < 330       | ug/kg  |
| Anthracene Benzo(a)anthracene Benzo(a)pyrene 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |         | . ,                                                          | 1         | < 330       |        |
| Benzo(a)anthracene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Chrysene 1 < 330 ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Fluoranthene 1 < 330 ug/kg Fluorene 1 < 330 ug/kg N-Nitrosodiphenylamine 1 < 330 ug/kg Naphthalene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Pentachlorophenol 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenol 1 < 330 ug/kg Pyrene 1 < 330 ug/kg Pyrene 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |         |                                                              | 1         | < 330       | -      |
| Benzo(a)pyrene 1 < 330 ug/kg Chrysene 1 < 330 ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Fluoranthene 1 < 330 ug/kg Fluorene 1 < 330 ug/kg N-Nitrosodiphenylamine 1 < 330 ug/kg Naphthalene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Pentachlorophenol 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenol 1 < 330 ug/kg Pyrene 1 < 330 ug/kg Pyrene 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |         |                                                              | - 1       | < 330       |        |
| Chrysene 1 < 330 ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Fluoranthene 1 < 330 ug/kg Fluorene 1 < 330 ug/kg N-Nitrosodiphenylamine 1 < 330 ug/kg Naphthalene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Pentachlorophenol 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenol 1 < 330 ug/kg Pyrene 1 < 330 ug/kg Pyrene 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         | 1 14 1 1 (* part 1 - 1 14 14 14 14 14 14 14 14 14 14 14 14 1 | 1         | < 330       |        |
| Dienzofuran 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Fluoranthene 1 < 330 ug/kg Fluorene 1 < 330 ug/kg N-Nitrosodiphenylamine 1 < 330 ug/kg Naphthalene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Pentachlorophenol 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenol 1 < 330 ug/kg Pyrene 1 < 330 ug/kg Pyrene 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         | <u>.</u>                                                     | 1         |             | •      |
| Dibenzofuran   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |         |                                                              | 1         | < 330       |        |
| Fluoranthene 1 < 330 ug/kg Fluorene 1 < 330 ug/kg N-Nitrosodiphenylamine 1 < 330 ug/kg Naphthalene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Pentachlorophenol 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenol 1 < 330 ug/kg Pyrene 1 < 330 ug/kg Pyrene 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |         |                                                              | 1         | < 330       |        |
| N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |         |                                                              | 1.        | < 330       | J. J   |
| N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |         |                                                              | 1         | < 330       |        |
| Naphthalene       1       < 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |         |                                                              | 1         | < 330       |        |
| Nitrobenzene       1       < 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |         | -                                                            | 1         | < 330       |        |
| Pentachlorophenol 1 < 1,600 ug/kg Phenanthrene 1 < 330 ug/kg Phenol 1 < 330 ug/kg Pyrene 1 < 330 ug/kg  his(2-Chloroethoxy)methone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |         | 111 11 11 11 11 11 11 11 11 11 11 11 11                      | 1         |             |        |
| Phenanthrene 1 < 330 ug/kg  Phenol 1 < 330 ug/kg  Pyrene 1 < 330 ug/kg  his(2-Chloroethoxy)methone 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |         | •                                                            | 1         |             |        |
| Phenol Pyrene 1 < 330 ug/kg Pis(2-Chloroethoxy) methons 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |         | ,                                                            | 1         |             |        |
| Pyrene 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |         |                                                              | 1         |             |        |
| his(2-Chloropthoyy)methana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         | 9 9 1000000                                                  | 1         |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |         | bis(2-Chloroethoxy)methane                                   | 1         |             |        |

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 36

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB05-S19.5

SAMPLE NO: H446230

| LN | TEST  | DETERMINATION                                        | DILUTION<br>FACTOR | RESULT        | UNITS          |
|----|-------|------------------------------------------------------|--------------------|---------------|----------------|
| 5  | 1685s | bis(2-Ethylhexyl)phthalate<br>Petroleum Hydrocarbons | 1                  | < 330<br>< 20 | ug/kg<br>mg/kg |

April 08, 1997 Report No.: 00060278 Section A Page 37

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB05-S24

SAMPLE NO: H446231 SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437 P.O. NO: 03219

DATE SAMPLED: 04-MAR-97 1033

DATE RECEIVED: 04-MAR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          | DILUTION |         | ****** |
|----|--------|------------------------------------------|----------|---------|--------|
| LN | CODE   | DETERMINATION                            | FACTOR   | RESULT  | LINITS |
|    |        |                                          |          |         |        |
|    |        |                                          |          |         |        |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |          |         |        |
|    |        | 1,2-Dichloroethane                       | 1        | < 5     | ug/kg  |
|    |        | Benzene                                  | 1        | < 5     | ug/kg  |
|    |        | Chlorobenzene                            | 1        | < 5     | ug/kg  |
|    |        | Ethylbenzene                             | 1        | < 5     | ug/kg  |
|    |        | Methylene chloride                       | 1        | < 5     | ug/kg  |
|    |        | Toluene                                  | 1        | < 5     | ug/kg  |
| _  |        | Xylenes (total)                          | 1        | < 5     | ug/kg  |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |          |         |        |
|    |        | 1,2-Diphenylhydrazine                    | 1        | < 330   | ug/kg  |
|    |        | 2,4-Dimethylphenol                       | 1        | < 330   | ug/kg  |
|    |        | 2,4-Dinitrotoluene                       | 1        | < 330   | ug/kg  |
|    |        | 2,6-Dinitrotoluene                       | 1        | < 330   | ug/kg  |
|    |        | 2-Chloronaphthalene                      | 1        | < 330   | ug/kg  |
|    |        | 2-Methylnaphthalene                      | 1        | < 330   | ug/kg  |
|    |        | 4,6-Dinitro-o-cresol                     | 1        | < 1,600 | ug/kg  |
|    |        | 4-Nitrophenol                            | 1        | < 1,600 | ug/kg  |
|    |        | Acenaphthene                             | 1        | < 330   | ug/kg  |
|    |        | Acenaphthylene                           | 1        | < 330   | ug/kg  |
|    |        | Anthracene                               | 1        | < 330   | ug/kg  |
|    |        | Benzo(a)anthracene                       | 1        | < 330   | ug/kg  |
|    |        | Benzo(a)pyrene                           | 1        | < 330   | ug/kg  |
|    |        | Chrysene                                 | 1        | < 330   | ug/kg  |
|    |        | Di-n-butyl phthalate                     | 1        | < 330   | ug/kg  |
|    |        | Dibenzofuran                             | 1        | < 330   | ug/kg  |
|    |        | Fluoranthene                             | 1        | < 330   | ug/kg  |
|    |        | Fluorene                                 | 1        | < 330   | ug/kg  |
|    |        | N-Nitrosodiphenylamine                   | 1        | < 330   | ug/kg  |
|    |        | Naphthalene                              | 1        | < 330   | ug/kg  |
|    |        | Nitrobenzene                             | 1        | < 330   | ug/kg  |
|    |        | Pentachlorophenol                        | 1        | < 1,600 | ug/kg  |
|    |        | Phenanthrene                             | 1        | < 330   | ug/kg  |
|    |        | Phenol                                   | 1        | < 330   | ug/kg  |
|    |        | Pyrene                                   | 1        | < 330   | ug/kg  |
|    |        | bis(2-Chloroethoxy)methane               | 1        | < 330   | ug/kg  |
|    |        |                                          | 5        |         | - Jr J |

April 08, 1997 Report No.: 00060278 Section A Page 38

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB05-S24
SAMPLE NO: H446231

| LN | TEST<br>CODE | DETERMINATION                                        | DILUTION<br>FACTOR | RESULT        | UNITS          |
|----|--------------|------------------------------------------------------|--------------------|---------------|----------------|
| 5  | 1685s        | bis(2-Ethylhexyl)phthalate<br>Petroleum Hydrocarbons | 1                  | < 330<br>< 20 | ug/kg<br>mg/kg |

April 08, 1997 Report No.: 00060278 Section A Page 39

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB05-S34.5

SAMPLE NO: H446232

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 04-MAR-97 1050

DATE RECEIVED: 04-MAR-97

PROJECT MANAGER: Elessa Sommers

| •••• |        |                                          |          |         |       |
|------|--------|------------------------------------------|----------|---------|-------|
|      | TEST   |                                          | DILUTION |         |       |
| LN   | CODE   | DETERMINATION                            | FACTOR   | RESULT  | UNITS |
|      |        |                                          |          |         |       |
| 1    | OVTCS2 | 8260A TCL Volatiles in Soil              |          |         |       |
|      |        | 1,2-Dichloroethane                       | 1        | < 5     | ug/kg |
|      |        | Benzene                                  | 1        | < 5     | ug/kg |
|      |        | Chlorobenzene                            | 1        | < 5     | ug/kg |
|      |        | Ethylbenzene                             | 1        | < 5     | ug/kg |
|      |        | Methylene chloride                       | 1        | < 5     | ug/kg |
|      |        | Toluene                                  | 1        | < 5     | ug/kg |
|      |        | Xylenes (total)                          | 1        | < 5     | ug/kg |
| 3    | OSVTCS | TCL - Semi-volatile Extractables in Soil |          |         |       |
|      |        | 1,2-Diphenylhydrazine                    | 1        | < 330   | ug/kg |
|      |        | 2,4-Dimethylphenol                       | . 1      | < 330   | ug/kg |
|      |        | 2,4-Dinitrotoluene                       | 1        | < 330   | ug/kg |
|      |        | 2,6-Dinitrotoluene                       | 1        | < 330   | ug/kg |
|      |        | 2-Chloronaphthalene                      | 1        | < 330   | ug/kg |
|      |        | 2-Methylnaphthalene                      | 1        | < 330   | ug/kg |
|      |        | 4,6-Dinitro-o-cresol                     | 1        | < 1,600 | ug/kg |
|      |        | 4-Nitrophenol                            | - 1      | < 1,600 | ug/kg |
|      |        | Acenaphthene                             | 1        | < 330   | ug/kg |
|      |        | Acenaphthylene                           | 1        | < 330   | ug/kg |
|      |        | Anthracene                               | 1        | < 330   | ug/kg |
|      |        | Benzo(a)anthracene                       | 1        | < 330   | ug/kg |
|      |        | Benzo(a)pyrene                           | 1        | < 330   | ug/kg |
|      |        | Chrysene                                 |          | < 330   | ug/kg |
|      |        | Di-n-butyl phthalate                     | 1        | < 330   | ug/kg |
|      |        | Dibenzofuran                             | 1        | < 330   | ug/kg |
|      |        | Fluoranthene                             | 1        | < 330   | ug/kg |
|      |        | Fluorene                                 | 1        | < 330   | ug/kg |
|      |        | N-Nitrosodiphenylamine                   | 1        | < 330   | ug/kg |
|      |        | Naphthalene                              | 1,       | < 330   | ug/kg |
|      |        | Nitrobenzene                             | 1        | < 330   | ug/kg |
|      |        | Pentachlorophenol                        | 1        | < 1,600 | ug/kg |
|      |        | Phenanthrene                             | 1        | < 330   | ug/kg |
|      |        | Phenol                                   | 1        | < 330   | ug/kg |
|      |        | Pyrene                                   | 1        | < 330   | ug/kg |
|      |        | bis(2-Chloroethoxy)methane               | 1        | < 330   | ug/kg |

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 40

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-SB05-S34.5

SAMPLE NO: H446232

|    | ****** |                                                      |                    |               |                |
|----|--------|------------------------------------------------------|--------------------|---------------|----------------|
| LN | TEST   | DETERMINATION                                        | DILUTION<br>FACTOR | RESULT        | UNITS          |
| 5  | 1685s  | bis(2-Ethylhexyl)phthalate<br>Petroleum Hydrocarbons | 1                  | < 330<br>< 20 | ug/kg<br>mg/kg |

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 39

#### **LABORATORY ANALYSIS REPORT**

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB05-S34.5

SAMPLE NO: H446232

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 04-MAR-97 1050

DATE RECEIVED: 04-MAR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          | DILUTION |                | • • • • • • • • • • • • • • • • • • • • |
|----|--------|------------------------------------------|----------|----------------|-----------------------------------------|
| LN | CODE   | DETERMINATION                            | FACTOR   | RESULT         | UNITS                                   |
|    |        |                                          |          |                | • • • • • • • •                         |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |          |                |                                         |
|    |        | 1,2-Dichloroethane                       | 1        | . < 5          | ua /ka                                  |
|    |        | Benzene                                  | 1        | . < 5          | ug/kg<br>ug/kg                          |
|    |        | Chlorobenzene                            | 1        | < 5            |                                         |
|    |        | Ethylbenzene                             | 1        | < 5            | ug/kg                                   |
|    |        | Methylene chloride                       | 1        | < 5            | ug/kg                                   |
|    |        | Toluene                                  | 1        | < 5            | ug/kg                                   |
|    |        | Xylenes (total)                          | 1        | < 5            |                                         |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |          |                | 37 113                                  |
|    |        | 1,2-Diphenylhydrazine                    | 1        | < 330          | ug/kg                                   |
|    |        | 2,4-Dimethylphenol                       | 1        | < 330          | ug/kg                                   |
|    |        | 2,4-Dinitrotoluene                       | 1        | < 330          | ug/kg                                   |
|    |        | 2,6-Dinitrotoluene                       | 1        | < 330          | ug/kg                                   |
|    |        | 2-Chloronaphthalene                      | 1        | < 330          | ug/kg                                   |
|    |        | 2-Methylnaphthalene                      | 1        | < 330          | ug/kg                                   |
|    |        | 4,6-Dinitro-o-cresol                     | 1        | < 1,600        | ug/kg                                   |
|    |        | 4-Nitrophenol                            | 1        | < 1,600        | ug/kg                                   |
|    |        | Acenaphthene                             | 1        | < 330          | ug/kg                                   |
|    |        | Acenaphthylene                           | 1        | < 330          | ug/kg                                   |
|    |        | Anthracene                               | 1        | < 330          | ug/kg                                   |
|    |        | Benzo(a)anthracene                       | 1        | < 330          | ug/kg                                   |
|    |        | Benzo(a)pyrene<br>Chrysene               | 1        | < 330          | ug/kg                                   |
|    |        | Di-n-butyl phthalate                     | 1        | < 330          | ug/kg                                   |
|    |        | Dibenzofuran                             | 1        | < 330          | ug/kg                                   |
|    |        | Fluoranthene                             | 1        | < 330          | ug/kg                                   |
|    |        | Fluorene                                 | 1        | < 330          | ug/kg                                   |
|    |        | N-Nitrosodiphenylamine                   | 1        | < 330          | ug/kg                                   |
|    |        | Naphthalene                              | 1        | < 330          | ug/kg                                   |
|    |        | Nitrobenzene                             | 1        | < 330          | ug/kg                                   |
|    |        | Pentachlorophenol                        | 1        | < 330          | ug/kg                                   |
|    |        | Phenanthrene                             | 1        | < 1,600        | ug/kg                                   |
|    |        | Phenol                                   | 1        | < 330          | ug/kg                                   |
|    |        | Pyrene                                   | / 1<br>1 | < 330          | ug/kg                                   |
|    |        | bis(2-Chloroethoxy)methane               | 1        | < 330<br>< 330 | ug/kg                                   |
|    |        |                                          | !        | < 220          | ug/kg                                   |

April 08, 1997 Report No.: 00060278 Section A Page 41

|     |            | LABORATORY ANALYSIS REPORT              |                  | ction A rage 41 |
|-----|------------|-----------------------------------------|------------------|-----------------|
| , ( | CLIENT NA  |                                         | LIMS CLIENT:     | 0717 0007       |
|     | ADDRE      |                                         | PACE PROJECT:    | H44082          |
|     | A 777117 1 | HOUSTON, TX 77040-                      | PACE CLIENT:     | 620437          |
|     | ATTENTI    | DN: BILL GOLDSBY                        | P.O. NO:         | 03219           |
|     | SAMPLE     | ID: HWPW-SB05-S39                       |                  |                 |
|     |            |                                         | DATE SAMPLED:    | 04-MAR-97 1103  |
|     | SAMPLE     |                                         | DATE RECEIVED:   | 04-MAR-97       |
| SAI | MPLE MATR  | ix: SUIL                                | PROJECT MANAGER: | Elessa Sommers  |
|     |            |                                         | <i>t</i>         |                 |
|     | TEST       |                                         | BILLITION        |                 |
| LN  | CODE       | DETERMINATION                           | DILUTION         |                 |
|     |            | PEICHTANION                             | FACTOR           | RESULT UNIT     |
|     |            | , , , , , , , , , , , , , , , , , , , , |                  | ***********     |
| 1   | OVTCS2     | 8260A TCL Volatiles in Soil             |                  |                 |
|     |            | 1.2-Dichloroethane                      |                  | _               |

| LN | CODE   | DETERMINATION                            | FLOTION        | FACTOR  |       |  |
|----|--------|------------------------------------------|----------------|---------|-------|--|
|    |        | **************************************   | FACTOR         | RESULT  | UNITS |  |
|    |        |                                          |                |         |       |  |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |                |         |       |  |
|    |        | 1,2-Dichloroethane                       |                | _       |       |  |
|    |        | Benzene                                  | 1              | < 5     | ug/kg |  |
|    |        | Chlorobenzene                            | 1              | < 5     | ug/kg |  |
|    |        | Ethylbenzene                             | 1              | < 5     | ug/kg |  |
|    |        | Methylene chloride                       | 1              | < 5     | ug/kg |  |
|    |        | Toluene                                  | 1              | < 5     | ug/kg |  |
|    |        | Xylenes (total)                          | 1              | < 5     | ug/kg |  |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil | 1              | < 5     | ug/kg |  |
| -  |        | 1,2-Diphenylhydrazine                    |                |         |       |  |
|    |        | 2,4-Dimethylphenol                       | 1              | < 330   | ug/kg |  |
|    |        | 2,4-Dinitrotoluene                       | 1              | < 330   | ug/kg |  |
|    |        | 2,6-Dinitrotoluene                       | 1              | < 330   | ug/kg |  |
|    |        | 2-Chloronaphthalene                      | 1.             | < 330   | ug/kg |  |
|    |        | 2-Methylnaphthalene                      | 1              | < 330   | ug/kg |  |
|    |        | 4,6-Dinitro-o-cresol                     | 1              | < 330   | ug/kg |  |
|    |        | 4-Nitrophenol                            | 1              | < 1,600 | ug/kg |  |
|    |        | Acenaphthene                             | 1              | < 1,600 | ug/kg |  |
|    |        | Acenaphthylene                           | 1              | < 330   | ug/kg |  |
|    |        | Anthracene                               | 1              | < 330   | ug/kg |  |
|    |        | Benzo(a)anthracene                       | 1              | < 330   | ug/kg |  |
|    |        | Benzo(a)pyrene                           | 1              | < 330   | ug/kg |  |
|    |        | Chrysene                                 | . 1            | < 330   | ug/kg |  |
|    |        | Di-n-butyl phthalate                     | 1              | < 330   | ug/kg |  |
|    |        | Dibenzofuran                             | 1              | < 330   | ug/kg |  |
|    |        | Fluoranthene                             | 1              | < 330   | ug/kg |  |
|    |        | Fluorene                                 | · 1 .          | < 330   | ug/kg |  |
|    |        |                                          | 1              | < 330   | ug/kg |  |
|    |        | N-Nitrosodiphenylamine                   | <sub>.</sub> 1 | < 330   | ug/kg |  |
|    |        | Naphthalene<br>Nitrobenzene              | 1              | < 330   | ug/kg |  |
|    |        |                                          | 1              | < 330   | ug/kg |  |
|    |        | Pentachlorophenol                        | 1              | < 1,600 | ug/kg |  |
|    |        | Phenanthrene<br>Phenol                   | 1              | < 330   | ug/kg |  |
|    |        |                                          | 1              | < 330   | ug/kg |  |
|    |        | Pyrene                                   | 1              | < 330   | ug/kg |  |
|    |        | bis(2-Chloroethoxy)methane               | 1              | < 330   | ug/kg |  |
|    |        |                                          |                |         |       |  |

Houston, TX 77058
Tel: 713-488-1810
Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 42

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB05-S39
SAMPLE NO: H446233

| LN | TEST  | DETERMINATION                                        | DILUTION<br>FACTOR | RESULT | UNITS          |
|----|-------|------------------------------------------------------|--------------------|--------|----------------|
| 5  | 16858 | bis(2-Ethylhexyl)phthalate<br>Petroleum Hydrocarbons | 1<br>1             |        | ug/kg<br>mg/kg |

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 43

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB05-S54

SAMPLE NO: H446234

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 04-MAR-97 1128

DATE RECEIVED: 04-MAR-97

PROJECT MANAGER: Elessa Sommers

| TEST   DETERMINATION   FACTOR   RESULT   UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |         |                                                 |          |         |       |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|-------------------------------------------------|----------|---------|-------|---|
| 1 OVTCS2   8260A TCL Volatiles in Soil   1,2-Dichloroethane   1   < 5   ug/kg   Ethylbenzene   1   < 5   ug/kg   Ethylbenzene   1   < 5   ug/kg   Ethylbenzene   1   < 5   ug/kg   Ethylbenzene   1   < 5   ug/kg   Ethylbenzene   1   < 5   ug/kg   Ethylbenzene   1   < 5   ug/kg   Ethylbenzene   1   < 5   ug/kg   Ethylbenzene   1   < 5   ug/kg   Ethylbenzene   1   < 5   ug/kg   Ethylbenzene   1   < 5   ug/kg   Ethylbenzene   1   < 5   ug/kg   Ethylbenzene   1   < 5   ug/kg   Ethylbenzene   1   < 5   ug/kg   Ethylbenzene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   1   < 5   ug/kg   Ug/kg   Ethylbensene   1   < 5   ug/kg   Ug/kg   Ethylbensene   1   < 5   ug/kg   Ethylbensene   Ethylbensene   Ethylbensene   Ethylbensene   Ethylbensene   Ethylbensene   Ethylbensene   Ethylbensene   Ethyl   |    |         |                                                 | DILUTION |         |       | - |
| 1 OVTCS2 8260A TCL Volatiles in Soil 1,2-Dichloroethane 8enzene 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LN | CODE    | DETERMINATION                                   |          | RESULT  | UNITS |   |
| 1,2-Dichloroethane Benzene Chlorobenzene Ethytbenzene Hethytene chloride Toluene Xylenes (total)  3 OSVICS TCL - Semi-volatile Extractables in Soil 1,2-Diphenythydrazine 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3,6-Dinitrotoluene 4,6-Dinitro-o-cresol 4,6-Dinitro-o-cresol 4,6-Dinitro-o-cresol 4,6-Dinitro-o-cresol 4,6-Dinitro-o-cresol 5,1-Dinitro-o-cresol 6,1-Dinitro-o-cresol 7,2-Diphenythydrazine 9,3-Dinitro-o-cresol 1,2-Diphenythydrazine 1,2-Diphenythydrazine 1,2-Diphenythydrazine 1,2-Diphenythydrazine 1,2-Dinitro-o-cresol 1,2-Dinitro-o-cresol 2,6-Dinitro-o-cresol 3,3-Dinitro-o-cresol 4,6-Dinitro-o-cresol 4,6-Dinitro-o-cresol 5,1-Dinitro-o-cresol 6,2-Methyt-laphthalene 1,2-Dinitro-o-cresol 1,2-Dinitro-o-cresol 1,2-Dinitro-o-cresol 1,2-Dinitro-o-cresol 1,2-Dinitro-o-cresol 1,2-Dinitro-o-cresol 1,2-Dinitro-o-cresol 1,2-Dinitro-o-cresol 2,3-Dinitro-o-cresol 3,3-Dinitro-o-cresol 3,3-Dinitro-o-cresol 4,6-Dinitro-o-cresol 4,6-Dinitro-o-cresol 5,2-Dinitro-o-cresol 6,2-Dinitro-o-cresol 7,2-Dinitro-o-cresol 7,2-Dinitro-o-cresol 7,2-Dinitro-o-cresol 7,2-Dinitro-o-cresol 7,2-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,2-Dinitro-o-cresol 7,2-Dinitro-o-cresol 7,2-Dinitro-o-cresol 7,2-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,2-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,2-Dinitro-o-cresol 7,2-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,2-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Dinitro-o-cresol 7,3-Di |    |         |                                                 |          |         |       |   |
| 1,2-Dichloroethane Benzene Chlorobenzene Ethytbenzene Hethytene chloride Toluene Xylenes (total)  3 OSVICS TCL - Semi-volatile Extractables in Soil 1,2-Diphenythydrazine 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluene 3,0-Dinitrotoluenenenenenenenenenenenenenenenenenenen                                                                                               | 4  | 017003  | 00/04 701 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1 |          |         |       |   |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1  | OVICSZ  |                                                 |          |         |       |   |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |         |                                                 | 1        | < 5     | ug/kg |   |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |         |                                                 | . 1      | < 5     | ug/kg |   |
| Methylene chloride         1         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |         |                                                 | 1        | < 5     | ug/kg |   |
| Toluene Xylenes (total) 1 < 5 ug/kg Xylenes (total) 1 < 5 ug/kg Xylenes (total) 1 < 5 ug/kg Xylenes (total) 1 < 5 ug/kg Xylenes (total) 1 < 5 ug/kg Xylenes (total) 1 < 5 ug/kg Xylenes (total) 1 < 330 ug/kg 2,4-Dimthylphenol 1 < 330 ug/kg 2,4-Dimthylphenol 1 < 330 ug/kg 2,4-Dimtrotoluene 1 < 330 ug/kg 2,6-Dintrotoluene 1 < 330 ug/kg 2.6-Dintrotoluene 1 < 330 ug/kg 2-Methylnephthalene 1 < 330 ug/kg 2-Methylnephthalene 1 < 330 ug/kg 4,6-Dintro-o-cresol 1 < 1,600 ug/kg 4-Nitrophenol 1 < 1,600 ug/kg 4-Nitrophenol 1 < 1,600 ug/kg Acenaphthylene 1 < 330 ug/kg Acenaphthylene 1 < 330 ug/kg Acenaphthylene 1 < 330 ug/kg Acenaphthylene 1 < 330 ug/kg Acenaphthylene 1 < 330 ug/kg Acenaphthylene 1 < 330 ug/kg Benzo(a)anthracene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Din-butyl phthalate 1 < 330 ug/kg Din-butyl phthalate 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Fluorene 1 < 330 ug/kg Fluorene 1 < 330 ug/kg Nhitrosodiphenylamine 1 < 330 ug/kg Nhitrosodiphenylamine 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 ug/kg Prene 1 < 330 |    |         | 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1          | 1        | < 5     | ug/kg |   |
| Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |         |                                                 | 1        | < 5     | ug/kg |   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |         |                                                 | 1        | < 5     | ug/kg |   |
| 1,2-Diphenylhydrazine 2,4-Dimethylphenol 1 < 330 ug/kg 2,4-Dimitrotoluene 1 < 330 ug/kg 2,6-Dinitrotoluene 1 < 330 ug/kg 2-Chloronaphthalene 1 < 330 ug/kg 2-Chloronaphthalene 1 < 330 ug/kg 2-Methylnaphthalene 1 < 330 ug/kg 2-Methylnaphthalene 1 < 330 ug/kg 4,6-Dinitro-o-cresol 1 < 1,600 ug/kg 4-Nitrophenol 1 < 1,600 ug/kg Acenaphthylene 1 < 330 ug/kg Acenaphthylene 1 < 330 ug/kg Acenaphtylene 1 < 330 ug/kg Acenaphtylene 1 < 330 ug/kg Acenaphtylene 1 < 330 ug/kg Acenaphtylene 1 < 330 ug/kg Acenaphtylene 1 < 330 ug/kg Acenaphtylene 1 < 330 ug/kg Acenaphtylene 1 < 330 ug/kg Acenaphtylene 1 < 330 ug/kg Acenaphtylene 1 < 330 ug/kg Benzo(a)aphracene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Fluorene 1 < 330 ug/kg Fluorene 1 < 330 ug/kg N-Nitrosodiphenylamine 1 < 330 ug/kg Naphthalene 1 < 330 ug/kg Naphthalene 1 < 330 ug/kg Pentachlorophenol 1 < 330 ug/kg Phenathrene 1 < 330 ug/kg Phenol Pyrene 1 < 330 ug/kg Pyrene 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7  | 001/700 |                                                 | 1        | < 5     | ug/kg |   |
| 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3  | OSVICS  |                                                 |          |         |       |   |
| 2,4-Dinitrotoluene       1       < 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |         |                                                 | 1        | < 330   | ug/kg |   |
| 2,6-Dinitrotoluene 2-Chloronaphthalene 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |         |                                                 | 1        | < 330   | ug/kg |   |
| 2-Chloronaphthalene 2-Methylnaphthalene 330 ug/kg 4,6-Dinitro-o-cresol 4-Nitrophenol Acenaphthene 1 < 330 ug/kg 4-Nitrophenol Acenaphthylene 1 < 330 ug/kg Anthracene 1 < 330 ug/kg Anthracene 1 < 330 ug/kg Anthracene 1 < 330 ug/kg Anthracene 1 < 330 ug/kg Benzo(a)anthracene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Chrysene 1 < 330 ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Fluoranthene 1 < 330 ug/kg Fluoranthene 1 < 330 ug/kg N-Nitrosodiphenylamine Naphthalene Nitrobenzene 1 < 330 ug/kg Pentachlorophenol 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |         |                                                 | 1        | < 330   | ug/kg |   |
| 2-Methylnaphthalene 1 < 330 ug/kg 4,6-Dinitro-o-cresol 1 < 1,600 ug/kg 4-Nitrophenol 1 < 1,600 ug/kg Acenaphthene 1 < 330 ug/kg Acenaphthylene 1 < 330 ug/kg Acenaphthylene 1 < 330 ug/kg Acenaphthylene 1 < 330 ug/kg Acenaphthylene 1 < 330 ug/kg Anthracene 1 < 330 ug/kg Benzo(a)anthracene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Chrysene 1 < 330 ug/kg Chrysene 1 < 330 ug/kg Chrysene 1 < 330 ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Fluorenthene 1 < 330 ug/kg Fluorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < 330 ug/kg Riuorene 1 < |    |         |                                                 | 1        | < 330   | ug/kg |   |
| 2-Methylnaphthalene 4,6-Dinitro-o-cresol 1,1,600 ug/kg 4-Nitrophenol 1,1,600 ug/kg Acenaphthene 1,2,330 ug/kg Acenaphthylene 1,2,330 ug/kg Anthracene 1,2,330 ug/kg Benzo(a)anthracene 1,2,330 ug/kg Benzo(a)pyrene 1,2,330 ug/kg Benzo(a)pyrene 1,2,330 ug/kg Benzo(a)pyrene 1,2,330 ug/kg Benzo(a)pyrene 1,2,330 ug/kg Benzo(a)pyrene 1,2,330 ug/kg Benzo(a)pyrene 1,2,330 ug/kg Benzo(a)pyrene 1,2,330 ug/kg Benzo(a)pyrene 1,2,330 ug/kg Benzo(a)pyrene 1,2,330 ug/kg Benzo(a)pyrene 1,2,330 ug/kg Fluoranthene 1,2,330 ug/kg Fluoranthene 1,2,330 ug/kg N-Nitrosodiphenylamine Nitrobenzene 1,2,330 ug/kg N-pentachlorophenol 1,2,330 ug/kg Phenanthrene 1,2,330 ug/kg Phenanthrene 1,2,330 ug/kg Phenol Phenol Phenol Phenol Pyrene 1,2,330 ug/kg Pyrene 1,2,330 ug/kg Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |         | •                                               | 1        | < 330   | ug/kg |   |
| 4-Nitrophenol 1 < 1,600 ug/kg Acenaphthene 1 < 330 ug/kg Acenaphthylene 1 < 330 ug/kg Anthracene 1 < 330 ug/kg Benzo(a)anthracene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Chrysene 1 < 330 ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Fluoranthene 1 < 330 ug/kg Fluorene 1 < 330 ug/kg N-Nitrosodiphenylamine 1 < 330 ug/kg Naphthalene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         |                                                 | 1        | < 330   |       |   |
| Acenaphthene Acenaphthene Acenaphthylene Acenaphthylene Anthracene Anthracene Benzo(a)anthracene Benzo(a)pyrene Chrysene Di-n-butyl phthalate Dibenzofuran Fluorene N-Nitrosodiphenylamine Naphthalene Nitrobenzene Nitrobenzene Phenol Pyrene  his(2-Chlerosthovy)methone  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |         |                                                 | 1        | < 1,600 |       |   |
| Acenaphthene Acenaphthylene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Chrysene Di-n-butyl phthalate Dibenzofuran Fluoranthene Fluorene N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene  Nist2-Chlorosethoxylmethose Pisson  Acenaphthylene Acenaphthylene Acenaphthylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtylene Acenaphtyl |    |         |                                                 | 1        | < 1,600 |       |   |
| Acenaphthylene Anthracene Anthracene Benzo(a)anthracene Benzo(a)pyrene Chrysene Di-n-butyl phthalate Dibenzofuran Fluoranthene Fluorene N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |         |                                                 | 1        | < 330   | -     |   |
| Benzo(a)anthracene Benzo(a)pyrene Chrysene 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |         |                                                 | 1        | < 330   |       |   |
| Benzo(a)anthracene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Chrysene 1 < 330 ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Fluoranthene 1 < 330 ug/kg Fluorene 1 < 330 ug/kg N-Nitrosodiphenylamine 1 < 330 ug/kg Naphthalene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Pentachlorophenol 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenol 1 < 330 ug/kg Pyrene 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |         |                                                 | 1        | < 330   | ug/kg |   |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |         |                                                 | 1        | < 330   | _     |   |
| Chrysene Di-n-butyl phthalate Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran D |    |         |                                                 | 1        | < 330   |       |   |
| Di-n-butyl phthalate 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Fluoranthene 1 < 330 ug/kg Fluorene 1 < 330 ug/kg N-Nitrosodiphenylamine 1 < 330 ug/kg Naphthalene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Pentachlorophenol 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenol 1 < 330 ug/kg Pyrene 1 < 330 ug/kg Pyrene 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |         |                                                 | 1        | < 330   |       |   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |         |                                                 | 1        |         |       |   |
| Fluoranthene 1 < 330 ug/kg Fluorene 1 < 330 ug/kg N-Nitrosodiphenylamine 1 < 330 ug/kg Naphthalene 1 < 330 ug/kg Nitrobenzene 1 < 330 ug/kg Pentachlorophenol 1 < 330 ug/kg Phenanthrene 1 < 330 ug/kg Phenol 1 < 330 ug/kg Pyrene 1 < 330 ug/kg Pyrene 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |         |                                                 | 1        | < 330   |       |   |
| N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |         |                                                 | 1        | < 330   |       |   |
| N-Nitrosodiphenylamine  Naphthalene  Nitrobenzene  Nitrobenzene  Pentachlorophenol  Phenanthrene  Phenol  Pyrene  Discording to the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process o |    |         |                                                 | 1        | < 330   |       |   |
| Naphthalene       1       < 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |         |                                                 | 1        |         |       |   |
| Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |         |                                                 | 1        |         |       |   |
| Pentachlorophenol       1       < 1,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |         |                                                 | 1        |         |       |   |
| Phenanthrene         1         < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         | Pentachlorophenol                               | 1        |         |       |   |
| Phenol 1 < 330 ug/kg Pyrene 1 < 330 ug/kg 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |         |                                                 |          | •       |       |   |
| Pyrene 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |         |                                                 | 1        |         |       |   |
| his/2-Chloroothovy/methons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |         | *                                               | 1        |         |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |         | bis(2-Chloroethoxy)methane                      | 1        |         |       |   |

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997
Report No.: 00060278
Section A Page 44

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-SB05-S54

SAMPLE NO: H446234

| LN | TEST  | DETERMINATION                                        | DILUTION<br>FACTOR | RESULT        | UNITS          |
|----|-------|------------------------------------------------------|--------------------|---------------|----------------|
| 5  | 1685s | bis(2-Ethylhexyl)phthalate<br>Petroleum Hydrocarbons | 1<br>1             | < 330<br>< 20 | ug/kg<br>mg/kg |

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section A Page 45

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB06-S4

SAMPLE NO: H446235

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44082

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 04-MAR-97 1433 DATE RECEIVED: 04-MAR-97

PROJECT MANAGER: Elessa Sommers

| **** |        |                                          |          |          |                |  |
|------|--------|------------------------------------------|----------|----------|----------------|--|
|      | TEST   |                                          | DILUTION |          |                |  |
| LN   | CODE   | DETERMINATION                            | FACTOR   | RESULT   | LINITE         |  |
|      |        |                                          | 170100   | RESULI   | ONIIS          |  |
|      |        |                                          |          |          |                |  |
| 1    | OVTCS2 | 8260A TCL Volatiles in Soil              |          |          |                |  |
|      |        | 1,2-Dichloroethane                       | 1        | < 5      | ua/ka          |  |
|      |        | Benzene                                  | 1        | < 5      | ug/kg          |  |
|      |        | Chlorobenzene                            | 1        | < 5      | ug/kg<br>ug/kg |  |
|      |        | Ethylbenzene                             | 1        | 55       |                |  |
|      |        | Methylene chloride                       | 1        | < 5      | ug/kg<br>ug/kg |  |
|      |        | Toluene                                  | 1        |          |                |  |
|      |        | Xylenes (total)                          | 1        | 140      | ug/kg<br>ug/kg |  |
| 3    | OSVTCS | TCL - Semi-volatile Extractables in Soil | •        | 140      | ug/kg          |  |
|      |        | 1,2-Diphenylhydrazine                    | 25       | < 8,200  | ug/kg          |  |
|      |        | 2,4-Dimethylphenol                       | 25       | < 8,200  | ug/kg          |  |
|      |        | 2,4-Dinitrotoluene                       | 25       | < 8,200  | ug/kg          |  |
|      |        | 2,6-Dinitrotoluene                       | 25       | < 8,200  | ug/kg          |  |
|      |        | 2-Chloronaphthalene                      | 25       | < 8,200  | ug/kg          |  |
|      |        | 2-Methylnaphthalene                      | 25       | 72,000   | ug/kg          |  |
|      |        | 4,6-Dinitro-o-cresol                     | 25       | < 41,000 | ug/kg          |  |
|      |        | 4-Nitrophenol                            | 25       | < 41,000 | ug/kg          |  |
|      |        | Acenaphthene                             | 25       | 46,000   |                |  |
|      |        | Acenaphthylene                           | 25       | < 8,200  | ug/kg          |  |
|      |        | Anthracene                               | 25       | 25,000   | ug/kg<br>ug/kg |  |
|      |        | Benzo(a)anthracene                       | 25       | 8,200    | ug/kg<br>ug/kg |  |
|      |        | Benzo(a)pyrene                           | 25       | < 8,200  |                |  |
|      |        | Chrysene                                 | 25       | 9,900    | ug/kg<br>ug/kg |  |
|      |        | Di-n-butyl phthalate                     | 25       | < 8,200  | ug/kg<br>ug/kg |  |
|      |        | Dibenzofuran                             | 25       | 43,000   |                |  |
|      |        | Fluoranthene                             | 25       | 52,000   | ug/kg<br>ug/kg |  |
|      |        | Fluorene                                 | 25       | 41,000   |                |  |
|      |        | N-Nitrosodiphenylamine                   | 25       | < 8,200  | ug/kg<br>ug/kg |  |
|      |        | Naphthalene                              | 25       | 132,000  | ug/kg          |  |
|      |        | Nitrobenzene                             | 25       | < 8,200  | ug/kg          |  |
|      |        | Pentachlorophenol                        | 25       | < 41,000 | ug/kg<br>ug/kg |  |
|      |        | Phenanthrene                             | 25       | 82,000   | -              |  |
|      |        | Phenol                                   | 25       | < 8,200  | ug/kg          |  |
|      |        | Pyrene                                   | 25       | 30,000   | ug/kg          |  |
|      |        | bis(2-Chloroethoxy)methane               | 25       | < 8,200  | ug/kg          |  |
|      |        |                                          | 40       | , 0,200  | ug/kg          |  |

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997
Report No.: 00060278
Section A Page 46

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-SB06-S4

SAMPLE NO: H446235

| LN | TEST  | DETERMINATION              | DILUTION |         |       |  |
|----|-------|----------------------------|----------|---------|-------|--|
|    |       | DETERMINATION              | FACTOR   | RESULT  | UNITS |  |
|    |       |                            |          |         |       |  |
|    |       | bis(2-Ethylhexyl)phthalate | 25       | < 8,200 | ug/kg |  |
| 5  | 16858 | Petroleum Hydrocarbons     | 1        | 690     | mg/kg |  |
|    |       |                            |          |         |       |  |

COMMENTS: The detection limits reported for semi-volatiles were elevated due to the dilution required because of the high concentration of target analytes.

April 08, 1997
Report No.: 00060278
Section B Page 1

### SUPPLEMENTAL INFORMATION

|       | TEST             | LCSR<br>BLNK   | DUP/MS<br>MS/MSD |                | SAMPLE PREPA   | RATION  | **********           | SAMPLE ANALYS  | SIS      | •••••          |
|-------|------------------|----------------|------------------|----------------|----------------|---------|----------------------|----------------|----------|----------------|
| LN    | CODE             |                | BATCH            | LR-METHOD      | DATE/TIME      | ANALYST | LR-METHOD            | DATE/TIME      | ANALYST  | INSTRUMEN      |
| AMPL  | E ID: H          | IWPW-MW14      | -s017            |                |                |         |                      | SAMPLE NO      | D: H4462 | 213            |
|       |                  |                |                  |                |                |         |                      |                |          |                |
|       | OVTCS2           |                | 72083            |                |                |         | 19-8260A             | 07-MAR-97 1446 | JC       | GCMSY          |
| 3     | OSVTCS           | 72203          | 72203            | 19-3550A       | 12-MAR-97 0900 | АМ      | 19-8270B             | 30-MAR-97 2323 | EAY      | GCMSZ          |
| AMPL  | E ID: H          | WPW-MW14       | -s035            |                |                |         |                      | SAMPLE NO      | ): H4462 | 214            |
| 1     | OVTCS2           | 72083          | 72257            | NA             |                |         | 19-8260A             | 07-MAR-97 1520 | 10       | ogue.          |
| 3     | OSVTCS           | 72203          | 72203            | 19-3550A       | 12-MAR-97 0900 | RDQ     | 19-8270B             | 22-MAR-97 2154 |          | GCMSY<br>GCMSX |
| AMB   | - 10. II         |                | 2010             |                |                |         |                      |                |          | GONOX          |
| AMPLI | : 1D: H          | WPW-MW14       | -8040            |                |                |         |                      | SAMPLE NO      | ): H4462 | 215            |
| 1     | OVTCS2           | 72083          | 72257            |                |                |         | 19-8260A             | 07-MAR-97 1553 | JC.      | GCMSY          |
| 3     | OSVTCS           | 72203          | 72203            | 19-3550A       | 12-MAR-97 0900 | RDQ     | 19-8270B             | 22-MAR-97 2244 |          | GCMSX          |
| AMPLI | E ID: H          | WPW-AOC4       | -SE-S00          | ,              |                |         |                      | SAMPLE NO      | ): H4462 | 216            |
|       | OVTCS2           |                | 72257            |                |                |         | 19-8260A             | 07-MAR-97 1626 | JC       | GCMSY          |
| 3     | OSVTCS           | 72203          | 72203            | 19-3550A       | 12-MAR-97 0900 | RDQ     | 19-8270B             | 06-APR-97 2208 | EAY      | GCMSA          |
| AMPLE | E ID: H          | WPW-AOC4       | -sw-s00          |                |                |         |                      | SAMPLE NO      | : H4462  | 17             |
| 1     | OVTCS2           | 72083          | 72257            | NA             |                |         | 19-8260A             | 07-MAR-97 1659 | ıc       | GCMSY          |
| 3     | OSVTCS           | 72203          | 72203            | 19-3550A       | 12-MAR-97 0900 | RDQ     | 19-8270B             | 23-MAR-97 2208 |          | GCMSA          |
| AMPLE | ID: H            | WPW-AOC4       | -NE-S00          |                |                |         |                      | SAMPLE NO      |          |                |
|       | 01/2000          | 70444          |                  |                |                |         |                      | 57111 EE 140   | . 114402 | .10            |
|       | OVTCS2<br>OSVTCS | 72161<br>72203 | 72257            |                | 42 442 67 6666 |         | 19-8260A             |                |          | GCMSY          |
| J     | 034163           | 12203          | 12203            | 19-3330A       | 12-MAR-97 0900 | RDQ     | 19-8270B             | 23-MAR-97 1449 | EAY      | GCMSA          |
| AMPLE | ID: H            | WPW-AOC4       | -NW-S00          | r.             |                |         |                      | SAMPLE NO      | : H4462  | 19             |
| 1     | OVTCS2           | 72257          | 72257            | NA             |                |         | 19-8260A             | 10-MAR-97 1228 | ıc       | CCNCA          |
| 3     | OSVTCS           | 72203          | 72203            | 19-3550A       | 12-MAR-97 0900 | RDQ     | 19-8270B             | 05-APR-97 1726 |          | GCMSY<br>GCMSA |
| AMPLE | ID: H            | WPW-AOC7       | - 5'00           |                |                |         |                      | SAMPLE NO      |          | 20             |
| 1     | OVTCS2           | 72194          | 72257            | MA             |                |         | 10.00/01             |                |          |                |
|       | OSVTCS           | 72203          |                  | NA<br>19-3550A | 12-MAR-97 0900 | PDO     |                      | 11-MAR-97 0948 |          | GCMSY          |
|       | 16858            | 72360          |                  | 19-3550A       | 12-MMK-31 U9UU | KUW     | 19-8270B<br>02-418.1 | 02-APR-97 0308 |          | GCMSA          |
|       |                  |                |                  | ., 023011      |                |         | 02-410.1             | 14-MAR-97 1200 | JLJ      | 302WAT         |

April 08, 1997
Report No.: 00060278
Section B Page 2

### SUPPLEMENTAL INFORMATION

|       | TEST     | LCSR<br>BLNK                            | DUP/MS<br>MS/MSI | s                    | SAMPLE PREPA    | ARATION |           |                | LYSIS       |          |
|-------|----------|-----------------------------------------|------------------|----------------------|-----------------|---------|-----------|----------------|-------------|----------|
| LN    |          | BATCH                                   | BATCH            |                      | DATE/TIME       | ANALYST | LR-METHOD | DATE/TIME      | ANALYST     | INSTRUME |
| SAME  | PLE ID:  | HWPW-SBO                                | 2-\$7            |                      |                 |         |           | SAMPI F        | NO: H446    | 221      |
| 4     | OVTCS2   | 72257                                   | 72257            | 7 114                |                 |         |           |                |             |          |
|       | OSVICS   |                                         |                  |                      | 12-MAR-97 0900  |         | 19-8260A  | 10 1011 71 100 |             | GCMSY    |
| _     | 1685s    |                                         |                  | ) 19-3550A           | 12-MAK-97 0900  | KDQ     | 19-8270в  |                |             | GCMSA    |
|       |          | 12500                                   | 72300            | 19-3330A             |                 |         | 02-418.1  | 14-MAR-97 120  | ) JLJ       | 302WAT   |
| SAMP  | LE ID:   | HWPW-SB02                               | 2- <b>s</b> 21   |                      |                 |         |           | SAMPLE         | NO: H4462   | 222      |
| 1     | OVTCS2   | 72194                                   | 72257            | NA NA                |                 |         | 19-8260A  | 11-MAR-97 102  | l ic        | GCMSY    |
| 3     | OSVTCS   | 72449                                   |                  |                      | 17-MAR-97 1300  | RDQ     | 19-8270в  |                |             | GCMSA    |
| 5     | 1685s    | 72360                                   | 72360            | 19-3550A             |                 |         | 02-418.1  | 14-MAR-97 1200 |             | 302WAT   |
| SAMP  | LE ID:   | HWPW-SB02                               | 2-524            |                      |                 |         |           | SAMPLE         | NO: H4462   | 23       |
| 1     | OVTCS2   | 72194                                   | 72257            | NA                   |                 |         | 40.0040   |                |             |          |
|       | OSVTCS   | 72449                                   |                  |                      | 17-MAR-97 1300  | DDO     |           | 11-MAR-97 1137 |             | GCMSY    |
|       | 16858    | 72360                                   |                  | 19-3550A             | 17 -MAK-97 1300 | KUQ     | 19-8270B  |                |             | GCMSA    |
|       |          |                                         |                  | 17 33301             |                 |         | 02-418.1  | 14-MAR-97 1200 | JLJ         | 302WAT   |
| SAMP  | LE ID: H | IWPW-SB02                               | -837.5           |                      |                 |         |           | SAMPLE         | NO: H4462   | 24       |
| 1     | OVTCS2   | 72194                                   | 72257            | NA                   |                 |         | 19-8260A  | 11-MAR-97 1201 | 1C          | GCMSY    |
|       | OSVTCS   | 72449                                   | 72449            | 19-3550A             | 17-MAR-97 1300  | RDQ     | 19-8270B  | 23-MAR-97 2128 |             | GCMSA    |
| 5     | 16858    | 72360                                   | 72360            | 19-3550A             |                 |         | 02-418.1  | 14-MAR-97 1200 |             | 302WAT   |
| SAMPL | E ID: H  | WPW-SB02                                | -s38.5           |                      |                 |         |           | CAMDIE         | NO: H44622  | 95       |
|       |          |                                         |                  |                      |                 |         |           | SAMPLE         | NU: 1144022 | 25       |
|       | OVTCS2   | 72194                                   | 72257            |                      |                 |         | 19-8260A  | 11-MAR-97 1244 | JC          | GCMSY    |
|       | OSVTCS   | 72449                                   |                  |                      | 17-MAR-97 1300  | RDQ     | 19-8270B  | 23-MAR-97 1705 |             | GCMSA    |
| 5     | 1685s    | 72360                                   | 72360            | 19-3550A             |                 |         | 02-418.1  | 14-MAR-97 1200 |             | 302WAT   |
| SAMPL | E ID: H  | WPW-SB02                                | -\$49            |                      |                 |         |           | SAMPLE N       | NO: H44622  | 26       |
| 1     | OVTCS2   | 72257                                   | 72257            |                      |                 |         |           |                |             |          |
|       | OSVTCS   |                                         |                  |                      | 17 440 07 4700  |         | 19-8260A  | 10-MAR-97 1404 |             | GCMSY    |
|       | 16858    | 72360                                   | 72340            | 19-3550A<br>19-3550A | 17-MAR-97 1300  | RDQ     | 19-8270в  | 23-MAR-97 1949 |             | GCMSA    |
| -     | .0050    | 12300                                   | 72300            | 19-3330A             |                 |         | 02-418.1  | 14-MAR-97 1200 | JLJ         | 302WAT   |
| SAMPL | E ID: H  | NPW-AOC3                                | I-S00            |                      |                 |         |           | SAMPLE N       | IO: H44622  | 7        |
| 1     | OVTCS2   | 72257                                   | 72257            | NA                   |                 |         | 10-93404  | 40 445 07 4445 |             |          |
|       | OSVTCS   | 72449                                   |                  |                      | 17-MAR-97 1300  | PDO     |           | 10-MAR-97 1440 |             | GCMSY    |
|       |          | 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                  |                      |                 | NOW.    | 19-8270B  | 04-APR-97 2249 | EAY         | GCMSA    |

April 08, 1997
Report No.: 00060278
Section B Page 3

### SUPPLEMENTAL INFORMATION

| 8260A 10-MAR-97<br>8270B 23-MAR-97<br>SAI<br>8260A 11-MAR-97<br>8270B 01-APR-97                             |                                                                                                          | GCMSA                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R-METHOD DATE/TI<br>SA<br>-8260A 10-MAR-97<br>-8270B 23-MAR-97<br>SA<br>-8260A 11-MAR-97<br>8270B 01-APR-97 | IME ANALY  AMPLE NO: H4  7 1513 JC 7 1754 EAY  AMPLE NO: H4                                              | GCMSY GCMSY GCMSY GCMSY GCMSY                                                                                                                                                   |
| SA<br>8260A 10-MAR-97<br>8270B 23-MAR-97<br>SA<br>8260A 11-MAR-97<br>8270B 01-APR-97                        | AMPLE NO: H4<br>7 1513 JC<br>7 1754 EAY<br>AMPLE NO: H4                                                  | GCMSY<br>GCMSA<br>GCMSA<br>46229<br>GCMSY                                                                                                                                       |
| 8260A 10-MAR-97<br>8270B 23-MAR-97<br>SAI<br>8260A 11-MAR-97<br>8270B 01-APR-97                             | 7 1513 JC<br>7 1754 EAY<br>AMPLE NO: H4<br>7 1759 JC                                                     | GCMSY<br>GCMSA<br>46229<br>GCMSY                                                                                                                                                |
| 8270B 23-MAR-97 SAI 8260A 11-MAR-97 8270B 01-APR-97                                                         | 7 1754 EAY<br>AMPLE NO: H4<br>7 1759 JC                                                                  | GCMSA<br>46229<br>GCMSY                                                                                                                                                         |
| 8270B 23-MAR-97 SAI 8260A 11-MAR-97 8270B 01-APR-97                                                         | 7 1754 EAY<br>AMPLE NO: H4<br>7 1759 JC                                                                  | GCMSA<br>46229<br>GCMSY                                                                                                                                                         |
| 8260A 11-MAR-97<br>8270B 01-APR-97                                                                          | 7 1759 JC                                                                                                | GCMSY                                                                                                                                                                           |
| 8270B 01-APR-97                                                                                             |                                                                                                          |                                                                                                                                                                                 |
| 8270B 01-APR-97                                                                                             |                                                                                                          |                                                                                                                                                                                 |
| SAI                                                                                                         |                                                                                                          |                                                                                                                                                                                 |
|                                                                                                             | MPLE NO: H44                                                                                             | _                                                                                                                                                                               |
|                                                                                                             |                                                                                                          | TOLDO                                                                                                                                                                           |
|                                                                                                             | 7 1317 JC                                                                                                | GCMSY                                                                                                                                                                           |
|                                                                                                             | 2218 EAY                                                                                                 | GCMSA                                                                                                                                                                           |
| 418.1 14-MAR-97                                                                                             | 1200 JLJ                                                                                                 | 302WAT                                                                                                                                                                          |
| SAN                                                                                                         | MPLE NO: H44                                                                                             | 6231                                                                                                                                                                            |
| 3260A 10-MAR-97                                                                                             | 1905 JC                                                                                                  | GCMSY                                                                                                                                                                           |
| 3270B 23-MAR-97                                                                                             | 2356 EAY                                                                                                 | GCMSA                                                                                                                                                                           |
|                                                                                                             | 1200 JLJ                                                                                                 | 302WAT                                                                                                                                                                          |
| SAM                                                                                                         | MPLE NO: H44                                                                                             | 6232                                                                                                                                                                            |
|                                                                                                             |                                                                                                          |                                                                                                                                                                                 |
| 3260A 10-MAR-97                                                                                             |                                                                                                          | GCMSY                                                                                                                                                                           |
|                                                                                                             |                                                                                                          | GCMSA                                                                                                                                                                           |
| 18.1 14-MAR-97                                                                                              | 1200 JLJ                                                                                                 | 302WAT                                                                                                                                                                          |
| SAM                                                                                                         | IPLE NO: H44                                                                                             | 6233                                                                                                                                                                            |
| 260A 10-MAD-07                                                                                              | 2011 10                                                                                                  | OCHOV                                                                                                                                                                           |
|                                                                                                             |                                                                                                          | GCMSY                                                                                                                                                                           |
|                                                                                                             |                                                                                                          | GCMSA<br>302WAT                                                                                                                                                                 |
|                                                                                                             |                                                                                                          |                                                                                                                                                                                 |
|                                                                                                             |                                                                                                          |                                                                                                                                                                                 |
|                                                                                                             |                                                                                                          | GCMSY                                                                                                                                                                           |
| 2700 3/ was as 4                                                                                            |                                                                                                          | GCMSA                                                                                                                                                                           |
|                                                                                                             | 1200 JLJ                                                                                                 | 302WAT                                                                                                                                                                          |
| 2 2 2 1                                                                                                     | 18.1 14-MAR-97  SAM  260A 10-MAR-97  270B 24-MAR-97  18.1 14-MAR-97  SAM  260A 10-MAR-97  270B 24-MAR-97 | 18.1 14-MAR-97 1200 JLJ  SAMPLE NO: H444 260A 10-MAR-97 2011 JC 270B 24-MAR-97 0135 EAY 18.1 14-MAR-97 1200 JLJ  SAMPLE NO: H444 260A 10-MAR-97 2044 JC 270B 24-MAR-97 0224 EAY |

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997
Report No.: 00060278
Section B Page 4

#### SUPPLEMENTAL INFORMATION

|    |                                            | TEST                      | LCSR<br>BLNK            | DUP/MS<br>MS/MSD        |                            | - SAMPLE PREPAR | ATION   |                                  | SAMPLE ANALY                                       | YSIS             |                          |
|----|--------------------------------------------|---------------------------|-------------------------|-------------------------|----------------------------|-----------------|---------|----------------------------------|----------------------------------------------------|------------------|--------------------------|
|    | N.                                         | CODE                      | BATCH                   | BATCH                   | LR-METHOD                  | DATE/TIME       | ANALYST | LR-METHOD                        | DATE/TIME                                          | ANALYST          | INSTRUMENT               |
| SA | SAMPLE ID: HWPW-SB06-S4 SAMPLE NO: H446235 |                           |                         |                         |                            |                 |         |                                  |                                                    |                  |                          |
|    | 1<br>3<br>5                                | OVTCS2<br>OSVTCS<br>1685S | 72194<br>72450<br>72360 | 72257<br>72450<br>72360 | NA<br>19-3550A<br>19-3550A | 18-MAR-97 1300  | RDQ     | 19-8260A<br>19-8270B<br>02-418-1 | 11-MAR-97 1350<br>24-MAR-97 1348<br>14-MAR-97 1200 | JLJ<br>EAY<br>JC | GCMSY<br>GCMSA<br>302WAT |

#### LR Method Literature Reference

- 02 EPA-Methods for Chemical Analysis of Water & Wastes, 1984.
- 19 EPA-Test Methods for Evaluating Solid Waste, 3rd ed, Nov. 1986 and updates

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997
Report No.: 00060278
Section C Page 1

#### SURROGATE STANDARD RECOVERY

| LN   | TEST     | SURROGATE COMPOUND                | PERCENT<br>RECOVERY | ACCEPTANCE<br>LIMITS | REF LN  |
|------|----------|-----------------------------------|---------------------|----------------------|---------|
|      |          |                                   |                     |                      | KEF LN  |
| AMPL | .E ID: 1 | HWPW-MW14-S017                    |                     | SAMPLE NO:           | H446213 |
| 2    | \$VOA2S  | GC/MS Volatiles Surrogates (8260) |                     |                      | 2       |
|      |          | 4-Bromofluorobenzene              | 96                  |                      | 1       |
|      |          | Dibromofluoromethane              | . 104               | -                    |         |
|      |          | Toluene-d8                        | 92                  | _                    |         |
| 4    | \$BNAS   | GC/MS BNA Surrogates              | , ,,,               | _                    | 3       |
|      |          | 2,4,6-Tribromophenol              | 60                  | _                    | 3       |
|      |          | 2-Fluorobiphenyl                  | 100                 | _                    |         |
|      |          | 2-Fluorophenol                    | 62                  | -                    |         |
|      |          | Nitrobenzene-d5                   | 55                  | -                    |         |
|      |          | Phenol-d5                         | 80                  |                      |         |
|      |          | p-Terphenyl-d14                   | 85                  | -                    |         |
| MPL  | E ID: H  | WPW-MW14-S035                     |                     | SAMPLE NO:           | H446214 |
| 2    | \$VOA2S  | GC/MS Volatiles Surrogates (8260) |                     |                      | 1       |
|      |          | 4-Bromofluorobenzene              | 98                  |                      |         |
|      |          | Dibromofluoromethane              | 112                 |                      |         |
|      |          | Toluene-d8                        | 93                  | _                    |         |
| 4    | \$BNAS   | GC/MS BNA Surrogates              | ,,                  |                      | 3       |
|      |          | 2,4,6-Tribromophenol              | 35                  |                      | ,       |
|      |          | 2-Fluorobiphenyl                  | 47                  | -                    |         |
|      |          | 2-Fluorophenol                    | 35                  | -                    |         |
|      |          | Nitrobenzene-d5                   | 41                  | -                    |         |
|      |          | Phenol-d5                         | 41                  | -                    |         |
|      |          | p-Terphenyl-d14                   | 42                  | -                    |         |
| 4PLE | E ID: H  | WPW-MW14-S040                     | \$                  | SAMPLE NO:           | H446215 |
| 2    | \$VOA2S  | GC/MS Volatiles Surrogates (8260) |                     |                      | 1       |
|      |          | 4-Bromofluorobenzene              | 97                  | -                    |         |
|      |          | Dibromofluoromethane              | 114                 | -                    |         |
|      |          | Toluene-d8                        | 92                  | -                    |         |
| 4    | \$BNAS   | GC/MS BNA Surrogates              | 7-                  |                      | 3       |
|      |          | 2,4,6-Tribromophenol              | 44                  | -                    |         |
|      |          | 2-Fluorobiphenyl                  | 57                  | -                    |         |
|      |          | 2-Fluorophenol                    | 44                  | -                    |         |
|      |          | Nitrobenzene-d5                   | 49                  | -                    |         |
|      |          | Phenol-d5                         | 48                  |                      |         |
|      |          | p-Terphenyl-d14                   | 50                  | -                    |         |

April 08, 1997
Report No.: 00060278
Section C Page 2

### SURROGATE STANDARD RECOVERY

|       | TEST       |                                                                                          | PERCENT  | ACCEPTANCE   |         |
|-------|------------|------------------------------------------------------------------------------------------|----------|--------------|---------|
| LN    | CODE       | SURROGATE COMPOUND                                                                       | RECOVERY |              | REF LA  |
| SAMPL | E ID:      | HWPW-A0C4-SE-S00                                                                         |          |              |         |
|       |            |                                                                                          |          | SAMPLE NO:   | H446216 |
| 2     | \$VOA2     | (0200)                                                                                   |          |              | 1       |
|       |            | 4-Bromofluorobenzene                                                                     | 103      | -            |         |
|       |            | Dibromofluoromethane                                                                     | 110      | -            |         |
| ,     | <b>A</b> D | Toluene-d8                                                                               | 92       | -            |         |
| 4     | \$BNAS     | GC/MS BNA Surrogates                                                                     |          |              | 3       |
|       |            | 2,4,6-Tribromophenol                                                                     | 32       | -            |         |
|       |            | 2-Fluorobiphenyl                                                                         | 50       | -            |         |
|       |            | 2-Fluorophenol                                                                           | 25       | -            |         |
|       |            | Nitrobenzene-d5                                                                          | 38       |              |         |
|       |            | Phenol-d5                                                                                | 27       | -            |         |
|       |            | p-Terphenyl-d14                                                                          | 40       | -            |         |
| AMPL  | E ID:      | HWPW-AOC4-SW-S00                                                                         |          | SAMPLE NO:   | H446217 |
| 2     | \$VOA2S    | GC/MS Volatiles Surrogates (8260)                                                        |          |              |         |
|       |            | 4-Bromofluorobenzene                                                                     | 400      |              | 1       |
|       |            | Dibromofluoromethane                                                                     | 102      | •            |         |
|       |            | Toluene-d8                                                                               | 112      | •            |         |
| 4     | \$BNAS     | GC/MS BNA Surrogates                                                                     | 91       | -            |         |
|       |            | 2,4,6-Tribromophenol                                                                     |          |              | 3       |
|       |            | 2-Fluorobiphenyl                                                                         | 43       | -            |         |
|       |            | 2-Fluorophenol                                                                           | 30       | -            |         |
|       |            | Nitrobenzene-d5                                                                          | 24       | -            |         |
|       |            | Phenol-d5                                                                                | 35       | ,=           |         |
|       |            | p-Terphenyl-d14                                                                          | 19*      | y            |         |
|       |            | * The surrogate recovery was outside of QC acceptance limits due to matrix interference. | 44       |              |         |
| MDIE  | ID: H      | IWPW-AOC4-NE-SOO                                                                         |          |              |         |
|       |            |                                                                                          | S        | SAMPLE NO: I | H446218 |
| 2     | \$VOA2S    | GC/MS Volatiles Surrogates (8260)                                                        |          |              | 1       |
|       |            | 4-Bromofluorobenzene                                                                     | 109      | -            | 1       |
|       |            | Dibromofluoromethane                                                                     | 113      | -            | ÷       |
|       |            | Toluene-d8                                                                               | 96       | _            |         |
| 4 :   | \$BNAS     | GC/MS BNA Surrogates                                                                     | 70       | _            | 7       |
|       |            | 2,4,6-Tribromophenol                                                                     | 27       | _            | 3       |
|       |            | 2-Fluorobiphenyl                                                                         | 31       | -            |         |
|       |            | 2-Fluorophenol                                                                           |          | -            |         |
|       |            | Nitrobenzene-d5                                                                          | 8*       | -            |         |
|       |            | Phenol -d5                                                                               | 27       | -            |         |
|       |            | p-Terphenyl-d14                                                                          | 5*       | -            |         |
|       |            | 1                                                                                        | 31       | -            |         |

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278

Section C Page 3

### SURROGATE STANDARD RECOVERY

| LN     | CODE             | SURROGATE COMPOUND                                                                       | PERCENT<br>RECOVERY | ACCEPTANCE<br>LIMITS | REF LA   |
|--------|------------------|------------------------------------------------------------------------------------------|---------------------|----------------------|----------|
|        |                  | * *                                                                                      |                     |                      |          |
|        |                  | * The surrogate recovery was outside of QC acceptance limits due to matrix interference. |                     |                      |          |
| SAMPL  | E ID:            | HWPW-AOC4-NW-SOO                                                                         |                     | SAMPLE NO:           | W//6210  |
| 2      | \$VOA29          | CC/MC Valatiles Communication                                                            |                     | oran LL NO.          | 11440219 |
| -      | TY ONES          | GC/MS Volatiles Surrogates (8260) 4-Bromofluorobenzene                                   |                     |                      | 1        |
|        |                  | Dibromofluoromethane                                                                     | 106                 | -                    | •        |
|        |                  | Totuene-d8                                                                               | 105                 | -                    |          |
| 4      | \$BNAS           |                                                                                          | 99                  | •                    |          |
| 7      | PDNAS            | GC/MS BNA Surrogates                                                                     |                     |                      | 3        |
|        |                  | 2,4,6-Tribromophenol                                                                     | 53                  | -                    | -        |
|        |                  | 2-Fluorobiphenyl                                                                         | 88                  | -                    |          |
|        |                  | 2-Fluorophenol                                                                           | 43                  | -                    |          |
|        |                  | Nitrobenzene-d5                                                                          | 50                  |                      |          |
|        |                  | Phenol -d5                                                                               | 50                  | -                    |          |
|        |                  | p-Terphenyl-d14                                                                          | 80                  | -                    |          |
| SAMPLE | E ID: H          | WPW-A0C7-S00                                                                             |                     | AMPLE NO:            | 1///220  |
| -      | <b>A</b> 1404.00 | *                                                                                        | •                   | AMPLE NO:            | H446220  |
| 2      | \$VOA2S          | GC/MS Volatiles Surrogates (8260)                                                        |                     |                      | 1        |
|        |                  | 4-Bromofluorobenzene                                                                     | 116                 |                      | 1        |
|        |                  | Dibromofluoromethane                                                                     | 118                 |                      |          |
| ,      | <b>Am</b>        | Toluene-d8                                                                               | 93                  | -                    |          |
| 4      | \$BNAS           | GC/MS BNA Surrogates                                                                     | ,,                  |                      | 7        |
|        |                  | 2,4,6-Tribromophenol                                                                     | *                   |                      | 3        |
|        |                  | 2-Fluorobiphenyl                                                                         | *                   | _                    |          |
|        |                  | 2-Fluorophenol                                                                           | *                   | -                    |          |
|        |                  | Nitrobenzene-d5                                                                          | *                   | -                    |          |
|        |                  | Phenol-d5                                                                                | *                   | -                    |          |
|        |                  | p-Terphenyl-d14                                                                          | *                   | -                    |          |
|        | ,                | * The surrogate was not recovered due to the dilution taken as a result of the           |                     | •                    |          |
|        |                  | high concentration of target analytes.                                                   |                     |                      |          |
| SAMPLE | ID: H            | PW-SB02-S7                                                                               | SA                  | MPLE NO: H           | 446221   |
| 2 \$   | \$VOA2S          | GC/MS Volatiles Surrogates (8260)                                                        |                     |                      |          |
|        |                  | 4-Bromofluorobenzene                                                                     |                     |                      | 1        |
|        |                  | Dibromofluoromethane                                                                     | 100                 | -                    |          |
|        |                  | Toluene-d8                                                                               | 109                 | -                    |          |
| 4 \$   | BNAS             | GC/MS BNA Surrogates                                                                     | 99                  | -                    |          |
|        |                  | 2,4,6-Tribromophenol                                                                     |                     |                      | 3        |
|        |                  | 2-Fluorobiphenyl                                                                         | 49                  | -                    |          |
|        |                  | 2-Fluorophenol                                                                           | 61                  | -                    |          |
|        |                  | Nitrobenzene-d5                                                                          | 43                  | -                    | ¢'       |
|        |                  |                                                                                          | 53                  | •                    | 1.       |

LN

April 08, 1997 Report No.: 00060278 Section C Page 4

### SURROGATE STANDARD RECOVERY

| CODE SURROGATE COMPOUND  PLE ID: HWPW-SB02-S7                              | PERCENT<br>RECOVERY | ACCEPTANC LIMITS | _        |
|----------------------------------------------------------------------------|---------------------|------------------|----------|
| PLE ID: HWPW-SB02-S7                                                       |                     |                  | DEE      |
| PLE ID: HWPW-SB02-S7                                                       |                     |                  | REF      |
|                                                                            |                     |                  |          |
| Dhanada 15                                                                 |                     | SAMPLE NO:       | H446221  |
| Phenol -d5                                                                 | 50                  |                  |          |
| p-Terphenyl-d14                                                            | 59                  |                  |          |
| LE ID: HWPW-SB02-S21                                                       |                     |                  |          |
|                                                                            |                     | SAMPLE NO:       | H446222  |
| \$VOA2S GC/MS Volatiles Surrogates (8260)                                  |                     |                  | 11770222 |
| 4-Bromofluorobenzene                                                       |                     |                  | 1        |
| Dibromofluoromethane                                                       | 102                 |                  | •        |
| Toluene-d8                                                                 | 102                 | . •              |          |
| \$BNAS GC/MS BNA Surrogates                                                | 99                  | -                |          |
| 2,4,6-Tribromophenol                                                       |                     |                  | 3        |
| 2-Fluorobiphenyl                                                           | 48                  | -                | J        |
| 2-Fluorophenol                                                             | 57                  | -                |          |
| Nitrobenzene-d5                                                            | 44                  | _                |          |
| Phenol-d5                                                                  | 58                  | -                |          |
| p-Terphenyl-d14                                                            | 55                  | -                |          |
| p respirit-dia                                                             | 594                 | _                |          |
| E ID: HWPW-SB02-S24                                                        | .,,                 |                  |          |
| IIII N 000E 3E4                                                            | s                   | SAMPLE NO:       | H446223  |
| \$VOA2S GC/MS Volatiles Surrogates (8260)                                  |                     | THE NO.          | 11440223 |
| 4-Bromofluorobenzene                                                       |                     |                  | 1        |
| Dibromofluoromethane                                                       | 103                 | -                | 1        |
| Toluene-d8                                                                 | 100                 | -                |          |
| \$BNAS GC/MS BNA Surrogates                                                | 99                  | _                |          |
| 2,4,6-Tribromophenol                                                       | , ,,                |                  | _        |
| 2-Fluorobiphenol                                                           | 47                  | _                | 3        |
| 2-Fluorophenol                                                             | 53                  | -                |          |
| Nitrobenzene-d5                                                            | 25                  | -,               |          |
| Phenol-d5                                                                  | 52                  | -                |          |
|                                                                            | 16*                 | •                |          |
| p-Terphenyl-d14                                                            |                     | -                |          |
| * The surrogate recovery was outside of QC acceptance limits due to matrix | v 50                | -                |          |
| interference.                                                              | •                   |                  |          |
| ID: HWPW-SB02-S37.5                                                        |                     |                  |          |
|                                                                            | SAI                 | MPLE NO: H4      | 446224   |
| GVOA2S GC/MS Volatiles Surrogates (8260)                                   |                     |                  | 7-10224  |
| 4-Bromofluorobenzene                                                       |                     |                  | 1        |
| Dibromofluoromethane                                                       | 106                 | -                | '        |
| Toluene-d8                                                                 | 110                 | -                |          |
| BNAS GC/MS BNA Surrogates                                                  | 99                  | -                |          |
| · · · · · · · · · · · · · · · · · · ·                                      | 10.7                |                  | _        |
| 2.4.6-Tribromophenol                                                       |                     |                  | 7        |
| 2,4,6-Tribromophenol<br>2-Fluorobiphenyl                                   | 43                  |                  | 3        |

# 111 REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

April 08, 1997
Report No.: 00060278
Section C Page 5

### SURROGATE STANDARD RECOVERY

| LN CODE     | SURROGATE COMPOUND                | PERCENT<br>RECOVER' | ACCEPTANCE  / LIMITS |         |
|-------------|-----------------------------------|---------------------|----------------------|---------|
|             |                                   |                     |                      | REF LN  |
| AMPLE ID:   | HWPW-SB02-S37.5                   |                     |                      |         |
|             |                                   |                     | SAMPLE NO:           | H446224 |
|             | 2-Fluorophenol                    |                     | . ^                  |         |
|             | Nitrobenzene-d5                   | 38                  |                      |         |
|             | Phenol-d5                         | 62                  |                      |         |
|             | p-Terphenyl-d14                   | 44<br>51            |                      |         |
|             |                                   |                     | -                    |         |
| AMPLE ID:   | HWPW-SB02-S38.5                   |                     | SAMPLE NO:           | W///33F |
| _           |                                   |                     | SAMPLE NO:           | H446225 |
| 2 \$VOA2    |                                   |                     |                      | _       |
|             | 4-Bromofluorobenzene              | 107                 | _                    | 1       |
|             | Dibromofluoromethane              | 104                 | -                    |         |
|             | Toluene-d8                        | 98                  | •                    |         |
| 4 \$BNAS    | GC/MS BNA Surrogates              | 70                  | -                    | _       |
|             | 2,4,6-Tribromophenol              | 14                  |                      | 3       |
|             | 2-Fluorobiphenyl                  | 46                  | •                    |         |
|             | 2-Fluorophenol                    | 54                  | , -                  |         |
|             | Nitrobenzene-d5                   | 38                  | -                    |         |
|             | Phenol-d5                         | 56                  | -                    |         |
|             | p-Terphenyl-d14                   | 45<br>55            | . •                  |         |
| MPLE ID:    | HWPW-SB02-S49                     | 33                  | -                    |         |
| MFLL ID:    | 1MFW-3BUZ-349                     |                     | SAMPLE NO:           | H446226 |
| 2 \$VOA2S   | GC/MS Volatiles Surrogates (8260) |                     |                      |         |
|             | 4-Bromofluorobenzene              |                     |                      | 1       |
|             | Dibromofluoromethane              | 100                 | -                    |         |
|             | Toluene-d8                        | 102                 | -                    |         |
| 4 \$BNAS    | GC/MS BNA Surrogates              | 98                  | -                    |         |
|             | 2,4,6-Tribromophenol              |                     |                      | 3       |
|             | 2-Fluorobiphenyl                  | 39                  | -                    |         |
|             | 2-Fluorophenol                    | 44                  | -                    |         |
|             | Nitrobenzene-d5                   | 43                  | -                    |         |
|             | Phenol-d5                         | 40                  | -                    |         |
|             | p-Terphenyl-d14                   | 39                  | -                    |         |
|             |                                   | 46                  | -                    |         |
| PLE ID: H   | WPW-AOC3W-SOO                     | s                   | AMPLE NO: H          | 1//4227 |
| 2 \$1/04.26 | CC/MC Valantil                    |                     | MATEL NO. 1          | 440227  |
| - AVUNCS    | GC/MS Volatiles Surrogates (8260) |                     |                      | 1       |
|             | 4-Bromofluorobenzene              | 109                 | -                    | '       |
|             | Dibromofluoromethane              | 110                 | -                    |         |
| / Am        | Toluene-d8                        | 97                  |                      |         |
| 4 \$BNAS    | GC/MS BNA Surrogates              | 71                  | -                    | -       |
|             | 2,4,6-Tribromophenol              |                     |                      | 3       |
|             | 2-Fluorobiphenyl                  | *                   |                      |         |

## REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

LN

April 08, 1997
Report No.: 00060278
Section C Page 6

### SURROGATE STANDARD RECOVERY

| LN ,           | TEST<br>CODE |                         | SURROGATE COMPOUND                                   | PERCENT     | ACCEPTANCE   | REF     |
|----------------|--------------|-------------------------|------------------------------------------------------|-------------|--------------|---------|
|                |              |                         |                                                      |             |              | •••••   |
| SAMPLE         | ID:          | HWPW-AOC3W-SOO          |                                                      |             | SAMPLE NO:   | H446227 |
|                |              | 2-Fluorophenol          |                                                      |             |              |         |
|                |              | Nitrobenzene-d5         |                                                      |             |              |         |
|                |              | Phenol-d5               |                                                      |             | -            |         |
|                |              | p-Terphenyl-d14         |                                                      |             | -            |         |
|                |              |                         | not recovered due to the dilution taken as a result  | -4 4b-      | -            |         |
|                |              | high concentration of   | target analytes.                                     | or the      |              |         |
| SAMPLE         | ID:          | HWPW-AOC3E-SOO          |                                                      |             |              |         |
|                |              |                         |                                                      |             | SAMPLE NO:   | H446228 |
| 2 \$           | VOA2S        | GC/MS Volatiles Surr    | gates (8260)                                         |             |              |         |
|                |              | 4-Bromofluorobenzene    | •                                                    | 107         |              | 1       |
|                |              | Dibromofluoromethane    |                                                      | 112         |              |         |
|                |              | Toluene-d8              |                                                      | 99          | -            |         |
| 4 \$           | BNAS         | GC/MS BNA Surrogates    |                                                      | 77          | -            | _       |
|                |              | 2,4,6-Tribromophenol    |                                                      | 48          |              | 3       |
|                |              | 2-Fluorobiphenyl        |                                                      | 57          | •            |         |
|                |              | 2-Fluorophenol          |                                                      | 45          | -            |         |
|                |              | Nitrobenzene-d5         |                                                      |             | •            |         |
|                |              | Phenol-d5               |                                                      | . 50<br>49  |              |         |
|                |              | p-Terphenyl-d14         |                                                      | 55          | -            |         |
| MPLE 1         | ID: I        | HWPW-AOC5W-SOO          |                                                      |             |              |         |
|                |              | *                       |                                                      |             | SAMPLE NO: 1 | 1446229 |
| 2 \$\          | /0A2S        | GC/MS Volatiles Surro   | gates (8260)                                         |             |              |         |
|                |              | 4-Bromofluorobenzene    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,              | 99          |              | 1       |
|                |              | Dibromofluoromethane    |                                                      | 5.753       | •            |         |
|                |              | Toluene-d8              |                                                      | 108<br>95   | -            |         |
| 4 \$B          | BNAS         | GC/MS BNA Surrogates    |                                                      | 93          | •            | _       |
|                |              | 2,4,6-Tribromophenol    |                                                      | *           |              | 3       |
|                |              | 2-Fluorobiphenyl        |                                                      | *           | -            |         |
|                |              | 2-Fluorophenol          |                                                      | *           | -            |         |
|                |              | Nitrobenzene-d5         |                                                      |             | -            |         |
|                |              | Phenol-d5               |                                                      |             | -            |         |
|                |              | p-Terphenyl-d14         |                                                      | *           | -            |         |
|                |              |                         | ot recovered due to the dilution taken as a result o | #<br>.4 4L- | -            |         |
|                |              | high concentration of t | arget analytes.                                      | or the      |              |         |
| MPLE II        | D: HI        | WPW-SB05-S19.5          | ,                                                    | S           | SAMPLE NO: H | 446230  |
| 2 <b>\$</b> V( | DA2S         | GC/MS Volatiles Surrog  | 21ac (8240)                                          |             |              |         |
|                |              | 4-Bromofluorobenzene    | aces (0200)                                          | NOTICE 11   |              | 1       |
|                |              | Dibromofluoromethane    |                                                      | 103         | •            |         |
|                |              | ono i caoi one triane   |                                                      | 102         | •            |         |

## REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section C Page 7

### SURROGATE STANDARD RECOVERY

| N CODE SURROGATE COMPOUND                                      | PERCENT  | ACCEPTANC  | E       |
|----------------------------------------------------------------|----------|------------|---------|
|                                                                | RECOVERY | LIMITS     | REF     |
| MPLE ID: HWPW-SB05-S19.5                                       |          | SAMPLE NO: | H446230 |
| Toluene-d8                                                     |          | OAN EL NO. | N44023U |
| 4 \$BNAS GC/MS BNA Surrogates                                  | 100      | -          |         |
| 2,4,6-Tribromophenol                                           |          |            | 3       |
| 2-Fluorobiphenyl                                               | 49       | -          |         |
| 2-Fluorophenol                                                 | 54       | -          |         |
| Nitrobenzene-d5                                                | 44       | -          |         |
| Phenol-d5                                                      | 58       | -          |         |
| p-Terphenyl-d14                                                | 50<br>48 | -          |         |
| IPLE ID: HWPW-SB05-S24                                         |          |            |         |
|                                                                |          | SAMPLE NO: | H446231 |
| 2 \$VOA2S GC/MS Volatiles Surrogates (8260)                    |          |            | 1       |
| 4-Bromofluorobenzene                                           | 102      | -          | 1       |
| Dibromofluoromethane                                           | 100      |            |         |
| Toluene-d8                                                     | 104      | -          |         |
| 4 \$BNAS GC/MS BNA Surrogates                                  |          |            | 3       |
| 2,4,6-Tribromophenol                                           | 55       | -          | 3       |
| 2-fluorobiphenyl                                               | 70       | -          |         |
| 2-Fluorophenol                                                 | 50       | -          |         |
| Nitrobenzene-d5                                                | 67       |            |         |
| Phenol-d5                                                      | 65       | -          |         |
| p-Terphenyl-d14                                                | 60       | -          |         |
| PLE ID: HWPW-SB05-S34.5                                        | S        | AMPLE NO:  | H446232 |
| 2 \$VOA2S GC/MS Volatiles Surrogates (8260)                    | <b>.</b> | un LL NO.  | 1440232 |
| 4-Bromofluorobenzene                                           |          |            | 1       |
| Dibromofluoromethane                                           | 106      | -          |         |
| Toluene-d8                                                     | 99       | -          |         |
| \$BNAS GC/MS BNA Surrogates                                    | 101      | -          |         |
| 2,4,6-Tribromophenol                                           | 2.50     |            | 3       |
| 2-Fluorobiphenyl                                               | 49       | -          |         |
| 2-Fluorophenol                                                 | 59       | -          |         |
| Nitrobenzene-d5                                                | 41       | -          |         |
| Phenol-d5                                                      | 70       | -          |         |
| p-Terphenyl-d14                                                | 49<br>54 | •          |         |
| LE ID: HWPW-SB05-S39                                           |          | -          |         |
|                                                                | SA       | MPLE NO: H | 1446233 |
| \$VOA2S GC/MS Volatiles Surrogates (8260) 4-Bromofluorobenzene |          |            | 1       |
| Dibromofluoromethane                                           | 103      | -          | •       |
|                                                                | 94       |            |         |

## $1\,1\,4$ REPORT OF LABORATORY ANALYSIS

April 08, 1997 Report No.: 00060278 Section C Page 8

### SURROGATE STANDARD RECOVERY

| .N  | CODE        | SURROGATE COMPOUND                                     | <br>PERCENT<br>RECOVERY | ACCEPTANC<br>LIMITS | E<br>REF |
|-----|-------------|--------------------------------------------------------|-------------------------|---------------------|----------|
| MPL | E ID:       | HWPW-SB05-S39                                          |                         | SAMPLE NO:          | H446233  |
|     |             | Toluene-d8                                             |                         |                     |          |
| 4   | \$BNAS      | GC/MS BNA Surrogates                                   | 105                     | -                   |          |
|     |             | 2,4,6-Tribromophenol                                   |                         |                     | 3        |
|     |             | 2-Fluorobiphenyl                                       | 43                      | -                   |          |
|     |             | 2-Fluorophenol                                         | 58                      | -                   |          |
|     |             | Nitrobenzene-d5                                        | 47                      | -                   |          |
|     |             | Phenol-d5                                              | 50                      | -                   |          |
|     |             | p-Terphenyl-d14                                        | 50                      | -                   |          |
|     |             | p respicitly to the                                    | 53                      | -                   |          |
| MPL | E ID:       | HWPW-SB05-S54                                          |                         | SAMPLE NO:          | H446234  |
| 2   | \$VOA2S     | GC/MS Volatiles Surrogates (8260)                      |                         |                     | 11-40234 |
| _   | - 1 - 1 - 1 | 4-Bromofluorobenzene                                   |                         |                     | 1        |
|     |             | Dibromofluoromethane                                   | 102                     | -                   |          |
|     |             | Toluene-d8                                             | 96                      | -                   |          |
| 4   | \$BNAS      |                                                        | 101                     | -                   |          |
| 7   | PDNAS       | GC/MS BNA Surrogates                                   |                         |                     | 3        |
|     |             | 2,4,6-Tribromophenol                                   | 50                      | -                   | -        |
|     |             | 2-Fluorobiphenyl                                       | 58                      | -                   |          |
|     |             | 2-Fluorophenol                                         | 48                      | -                   |          |
|     |             | Nitrobenzene-d5                                        | 53                      | _                   |          |
|     |             | Phenol-d5                                              | 55                      | _                   |          |
|     |             | p-Terphenyl-d14                                        | 53                      | •                   |          |
| PLE | ID: H       | WPW-SB06-S4                                            | _                       |                     |          |
|     | 01/01/00    | ,                                                      | •                       | SAMPLE NO:          | H446235  |
| 2   | \$VOA2S     | GC/MS Volatiles Surrogates (8260)                      |                         |                     | 1        |
|     |             | 4-Bromofluorobenzene                                   | 107                     | -                   | 1        |
|     |             | Dibromofluoromethane                                   | 109                     | -                   |          |
|     |             | Toluene-d8                                             | 96                      | -                   |          |
| + 5 | BBNAS       | GC/MS BNA Surrogates                                   | 70                      | -                   | _        |
|     |             | 2,4,6-Tribromophenol                                   | *                       |                     | 3        |
|     |             | 2-Fluorobiphenyl                                       | *                       | -                   |          |
|     |             | 2-Fluorophenol                                         | *                       | -                   |          |
|     |             | Nitrobenzene-d5                                        | *                       | -                   |          |
|     |             | Phenol-d5                                              |                         | -                   |          |
|     |             | p-Terphenyl-d14                                        | *                       | -                   |          |
|     |             | *The surrogates were not recovered due to the dilution | *                       | -                   |          |

## REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Page Applytical Services

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997
Report No.: 00060278
Section D Page 1

### LABORATORY CONTROL SAMPLE RECOVERY

| CODE        |                                          | LCS %       | ACCEPTANCE<br>LIMITS |    |
|-------------|------------------------------------------|-------------|----------------------|----|
|             |                                          |             |                      |    |
| BATCH NO:   | 72083                                    |             | SAMPLE NO: H3832     | 01 |
| OVTCS       | 2 8260A TCL Volatiles in Soil            |             |                      |    |
|             | 1,1-Dichloroethene                       |             |                      |    |
|             | Benzene                                  | 99          | -                    |    |
|             | Chlorobenzene                            | 104         | -                    |    |
|             | Toluene                                  | 102         | • .                  |    |
|             | Trichloroethene                          | 105         | · -                  |    |
|             |                                          | 82          | •                    |    |
| BATCH NO:   | 72161                                    |             | SAMPLE NO: H38332    | 28 |
| OVTCS2      | 8260A TCL Volatiles in Soil              |             |                      |    |
|             | 1,1-Dichloroethane                       | 400         | -                    |    |
|             | Benzene                                  | 100         | -                    |    |
|             | Chlorobenzene                            | 104         | -                    |    |
|             | Toluene                                  | 102         |                      |    |
|             | Trichloroethene                          | 104         | -                    |    |
|             |                                          | 86          | •                    |    |
| BATCH NO:   | 72194                                    |             | SAMPLE NO: H38339    | 0  |
| OVTCS2      | 8260A TCL Volatiles in Soil              |             |                      |    |
|             | 1,1-Dichloroethene                       |             |                      |    |
|             | Benzene                                  | 94          | -                    |    |
|             | Chlorobenzene                            | 98          | -                    |    |
| 9           | Toluene                                  | 96          | •                    |    |
|             | Trichloroethene                          | 98          | -                    |    |
|             | richtoroethene                           | 84          | -                    |    |
| BATCH NO: 7 | 72203                                    |             | SAMPLE NO: H383408   | В  |
| OSVTCS      | TCL - Semi-volatile Extractables in Soil |             |                      |    |
|             | 1,2,4-Trichlorobenzene                   | /           |                      |    |
|             | 1,4-Dichlorobenzene                      | 51          | -                    |    |
|             | 2,4-Dinitrotoluene                       | 45          | -                    |    |
|             | 2-Chlorophenol                           | 50 //       | -                    |    |
|             | 4-Nitrophenol                            | 49.         | -                    |    |
|             | Acenaphthene                             | 29 🗸        | •                    |    |
|             | N-Nitrosodi-n-propylamine                | 44 1        | •                    |    |
|             | Pentachlorophenol                        | 45 /        | •                    |    |
|             | Phenol                                   | 60√         | •                    |    |
|             | Pyrene                                   | 39 🗸        | •                    |    |
|             | p-chloro-m-cresol                        | <b>52</b> 🗸 | •                    |    |
|             | D CITO U-111-CF8501                      | 44 /        |                      |    |

April 08, 1997 Report No.: 00060278 Section D Page 2

### LABORATORY CONTROL SAMPLE RECOVERY

| CODE            | DETERMINATION                        | LCS %<br>RECOVERY | ACCEPTANCE<br>LIMITS  |
|-----------------|--------------------------------------|-------------------|-----------------------|
| BATCH NO: 7225  | 7                                    |                   | SAMPLE NO: H383486    |
| OVTCS2 82       | 60A TCL Volatiles in Soil            |                   | SAMPLE NO: 1303400    |
|                 | 1-Dichloroethene                     |                   |                       |
|                 | nzene                                | 90                |                       |
|                 | lorobenzene                          | 92                | -                     |
|                 | Luene                                | 92                | -                     |
|                 | ichloroethene                        | 98                | -                     |
| 11              | chtoroethene                         | 75                | •                     |
| BATCH NO: 72360 |                                      |                   | SAMPLE NO: H383623    |
| I 685S Per      | roleum Hydrocarbons                  | 100.7             | -                     |
| ATCH NO: 72449  | •                                    |                   | SAMPLE NO: H383779    |
| OSVTCS TCL      | - Semi-volatile Extractables in Soil |                   | 07411 EE NO. 11303779 |
| 1.2             | ,4-Trichlorobenzene                  |                   |                       |
|                 | -Dichlorobenzene                     | 76                | •                     |
|                 | -Dinitrotoluene                      | 72                | -                     |
|                 | hlorophenol                          | 86                | -                     |
|                 | itrophenol                           | 70                | -                     |
|                 | naphthene                            | 55                |                       |
|                 | tachlorophenol                       | 79                | -                     |
| Phe             |                                      | 90                |                       |
|                 |                                      | 65                | • •                   |
| Pyr             |                                      | 82                | -                     |
|                 | trosodi-n-propylamine                | 72                | , <u>-</u> ,          |
| p-ci            | nloro-m-cresol                       | 75                | -                     |
| TCH NO: 72450   |                                      |                   | SAMPLE NO: H383781    |
| OSVTCS TCL      | - Semi-volatile Extractables in Soil |                   |                       |
| 1,2,            | 4-Trichlorobenzene                   | F0 /              |                       |
|                 | Dichlorobenzene                      | 59                | •                     |
| 2,4-            | Dinitrotoluene                       | 48                | -                     |
|                 | lorophenol                           | 80                | -                     |
|                 | trophenol                            | 55,               | •                     |
|                 | aphthene                             | 80                | •                     |
|                 | achlorophenol                        | 67                | -                     |
| Phen            |                                      | 70                | •                     |
| Pyre            |                                      | 47                | •                     |
|                 | trosodi-n-propylamine                | 66                |                       |
| n-Ch            | loro-m-cresol                        | 74                | •                     |
| p-cn            | tor o-iii-cresot                     | 55                |                       |

## REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Page Applytical Services

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section E Page 1

### METHOD BLANK DATA

| TES       | <b>-</b>                                 |         |                   |
|-----------|------------------------------------------|---------|-------------------|
| COD       | E DETERMINATION                          | RESULT  | UNIT              |
|           |                                          |         |                   |
| BATCH NO: | 72083                                    | 9       | AND E NO          |
| OVTC      | S2 8260A TCL Volatiles in Soil           | 3       | AMPLE NO: H383202 |
|           | 1,2-Dichloroethane                       |         |                   |
| 174       | Benzene                                  | < 5     | ug/kg             |
|           | Chlorobenzene                            | < 5     |                   |
|           | Ethylbenzene                             | < 5     | ug/kg             |
|           | Methylene chloride                       | < 5     | ug/kg             |
|           | Toluene                                  | < 5     | ug/kg             |
|           | Xylenes (total)                          | < 5     | ug/kg             |
|           | Aytenes (total)                          | < 5     | ug/kg             |
| BATCH NO: | 72161                                    | ``      | ug/kg             |
|           |                                          | SA      | MPLE NO: H383329  |
| OVTCS     | seem ist votatiles in soil               |         |                   |
|           | 1,2-Dichloroethane                       |         |                   |
|           | Benzene                                  | < 5     | ug/kg             |
|           | Chlorobenzene                            | < 5     | ug/kg             |
|           | Ethylbenzene                             | < 5     | ug/kg             |
|           | Methylene chloride                       | < 5     | ug/kg             |
|           | Toluene                                  | < 5     | ug/kg             |
|           | Xylenes (total)                          | < 5     | ug/kg             |
| ATCH NO:  | 7210/                                    | < 5     | ug/kg             |
|           | 7 6 174                                  | SAM     | PLE NO: H383391   |
| OVTCS2    | 8260A TCL Volatiles in Soil              |         | PLE NO: H383391   |
|           | 1,2-Dichloroethane                       |         |                   |
|           | Benzene                                  | < 5     | ug/kg             |
|           | Chlorobenzene                            | < 5     | ug/kg             |
|           | Ethylbenzene                             | < 5     |                   |
|           | Methylene chloride                       |         | ug/kg             |
|           | Toluene                                  |         | ug/kg             |
|           | Xylenes (total)                          | _       | ug/kg             |
|           | Ayrenes (total)                          | _       | ug/kg             |
| CH NO: 7  | 2203                                     | ```     | ug/kg             |
|           |                                          | SAMP    | LE NO: H383409    |
| OSVTCS    | TCL - Semi-volatile Extractables in Soil | 574     | 11303407          |
|           | 1,2,4-Trichlorobenzene                   |         |                   |
|           | 1,2-Dichlorobenzene                      | < 330   | Jg/kg             |
|           | 1,2-Diphenylhydrazine                    |         | 1g/kg             |
|           | 1,3-Dichlorobenzene                      |         | ig/kg             |
|           | 1,4-Dichlorobenzene                      |         | ig/kg             |
|           | 2,4,5-Trichlorophenol                    |         | ig/kg             |
|           | 2,4,6-Trichlorophenol                    | -       | g/kg              |
|           | 2,4-Dichlorophenol                       |         |                   |
|           | -7 Contorophenot                         | < 330 u | g/kg              |

April 08, 1997 Report No.: 00060278 Section E Page 2

### METHOD BLANK DATA

| TEST<br>CODE               |                |         |                |
|----------------------------|----------------|---------|----------------|
|                            | DETERMINATION  | RESULT  | UNIT           |
| 2 / Pi                     |                |         |                |
| 2,4-Dimethy                |                | < 330   | ug/kg          |
| 2,4-Dinitro                |                | < 1,600 | ug/kg          |
| 2,4-Dinitro                |                | < 330   | ug/kg          |
| 2,6-Dinitro                |                | < 330   | ug/kg          |
| 2-Chloronar                |                | < 330   | ug/kg          |
| 2-Chlorophe                |                | < 330   | ug/kg          |
| 2-Methylnap                | nthalene       | < 330   | ug/kg          |
| 2-Methylphe                |                | < 330   |                |
| 2-Nitroanil                |                | < 1,600 | ug/kg          |
| 2-Nitrophen                |                | < 330   | ug/kg          |
| 3,3'-Dichlo                | robenzidine    | < 660   | ug/kg<br>ug/kg |
| 3-Nitroanil                |                | < 1,600 |                |
| 4,6-Dinitro                |                | < 1,600 | ug/kg          |
| 4-Bromophen                | phenylether    | < 330   | ug/kg<br>ug/kg |
| 4-Chloro-3-                | nethylphenol   | < 330   |                |
| 4-Chloroanil               |                | < 330   | ug/kg<br>ug/kg |
| 4-Unitoropher              | nylphenylether | < 330   | ug/kg          |
| 4-Methylpher               |                | < 330   |                |
| 4-Nitroanili               |                | < 1,600 | ug/kg<br>ug/kg |
| 4-Nitropheno               |                | < 1,600 |                |
| Acenaphthene               |                | < 330   | ug/kg          |
| Acenaphthyle<br>Anthracene | ne .           | < 330   | ug/kg          |
|                            |                | < 330   | ug/kg          |
| Benzo(a)anth               |                | < 330   | ug/kg          |
| Benzo(a)pyre               |                | < 330   | ug/kg          |
| Benzo(b)fluo               |                | < 330   | ug/kg          |
| Benzo(g,h,i)               | perylene       | < 330   | ug/kg          |
| Benzo(k)fluor              | anthene        | < 330   | ug/kg          |
| Benzoic acid               |                | < 1,600 | ug/kg          |
| Benzyl alcoho              |                | < 330   | ug/kg          |
| Butylbenzylph              | thalate        | < 330   | ug/kg          |
| Chrysene                   |                | < 330   | ug/kg          |
| Di-n-butyl ph              | thalate        | < 330   | ug/kg          |
| Di-n-butylpht              | halate         | < 330   | ug/kg          |
| Di-n-octylpht              | halate         | < 330   | ug/kg          |
| Dibenzo(a,h)a              | nthracene      | < 330   | ug/kg          |
| Dibenzofuran               |                | < 330   | ug/kg          |
| Diethylphthal              | ate            | < 330   | ug/kg          |
| Dimethylphtha              | late           | < 330   | ug/kg          |
| Fluoranthene               |                | < 330   | ug/kg          |
| Fluorene                   |                | < 330   | ug/kg          |
| Hexachlorobena             |                | < 330   | ug/kg          |
| Hexachlorobuta             |                | < 330   | ug/kg          |
| Hexachlorocycl             | opentadiene    | < 330   | ug/kg          |

April 08, 1997 Report No.: 00060278 Section E Page 3

### METHOD BLANK DATA

| TEST                                            |               |         |
|-------------------------------------------------|---------------|---------|
| CODE DETERMINATION                              | Beau.         |         |
|                                                 | RESULT UNIT   |         |
| Hexachloroethane                                |               |         |
| Indeno(1,2,3-cd)pyrene                          | < 330 ug/k    | g       |
| Isophorone                                      | < 330 ug/k    | -       |
| N-Nitrosodi-n-propylamine                       | < 330 ug/k    |         |
| N-Nitrosodiphenylamine                          | < 330 ug/k    |         |
| Naphthalene                                     | < 330 ug/k    |         |
| Nitrobenzene                                    | < 330 ug/k    |         |
| Pentachlorophenol                               | < 330 ug/kg   |         |
| Phenanthrene                                    | < 1,600 ug/kg |         |
| Phenol                                          | < 330 ug/kg   | 1       |
| Pyrene                                          | < 330 ug/kg   |         |
| bis(2-Chloroethoxy)methane                      | < 330 ug/kg   |         |
| bis(2-Chloroethyl)ether                         | < 330 ug/kg   |         |
| bis(2-Chloroisopropyl)ether                     | < 330 ug/kg   |         |
| bis(2-Ethylhexyl)phthalate                      | < 330 ug/kg   |         |
|                                                 | < 330 ug/kg   |         |
| BATCH NO: 72257                                 |               |         |
|                                                 | SAMPLE NO     | H383487 |
| OVTCS2 8260A TCL Volatiles in Soil              |               |         |
| 1,2-Dichloroethane                              |               |         |
| Benzene                                         | < 5 ug/kg     |         |
| Chlorobenzene                                   | < 5 ug/kg     |         |
| Ethylbenzene                                    | < 5 ug/kg     |         |
| Methylene chloride                              | < 5 ug/kg     |         |
| Toluene                                         | < 5 ug/kg     |         |
| Xylenes (total)                                 | < 5 ug/kg     |         |
|                                                 | < 5 ug/kg     |         |
| ATCH NO: 72360                                  |               |         |
| 1685S Petroleum Hydrocarbone                    | SAMPLE NO:    | H383624 |
| 1685S Petroleum Hydrocarbons                    | - 98          |         |
| TCH NO: 72449                                   | < 20 mg/kg    |         |
|                                                 | SAMPLE NO:    | H383780 |
| OSVTCS TCL - Semi-volatile Extractables in Soil |               |         |
| ',2" Ipnenythydrazine                           |               |         |
| 2,4-Dimethylphenol                              | < 330 ug/kg   |         |
| 2,4-Dinitrotoluene                              | < 330 ug/kg   |         |
| 2,6-Dinitrotoluene                              | < 330 ug/kg   |         |
| 2-Chloronaphthalene                             | < 330 ug/kg   |         |
| 2-Methylnaphthalene                             | < 330 ug/kg   |         |
| 4,6-Dinitro-o-cresol                            | < 330 ug/kg   |         |
| 4-Nitrophenol                                   | < 1,600 ug/kg |         |
| Acenaphthene                                    | < 1,600 ug/kg |         |
| Acenaphthylene                                  | < 330 ug/kg   |         |
|                                                 |               |         |

## Pace Analytical

Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997 Report No.: 00060278 Section E Page 4

#### METHOD BLANK DATA

| TEST    | •                                                        |         |            |         |
|---------|----------------------------------------------------------|---------|------------|---------|
| CODE    | DETERMINATION                                            | RESULT  | UNIT       |         |
|         | Anthracene                                               |         |            |         |
|         | Benzo(a)anthracene                                       | < 330   | ug/kg      |         |
|         | Benzo(a)pyrene                                           | < 330   | ug/kg      |         |
|         | Chrysene                                                 | < 330   | ug/kg      |         |
|         | Di-n-butyl phthalate                                     | < 330   | ug/kg      |         |
|         | Dibenzofuran                                             | < 330   | ug/kg      |         |
|         | Fluoranthene                                             | < 330   | ug/kg      |         |
|         | Fluorene                                                 | < 330   | ug/kg      |         |
|         |                                                          | < 330   | ug/kg      |         |
|         | N-Nitrosodiphenylamine                                   | < 330   | ug/kg      |         |
|         | Naphthalene<br>Nitrobenzene                              | < 330   | ug/kg      |         |
|         | Pentachlorophenol                                        | < 330   | ug/kg      |         |
|         | Phenanthrene                                             | < 1,600 | ug/kg      |         |
|         | Phenol                                                   | < 330   | ug/kg      |         |
|         | Pyrene                                                   | < 330   | ug/kg      |         |
|         | · · · · · · · · · · · · · · · · · · ·                    | < 330   | ug/kg      |         |
|         | bis(2-Chloroethoxy)methane<br>bis(2-Ethylhexyl)phthalate | < 330   | ug/kg      |         |
|         | Dist2-Ethythexyt)phthatate                               | < 330   | ug/kg      |         |
| H NO: 7 | 2450                                                     | ,       | SAMPLE NO: | H383782 |
| OSVTCS  | TCL - Semi-volatile Extractables in Soil                 |         |            |         |
|         | 1,2-Diphenylhydrazine                                    | . 770   |            |         |
|         | 2,4-Dimethylphenol                                       | < 330   | ug/kg      |         |
|         | 2,4-Dinitrotoluene                                       | < 330   | ug/kg      |         |
|         | 2,6-Dinitrotoluene                                       | < 330   | ug/kg      |         |
|         | 2-Chloronaphthalene                                      | < 330   | ug/kg      |         |
|         | 2-Methylnaphthalene                                      | < 330   | ug/kg      |         |
|         | 4,6-Dinitro-o-cresol                                     | < 330   | ug/kg      |         |
|         | 4-Nitrophenol                                            | < 1,600 | ug/kg      |         |
|         | Acenaphthene                                             | < 1,600 | ug/kg      |         |
|         | Acenaphthylene                                           | < 330   | ug/kg      | . 5     |
|         | Anthracene                                               | < 330   | ug/kg      |         |
|         | Benzo(a)anthracene                                       | < 330   | ug/kg      |         |
|         | Benzo(a)pyrene                                           | < 330   | ug/kg      |         |
|         | Chrysene                                                 | < 330   | ug/kg      |         |
|         | Di-n-butyl phthalate                                     | < 330   | ug/kg      |         |
|         | Dibenzofuran                                             | < 330   | ug/kg      |         |
|         | Fluoranthene                                             | < 330   | ug/kg      |         |
|         | Fluorene                                                 | < 330   | ug/kg      |         |
|         | N-Nitrosodiphenylamine                                   | < 330   | ug/kg      |         |
|         | Naphthalene                                              | < 330   | ug/kg      |         |
|         | Vitrobenzene                                             | < 330   | ug/kg      |         |
|         | Pentachlorophenol                                        | < 330   | ug/kg      |         |
|         | Phenanthrene                                             | < 1,600 | ug/kg      |         |
|         | remaining at the                                         | < 330   | ug/kg      |         |

# REPORT OF LABORATORY ANALYSIS

ug/kg

This report shall not be reproduced, except in full,

> Tel: 713-488-1810 Fax: 713-488-4661

April 08, 1997
Report No.: 00060278
Section E Page 5

### METHOD BLANK DATA

| ST                         |        |                                          |                                                                                                      |                                                                                                                                   |
|----------------------------|--------|------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| DE DETERMI                 | NATION | RESULT                                   | UNIT                                                                                                 |                                                                                                                                   |
| Phone                      |        |                                          |                                                                                                      |                                                                                                                                   |
| riienot                    |        |                                          |                                                                                                      |                                                                                                                                   |
| Pyrene                     |        | < 330                                    | ug/kg                                                                                                |                                                                                                                                   |
| bis(2-Chloroethoxy)methane |        | < 330                                    | ug/kg                                                                                                |                                                                                                                                   |
| bis(2-Ethylhexyl)phthalata |        | < 330                                    | ug/kg                                                                                                |                                                                                                                                   |
| ,                          |        | < 330                                    | ug/kg                                                                                                |                                                                                                                                   |
|                            | Phenol | Phenol Pyrene bis(2-Chloroethoxy)methane | Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Ethylhexyl)phthalate  PERMINATION RESULT  330 330 330 | Phenol Pyrene Sis(2-Chloroethoxy)methane bis(2-Ethylhexyl)phthalate  PERMINATION RESULT UNIT  VAID UNIT  4 330 ug/kg  5 330 ug/kg |

April 08, 1997 Report No.: 00060278 Section H Page 1

### MATRIX SPIKE AND MATRIX SPIKE DUPLICATE DATA

| CODE       |                                  | MS<br>RESULT | MSD<br>RESULT | UNITS | RPD   | MS PCT<br>RCVRY | MSD PC    |
|------------|----------------------------------|--------------|---------------|-------|-------|-----------------|-----------|
|            |                                  |              |               |       |       | KCVK1           | RCVRY     |
| BATCH NO:  | 72083                            |              |               |       |       |                 |           |
|            |                                  |              |               |       | SA    | MPLE NO: H44    | 6089      |
| OVTCS      | 102 101411103 111 3011           |              |               |       |       |                 |           |
|            | 1,1-Dichloroethene               | 42.9         | 43.9          | ug/kg | 2.37  | 107             | 440       |
|            | Benzene                          | 43.4         | 43.0          | ug/kg | 1.02  | 107             | 110       |
|            | Chiorobenzene                    | 41.1         | 41.0          | ug/kg | 0.12  | 103             | 107       |
|            | Toluene                          | 44.3         | 43.5          | ug/kg | 1.73  | 111             | 102       |
|            | Trichloroethene                  | 38.7         | 38.3          | ug/kg | 1.06  | 97              | 109<br>96 |
| BATCH NO:  | 72203                            |              |               |       | CAM   | PLE NO: H446    |           |
| OCUTO      | 2.70                             |              |               |       | SAM   | PLE NO: H446    | 221       |
| 037163     | TCL - Semi-volatile Extractables |              |               |       |       |                 |           |
|            | 1,2,4-Trichlorobenzene           | 59.7         | 54.1          | ug/kg | 9.84  | 60              | 54        |
|            | 1,4-Dichlorobenzene              | 53.5         | 47.3          | ug/kg | 12.3  | 54              | 47        |
|            | 2,4-Dinitrotoluene               | 66.1         | 58.9          | ug/kg | 11.5  | 66              | 59        |
|            | 2-Chlorophenol                   | 102          | 92.1          | ug/kg | 9.71  | 51              | 46        |
|            | 4-Nitrophenol                    | 117          | 106           | ug/kg | 10.5  | 59              | 53        |
|            | Acenaphthene                     | 64.6         | 58.0          | ug/kg | 10.8  | 65              | 58        |
|            | N-Nitrosodi-n-propylamine        | 56.6         | 51.8          | ug/kg | 8.86  | 57              |           |
|            | Pentachlorophenol                | 111          | 93.6          | ug/kg | 17.1  | 56              | 52        |
|            | Phenol                           | 100          | 97.1          | ug/kg | 2.94  |                 | 47        |
|            | Pyrene                           | 70.6         | 64.9          | ug/kg | 8.40  | 50              | 48        |
|            | p-Chloro-m-cresol                | 126          | 120           | ug/kg | 4.80  | 71<br>63        | 65<br>60  |
| BATCH NO:  | 72257                            |              |               |       | 04440 |                 |           |
| 01/7000    | 00/0/                            |              |               |       | SAMP  | LE NO: H4462    | 26        |
| OVTCS2     | The votatites in soil            |              |               |       |       |                 |           |
|            | 1,1-Dichloroethene               | 35.7         | 37.5          | ug/kg | 5.00  | 89              | 94        |
|            | Benzene                          | 38.4         | 39.2          | ug/kg | 2.09  | 96              | -         |
|            | Chlorobenzene                    | 36.6         | 37.6          | ug/kg | 2.48  | 92              | 98        |
|            | Toluene                          | 38.6         | 39.0          | ug/kg | 1.06  | 96              | 94        |
|            | Trichloroethene                  | 37.0         | 39.4          | ug/kg | 6.18  | 92              | 97<br>98  |
| ATCH NO: 7 | 2257                             |              |               |       | CAMDI | .E NO: H44623   |           |
| OVTCS2     | 8260A TCL Volatiles in Soil      |              |               |       | JAMPI | .E NU: H4402    |           |
| 311032     | 1,1-Dichloroethene               |              |               |       |       |                 |           |
|            | Benzene                          | 39.5         | 38.2          | ug/kg | 3.32  | 99              | 96        |
|            | Chlorobenzene                    | 40.0         | 39.6          | ug/kg | 1.03  | 100             | 99        |
|            |                                  | 38.3         | 39.1          | ug/kg | 2.17  | 96              | 98        |
|            | Toluene                          | 38.5         | 40.8          | ug/kg | 5.77  | 96              |           |
|            | Trichloroethene                  | 38.8         | 34.7          | ug/kg | 11.2  | 97              | 102<br>87 |

April 08, 1997 Report No.: 00060278 Section H Page 2

### MATRIX SPIKE AND MATRIX SPIKE DUPLICATE DATA

| TEST        |                                     | MS             | MSD            |                |       | MS PCT         |                  |
|-------------|-------------------------------------|----------------|----------------|----------------|-------|----------------|------------------|
| CODE        | DETERMINATION                       | RESULT         | RESULT         | UNITS          | RPD   | RCVRY          | MSD PCT<br>RCVRY |
| BATCH NO:   | 72360                               |                |                |                |       |                |                  |
|             | . = 55                              |                |                |                | 5     | SAMPLE NO: H44 | 6223             |
| 1685s       | Petroleum Hydrocarbons              | 370            | 350            | mg/kg          | 4.1   | 98.9           | 93.5             |
| BATCH NO:   | 72360                               |                |                |                |       |                |                  |
|             |                                     |                | *              |                | S     | AMPLE NO: H44  | 6294             |
| 16858       | Petroleum Hydrocarbons              | 23,000         | 24,000         |                |       |                |                  |
|             | * The concentration of the analyte  | prevented accu | rate determin  | mg/kg          | 5.5   | *              | *                |
|             | matrix spike.                       | ,              | . acc decermin | action of the  |       |                |                  |
| BATCH NO:   | 72449                               |                |                |                |       |                |                  |
|             |                                     |                |                |                | S     | AMPLE NO: H446 | 5230             |
| OSVTCS      | TCL - Semi-volatile Extractables i  | n Soil         |                |                |       |                |                  |
|             | 1,2,4-Trichlorobenzene              | 56             | 54             | ug/kg          | 3.6   | 56             | -,               |
|             | 1,4-Dichlorobenzene                 | 59             | 60             | ug/kg          | 1.7   | 59             | 54               |
|             | 2,4-Dinitrotoluene                  | 53             | 56             | ug/kg          | 5.6   | 53             | 54               |
|             | 2-Chlorophenol                      | 100            | 110            | ug/kg          | 9.5   | 50             | 54               |
|             | 4-Nitrophenol                       | 82             | 68             | ug/kg          | 19    | 41             | 54               |
|             | Acenaphthene                        | 56             | 53             | ug/kg          | 5.6   | 56             | 54               |
|             | N-Nitrosodi-n-propylamine           | 55             | 59             | ug/kg          | 7.0   | 55             | 54               |
|             | Pentachlorophenol                   | 100            | 130            | ug/kg          | 26    | 50             | 54               |
|             | Phenol                              | 110            | 110            | ug/kg          | 0     | 55             | 54               |
|             | Pyrene                              | 56             | 59             | ug/kg          | 5.2   | 56             | 55               |
|             | p-Chloro-m-cresol                   | 120            | 110            | ug/kg          | 9.1   | 60             | 54<br>54         |
| BATCH NO: 7 | 2450                                |                |                |                |       | •              | , ,4             |
|             |                                     |                |                |                | SA    | MPLE NO: H4464 | 424              |
| OSVTCS      | TCL - Semi-volatile Extractables in | Soil           |                |                |       |                |                  |
|             | 1,2,4-Trichlorobenzene              | 2,600          | 2,300          | ug/kg          | 12.0  |                |                  |
|             | 1,4-Dichlorobenzene                 | 2,600          | 2,600          |                | 12.2  | 79             | 70               |
|             | 2,4-Dinitrotoluene                  | 2,300          | 2,300          | ug/kg<br>ug/kg | 0     | 79             | 79               |
|             | 2-Chlorophenol                      | 4,000          | 4,300          |                | 0     | 70             | 70               |
|             | 4-Nitrophenol                       | 990            | 990            | ug/kg          | 7.22  | 61             | 65               |
|             | Acenaphthene                        | 4,300          | 3,600          | ug/kg<br>ug/kg | 0     | 15             | 15               |
|             | N-Nitrosodi-n-propylamine           | 1,600          | 1,600          |                | 17.7  | 130            | 109              |
|             | Pentachlorophenol                   | 2,000          | 1,600          | ug/kg          | 0     | 48             | 48               |
|             | Phenol                              | 4,600          | 4,000          | ug/kg          | 22.2* | 30             | 24               |
|             | Pyrene                              | 4,000          | 3,600          | ug/kg          | 14.0  | 70             | 61               |
|             | p-Chloro-m-cresol                   | 5.000          | 4,600          | ug/kg<br>ug/kg | 10.5  | 121            | 109              |
| *           | RPD outside of QC acceptance limits | •              | .,000          | ug/ kg         | 8.33  | 76             | 70               |

|                              | PRO IECT MANA                           |                        |                         |                   |                      |
|------------------------------|-----------------------------------------|------------------------|-------------------------|-------------------|----------------------|
| Ier Zext                     | OSEC I VAINE                            | SILELOCAT              |                         |                   |                      |
| Att of the Barre             |                                         |                        | CHAIN OF CUSTODY RECORD | DY RECORD         |                      |
| 770000                       |                                         |                        |                         | )                 | C.O.C. #             |
| SAMPLERS NAME & SIGNATIBE    | 00                                      | PROJECT #              |                         | \$7<br>\$3)       | SHIP TO              |
|                              |                                         | CONTACT & PHONE        | MALL HOUSE              | 11/1/2/           |                      |
| SAMPLE#                      |                                         |                        | 11/1/100                | 143               |                      |
|                              | DATE TIME COMP.                         | SAMPLE # OF CONTAINERS |                         | LSNO<br>STANO     | LAB. CONTACT & PHONE |
| HAWPIN-MUI4-SOIT             | X21/6-14:78                             | 7711100                |                         | YES NO YES NO     | *REMARKS:            |
|                              | 15:00                                   | 7 110011               | 213                     | X                 | · · ·                |
| HWPW. MW14.5040              | V 15:10                                 |                        | 710                     |                   |                      |
| 8                            | 3/3/7 11:10                             | 11000                  | Sigo                    |                   |                      |
|                              | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | t -                    | allo                    |                   |                      |
| HWPUJ. ROCH. NE.SO           | 05.//                                   |                        | 20                      |                   |                      |
| HWPW - AOCY - NW :SM         | 00:11                                   |                        | 218                     |                   |                      |
| HWPW . AO 17 - SON           |                                         | > !                    | 219                     |                   |                      |
| 4                            |                                         | NOC 7                  | 000                     | →                 |                      |
| 1                            | 05/1/4/30                               | 5802                   | V X X                   | \(\times\)        | labels do not        |
| HWPW SKN29JUM-211            | 04:70                                   | 5 <b>0</b> 05          | N N N                   | 1                 | then date is also    |
| 44.94) 5202 CAD (1964)       |                                         | 5802                   | XXXX                    | 23                | 314 rathe Hay        |
| Has 01, 5 Pans 20, 5 10, 5 H |                                         | 5B02                   | ræ XXX                  |                   | 712                  |
| 0.76 C.0C 2002 VIII          |                                         | Shor                   | X X X                   |                   |                      |
| 2.5                          |                                         | 5B02 V                 | ~ × ×                   |                   |                      |
| ELINOUISHED BY GROWING       | Story HELENYOBY                         | RELEASED BY            | E & TIME RECEIVE        | *DENA 01/0        | >                    |
|                              | DATE & TIME RECEIVED BY                 | RELEASED BY            | DATE & TIME RECEIVED BY | NEIWARKS:         |                      |
| :LINQUISHED BY (Signature)   | DA FOR TIME REGENED ATLL                | 1LAB. BY METHOD OF SH  | KPMENT                  | that show they op | 2 TAT .              |
|                              |                                         |                        | Jel Caurier Survios     | but day           | is required          |
|                              |                                         |                        |                         |                   |                      |

•

|                                               | 72                                 | 0/8/              |                                  |                     |                                         |                                            |                  |              | T                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------|------------------------------------|-------------------|----------------------------------|---------------------|-----------------------------------------|--------------------------------------------|------------------|--------------|-------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C.O.C. #                                      |                                    | -Sommers 488-     | *REMARKS:                        |                     |                                         |                                            |                  |              | 1                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DY RECORD                                     | SINILE                             | 14-               | YES NO YES NO                    |                     |                                         |                                            |                  |              | 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | *REMARKS:               | 7 EB 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CHAIN OF CUSTODY RECORD                       |                                    |                   | ree                              | 358                 | 930                                     | 600                                        | 273              | 337          |                                           | E RECEIVED BY           | METHOD OF SHIPMENT CLIPS COUNTER SENVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                               | SISATA                             | S <sub>8</sub>    |                                  |                     |                                         |                                            |                  |              |                                           | DATE & TIME DATE & TIME | HIPMENT POLY G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SITELOCATIN<br>4910 LIBERTY RO<br>HOUSTOW, TX | PROJECT #1402&9<br>CONTACT & PHONE | SAMPLE CONTAINERS | 2 2 7                            | 10                  | <ul><li>N</li><li>→</li><li>N</li></ul> |                                            | <del></del>      | 2            | 3                                         | HELEASED BY RELEASED BY | METHOD OF SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NAME<br>LVING                                 | 2                                  | BARD 8            | ADC3                             |                     | \$805                                   | ××                                         | → <b>→</b>       | X SB06       |                                           | RECEIVED BY             | CEIVED AT 148. BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PROJECT NAME<br>HOUSTON<br>WOOD<br>PEESERVING | 13                                 | DATE TIME COMP    | 3/4/97 08:25                     | 82:58               | 10:30                                   | 05:01                                      | 82:11            | H:33         |                                           | DATE & TIME REDAINE RE  | JAGE AME PRECEIVED AT 148. BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Terranext                                     | 303/                               | A COUNTRY OF      | HWPW-NOC3W-500<br>HWPW-NOC3E-500 | HWPW- ACC 5 1 - 500 | HWPW - SB05 - 514.5                     | 474/PW · SB05 · S34,5<br>MWPW · SB05 · S39 | HWPWI-SBOS - 554 | HWPW-SBOG-SH |                                           | Jally S                 | The Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the C |

## Pace Analytical



Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

having store No.

Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997 Report No.: 00060410 Section A Page 1

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB05-S54

SAMPLE NO: H446419

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 04-MAR-97 1125

DATE RECEIVED: 06-MAR-97

|    | TEST   |                                          | DILUTION |         |       |
|----|--------|------------------------------------------|----------|---------|-------|
| LN | CODE   | DETERMINATION                            | FACTOR   | RESULT  | UNITS |
|    |        |                                          | ,        |         |       |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |          |         |       |
|    | 011002 | 1,2-Dichloroethane                       |          |         |       |
|    |        | Benzene                                  | . 1      | < 5     | ug/kg |
|    |        | Chlorobenzene                            | 1        | < 5     | ug/kg |
|    |        | Ethylbenzene                             | 1        | < 5     | ug/kg |
|    |        | Methylene chloride                       | 1        | < 5     | ug/kg |
|    |        | Toluene                                  | 1        | < 5     | ug/kg |
|    |        | Xylenes (total)                          | 1        | < 5     | ug/kg |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil | 1        | < 5     | ug/kg |
|    | 337733 | 1,2-Diphenylhydrazine                    |          |         |       |
|    |        | 2,4-Dimethylphenol                       | 2        | < 660   | ug/kg |
|    |        | 2,4-Dinitrotoluene                       | 2        | < 660   | ug/kg |
|    |        | 2,6-Dinitrotoluene                       | 2        | < 660   | ug/kg |
|    |        | 2-Chloronaphthalene                      | 2        | < 660   | ug/kg |
|    |        | 2-Methylnaphthalene                      | 2        | < 660   | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                     | 2        | < 660   | ug/kg |
|    |        | 4-Nitrophenol                            | 2        | < 3,300 | ug/kg |
|    |        | Acenaphthene                             | 2        |         | ug/kg |
|    |        | Acenaphthylene                           | 2        | < 660   | ug/kg |
|    |        | Anthracene                               | 2        | < 660   | ug/kg |
|    |        | Benzo(a)anthracene                       | 2        | < 660   | ug/kg |
|    |        |                                          | 2        | < 660   | ug/kg |
|    |        | Benzo(a)pyrene<br>Chrysene               | 2        | < 660   | ug/kg |
|    |        |                                          | 2        | < 660   | ug/kg |
|    |        | Di-n-butyl phthalate Dibenzofuran        | 2        | < 660   | ug/kg |
|    |        | Fluoranthene                             | 2        | < 660   | ug/kg |
|    |        | Fluorene                                 | 2        | < 660   | ug/kg |
|    |        |                                          | 2        | < 660   | ug/kg |
|    |        | N-Nitrosodiphenylamine                   | 2        | < 660   | ug/kg |
|    |        | Naphthalene                              | 2        | < 660   | ug/kg |
|    |        | Nitrobenzene                             | 2        |         | ug/kg |
|    |        | Pentachlorophenol Phenanthrene           | 2 .      |         | ug/kg |
|    |        | Phenol                                   | 2        | · ·     | ug/kg |
|    |        |                                          | 2        |         | ug/kg |
|    |        | Pyrene<br>his/2-Chlorosthaman            | 2        |         | ıg/kg |
|    |        | bis(2-Chloroethoxy)methane               | 2        |         | ıg/kg |
|    |        |                                          |          |         |       |

April 11, 1997
Report No.: 00060410
Section A Page 2

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB05-S54
SAMPLE NO: H446419

TEST DILUTION
LN CODE DETERMINATION FACTOR RESULT UNITS

bis(2-Ethylhexyl)phthalate

2 < 660 ug/kg

COMMENTS: The reporting limits for semi-volatiles are elevated due to the dilution

required because of matrix interferences.

April 11, 1997
Report No.: 00060410
Section A Page 3

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB06-S19

SAMPLE NO: H446420

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 04-MAR-97 1452

DATE RECEIVED: 06-MAR-97

PROJECT MANAGER: Elessa Sommers

|     | TEST   |                                          | DILUTION |                     |       |
|-----|--------|------------------------------------------|----------|---------------------|-------|
| LN  | CODE   | DETERMINATION                            | FACTOR   | RESULT              | UNITS |
|     |        |                                          |          |                     |       |
| 1   | OVTCS2 | 8260A TCL Volatiles in Soil              |          |                     |       |
| •   | 011032 | 1,2-Dichloroethane                       |          | a fi                |       |
|     |        | Benzene                                  | 1        | < 5                 | ug/kg |
|     |        | Chlorobenzene                            | 1        | < 5                 | ug/kg |
|     |        | Ethylbenzene                             | 1        | < 5                 | ug/kg |
|     |        | Methylene chloride                       | 1        | 44                  | ug/kg |
|     |        | Toluene                                  | 1        | 5                   | ug/kg |
|     |        | Xylenes (total)                          | 1        | < 5                 | ug/kg |
| 3   | OSVTCS | TCL - Semi-volatile Extractables in Soil | 1        | 74                  | ug/kg |
| ,   | 034163 | 1,2-Diphenylhydrazine                    |          |                     |       |
|     |        |                                          | 20       | < 6,600             | ug/kg |
|     |        | 2,4-Dimethylphenol                       | 20       | < 6,600             | ug/kg |
|     |        | 2,4-Dinitrotoluene                       | 20       | < 6,600             | ug/kg |
|     |        | 2,6-Dinitrotoluene                       | 20       | < 6,600             | ug/kg |
|     |        | 2-Chloronaphthalene                      | 20       | < 6,600             | ug/kg |
|     |        | 2-Methylnaphthalene                      | 20       | 28,000              | ug/kg |
|     |        | 4,6-Dinitro-o-cresol                     | 20 <     | 33,000              | ug/kg |
|     |        | 4-Nitrophenol                            | 20 <     | 33,000              | ug/kg |
|     |        | Acenaphthene                             | 20       | 18,000              | ug/kg |
|     |        | Acenaphthylene                           | 20       | < 6,600             | ug/kg |
| . ; |        | Anthracene                               | 20       | 15,000              | ug/kg |
|     |        | Benzo(a)anthracene                       | 20       | < 6,600             | ug/kg |
|     |        | Benzo(a)pyrene                           | 20       | < 6,600             | ug/kg |
|     |        | Chrysene                                 | 20       | < 6,600             | ug/kg |
|     |        | Di-n-butyl phthalate                     | 20       | < 6,600             | ug/kg |
|     |        | Dibenzofuran                             | 20       | 18,000              | ug/kg |
|     |        | Fluoranthene                             | 20       | -                   | ug/kg |
|     |        | Fluorene                                 | 20       |                     | ug/kg |
|     |        | N-Nitrosodiphenylamine                   | 20       | -                   | ug/kg |
|     |        | Naphthalene                              | 20       | 11 12 5 20 20 20 20 | ug/kg |
|     |        | Nitrobenzene                             | 20       |                     | ug/kg |
|     |        | Pentachlorophenol                        |          | -                   | ug/kg |
|     |        | Phenanthrene                             | 20       | •                   | ug/kg |
|     |        | Phenol                                   | 20       |                     | ug/kg |
|     |        | Pyrene                                   | 20       | 100                 | ug/kg |
|     | 1      | bis(2-Chloroethoxy)methane               | 20       |                     | ug/kg |
|     |        |                                          |          | -,                  |       |

## REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

April 11, 1997
Report No.: 00060410
Section A Page 4

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB06-S19
SAMPLE NO: H446420

| LN | TEST<br>CODE | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DILUTION<br>FACTOR | RESULT       | UNITS         |
|----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|---------------|
|    |              | bis(2-Ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |              |               |
| 8  | S401         | SW1312 - SPLP Leaching Procedure - Metals and SVOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                 | < 6,600      | ug/kg         |
| 9  | \$402        | SW1312 - SPLP Leaching Procedure - ZHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | Done         |               |
| 14 | 16858        | Petroleum Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | Done         |               |
| 17 | OVTCW2       | to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th | 1                  | 370          | mg/kg         |
|    |              | 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | _            |               |
|    |              | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                  | < 5          | ug/L          |
|    |              | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                  | 16           | ug/L          |
|    |              | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  | < 5          | - <b>0.</b> - |
|    |              | Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | < 5          | ug/L          |
|    |              | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1<br>1             | < 5          | ug/L          |
|    |              | Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  | < 5          | ug/L          |
| 19 | OSVTCW       | TCL - Semi-volatile Extractables in Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                  | < 5          | ug/L          |
|    |              | 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                  | . 10         |               |
|    |              | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 10         | ug/L          |
|    |              | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 10         | -0, -         |
|    |              | 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 10         | -0, -         |
|    |              | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                  | < 10<br>< 10 | ug/L          |
|    |              | 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                  | 100          | ug/L          |
|    |              | 4,6-Dinitro-o-cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                  | < 50         | ug/L          |
|    |              | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                  |              | ug/L<br>ug/L  |
|    |              | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  |              |               |
|    |              | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                  |              | ug/L<br>ug/L  |
|    |              | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                  |              | ug/L          |
|    |              | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · 1                | < 10         |               |
|    |              | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                  |              | ug/L          |
|    |              | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                  |              | ug/L          |
|    |              | Di-n-butylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i                  | < 10         | .= 0          |
|    |              | Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 1                |              | ug/L          |
|    |              | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  |              | ug/L          |
|    |              | Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i                  |              | ug/L          |
|    |              | N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                  |              | ug/L          |
|    |              | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                  | -            | ug/L          |
|    |              | Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  |              | ug/L          |
|    |              | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                  |              | ug/L          |
|    |              | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  |              | ug/L          |
|    |              | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                  |              | ug/L          |
|    |              | Pyrené                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                  |              | ug/L          |
|    |              | bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                  |              | ug/L          |
|    |              | bis(2-Ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                  |              | ug/L          |

COMMENTS: Continued on next page.

130

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997
Report No.: 00060410
Section A Page 5

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB06-S19

SAMPLE NO: H446420

TEST

CODE

LN

DETERMINATION

DILUTION

**FACTOR** 

RESULT UNITS

COMMENTS: Results for the SPLP leachate are reported in ug/L.

The reporting limits for soil semi-volatiles are elevated due to the dilution required because of high analyte concentration.

April 11, 1997
Report No.: 00060410
Section A Page 6

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB06-S24

SAMPLE NO: H446421

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 04-MAR-97 1501

DATE RECEIVED: 06-MAR-97

|    | TEST   |                                                                   | DILUTION |         |       |
|----|--------|-------------------------------------------------------------------|----------|---------|-------|
| LN | CODE   | DETERMINATION                                                     | FACTOR   | RESULT  | UNITS |
|    |        |                                                                   |          |         |       |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil                                       |          |         |       |
| •  | 01.002 | 1,2-Dichloroethane                                                |          |         |       |
|    |        | Benzene                                                           | 1        | < 5     | ug/kg |
|    |        | Chlorobenzene                                                     | 1        | < 5     | ug/kg |
|    |        | Ethylbenzene                                                      | . 1      | < 5     | ug/kg |
|    |        | Methylene chloride                                                | 1        | < 5     | ug/kg |
|    |        | Toluene                                                           | 1        | < 5     | ug/kg |
|    |        | Xylenes (total)                                                   | 1        | < 5     | ug/kg |
| 3  | OSVTCS |                                                                   | 1        | < 5     | ug/kg |
| -  | 001100 | TCL - Semi-volatile Extractables in Soil<br>1,2-Diphenylhydrazine |          |         |       |
|    |        | 2,4-Dimethylphenol                                                | 1        | < 330   | ug/kg |
|    |        | 2,4-Dinitrotoluene                                                | 1        | < 330   | ug/kg |
|    |        | 2,6-Dinitrotoluene                                                | 1        | < 330   | ug/kg |
|    |        |                                                                   | 1        | < 330   | ug/kg |
|    |        | 2-Chloronaphthalene                                               | 1        | < 330   | ug/kg |
|    |        | 2-Methylnaphthalene                                               | 1        | < 330   | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                                              | 1        | < 1,600 | ug/kg |
|    |        | 4-Nitrophenol                                                     | 1        | < 1,600 | ug/kg |
|    |        | Acenaphthene                                                      | 1        | < 330   | ug/kg |
|    |        | Acenaphthylene Anthracene                                         | 1        | < 330   | ug/kg |
|    |        |                                                                   | 1        | < 330   | ug/kg |
|    |        | Benzo(a)anthracene                                                | . 1      | < 330   | ug/kg |
|    |        | Benzo(a)pyrene                                                    | 1        | < 330   | ug/kg |
|    |        | Chrysene                                                          | 1        | < 330   | ug/kg |
|    |        | Di-n-butyl phthalate<br>Dibenzofuran                              | 1        | < 330   | ug/kg |
|    |        |                                                                   | 1        | < 330   | ug/kg |
|    |        | Fluoranthene                                                      | 1        |         | ug/kg |
|    |        | Fluorene                                                          | 1        |         | ug/kg |
|    |        | N-Nitrosodiphenylamine                                            | 1        |         | ug/kg |
|    |        | Naphthalene                                                       | 1        |         | ug/kg |
|    |        | Nitrobenzene                                                      | 1        |         | ug/kg |
|    |        | Pentach Loropheno L                                               | 1 <      |         | ug/kg |
|    |        | Phenanthrene                                                      | 1        |         | ug/kg |
|    |        | Phenol                                                            | 1        |         | ug/kg |
|    |        | Pyrene                                                            | 1        |         | ug/kg |
|    | 1      | bis(2-Chloroethoxy)methane                                        | 1        |         | ug/kg |
|    |        |                                                                   |          |         |       |

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997
Report No.: 00060410
Section A Page 7

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB06-S24
SAMPLE NO: H446421

| LN | TEST<br>CODE | DETERMINATION                                        | DILUTION<br>FACTOR | RESULT | UNITS          |
|----|--------------|------------------------------------------------------|--------------------|--------|----------------|
| 14 | 1685s        | bis(2-Ethylhexyl)phthalate<br>Petroleum Hydrocarbons | 1<br>1             |        | ug/kg<br>mg/kg |

April 11, 1997
Report No.: 00060410
Section A Page 8

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB06-S49

SAMPLE NO: H446422

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 04-MAR-97 1450

DATE RECEIVED: 06-MAR-97

PROJECT MANAGER: Elessa Sommers

|      | TEST   |                                          | DILUTION |                |       |  |
|------|--------|------------------------------------------|----------|----------------|-------|--|
| LN   | CODE   | DETERMINATION                            | FACTOR   | RESULT         | UNITS |  |
| •••• |        |                                          |          |                |       |  |
|      |        | ••••                                     |          |                |       |  |
| 1    | OVTCS2 | in the votablitab in bott                |          |                |       |  |
|      |        | 1,2-Dichloroethane                       | 1        | < 5            | ug/kg |  |
|      |        | Benzene                                  | 1        | < 5            | ug/kg |  |
|      |        | Chlorobenzene                            | 1        | < 5            | ug/kg |  |
|      |        | Ethylbenzene                             | 1        | < 5            | ug/kg |  |
|      |        | Methylene chloride                       | 1        | < 5            | ug/kg |  |
|      |        | Toluene                                  | 1        | < 5            | ug/kg |  |
|      |        | Xylenes (total)                          | 1        | < 5            | ug/kg |  |
| 3    | OSVTCS | TCL - Semi-volatile Extractables in Soil |          |                |       |  |
|      |        | 1,2-Diphenylhydrazine                    | 1        | < 330          | ug/kg |  |
|      |        | 2,4-Dimethylphenol                       | 1        | < 330          | ug/kg |  |
|      |        | 2,4-Dinitrotoluene                       | 1        | < 330          | ug/kg |  |
|      |        | 2,6-Dinitrotoluene                       | 1        | < 330          | ug/kg |  |
|      |        | 2-Chloronaphthalene                      | 1        | < 330          | ug/kg |  |
|      |        | 2-Methylnaphthalene                      | 1        | < 330          | ug/kg |  |
|      |        | 4,6-Dinitro-o-cresol                     | 1        | < 1,600        | ug/kg |  |
|      |        | 4-Nitrophenol                            | 1        | < 1,600        | ug/kg |  |
|      |        | Acenaphthene                             | 1        | < 330          |       |  |
|      |        | Acenaphthylene                           | 1        | < 330          | ug/kg |  |
|      |        | Anthracene                               | 1        | < 330          | ug/kg |  |
|      |        | Benzo(a)anthracene                       | 1        | < 330          | ug/kg |  |
|      |        | Benzo(a)pyrene                           | 1        | < 330          | ug/kg |  |
|      |        | Chrysene                                 | 1        | < 330          | ug/kg |  |
|      |        | Di-n-butyl phthalate                     | 1        |                | ug/kg |  |
|      |        | Dibenzofuran                             | 1        | < 330<br>< 330 | ug/kg |  |
|      |        | Fluoranthene                             | 1        |                | ug/kg |  |
|      |        | Fluorene                                 | 1        |                | ug/kg |  |
|      |        | N-Nitrosodiphenylamine                   |          |                | ug/kg |  |
|      |        | Naphthalene                              | 1        |                | ug/kg |  |
|      |        | Nitrobenzene                             | 1        |                | ug/kg |  |
|      |        | Pentachlorophenol                        | 1        |                | ug/kg |  |
|      |        | Phenanthrene                             |          |                | ug/kg |  |
|      |        | Phenol                                   | 1        |                | ug/kg |  |
|      |        | Pyrene                                   | 1        |                | ug/kg |  |
|      |        | bis(2-Chloroethoxy)methane               | 1 *      |                | ug/kg |  |
|      |        | 2.3(E ditto) detiloxy/liletilatie        | 1        | < 330          | ug/kg |  |

## Pace Analytical

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997 Report No.: 00060410 Section A Page 9

LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-SB06-S49

SAMPLE NO: H446422

TEST

LN

DETERMINATION

DILUTION

RESULT UNITS

bis(2-Ethylhexyl)phthalate

1 < 330 ug/kg

April 11, 1997
Report No.: 00060410
Section A Page 10

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB03-S5

SAMPLE NO: H446423

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 05-MAR-97 0815

DATE RECEIVED: 06-MAR-97

|    | TEST   |                                                                                                                           | DILUTION |          |       |
|----|--------|---------------------------------------------------------------------------------------------------------------------------|----------|----------|-------|
| LN | CODE   | DETERMINATION                                                                                                             | FACTOR   | RESULT   | UNITS |
|    |        |                                                                                                                           |          |          |       |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil                                                                                               |          |          |       |
|    |        | 1,2-Dichloroethane                                                                                                        | _        |          |       |
|    |        | Benzene                                                                                                                   | 5        | < 25     |       |
|    |        | Chlorobenzene                                                                                                             | 5        | < 25     | ug/kg |
|    | •      | Ethylbenzene                                                                                                              | 5        | < 25     | ug/kg |
|    |        | Methylene chloride                                                                                                        | 5        | 31       | ug/kg |
|    |        | Toluene                                                                                                                   | 5        | < 25     | ug/kg |
|    |        | Xylenes (total)                                                                                                           | 5        | < 25     | ug/kg |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil                                                                                  | 5        | 89       | ug/kg |
|    |        | 1,2-Diphenylhydrazine                                                                                                     |          |          |       |
|    |        | 2,4-Dimethylphenol                                                                                                        | 10       | < 3,300  | ug/kg |
|    |        | 2,4-Dinitrotoluene                                                                                                        | 10       | < 3,300  | ug/kg |
|    |        | 2,6-Dinitrotoluene                                                                                                        | 10       | < 3,300  | ug/kg |
|    |        | 2-Chloronaphthalene                                                                                                       | 10       | < 3,300  | ug/kg |
|    |        | 2-Methylnaphthalene                                                                                                       | . 10     | < 3,300  | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                                                                                                      | 50       | 78,000   | ug/kg |
|    |        | 4-Nitrophenol                                                                                                             | 10       | < 16,000 | ug/kg |
|    |        | Acenaphthene                                                                                                              | 10       | < 16,000 | ug/kg |
|    |        | Acenaphthylene                                                                                                            | 10       | 50,000   | ug/kg |
|    |        | Anthracene                                                                                                                | 10       | < 3,300  | ug/kg |
|    |        | Benzo(a)anthracene                                                                                                        | 10       | 24,000   | ug/kg |
|    |        | Benzo(a)pyrene                                                                                                            | 10       | 7,900    | ug/kg |
|    |        | Chrysene                                                                                                                  | 10       | < 3,300  | ug/kg |
|    |        |                                                                                                                           | 10       | 8,600    | ug/kg |
|    |        | Di-n-butyl phthalate Dibenzofuran                                                                                         | 10       | < 3,300  | ug/kg |
|    |        | Fluoranthene                                                                                                              | 10       | 40,000   | ug/kg |
|    |        | Fluorene                                                                                                                  | 50       | 84,000   | ug/kg |
|    |        |                                                                                                                           | 10       | 46,000   | ug/kg |
|    |        | N-Nitrosodiphenylamine                                                                                                    | 10       | < 3,300  |       |
|    |        | Naphthalene<br>Nitropenzene                                                                                               | 50       |          | ug/kg |
|    |        |                                                                                                                           | 10       |          | ug/kg |
|    |        | Pentachlorophenol                                                                                                         | 10       |          | ug/kg |
|    |        | Phenanthrene<br>Phenol                                                                                                    | 50       |          | ug/kg |
|    |        |                                                                                                                           | 10       |          | ug/kg |
|    |        | Pyrene<br>bio(2) Obligation and an artistic and a second and a second and a second and a second and a second and a second | 10       | •        | ug/kg |
|    |        | bis(2-Chloroethoxy)methane                                                                                                | 10       | < 3,300  |       |

April 11, 1997
Report No.: 00060410
Section A Page 11

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB03-S5
SAMPLE NO: H446423

|    | TEAT   |                                                    |          |                 |              |
|----|--------|----------------------------------------------------|----------|-----------------|--------------|
|    | TEST   |                                                    | DILUTION |                 |              |
| LN | CODE   | DETERMINATION                                      | FACTOR   | RESULT          | UNITS        |
|    |        |                                                    |          |                 |              |
|    |        | bis(2-Ethylhexyl)phthalate                         | 10       | < 3,300         | um/lem       |
| 8  | S401   | SW1312 - SPLP Leaching Procedure - Metals and SVOA | 10       | \ 3,300<br>Done | ug/kg        |
| 9  | S402   | SW1312 - SPLP Leaching Procedure - ZHE             |          | Done            |              |
| 14 | 1685s  | Petroleum Hydrocarbons                             | 1        | 670             | mm /lea      |
| 15 | OVTCW2 | •                                                  | •        | 670             | mg/kg        |
|    |        | 1,2-Dichloroethane                                 | . 1      | < 5             |              |
|    |        | Benzene                                            | i        | < 5             | ug/L<br>ug/L |
|    |        | Chlorobenzene                                      | i        | < 5             | ug/L         |
|    |        | Ethylbenzene                                       | i<br>1   | < 5             |              |
|    |        | Methylene chloride                                 | 1        | < 5             | ug/L         |
|    |        | Toluene                                            | 1        | < 5             | ug/L         |
|    |        | Xylenes (total)                                    | 1        | < 5             | ug/L         |
| 17 | OSVTCW | TCL - Semi-volatile Extractables in Water          | •        | ` `             | ug/ L        |
|    |        | 1,2-Diphenylhydrazine                              | 1        | < 10 *          | ug/L         |
|    |        | 2,4-Dimethylphenol                                 | · 1      | < 10            | ug/L         |
|    |        | 2,4-Dinitrotoluene                                 | 1        | < 10            | ug/L         |
|    |        | 2,6-Dinitrotoluene                                 | 1        | < 10            | ug/L         |
|    |        | 2-Chloronaphthalene                                | 1        | < 10            | ug/L         |
|    |        | 2-Methylnaphthalene                                | 1        | < 10            | ug/L         |
|    |        | 4,6-Dinitro-o-cresol                               | 1        | < 50            | ug/L         |
|    |        | 4-Nitrophenol                                      | 1        | < 50            | ug/L         |
|    |        | Acenaphthene                                       | 1        | < 10            | ug/L         |
|    |        | Acenaphthylene                                     | 1        | < 10            |              |
|    |        | Anthracene                                         | 1        |                 | ug/L         |
|    |        | Benzo(a)anthracene                                 | 1 1      |                 | ug/L         |
|    |        | Benzo(a)pyrene                                     | 1        |                 | ug/L         |
|    |        | Chrysene                                           | 1        |                 | ug/L         |
|    |        | Di-n-butylphthalate                                | 1        |                 | ug/L         |
|    |        | Dibenzofuran                                       | 1        | < 10            | ug/L         |
|    |        | Fluoranthene                                       | 1        | < 10            | ug/L         |
|    |        | Fluorene                                           | 1        | < 10            | ug/L         |
|    |        | N-Nitrosodiphenylamine                             | 1        | < 10            | ug/L         |
|    |        | Naphthalene                                        | 1        | < 10            | ug/L         |
|    |        | Nitrobenzene                                       | 1        | < 10            | ug/L         |
|    |        | Pentachlorophenol                                  | 1        | < 50            | ug/L         |
|    |        | Phenanthrene                                       | 1        | < 10            | ug/L         |
|    |        | Phenol                                             | 1        | < 10            | ug/L         |
|    |        | Pyrene                                             | , 1      | < 10            | ug/L         |
|    |        | bis(2-Chloroethoxy)methane                         | 1        | < 10            | ug/L         |
|    |        | bis(2-Ethylhexyl)phthalate                         | 1        | < 10            | ug/L         |

COMMENTS: Continued on next page.

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997
Report No.: 00060410
Section A Page 12

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB03-S5
SAMPLE NO: H446423

TEST

CODE

LN

DETERMINATION

DILUTION

**FACTOR** 

RESULT UNITS

COMMENTS: Results for the SPLP leachate are reported in ug/L.

The reporting limits on the volatile and semi-volatile analyses of the soil are elevated due to matrix interferences and high analyte concentration.

\* The surrogates were not recovered in the SPLP leachate for semi-volatile analysis. The sample will be re-leached, re-analyzed, and reported on a separate report.

April 11, 1997
Report No.: 00060410
Section A Page 13

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB03-S19

SAMPLE NO: H446424

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 05-MAR-97 0830

DATE RECEIVED: 06-MAR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          | DILUTION |          |                |
|----|--------|------------------------------------------|----------|----------|----------------|
| LN | CODE   | DETERMINATION                            | FACTOR   | RESULT   | UNITS          |
|    |        |                                          |          |          |                |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |          |          |                |
|    |        | 1,2-Dichloroethane                       | 1        | < 5      | um /lem        |
|    |        | Benzene                                  | 1        | < 5      | ug/kg          |
|    |        | Chlorobenzene                            | 1        | < 5      | ug/kg          |
|    |        | Ethylbenzene                             | 1        | 38       | J              |
|    |        | Methylene chloride                       | 1        | 6        | ug/kg          |
|    |        | Toluene                                  | 1        | < 5      | ug/kg          |
|    |        | Xylenes (total)                          | 1        | 99       | ug/kg          |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil | '        | 77       | ug/kg          |
|    |        | 1,2-Diphenylhydrazine                    | 5        | < 1,600* | ug/kg          |
|    |        | 2,4-Dimethylphenol                       | 5        | < 1,600  | ug/kg<br>ug/kg |
|    |        | 2,4-Dinitrotoluene                       | 5        | < 1,600  | ug/kg<br>ug/kg |
|    |        | 2,6-Dinitrotoluene                       | 5        | < 1,600  | ug/kg<br>ug/kg |
|    |        | 2-Chloronaphthalene                      | 5        | < 1,600  | ug/kg<br>ug/kg |
|    |        | 2-Methylnaphthalene                      | 5        | 11,000   |                |
|    |        | 4,6-Dinitro-o-cresol                     | 5        | < 8,200  |                |
|    |        | 4-Nitrophenol                            | 5        | < 8,200  | ug/kg          |
|    |        | Acenaphthene                             | 5        | 6,100    | -              |
|    |        | Acenaphthylene                           | 5        | < 1,600  | ug/kg          |
|    |        | Anthracene                               | 5        | -        |                |
|    |        | Benzo(a)anthracene                       | 5        | -        | • •            |
|    |        | Benzo(a)pyrene                           | 5        |          |                |
|    |        | Chrysene                                 | 5        |          |                |
|    |        | Di-n-butyl phthalate                     | 5        | < 1,600  |                |
|    |        | Dibenzofuran                             | 5        |          | ug/kg          |
|    |        | Fluoranthene                             | 5        | 7,900    |                |
|    |        | Fluorene                                 | 5        |          | ug/kg          |
|    |        | N-Nitrosodiphenylamine                   | 5        | -        | ug/kg          |
|    |        | Naphtha lene                             | 5        |          | ug/kg          |
|    |        | Nitrobenzene                             | 5        | •        | ug/kg          |
|    |        | Pentachlorophenol                        | 5        | -        | ug/kg          |
|    |        | Phenanthrene                             | 5        | 16,000   |                |
|    |        | Phenol                                   | 5        |          | ug/kg          |
|    |        | Pyrene                                   | 5        |          | ug/kg          |
|    |        | bis(2-Chloroethoxy)methane               | 5        |          | ug/kg          |
|    | æ.*    |                                          | -        | .,555    | ~3/ \B         |

April 11, 1997 Report No.: 00060410 Section A Page 14

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB03-S19
SAMPLE NO: H446424

| LN | CODE   | DETERMINATION                                                                                | DILUTION<br>FACTOR | RESULT     | UNITS        |  |
|----|--------|----------------------------------------------------------------------------------------------|--------------------|------------|--------------|--|
|    |        | bis(2-Ethylhexyl)phthalate                                                                   |                    |            | •            |  |
| 8  | S401   |                                                                                              | 5                  | < 1,600    | ug/kg        |  |
| 9  | \$402  | SW1312 - SPLP Leaching Procedure - Metals and SVOA<br>SW1312 - SPLP Leaching Procedure - ZHE |                    | Done       |              |  |
| 14 | 1685S  | Petroleum Hydrocarbons                                                                       |                    | Done       |              |  |
| 15 | OVTCW2 |                                                                                              | 1                  | 70         | mg/kg        |  |
|    | OVIOWE | 1.2-Dichloroethane                                                                           |                    |            |              |  |
|    |        | Benzene                                                                                      | 1                  | < 5        | ug/L         |  |
|    |        | Chlorobenzene                                                                                | 1                  | < 5        | - O          |  |
|    |        | Ethylbenzene                                                                                 | 1                  |            | ug/L         |  |
|    |        | Methylene chloride                                                                           | 1                  |            | ug/L         |  |
|    |        | Toluene                                                                                      | 1                  | < 5        |              |  |
|    |        | Xylenes (total)                                                                              | 1                  | < 5        | 0.           |  |
| 17 | OSVTCW | TCL - Semi-volatile Extractables in Water                                                    | 1                  | < 5        | ug/L         |  |
|    |        | 1,2-Diphenylhydrazine                                                                        |                    |            |              |  |
|    |        | 2,4-Dimethylphenol                                                                           | 1                  | < 10       |              |  |
|    |        | 2,4-Dinitrotoluene                                                                           | 1                  | < 10       | •            |  |
|    |        | 2,6-Dinitrotoluene                                                                           | 1                  | < 10       | 0, -         |  |
|    |        | 2-Chloronaphthalene                                                                          | 1                  | < 10       |              |  |
|    |        | 2-Methylnaphthalene                                                                          | . 1                | < 10       | ug/L         |  |
|    |        | 4,6-Dinitro-o-cresol                                                                         | 1                  | 41         | ug/L         |  |
|    |        | 4-Nitrophenol                                                                                | 1                  | < 50       | -0, -        |  |
|    |        | Acenaphthene                                                                                 | 1                  | < 50       | ug/L         |  |
|    |        | Acenaphthylene                                                                               | 1                  | 40         | ug/L         |  |
|    |        | Anthracene                                                                                   | 1                  |            | ug/L         |  |
|    |        | Benzo(a)anthracene                                                                           | 1                  | < 10       | ug/L         |  |
|    |        | Benzo(a)pyrene                                                                               | 1                  |            | ug/L         |  |
|    |        | Chrysene                                                                                     | 1                  |            | ug/L         |  |
|    |        | Di-n-butylphthalate                                                                          | 1                  |            | ug/L         |  |
|    |        | Dibenzofuran                                                                                 | 1                  | < 10<br>35 |              |  |
|    |        | Fluoranthene                                                                                 | 1                  |            | ug/L<br>ug/L |  |
|    |        | Fluorene                                                                                     | 1                  |            | ug/L<br>ug/L |  |
|    |        | N-Nitrosodiphenylamine                                                                       | 1                  |            | ug/L         |  |
|    |        | Naphthalene                                                                                  | 1                  |            | ug/L         |  |
|    |        | Nitrobenzene                                                                                 | 1                  |            | ug/L         |  |
|    |        | Pentachlorophenol                                                                            | 1                  |            | ug/L         |  |
|    |        | Phenanthrene                                                                                 | 1                  |            | ug/L         |  |
|    |        | Phenol                                                                                       | 1                  |            | ug/L         |  |
|    |        | Pyrene                                                                                       | 1                  |            | ug/L         |  |
|    |        | bis(2-Chloroethoxy)methane                                                                   | 1                  |            | ug/L         |  |
|    |        | bis(2-Ethylhexyl)phthalate                                                                   | 1                  |            | ug/L         |  |

COMMENTS: Continued on next page.

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997 Report No.: 00060410 Section A Page 15

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT SAMPLE ID: HWPW-SB03-S19 SAMPLE NO: H446424

**TEST** 

CODE

LN

DETERMINATION

DILUTION

**FACTOR** 

RESULT UNITS

COMMENTS: Results for the SPLP leachate are reported in ug/L.

\* The internal standard recoveries were outside of QC acceptance limits due to matrix interference which was confirmed by re-analysis.

The reporting limits for soil semi-volatiles are elevated due to the dilution required because of high analyte concentration.

April 11, 1997 Report No.: 00060410 Section A Page 16

< 330 ug/kg

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB03-S24

SAMPLE NO: H446425

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142
PACE CLIENT: 620437

P.O. NO: 03219

P.O. NO: 03219

DATE SAMPLED: 05-MAR-97 0835

DATE RECEIVED: 06-MAR-97
PROJECT MANAGER: Elessa Sommers

| OVTCS2   8260A TCL Volatiles in Soil   1,2-Dichloroethane   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | TEST<br>CODE | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DILUTION<br>FACTOR | RESULT | UNITS   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|---------|--|
| 1,2-Dichloroethane   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 0  | TOO?         | 02/01 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |        |         |  |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 00 | V1632        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |         |  |
| Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Methylene chloride Toluene Xylenes (total) Sylenes (total)  Sylenes (total)  Sylenes (total)  Sylenes (total)  Sylenes (total)  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  | < 5    | uatka   |  |
| Ethylbenzene  Rethylene chloride Toluene Xylenes (total)  SVICTS TCL - Semi-volatile Extractables in Soil 1,2-Diphenylhydrazine 2,4-Dimitrylphenol 2,4-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol 3,6-Dimitrylphenol |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |        | -37 113 |  |
| Methylene chloride         1         45         ug/kg           Toluene         1         <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |        |         |  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |        |         |  |
| Xylenes (total)   29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |        | -37     |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |        | -0,     |  |
| 1,2-Diphenylhydrazine 2,4-Dimethylphenol 2,4-Dimethylphenol 1 < 330 ug/kg 2,4-Dinitrotoluene 1 < 330 ug/kg 2,4-Dinitrotoluene 1 < 330 ug/kg 2,6-Dinitrotoluene 1 < 330 ug/kg 2-Chloronaphthalene 1 < 330 ug/kg 2-Methylnaphthalene 1 < 330 ug/kg 4,6-Dinitro-o-cresol 1 1,100 ug/kg 4-Nitrophenol 1 < 1,600 ug/kg 4-Nitrophenol 1 < 1,600 ug/kg Acenaphthylene 1 1,100 ug/kg Anthracene 1 1,100 ug/kg Anthracene 1 2,330 ug/kg Benzo(a)anthracene 1 860 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Dibenzofuran 1 1,200 ug/kg N-Nitrobenzene 1 1,200 ug/kg N-Nitrobenzene 1 1,300 ug/kg Naphthalene 1 1,300 ug/kg Naphthalene 1 1,300 ug/kg Pentachlorophenol 1 3,600 ug/kg Phenol Pyrene bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O.C. | VTCC         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |        |         |  |
| 2,4-Dimethylphenol 2,4-Dimitrotoluene 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | US   | 1163         | 1 2-Diebardhad :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |        | ug/ kg  |  |
| 2,4-Dinitrotoluene 2,6-Dinitrotoluene 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  | < 330  | ua/ka   |  |
| 2,6-Dinitrotoluene 2-Chloronaphthalene 1 < 330 ug/kg 2-Methylnaphthalene 1 < 330 ug/kg 2-Methylnaphthalene 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |              | 2.4-Diminuo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                  |        | -3/ 113 |  |
| 2-Chloronaphthalene 1 < 330 ug/kg 2-Methylnaphthalene 1 < 330 ug/kg 4,6-Dinitro-o-cresol 1 1,100 ug/kg 4-Nitrophenol 1 < 1,600 ug/kg Acenaphthene 1 1,100 ug/kg Acenaphthylene 1 1,100 ug/kg Anthracene 1 < 330 ug/kg Benzo(a)anthracene 1 < 330 ug/kg Benzo(a)pyrene 1 < 330 ug/kg Chrysene 1 < 330 ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Fluoranthene 1 1,200 ug/kg N-Nitrosodiphenylamine 1 1,300 ug/kg Naphthalene 1 1,300 ug/kg Naphthalene 1 1,300 ug/kg Naphthalene 1 1,300 ug/kg Pentachlorophenol 1 < 330 ug/kg Phenol 1 3,600 ug/kg Pyrene bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |        | -9, 1.9 |  |
| 2-Methylnaphthalene 1 < 330 ug/kg 4,6-Dinitro-o-cresol 1 1,100 ug/kg 4-Nitrophenol 1 < 1,600 ug/kg 4-Nitrophenol 1 < 1,600 ug/kg 4-Nitrophenol 1 < 1,600 ug/kg 4-Nitrophenol 1 < 1,600 ug/kg 4-Nitrophenol 1 < 1,600 ug/kg 4-Nitrophenol 1 < 1,000 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nitrophenol 1 < 330 ug/kg 4-Nit |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |        | -0,     |  |
| 4,6-Dinitro-o-cresol 1 1,100 ug/kg 4-Nitrophenol 1 < 1,600 ug/kg Acenaphthene 1 < 1,600 ug/kg Acenaphthylene 1 1,100 ug/kg Anthracene 1 1,100 ug/kg Anthracene 1 0,000 ug/kg Benzo(a)anthracene 1 860 ug/kg Benzo(a)pyrene 1 0,330 ug/kg Chrysene 1 0,330 ug/kg Di-n-butyl phthalate 1 0,330 ug/kg Dibenzofuran 1 0,330 ug/kg Fluorene 1 1,200 ug/kg N-Nitrosodiphenylamine 1 1,300 ug/kg Naphthalene 1 1,300 ug/kg Nitrobenzene 1 4,600 ug/kg Pentachlorophenol 1 0,330 ug/kg Phenot 1 0,330 ug/kg Pyrene 1 3,600 ug/kg Pyrene 1 3,600 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |        | 0       |  |
| 4-Nitrophenol 1 < 1,600 ug/kg Acenaphthene 1 < 1,600 ug/kg Acenaphthylene 1 1,100 ug/kg Anthracene 1 1,100 ug/kg Anthracene 1 1,100 ug/kg Benzo(a)anthracene 1 860 ug/kg Benzo(a)pyrene 1 330 ug/kg Chrysene 1 < 330 ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Fluorene 1 1,200 ug/kg N-Nitrosodiphenylamine 1 1,300 ug/kg Naphthalene 1 1,300 ug/kg Nitrobenzene 1 4,600 ug/kg Pentachlorophenol 1 < 330 ug/kg Phenol 1 < 330 ug/kg Pyrene 1 3,600 ug/kg Pyrene 1 3,600 ug/kg Pyrene bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |        | -       |  |
| Acenaphthene Acenaphthylene Acenaphthylene Anthracene Anthracene Benzo(a)anthracene Benzo(a)pyrene Chrysene Di-n-butyl phthalate Dibenzofuran Fluoranthene Fluorene N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene bis(2-Chloroethoxy)methane  1 (1,000 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |        |         |  |
| Acenaphthylene Acenaphthylene Anthracene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Chrysene Di-n-butyl phthalate Dibenzofuran Fluoranthene Fluorene N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene bis(2-Chloroethoxy)methane  1,100 ug/kg 1,200 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,100 ug/kg 1,200 ug/kg 1,200 ug/kg 1,200 ug/kg 1,200 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  | -      |         |  |
| Anthracene Benzo(a)anthracene Benzo(a)pyrene Chrysene Di-n-butyl phthalate Dibenzofuran Fluoranthene Fluorene N-Nitrosodiphenylamine Naphthalene Nitrobenzene Nitrobenzene Nitrobenzene Pentachlorophenol Phenalthrene Phenol Pyrene bis(2-Chloroethoxy)methane  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |              | • 10 1900/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  | -      |         |  |
| Benzo(a)anthracene Benzo(a)pyrene 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |              | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , i                |        | 0, 110  |  |
| Benzo(a)pyrene 1 < 330 ug/kg Chrysene 1 < 330 ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Fluoranthene 1 1,200 ug/kg Fluorene 1 1,800 ug/kg N-Nitrosodiphenylamine 1 1,300 ug/kg Naphthalene 1 < 330 ug/kg Nitrobenzene 1 4,600 ug/kg Pentachlorophenol 1 < 330 ug/kg Phenanthrene 1 < 1,600 ug/kg Phenol 1 < 330 ug/kg Pyrene 1 3,600 ug/kg Pyrene 1 < 330 ug/kg Disc2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |        |         |  |
| Chrysene 1 < 330 ug/kg Di-n-butyl phthalate 1 < 330 ug/kg Dibenzofuran 1 < 330 ug/kg Fluoranthene 1 1,200 ug/kg Fluorene 1 1,800 ug/kg N-Nitrosodiphenylamine 1 1,300 ug/kg Naphthalene 1 < 330 ug/kg Nitrobenzene 1 4,600 ug/kg Pentachlorophenol 1 < 330 ug/kg Phenanthrene 1 < 1,600 ug/kg Phenol 1 < 330 ug/kg Pyrene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg Dibenzene 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |        | _       |  |
| Di-n-butyl phthalate Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzofuran Di-benzof |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>.</u>           |        |         |  |
| Dibenzofuran 1 < 330 ug/kg Fluoranthene 1 1,200 ug/kg Fluorene 1 1,800 ug/kg N-Nitrosodiphenylamine 1 1,300 ug/kg Naphthalene 1 < 330 ug/kg Nitrobenzene 1 4,600 ug/kg Pentachlorophenol 1 < 330 ug/kg Phenanthrene 1 < 1,600 ug/kg Phenol 1 < 330 ug/kg Pyrene 1 < 330 ug/kg Dyrene 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                  |        | _       |  |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        | 1.000   |  |
| Fluorene 1 1,800 ug/kg N-Nitrosodiphenylamine 1 1,300 ug/kg Naphthalene 1 < 330 ug/kg Nitrobenzene 1 4,600 ug/kg Pentachlorophenol 1 < 330 ug/kg Phenanthrene 1 < 1,600 ug/kg Phenol 1 < 330 ug/kg Pyrene 1 < 330 ug/kg Dyrene 1 < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500 ·              |        |         |  |
| N-Nitrosodiphenylamine Naphthalene Nitrobenzene Nitrobenzene Nitrobenzene Nitrophenol Pentachlorophenol Phenanthrene Phenol Phenol Pyrene bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |         |  |
| Naphthalene       1       < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                  |        |         |  |
| Naphthalene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrob |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |         |  |
| Pentachlorophenol       1       < 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |        | -       |  |
| Pentachtorophenol Phenanthrene 1 < 1,600 ug/kg Phenol Pyrene 1 < 330 ug/kg Pyrene 1 < 330 ug/kg 1 1,200 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |        |         |  |
| Phenol       1       3,600 ug/kg         Pyrene       1       < 330 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                  |        | -       |  |
| Pyrene 1 < 330 ug/kg bis(2-Chloroethoxy)methane 1 1,200 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |        |         |  |
| bis(2-Chloroethoxy)methane 1 1,200 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | P            | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                  |        |         |  |
| THE STITUTE STITUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |              | • Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont | 1                  |        |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | b            | pis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                  |        |         |  |

April 11, 1997
Report No.: 00060410
Section A Page 17

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB03-S24
SAMPLE NO: H446425

|    | TEST   |                                                    |   | DILUTION |        |         |
|----|--------|----------------------------------------------------|---|----------|--------|---------|
| LN | CODE   | DETERMINATION                                      |   | FACTOR   | RESULT | INTTO   |
|    |        |                                                    |   |          | KESULI | UNITS   |
|    |        |                                                    |   |          |        |         |
|    |        | bis(2-Ethylhexyl)phthalate                         |   | 1        | < 330  | ug/kg   |
| 8  | S401   | SW1312 - SPLP Leaching Procedure - Metals and SVOA |   |          | Done   | -5/ 1.5 |
| 9  | \$402  | SW1312 - SPLP Leaching Procedure - ZHE             |   |          | Done   | 1       |
| 14 | 1685s  | Petroleum Hydrocarbons                             |   | 1        | < 20   | mg/kg   |
| 15 | OVTCW2 | 8260A TCL Volatiles in Water                       |   |          |        | 97 119  |
|    |        | 1,2-Dichloroethane                                 |   | 1        | < 5    | ug/L    |
|    |        | Benzene                                            |   | 1        | 24     | ug/L    |
|    |        | Chlorobenzene                                      |   | 1        | < 5    | ug/L    |
|    |        | Ethylbenzene                                       |   | 1        | < 5    | ug/L    |
|    |        | Methylene chloride                                 |   | 1        | 30 *   | ug/L    |
|    |        | Toluene                                            |   | 10       | 260    | ug/L    |
|    |        | Xylenes (total)                                    |   | 1        | 11     | ug/L    |
| 17 | OSVTCW | TCL - Semi-volatile Extractables in Water          |   |          |        |         |
|    |        | 1,2-Diphenylhydrazine                              |   | 1        | < 10   | ug/L    |
|    |        | 2,4-Dimethylphenol                                 |   | 1        | < 10   | ug/L    |
|    |        | 2,4-Dinitrotoluene                                 |   | 1        | < 10   | ug/L    |
|    |        | 2,6-Dinitrotoluene                                 |   | 1        | < 10   | ug/L    |
|    |        | 2-Chloronaphthalene                                |   | 1        | < 10   | ug/L    |
|    |        | 2-Methylnaphthalene                                |   | 1        | 44     | ug/L    |
|    |        | 4,6-Dinitro-o-cresol                               |   | 1        | < 50   |         |
|    |        | 4-Nitrophenol                                      |   | 1        | < 50   | ug/L    |
|    |        | Acenaphthene                                       |   | 1        | 85     | ug/L    |
|    |        | Acenaphthylene                                     |   | 1        | < 10   | ug/L    |
|    |        | Anthracene                                         |   | 1        | 31     | ug/L    |
|    |        | Benzo(a)anthracene                                 |   | 1        | < 10   | ug/L    |
|    |        | Benzo(a)pyrene                                     |   | 1        |        | ug/L    |
|    |        | Chrysene                                           |   | 1        | < 10   | ug/L    |
|    |        | Di-n-butylphthalate                                |   | 1        | < 10   | ug/L    |
|    |        | Dibenzofuran                                       |   | 1        | 60     | ug/L    |
|    |        | Fluoranthene                                       |   | 1        | 32     | ug/L    |
|    |        | Fluorene                                           |   | 1        | 88     | ug/L    |
|    |        | N-Nitrosodiphenylamine                             |   | 1        | < 10   | ug/L    |
|    |        | Naphthalene                                        |   | 1        | < 10   | ug/L    |
|    |        | Nitrobenzene                                       |   | 1        | < 10   | ug/L    |
|    |        | Pentachlorophenol                                  |   | 1        | < 50   | ug/L    |
|    |        | Phenanthrene                                       |   | . 1      | 170    | ug/L    |
|    |        | Phenol                                             | * | 1        |        | ug/L    |
|    |        | Pyrene                                             |   | 1        | 15     | ug/L    |
|    |        | bis(2-Chloroethoxy)methane                         | - | 1        | < 10   | ug/L    |
|    |        | bis(2-Ethylhexyl)phthalate                         |   | 1        | < 10   | ug/L    |
|    |        |                                                    |   |          |        |         |

COMMENTS: Continued on next page.

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997 Report No.: 00060410 Section A Page 18

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB03-S24

SAMPLE NO: H446425

TEST

LN CODE

DETERMINATION

DILUTION

FACTOR

RESULT UNITS

COMMENTS: Results for the SPLP leachate are reported in ug/L.

\* Methylene chloride is a common laboratory solvent. Methylene chloride was not detected in the analysis of the soil. The SPLP leachate may have been contaminated during the leaching process. This should be considered in evaluating the data.

April 11, 1997 Report No.: 00060410 Section A Page 19

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB03-S34

SAMPLE NO: H446426

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142
PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 05-MAR-97 0910

DATE RECEIVED: 06-MAR-97

|    |              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |           |         |  |
|----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|---------|--|
| LN | TEST<br>CODE | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DILUTION<br>FACTOR | RESUL     | UNITS   |  |
|    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |           |         |  |
| 1  | OVTCS2       | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                    |           |         |  |
|    |              | 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 625                | < 3,100   | ug/kg   |  |
|    |              | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 625                | < 3,100   |         |  |
|    |              | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 625                | < 3,100   |         |  |
|    |              | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 625                | 46,000    |         |  |
|    |              | Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 625                | < 3,100   |         |  |
|    |              | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 625                | 32,000    | _       |  |
| _  |              | Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 625                | 170,000   |         |  |
| 3  | OSVTCS       | TCL - Semi-volatile Extractables in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | 170,000   | ug/kg   |  |
|    |              | 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75                 | < 25,000  | ug/kg   |  |
|    |              | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75                 | < 25,000  |         |  |
|    |              | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75                 | < 25,000  |         |  |
|    |              | 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75                 | < 25,000  | -       |  |
|    |              | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75                 | < 25,000  |         |  |
|    |              | 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1500               | 2,200,000 | ug/kg   |  |
|    |              | 4,6-Dinitro-o-cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75                 | < 120,000 | ug/kg   |  |
|    |              | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75                 | < 120,000 |         |  |
|    |              | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75<br>75           |           |         |  |
|    |              | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75                 | 270,000   | ug/kg   |  |
|    |              | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75<br>75           | < 25,000  | ug/kg   |  |
|    |              | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75                 | 160,000   | ug/kg   |  |
|    |              | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75<br>75           | 42,000    | ug/kg   |  |
|    |              | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75<br>75           | < 25,000  | ug/kg   |  |
|    |              | Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75<br>75           | 42,000    | ug/kg   |  |
|    |              | Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75<br>75           | < 25,000  | ug/kg   |  |
|    |              | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75<br>75           | 240,000   | ug/kg . |  |
|    |              | Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75<br>75           | 210,000   | ug/kg   |  |
|    |              | N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75<br>75           |           | ug/kg   |  |
|    |              | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1500               |           | ug/kg   |  |
|    |              | Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |           | ug/kg   |  |
|    |              | Pentach l oropheno l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>7</i> 5<br>75   |           | ug/kg   |  |
|    |              | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |           | ug/kg   |  |
|    |              | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1500<br>75         |           | ug/kg   |  |
|    | 1            | Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75                 |           | ug/kg   |  |
|    | 1            | bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75<br>75           |           | ug/kg   |  |
|    |              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75                 | < 25,000  | ug/kg   |  |
|    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |           |         |  |

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997 Report No.: 00060410 Section A Page 20

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB03-S34

SAMPLE NO: H446426

| LN  | CODE   | DETERMINATION                                        | DILUTION<br>FACTOR | RESULT            | UNITS          |
|-----|--------|------------------------------------------------------|--------------------|-------------------|----------------|
| 14  | 1685s  | bis(2-Ethylhexyl)phthalate<br>Petroleum Hydrocarbons | 75<br>50           | < 25,000<br>7,400 | ug/kg<br>mg/kg |
| COM | MENTO. | The memoration links                                 |                    |                   |                |

COMMENTS: The reporting limits are elevated due to the dilution required because of the high concentration of target analytes.

April 11, 1997
Report No.: 00060410
Section A Page 21

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB03-S52

SAMPLE NO: H446427

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 05-MAR-97 0935

DATE RECEIVED: 06-MAR-97

PROJECT MANAGER: Elessa Sommers

| LN | TEST<br>CODE | DETERMINATION                            | DILUTION<br>FACTOR | RESULT  | UNITS |   |
|----|--------------|------------------------------------------|--------------------|---------|-------|---|
|    |              |                                          |                    |         |       | - |
| 1  | OVTCS2       | 8260A TCL Volatiles in Soil              |                    |         |       |   |
|    |              | 1,2-Dichloroethane                       | . 1                | < 5     | ug/kg |   |
|    |              | Benzene                                  | 1                  | < 5     |       |   |
|    |              | Chlorobenzene                            | 1                  | < 5     | -0,   |   |
|    |              | Ethylbenzene                             | 1                  | 25      | J. J  |   |
|    |              | Methylene chloride                       | . 1                | < 5     | -0,   |   |
|    |              | Toluene                                  | 1                  | 20      | ug/kg |   |
| 3  | 001/700      | Xylenes (total)                          | - 1                | 75      | ug/kg |   |
| 3  | OSVTCS       | TCL - Semi-volatile Extractables in Soil |                    |         |       |   |
|    |              | 1,2-Diphenylhydrazine                    | 1                  | < 330   | ug/kg |   |
|    |              | 2,4-Dimethylphenol                       | 1                  | < 330   | ug/kg |   |
|    |              | 2,4-Dinitrotoluene                       | 1                  | < 330   | ug/kg |   |
|    |              | 2,6-Dinitrotoluene                       | 1                  | < 330   | ug/kg |   |
|    |              | 2-Chloronaphthalene                      | 1                  | < 330   | ug/kg |   |
|    |              | 2-Methylnaphthalene                      | 4                  | 11,000  | ug/kg |   |
|    |              | 4,6-Dinitro-o-cresol                     | 1                  | < 1,600 | ug/kg |   |
|    |              | 4-Nitrophenol                            | 1                  | < 1,600 | ug/kg |   |
|    |              | Acenaphthene                             | 1                  | 2,900   | ug/kg |   |
|    |              | Acenaphthylene                           | <b>1</b>           | < 330   | ug/kg |   |
|    |              | Anthracene                               | 1                  | 1,800   | ug/kg |   |
|    |              | Benzo(a)anthracene                       | 1                  | 560     | ug/kg |   |
|    |              | Benzo(a)pyrene                           | 1                  | < 330   | ug/kg |   |
|    |              | Chrysene                                 | 1                  | 560     | ug/kg |   |
|    |              | Di-n-butyl phthalate Dibenzofuran        | 1                  | < 330   | ug/kg |   |
|    |              | Fluoranthene                             | 1                  | 2,600   | ug/kg |   |
|    |              | Fluorene                                 | . 1                | 2,900   | ug/kg |   |
|    |              |                                          | 1                  |         | ug/kg |   |
|    |              | N-Nitrosodiphenylamine                   | 1                  |         | ug/kg |   |
|    |              | Naphthalene<br>Nitrobenzene              | 4                  |         | ug/kg |   |
|    |              |                                          | 1                  |         | ug/kg |   |
|    |              | Pentachlorophenol Phenanthrene           | 1                  |         | ug/kg |   |
|    |              | Phenol                                   | 4                  |         | ug/kg |   |
|    |              |                                          | , 1                |         | ug/kg |   |
|    |              | Pyrene bis(2-Chloroethoxy)methane        | . 1                |         | ug/kg |   |
|    |              | prote-pricer perioxy Juletuane           | 1                  | < 330   | ug/kg |   |
|    |              |                                          |                    |         |       |   |

# REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

## Pace Analytical

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997
Report No.: 00060410
Section A Page 22

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB03-S52
SAMPLE NO: H446427

|    |      | ****                       |          |          |       |  |
|----|------|----------------------------|----------|----------|-------|--|
|    |      |                            |          |          |       |  |
|    | TEST |                            |          |          |       |  |
| LN | CODE |                            | DILUTION |          |       |  |
|    | CODE | DETERMINATION              | FACTOR   | DE0111 - |       |  |
|    |      |                            | FACTOR   | RESULT   | UNITS |  |
|    |      |                            | ,        |          |       |  |
|    |      |                            |          |          |       |  |
|    |      | bis(2-Ethylhexyl)phthalate |          |          |       |  |
| 14 |      | Petroleum Hydrocarbons     | 1        | < 330    | ug/kg |  |
| •  |      | recipied in hydrogarbons   | 1        |          | -0,   |  |
|    |      |                            |          | < 20     | mg/kg |  |

April 11, 1997
Report No.: 00060410
Section A Page 23

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB03-S54

SAMPLE NO: H446428

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142
PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 05-MAR-97 0940

DATE RECEIVED: 06-MAR-97

| LN | TEST<br>CODE | DETERMINATION                            | DILUTION<br>FACTOR | RESULT | UNITS   |
|----|--------------|------------------------------------------|--------------------|--------|---------|
| 1  | OVTCS2       | 8260A TCL Volatiles in Soil              |                    |        |         |
| ,  | 001632       | 1,2-Dichloroethane                       |                    |        |         |
|    |              | Benzene                                  | 1                  | < 5    | ug/kg   |
|    |              | Chlorobenzene                            | 1                  | < 5    | ug/kg   |
|    |              | Ethylbenzene                             | 1                  | < 5    | ug/kg   |
|    |              | Methylene chloride                       | 1                  | < 5    | ug/kg   |
|    |              | Toluene                                  | 1                  | < 5    | ug/kg   |
|    |              | Xylenes (total)                          | 1                  | < 5    | ug/kg   |
| 3  | OSVTCS       | TCL - Semi-volatile Extractables in Soil | 1                  | < 5    | ug/kg   |
| -  | 001100       | 1,2-Diphenylhydrazine                    |                    |        |         |
|    |              | 2,4-Dimethylphenol                       | 1                  | < 330  | ug/kg   |
|    |              | 2,4-Dinitrotoluene                       | 1                  | < 330  |         |
|    |              | 2,6-Dinitrotoluene                       | 1                  | < 330  |         |
|    |              | 2-Chloronaphthalene                      | . 1                | < 330  |         |
|    |              | 2-Methylnaphthalene                      | " <b>1</b>         | < 330  | ug/kg   |
|    |              | 4,6-Dinitro-o-cresol                     | 1                  | < 330  | 0.      |
|    |              | 4-Nitrophenol                            | 1                  |        |         |
|    |              | Acenaphthene                             | 1                  |        | -       |
|    |              | Acenaphthylene                           | 1                  | < 330  | -3, 113 |
|    |              | Anthracene                               | 1                  |        | ug/kg   |
|    |              | Benzo(a)anthracene                       | 1                  |        | ug/kg   |
|    |              | Benzo(a)pyrene                           | 1                  |        | ug/kg   |
|    |              | Chrysene                                 | 1                  | < 330  |         |
|    |              | Di-n-butyl phthalate                     |                    |        | ug/kg   |
|    |              | Dibenzofuran                             | 1                  |        | ug/kg   |
|    |              | Fluoranthene                             | 1                  |        | ug/kg   |
|    |              | Fluorene                                 | 1                  |        | ug/kg   |
|    |              | N-Nitrosodiphenylamine                   | . 1                | < 330  |         |
|    |              | Naphthalene                              | 1                  | < 330  |         |
|    |              | Nitrobenzene                             | 1                  |        | ug/kg   |
|    |              | Pentachlorophenol                        | 1                  |        | ug/kg   |
|    |              | Phenanthrene                             | 1                  | -      | ug/kg   |
|    |              | Phenol                                   | . <u>1</u>         |        | ug/kg   |
|    | 1            | Pyrene                                   | 1                  |        | ug/kg   |
|    |              | bis(2-Chloroethoxy)methane               | 1                  |        | ug/kg   |
|    |              | •                                        | 1                  | < 330  | ug/kg   |

## Pace Analytical

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997
Report No.: 00060410
Section A Page 24

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB03-S54

SAMPLE NO: H446428

TEST
DILUTION
LN CODE
DETERMINATION
FACTOR RESULT UNITS

bis(2-Ethylhexyl)phthalate

1 < 330 ug/kg

April 11, 1997
Report No.: 00060410
Section A Page 25

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB04-S2.5

SAMPLE NO: H446429

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 05-MAR-97 1235

DATE RECEIVED: 06-MAR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          | DILUTION    |           |        |
|----|--------|------------------------------------------|-------------|-----------|--------|
| LN | CODE   | DETERMINATION                            | FACTOR      | DECILIT   | UNITS  |
|    |        |                                          | PACTOR      | KESULI    | UNITS  |
|    |        |                                          |             |           |        |
| 1  | OVTCS2 | The state of the solid                   |             |           |        |
|    |        | 1,2-Dichloroethane                       | 5           | < 25      | ug/kg  |
|    |        | Benzene                                  | 5           | < 25      | -0,    |
|    |        | Chlorobenzene                            | 5           | < 25      |        |
|    |        | Ethylbenzene                             | 5           | < 25      | -0,0   |
|    |        | Methylene chloride                       | 5           | < 25      | ug/kg  |
|    |        | Toluene                                  | 5           | < 25      | ug/kg  |
|    |        | Xylenes (total)                          | 5           | 70        | ug/kg  |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |             | , •       | 49/ Ng |
|    |        | 1,2-Diphenylhydrazine                    | 75          | < 25,000  | ug/kg  |
|    |        | 2,4-Dimethylphenol                       | 75          | < 25,000  | ug/kg  |
|    |        | 2,4-Dinitrotoluene                       | 75          | < 25,000  | ug/kg  |
|    |        | 2,6-Dinitrotoluene                       | 75          | < 25,000  | ug/kg  |
|    |        | 2-Chloronaphthalene                      | 75          | < 25,000  | ug/kg  |
|    |        | 2-Methylnaphthalene                      | <i>7</i> 50 | 320,000   |        |
|    |        | 4,6-Dinitro-o-cresol                     | <i>7</i> 5  | < 120,000 | ug/kg  |
|    |        | 4-Nitrophenol                            | 75          | < 120,000 | ug/kg  |
|    |        | Acenaphthene<br>Acenaphthyl ene          | 75          | 370,000   | ug/kg  |
|    |        | Anthracene                               | 75          | < 25,000  | ug/kg  |
|    |        | Benzo(a)anthracene                       | 75          | 250,000   | ug/kg  |
|    |        | Benzo(a)pyrene                           | 75          | 130,000   |        |
|    |        | Chrysene                                 | 75          | 44,000    | ug/kg  |
|    |        | Di-n-butyl phthalate                     | <i>7</i> 5  | 130,000   | ug/kg  |
|    |        | Dibenzofuran                             | <i>7</i> 5  | < 25,000  | ug/kg  |
|    |        | Fluoranthene                             | 75          | 300,000   | ug/kg  |
|    |        | Fluorene                                 | 75          | < 25,000  | ug/kg  |
|    |        | N-Nitrosodiphenylamine                   | 75          | 370,000   | ug/kg  |
|    |        | Naphthalene                              | 75          | < 25,000  | ug/kg  |
|    |        | Nitrobenzene                             | 750         | 540,000   | ug/kg  |
|    |        | Pentachlorophenol                        | 75          | < 25,000  | ug/kg  |
|    |        | Phenanthrene                             | 75          |           | ug/kg  |
|    |        | Phenol                                   | 750         |           | ug/kg  |
|    |        | Pyrene                                   | 75          |           | ug/kg  |
|    | 1      | bis(2-Chloroethoxy)methane               | 75          |           | ug/kg  |
|    |        |                                          | 75          | < 25,000  | ug/kg  |

## 151

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997 Report No.: 00060410 Section A Page 26

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB04-S2.5

SAMPLE NO: H446429

| LN  | TEST<br>CODE    | DETERMINATION                                                                                                                         | DILUTION<br>FACTOR | RESULT | UNITS          |
|-----|-----------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|----------------|
| 14  | 16 <b>8</b> 5\$ | bis(2-Ethylhexyl)phthalate Petroleum Hydrocarbons                                                                                     | 75<br>50           |        | ug/kg<br>mg/kg |
| COM | MENTS:          | The reporting limits are elevated due to the dilution required because of matrix interferences and high target analyte concentration. |                    |        |                |

April 11, 1997
Report No.: 00060410
Section A Page 27

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB04-S29

SAMPLE NO: H446430

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 05-MAR-97 1320

DATE RECEIVED: 06-MAR-97

| LN | TEST<br>CODE | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DILUTION<br>FACTOR | RESULT  | UNITS |
|----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|-------|
|    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |         |       |
| 1  | OVTCS2       | The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th |                    |         |       |
|    |              | 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 5     | ug/kg |
|    |              | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                  | 13      | ug/kg |
|    |              | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                  | < 5     | ug/kg |
|    |              | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  | 31      | ug/kg |
|    |              | Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | 11      | ug/kg |
|    |              | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                  | 21      | ug/kg |
| 7  | 001/200      | Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  | 88      | ug/kg |
| 3  | OSVTCS       | TCL - Semi-volatile Extractables in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |         |       |
|    |              | 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                  | < 1,600 | ug/kg |
|    |              | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                  | 5,300   | ug/kg |
|    |              | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                  | < 1,600 | ug/kg |
|    |              | 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                  | < 1,600 | ug/kg |
|    |              | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                  | < 1,600 | ug/kg |
|    |              | 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                 | 17,000  | ug/kg |
|    |              | 4,6-Dinitro-o-cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                  | < 8,200 | ug/kg |
|    |              | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                  | < 8,200 | ug/kg |
|    |              | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                  | 13,000  | ug/kg |
|    |              | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                  | < 1,600 | ug/kg |
|    |              | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                  | 14,000  | ug/kg |
|    |              | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                  | 1,800   | ug/kg |
|    |              | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                  | < 1,600 | ug/kg |
|    |              | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                  | 1,700   |       |
|    |              | Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                  |         | ug/kg |
|    |              | Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                  | 12,000  | ug/kg |
|    |              | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                  |         | ug/kg |
|    |              | Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                  |         | ug/kg |
|    |              | N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                  |         | ug/kg |
|    |              | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                 |         | ug/kg |
|    |              | Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                  |         | ug/kg |
|    |              | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                  |         | ug/kg |
|    |              | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25                 | -       | ug/kg |
|    |              | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                  |         | ug/kg |
|    |              | Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                  |         | ug/kg |
|    |              | bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                  | •       | ug/kg |
|    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |         |       |

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997 Report No.: 00060410 Section A Page 28

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB04-S29
SAMPLE NO: H446430

| LN  | TEST   | DETERMINATION                                                                                                            | DILUTION<br>FACTOR | RESULT        | UNITS          | · <b></b> - |
|-----|--------|--------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|----------------|-------------|
| 14  | I685s  | bis(2-Ethylhexyl)phthalate<br>Petroleum Hydrocarbons                                                                     | 5<br>1             | < 1,600<br>70 | ug/kg<br>mg/kg |             |
| COM | MENTS: | The reporting limits for semi-volatiles are elevated due to the dilution required because of high analyte concentration. |                    |               |                |             |

April 11, 1997 Report No.: 00060410 Section A Page 29

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB04-S27

SAMPLE NO: H446431

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

. TOT MOT OBETY

DATE SAMPLED: 05-MAR-97 1330

DATE RECEIVED: 06-MAR-97

|    |         |                                          |          | •       |       |
|----|---------|------------------------------------------|----------|---------|-------|
|    | TEST    |                                          | DILUTION |         |       |
| LN | CODE    | DETERMINATION                            | FACTOR   | RESULT  | UNITS |
|    |         |                                          |          |         |       |
| 1  | COTTO   | 8260A TCL Volatiles in Soil              |          |         |       |
| '  | 071632  | 1,2-Dichloroethane                       |          |         |       |
|    |         | Benzene                                  | 1        | < 5     | ug/kg |
|    |         | Chlorobenzene                            | 1        | 13      | ug/kg |
|    |         | Ethylbenzene                             | 1        | < 5     | -0,   |
|    |         | Methylene chloride                       | 1        | 64      | ug/kg |
|    |         | Toluene                                  | 1        | 7       |       |
|    |         | Xylenes (total)                          | 1        | 28      | ug/kg |
| 3  | OCVITCO |                                          | 1        | 180     | ug/kg |
| 3  | USVICS  | TCL - Semi-volatile Extractables in Soil |          |         |       |
|    |         | 1,2-Diphenylhydrazine                    | 5        | < 1,600 | ug/kg |
|    |         | 2,4-Dimethylphenol                       | 5        | 2,300   | ug/kg |
|    |         | 2,4-Dinitrotoluene                       | 5        | < 1,600 | ug/kg |
|    |         | 2,6-Dinitrotoluene                       | 5        | < 1,600 | ug/kg |
|    |         | 2-Chloronaphthalene                      | 5        | < 1,600 | ug/kg |
|    |         | 2-Methylmaphthalene                      | 25       | 53,000  | ug/kg |
|    |         | 4,6-Dinitro-o-cresol                     | 5        | < 8,200 | ug/kg |
|    |         | 4-Nitrophenol                            | 5        | < 8,200 | ug/kg |
|    |         | Acenaphthene                             | . 5      | 16,000  | ug/kg |
|    |         | Acenaphthylene                           | 5        | < 1,600 | ug/kg |
|    |         | Anthracene                               | 5        | 9,700   | ug/kg |
|    |         | Benzo(a)anthracene                       | 5        | 2,100   | ug/kg |
|    |         | Benzo(a)pyrene                           | 5        | < 1,600 | ug/kg |
|    |         | Chrysene                                 | 5        | 2,100   | ug/kg |
|    |         | Di-n-butyl phthalate<br>Dibenzofuran     | 5        | < 1,600 | ug/kg |
|    |         |                                          | 5        | 14,000  | ug/kg |
|    |         | Fluoranthene                             | 5        | 13,000  | ug/kg |
|    |         | Fluorene                                 | 5        | 16,000  | ug/kg |
|    |         | N-Nitrosodiphenylamine                   | 5        | < 1,600 | ug/kg |
|    |         | Naphthal ene                             | 25       | 56,000  | ug/kg |
|    |         | Nitrobenzene                             | 5        | < 1,600 | ug/kg |
|    |         | Pentachlorophenol                        | 5        | < 8,200 | ug/kg |
|    |         | Phenanthrene                             | 25       | 47,000  | ug/kg |
|    |         | Phenol                                   | 5        | < 1,600 | ug/kg |
|    |         | Pyrene                                   | 5        |         | ug/kg |
|    |         | bis(2-Chloroethoxy)methane               | 5        | < 1,600 | ug/kg |
|    |         |                                          |          |         |       |

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997 Report No.: 00060410 Section A Page 30

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB04-S27
SAMPLE NO: H446431

| LN  | CODE    | DETERMINATION                                                                                                            | DILUTION | RESULT         | UNITS          | ••••• |
|-----|---------|--------------------------------------------------------------------------------------------------------------------------|----------|----------------|----------------|-------|
| 14  | 1685\$  | bis(2-Ethylhexyl)phthalate<br>Petroleum Hydrocarbons                                                                     | 5<br>1   | < 1,600<br>130 | ug/kg<br>mg/kg |       |
| COM | IMENTS: | The reporting limits are elevated for semi-volatiles due to the dilution required because of high analyte concentration. |          |                |                |       |

April 11, 1997 Report No.: 00060410 Section A Page 31

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB04-S31

SAMPLE NO: H446432

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 05-MAR-97 1335

DATE RECEIVED: 06-MAR-97

PROJECT MANAGER: Elessa Sommers

| LN | TEST<br>CODE | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DILUTION<br>FACTOR | RESULT  | UNITS |
|----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|-------|
|    | 0.550        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |         |       |
| 1  | OVTCS2       | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                    |         |       |
|    |              | 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125                | < 620   | ug/kg |
|    |              | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 125                | < 620   | ug/kg |
|    |              | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 125                | < 620   | ug/kg |
|    |              | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 125                | 1,700   | ug/kg |
|    |              | Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125                | < 620   | ug/kg |
|    |              | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 125                | 1,400   | ug/kg |
| 3  | OCUTOO       | Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125                | 6,100   | ug/kg |
| 3  | OSVTCS       | TCL - Semi-volatile Extractables in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |         |       |
|    |              | 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                  | < 1,600 | ug/kg |
|    |              | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                  | < 1,600 | ug/kg |
|    |              | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                  | < 1,600 | ug/kg |
|    |              | 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                  | < 1,600 | ug/kg |
|    |              | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                  | < 1,600 | ug/kg |
|    |              | 2-Methylnaphthalene<br>4,6-Dinitro-o-cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                 | 29,000  | ug/kg |
|    |              | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                  | < 8,200 | ug/kg |
|    |              | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                  | < 8,200 | ug/kg |
|    |              | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                 | 23,000  | ug/kg |
|    |              | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                  | < 1,600 | ug/kg |
|    |              | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                  | 18,000  | ug/kg |
|    |              | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                  | 4,400   | ug/kg |
|    |              | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                  | < 1,600 | ug/kg |
|    |              | Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                  | 4,400   | ug/kg |
|    |              | Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                  | < 1,600 | ug/kg |
|    |              | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                 | 25,000  | ug/kg |
|    |              | Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                  | 20,000  | ug/kg |
|    |              | N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                 | 20,000  | ug/kg |
|    |              | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                  | < 1,600 | ug/kg |
|    |              | Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50                 | 200,000 | ug/kg |
|    |              | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                  | < 1,600 | ug/kg |
|    |              | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                  |         | ug/kg |
|    |              | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                 |         | ug/kg |
|    |              | Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                  |         | ug/kg |
|    |              | bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                  |         | ug/kg |
|    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                  | < 1,600 | ug/kg |

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997
Report No.: 00060410
Section A Page 32

## LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB04-S31
SAMPLE NO: H446432

| LN  | CODE   | DETERMINATION                                                                                                        | DILUTION<br>FACTOR | RESULT         | UNITS          |
|-----|--------|----------------------------------------------------------------------------------------------------------------------|--------------------|----------------|----------------|
| 14  | 1685s  | bis(2-Ethylhexyl)phthalate<br>Petroleum Hydrocarbons                                                                 | 5<br>1             | < 1,600<br>120 | ug/kg<br>mg/kg |
| COM | MENTS: | The reporting limits are elevated due to the dilution required because of the high concentration of target analytes. |                    |                |                |

April 11, 1997 Report No.: 00060410 Section A Page 33

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB04-S39

SAMPLE NO: H446433

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 05-MAR-97 1350

DATE RECEIVED: 06-MAR-97

PROJECT MANAGER: Elessa Sommers

| LN | CODE   | DETERMINATION                            | DILUTION<br>FACTOR | RESULT    | UNITS    |
|----|--------|------------------------------------------|--------------------|-----------|----------|
| 5  | OSVTCS | TCL - Semi-volatile Extractables in Soil |                    |           |          |
|    |        | 1,2-Diphenylhydrazine                    |                    |           |          |
|    |        | 2,4-Dimethylphenol                       | 10                 | < 3,300   | 0. 0     |
|    |        | 2,4-Dinitrotoluene                       | 10                 | < 3,300   | • •      |
|    |        | 2,6-Dinitrotoluene                       | 10                 | < 3,300   | - U. 113 |
|    |        | 2-Chloronaphthalene                      | 10                 | < 3,300   |          |
|    |        | 2-Methylnaphthalene                      | 10                 | < 3,300   |          |
|    |        | 4,6-Dinitro-o-cresol                     | 2000               | 1,100,000 |          |
|    |        | 4-Nitrophenol                            | 10                 | < 16,000  | ug/kg    |
|    |        | Acenaphthene                             | 10                 | < 16,000  | ug/kg    |
|    |        | Acenaphthylene                           | 2000               | 750,000   | ug/kg    |
|    |        | Anthracene                               | 10                 | 6,800     | ug/kg    |
|    |        | Benzo(a)anthracene                       | 100                | 470,000   | ug/kg    |
|    |        | Benzo(a)pyrene                           | 10                 | 38,000    | ug/kg    |
|    |        | Chrysene                                 | 10                 | 11,000    | ug/kg    |
|    |        | Di-n-butyl phthalate                     | 10                 | 38,000    | ug/kg    |
| •  |        | Dibenzofuran                             | 10                 | < 3,300   | ug/kg    |
|    |        | Fluoranthene                             | 2000               | 750,000   | ug/kg    |
|    |        | Fluorene                                 | 2000               | 590,000J  | ug/kg    |
|    |        | N-Nitrosodiphenylamine                   | 100                | 620,000   | ug/kg    |
|    |        | Naphthal ene                             | 10                 | < 3,300   | ug/kg    |
|    |        | Nitrobenzene                             | 2000               | 4,900,000 | ug/kg    |
|    |        | Pentachlorophenol                        | 10                 | < 3,300   | ug/kg    |
|    |        | Phenanthrene                             | 10                 | < 16,000  | ug/kg    |
|    |        | Phenol                                   | 10                 | 1,800,000 | ug/kg    |
|    |        | Pyrene                                   | 10                 | < 3,300   | ug/kg    |
|    |        | bis(2-Chloroethoxy)methane               | 100                | 430,000   | ug/kg    |
|    |        | bis(2-Ethylhexyl)phthalate               | 10                 | < 3,300   | ug/kg    |
|    | ,      | - ota am/thekyt/philiatate               | 10                 | < 3,300   | ug/kg    |

COMMENTS: J- The reported value is below the reporting limit.

The reporting limits are elevated due to the dilution required because of the high concentration of target analytes.

April 11, 1997 Report No.: 00060410 Section A Page 34

## LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB04-S51

SAMPLE NO: H446434

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007 PACE PROJECT: H44142

PACE PROJECT: H44142
PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 05-MAR-97 1415

DATE RECEIVED: 06-MAR-97

PROJECT MANAGER: Elessa Sommers

|    |        |                                          |      |          |          | Olline: S |         |
|----|--------|------------------------------------------|------|----------|----------|-----------|---------|
|    | TEST   |                                          | <br> |          |          |           |         |
| LN | CODE   | DETERMINATION                            |      | DILUTION |          |           |         |
|    |        | DETERMINATION                            |      | FACTOR   | RESUL    | T UNITS   |         |
|    |        |                                          | <br> |          |          |           |         |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |      |          |          |           |         |
|    |        | 1,2-Dichloroethane                       |      |          |          |           |         |
|    |        | Benzene                                  |      | 5        | < 25     | ug/kg     |         |
|    |        | Chlorobenzene                            |      | 5        | < 25     | ug/kg     |         |
|    |        | Ethylbenzene                             |      | 5        | < 25     | ug/kg     |         |
|    |        | Methylene chloride                       |      | 5        | 620      | ug/kg     |         |
|    |        | Toluene                                  |      | 5        | < 25     | ug/kg     |         |
|    |        | Xylenes (total)                          |      | 5        | 200      | ug/kg     |         |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |      | 5        | 1,900    |           |         |
|    |        | 1,2-Diphenylhydrazine                    |      |          |          |           |         |
|    |        | 2,4-Dimethylphenol                       |      | 25       | < 8,200  | ug/kg     |         |
|    |        | 2,4-Dinitrotoluene                       |      | 25       | < 8,200  |           |         |
|    |        | 2,6-Dinitrotoluene                       |      | 25       | < 8,200  |           |         |
|    |        | 2-Chloronaphthalene                      |      | 25       | < 8,200  | ug/kg     |         |
|    |        | 2-Methylnaphthalene                      |      | 25       | < 8,200  | ug/kg     |         |
|    |        | 4,6-Dinitro-o-cresol                     |      | 25       | 51,000   |           |         |
|    |        | 4-Nitrophenol                            |      | 25       | < 41,000 | ug/kg     |         |
|    |        | Acenaphthene                             |      | 25       | < 41,000 |           |         |
|    |        | Acenaphthylene                           |      | 25       | 12,000   |           |         |
|    |        | Anthracene                               |      | 25       | < 8,200  |           |         |
|    |        | Benzo(a)anthracene                       |      | 25       | < 8,200  |           |         |
|    |        | Benzo(a)pyrene                           |      | 25       | < 8,200  |           |         |
|    |        | Chrysene                                 |      | 25       | < 8,200  |           |         |
|    |        | Di-n-butyl phthalate                     |      | 25       | < 8,200  |           |         |
|    |        | Dibenzofuran                             |      | 25       | < 8,200  |           |         |
|    |        | Fluoranthene                             |      | 25       | 12,000   | ug/kg     |         |
|    |        | Fluorene                                 |      | 25       | < 8,200  | ug/kg     |         |
|    |        | N-Nitrosodiphenylamine                   |      | 25       | 9,000    | ug/kg     |         |
|    |        | Naphthalene                              |      | 25       | < 8,200  | ug/kg     |         |
|    |        | Nitrobenzene                             |      | 25       | 73,000   | ug/kg     |         |
|    |        | Pentachlorophenol                        |      | 25       | < 8,200  | ug/kg     |         |
|    | 1      | Phenanthrene                             |      | 25       |          | ug/kg     |         |
|    |        | Phenol                                   |      | 25       |          | ug/kg     |         |
|    |        | Pyrene                                   |      | 25       |          | ug/kg     |         |
|    | Ł      | ois(2-Chloroethoxy)methane               |      | 25       | 8,200    | ug/kg     | 1, 1, 1 |
|    |        | • • • • • • • • • • • • • • • • • • • •  |      | 25       | < 8,200  | ug/kg     |         |
|    |        |                                          |      |          |          |           | 1.      |

April 11, 1997
Report No.: 00060410
Section A Page 35

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB04-S51
SAMPLE NO: H446434

|    | TEST   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DILUTION |         |        |
|----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|--------|
| LN | CODE   | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FACTOR   | RESULT  | LINITE |
|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         | ON113  |
|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |        |
|    |        | bis(2-Ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25       | < 8,200 | ug/kg  |
| 8  | S401   | SW1312 - SPLP Leaching Procedure - Metals and SVOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | Done    |        |
| 9  | \$402  | SW1312 - SPLP Leaching Procedure - ZHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | Done    |        |
| 14 | 1685s  | Petroleum Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        | 40      | mg/kg  |
| 15 | OVTCW2 | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |          |         |        |
|    |        | 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 5     | ug/L   |
|    |        | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 1      | < 5     | ug/L   |
|    |        | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        | < 5     | ug/L   |
|    |        | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | 36      | ug/L   |
|    |        | Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | 86 *    | ug/L   |
|    |        | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10       | 120     | ug/L   |
|    |        | Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | 100     | ug/L   |
| 17 | OSVTCW | TCL - Semi-volatile Extractables in Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |         | -3, -  |
|    |        | 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25       | < 250   | ug/L   |
|    |        | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25       | < 250   |        |
|    |        | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25       | < 250   | ug/L   |
|    |        | 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25       |         | ug/L   |
|    |        | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25       |         | ug/L   |
|    |        | 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25       |         | ug/L   |
|    |        | 4,6-Dinitro-o-cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25       |         | ug/L   |
|    |        | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25       |         | ug/L   |
|    |        | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25       | •       | ug/L   |
|    |        | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25       | < 250   |        |
|    |        | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25       |         | ug/L   |
|    |        | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25       |         | ug/L   |
|    |        | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25       |         | ug/L   |
|    |        | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25       |         | ug/L   |
|    |        | Di-n-butylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25       |         | ug/L   |
|    |        | Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25       |         | ug/L   |
|    |        | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25       |         | ug/L   |
|    |        | Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25       |         | ug/L   |
|    |        | N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25       |         | ug/L   |
|    |        | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25       | _       | ug/L   |
|    |        | Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25       |         | ug/L   |
|    |        | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25       |         | ug/L   |
|    |        | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25       |         | ug/L   |
|    |        | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25       |         | ug/L   |
|    |        | Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25       | -       | ug/L   |
|    |        | bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25       |         | ug/L   |
|    |        | bis(2-Ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25       |         | 1g/L   |
|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         | -3/ -  |

COMMENTS: Continued on next page.

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997 Report No.: 00060410 Section A Page 36

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB04-S51
SAMPLE NO: H446434

TEST

LN CODE

DETERMINATION

DILUTION

**FACTOR** 

RESULT UNITS

COMMENTS: Results for the SPLP leachate are reported in ug/L.

The soil reporting limits are elevated due to the dilution required because

of the high concentration of target analytes.

\* Methylene chloride is a common laboratory solvent. Methylene chloride was not detected in the analysis of the soil. The SPLP leachate may have been contaminated during the leaching process. This should be considered in evaluating the data.

April 11, 1997 Report No.: 00060410 Section A Page 37

## LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB04-S59

SAMPLE NO: H446435

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 05-MAR-97 1425

DATE RECEIVED: 06-MAR-97

PROJECT MANAGER: Elessa Sommers

|    | TEAT   |                                          |          |               |
|----|--------|------------------------------------------|----------|---------------|
| LN | TEST   | <u></u> /                                | DILUTION |               |
|    |        | DETERMINATION                            | FACTOR   | RESULT UNITS  |
|    |        |                                          |          |               |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |          |               |
|    |        | 1,2-Dichloroethane                       |          |               |
|    |        | Benzene                                  | 1        | < 5 ug/kg     |
|    |        | Chlorobenzene                            | 1        | < 5 ug/kg     |
|    |        | Ethylbenzene                             | 1        | < 5 ug/kg     |
|    |        | Methylene chloride                       | 1        | < 5 ug/kg     |
|    |        | Toluene                                  | 1        | < 5 ug/kg     |
|    |        | Xylenes (total)                          | 1        | < 5 ug/kg     |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil | 1        | < 5 ug/kg     |
|    |        | 1,2-Diphenylhydrazine                    |          |               |
|    |        | 2,4-Dimethylphenol                       | 1        | < 330 ug/kg   |
|    |        | 2,4-Dinitrotoluene                       | 1        | < 330 ug/kg   |
|    |        | 2,6-Dinitrotoluene                       | 1        | < 330 ug/kg   |
|    |        | 2-Chloronaphthalene                      | 1        | < 330 ug/kg   |
|    |        | 2-Methylnaphthalene                      | 1        | < 330 ug/kg   |
|    |        | 4,6-Dinitro-o-cresol                     | 1        | < 330 ug/kg   |
|    |        | 4-Nitrophenol                            | 1        | < 1,600 ug/kg |
|    |        | Acenaphthene                             | 1        | < 1,600 ug/kg |
|    |        | Acenaphthylene                           | 1        | < 330 ug/kg   |
|    |        | Anthracene                               | 1        | < 330 ug/kg   |
|    |        | Benzo(a)anthracene                       | 1        | < 330 ug/kg   |
|    |        | Benzo(a)pyrene                           | 1        | < 330 ug/kg   |
|    |        | Chrysene                                 | 1        | < 330 ug/kg   |
|    |        | Di-n-butyl phthalate                     | 1        | < 330 ug/kg   |
|    |        | Dibenzofuran                             | 1        | < 330 ug/kg   |
|    |        | Fluoranthene                             | 1        | < 330 ug/kg   |
|    |        | Fluorene                                 | 1        | < 330 ug/kg   |
|    |        | N-Nitrosodiphenylamine                   | 1        | < 330 ug/kg   |
|    |        | Naphthalene                              | 1        | < 330 ug/kg   |
|    |        | Nitrobenzene                             | 1        | < 330 ug/kg   |
|    |        | Pentach l oropheno l                     | 1        | < 330 ug/kg   |
|    |        | Phenanthrene                             | 1        | < 1,600 ug/kg |
|    |        | Phenol                                   | 1        | < 330 ug/kg   |
|    | 1      | Pyrene                                   | 1        | < 330 ug/kg   |
|    |        | bis(2-Chloroethoxy)methane               | 1        | < 330 ug/kg   |
|    | · ·    |                                          | , 1      | < 330 ug/kg   |

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997 Report No.: 00060410 Section A Page 38

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT SAMPLE ID: HWPW-SB04-S59 SAMPLE NO: H446435

**TEST** DILUTION LN CODE DETERMINATION

bis(2-Ethylhexyl)phthalate

1 < 330 ug/kg

RESULT UNITS

**FACTOR** 

April 11, 1997 Report No.: 00060410 Section A Page 39

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB07-S2.5

SAMPLE NO: H446436

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 06-MAR-97 0820

DATE RECEIVED: 06-MAR-97

PROJECT MANAGER: Elessa Sommers

| TEST<br>LN CODE | DETERMINATION                            | DILUTION<br>FACTOR | DE0/# =                    | INITE          |
|-----------------|------------------------------------------|--------------------|----------------------------|----------------|
|                 |                                          | FACIUK             | KESULT                     | UNITS          |
| 1 OVTCS2        | 8260A TCL Volatiles in Soil              |                    |                            |                |
|                 | 1,2-Dichloroethane                       | 5                  | 4 25                       |                |
|                 | Benzene                                  | 5                  | < 25<br>33                 | ug/kg          |
|                 | Chlorobenzene                            | 5                  | > > < 25                   | ug/kg          |
|                 | Ethylbenzene                             | 125                | 6,300                      | ug/kg          |
|                 | Methylene chloride                       | 5                  | < 25                       | ug/kg          |
|                 | Toluene                                  | 5                  | 360                        | ug/kg          |
|                 | Xylenes (total)                          | 125                | 22,000                     | ug/kg          |
| 3 OSVTCS        | TCL - Semi-volatile Extractables in Soil | 123                | 22,000                     | ug/kg          |
|                 | 1,2-Diphenylhydrazine                    | 75                 | < 25,000                   | um/km          |
|                 | 2,4-Dimethylphenol                       | 75                 | < 25,000                   | ug/kg<br>ug/kg |
|                 | 2,4-Dinitrotoluene                       | 75                 | < 25,000                   |                |
|                 | 2,6-Dinitrotoluene                       | 75<br>75           | < 25,000                   | ug/kg<br>ug/kg |
|                 | 2-Chloronaphthalene                      | 75                 | < 25,000                   | ug/kg<br>ug/kg |
|                 | 2-Methylnaphthalene                      | 1500               | 1,300,000                  | ug/kg<br>ug/kg |
|                 | 4,6-Dinitro-o-cresol                     | 75                 | < 124,000                  | ug/kg          |
|                 | 4-Nitrophenol                            | 75                 | < 124,000                  | ug/kg<br>ug/kg |
|                 | Acenaphthene                             | 1500               | 1,700,000                  | ug/kg<br>ug/kg |
|                 | Acenaphthylene                           | 75                 | < 25,000                   | ug/kg          |
|                 | Anthracene                               | 75                 | 400,000                    | ug/kg<br>ug/kg |
|                 | Benzo(a)anthracene                       | 75                 | 130,000                    | ug/kg          |
|                 | Benzo(a)pyrene                           | 75                 | 27,000                     | ug/kg          |
|                 | Chrysene                                 | 75                 | 130,000                    | ug/kg          |
|                 | Di-n-butyl phthalate                     | 75                 | < 25,000                   | ug/kg          |
|                 | Dibenzofuran                             | 1500               | 1,100,000                  | ug/kg          |
|                 | Fluoranthene                             | 1500               | 2,500,000                  | ug/kg          |
|                 | Fluorene                                 | 1500               | 1,600,000                  | ug/kg          |
|                 | N-Nitrosodiphenylamine                   | 75                 | < 25,000                   | ug/kg          |
|                 | Naphthalene                              | 1500               | 3,900,000                  | ug/kg          |
|                 | Nitrobenzene                             | 75                 | < 25,000                   | ug/kg          |
|                 | Pentachlorophenol                        | 75                 | < 124,000                  | ug/kg          |
|                 | Phenanthrene                             | 1500               | -                          | ug/kg          |
|                 | Phenol                                   | 75                 |                            | ug/kg          |
|                 | Pyrene                                   | 1500               |                            | ug/kg          |
|                 | bis(2-Chloroethoxy)methane               | 75                 | Secretary of the secretary | ug/kg          |

April 11, 1997
Report No.: 00060410
Section A Page 40

## LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB07-S2.5

SAMPLE NO: H446436

| LN  | CODE   | DETERMINATION                                                                                                   | DILUTION<br>FACTOR | RESULT | UNITS          |  |
|-----|--------|-----------------------------------------------------------------------------------------------------------------|--------------------|--------|----------------|--|
| 14  | 1685s  | bis(2-Ethylhexyl)phthalate<br>Petroleum Hydrocarbons                                                            | 75<br>25           |        | ug/kg<br>mg/kg |  |
| COM | MENTS: | The reporting limits are elevated due to dilution required because of the high concentration of target analytes |                    |        |                |  |

166

April 11, 1997
Report No.: 00060410
Section A Page 41

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040
ATTENTION: BILL GOLDSBY

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

SAMPLE ID: HWPW-SB07-S19

SAMPLE NO: H446437

SAMPLE MATRIX: SOIL

DATE SAMPLED: 06-MAR-97 0840

DATE RECEIVED: 06-MAR-97

PROJECT MANAGER: Elessa Sommers

**TEST** DILUTION LN CODE DETERMINATION **FACTOR** RESULT UNITS OVTCS2 8260A TCL Volatiles in Soil 1,2-Dichloroethane 5 < 25 ug/kg Benzene 5 ug/kg Chlorobenzene 5 < 25 ug/kg Ethylbenzene 125 12,000 ug/kg Methylene chloride 5 < 25 ug/kg Toluene 125 12,000 ug/kg Xylenes (total) 125 40,000 ug/kg 3 OSVTCS TCL - Semi-volatile Extractables in Soil 1,2-Diphenylhydrazine 100 < 33,000 ug/kg 2,4-Dimethylphenol 100 < 33,000 ug/kg 2,4-Dinitrotoluene 100 < 33,000 ug/kg 2,6-Dinitrotoluene 100 < 33,000 ug/kg 2-Chloronaphthalene < 33,000 100 ug/kg 2-Methylnaphthalene 1000 1,700,000 ug/kg 4,6-Dinitro-o-cresol 100 < 160,000 ug/kg 4-Nitrophenol < 160,000 100 ug/kg Acenaphthene 100 460,000 ug/kg Acenaphthylene 100 < 33,000 ug/kg **Anthracene** 280,000 100 ug/kg Benzo(a)anthracene 100 59,000 ug/kg Benzo(a)pyrene 100 < 33,000 ug/kg Chrysene 100 56,000 ug/kg Di-n-butyl phthalate 100 < 33,000 ug/kg Dibenzofuran 100 360,000 ug/kg Fluoranthene 100 330,000 ug/kg Fluorene 100 430,000 ug/kg N-Nitrosodiphenylamine 100 < 33,000 ug/kg Naphthalene 5000 7,600,000 ug/kg Nitrobenzene 100 < 33,000 ug/kg Pentachlorophenol 100 < 160,000 ug/kg Phenanthrene 1000 2,600,000 ug/kg Phenol 100 < 33,000 ug/kg 100 280,000 ug/kg bis(2-Chloroethoxy)methane 100 < 33,000 ug/kg

April 11, 1997 Report No.: 00060410 Section A Page 42

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB07-S19
SAMPLE NO: H446437

| LN  | CODE   | DETERMINATION                                                                                                        | DILUTION<br>FACTOR | RESULT            | UNITS          |
|-----|--------|----------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|----------------|
| 14  | 16858  | bis(2-Ethylhexyl)phthalate Petroleum Hydrocarbons                                                                    | 100<br>5           | < 33,000<br>1,900 | ug/kg<br>mg/kg |
| COM | MENTS: | The reporting limits are elevated due to the dilution required because of the high concentration of target analytes. |                    |                   |                |

168

April 11, 1997 Report No.: 00060410 Section A Page 43

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB07-S21

SAMPLE NO: H446438

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 06-MAR-97 0845

DATE RECEIVED: 06-MAR-97

PROJECT MANAGER: Elessa Sommers

| LN | TEST<br>CODE | DETERMINATION                            | DILUTION<br>FACTOR | RESULT                | UNITS          |
|----|--------------|------------------------------------------|--------------------|-----------------------|----------------|
|    |              |                                          |                    |                       |                |
| 1  | OVTCS2       | 8260A TCL Volatiles in Soil              |                    |                       | 2              |
|    |              | 1,2-Dichloroethane                       | . 5                | < 25                  | ug/kg          |
|    |              | Benzene                                  | 5                  | 670                   | ug/kg<br>ug/kg |
|    |              | Chlorobenzene                            | 5                  | < 25                  | ug/kg          |
|    |              | Ethylbenzene                             | 125                | 12,000                | ug/kg<br>ug/kg |
|    |              | Methylene chloride                       | 5                  | < 25                  | ug/kg          |
|    |              | Toluene                                  | 125                | 13,000                | ug/kg<br>ug/kg |
|    |              | Xylenes (total)                          | 125                | 38,000                | ug/kg<br>ug/kg |
| 3  | OSVTCS       | TCL - Semi-volatile Extractables in Soil |                    | 50,000                | ug/ kg         |
|    |              | 1,2-Diphenylhydrazine                    | . 10               | < 3,300               | ug/kg          |
|    |              | 2,4-Dimethylphenol                       | 10                 | < 3,300               | ug/kg          |
|    |              | 2,4-Dinitrotoluene                       | 10                 | < 3,300               | ug/kg          |
|    |              | 2,6-Dinitrotoluene                       | 10                 | < 3,300               | ug/kg          |
|    |              | 2-Chloronaphthalene                      | 10                 | < 3,300               | ug/kg          |
|    |              | 2-Methylnaphthalene                      | 500                | 260,000               | ug/kg          |
|    |              | 4,6-Dinitro-o-cresol                     | 10                 | < 16,000              | ug/kg          |
|    |              | 4-Nitrophenol                            | 10                 | < 16,000              | ug/kg          |
|    |              | Acenaphthene                             | 200                | 400,000               | ug/kg<br>ug/kg |
|    |              | Acenaphthylene                           | 10                 | < 3,300               | ug/kg          |
|    |              | Anthracene                               | 10                 | 220,000               | ug/kg          |
|    |              | Benzo(a)anthracene                       | 10                 | 17,000                | ug/kg          |
|    |              | Benzo(a)pyrene                           | 10                 | 5,000                 | ug/kg          |
|    |              | Chrysene                                 | 10                 | 17,000                | ug/kg          |
|    |              | Di-n-butyl phthalate                     | 10                 | < 3,300               | ug/kg          |
|    |              | Dibenzofuran                             | 200                | 300,000               | ug/kg          |
|    |              | Fluoranthene                             | 10                 | 240,000               | ug/kg          |
|    |              | Fluorene                                 | 200                | 360,000               | ug/kg          |
|    |              | N-Nitrosodiphenylamine                   | 10                 |                       | ug/kg          |
|    |              | Naphthalene                              | 500                | and the second second | ug/kg          |
|    |              | Nitrobenzene                             | 10                 |                       | ug/kg          |
|    |              | Pentachlorophenol                        | 10                 |                       | ug/kg          |
|    |              | Phenanthrene                             | 200                |                       | ug/kg          |
|    |              | Phenol                                   | 10                 |                       | ug/kg          |
|    |              | Pyrene                                   | 10                 |                       | ug/kg          |
|    |              | bis(2-Chloroethoxy)methane               | 10                 |                       | ug/kg          |
|    |              |                                          | 10                 | . 5,500               | ag/ kg         |

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997 Report No.: 00060410 Section A Page 44

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB07-S21
SAMPLE NO: H446438

| LN  | TEST<br>CODE | DETERMINATION                                                                                                     | DILUTION<br>FACTOR | RESULT           | UNITS          |
|-----|--------------|-------------------------------------------------------------------------------------------------------------------|--------------------|------------------|----------------|
| 14  | 1685s        | bis(2-Ethylhexyl)phthalate Petroleum Hydrocarbons                                                                 | 10<br>1            | < 3,300<br>1,200 | ug/kg<br>mg/kg |
| COM | MENTS:       | The reporting limits are elevated due to the dilution required because of thigh concentration of target analytes. | he                 |                  |                |

April 11, 1997 Report No.: 00060410 Section A Page 45

## LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB07-S22

SAMPLE NO: H446439

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 06-MAR-97 0850

DATE RECEIVED: 06-MAR-97

PROJECT MANAGER: Elessa Sommers

| LN | TEST   | DETERMINATION                            | DILUTION<br>FACTOR RESULT        | UNITS          |
|----|--------|------------------------------------------|----------------------------------|----------------|
|    |        |                                          |                                  |                |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |                                  |                |
|    |        | 1,2-Dichloroethane                       | 435                              |                |
|    |        | Benzene                                  | 125 < 620                        | -0,            |
|    |        | Chlorobenzene                            | 125 < 620<br>125 < 620           |                |
|    |        | Ethylbenzene                             |                                  | -37 113        |
|    |        | Methylene chloride                       | 125 9,100<br>125 < 620           | •              |
|    |        | Toluene                                  |                                  | -0,            |
|    |        | Xylenes (total)                          | , ,                              |                |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil | 125 28,000                       | ug/kg          |
|    |        | 1,2-Diphenylhydrazine                    | 1000 < 330.000                   |                |
|    |        | 2,4-Dimethylphenol                       | 1000 < 330,000<br>1000 < 330,000 |                |
|    |        | 2,4-Dinitrotoluene                       | 1000 < 330,000                   |                |
|    |        | 2,6-Dinitrotoluene                       | 1000 < 330,000                   |                |
|    |        | 2-Chloronaphthalene                      | 1000 < 330,000                   |                |
|    |        | 2-Methylnaphthalene                      | 1000 790,000                     |                |
|    |        | 4,6-Dinitro-o-cresol                     | 1000 < 1,600,000                 |                |
|    |        | 4-Nitrophenol                            | 1000 < 1,600,000                 |                |
|    |        | Acenaphthene                             | 1000 630,000                     |                |
|    |        | Acenaphthylene                           | 1000 < 330,000                   |                |
|    |        | Anthracene                               | 1000 < 330,000                   |                |
|    |        | Benzo(a)anthracene                       | 1000 < 330,000                   |                |
|    |        | Benzo(a)pyrene                           | 1000 < 330,000                   |                |
|    |        | Chrysene                                 | 1000 < 330,000                   | ug/kg<br>ug/kg |
|    |        | Di-n-butyl phthalate                     | 1000 < 330,000                   | ug/kg<br>ug/kg |
|    |        | Dibenzofuran                             | 1000 470,000                     | ug/kg<br>ug/kg |
|    |        | Fluoranthene                             | 1000 380,000                     | ug/kg<br>ug/kg |
|    |        | Fluorene                                 | 1000 560,000                     | ug/kg          |
|    |        | N-Nitrosodiphenylamine                   | 1000 < 330,000                   | ug/kg          |
|    |        | Naphthalene                              | 1000 5,300,000                   | ug/kg          |
|    |        | Nitrobenzene                             | 1000 < 330,000                   | ug/kg          |
|    |        | Pentachlorophenol                        | 1000 < 1,600,000                 | ug/kg          |
|    |        | Phenanthrene                             | 1000 1,200,000                   | ug/kg<br>ug/kg |
|    |        | Phenol                                   | 1000 < 330,000                   | ug/kg          |
|    |        | Pyrene                                   | 1000 < 330,000                   | ug/kg          |
|    |        | bis(2-Chloroethoxy)methane               | 1000 < 330,000                   | ug/kg          |
|    |        |                                          | . 555,000                        | -3/ NB         |

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997 Report No.: 00060410 Section A Page 46

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB07~S22

SAMPLE NO: H446439

TEST
LN CODE DETERMINATION DILUTION
FACTOR RESULT UNITS
bis(2-Ethylhexyl)phthalate

14 I685S Petroleum Hydrocarbons

1000 < 330,000 ug/kg 1 1,100 mg/kg

COMMENTS: The reporting limits are elevated due to the dilution required because of the high concentration of target analytes.

April 11, 1997
Report No.: 00060410
Section A Page 47

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB07-S24

SAMPLE NO: H446440

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 06-MAR-97 0900

DATE RECEIVED: 06-MAR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                                                             | DILUTION |          |         |  |
|----|--------|-----------------------------------------------------------------------------|----------|----------|---------|--|
| LN | CODE   | DETERMINATION                                                               | FACTOR   | PESIII 1 | UNITS   |  |
|    |        |                                                                             |          |          | ONIIS   |  |
| 1  | OVECCO | 22/04 TOL Walanti                                                           |          |          |         |  |
| 1  | OVTCS2 | The votation in soil                                                        |          |          |         |  |
|    |        | 1,2-Dichloroethane Benzene                                                  | 1250     | < 6,200  | ug/kg   |  |
|    |        | Chlorobenzene                                                               | 1250     | < 6,200  | ug/kg   |  |
|    |        | Ethylbenzene                                                                | 1250     | < 6,200  | ug/kg   |  |
|    |        |                                                                             | 1250     | 31,000   | ug/kg   |  |
|    |        | Methylene chloride                                                          | 1250     | < 6,200  |         |  |
|    |        | Toluene                                                                     | 1250     | 31,000   |         |  |
| 3  | OSVTCS | Xylenes (total)                                                             | 1250     | 90,000   |         |  |
| 3  | 024162 | The same restaured Excitational and a same same same same same same same sa |          | -        |         |  |
|    |        | 1,2-Diphenylhydrazine                                                       | 7500     | < 2,500  | mg/kg   |  |
|    |        | 2,4-Dimethylphenol                                                          | 7500     | < 2,500  |         |  |
|    |        | 2,4-Dinitrotoluene                                                          | 7500     | < 2,500  |         |  |
|    |        | 2,6-Dinitrotoluene                                                          | 7500     | < 2,500  |         |  |
|    |        | 2-Chloronaphthalene                                                         | 7500     | < 2,500  |         |  |
|    |        | 2-Methylnaphthalene                                                         | 7500     | 3,700    |         |  |
|    |        | 4,6-Dinitro-o-cresol                                                        | 7500     | < 12,000 |         |  |
|    |        | 4-Nitrophenol                                                               | 7500     | < 12,000 |         |  |
|    |        | Acenaphthene                                                                | 7500     | 3,200    | 0. 0    |  |
|    |        | Acenaphthylene                                                              | 7500     | < 2,500  |         |  |
|    |        | Anthracene                                                                  | 7500     | < 2,500  |         |  |
|    |        | Benzo(a)anthracene                                                          | 7500     | < 2,500  |         |  |
|    |        | Benzo(a)pyrene                                                              | 7500     | < 2,500  | mg/kg   |  |
|    |        | Chrysene                                                                    | 7500     | < 2,500  | mg/kg   |  |
|    |        | Di-n-butyl phthalate                                                        | 7500     | < 2,500  | mg/kg   |  |
|    |        | Dibenzofuran                                                                | 7500     | 2,500    | mg/kg   |  |
|    |        | Fluoranthene                                                                | 7500     | 2,500    | mg/kg   |  |
|    |        | Fluorene                                                                    | 7500     | 2,700    | mg/kg   |  |
|    |        | N-Nitrosodiphenylamine                                                      | 7500     | < 2,500  | mg/kg   |  |
|    |        | Naphthalene                                                                 | 7500     | 42,000   | mg/kg   |  |
|    |        | Nitrobenzene                                                                | 7500     | -        | mg/kg   |  |
|    |        | Pentachlorophenol                                                           | 7500     | 500.00   | mg/kg   |  |
|    |        | Phenanthrene                                                                | 7500     |          | mg/kg   |  |
|    |        | Phenol                                                                      | 7500     |          | mg/kg   |  |
|    |        | Pyrene                                                                      | 7500     | -        | mg/kg   |  |
|    |        | bis(2-Chloroethoxy)methane                                                  | 7500     |          | mg/kg   |  |
|    |        |                                                                             | 1300     | ` 2,300  | III9/Kg |  |

April 11, 1997
Report No.: 00060410
Section A Page 48

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB07-S24
SAMPLE NO: H446440

| LN | TEST  | DETERMINATION                                        | DILUTION<br>FACTOR | RESULT           | UNITS          |
|----|-------|------------------------------------------------------|--------------------|------------------|----------------|
| 14 | 1685s | bis(2-Ethylhexyl)phthalate<br>Petroleum Hydrocarbons | 7500<br>50         | < 2,500<br>9,200 | mg/kg<br>mg/kg |

COMMENTS: The reporting limits are elevated due to the dilution required because of the high concentration of target analytes.

April 11, 1997 Report No.: 00060410 Section A Page 49

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB08-S4 SAMPLE NO: H446441

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 06-MAR-97 0925

DATE RECEIVED: 06-MAR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   | • *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DILUTION |           |       |
|----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-------|
| LN | CODE   | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FACTOR   | RESULT    | UNITS |
|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |       |
|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |       |
| 1  | OVTCS2 | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |          |           |       |
|    |        | 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 5       | ug/kg |
|    |        | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        | < 5       | ug/kg |
|    |        | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        | < 5       | ug/kg |
|    |        | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | 24        | ug/kg |
|    |        | Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 5       | ug/kg |
|    |        | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        | < 5       | ug/kg |
| -  |        | Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | 46        |       |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           |       |
|    |        | 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100      | < 33,000  | ug/kg |
|    |        | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100      | < 33,000  | ug/kg |
|    |        | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100      | < 33,000  | ug/kg |
|    |        | 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100      | < 33,000  | ug/kg |
|    |        | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100      | < 33,000  | ug/kg |
|    |        | 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100      | 420,000   | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100      | < 160,000 | ug/kg |
|    |        | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100      | < 160,000 | ug/kg |
|    |        | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000     | 450,000   | ug/kg |
|    |        | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100      | < 33,000  | ug/kg |
|    |        | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100      | 480,000   | ug/kg |
|    |        | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100      | 160,000   | ug/kg |
|    |        | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100      | 62,000    | ug/kg |
|    |        | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100      | 180,000   | ug/kg |
|    |        | Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100      | < 33,000  | ug/kg |
|    |        | Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100      |           | ug/kg |
|    |        | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000     |           | ug/kg |
|    |        | Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1000     | N 2000    | ug/kg |
|    |        | N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100      |           | ug/kg |
|    |        | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100      |           | ug/kg |
|    |        | Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100      | •         | ug/kg |
|    |        | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100      | -         | ug/kg |
|    |        | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000     |           | ug/kg |
|    |        | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100      |           | ug/kg |
|    |        | Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100      | -         | ug/kg |
|    |        | bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100      |           | ug/kg |
|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ,         | J,3   |

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997
Report No.: 00060410
Section A Page 50

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB08-S4
SAMPLE NO: H446441

| LN  | TEST   | DETERMINATION                                                                                                                           | DILUTION<br>FACTOR | RESULT            | UNITS          |  |
|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|----------------|--|
| 14  | 16858  | bis(2-Ethylhexyl)phthalate<br>Petroleum Hydrocarbons                                                                                    | 100<br>25          | < 33,000<br>2,600 | ug/kg<br>mg/kg |  |
| COM | MENTS: | The reporting limits for semi-volatiles are elevated due to the dilution required because of the high concentration of target analytes. |                    |                   |                |  |

April 11, 1997 Report No.: 00060410 Section A Page 51

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB08-S14

SAMPLE NO: H446442

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 06-MAR-97 0940

DATE RECEIVED: 06-MAR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          | DILUTION |                                              |       |
|----|--------|------------------------------------------|----------|----------------------------------------------|-------|
| LN | CODE   | DETERMINATION                            | FACTOR   | PESIII T                                     | UNITS |
|    |        |                                          |          |                                              | ON113 |
|    |        |                                          |          |                                              |       |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |          |                                              |       |
|    |        | 1,2-Dichloroethane                       | 1        | < 5                                          | ug/kg |
|    |        | Benzene                                  | 1        | 71                                           | ug/kg |
|    |        | Chlorobenzene                            | 1        | < 5                                          | ug/kg |
|    |        | Ethylbenzene                             | 125      | 3,400                                        | ug/kg |
|    |        | Methylene chloride                       | 1        | < 5                                          | ug/kg |
|    |        | Toluene                                  | 125      | 2,600                                        | ug/kg |
|    |        | Xylenes (total)                          | 125      | 11,000                                       | ug/kg |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |          |                                              | -0,   |
|    |        | 1,2-Diphenylhydrazine                    | 1000     | < 330,000                                    | ug/kg |
|    |        | 2,4-Dimethylphenol                       | 1000     | < 330,000                                    | ug/kg |
|    |        | 2,4-Dinitrotoluene                       | 1000     | < 330,000                                    | ug/kg |
|    |        | 2,6-Dinitrotoluene                       | 1000     | < 330,000                                    | ug/kg |
|    |        | 2-Chloronaphthalene                      | 1000     | < 330,000                                    | ug/kg |
|    |        | 2-Methylnaphthalene                      | 1000     | 360,000                                      | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                     | 1000     | < 1,600,000                                  | ug/kg |
|    |        | 4-Nitrophenol                            | 1000     | < 1,600,000                                  | ug/kg |
|    |        | Acenaphthene                             | 1000     | < 330,000                                    | ug/kg |
|    |        | Acenaphthylene                           | 1000     | < 330,000                                    | ug/kg |
|    |        | Anthracene                               | 1000     | < 330,000                                    | ug/kg |
|    |        | Benzo(a)anthracene                       | 1000     | < 330,000                                    | ug/kg |
|    |        | Benzo(a)pyrene                           | 1000     | < 330,000                                    | ug/kg |
|    |        | Chrysene                                 | 1000     | < 330,000                                    | ug/kg |
|    |        | Di-n-butyl phthalate                     | 1000     | < 330,000                                    | ug/kg |
|    |        | Dibenzofuran                             | 1000     | < 330,000                                    | ug/kg |
|    |        | Fluoranthene                             | 1000     | < 330,000                                    | ug/kg |
|    |        | Fluorene                                 | 1000     | 330,000                                      | ug/kg |
|    |        | N-Nitrosodiphenylamine                   | 1000     | < 330,000                                    | ug/kg |
|    |        | Naph tha lene                            | 1000     | 4,600,000                                    | ug/kg |
|    |        | Nitrobenzene                             | 1000     | < 330,000                                    | ug/kg |
|    |        | Pentachlorophenol                        |          | < 1,600,000                                  | ug/kg |
|    |        | Phenanthrene                             | 1000     |                                              | ug/kg |
|    |        | Phenol                                   | 1000     |                                              | ug/kg |
|    |        | Pyrene                                   | 1000     |                                              | ug/kg |
|    |        | bis(2-Chloroethoxy)methane               | 1000     | 00 CO 00 00 00 00 00 00 00 00 00 00 00 00 00 |       |
|    |        |                                          | 1000     | × 230,000                                    | ug/kg |

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997 Report No.: 00060410 Section A Page 52

## LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB08-S14

SAMPLE NO: H446442

TEST
LN CODE DETERMINATION DILUTION
FACTOR RESULT UNITS

bis(2-Ethylhexyl)phthalate
14 I685S Petroleum Hydrocarbons
1 000 < 330,000 ug/kg
1 850 mg/kg

COMMENTS: The reporting limits for semi-volatiles are elevated by

COMMENTS: The reporting limits for semi-volatiles are elevated due to the dilution required because of the high concentration of target analytes.

April 11, 1997 Report No.: 00060410 Section A Page 53

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

bis(2-Chloroethoxy)methane

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB08-S18

SAMPLE NO: H446443

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

> P.O. NO: 03219

DATE SAMPLED:

75

160,000

< 25,000

ug/kg

ug/kg

06-MAR-97 0945

DATE RECEIVED: 06-MAR-97 PROJECT MANAGER: Elessa Sommers

**TEST** DILUTION CODE LN DETERMINATION FACTOR RESULT UNITS 1 OVTCS2 8260A TCL Volatiles in Soil 1,2-Dichloroethane 125 < 620 ug/kg Benzene 125 1,100 ug/kg Chlorobenzene 125 < 620 ug/kg Ethylbenzene 125 19,000 ug/kg Methylene chloride 125 < 620 ug/kg Toluene 125 13,000 ug/kg Xylenes (total) 125 55,000 ug/kg 3 OSVTCS TCL - Semi-volatile Extractables in Soil 1,2-Diphenylhydrazine 75 < 25,000 ug/kg 2,4-Dimethylphenol 75 25,000 ug/kg 2,4-Dinitrotoluene 75 < 25,000 ug/kg 2,6-Dinitrotoluene 75 < 25,000 ug/kg 2-Chloronaphthalene 75 < 25,000 ug/kg 2-Methylnaphthalene 75 400,000 ug/kg 4,6-Dinitro-o-cresol 75 < 124,000 ug/kg 4-Nitrophenol 75 < 124,000 ug/kg Acenaphthene 75 320,000 ug/kg Acenaphthylene 75 < 25,000 ug/kg Anthracene 200,000 75 ug/kg Benzo(a)anthracene 75 37,000 ug/kg Benzo(a)pyrene < 25,000 75 ug/kg Chrysene 75 37,000 ug/kg Di-n-butyl phthalate 75 < 25,000 ug/kg Dibenzofuran 75 270,000 ug/kg Fluoranthene 75 250,000 ug/kg Fluorene 75 300,000 ug/kg N-Nitrosodiphenylamine 75 < 25,000 ug/kg Naphthal ene 3000 17,000,000 ug/kg Nitrobenzene 75 < 25,000 ug/kg Pentach lorophenol 75 < 124,000 ug/kg Phenanthrene 300 1,400,000 ug/kg Phenol 75 < 25,000 ug/kg Pyrene

## 179

April 11, 1997 Report No.: 00060410 Section A Page 55

## LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB08-S22

SAMPLE NO: H446444

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142 PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 06-MAR-97 0950

DATE RECEIVED: 06-MAR-97

PROJECT MANAGER: Elessa Sommers

|    |              |                                          | FROSE | CI MANAGE | EK: Elessa S | Sommers |       |
|----|--------------|------------------------------------------|-------|-----------|--------------|---------|-------|
| LN | TEST<br>CODE | DETERMINATION                            | ••••• | DILUTION  | -            |         | ••••• |
|    |              |                                          |       | FACTOR    | RESUL        | T UNITS |       |
| 4  | 01/2000      | 00/04                                    |       |           |              |         |       |
| 1  | OVTCS2       | Total teles in soit                      |       |           |              |         |       |
|    |              | 1,2-Dichloroethane<br>Benzene            |       | 1         | <            | 5 ug/kg |       |
|    |              | Chlorobenzene                            |       | 1         |              |         |       |
|    |              | Ethyl benzene                            |       | 1         |              | 0. 10   |       |
|    |              | Methylene chloride                       |       | 125       |              | -3,     |       |
|    |              | Toluene                                  |       | 1         | < 5          | 0. 0    |       |
|    |              | Xylenes (total)                          |       | 125       | 7,500        | -3,5    |       |
| 3  | OSVTCS       |                                          |       | 125       | 43,000       | 00      |       |
|    | 034163       | TCL - Semi-volatile Extractables in Soil |       |           | 15,000       | ug/kg   |       |
|    |              | 1,2-Diphenylhydrazine 2,4-Dimethylphenol |       | 750       | < 250,000    | ug/kg   |       |
|    |              | 2,4-Dinitrotoluene                       |       | 750       | < 250,000    | 0,      |       |
|    |              | 2,6-Dinitrotoluene                       |       | 750       | < 250,000    | 0       |       |
|    |              | 2-Chloronaphthalene                      |       | 750       | < 250,000    |         |       |
|    |              | 2-Methylnaphthalene                      |       | 750       | < 250,000    |         |       |
|    |              | 4,6-Dinitro-o-cresol                     |       | 750       | 420,000      |         |       |
|    |              | 4-Nitrophenol                            |       | 750       | < 1,200,000  | -0,     |       |
|    |              | Acenaphthene                             |       | 750       | < 1,200,000  |         |       |
|    |              | Acenaphthylene                           |       | 750       | 400,000      |         |       |
|    |              | Anthracene                               |       | 750       | < 250,000    |         |       |
|    |              | Benzo(a)anthracene                       |       | 750       | < 250,000    |         |       |
|    |              | Benzo(a)pyrene                           |       | 750       | < 250,000    |         |       |
|    |              | Chrysene                                 |       | 750       | < 250,000    |         |       |
|    |              | Di-n-butyl phthalate                     |       | 750       | < 250,000    |         |       |
|    |              | Dibenzofuran                             |       | 750       | < 250,000    |         |       |
|    |              | Fluoranthene                             |       | 750       | 300,000      | ug/kg   |       |
|    |              | Fluorene                                 |       | 750       | 300,000      | ug/kg   |       |
|    |              | N-Nitrosodiphenylamine                   |       | 750       | 350,000      | ug/kg   |       |
|    |              | Naphthalene                              |       | 750       | < 250,000    |         |       |
|    |              | Nitrobenzene                             |       | 4000      | 22,000,000   |         |       |
|    |              | Pentachlorophenol                        |       | 750       | < 250,000    | ug/kg   |       |
|    |              | Phenanthrene                             |       | 750       | < 1,200,000  | ug/kg   |       |
|    |              | Phenol                                   |       | 750       | 840,000      | ug/kg   |       |
|    |              | Pyrene                                   |       | 750       | < 250,000    | ug/kg   |       |
|    |              | pis(2-Chloroethoxy)methane               |       | 750       | < 250,000    | ug/kg   |       |
|    |              |                                          |       | 750       | < 250,000    | ug/kg   | ( :   |

## Pace Analytical

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997
Report No.: 00060410
Section A Page 56

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB08-S22
SAMPLE NO: H446444

| LN  | CODE   | DETERMINATION                                                                                                                           | DILUTION<br>FACTOR | RESULT              | UNITS          |
|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|----------------|
| 14  | 1685s  | bis(2-Ethylhexyl)phthalate Petroleum Hydrocarbons                                                                                       | 750<br>25          | < 250,000<br>12,000 | ug/kg<br>mg/kg |
| COM | MENTS: | The reporting limits for semi-volatiles are elevated due to the dilution required because of the high concentration of target analytes. |                    |                     |                |

April 11, 1997 Report No.: 00060410 Section A Page 57

## LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-SB08-S21

SAMPLE NO: H446445

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44142

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 06-MAR-97 0955

DATE RECEIVED: 06-MAR-97

PROJECT MANAGER: Elessa Sommers

| LN | TEST   | DETERMINATION                            | DILUTION<br>FACTOR |            | UNITS |  |
|----|--------|------------------------------------------|--------------------|------------|-------|--|
|    |        |                                          |                    |            | 01113 |  |
| 1  | OVTCS2 | 8260A TCL Volatiles in Soil              |                    |            |       |  |
|    |        | 1,2-Dichloroethane                       |                    |            |       |  |
|    |        | Benzene                                  | 1                  | < 5        | ug/kg |  |
|    |        | Chlorobenzene                            | 1                  | < 5        | ug/kg |  |
|    |        | Ethylbenzene                             | 1                  | < 5        | ug/kg |  |
|    |        | Methylene chloride                       | 1_                 | -74        | ug/kg |  |
|    |        | Toluene                                  | 1.                 | < 5        | ug/kg |  |
|    |        | Xylenes (total)                          | 1                  | 36         | ug/kg |  |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil | 1                  | 230        | ug/kg |  |
|    |        | 1,2-Diphenylhydrazine                    |                    |            |       |  |
|    |        | 2,4-Dimethylphenol                       | 500                | < 160,000  | -0,   |  |
|    |        | 2,4-Dinitrotoluene                       | 500                | < 160,000  |       |  |
|    |        | 2,6-Dinitrotoluene                       | 500                | < 160,000  | ug/kg |  |
|    |        | 2-Chloronaphthalene                      | 500                | < 160,000  | ug/kg |  |
|    |        | 2-Methylnaphthalene                      | 500                | < 160,000  | ug/kg |  |
|    |        | 4,6-Dinitro-o-cresol                     | 500                | 350,000    | ug/kg |  |
|    |        | 4-Nitrophenol                            | 500                | < 820,000  | ug/kg |  |
|    |        | Acenaphthene                             | 500                | < 820,000  | ug/kg |  |
|    |        | Acenaphthylene                           | 500                | 200,000    | ug/kg |  |
|    |        | Anthracene                               | 500                | < 160,000  | ug/kg |  |
|    |        | Benzo(a)anthracene                       | 500                | 580,000    | ug/kg |  |
|    |        | Benzo(a)pyrene                           | 500                | < 160,000  | ug/kg |  |
|    |        | Chrysene                                 | 500                | < 160,000  | ug/kg |  |
|    |        | Di-n-butyl phthalate                     | 500                | < 160,000  | ug/kg |  |
|    |        | Dibenzofuran                             | 500                | < 160,000  | ug/kg |  |
|    |        | Fluoranthene                             | 500                | 230,000    | ug/kg |  |
|    |        | Fluorene                                 | 500                | < 160,000  | ug/kg |  |
|    |        | N-Nitrosodiphenylamine                   | 500                |            | ug/kg |  |
|    |        | Naphthalene                              | 500                | < 160,000  | ug/kg |  |
|    |        | Nitrobenzene                             | 5000               | 20,000,000 | ug/kg |  |
|    | -      | Pentachlorophenol                        | 500                |            | ug/kg |  |
|    |        | Phenanthrene                             | 500                |            | ug/kg |  |
|    | 1      | Phenol                                   | 500                |            | ug/kg |  |
|    | F      | Pyrene                                   | 500                | < 160,000  | ug/kg |  |
|    |        | pis(2-Chloroethoxy)methane               | 500                |            | ug/kg |  |
|    |        |                                          | 500                | < 160,000  | ug/kg |  |
|    |        |                                          |                    |            |       |  |

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997 Report No.: 00060410 Section A Page 58

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-SB08-S21

SAMPLE NO: H446445

| • |          |   |                                                                                                                                 |                    |                    |       |  |
|---|----------|---|---------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-------|--|
|   | LN COL   | - | DETERMINATION                                                                                                                   | DILUTION<br>FACTOR | RESULT             | UNITS |  |
|   | 14 1685  | s | bis(2-Ethylhexyl)phthalate Petroleum Hydrocarbons                                                                               | 500<br>5           | < 160,000<br>4,500 |       |  |
|   | COMMENTS | : | The reporting limits for semi-volatiles are elevated due to the dilution required by the high concentration of target analytes. |                    |                    |       |  |

# 183 REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

April 11, 1997
Report No.: 00060410
Section B Page 1

## SUPPLEMENTAL INFORMATION

|         | TEST           | LCSR<br>BLNK   | DUP/M:<br>MS/MSI | )         | SAMPLE PREF    | PARATION |           | SAMPLE ANA     | ALYSIS     |                 |
|---------|----------------|----------------|------------------|-----------|----------------|----------|-----------|----------------|------------|-----------------|
| LN      | CODE           | BATCH          | BATCH            | LR-METHOD | DATE/TIME      | ANALYST  | LR-METHOD | DATE/TIME      | ANALYS     | T INSTRUMEN     |
| SAM     | PLE ID:        | HUPU-SRO       | 5-954            |           |                |          |           |                |            |                 |
|         |                |                | 3 034            |           |                |          |           | SAMPLE         | NO: H446   | 3419            |
|         | 1 OVTCS2       |                | 72257            |           |                |          | 19-8260A  | 11-MAR-97 142  | 4 .10      | CCHCA           |
|         | 3 OSVTCS       | 72450          | 72450            | 19-3550A  | 18-MAR-97 130  | O RDQ    | 19-8270B  | 06-APR-97 135  |            | GCMSY<br>GCMSA  |
| SAM     | PLE ID:        | HWPW-SBO       | 5-S19            |           |                |          |           | SAMPI E        | NO: H446   | /3n             |
|         | 1 OVTCS2       | 7210/          | 70055            |           |                |          |           | 57411 22       | NO. 11440  | 420             |
|         | 3 S401         |                | 72257            |           |                |          | 19-8260A  | 11-MAR-97 145  | 7 JC       | GCMSY           |
|         | 9 \$402        | 72327          | 72327            |           |                |          | 19-1312   | 13-MAR-97 140  |            | 001EPE          |
|         | OVTCW2         | 72214<br>72735 | 72214            |           |                |          | 19-1312   | 12-MAR-97 163  |            | 005EPE          |
|         | OSVICWE        |                | 71777            |           |                |          | 19-8260A  | 13-MAR-97 195  |            | GCMSB           |
|         | OSVICE         | 72496          | 72/2/            | 19-3510B  | 19-MAR-97 1500 | ) A M    | 19-8270B  | 06-APR-97 225  |            | GCMSA           |
|         | 1685s          | 72450          | 72450            | 19-3550A  | 18-MAR-97 1300 | RDQ      | 19-8270B  | 24-MAR-97 143  |            | GCMSA           |
| ,,      | 10038          | 72382          | 72382            | 19-3550A  |                |          | 02-418.1  | 17-MAR-97 1300 |            | 302WAT          |
| SAME    | LE ID: H       | IWPW-SB06      | -S24             |           |                |          |           | SAMDI E        | NO: H4464  | 24              |
|         | OVTCS2         | 7005 (         |                  |           |                |          |           | SAMPLE         | NU: 14404  | 121             |
|         | OSVICS         | 72256<br>72450 | 72257            |           |                |          | 19-8260A  | 11-MAR-97 2247 | , 1C       | GCMSY           |
|         | 16858          | 72382          |                  | 19-3550A  | 18-MAR-97 1300 | RDQ      | 19-8270B  |                |            | GCMSA           |
|         | 10033          | 12302          | 12302            | 19-3550A  |                |          | 02-418.1  | 17-MAR-97 1300 | JLJ        | 302WAT          |
| SAMP    | LE ID: H       | WPW-SB06       | -\$49            |           |                |          |           | SAMPLE         | NO: H4464  | 22              |
| 1       | OVTCS2         | 72256          | 72257            | MA        |                |          |           |                |            | les les         |
|         | OSVTCS         | 72450          |                  |           | 40             |          | 19-8260A  | 11-MAR-97 2321 | JC         | GCMSY           |
| _       | 557755         | 12430          | 12430            | 19-225UA  | 18-MAR-97 1300 | RDQ      | 19-8270B  | 04-APR-97 1932 |            | GCMSA           |
| SAMP    | LE ID: H       | WPW-SB03-      | ·\$5             |           |                |          |           | CAMDI E        | 10- 11/1/4 | PA 400          |
| 4       | 01/7000        | 777700         |                  |           |                |          |           | SAMPLE         | NO: H4464  | 23              |
|         | OVTCS2         | 72308          | 72257            |           |                |          | 19-8260A  | 13-MAR-97 0255 | MU         | COMOV           |
|         | S401           | 72327          | 72327            |           |                |          | 19-1312   | 13-MAR-97 1400 |            | GCMSY           |
| 9       |                | 72214          | 72214            |           |                |          | 19-1312   | 12-MAR-97 1630 |            | 001EPE          |
| 15      | OVTCW2         | 72735          | 71777            |           |                |          | 19-8260A  | 13-MAR-97 2026 |            | 005EPE          |
| 17      | OSVTCW         | 72496          |                  | 19-3510B  | 19-MAR-97 1500 | A M      | 19-8270B  | 05-APR-97 2044 |            | GCMSB           |
|         | OSVTCS         | 72450          | /2450            | 19-3550A  | 18-MAR-97 1300 | RDQ      | 19-8270В  | 24-MAR-97 0452 | EAY        | GCMSA           |
| 14      | 16858          | 72382          | 72382            | 19-3550A  |                |          | 02-418.1  | 17-MAR-97 1300 |            | GCMSA<br>302WAT |
| AMPL    | E ID: HW       | IPW-SB03-      | S19              |           |                |          |           |                |            |                 |
| 1       | OVTCC2         | 72257          | 7005             |           |                |          |           | SAMPLE N       | O: H44642  | 4               |
|         | OVTCS2         | 72256          | 72257            |           |                |          | 19-8260A  | 12-MAR-97 0028 | JC.        | CCMCV           |
| _       | S401           | 72327          | 72327            |           |                |          | 19-1312   | 13-MAR-97 1400 |            | GCMSY           |
| 9<br>15 | S402<br>OVTCW2 | 72214          | 72214            |           |                |          | 19-1312   | 12-MAR-97 1630 |            | 001EPE          |
|         |                | 72735          | 71777            |           |                |          | 19-8260A  | 13-MAR-97 2058 |            | OO5EPE<br>GCMSB |
| 17      | OSVTCW         | 72496          | 12127            | 19-3510B  | 19-MAR-97 1500 | A M      | 19-8270B  | 05-APR-97 2134 |            | GCMSA           |

April 11, 1997
Report No.: 00060410
Section B Page 2

#### SUPPLEMENTAL INFORMATION

|       | TEST    | LCSR<br>BLNK | DUP/MS<br>MS/MSD |           | SAMPLE PREPA   | RATION  |           | SAMPLE ANAL    | YSIS       |           |
|-------|---------|--------------|------------------|-----------|----------------|---------|-----------|----------------|------------|-----------|
| LN    | CODE    | BATCH        | BATCH            | LR-METHOD | DATE/TIME      | ANALYST | LR-METHOD | DATE/TIME      | ANALYST    | INSTRUMEN |
| SAMPL | LE ID:  | HWPW-SB03    | 3-519            |           |                |         |           | SAMPLE         | NO: H4464  | -24       |
| 3     | OSVTCS  | 72450        | 72450            | 19-3550A  | 18-MAR-97 1300 | RDQ     | 19-8270B  | 24-MAR-97 1942 | EAV        | GCMSA     |
| 14    | 16858   | 72382        | 72382            | 19-3550A  |                |         | 02-418.1  |                |            | 302WAT    |
| SAMPL | E ID: I | HWPW-SB03    | S-S24            |           |                |         |           | SAMPLE         | NO: H4464  | 25        |
| 1     | OVTCS2  | 72256        | 72257            | NA        |                |         | 19-8260A  | 12-MAR-97 0104 | JC         | GCMSY     |
| 8     | S401    | 72327        | 72327            | NA        |                |         | 19-1312   | 13-MAR-97 1400 | JLJ        | 001EPE    |
| 9     | s402    | 72326        | 72326            | NA        |                |         | 19-1312   | 13-MAR-97 1400 |            | 001EPE    |
| 15    | OVTCW2  | 72602        | 72482            | NA        |                |         | 19-8260A  |                |            | GCMSY     |
| 17    | OSVTCW  | 72496        | 72727            | 19-3510B  | 19-MAR-97 1500 | A M     | 19-8270B  | 05-APR-97 2223 | EAY        | GCMSA     |
| . 3   | OSVTCS  | 72492        | 72449            | 19-3550A  | 19-MAR-97 1200 | RDQ     | 19-8270B  | 04-APR-97 2021 | EAY        | GCMSA     |
| 14    | 1685s   | 72382        | 72382            | 19-3550A  |                |         | 02-418.1  | 17-MAR-97 1300 | JLJ        | 302WAT    |
| SAMPL | E ID: I | HWPW-SB03    | -834             |           |                |         |           | SAMPLE !       | NO: H4464  | 26        |
| 1     | OVTCS2  | 72470        | 72470            | NA        |                |         | 19-8260A  | 17-MAR-97 2023 | JC         | GCMSB     |
| 3     | OSVTCS  | 72492        | 72449            | 19-3550A  | 19-MAR-97 1200 | RDQ     | 19-8270B  |                |            | GCMSA     |
| 14    | 1685s   | 72382        | 72382            | 19-3550A  |                |         | 02-418.1  | 17-MAR-97 1300 | JLJ        | 302WAT    |
| SAMPL | E ID: H | IWPW-SB03    | -\$52            |           |                |         |           | SAMPLE N       | IO: H44642 | 27        |
|       | OVTCS2  | 72308        | 72257            | NA        |                |         | 19-8260A  | 13-MAR-97 0330 | мн         | GCMSY     |
| 3     | OSVTCS  | 72492        |                  |           | 19-MAR-97 1200 | RDQ     | 19-8270B  | 31-MAR-97 1049 | EAY        | GCMSZ     |
| 14    | 16858   | 72382        | 72382            | 19-3550A  |                |         | 02-418.1  | 17-MAR-97 1300 |            | 302WAT    |
| AMPL  | E ID: H | IWPW-SB03    | -\$54            |           |                |         |           | SAMPLE N       | O: H44642  | 28        |
|       | OVTCS2  | 72308        | 72257            |           |                |         | 19-8260A  | 13-MAR-97 0406 | мн         | GCMSY     |
| 3     | OSVTCS  | 72492        | 72449            | 19-3550A  | 19-MAR-97 1200 | RDQ     | 19-8270B  | 06-APR-97 0130 | EAY        | GCMSA     |
| AMPLI | E ID: H | WPW-SB04     | -\$2.5           |           |                |         |           | SAMPLE N       | O: H44642  | 9         |
|       | OVTCS2  | 72256        | 72257            |           |                |         | 19-8260A  | 12-MAR-97 0326 | JC         | GCMSY     |
|       | OSVTCS  | 72492        |                  | 19-3550A  | 19-MAR-97 1200 | RDQ     | 19-8270B  | 01-APR-97 0344 |            | GCMSZ     |
| 14    | 16858   | 72382        | 72382            | 19-3550A  |                |         | 02-418.1  | 17-MAR-97 1300 | JLJ        | 302WAT    |
| AMPLE | E ID: H | WPW-SB04-    | -\$29            |           |                |         | 2         | SAMPLE NO      | D: H44643  | 0         |
|       | OVTCS2  | 72256        | 72257            |           |                |         | 19-8260A  | 11-MAR-97 0401 | JC         | GCMSY     |
|       | OSVTCS  | 72492        |                  | 19-3550A  | 19-MAR-97 1200 | RDQ     | 19-8270B  | 31-MAR-97 1245 |            | GCMSZ     |
| 14    | 1685s   | 72382        | 72382            | 19-3550A  |                |         | 02-418.1  | 17-MAR-97 1300 |            | 302WAT    |

## 135

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

April 11, 1997
Report No.: 00060410
Section B Page 3

## SUPPLEMENTAL INFORMATION

|        | TEST             | LCSR<br>BLNK   | DUP/MS<br>MS/MSI |                      | SAMPLE PREPA      | RATION  |           | SAMPLE ANALYSI     | s                |
|--------|------------------|----------------|------------------|----------------------|-------------------|---------|-----------|--------------------|------------------|
| LN<br> | CODE             | BATCH          | BATCH            | LR-METHOD            | DATE/TIME         | ANALYST | LR-METHOD | , ,                | NALYST INSTRUMEN |
| SAMP   | LE ID:           | HWPW-SB0       | 4-s27            |                      |                   |         |           |                    |                  |
| 4      | 01/2000          | -              |                  |                      |                   |         |           | SAMPLE NO:         | H446431          |
|        | OVTCS2<br>OSVTCS |                |                  |                      |                   |         | 19-8260A  | 11-MAR-97 0437 J   | C GCMSY          |
|        | 16858            |                | 72382            | 19-3550A<br>19-3550A | 19-MAR-97 1200    | RDQ     | 19-8270B  | 31-MAR-97 1334 E   |                  |
|        |                  |                | , 2502           | 17-3330A             |                   |         | 02-418.1  |                    |                  |
| SAMP   | LE ID:           | HWPW-SBO       | 4-S31            |                      |                   |         |           | CAMPIE             |                  |
| 1      | OVTCS2           | 72/74          | 70/70            |                      |                   |         |           | SAMPLE NO:         | H446432          |
|        | OSVTCS           |                | 72470            |                      |                   |         | 19-8260A  | 18-MAR-97 2215 JC  | GCMSB            |
|        | 16855            | 72382          |                  | 19-3550A             | 19-MAR-97 1200    | RDQ     | 19-8270B  | 31-MAR-97 1422 EA  | Y GCMSZ          |
|        |                  | . 2562         | 1202             | 19-333UA             |                   |         | 02-418.1  | 17-MAR-97 1300 JL  | J 302WAT         |
| AMPL   | E ID:            | IWPW-SB04      | -\$39            |                      |                   |         |           | SAMPLE NO:         |                  |
| 5      | OSVTCS           | 72492          | 72//0            | 10-75504             | 19-MAR-97 1200    |         |           | SAMPLE NU:         | H446433          |
|        |                  | 12472          | 12447            | 19-333UA             | 19-MAR-97 1200    | RDQ     | 19-8270B  | 31-MAR-97 1830 EA  | Y GCMSZ          |
| AMPL   | E ID: H          | WPW-SB04       | -S51             |                      |                   |         |           | CAMBI E NO         | N. A.            |
| 1      | OVTCS2           | 79/74          | 70/70            |                      |                   |         |           | SAMPLE NO:         | H446434          |
|        | S401             | 72471<br>72327 | 72470<br>72327   |                      |                   |         | 19-8260A  | 18-MAR-97 1915 JC  | CCHCD            |
|        | \$402            | 72326          | 72326            |                      |                   |         | 19-1312   |                    |                  |
|        | OVTCW2           | 72602          | 72482            |                      |                   |         | 19-1312   |                    |                  |
|        | OSVTCW           |                |                  |                      |                   |         | 19-8260A  |                    | GCMSY            |
|        | OSVTCS           |                |                  |                      | 19-MAR-97 1500    |         | 19-8270B  | 02-APR-97 0311 EAY | -                |
|        | 16858            |                |                  | 19-3550A             | 19-MAR-97 1200    | RDQ     | 19-8270B  | 02-APR-97 0311 EAY |                  |
| 17     | 10033            | 12400          | 72468            | 19-3550A             |                   |         |           | 18-MAR-97 0800 JLJ | GCMSZ<br>302WAT  |
| MPLE   | ID: HV           | IPW-SB04-      | ·S59             |                      |                   |         |           |                    |                  |
| 1      | OVTCS2           | 72470          | 72/70            |                      |                   |         |           | SAMPLE NO:         | H446435          |
|        | OSVTCS           | 72492          | 72470<br>72450   |                      | 19-MAR-97 1200 F  |         | 19-8260A  | 17-MAR-97 1421 JC  | GCMSB            |
|        |                  |                | 72430            | 19-3330A             | 19-MAR-97 1200 F  | RDQ     | 19-8270B  | 06-APR-97 1801 EAY | GCMSA            |
| MPLE   | ID: HW           | PW-SB07-       | S2.5             |                      |                   |         |           | CAMPI E NO.        |                  |
| 1      | OVTCS2           | 72523          | 72470            | MA                   |                   |         |           | SAMPLE NO: I       | 1446456          |
| 3      | OSVTCS           | 72591          |                  | na<br>19-3550a       | 20 HAD 07 0000    |         | 19-8260A  | 19-MAR-97 1232 JC  | GCMSB            |
|        | 16858            | 72468          |                  | 19-3550A             | 20-MAR-97 0900 R  | DQ      | 19-8270B  | 01-APR-97 0521 EAY | GCMSZ            |
|        |                  | 12400          | 72400            | 19-333UA             |                   |         | 02-418.1  | 18-MAR-97 0800 JLJ | 302WAT           |
| 1PLE   | ID: HW           | PW-SB07-9      | S19              |                      |                   |         |           | CAMPLE NO          |                  |
| 1 (    | OVTCS2           | 72523          | 72/70            | MA                   |                   |         |           | SAMPLE NO: H       | 446437           |
|        | SVTCS            |                | 72470            |                      |                   |         | 19-8260A  | 19-MAR-97 2328 JC  | CCMCD            |
|        | 6858             |                |                  | 19-3550A             | 20-MAR-97 0900 RE | Q       |           | 31-MAR-97 2338 EAY | GCMSB            |
|        |                  | 12400          | 12400            | 19-3550A             |                   |         |           | 18-MAR-97 0800 JLJ | GCMSZ<br>302WAT  |

April 11, 1997
Report No.: 00060410
Section B Page 4

### SUPPLEMENTAL INFORMATION

|       | TEST            | LCSR<br>BLNK | DUP/MS<br>MS/MSD |                      | SAMPLE PREPA   | ARATION |                      | SAMPLE      | ANAL   | YSIS      |                 |
|-------|-----------------|--------------|------------------|----------------------|----------------|---------|----------------------|-------------|--------|-----------|-----------------|
| LN    | CODE            | BATCH        | BATCH            | LR-METHOD            | DATE/TIME      | ANALYST | LR-METHOD            | DATE/TI     | ME     | ANALYST   | INSTRUMEN       |
|       |                 |              |                  |                      |                |         |                      |             |        |           |                 |
| SAMP  | LE ID:          | HWPW-SB07    | '-S21            |                      |                |         |                      | SA          | MPLE   | NO: H4464 | 438             |
| 1     | OVTCS2          | 72523        | 72470            | NA                   |                |         | 19-8260A             | 19-MAR-97   | 17//   | 10        | 221122          |
| 3     | OSVTCS          | 72591        | 72450            | 19-3550A             | 20-MAR-97 0900 | RDQ     | 19-8270B             | 31-MAR-97   |        |           | GCMSB           |
| 14    | 16858           | 72468        | 72468            | 19-3550A             |                |         |                      | 18-MAR-97   |        |           | GCMSZ<br>302WAT |
| SAMPI | E ID: H         | HWPW-SB07    | -s22             |                      |                |         |                      | CAL         | anie i | IO: H4464 | 70              |
|       |                 |              |                  |                      |                |         |                      | SAF         | TPLE P | IU: 14464 | 139             |
|       | OVTCS2          | 72523        | 72470            |                      |                |         | 19-8260A             | 19-MAR-97   | 1110   | ic :      | GCMSB           |
|       | OSVTCS          | 72591        |                  | 19-3550A             | 20-MAR-97 0900 | RDQ     | 19-8270B             | 02-APR-97   |        |           | GCMSZ           |
| 14    | 16858           | 72468        | 72468            | 19-3550A             |                |         | 02-418.1             | 18-MAR-97   |        |           | 302WAT          |
| SAMPL | E ID: H         | IWPW-SB07    | -S24             |                      |                |         |                      | SAM         | DIF N  | O: H4464  |                 |
|       |                 |              |                  |                      |                |         |                      | 9741        |        | O. 114404 | 40              |
|       | OVTCS2          | 72471        | 72470            |                      |                |         | 19-8260A             | 18-MAR-97   | 2104   | 1C        | GCMSB           |
|       | OSVTCS          | 72591        |                  |                      | 20-MAR-97 0900 | RDQ     | 19-8270в             | 02-APR-97   |        |           | GCMSZ           |
| 14    | 1685s           | 72468        | 72468            | 19-3550A             |                |         | 02-418.1             |             |        |           | 302WAT          |
| SAMPL | E ID: H         | WPW-SB08-    | ·S4              |                      |                |         |                      | SAM         | PLE N  | D: H44644 | 41              |
| 1     | OVTCS2          | 72471        | 72470            | MA                   |                |         |                      |             |        |           |                 |
|       | OSVTCS          | 72591        |                  | 19-3550A             | 20 27          |         | 19-8260A             | 18-MAR-97   |        |           | GCMSB           |
|       | 16858           | 72468        |                  | 19-3550A             | 20-MAR-97 0900 | RDQ     | 19-8270B             | 06-APR-97   | 1850   | EAY       | GCMSA           |
| 17    | 10053           | 12400        | 12400            | 19-333UA             |                |         | 02-418.1             | 18-MAR-97   | 0800   | JLJ       | 302WAT          |
| AMPL  | E ID: H         | WPW-SB08-    | S14              |                      |                |         |                      | SAME        | PLE NO | ): H44644 | 2               |
| 1     | OVTCS2          | 72471        | 72470            | NA                   |                |         | 10.00(0)             | 40          |        |           |                 |
|       | OSVTCS          | 72591        |                  |                      | 20-MAR-97 0900 | PDO     | 19-8260A             | 18-MAR-97 1 |        |           | GCMSB           |
| 14    | 1685s           | 72468        |                  | 19-3550A             | 20 PMR 77 0900 | KDW     | 19-8270B<br>02-418.1 | 09-APR-97 ( |        |           | GCMSA           |
| AMD!  |                 |              |                  |                      |                |         | 02-410.1             | 18-MAR-97 ( | 0080   | JLJ       | 302WAT.         |
| AMPLE | : ID: HW        | IPW-SB08-    | S18              |                      |                |         |                      | SAMP        | LE NO  | : H44644  | 3               |
| 1     | OVTCS2          | 72471        | 72470            | NA                   |                |         | 19-8260A             | 18-MAR-07 4 | 054    |           |                 |
| 3     | OSVTCS          | 72591        | 72450            | 19-3550A             | 20-MAR-97 0900 | RDQ     | 19-8270B             | 18-MAR-97 1 | וכע    | JU        | GCMSB           |
| 14    | 16858           | 72468        | 72468            | 19-3550A             |                |         |                      | 18-MAR-97 0 |        |           | GCMSA<br>302WAT |
| AMPLE | ID: HW          | PW-SB08-     | S22              |                      |                |         |                      |             |        | : H446444 |                 |
| 4     | 01/7000         | 70507        | <b>700 / 770</b> |                      |                |         |                      | SAMP        | LL NU  | • п440444 | •               |
|       | OVTCS2          | 72523        | 72470            |                      |                |         | 19-8260A             | 19-MAR-97 1 | 534    | ıc r      | GCMSB           |
| 5     | OSVTCS<br>1685S |              |                  | 19-3550A<br>19-3550A | 20-MAR-97 0900 | RDQ     | 19-8270в             | 06-APR-97 2 |        |           | GCMSA           |
|       |                 | 72468        |                  |                      |                |         |                      |             |        |           |                 |

## 187

April 11, 1997
Report No.: 00060410
Section B Page 5

### SUPPLEMENTAL INFORMATION

|              | TEST                      | LCSR                    | DUP/MS                  |           | SAMPLE PREPAI  | RATION  |                                  | SAMPLE ANAL                                        | YSIS      |                          |
|--------------|---------------------------|-------------------------|-------------------------|-----------|----------------|---------|----------------------------------|----------------------------------------------------|-----------|--------------------------|
| LN           | CODE                      | BLNK<br>BATCH           | MS/MSD<br>BATCH         | LR-METHOD | DATE/TIME      | ANALYST | LR-METHOD                        | DATE/TIME                                          | ANALYST   | INSTRUMEN                |
| SAMPL        | E ID: H                   | WPW-SB08                | -S21                    |           |                |         |                                  | SAMPLE                                             | NO: H4464 | 445                      |
| 1<br>3<br>14 | OVTCS2<br>OSVTCS<br>1685S | 72470<br>72591<br>72468 | 72470<br>72591<br>72468 |           | 20-MAR-97 0900 | RDQ     | 19-8260A<br>19-8270B<br>02-418.1 | 17-MAR-97 1457<br>11-APR-97 0744<br>18-MAR-97 0800 | EAY       | GCMSB<br>GCMSA<br>302WAT |
| _            |                           |                         |                         |           |                |         |                                  |                                                    |           |                          |

LR Method Literature Reference

- 02 EPA-Methods for Chemical Analysis of Water & Wastes, 1984.
- 19 EPA-Test Methods for Evaluating Solid Waste, 3rd ed, Nov. 1986 and updates

April 11, 1997 Report No.: 00060410 Section C Page 1

#### SURROGATE STANDARD RECOVERY

| LN     | CODE                | CURROCATE COMPOUND                                                                      | PERCENT<br>RECOVERY | ACCEPTANCE<br>LIMITS | REF L   |
|--------|---------------------|-----------------------------------------------------------------------------------------|---------------------|----------------------|---------|
| AMP    | LE ID:              | HWPW-SB05-S54                                                                           |                     |                      |         |
|        |                     |                                                                                         |                     | SAMPLE NO:           | H446419 |
| 2      | \$VOA2S             | GC/MS Volatiles Surrogates (8260)                                                       |                     |                      |         |
|        |                     | 4-Bromofluorobenzene                                                                    | 105                 |                      | 1       |
|        |                     | Dibromofluoromethane                                                                    | 97                  | -                    |         |
|        |                     | Toluene-d8                                                                              | 102                 | -                    |         |
| 4      | \$BNAS              | GC/MS BNA Surrogates                                                                    |                     |                      | 3       |
|        |                     | 2,4,6-Tribromophenol                                                                    | 70                  | -                    |         |
|        |                     | 2-Fluorobi phenyl                                                                       | 86                  | -                    |         |
|        |                     | 2-Fluorophenol                                                                          | 62                  | -                    |         |
|        |                     | Nitrobenzene-d5                                                                         | 62                  | -                    |         |
|        |                     | Phenol-d5                                                                               | 67                  | -                    |         |
|        |                     | p-Terphenyl-d14                                                                         | 76                  | -                    |         |
| MDI    | E ID: I             | WPW-SB06-S19                                                                            |                     |                      |         |
|        | L 1D. 1             | WFW-3500-3   9                                                                          | :                   | SAMPLE NO:           | H446420 |
| 2      | \$VOA2S             | GC/MS Volatiles Surrogates (8260)                                                       |                     |                      |         |
| 2 0000 |                     | 4-Bromofluorobenzene                                                                    |                     |                      | 1       |
|        |                     | Dibromofluoromethane                                                                    | 111                 | -                    |         |
|        |                     | Toluene-d8                                                                              | 110                 | -                    |         |
| 4      | \$BNAS              | GC/MS BNA Surrogates                                                                    | 97                  | -                    |         |
|        |                     | 2,4,6-Tribromophenol                                                                    | *                   |                      | 3       |
|        |                     | 2-Fluorobiphenyl                                                                        | *                   | -                    |         |
|        |                     | 2-Fluorophenol                                                                          | *                   | -                    |         |
|        |                     | Nitrobenzene-d5                                                                         | *                   | -                    |         |
|        |                     | Phenol-d5                                                                               | *                   | -                    |         |
|        |                     | p-Terphenyl-d14                                                                         | *                   | -                    |         |
|        |                     | *The surrogates were not recovered due to the dilution required by high analyt          | e                   | _                    |         |
|        | <b>6</b> 140.4.01.1 | concentration.                                                                          |                     |                      |         |
| 8      | \$VOA2W             | GC/MS Volatiles Surrogates (8260)                                                       |                     |                      | 17      |
|        |                     | 1,2-Dichloroethane-d4                                                                   | 96                  | -                    |         |
|        |                     | 4-Bromofluorobenzene                                                                    | 105                 | -                    |         |
| 0      | SBNAW               | Toluene-d8                                                                              | 105                 | -                    |         |
| •      | <b>JONAN</b>        | GC/MS BNA Surrogates 2,4,6-Tribromophenol                                               |                     |                      | 19      |
|        |                     | 2-Fluorobiphenyl                                                                        | 37                  | -                    |         |
|        |                     | 2-Fluorophenol                                                                          | 25*                 | -                    |         |
|        |                     | Nitrobenzene-d5                                                                         | 7*                  | -                    |         |
|        |                     | Phenol-d5                                                                               | 19*                 | -                    |         |
|        |                     | p-Terphenyl-d14                                                                         | 6*                  | - "                  |         |
|        |                     |                                                                                         | 23*                 | •                    |         |
|        |                     | *The surrogate recovery was outside of QC acceptance limits due to matrix interference. |                     |                      |         |

April 11, 1997
Report No.: 00060410
Section C Page 2

## SURROGATE STANDARD RECOVERY

| LN      | CODE  | SURRUGATE COMPONIND                                                            | PERCENT  | ACCEPTAN   |           |      |
|---------|-------|--------------------------------------------------------------------------------|----------|------------|-----------|------|
|         |       |                                                                                | RECOVERY | LIMITS     | R         | EF L |
| SAMPLE  | ID:   | HWPW-SB06-S24                                                                  |          |            |           |      |
|         |       |                                                                                |          | SAMPLE NO  | : H446421 |      |
| 2 \$    | VOA2S | GC/MS Volatiles Surrogates (8260)                                              |          |            |           |      |
|         |       | 4-Bromofluorobenzene                                                           |          |            |           | 1    |
|         |       | Dibromofluoromethane                                                           | 104      | -          |           |      |
|         |       | Toluene-d8                                                                     | 102      | •          |           |      |
| 4 \$    | BNAS  | GC/MS BNA Surrogates                                                           | 97       | -          |           |      |
|         |       | 2,4,6-Tribromophenol                                                           |          |            |           | 3    |
|         |       | 2-Fluorobiphenyl                                                               | 60       | -          |           |      |
|         |       | 2-Fluorophenol                                                                 | 84       | -          |           |      |
|         |       | Nitrobenzene-d5                                                                | 50       | -          |           |      |
|         |       | Phenol-d5                                                                      | 70       |            |           |      |
|         |       | p-Terphenyl-d14                                                                | 70       | -          |           |      |
|         |       |                                                                                | 66       |            |           |      |
| AMPLE I | D: HI | IPW-SB06-S49                                                                   |          |            |           |      |
|         |       |                                                                                | ;        | SAMPLE NO: | H446422   |      |
| 2 \$V   | /0A2S | GC/MS Volatiles Surrogates (8260)                                              |          |            |           |      |
|         |       | 4-Bromofluorobenzene                                                           |          |            | 1         |      |
|         |       | Dibromofluoromethane                                                           | 100      | -          |           |      |
|         |       | Toluene-d8                                                                     | 104      | -          |           |      |
| 4 \$B   | NAS   | GC/MS BNA Surrogates                                                           | 99       | -          |           |      |
|         |       | 2,4,6-Tribromophenol                                                           |          |            | 3         |      |
|         |       | 2-Fluorobiphenyl                                                               | 70       | -          |           |      |
|         |       | 2-Fluorophenol                                                                 | 100      | -          |           |      |
|         |       | Nitrobenzene-d5                                                                | 70       | -          |           |      |
|         |       | Phenol-d5                                                                      | 73       | -          |           |      |
|         | 1     | p-Terphenyl-d14                                                                | 80       | -          |           |      |
|         |       |                                                                                | 84       | •          |           |      |
| IPLE ID | : HWI | PW-SB03-S5                                                                     |          |            |           |      |
|         |       |                                                                                | S        | AMPLE NO:  | H446423   |      |
| 2 \$V0  | Mas ( | GC/MS Volatiles Surrogates (8260)                                              |          |            |           |      |
|         | 4     | -Bromofluorobenzene                                                            |          |            | 1         |      |
|         |       | ibromofluoromethane                                                            | 106      | -          |           |      |
|         | T     | oluene-d8                                                                      | 102      | •          |           |      |
| 4 SBN   | AS G  | C/MS BNA Surrogates                                                            | 96       | -          |           |      |
|         | 2     | ,4,6-Tribromophenol                                                            |          |            | 3         |      |
|         | 2     | -Fluorobiphenyl                                                                | *        | -          |           |      |
|         | 2     | -Fluorophenol                                                                  | *        | •          |           |      |
|         |       | itrobenzene-d5                                                                 | *        | •          |           |      |
|         |       | henol-d5                                                                       | *        | -          |           |      |
|         | p     | -Terphenyl-d14                                                                 | *        | -          |           |      |
|         | #*    | The surrogates were not recovered due to the dilution required by high analyte | *        | •          |           |      |
|         |       | concentration.                                                                 |          |            |           |      |

# REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

April 11, 1997
Report No.: 00060410
Section C Page 3

#### SURROGATE STANDARD RECOVERY

| LN<br> | CODE              | SURROGATE COMPOUND                                                                                                                                                                                                                                                                                                    | PERCENT<br>RECOVERY                                                                 | ACCEPTANCE<br>LIMITS | REF LI  |
|--------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------|---------|
| \MPL   | E ID:             | H₩P₩-SB03-S5                                                                                                                                                                                                                                                                                                          |                                                                                     | SAMPLE NO:           | H446423 |
| 16     | \$VOA2W           | GC/MS Volatiles Surrogates (8260)                                                                                                                                                                                                                                                                                     |                                                                                     |                      | 45      |
|        |                   | 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                 | 89                                                                                  | _                    | 15      |
|        |                   | 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                  | 89                                                                                  |                      |         |
|        |                   | Toluene-d8                                                                                                                                                                                                                                                                                                            | 100                                                                                 |                      |         |
| 18     | SBNAW             | GC/MS BNA Surrogates                                                                                                                                                                                                                                                                                                  | 100                                                                                 | -                    | 47      |
|        |                   | 2,4,6-Tribromophenol                                                                                                                                                                                                                                                                                                  | *                                                                                   | _                    | 17      |
|        |                   | 2-Fluorobiphenyl                                                                                                                                                                                                                                                                                                      |                                                                                     | -                    |         |
|        |                   | 2-Fluorophenol                                                                                                                                                                                                                                                                                                        | *                                                                                   | -                    |         |
|        |                   | Nitrobenzene-d5                                                                                                                                                                                                                                                                                                       | *                                                                                   | -                    |         |
|        |                   | Phenol-d5                                                                                                                                                                                                                                                                                                             | *                                                                                   | -                    |         |
|        |                   | p-Terphenyl-d14                                                                                                                                                                                                                                                                                                       | *                                                                                   | -                    |         |
|        |                   | *The surrogates were not recovered during analysis. The sample will be                                                                                                                                                                                                                                                |                                                                                     | -                    |         |
|        |                   | re-leached, re-analyzed, and reported on a separate report.                                                                                                                                                                                                                                                           |                                                                                     |                      |         |
| MPLI   | E ID: H           | WPW-SB03-S19                                                                                                                                                                                                                                                                                                          |                                                                                     | SAMPLE NO:           | НААААЭА |
|        |                   |                                                                                                                                                                                                                                                                                                                       |                                                                                     |                      |         |
| 2      | \$VOA2S           | GC/MS Volatiles Surrogates (8260)                                                                                                                                                                                                                                                                                     |                                                                                     |                      | 1       |
|        |                   | 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                  | 404                                                                                 |                      |         |
|        |                   |                                                                                                                                                                                                                                                                                                                       | 106                                                                                 | -                    |         |
|        |                   | Dibromofluoromethane                                                                                                                                                                                                                                                                                                  | 106<br>105                                                                          |                      |         |
|        |                   | Dibromofluoromethane Toluene-d8                                                                                                                                                                                                                                                                                       |                                                                                     |                      |         |
| 4      | \$BNAS            | Dibromofluoromethane                                                                                                                                                                                                                                                                                                  | 105                                                                                 |                      | . 3     |
| 4      | \$BNAS            | Dibromofluoromethane Toluene-d8                                                                                                                                                                                                                                                                                       | 105                                                                                 | -                    | 3       |
| 4      | \$BNAS            | Dibromofluoromethane Toluene-d8 GC/MS BNA Surrogates                                                                                                                                                                                                                                                                  | 105<br>98                                                                           | :                    | 3       |
| 4      | \$BNAS            | Dibromofluoromethane Toluene-d8 GC/MS BNA Surrogates 2,4,6-Tribromophenol                                                                                                                                                                                                                                             | 105<br>98<br>35                                                                     | :                    | 3       |
| 4      | \$BNAS            | Dibromofluoromethane Toluene-d8 GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl                                                                                                                                                                                                                            | 105<br>98<br>35<br>65                                                               |                      | 3       |
| 4      | \$BNAS            | Dibromofluoromethane Toluene-d8 GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol                                                                                                                                                                                                             | 105<br>98<br>35<br>65<br>30                                                         |                      | 3       |
| 4      | \$BNAS            | Dibromofluoromethane Toluene-d8 GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5                                                                                                                                                                                             | 105<br>98<br>35<br>65<br>30<br>50                                                   |                      | 3       |
|        | \$BNAS<br>\$VOA2W | Dibromofluoromethane Toluene-d8 GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 p-Terphenyl-d14                                                                                                                                                                   | 105<br>98<br>35<br>65<br>30<br>50<br>40                                             |                      |         |
|        |                   | Dibromofluoromethane Toluene-d8 GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 p-Terphenyl-d14                                                                                                                                                                   | 105<br>98<br>35<br>65<br>30<br>50<br>40                                             |                      | 3       |
|        |                   | Dibromofluoromethane Toluene-d8 GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 p-Terphenyl-d14 GC/MS Volatiles Surrogates (8260)                                                                                                                                 | 105<br>98<br>35<br>65<br>30<br>50<br>40<br>70                                       |                      |         |
|        |                   | Dibromofluoromethane Toluene-d8 GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 p-Terphenyl-d14 GC/MS Volatiles Surrogates (8260) 1,2-Dichloroethane-d4                                                                                                           | 105<br>98<br>35<br>65<br>30<br>50<br>40<br>70                                       |                      |         |
| 16     |                   | Dibromofluoromethane Toluene-d8 GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 p-Terphenyl-d14 GC/MS Volatiles Surrogates (8260) 1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8 GC/MS BNA Surrogates                                                      | 105<br>98<br>35<br>65<br>30<br>50<br>40<br>70<br>88<br>102                          |                      | 15      |
| 16     | \$VOAZW           | Dibromofluoromethane Toluene-d8 GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 p-Terphenyl-d14 GC/MS Volatiles Surrogates (8260) 1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8                                                                           | 105<br>98<br>35<br>65<br>30<br>50<br>40<br>70<br>88<br>102                          |                      |         |
| 16     | \$VOAZW           | Dibromofluoromethane Toluene-d8 GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 p-Terphenyl-d14 GC/MS Volatiles Surrogates (8260) 1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8 GC/MS BNA Surrogates                                                      | 105<br>98<br>35<br>65<br>30<br>50<br>40<br>70<br>88<br>102<br>98                    |                      | 15      |
| 16     | \$VOAZW           | Dibromofluoromethane Toluene-d8 GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 p-Terphenyl-d14 GC/MS Volatiles Surrogates (8260) 1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8 GC/MS BNA Surrogates 2,4,6-Tribromophenol                                 | 105<br>98<br>35<br>65<br>30<br>50<br>40<br>70<br>88<br>102<br>98                    |                      | 15      |
| 16     | \$VOAZW           | Dibromofluoromethane Toluene-d8 GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 p-Terphenyl-d14 GC/MS Volatiles Surrogates (8260) 1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8 GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl                | 105<br>98<br>35<br>65<br>30<br>50<br>40<br>70<br>88<br>102<br>98                    |                      | 15      |
| 16     | \$VOAZW           | Dibromofluoromethane Toluene-d8 GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 p-Terphenyl-d14 GC/MS Volatiles Surrogates (8260) 1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8 GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol | 105<br>98<br>35<br>65<br>30<br>50<br>40<br>70<br>88<br>102<br>98<br>6*<br>13*<br>1* |                      | 15      |

# 191 REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

April 11, 1997
Report No.: 00060410
Section C Page 4

# SURROGATE STANDARD RECOVERY

| LN<br> | COD     | SURROGATE COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PERCENT<br>RECOVERY | ACCEPTANC LIMITS | E<br>REF LI                             |
|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|-----------------------------------------|
| SAMP   | LE ID:  | HWPW-SB03-S24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                  |                                         |
|        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | SAMPLE NO:       | H446425                                 |
| 2      | \$VOA2  | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                     |                  |                                         |
|        |         | 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                  | 1                                       |
|        |         | Dibromofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101                 | -                | •                                       |
|        |         | Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 98                  | -                |                                         |
| 4      | \$BNAS  | -57110 BIA Surrogates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                 | _                |                                         |
|        |         | 2,4,6-Tribromophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                  | 3                                       |
|        |         | 2-Fluorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5*                  | -                | 3                                       |
|        |         | 2-Fluorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90                  | -                |                                         |
|        |         | Nitrobenzene-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                  | _                |                                         |
|        |         | Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71                  |                  |                                         |
|        |         | p-Terphenyl-d14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                  |                  |                                         |
|        |         | * The surrogate recovery use subside to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68                  |                  |                                         |
|        |         | * The surrogate recovery was outside of QC acceptance limits due to matrix interference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                   |                  |                                         |
| 16     | \$VOA2W | GC/MS Volatiles Surrogates (8260)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                  |                                         |
|        |         | 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                  | Ter.                                    |
|        |         | Dibromofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 113                 |                  | 15                                      |
|        |         | Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93                  | -                |                                         |
| 18     | \$BNAW  | GC/MS BNA Surrogates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                 | -                |                                         |
|        |         | 2,4,6-Tribromophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                 | -                |                                         |
|        |         | 2-Fluorobiphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60                  |                  | 17                                      |
|        |         | 2-Fluorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | •                |                                         |
|        |         | Nitrobenzene-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46                  | -                |                                         |
|        |         | Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16*                 | -                |                                         |
|        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37                  | •                |                                         |
|        |         | p-Terphenyl-d14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                  | -                |                                         |
|        |         | * The surrogate recovery was outside of QC acceptance limits due to matrix interference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 65                  | -                |                                         |
|        |         | interrerence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                  |                                         |
| PLE    | ID: H   | IPW-SB03-S34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                  |                                         |
| 7 en   | V0420   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAM                 | MPLE NO: H4      | 46426                                   |
| - 3    | VOA2S   | GC/MS Volatiles Surrogates (8260)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                  | *************************************** |
|        |         | 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                  | 1                                       |
|        |         | Dibromofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109                 | -                | •                                       |
| -      |         | Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 97                  | -                |                                         |
| \$E    | BNAS    | GC/MS BNA Surrogates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 107                 | -                |                                         |
|        |         | 2,4,6-Tribromophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                  | 3                                       |
|        |         | 2-Fluorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                   | -                | 3                                       |
|        |         | 2-Fluorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                   | -                |                                         |
|        | l       | litrobenzene-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                   | -                |                                         |
|        |         | Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *                   | -                |                                         |
|        | ,       | o-Terphenyl-d14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                   | -                |                                         |
|        |         | The surrogates were not recovered due to the dilution required as a result of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                  |                                         |

April 11, 1997
Report No.: 00060410
Section C Page 5

# SURROGATE STANDARD RECOVERY

| LN CODI            | SURROGATE COMPOUND                         | PERCENT<br>RECOVERY | ACCEPTANC<br>LIMITS | E<br>REF LN |
|--------------------|--------------------------------------------|---------------------|---------------------|-------------|
|                    | the high concentration of target analytes. |                     |                     |             |
|                    |                                            |                     |                     |             |
| AMPLE ID:          | HWPW-SB03-S52                              |                     | SAMPLE NO:          | H446427     |
| 2 \$VOA2           | S GC/MS Volatiles Surrogates (8260)        |                     |                     |             |
|                    | 4-Bromofluorobenzene                       |                     |                     | 1           |
|                    | Dibromofluoromethane                       | 101                 | -                   |             |
|                    | Toluene-d8                                 | 103                 | -                   |             |
| 4 \$BNAS           | GC/MS BNA Surrogates                       | 99                  | -                   |             |
|                    | 2,4,6-Tribromophenol                       |                     |                     | 3           |
|                    | 2-Fluorobiphenyl                           | 28                  | -                   |             |
|                    | 2-Fluorophenol                             | 90                  | -                   |             |
|                    | Nitrobenzene-d5                            | 70                  | -                   |             |
|                    | Phenol-d5                                  | 88                  | -                   |             |
|                    | p-Terphenyl-d14                            | 70                  | -                   |             |
|                    | E confinently and                          | 98                  | -                   |             |
| MPLE ID:           | HWPW-SB03-S54                              |                     |                     |             |
|                    |                                            | ;                   | SAMPLE NO:          | H446428     |
| 2 \$VOA2S          | GC/MS Volatiles Surrogates (8260)          |                     |                     |             |
|                    | 4-Bromofluorobenzene                       |                     |                     | 1           |
|                    | Dibromofluoromethane                       | 100                 | -                   |             |
|                    | Toluene-d8                                 | 102                 | -                   |             |
| 4 \$BNAS           | GC/MS BNA Surrogates                       | 99                  | -                   |             |
|                    | 2,4,6-Tribromophenol                       |                     |                     | 3           |
|                    | 2-Fluorobiphenot                           | 48                  | -                   | J           |
|                    | 2-Fluorophenol                             | 83                  | -                   |             |
|                    | Nitrobenzene-d5                            | 50                  | -                   |             |
|                    | Phenol-d5                                  | 65                  | _                   |             |
|                    |                                            | 50                  | _                   |             |
|                    | p-Terphenyl-d14                            | 67                  | _                   |             |
| PLE ID: H          | HIDLI ODG/ og F                            | •                   |                     |             |
| PLE ID: P          | WPW-SB04-S2.5                              | SI                  | AMPLE NO: H         | 1446429     |
| 2 <b>\$</b> VOA2\$ | 00 010 M 1 - 11                            | o,                  | unrec NO: n         | 1440429     |
| T DAOMES           | GC/MS Volatiles Surrogates (8260)          |                     |                     |             |
|                    | 4-Bromofluorobenzene                       | 115                 |                     | 1           |
|                    | Dibromofluoromethane                       | 107                 |                     |             |
| / ADUA 0           | Toluene-d8                                 | 96                  | -                   |             |
| 4 \$BNAS           | GC/MS BNA Surrogates                       | 70                  | -                   | _           |
|                    | 2,4,6-Tribromophenol                       | *                   |                     | 3           |
|                    | 2-Fluorobiphenyl                           | *                   | -                   |             |
|                    | 2-Fluorophenol                             |                     | -                   |             |
|                    | ***                                        |                     |                     |             |
|                    | Nitrobenzene-d5                            | *                   | - 4                 |             |
|                    | Nitrobenzene-d5 Phenol-d5 p-Terphenyl-d14  | *                   | -                   |             |

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997 Report No.: 00060410 Section C Page 6

# SURROGATE STANDARD RECOVERY

| LN C     | EST<br>DDE                                                                                                                                                                                                  | SURROGATE COMPOUND                                                                                                                                                                                                                                                                                       | PERCENT<br>RECOVERY                                           | ACCEPTANCE<br>LIMITS                    | REF L |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|-------|
|          | *The s                                                                                                                                                                                                      | surrogates were not recovered due to the dilution                                                                                                                                                                                                                                                        | required by high analyte                                      |                                         |       |
| AMPLE ID | : HWPW-SBO                                                                                                                                                                                                  | 14-S29                                                                                                                                                                                                                                                                                                   |                                                               |                                         |       |
| 2 \$VO   | A2S GC/MS V                                                                                                                                                                                                 | W-Texts -                                                                                                                                                                                                                                                                                                |                                                               | SAMPLE NO: H4                           | 46430 |
| 2 340    | A25 GL/MS 1                                                                                                                                                                                                 | Volatiles Surrogates (8260)                                                                                                                                                                                                                                                                              |                                                               |                                         |       |
|          |                                                                                                                                                                                                             | ofluorobenzene                                                                                                                                                                                                                                                                                           | 115                                                           |                                         | 1     |
|          | Toluene                                                                                                                                                                                                     | ofluoromethane                                                                                                                                                                                                                                                                                           | 104                                                           | -                                       |       |
| 4 \$BN/  |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                          | 99                                                            | _                                       |       |
| 4 40N/   | 2 / 4-1                                                                                                                                                                                                     | BNA Surrogates                                                                                                                                                                                                                                                                                           | "                                                             | -                                       | _     |
|          | 2-510-1                                                                                                                                                                                                     | Tribromophenol<br>robiphenyl                                                                                                                                                                                                                                                                             | *                                                             | -                                       | 3     |
|          | 2-Fluor                                                                                                                                                                                                     | rophenol                                                                                                                                                                                                                                                                                                 | *                                                             |                                         |       |
|          |                                                                                                                                                                                                             | enzene-d5                                                                                                                                                                                                                                                                                                | *                                                             | -                                       |       |
|          | Phenol-                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                          | *                                                             | _                                       |       |
|          |                                                                                                                                                                                                             | nenyl-d14                                                                                                                                                                                                                                                                                                | *                                                             | -                                       |       |
|          | *The su                                                                                                                                                                                                     | ICCOURTES HOPE not assessed to                                                                                                                                                                                                                                                                           | *                                                             | -                                       |       |
|          | CODCED                                                                                                                                                                                                      | rrogates were not recovered due to the dilution restration.                                                                                                                                                                                                                                              | equired by high analyte                                       |                                         |       |
| MPLE ID: | HWPW-SB04-                                                                                                                                                                                                  | -\$27                                                                                                                                                                                                                                                                                                    | s                                                             | AMDIE NO. U.//                          | 417A  |
|          | 2s GC/MS Vo                                                                                                                                                                                                 | olatiles Surrogates (8260)                                                                                                                                                                                                                                                                               | S                                                             | AMPLE NO: H444                          | 6431  |
|          | 2S GC/MS Vo                                                                                                                                                                                                 | olatiles Surrogates (8260)<br>fluorobenzene                                                                                                                                                                                                                                                              |                                                               | AMPLE NO: H444                          | 6431  |
|          | 2S GC/MS Vo<br>4-Bromof<br>Dibromof                                                                                                                                                                         | olatiles Surrogates (8260)<br>fluorobenzene<br>fluoromethane                                                                                                                                                                                                                                             | 131*                                                          | AMPLE NO: H444                          |       |
|          | 2S GC/MS Vo<br>4-Bromof<br>Dibromof<br>Toluene-                                                                                                                                                             | olatiles Surrogates (8260)<br>fluorobenzene<br>fluoromethane<br>-d8                                                                                                                                                                                                                                      | 131*<br>108                                                   | AMPLE NO: H440                          |       |
|          | 2S GC/MS Vo<br>4-Bromof<br>Dibromof<br>Toluene-<br>*The sur                                                                                                                                                 | olatiles Surrogates (8260)<br>fluorobenzene<br>fluoromethane<br>-d8<br>rrogate was out of range due to matrix intentance                                                                                                                                                                                 | 131*<br>108                                                   | AMPLE NO: H440<br>-<br>-<br>-           |       |
| 2 \$VOA  | 2S GC/MS Vo<br>4-Bromof<br>Dibromof<br>Toluene-<br>*The sur<br>confirmed                                                                                                                                    | olatiles Surrogates (8260)<br>fluorobenzene<br>fluoromethane<br>-d8<br>rrogate was out of range due to matrix interfere<br>d by re-analysis.                                                                                                                                                             | 131*<br>108                                                   | AMPLE NO: H440<br>-<br>-<br>-           |       |
|          | 2S GC/MS Vo<br>4-Bromof<br>Dibromof<br>Toluene-<br>*The sur<br>confirmed<br>GC/MS BN                                                                                                                        | olatiles Surrogates (8260)<br>fluorobenzene<br>fluoromethane<br>-d8<br>rrogate was out of range due to matrix interfere<br>d by re-analysis.<br>HA Surrogates                                                                                                                                            | 131*<br>108                                                   | AMPLE NO: H444<br>-<br>-<br>-           | 1     |
| 2 \$VOA  | 2S GC/MS Vo<br>4-Bromof<br>Dibromof<br>Toluene-<br>*The sur<br>confirmed<br>GC/MS BN<br>2,4,6-Tr                                                                                                            | olatiles Surrogates (8260) fluorobenzene fluoromethane -d8 rrogate was out of range due to matrix interferen d by re-analysis. A Surrogates ribromophenol                                                                                                                                                | 131*<br>108                                                   | AMPLE NO: H444                          |       |
| 2 \$VOA  | 2S GC/MS Vo<br>4-Bromof<br>Dibromof<br>Toluene-<br>*The sur<br>confirmed<br>GC/MS BN<br>2,4,6-Tr<br>2-Fluoroi                                                                                               | olatiles Surrogates (8260) fluorobenzene fluoromethane -d8 rrogate was out of range due to matrix interferen d by re-analysis. A Surrogates ribromophenol                                                                                                                                                | 131*<br>108<br>96<br>nce, which was                           | AMPLE NO: H440<br>-<br>-<br>-<br>-      | 1     |
| 2 \$VOA  | 2S GC/MS Vo<br>4-Bromof<br>Dibromof<br>Toluene-<br>*The sur<br>confirmed<br>GC/MS BN<br>2,4,6-Tr<br>2-Fluorol<br>2-Fluorol                                                                                  | olatiles Surrogates (8260) fluorobenzene fluoromethane -d8 rrogate was out of range due to matrix interfered by re-analysis. A Surrogates ribromophenol biphenyl                                                                                                                                         | 131*<br>108<br>96<br>nce, which was                           | AMPLE NO: H440<br>-<br>-<br>-<br>-      | 1     |
| 2 \$VOA  | 2S GC/MS Vo<br>4-Bromof<br>Dibromof<br>Toluene-<br>*The sur<br>confirmed<br>GC/MS BN<br>2,4,6-Tr<br>2-Fluoroi                                                                                               | olatiles Surrogates (8260) fluorobenzene fluoromethane -d8 rrogate was out of range due to matrix interfered d by re-analysis. MA Surrogates ribromophenol obiphenyl phenol zene-d5                                                                                                                      | 131*<br>108<br>96<br>nce, which was                           | AMPLE NO: H440<br>-<br>-<br>-<br>-<br>- | 1     |
| 2 \$VOA  | 2S GC/MS Vo<br>4-Bromof<br>Dibromof<br>Toluene-<br>*The sur<br>confirmed<br>GC/MS BN<br>2,4,6-Tr<br>2-Fluorol<br>2-Fluorol<br>Nitrobens<br>Phenol-d                                                         | olatiles Surrogates (8260) fluorobenzene fluoromethane -d8 rrogate was out of range due to matrix interfered d by re-analysis. MA Surrogates ribromophenol bbiphenyl phenol zene-d5                                                                                                                      | 131*<br>108<br>96<br>nce, which was                           | AMPLE NO: H440                          | 1     |
| 2 \$VOA  | 2S GC/MS Vo<br>4-Bromof<br>Dibromof<br>Toluene-<br>*The sur<br>confirmed<br>GC/MS BN<br>2,4,6-Tr<br>2-Fluorol<br>2-Fluorol<br>Nitrobenz<br>Phenol-ds<br>p-Terpher                                           | olatiles Surrogates (8260) fluorobenzene fluoromethane -d8 rrogate was out of range due to matrix interfered d by re-analysis. HA Surrogates ribromophenol ubiphenyl uphenol uzene-d5 5 nyl-d14                                                                                                          | 131*<br>108<br>96<br>nce, which was<br>*<br>*                 | AMPLE NO: H440                          | 1     |
| 2 \$VOA  | 2S GC/MS Vo<br>4-Bromof<br>Dibromof<br>Toluene-<br>*The sur<br>confirmed<br>GC/MS BN<br>2,4,6-Tr<br>2-Fluorol<br>2-Fluorol<br>Nitrobenz<br>Phenol-ds<br>p-Terpher                                           | olatiles Surrogates (8260) fluorobenzene fluoromethane -d8 rrogate was out of range due to matrix interfered d by re-analysis. MA Surrogates ribromophenol bbiphenyl phenol zene-d5 5 nyl-d14 rogates were not recovered due to the dilution                                                             | 131*<br>108<br>96<br>nce, which was<br>*<br>*                 |                                         | 1     |
| 2 \$VOA; | 2S GC/MS Vo<br>4-Bromof<br>Dibromof<br>Toluene-<br>*The sur<br>confirmed<br>GC/MS BN<br>2,4,6-Tr<br>2-Fluorof<br>2-Fluorof<br>Nitrobenz<br>Phenol-ds<br>p-Terpher<br>*The surr                              | olatiles Surrogates (8260) fluorobenzene fluoromethane -d8 rrogate was out of range due to matrix interfered d by re-analysis. HA Surrogates ribromophenol bbiphenyl phenol zene-d5 5 nyl-d14 rogates were not recovered due to the dilution requirion.                                                  | 131* 108 96 nce, which was  * * * * uired by high analyte     |                                         | 3     |
| 2 \$VOA; | 2S GC/MS Vo<br>4-Bromof<br>Dibromof<br>Toluene-<br>*The sur<br>confirmed<br>GC/MS BN<br>2,4,6-Tr<br>2-Fluorol<br>2-Fluorol<br>Nitrobenz<br>Phenol-di<br>p-Terpher<br>*The surr<br>concentrat                | olatiles Surrogates (8260) fluorobenzene fluoromethane -d8 rrogate was out of range due to matrix interfered d by re-analysis. MA Surrogates ribromophenol obiphenyl phenol zene-d5 5 nyl-d14 rogates were not recovered due to the dilution requirion.                                                  | 131* 108 96 nce, which was  * * * * uired by high analyte     | AMPLE NO: H444                          | 3     |
| 2 \$VOA; | 2S GC/MS Vo<br>4-Bromof<br>Dibromof<br>Toluene-<br>*The sur<br>confirmed<br>GC/MS BN<br>2,4,6-Tr<br>2-Fluorol<br>2-Fluorol<br>Nitrobenz<br>Phenol-di<br>p-Terpher<br>*The surr<br>concentrat<br>HWPW-SB04-S | olatiles Surrogates (8260) fluorobenzene fluoromethane -d8 rrogate was out of range due to matrix interferent d by re-analysis.  A Surrogates bibromophenol biphenyl phenol zene-d5 5 nyl-d14 rogates were not recovered due to the dilution required.  831                                              | 131* 108 96 nce, which was  * * * * uired by high analyte     |                                         | 3     |
| 2 \$VOA; | 2S GC/MS Vo. 4-Bromof Dibromof Toluene- *The sur confirmed GC/MS BN. 2,4,6-Tr 2-Fluorol 2-Fluorol Nitroben: Phenol-di p-Terpher *The surr concentrat HWPW-SB04-S GC/MS Vol 4-Bromofle                       | olatiles Surrogates (8260) fluorobenzene fluoromethane -d8 rrogate was out of range due to matrix interferent d by re-analysis.  A Surrogates -ibromophenol dbiphenyl phenol zene-d5 5 nyl-d14 rogates were not recovered due to the dilution required tion.  631  atiles Surrogates (8260)              | 131* 108 96 nce, which was  * * * * * * uired by high analyte |                                         | 3     |
| 2 \$VOA; | 2S GC/MS Vo. 4-Bromof Dibromof Toluene- *The sur confirmed GC/MS BN. 2,4,6-Tr 2-Fluorol 2-Fluorol Nitroben: Phenol-di p-Terpher *The surr concentrat HWPW-SB04-S GC/MS Vol 4-Bromofle                       | olatiles Surrogates (8260) fluorobenzene fluoromethane -d8 rrogate was out of range due to matrix interfered by re-analysis. A Surrogates -ibromophenol biphenyl phenol zene-d5 5 nyl-d14 rogates were not recovered due to the dilution req tion.  631 atiles Surrogates (8260) uorobenzene uoromethane | 131* 108 96 nce, which was  * * * * uired by high analyte     |                                         | 3     |

April 11, 1997
Report No.: 00060410
Section C Page 7

### SURROGATE STANDARD RECOVERY

| TES        |                                          |                                                           | PERCENT   | ACCEPTANCE  |         |
|------------|------------------------------------------|-----------------------------------------------------------|-----------|-------------|---------|
| LN COD     |                                          | SURROGATE COMPOUND                                        | RECOVERY  |             | REF LN  |
| SAMPLE ID: | HWPW-SB04-S31                            |                                                           |           | SAMPLE NO:  | U//4/79 |
| 4 \$BNA    | CC/MC DNA Command                        |                                                           |           | SAMPLE NO:  | H446432 |
| T PDNA     | , July Gail Oguces                       |                                                           |           |             | 3       |
|            | 2,4,6-Tribromophenol<br>2-Fluorobiphenyl |                                                           | *         | -           | -       |
|            | 2-Fluorophenol                           | *                                                         | *         | -           |         |
|            | Nitrobenzene-d5                          |                                                           | *         | -           |         |
|            | Phenol-d5                                | ÷                                                         | *         |             |         |
|            | p-Terphenyl-d14                          |                                                           | *         | -           |         |
|            |                                          |                                                           | *         | -           |         |
|            | concentration.                           | not recovered due to the dilution required by high analy  | te        |             |         |
| AMPLE ID:  | HWPW-SB04-S39                            |                                                           |           |             |         |
|            |                                          |                                                           | ;         | SAMPLE NO:  | H446433 |
| 6 \$BNAS   | GC/MS BNA Surrogates                     |                                                           |           |             |         |
|            | 2,4,6-Tribromophenol                     |                                                           |           |             | 5       |
|            | 2-Fluorobiphenyl                         |                                                           | *         | •           |         |
|            | 2-Fluorophenol                           |                                                           |           | -           |         |
|            | Nitrobenzene-d5                          | • 9                                                       | -         | -           |         |
|            | Phenol-d5                                |                                                           |           | -           |         |
|            | p-Terphenyl-d14                          |                                                           | *         | -           |         |
|            | *The surrogates were concentration.      | not recovered due to the dilution required by high analyt | е "       | •           |         |
| AMPLE ID:  | HWPW-SB04-S51                            |                                                           |           | <u>-</u>    |         |
|            | # 0004 051                               |                                                           | S         | AMPLE NO: 1 | 1446434 |
| 2 \$VOA25  |                                          | gates (8260)                                              |           |             |         |
|            | 4-Bromofluorobenzene                     |                                                           | 111       |             | 1       |
|            | Dibromofluoromethane                     |                                                           | 111<br>97 |             |         |
|            | Toluene-d8                               |                                                           |           | -           |         |
| 4 \$BNAS   | GC/MS BNA Surrogates                     |                                                           | 103       | -           |         |
|            | 2,4,6-Tribromophenol                     | l v                                                       | *         |             | 3       |
|            | 2-Fluorobiphenyl                         |                                                           | *         | -           |         |
|            | 2-Fluorophenol                           |                                                           | .°<br>*   | -           |         |
|            | Nitrobenzene-d5                          |                                                           | -         | -           |         |
|            | Phenol-d5                                |                                                           | *         | -           |         |
|            | p-Terphenyl-d14                          |                                                           |           | •           |         |
|            | *The surrogates were n concentration.    | ot recovered due to the dilution required by high analyte |           | •           |         |
| 6 \$VOAZW  |                                          | ates (8260)                                               |           |             |         |
|            | 4-Bromofluorobenzene                     | (454)                                                     |           |             | 15      |
|            | Dibromofluoromethane                     |                                                           | 108       | -           |         |
|            | Toluene-d8                               |                                                           | 91        | -           | 1       |
|            |                                          |                                                           | 99        |             |         |

195

April 11, 1997 Report No.: 00060410 Section C Page 8

# SURROGATE STANDARD RECOVERY

| LN CODE    | SURROGATE COMPOUND                                                                                        | PERCENT  | ACCEPTAN          |           |
|------------|-----------------------------------------------------------------------------------------------------------|----------|-------------------|-----------|
|            |                                                                                                           | RECOVERY | LIMITS            | RE        |
| SAMPLE ID: | HWPW-SB04-S51                                                                                             |          |                   |           |
| 18 \$BNAW  | CC (MC DVI)                                                                                               |          | SAMPLE NO         | : H446434 |
| · DINAM    | GC/MS BNA Surrogates                                                                                      |          |                   |           |
|            | 2,4,6-Tribromophenol                                                                                      | .4.      |                   | •         |
|            | 2-Fluorobiphenyl<br>2-Fluorophenol                                                                        | *        | -                 |           |
|            | Nitrobenzene-d5                                                                                           | *        | -                 |           |
|            | Phenol-d5                                                                                                 |          | -                 |           |
|            |                                                                                                           | *        | -                 |           |
|            | p-Terphenyl-d14                                                                                           | *        | -                 |           |
|            | *The surrogates were not recovered due to the dilution required by high concentration of target analytes. | *        | -                 |           |
| MPLE ID:   | HWPW-SB04-S59                                                                                             |          | ness of their ser |           |
| 2 \$VOA2S  | GC/MS Volatiles Surrogates (8260)                                                                         | ,        | SAMPLE NO:        | H446435   |
|            | 4-Bromofluorobenzene                                                                                      |          |                   |           |
|            | Dibromofluoromethane                                                                                      | 10/      |                   | 1         |
|            | Toluene-d8                                                                                                | 104      | •                 |           |
| 4 \$BNAS   | GC/MS BNA Surrogates                                                                                      | 97       | -                 |           |
|            | 2,4,6-Tribromophenol                                                                                      | 97       | -                 |           |
|            | 2-Fluorobiphenyl                                                                                          |          |                   | 3         |
|            | 2-Fluorophenol                                                                                            | 41       | -                 |           |
|            | Nitrobenzene-d5                                                                                           | 64       |                   |           |
|            | Phenol-d5                                                                                                 | 55       | -                 |           |
|            | 10.00                                                                                                     | 62       | -                 |           |
|            | p-Terphenyl-d14                                                                                           | 44       | •                 |           |
| PLE ID: HW | PW-SB07-S2.5                                                                                              | 60       | -                 |           |
| 2 \$VOA2S  | 00.446                                                                                                    | SA       | MPLE NO:          | H446436   |
|            | GC/MS Volatiles Surrogates (8260)                                                                         |          |                   |           |
|            | 4-Bromofluorobenzene                                                                                      |          |                   | . 1       |
|            | Dibromofluoromethane                                                                                      | 110      | -                 |           |
|            | Toluene-d8                                                                                                | 96       | -                 |           |
|            | GC/MS BNA Surrogates                                                                                      | 105      | -                 |           |
|            | 2,4,6-Tribromophenol                                                                                      |          |                   | . 3       |
| -          | 2-Fluorobiphenyl                                                                                          | *        | -                 |           |
|            | -Fluorophenol                                                                                             | *        | -                 |           |
| N          | itrobenzene-d5                                                                                            | *        | -                 |           |
|            | henol-d5                                                                                                  | *        | -                 |           |
| p          | -Terphenyl-d14                                                                                            | *        | -                 |           |
| *          | The surrogates were not recovered due to the dilution required by high analyte concentration.             | *        |                   |           |

April 11, 1997 Report No.: 00060410 Section C Page 9

## SURROGATE STANDARD RECOVERY

| LN             | TEST  |                                                                                               | ERCENT  | ACCEPTANCE   |         |
|----------------|-------|-----------------------------------------------------------------------------------------------|---------|--------------|---------|
|                |       | R                                                                                             | ECOVERY | LIMITS       | REF LA  |
| AMPLE          | ID.   | HUDI ODOZ 040                                                                                 |         |              |         |
| PAMPLE         | 10:   | HWPW-SB07-S19                                                                                 |         | SAMPLE NO:   | H446437 |
| 2 \$           | VOA2s | GC/MS Volatiles Surrogates (8260)                                                             |         |              |         |
|                |       | 4-Bromofluorobenzene                                                                          |         |              | 1       |
|                |       | Dibromofluoromethane                                                                          | 114     |              |         |
|                |       | Toluene-d8                                                                                    | 105     | -            |         |
| 4 \$           | BNAS  | GC/MS BNA Surrogates                                                                          | 99      | -            |         |
|                |       | 2,4,6-Tribromophenol                                                                          |         |              | 3       |
|                |       | 2-Fluorobi phenyl                                                                             | *       | -            |         |
|                |       | 2-Fluorophenol                                                                                | *       | -            |         |
|                |       | Nitrobenzene-d5                                                                               | *       | -            |         |
|                |       | Phenol-d5                                                                                     | *       | -            |         |
|                |       | p-Terphenyl-d14                                                                               | *       |              |         |
|                |       | *The surrogates were not recovered due to the dilution required by high analyte               | *       | -            |         |
|                |       | concentration.                                                                                | •       |              |         |
| MPLE I         | D: H  | WPW-SB07-S21                                                                                  |         | CAMPLE NO.   |         |
| 2 \$V          | 2540  | GC/MS Volatiles Surrogates (8260)                                                             |         | SAMPLE NO:   | H446438 |
|                | 0/120 | 4-Bromofluorobenzene (8260)                                                                   |         |              | 1       |
|                |       | Dibromofluoromethane                                                                          | 108     | -            | 1       |
|                |       | Toluene-d8                                                                                    | 92      | -            |         |
| 4 \$B          | NAS   | GC/MS BNA Surrogates                                                                          | 105     | -            |         |
| , 45           | MAG   |                                                                                               |         |              | 3       |
|                |       | 2,4,6-Tribromophenol                                                                          | *       |              | 3       |
|                |       | 2-Fluorobiphenyl                                                                              | *       | _            |         |
|                |       | 2-Fluorophenol                                                                                | *       | _            |         |
|                |       | Nitrobenzene-d5                                                                               | *       |              |         |
|                |       | Phenol-d5                                                                                     | *       | _            |         |
|                |       | p-Terphenyl-d14                                                                               | *       | -            |         |
|                | c     | *The surrogates were not recovered due to the dilution required by high analyte oncentration. |         | -            |         |
| PLE ID         | : HW  | PW-SB07-S22                                                                                   |         |              |         |
| •              |       |                                                                                               | S       | AMPLE NO: HA | 446439  |
| 2 <b>\$</b> VO |       | GC/MS Volatiles Surrogates (8260)                                                             |         |              |         |
|                | ,     | -Bromofluorobenzene                                                                           |         |              | 1       |
|                | 1     | Dibromofluoromethane                                                                          | 111     | -            |         |
|                |       | oluene-d8                                                                                     | 96      | -            |         |
|                | AS (  | C/MS BNA Surrogates                                                                           | 102     | -            |         |
| \$BN/          |       | 4,4,6-Tribromophenol                                                                          |         |              | 3       |
| 4 \$BN/        | 2     | 7.70 11 151 diliphicitot                                                                      |         |              |         |
| 4 \$BN/        | ž     | -Fluorobiphenyl                                                                               | *       | -            |         |
| 4 \$BN/        | 2     | -Fluorobiphenyl<br>-Fluorophenol                                                              | *       | -            |         |
| 4 \$BN/        | 2     | -Fluorobiphenyl                                                                               | * *     |              |         |

# 197

# REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services. Inc.

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997 Report No.: 00060410 Section C Page 10

# SURROGATE STANDARD RECOVERY

| LN COL       | E SURROGATE COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PERCENT         | ACCEPTANC   | F       |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|---------|
|              | SURROGATE COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RECOVERY        | LIMITS      | RE      |
| SAMPLE ID:   | HWPW-SB07-S22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |             |         |
| 70.11 LL 1D. | UMLM_2PO1255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | SAMPLE NO:  | H444430 |
|              | p-Terphenyl-d14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             | 1140437 |
|              | *The surrogates were not recovered due to the dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *               | -           |         |
|              | concentration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | by nigh analyte |             |         |
| AMPLE ID:    | HWPW-SB07-S24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |             |         |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | SAMPLE NO:  | H446440 |
| 2 \$VOA2     | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |                 |             |         |
|              | 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |             | 1       |
|              | Dibromofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 107             | -           |         |
|              | Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 94              | •           |         |
| 4 \$BNAS     | of the burn out togates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 103             |             |         |
|              | 2,4,6-Tribromophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |             | 3       |
|              | 2-Fluorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *               | -           |         |
|              | 2-Fluorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *               | -           |         |
|              | Nitrobenzene-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *               | -           |         |
|              | Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *               | -           |         |
|              | p-Terphenyl-d14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *               | -           |         |
|              | *The surrogates were not recovered due to the dilution required b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *               |             |         |
|              | concentration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y high analyte  |             |         |
| MPLE ID:     | HWPW-SB08-S4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |             |         |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SA              | MPLE NO: H  | H446441 |
| 2 \$VOA25    | GC/MS Volatiles Surrogates (8260)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |             |         |
|              | 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |             | 1       |
|              | Dibromofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109             | -           |         |
|              | Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 98              | -           |         |
| 4 \$BNAS     | GC/MS BNA Surrogates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99              | -           |         |
|              | 2,4,6-Tribromophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |             | . 3     |
|              | 2-Fluorobi phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *               | -           |         |
|              | 2-Fluorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *               |             |         |
|              | Nitrobenzene-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *               | -           |         |
|              | Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *               | -           |         |
|              | p-Terphenyl-d14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *               | -           |         |
|              | *The surrogates were not recovered due to the dilution required by concentration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | high analyte    | -           |         |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an anatyte      |             |         |
| LE ID: H     | WPW-SB08-S14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAM             | DIE NO. III | ////5   |
| \$VOA2S      | GC/MS Volatiles Surrogates (8260)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAM             | PLE NO: H4  | 40442   |
|              | 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |             |         |
|              | Dibromofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 114             | _           | 1       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |         |
|              | Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112             |             |         |

# 198

April 11, 1997 Report No.: 00060410 Section C Page 11

### SURROGATE STANDARD RECOVERY

| SAMPLE ID: HWPW-SB08-S14  4 SBNAS GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 P-Terphenyl-d14 *The surrogates were not recovered due to the dilution required by high analyte concentration.  AMPLE ID: HWPW-SB08-S18  2 \$VOAZS GC/MS Volatiles Surrogates (8260) 4-Bromofluoromethane Dibromofluoromethane Toluene-d8 * Surrogate recovery was outside QC acceptance limits due to matrix effects which confirmed by re-analysis.  4 \$BNAS GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 Phenol-d5 Phenol-d5 Phenol-d5 Phenol-d5 Phenol-d5 Phenol-d5 Phenol-d5 P-Terphenyl-d14 *The surrogates were not recovered due to the dilution required by high analyte concentration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LN CODE    |                                                                                               | PERCENT  | ACCEPTANC  | E       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------|----------|------------|---------|
| SAMPLE NO: N446442   SAMPLE NO: N446442   SAMPLE NO: N446442   SAMPLE NO: N446442   SAMPLE NO: N446442   SAMPLE NO: N446442   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE    |            | SURROGATE COMPOUND                                                                            | RECOVERY |            | REF     |
| SAMPLE NO: N446442   SAMPLE NO: N446442   SAMPLE NO: N446442   SAMPLE NO: N446442   SAMPLE NO: N446442   SAMPLE NO: N446442   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446443   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE NO: N446444   SAMPLE    | SAMPLE ID: | HUPU-SR08-S14                                                                                 |          |            |         |
| 2,4,6-Tribromophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                                                               |          | SAMPLE NO: | H446442 |
| 2-Filurophiphenyl   2-Filurophiphenyl   2-Filurophiphenyl   2-Filurophiphenyl   2-Filurophiphenyl   2-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Filurophiphenyl   3-Fi   | 4 \$BNAS   |                                                                                               |          |            | 7       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                               | *        | _          | 3       |
| Nitrobenzene-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                               | *        | _          |         |
| Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                               | *        | _          |         |
| P-Terphenyl-d14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                               | *        | -          |         |
| #The surrogates were not recovered due to the dilution required by high analyte concentration.  #### AMPLE ID: HMPM-SB08-S18    SAMPLE No: H446443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                               | *        | -          |         |
| AMPLE ID: HMPH-SB08-S18 SAMPLE NO: H446443  2 \$V0A2S GC/MS Volatiles Surrogates (8260)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                                                                                               | *        | _          |         |
| SAMPLE NO: H446443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | *The surrogates were not recovered due to the dilution required by high analy concentration.  | te       |            |         |
| 2   \$VOA2S   \$C/MS Volatiles Surrogates (8260)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AMPLE ID:  | HWPW-SB08-S18                                                                                 |          |            |         |
| 4-Bromofluorobenzene Dibromofluoromethane Dibromofluoromethane Dibromofluoromethane Dibromofluoromethane Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Toluene-dB Tolue |            |                                                                                               |          | SAMPLE NO: | H446443 |
| 124*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 \$VOA29  | GC/MS Volatiles Surrogates (8260)                                                             |          |            | 1       |
| Dibromofluoromethane   76   107   - 1   104   107   - 1   104   107   - 1   104   107   - 1   104   107   - 1   104   107   - 1   104   107   - 1   104   107   - 1   107   - 1   107   - 1   107   - 1   107   - 1   107   - 1   107   - 1   107   - 1   107   - 1   107   - 1   107   - 1   107   - 1   107   - 1   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107      |            |                                                                                               | 124*     |            | ı       |
| Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Dibromofluoromethane                                                                          |          | _          |         |
| **Surrogate recovery was outside QC acceptance limits due to matrix effects which confirmed by re-analysis.  4 \$BNAS GC/MS BNA Surrogates 2,4,6-Tribromophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                               |          | _          |         |
| 2,4,6-Tribromophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | which confirmed by re-analysis.                                                               | 107      |            |         |
| 2-Fluorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 \$BNAS   |                                                                                               |          |            | 7       |
| 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 P-Terphenyl-d14 *The surrogates were not recovered due to the dilution required by high analyte concentration.  MPLE ID: HWPW-SB08-S22  \$AMPLE NO: H446444  2 \$VOA2S GC/MS Volatiles Surrogates (8260) 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8  GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                                                                               | *        | _          | 3       |
| Nitrobenzene-d5 Phenol-d5 Phenol-d5 P-Terphenyl-d14 *The surrogates were not recovered due to the dilution required by high analyte concentration.  MPLE ID: HWPW-SB08-S22  SAMPLE NO: H446444  2 \$VOA2S GC/MS Volatiles Surrogates (8260) 4-Bromofluorobenzene Dibromofluoromethane Dibromofluoromethane 118 - 106 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - |            |                                                                                               | *        | -          |         |
| Phenol-d5 p-Terphenyl-d14 *The surrogates were not recovered due to the dilution required by high analyte concentration.  MPLE ID: HWPW-SB08-S22  SAMPLE NO: H446444  2 \$VOA2S GC/MS Volatiles Surrogates (8260) 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 4 \$BNAS GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                               | *        | -          |         |
| p-Terphenyl-d14 *The surrogates were not recovered due to the dilution required by high analyte concentration.  MPLE ID: HWPW-SB08-S22  SAMPLE NO: H446444  2 \$VOA2S GC/MS Volatiles Surrogates (8260)  4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 4 \$BNAS GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                                                               | *        |            |         |
| *The surrogates were not recovered due to the dilution required by high analyte concentration.  MPLE ID: HWPW-SB08-S22  SAMPLE NO: H446444  2 \$VOA2S GC/MS Volatiles Surrogates (8260) 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 4 \$BNAS GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | Phenol-d5                                                                                     | *        |            |         |
| ### SENAS   GC/MS Volatiles Surrogates (8260)  4-Bromofluoromethane   118   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                               | *        | _          |         |
| 2 \$VOA2S GC/MS Volatiles Surrogates (8260) 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 4 \$BNAS GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | *The surrogates were not recovered due to the dilution required by high analyticoncentration. | е        |            |         |
| 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8  4 \$BNAS GC/MS BNA Surrogates  2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MPLE ID: 1 | WPW-SB08-S22                                                                                  | \$       | SAMPLE NO: | H446444 |
| 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8  4 \$BNAS GC/MS BNA Surrogates  2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 \$VOA2S  | GC/MS Volatiles Surrogates (8260)                                                             |          |            |         |
| Toluene-d8 106 - Toluene-d8 99 -  4 \$BNAS GC/MS BNA Surrogates 2,4,6-Tribromophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 4-Bromofluorobenzene                                                                          | 110      |            | 1       |
| SBNAS GC/MS BNA Surrogates  2,4,6-Tribromophenol  2-Fluorobiphenyl  2-Fluorophenol  Nitrobenzene-d5 Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                               |          | -          |         |
| 4 SBNAS GC/MS BNA Surrogates 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol * Nitrobenzene-d5 Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                               |          | -          |         |
| 2-Fluorobiphenot 2-Fluorophenot  2-Fluorophenot  Nitrobenzene-d5  Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 \$BNAS   |                                                                                               | 99       | -          | _       |
| 2-Fluorophenyl 2-Fluorophenol * Nitrobenzene-d5 Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                               | _        |            | 3       |
| Nitrobenzene-d5 Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 2-Fluorobiphenyl                                                                              | *        | -          |         |
| Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 2-Fluorophenol                                                                                | -        | -          |         |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Nitrobenzene-d5                                                                               | ×        | -          |         |
| p-Terphenyl-d14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Phenol-d5                                                                                     | *        | •          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | p-Terphenyl-d14                                                                               | #<br>_   | -          |         |

199

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997
Report No.: 00060410
Section C Page 12

# SURROGATE STANDARD RECOVERY

|        | TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /                                                                              |                     |                      |                                        |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------|----------------------|----------------------------------------|
| LN<br> | CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SURRUGATE COMPOUND                                                             | PERCENT<br>RECOVERY | ACCEPTANCE<br>LIMITS | REF LN                                 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *The surrogates were not recovered due to the dilution required by high analy  | /te                 |                      |                                        |
| SAMP   | LE ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HWPW-SB08-S21                                                                  |                     | SAMPLE NO:           | H446445                                |
| 2      | \$VOA2S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                     |                      |                                        |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-Bromofluorobenzene                                                           |                     |                      | 1                                      |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dibromofluoromethane                                                           | 112                 | •                    |                                        |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Toluene-d8                                                                     | 112                 | -                    |                                        |
| 4      | \$BNAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GC/MS BNA Surrogates                                                           | 102                 | -                    |                                        |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,4,6-Tribromophenol                                                           |                     |                      | 3                                      |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Fluorobiphenyl                                                               | *                   | -                    |                                        |
|        | and a contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract | 2-Fluorophenol                                                                 | *                   |                      |                                        |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nitrobenzene-d5                                                                | *                   | -                    |                                        |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phenol-d5                                                                      | *                   | -                    |                                        |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p-Terphenyl-d14                                                                | *                   | -                    |                                        |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *The surrogates were not recovered due to the dilution required by high analyt | *<br>e              | •                    | ************************************** |

April 11, 1997
Report No.: 00060410
Section D Page 1

# LABORATORY CONTROL SAMPLE RECOVERY

| TES      |                                          |                   |                      |
|----------|------------------------------------------|-------------------|----------------------|
| COD      | E DETERMINATION                          | LCS %<br>RECOVERY | ACCEPTANCE<br>LIMITS |
| ATCH NO: | 72194                                    |                   |                      |
|          |                                          |                   | SAMPLE NO: H38339    |
| OVIC     | S2 8260A TCL Volatiles in Soil           |                   |                      |
|          | 1,1-Dichloroethene                       | 0/                |                      |
|          | Benzene                                  | 94                | -                    |
|          | Chlorobenzene                            | 98                | -                    |
|          | Toluene                                  | 96                | -                    |
|          | Trichloroethene                          | 98                | -                    |
| TOU NO   | 7007                                     | 84                | •                    |
| TCH NO:  | 72256                                    |                   |                      |
| OVERS    | 2 . 00/0.                                |                   | SAMPLE NO: H383484   |
| OVICS    | 2 8260A TCL Volatiles in Soil            |                   |                      |
|          | 1,1-Dichloroethene                       | 94                |                      |
|          | Benzene                                  | 94<br>99          | -                    |
|          | Chlorobenzene                            | 99                | -                    |
|          | Toluene                                  | 100               | -                    |
|          | Trichloroethene                          | 79                | -                    |
| בסון אס  | 70700                                    | 79                | -                    |
| TCH NO:  | 72308                                    |                   |                      |
| OVERDE   | 00/01                                    |                   | SAMPLE NO: H383562   |
| OVICSZ   | 8260A TCL Volatiles in Soil              |                   |                      |
|          | 1,1-Dichloroethene                       | 05                |                      |
|          | Benzene                                  | 95<br>107         | -                    |
|          | Chlorobenzene                            |                   | -                    |
|          | Toluene                                  | 110               | <u>-</u>             |
|          | Trichloroethene                          | 114               | -                    |
| au       |                                          | 89                |                      |
| CH NO:   | 72382                                    |                   |                      |
|          |                                          |                   | SAMPLE NO: H383667   |
| 16858    | Petroleum Hydrocarbons                   | 94.8              |                      |
| יים או   | 75./ P.A                                 | 74.0              | •                    |
| CH NO: 7 | 2450                                     |                   |                      |
| OCVICO   | 201                                      |                   | SAMPLE NO: H383781   |
| 034162   | TCL - Semi-volatile Extractables in Soil |                   |                      |
|          | 1,2,4-Trichlorobenzene                   | 59                |                      |
|          | 1,4-Dichlorobenzene                      | 48                |                      |
|          | 2,4-Dinitrotoluene                       |                   | -                    |
|          | 2-Chlorophenol                           | 80<br>55          | •                    |
|          | 4-Nitrophenol                            |                   | •                    |
|          | Acenaphthene                             | 80<br>67          |                      |
|          | Pentachlorophenol                        |                   | •                    |
|          | Phenoi                                   | 70                | •                    |
|          | Pyrene<br>n-Nitrosodi-n-propylamine      | 47:               |                      |
|          |                                          |                   |                      |

201

April 11, 1997 Report No.: 00060410 Section D Page 2

# LABORATORY CONTROL SAMPLE RECOVERY

|             |                                            | WINCE SAMPLE RECOVERY |                       |                                       |
|-------------|--------------------------------------------|-----------------------|-----------------------|---------------------------------------|
|             | AT                                         |                       |                       |                                       |
| TE.         |                                            | LCS %                 | 400000                |                                       |
|             | DE DETERMINATION                           | RECOVERY              | ACCEPTANCE LIMITS     |                                       |
|             |                                            |                       |                       |                                       |
|             | p-Chloro-m-cresol                          |                       |                       |                                       |
| BATCH NO:   | 72/40                                      | 55                    | •                     |                                       |
| DATER NO.   | 72400                                      |                       | SAMPLE NO: H383812    |                                       |
| 1685        | S Petroleum Hydrocarbons                   |                       | 07411 EE NO. 11303012 |                                       |
|             |                                            | 88.1                  | -                     |                                       |
| BATCH NO:   | 72470                                      |                       |                       |                                       |
| OVTC        | S2 8260A TCL Volatiles in Soil             |                       | SAMPLE NO: H383816    |                                       |
|             | 1,1-Dichloroethene                         |                       |                       |                                       |
|             | Benzene                                    | 86                    |                       |                                       |
|             | Chlorobenzene                              | 90                    | •                     |                                       |
|             | Toluene                                    | . 81                  |                       |                                       |
|             | Trichloroethene                            | 91                    | •                     |                                       |
| BATCH NO:   | 72471                                      |                       | -                     | · · · · · · · · · · · · · · · · · · · |
|             |                                            |                       | SAMPLE NO: H383818    |                                       |
| OVTCS       | 2 8260A TCL Volatiles in Soil              |                       |                       |                                       |
|             | 1,2-Dichloroethane                         | 89                    |                       |                                       |
|             | Benzene<br>Chlorobenzene                   | 92                    | •                     |                                       |
|             | Toluene                                    | 85                    |                       |                                       |
|             | Trichloroethene                            | 95                    |                       |                                       |
|             |                                            | 95                    | •                     |                                       |
| BATCH NO:   | 72492                                      |                       |                       |                                       |
| OSVTCS      | S TCL - Semi-volatile Extractables in Soil |                       | SAMPLE NO: H383850    |                                       |
|             | 1,2,4-Trichlorobenzene                     |                       |                       |                                       |
|             | 1,4-Dichlorobenzene                        | 78                    |                       |                                       |
|             | 2,4-Dinitrotoluene                         | 74                    | •                     |                                       |
|             | 2-Chlorophenol                             | 84<br>65 . L          | •                     |                                       |
|             | 4-Nitrophenol<br>Acenaphthene              | 100                   | •                     |                                       |
|             | Pentachlorophenol                          | 77                    | •                     |                                       |
|             | Phenol                                     | 85                    | •                     |                                       |
|             | Pyrene                                     | 60 .2                 | •                     |                                       |
|             | n-Nitrosodi-n-propylamine                  | 95                    | × •                   |                                       |
|             | p-Chloro-m-cresol                          | 82<br>65 .]           | •                     |                                       |
| BATCH NO: 7 | 72496                                      | 05.                   | •                     |                                       |
|             |                                            |                       | SAMPLE NO: H383854    |                                       |
| OSVTCW      | TCL - Semi-volatile Extractables in Water  |                       | 1130304               |                                       |
|             | 1,2,4-Trichlorobenzene                     |                       |                       |                                       |
|             | 1,4-Dichlorobenzene                        | 76<br>72              | •                     | (                                     |
|             |                                            | 12                    | -                     | Since                                 |

April 11, 1997
Report No.: 00060410
Section D Page 3

## LABORATORY CONTROL SAMPLE RECOVERY

| TEST       | BETTER                                   | LCS %    | ACCEPTANCE         |
|------------|------------------------------------------|----------|--------------------|
|            | DETERMINATION                            | RECOVERY | LIMITS             |
|            | 2,4-Dinitrotoluene                       |          |                    |
|            | 2-Chlorophenol                           | 89       | -                  |
|            | 4-Nitrophenol                            | 70       | -                  |
|            | Acenaphthene                             | 70       | •                  |
|            | Pentachlorophenol                        | 79       | -                  |
|            | Phenol                                   | 80       | -                  |
|            | Pyrene                                   | 65 ~     |                    |
|            | n-Nitrosodi-n-propylamine                | 85       | -                  |
|            | p-Chloro-m-cresol                        | 76       | -                  |
|            |                                          | 75       | •                  |
| ATCH NO:   | 72523                                    |          | SAMPLE NO: H383899 |
| OVTCS2     | 8260A TCL Volatiles in Soil              |          |                    |
|            | 1,1-Dichloroethene                       | 85       |                    |
|            | Benzene                                  | 90       | •                  |
|            | Chlorobenzene                            | 87       | , <u>-</u>         |
|            | Toluene                                  | 96       | -                  |
|            | Trichloroethene                          | 96       |                    |
| TCH NO: 7  | 72591                                    |          |                    |
|            |                                          |          | SAMPLE NO: H384011 |
| OSVTCS     | TCL - Semi-volatile Extractables in Soil |          |                    |
|            | 1,2,4-Trichlorobenzene                   | 83       | a                  |
|            | 1,4-Dichlorobenzene                      | 81       | _                  |
|            | 2,4-Dinitrotoluene                       | 110      | -                  |
|            | 2-Chlorophenol                           | 75       | -                  |
|            | 4-Nitrophenol                            | 130      | -                  |
|            | Acenaphthene                             | 86       |                    |
|            | N-Nitrosodi-n-propylamine                | 160      | <u> </u>           |
|            | Pentachlorophenol                        | 85       |                    |
|            | Phenol                                   | 60       | -                  |
|            | Pyrene                                   | 90       | -                  |
|            | p-Chloro-m-cresol                        | 80       | •                  |
| TCH NO: 72 | 2602                                     |          |                    |
|            | <u> </u>                                 |          | SAMPLE NO: H384025 |
| OVTCW2     | 8260A TCL Volatiles in Water             |          |                    |
|            | 1,1-Dichloroethene                       | 85       | _                  |
|            | Benzene                                  | 90       | -                  |
|            | Chlorobenzene                            | 87       | -                  |
|            | Toluene                                  | 96       | -                  |
|            | Trichloroethene                          | 96       | -                  |

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 713-488-1810 Fax: 713-488-4661

April 11, 1997
Report No.: 00060410
Section D Page 4

### LABORATORY CONTROL SAMPLE RECOVERY

| TEST<br>CODE | DETERMINATION                                                                                 | LCS %<br>RECOVERY           | ACCEPTANCE<br>LIMITS |
|--------------|-----------------------------------------------------------------------------------------------|-----------------------------|----------------------|
| BATCH NO: 7  | 2735                                                                                          |                             | SAMPLE NO: H384202   |
| OVTCW2       | 8260A TCL Volatiles in Water 1,1-Dichloroethene Benzene Chlorobenzene Toluene Trichloroethene | 102<br>94<br>92<br>99<br>95 | -<br>-<br>-<br>-     |

April 11, 1997
Report No.: 00060410
Section E Page 1

### METHOD BLANK DATA

| CODE       | DETERMINATION                            |            |                |         |
|------------|------------------------------------------|------------|----------------|---------|
|            | DETERMINATION                            | RESUL      | T UNIT         |         |
| BATCH NO:  | 72194                                    |            |                |         |
|            |                                          |            | SAMPLE NO:     | H383391 |
| OVTCS      |                                          |            |                |         |
|            | 1,2-Dichloroethane                       | < 5        | ug/kg          |         |
|            | Benzene                                  | < 5        | -3,3           |         |
|            | Chlorobenzene                            | < 5        | -3,3           |         |
|            | Ethylbenzene                             | < 5        | -3/ 13         |         |
|            | Methylene chloride                       | < 5        | -3, 113        |         |
|            | Toluene                                  | < 5        | -3, r3         |         |
|            | Xylenes (total)                          | < 5        | -3, 113        |         |
| BATCH NO:  | 72256                                    |            | SAMPLE NO:     | H383485 |
| OVTCS2     | 8260A TCL Volatiles in Soil              |            |                |         |
|            | 1,2-Dichloroethane                       | _          |                |         |
|            | Benzene                                  | < 5        | -3,            |         |
|            | Chlorobenzene                            | < 5        | -3,            |         |
|            | Ethylbenzene                             | < 5        | -37 113        |         |
|            | Methylene chloride                       | < 5        | -37 113        |         |
|            | Toluene                                  | < 5        | -3,            |         |
|            | Xylenes (total)                          | < 5<br>< 5 | ug/kg<br>ug/kg |         |
| ATCH NO: 7 | 72308                                    |            |                |         |
|            |                                          |            | SAMPLE NO:     | н383563 |
| OVTCS2     | 8260A TCL Volatiles in Soil              |            |                |         |
|            | 1,2-Dichloroethane                       | < 5        | ug/kg          |         |
|            | Benzene                                  | . < 5      | ug/kg<br>ug/kg |         |
|            | Chlorobenzene                            | < 5        | ug/kg          |         |
|            | Ethylbenzene                             | < 5        |                |         |
|            | Methylene chloride                       | < 5        | ug/kg<br>ug/kg |         |
|            | Toluene                                  | < 5        |                |         |
|            | Xylenes (total)                          | < 5        | ug/kg<br>ug/kg |         |
| ATCH NO: 7 | 2382                                     | \$         | SAMPLE NO:     | H383668 |
| 16858      | Petroleum Hydrocarbons                   | < 20       | mg/kg          |         |
| TCH NO: 7  | 2450                                     |            |                |         |
|            |                                          |            | SAMPLE NO: I   | H383782 |
| OSVTCS     | TCL - Semi-volatile Extractables in Soil |            |                |         |
|            | 1,2-Diphenylhydrazine                    | < 330      | ug/kg          |         |
|            | 2,4-Dimethylphenol 2,4-Dinitrotoluene    | < 330      | ug/kg          |         |
|            | 2 A-Dinitrotoluene                       | < 330      | ug/kg          |         |
|            | 2,6-Dinitrotoluene                       | < 330      | ug/kg          |         |

205

April 11, 1997
Report No.: 00060410
Section E Page 2

### METHOD BLANK DATA

| TEST     | DETERMINATION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY |                |                |         |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|---------|--|
|          | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RESULT         | UNIT           | -       |  |
|          | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                |         |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 330          | ug/kg          |         |  |
|          | 2-Methylnaphthalene<br>4,6-Dinitro-o-cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 330          |                |         |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 1,600        |                |         |  |
|          | 4-Nitrophenol<br>Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1,600        |                |         |  |
|          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 330          |                |         |  |
|          | Acenaphthylene<br>Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 330          |                |         |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 330          |                |         |  |
|          | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 330          |                |         |  |
|          | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 330          |                |         |  |
|          | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 330          | -3,            |         |  |
|          | Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 330          | ug/kg          |         |  |
|          | Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 330          | ug/kg          |         |  |
|          | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 330          | ug/kg          |         |  |
|          | Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 330          | ug/kg          |         |  |
|          | N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 330          | ug/kg<br>ug/kg |         |  |
|          | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 330          | ug/kg          |         |  |
|          | Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 330          | ug/kg<br>ug/kg |         |  |
|          | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 1,600        |                |         |  |
|          | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 330          | ug/kg          |         |  |
|          | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 330          | ug/kg          |         |  |
|          | Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | ug/kg          |         |  |
|          | bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 330          | ug/kg          |         |  |
|          | bis(2-Ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 330<br>< 330 | ug/kg          |         |  |
| H NO: 72 | 2468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | ug/kg          | (       |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | SAMPLE NO:     | H383813 |  |
| 16858    | Petroleum Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 20           |                |         |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 20           | mg/kg          |         |  |
| H NO: 72 | 470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | SAMPLE NO:     | H383817 |  |
|          | 8260A TCL Volatiles in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |         |  |
|          | 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 5            | ug/kg          |         |  |
| 10       | 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 5            |                |         |  |
|          | 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 5            | ug/kg          |         |  |
|          | 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | ug/kg          |         |  |
|          | 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 5<br>< 5     | ug/kg          |         |  |
|          | 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 5            | ug/kg          |         |  |
|          | 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 5            | ug/kg          |         |  |
|          | 2-Butanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | ug/kg          |         |  |
|          | 2-Chloroethoxyethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 10           | ug/kg          |         |  |
|          | 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 10           | ug/kg          |         |  |
| 4        | -Methyl-2-pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 10           | ug/kg          |         |  |
|          | Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 10           | ug/kg          |         |  |
| ,        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 10           | ug/kg          |         |  |

206

April 11, 1997
Report No.: 00060410
Section E Page 3

### METHOD BLANK DATA

| TEST      |                                          |        |                   |
|-----------|------------------------------------------|--------|-------------------|
|           | DETERMINATION                            | RESULT | UNIT              |
|           |                                          |        |                   |
|           | Bromodichloromethane                     | < 5    | ug/kg             |
|           | Bromoform                                | < 5    | ug/kg             |
|           | Bromomethane                             | < 10   | ug/kg             |
|           | Carbon disulfide                         | < 5    | ug/kg             |
|           | Carbon tetrachloride                     | < 5    | ug/kg             |
|           | Chlorobenzene                            | < 5    | ug/kg             |
|           | Chloroethane                             | < 10   | ug/kg             |
|           | Chloroform                               | < 5    | ug/kg             |
|           | Chloromethane                            | < 10   | ug/kg             |
|           | Dibromochloromethane                     | < 5    | ug/kg             |
|           | Dichloromethane                          | < 5    | ug/kg             |
|           | Ethylbenzene                             | < 5    | ug/kg             |
|           | Methylene chloride                       | < 5    | ug/kg<br>ug/kg    |
|           | Styrene                                  | < 5    | ug/kg             |
|           | Tetrachloroethene                        | < 5    |                   |
|           | Toluene                                  | < 5    | ug/kg             |
|           | Trichloroethene                          | < 5    | ug/kg             |
|           | Vinyl acetate                            | < 10   | ug/kg             |
|           | Vinyl chloride                           | < 10   | ug/kg             |
|           | Xylenes (total)                          | < 5    | ug/kg             |
|           | cis-1,2-Dichloroethene                   | < 5    | ug/kg             |
|           | cis-1,3-Dichloropropene                  | < 5    | ug/kg             |
|           | trans-1,2-Dichloroethene                 |        | ug/kg             |
|           | trans-1,3-Dichloropropene                | < 5    | ug/kg             |
|           |                                          | < 5    | ug/kg             |
| TCH NO: 7 | 2471                                     |        |                   |
|           |                                          | S      | AMPLE NO: H383819 |
| OVTCS2    | 8260A TCL Volatiles in Soil              |        |                   |
|           | 1,2-Dichloroethane                       | *      |                   |
|           | Benzene                                  | < 5    | ug/kg             |
|           | Chlorobenzene                            | < 5    | ug/kg             |
|           | Ethylbenzene                             | < 5    | ug/kg             |
|           | Methylene chloride                       | < 5    | ug/kg             |
|           | Toluene                                  | < 5    | ug/kg             |
|           | Xylenes (total)                          | < 5    | ug/kg             |
|           |                                          | < 5    | ug/kg             |
| TCH NO: 7 | 2492                                     | SA     | MPLE NO: H383851  |
| OSVTCS    | TCL - Semi-volatile Extractables in Soil |        |                   |
|           | 1,2-Diphenylhydrazine                    |        |                   |
|           | 2,4-Dimethylphenol                       | < 330  | ug/kg             |
|           | 2,4-Dinitrotoluene                       | < 330  | ug/kg             |
|           | 2,6-Dinitrotoluene                       | < 330  | ug/kg             |
|           | 2-Chloronaphthalene                      | < 330  | ug/kg             |
|           | Straight eller elle                      | < 330  | ug/kg             |

207

# REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

April 11, 1997
Report No.: 00060410
Section E Page 4

### METHOD BLANK DATA

| CODE      | DETERMINATION                                                                                                                                                | RESULT                                                       | UNIT                                                 |         |      |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|---------|------|
|           |                                                                                                                                                              |                                                              |                                                      |         |      |
|           | 2-Methylnaphthalene                                                                                                                                          | < 330                                                        | ua/ka                                                |         |      |
|           | 4,6-Dinitro-o-cresol                                                                                                                                         | < 1,600                                                      | ug/kg                                                |         |      |
|           | 4-Nitrophenol                                                                                                                                                | < 1,600                                                      | ug/kg<br>ug/kg                                       |         |      |
|           | Acenaphthene                                                                                                                                                 | < 330                                                        | ug/kg<br>ug/kg                                       |         |      |
|           | Acenaphthylene                                                                                                                                               | < 330                                                        | ug/kg                                                |         |      |
|           | Anthracene                                                                                                                                                   | < 330                                                        | ug/kg                                                |         |      |
|           | Benzo(a)anthracene                                                                                                                                           | < 330                                                        |                                                      |         |      |
|           | Benzo(a)pyrene                                                                                                                                               | < 330                                                        | ug/kg                                                |         |      |
|           | Chrysene                                                                                                                                                     | < 330                                                        | ug/kg                                                |         |      |
| •         | Di-n-butyl phthalate                                                                                                                                         | < 330                                                        | ug/kg                                                |         |      |
|           | Dibenzofuran                                                                                                                                                 | < 330                                                        | ug/kg                                                |         |      |
|           | Fluoranthene                                                                                                                                                 | < 330                                                        | ug/kg                                                |         |      |
|           | Fluorene                                                                                                                                                     | < 330                                                        | ug/kg                                                |         |      |
|           | N-Nitrosodiphenylamine                                                                                                                                       | < 330                                                        | ug/kg                                                |         |      |
|           | Naphthalene                                                                                                                                                  | < 330                                                        | ug/kg                                                |         |      |
|           | Nitrobenzene                                                                                                                                                 | < 330                                                        | ug/kg                                                |         |      |
|           | Pentachlorophenol                                                                                                                                            |                                                              | ug/kg                                                |         | ** . |
|           | Phenanthrene                                                                                                                                                 | < 1,600<br>< 330                                             | ug/kg                                                |         |      |
|           | Phenol                                                                                                                                                       | < 330                                                        | ug/kg                                                |         |      |
|           | Pyrene                                                                                                                                                       | < 330                                                        | ug/kg                                                |         |      |
|           | bis(2-Chloroethoxy)methane                                                                                                                                   |                                                              | ug/kg                                                |         |      |
|           | bis(2-Ethylhexyl)phthalate                                                                                                                                   | < 330<br>< 330                                               | ug/kg<br>ug/kg                                       |         |      |
| TCH NO: 7 | 72496                                                                                                                                                        |                                                              |                                                      |         |      |
|           |                                                                                                                                                              | S                                                            | SAMPLE NO:                                           | H383855 |      |
| OSVTCW    | TCL - Semi-volatile Extractables in Water                                                                                                                    |                                                              |                                                      |         |      |
|           | 1,2-Diphenylhydrazine                                                                                                                                        | < 10                                                         |                                                      |         |      |
|           | 2,4-Dimethylphenol                                                                                                                                           | < 10                                                         | ug/L                                                 |         |      |
|           | 2,4-Dinitrotoluene                                                                                                                                           | < 10                                                         | ug/L                                                 |         |      |
|           | 2,6-Dinitrotoluene                                                                                                                                           |                                                              | ug/L                                                 |         |      |
|           |                                                                                                                                                              |                                                              | ug/L                                                 |         |      |
|           | 2-Chloronaphthalene                                                                                                                                          | < 10                                                         | _                                                    |         |      |
|           | 2-Chloronaphthalene<br>2-Methylnaphthalene                                                                                                                   | < 10                                                         | ug/L                                                 |         |      |
|           | 2-Methylnaphthalene<br>4,6-Dinitro-o-cresol                                                                                                                  | < 10<br>< 10                                                 | ug/L<br>ug/L                                         |         |      |
|           | 2-Methylnaphthalene                                                                                                                                          | < 10<br>< 10<br>< 50                                         | ug/L<br>ug/L<br>ug/L                                 |         |      |
|           | 2-Methylnaphthalene<br>4,6-Dinitro-o-cresol                                                                                                                  | < 10<br>< 10<br>< 50<br>< 50                                 | ug/L<br>ug/L<br>ug/L<br>ug/L                         |         |      |
|           | 2-Methylnaphthalene<br>4,6-Dinitro-o-cresol<br>4-Nitrophenol                                                                                                 | < 10<br>< 10<br>< 50<br>< 50<br>< 10                         | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                 |         |      |
|           | 2-Methylnaphthalene<br>4,6-Dinitro-o-cresol<br>4-Nitrophenol<br>Acenaphthene                                                                                 | < 10<br>< 10<br>< 50<br>< 50<br>< 10<br>< 10                 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         |         |      |
|           | 2-Methylnaphthalene 4,6-Dinitro-o-cresol 4-Nitrophenol Acenaphthene Acenaphthylene                                                                           | < 10<br>< 10<br>< 50<br>< 50<br>< 10<br>< 10                 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         |         |      |
|           | 2-Methylnaphthalene 4,6-Dinitro-o-cresol 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene                                                                | < 10<br>< 10<br>< 50<br>< 50<br>< 10<br>< 10<br>< 10<br>< 10 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L |         |      |
|           | 2-Methylnaphthalene 4,6-Dinitro-o-cresol 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Chrysene                     | < 10 < 10 < 50 < 50 < 10 < 10 < 10 < 10 < 10 < 10            | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L              |         |      |
|           | 2-Methylnaphthalene 4,6-Dinitro-o-cresol 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene                              | < 10 < 10 < 50 < 50 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1   | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L              |         |      |
|           | 2-Methylnaphthalene 4,6-Dinitro-o-cresol 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Chrysene                     | < 10 < 10 < 50 < 50 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1   | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L              |         |      |
|           | 2-Methylnaphthalene 4,6-Dinitro-o-cresol 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Chrysene Di-n-butylphthalate | < 10 < 10 < 50 < 50 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1   | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L              |         |      |

April 11, 1997
Report No.: 00060410
Section E Page 5

### METHOD BLANK DATA

| • • • • • • • • • • • • • • • • • • • • |                                          |         |                  |
|-----------------------------------------|------------------------------------------|---------|------------------|
| TEST                                    |                                          |         |                  |
| CODE                                    | DETERMINATION                            | RESULT  | UNIT             |
|                                         |                                          |         |                  |
|                                         | N-Nitrosodiphenylamine                   | < 10    | ug/L             |
|                                         | Naphthalene                              | < 10    | ug/L             |
|                                         | Nitrobenzene                             | < 10    | ug/L             |
|                                         | Pentachlorophenol                        | < 50    | ug/L             |
|                                         | Phenanthrene                             | < 10    | ug/L             |
|                                         | Phenol                                   | < 10    | ug/L             |
|                                         | Pyrene                                   | < 10    | ug/L             |
|                                         | bis(2-Chloroethoxy)methane               | < 10    | ug/L             |
|                                         | bis(2-Ethylhexyl)phthalate               | < 10    | ug/L             |
| TCH NO:                                 | 72523                                    |         |                  |
| OVTCS2                                  | 93404 TOL Malacilla                      | 3)      | MPLE NO: H383900 |
| 041632                                  | The second of the cont                   | ·       |                  |
|                                         | 1,2-Dichloroethane                       | < 5     | ug/kg            |
|                                         | Benzene                                  | < 5     | ug/kg            |
|                                         | Chlorobenzene                            | < 5     | ug/kg            |
|                                         | Ethylbenzene                             | < 5     | ug/kg            |
|                                         | Methylene chloride                       | < 5     | ug/kg            |
|                                         | Toluene                                  | < 5     | ug/kg            |
|                                         | Xylenes (total)                          | < 5     | ug/kg            |
| TCH NO: 7                               | 72591                                    |         |                  |
|                                         |                                          | SA      | MPLE NO: H384012 |
| OSVICS                                  | TCL - Semi-volatile Extractables in Soil |         |                  |
|                                         | 1,2,4-Trichlorobenzene                   | < 330   | ug/kg            |
|                                         | 1,2-Dichlorobenzene                      | < 330   | ug/kg            |
|                                         | 1,2-Diphenylhydrazine                    | < 330   | ug/kg            |
|                                         | 1,3-Dichlorobenzene                      | < 330   | ug/kg            |
|                                         | 1,4-Dichlorobenzene                      | < 330   | ug/kg            |
|                                         | 2,4,5-Trichlorophenol                    | < 330   | ug/kg            |
|                                         | 2,4,6-Trichlorophenol                    | < 330   |                  |
|                                         | 2,4-Dichlorophenol                       | < 330   | ug/kg            |
|                                         | 2,4-Dimethylphenol                       | < 330   | ug/kg            |
|                                         | 2,4-Dinitrophenol                        |         | ug/kg            |
|                                         | 2,4-Dinitrotoluene                       | < 1,600 | ug/kg            |
|                                         | 2,6-Dinitrotoluene                       | < 330   | ug/kg            |
|                                         | 2-Chloronaphthalene                      | < 330   | ug/kg            |
|                                         | 2-Chlorophenol                           | < 330   | ug/kg            |
|                                         | 2-Methylnaphthalene                      | < 330   | ug/kg            |
|                                         | 2-Methylphenol                           | < 330   | ug/kg            |
|                                         | 2-Nitroaniline                           | < 330   | ug/kg            |
|                                         | 2-Nitrophenol                            | < 1,600 | ug/kg            |
|                                         | 3,3'-Dichlorobenzidine                   | < 330   | ug/kg            |
|                                         | 3-Nitroaniline                           | < 660   | ug/kg            |
|                                         | s 1862 2 <b>2.11 1110</b>                | < 1,600 | ug/kg            |

209

# REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

April 11, 1997
Report No.: 00060410
Section E Page 6

### METHOD BLANK DATA

| <br> |                            |        |         |                |     |
|------|----------------------------|--------|---------|----------------|-----|
| TEST |                            |        |         |                |     |
| CODE | DETERMIN                   | NATION | RESULT  | UNIT           |     |
| <br> |                            |        |         | •••••          |     |
|      |                            |        |         |                |     |
|      | 4,6-Dinitro-o-cresol       |        | < 1,600 | ug/kg          |     |
|      | 4-Bromophenylphenylether   |        | < 330   | ug/kg          |     |
|      | 4-Chloro-3-methylphenol    |        | < 330   | ug/kg          |     |
|      | 4-Chloroaniline            |        | < 330   | ug/kg          |     |
|      | 4-Chlorophenylphenylether  |        | < 330   | ug/kg          |     |
|      | 4-Methylphenol             |        | < 330   | ug/kg          |     |
|      | 4-Nitroaniline             |        | < 1,600 | ug/kg          |     |
|      | 4-Nitrophenol              |        | < 1,600 | ug/kg          |     |
|      | Acenaphthene               |        | < 330   | ug/kg          |     |
|      | Acenaphthylene             |        | < 330   | ug/kg          |     |
|      | Anthracene                 |        | < 330   | ug/kg          |     |
|      | Benzo(a)anthracene         |        | < 330   | ug/kg          |     |
|      | Benzo(a)pyrene             |        | < 330   | ug/kg          |     |
|      | Benzo(b)fluoranthene       |        | < 330   | ug/kg          |     |
|      | Benzo(g,h,i)perylene       |        | < 330   | ug/kg          |     |
|      | Benzo(k)fluoranthene       |        | < 330   | ug/kg          |     |
|      | Benzoic acid               |        | < 1,600 | ug/kg          | * 1 |
|      | Benzyl alcohol             |        | < 330   | ug/kg          |     |
|      | Butylbenzylphthalate       |        | < 330   | ug/kg          |     |
|      | Chrysene                   |        | < 330   | ug/kg          |     |
|      | Di-n-butyl phthalate       |        | < 330   | ug/kg          |     |
|      | Di-n-butylphthalate        |        | < 330   | ug/kg          |     |
|      | Di-n-octylphthalate        |        | < 330   | ug/kg<br>ug/kg |     |
|      | Dibenzo(a,h)anthracene     |        | < 330   | ug/kg<br>ug/kg |     |
|      | Dibenzofuran               |        | < 330   | ug/kg          |     |
|      | Diethylphthalate           |        | < 330   |                |     |
|      | Dimethylphthalate          |        | < 330   | ug/kg          |     |
|      | Fluoranthene               |        | < 330   | ug/kg          |     |
|      | Fluorene                   |        | < 330   | ug/kg<br>ug/kg |     |
|      | Hexachlorobenzene          |        | < 330   | ug/kg          |     |
|      | Hexachlorobutadiene        |        | < 330   |                |     |
|      | Hexachlorocyclopentadiene  |        | < 330   | ug/kg          |     |
|      | Hexachloroethane           |        | < 330   | ug/kg          |     |
|      | Indeno(1,2,3-cd)pyrene     |        | < 330   | ug/kg          |     |
|      | Isophorone                 |        | < 330   | ug/kg          |     |
|      | N-Nitrosodi-n-propylamine  |        | < 330   | ug/kg          |     |
|      | N-Nitrosodiphenylamine     |        | < 330   | ug/kg          |     |
| 9    | Naphthalene                |        | < 330   | ug/kg          |     |
|      | Nitrobenzene               |        | < 330   | ug/kg          |     |
|      | Pentachlorophenol          |        | < 1,600 | ug/kg          |     |
|      | Phenanthrene               |        | < 330   | ug/kg          |     |
| 1    | Phenol                     |        | < 330   | ug/kg          |     |
|      | Pyrene                     |        | < 330   | ug/kg          |     |
| ı    | ois(2-Chloroethoxy)methane |        | < 330   | ug/kg          | 7 w |
|      |                            |        | · 330   | ug/kg          | ( ) |

# 210

# REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

April 11, 1997
Report No.: 00060410
Section E Page 7

## METHOD BLANK DATA

| TEST             |                    |        |            |         |
|------------------|--------------------|--------|------------|---------|
| CODE             | DETERMINATION      | RESULT | UNIT       |         |
|                  |                    | RESULT | UNII       |         |
|                  |                    |        |            |         |
|                  | roethyl)ether      | < 330  | ug/kg      |         |
|                  | roisopropyl)ether  | < 330  | ug/kg      |         |
| bis(2-Eth)       | lhexyl)phthalate   | < 330  | ug/kg      |         |
| ATCH NO: 72602   | *                  |        |            |         |
|                  |                    |        | SAMPLE NO: | H384026 |
| OVTCW2 8260A TCL | Volatiles in Water | · *    |            |         |
|                  | roethylene         | < 5    | ug/L       |         |
| 1,2-Dichlo       | roethane           | < 5    | ug/L       |         |
| Benzene          |                    | < 5    | ug/L       |         |
| Carbon Tet       | rachloride         | < 5    | ug/L       |         |
| Chlorobenz       |                    | < 5    | ug/L       |         |
| Chloroform       |                    | < 5    | ug/L       |         |
| Ethylbenze       |                    | < 5    | ug/L       |         |
| Methylene        | chloride           | < 5    | ug/L       |         |
| Toluene          |                    | < 5    | ug/L       |         |
| Xylenes (t       | otal)              | < 5    | ug/L       |         |
| TCH NO: 72735    |                    |        |            |         |
|                  |                    | S      | AMPLE NO:  | H384203 |
|                  | olatiles in Water  |        |            |         |
| 1,2-Dichlor      | oethane            | < 5    | ug/L       |         |
| Benzene          |                    | < 5    | ug/L       |         |
| Chlorobenze      | ne                 | < 5    | ug/L       |         |
| Ethylbenzer      |                    | < 5    | ug/L       |         |
| Methylene o      | hloride            | < 5    | ug/L       |         |
| Toluene          |                    | < 5    | ug/L       |         |
| Xylenes (to      | tal)               | < 5    | ug/L       |         |

April 11, 1997 Report No.: 00060410 Section H Page 1

# MATRIX SPIKE AND MATRIX SPIKE DUPLICATE DATA

| TEST<br>CODE | DETERMINATION                                                          | MS<br>RESULT | MSD<br>RESULT | UNITS |       | MS PCT        | MSD P |
|--------------|------------------------------------------------------------------------|--------------|---------------|-------|-------|---------------|-------|
|              |                                                                        |              | KL30L1        | UNIIS | RPD   | RCVRY         | RCVR  |
| BATCH NO:    | 71777                                                                  |              |               |       |       |               |       |
|              |                                                                        |              |               |       | SA    | MPLE NO: H444 | 676   |
| OVTCWD       | Volatiles by 8260 - Subtitle D                                         |              |               |       |       |               |       |
|              | 1,1-Dichloroethene                                                     | 36.1         | ,,,           |       |       |               |       |
|              | Benzene                                                                | 39.7         | 41.6          | ug/L  | 14.3  | 90            | 104   |
|              | Chlorobenzene                                                          | 39.5         | 44.1          | ug/L  | 10.4  | 99            | 110   |
|              | Toluene                                                                | 38.8         | 40.6          | ug/L  | 2.95  | 99            | 102   |
|              | Trichloroethene                                                        |              | 40.9          | ug/L  | 5.27  | 97            | 102   |
|              | ,                                                                      | 34.5         | 35.1          | ug/L  | 1.72  | 86            | 88    |
| ATCH NO:     | 71777                                                                  |              |               |       |       |               |       |
| OVTCWD       | Volatiles by 8260 - Subtitle D                                         |              |               |       | SAF   | APLE NO: H444 | 681   |
| CVIGND       | 1,1-Dichloroethene                                                     | /0.0         |               |       |       |               |       |
|              | Benzene                                                                | 40.8         | 37.1          | ug/L  | 9.50  | 102           | 93    |
|              | Chlorobenzene                                                          | 44.8         | 39.8          | ug/L  | 11.8  | 112           | 100   |
|              | Toluene                                                                | 44.8         | 40.7          | ug/L  | 9.60  | 112           | 100   |
|              | Trichloroethene                                                        | 43.7         | 40.9          | ug/L  | 6.60  | 109           | 1.    |
|              | Trentor de thene                                                       | 39.8         | 35.1          | ug/L  | 12.5  | 100           | 88    |
| ATCH NO: 7   | 2257                                                                   |              |               |       |       |               |       |
|              |                                                                        |              |               |       | SAM   | PLE NO: H4462 | 26    |
| OVTCS2       | 8260A TCL Volatiles in Soil                                            |              |               |       |       |               |       |
|              | 1,1-Dichloroethene                                                     | 35.7         | 37.5          | ug/kg | F 00  | .22           |       |
|              | Benzene                                                                | 38.4         | 39.2          | _     | 5.00  | 89            | 94    |
|              | Chlorobenzene                                                          | 36.6         | 37.6          | ug/kg | 2.09  | 96            | 98    |
|              | Toluene                                                                | 38.6         | 39.0          | ug/kg | 2.48  | 92            | 94    |
|              | Trichloroethene                                                        | 37.0         | 39.4          | ug/kg | 1.06  | 96            | 97    |
|              |                                                                        | 57.0         | 39.4          | ug/kg | 6.18  | 92            | 98    |
| TCH NO: 7    | 2257                                                                   |              |               |       | SAMP  | LE NO: H44623 | 22    |
| OVTCS2       | 8260A TCL Volatiles in Soil                                            |              |               |       |       | 1144021       | ,,,   |
|              | 1,1-Dichloroethene                                                     | 70 F         |               |       |       |               |       |
|              | Benzene                                                                | 39.5         | 38.2          | ug/kg | 3.32  | 99            | 96    |
|              | Chlorobenzene                                                          | 40.0         | 39.6          | ug/kg | 1.03  | 100           | 99    |
|              | Toluene                                                                | 38.3         | 39.1          | ug/kg | 2.17  | 96            | 98    |
|              | Trichloroethene                                                        | 38.5         | 40.8          | ug/kg | 5.77  | 96            | 102   |
|              | The first of detriene                                                  | 38.8         | 34.7          | ug/kg | 11.2  | 97            | 87    |
| TCH NO: 72   | 382                                                                    |              |               |       |       |               |       |
| 1685s        | Datastassa                                                             |              |               |       | SAMPI | E NO: H44642  | 0     |
|              | Petroleum Hydrocarbons The concentration of the analyte pratrix spike. | 640          | 570           | mg/kg | 11.6  | •             |       |
| •            | ine concentration of the analyte or                                    | coverted     |               |       | 11.0  | -             | *     |

April 11, 1997 Report No.: 00060410 Section H Page 2

## MATRIX SPIKE AND MATRIX SPIKE DUPLICATE DATA

| CODE            | DETERMINATION                                | MS<br>RESULT      | MSD<br>RESULT | UNITS          | RPD        | MS PCT<br>RCVRY | MSD PCT<br>RCVRY |
|-----------------|----------------------------------------------|-------------------|---------------|----------------|------------|-----------------|------------------|
|                 |                                              |                   |               |                |            |                 | RCVKI            |
| BATCH NO: 72449 |                                              |                   |               |                | SAM        | IPLE NO: H446   | 5230             |
| OSVTCS TCL      | - Semi-volatile Extractables                 | in Soil           |               |                |            |                 |                  |
|                 | ,4-Trichlorobenzene                          | 56                | 54            | um dem         | 7 /        |                 |                  |
|                 | -Dichlorobenzene                             | 59                | 60            | ug/kg<br>ug/kg | 3.6        | 56              | 54               |
|                 | -Dinitrotoluene                              | 53                | 56            | ug/kg<br>ug/kg | 1.7<br>5.6 | 59              | 54               |
| 2-ci            | nlorophenol                                  | 100               | 110           | ug/kg<br>ug/kg | 9.5        | 53              | 54               |
| 4-N             | itrophenol                                   | 82                | 68            | ug/kg<br>ug/kg | 19         | 50              | 54               |
| Acer            | naphthene                                    | 56                | 53            | ug/kg          | 5.6        | 41              | 54               |
| N-Ni            | itrosodi-n-propylamine                       | 55                | 59            | ug/kg          | 7.0        | 56              | 54               |
|                 | achlorophenol                                | 100               | 130           | ug/kg<br>ug/kg | 7.0<br>26  | 55<br>50        | 54               |
| Pher            | nol                                          | 110               | 110           | ug/kg<br>ug/kg | 0          | 50              | 54               |
| Pyre            | ene                                          | 56                | 59            | ug/kg<br>ug/kg | 5.2        | 55              | 55               |
| p-Ch            | loro-m-cresol                                | 120               | 110           | ug/kg          | 9.1        | 56<br>60        | 54<br>54         |
| DATOU NO. 70/50 |                                              |                   |               | -6, 4,6        | 7          | 50              | 54               |
| BATCH NO: 72450 |                                              |                   |               |                | SAM        | PLE NO: H4464   | ¥24              |
| OSVICS ICI      | - Semi-volatile Extractables                 | i 0-11            |               |                |            |                 |                  |
|                 | 4-Trichlorobenzene                           |                   |               |                |            |                 |                  |
|                 | Dichlorobenzene                              | 2,600             | 2,300         | ug/kg          | 12.2       | 79              | 70               |
|                 | Dinitrotoluene                               | 2,600             | 2,600         | ug/kg          | 0          | 79              | 79               |
|                 | lorophenol                                   | 2,300             | 2,300         | ug/kg          | 0          | 70              | 70               |
|                 | trophenol                                    | 4,000             | 4,300         | ug/kg          | 7.22       | 61              | 65               |
|                 | aphthene                                     | 990               | 990           | ug/kg          | 0          | 15              | 15               |
|                 | trosodi-n-propylamine                        | 4,300             | 3,600         | ug/kg          | 17.7       | 130             | 109              |
|                 | achlorophenol                                | 1,600             | 1,600         | ug/kg          | 0          | 48              | 48               |
| Pheno           | na raka katawana nga katamana na ma          | 2,000             | 1,600         | ug/kg          | 22.2*      | 30              | 24               |
| Pyrei           |                                              | 4,600             | 4,000         | ug/kg          | 14.0       | 70              | 61               |
|                 | loro-m-cresol                                | 4,000             | 3,600         | ug/kg          | 10.5       | 121             | 109              |
|                 | outside of QC acceptance limi                | 5,000<br>ts.      | 4,600         | ug/kg          | 8.33       | 76              | 70               |
|                 |                                              |                   |               |                |            |                 |                  |
| BATCH NO: 72468 |                                              |                   |               |                | SAMP       | LE NO: H4464    | 36               |
|                 | oleum Hydrocarbons                           | 5,000             | 6,000         | mg/kg          | 18         | *               | *                |
| * The           | concentration of the analyte spike recovery. | prevented accurat | e determinati | ion of the     |            | and the second  |                  |
|                 | aprice recovery.                             |                   |               |                |            |                 |                  |
| BATCH NO: 72468 |                                              |                   |               |                | SAMPL      | E NO: H44662    | 24               |
| I685S Petro     | leum Hydrocarbons                            | 410               | 450           | mg/kg          | 9.3        | 04.2            | 104.0            |
|                 |                                              |                   | *             |                | 7.3        | 96.2            | 106.8            |
|                 |                                              |                   |               |                |            |                 |                  |

April 11, 1997
Report No.: 00060410
Section H Page 3

# MATRIX SPIKE AND MATRIX SPIKE DUPLICATE DATA

| OVTCS2 8260A TCL Volatiles in Soil 1,1-Dichloroethene 39.9 37.6 ug/kg 6.07 100 Benzene 40.6 37.0 ug/kg 9.40 102 Chlorobenzene 38.7 34.9 ug/kg 10.24 97 Toluene 42.3 38.6 ug/kg 9.12 106 Trichloroethene 42.3 38.7 ug/kg 8.81 106  BATCH NO: 72482  SAMPLE NO: HA  OVTCWD Volatiles by 8260 - Subtitle D 1,1-Dichloroethene 37.6 37.8 ug/L 0.42 94 Benzene 39.2 38.9 ug/L 0.69 98 Chlorobenzene 39.5 39.7 ug/L 0.30 99 Toluene 38.1 38.4 ug/L 0.84 95 Toluene 38.1 38.4 ug/L 0.84 95 Trichloroethene 32.1 33.4 ug/L 3.91 80  |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| SAMPLE NO: HAS PET   RESULT   UNITS   RPD   RCVRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| OVTCS2 8260A TCL Volatiles in Soil  1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| OVTCS2 8260A TCL Volatiles in Soil  1,1-Dichloroethene 39.9 37.6 ug/kg 6.07 100  Benzene 40.6 37.0 ug/kg 9.40 102  Chlorobenzene 38.7 34.9 ug/kg 10.24 97  Toluene 42.3 38.6 ug/kg 9.12 106  Trichloroethene 42.3 38.7 ug/kg 8.81 106  ATCH NO: 72482  SAMPLE NO: H4  OVTCWD Volatiles by 8260 - Subtitle D  1,1-Dichloroethene 37.6 37.8 ug/L 0.42 94  Benzene 39.2 38.9 ug/L 0.69 98  Chlorobenzene 39.5 39.7 ug/L 0.30 99  Toluene 38.1 38.4 ug/L 0.84 95  Toluene 32.1 33.4 ug/L 3.91 80  ATCH NO: 72591  SAMPLE NO: H4 |           |
| 1,1-Dichloroethene 39.9 37.6 ug/kg 6.07 100 Benzene 40.6 37.0 ug/kg 9.40 102 Chlorobenzene 38.7 34.9 ug/kg 10.24 97 Toluene 42.3 38.6 ug/kg 9.12 106 Trichloroethene 42.3 38.7 ug/kg 8.81 106  ATCH NO: 72482  SAMPLE NO: H4  OVTCWD Volatiles by 8260 - Subtitle D 1,1-Dichloroethene 37.6 37.8 ug/L 0.42 94 Benzene 39.2 38.9 ug/L 0.69 98 Chlorobenzene 39.5 39.7 ug/L 0.30 99 Toluene 38.1 38.4 ug/L 0.84 95 Toluene 38.1 38.4 ug/L 0.84 95 Trichloroethene 32.1 33.4 ug/L 3.91 80  ATCH NO: 72591                      | 446435    |
| Benzene 40.6 37.0 ug/kg 9.40 102 Chlorobenzene 38.7 34.9 ug/kg 10.24 97 Toluene 42.3 38.6 ug/kg 9.12 106 Trichloroethene 42.3 38.7 ug/kg 8.81 106  ATCH NO: 72482  SAMPLE NO: H4  OVTCWD Volatiles by 8260 - Subtitle D 1,1-Dichloroethene 37.6 37.8 ug/L 0.42 94 Benzene 39.2 38.9 ug/L 0.69 98 Chlorobenzene 39.5 39.7 ug/L 0.30 99 Toluene 38.1 38.4 ug/L 0.84 95 Toluene 38.1 38.4 ug/L 0.84 95 Trichloroethene 32.1 33.4 ug/L 3.91 80  ATCH NO: 72591                                                                  |           |
| Benzene 40.6 37.0 ug/kg 9.40 102 Chlorobenzene 38.7 34.9 ug/kg 10.24 97 Toluene 42.3 38.6 ug/kg 9.12 106 Trichloroethene 42.3 38.7 ug/kg 8.81 106  ATCH NO: 72482  SAMPLE NO: H4  OVTCWD Volatiles by 8260 - Subtitle D 1,1-Dichloroethene 37.6 37.8 ug/L 0.42 94 Benzene 39.2 38.9 ug/L 0.69 98 Chlorobenzene 39.5 39.7 ug/L 0.30 99 Toluene 38.1 38.4 ug/L 0.84 95 Trichloroethene 32.1 33.4 ug/L 3.91 80  ATCH NO: 72591                                                                                                 |           |
| Chlorobenzene 38.7 34.9 ug/kg 10.24 97 Toluene 42.3 38.6 ug/kg 9.12 106 Trichloroethene 42.3 38.7 ug/kg 8.81 106  ATCH NO: 72482  SAMPLE NO: H4  OVTCWD Volatiles by 8260 - Subtitle D 1,1-Dichloroethene 37.6 37.8 ug/L 0.42 94 Benzene 39.2 38.9 ug/L 0.69 98 Chlorobenzene 39.5 39.7 ug/L 0.30 99 Toluene 38.1 38.4 ug/L 0.84 95 Trichloroethene 32.1 33.4 ug/L 3.91 80  ATCH NO: 72591                                                                                                                                  | 94        |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 92        |
| Trichloroethene 42.3 38.7 ug/kg 8.81 106  ATCH NO: 72482  OVTCWD Volatiles by 8260 - Subtitle D  1,1-Dichloroethene 37.6 37.8 ug/L 0.42 94  Benzene 39.2 38.9 ug/L 0.69 98  Chlorobenzene 39.5 39.7 ug/L 0.30 99  Toluene 38.1 38.4 ug/L 0.84 95  Trichloroethene 32.1 33.4 ug/L 3.91 80  ATCH NO: 72591  SAMPLE NO: H4                                                                                                                                                                                                     | 87        |
| ATCH NO: 72482  OVTCWD Volatiles by 8260 - Subtitle D  1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96        |
| OVTCWD Volatiles by 8260 - Subtitle D 1,1-Dichloroethene 37.6 37.8 ug/L 0.42 94 Benzene 39.2 38.9 ug/L 0.69 98 Chlorobenzene 39.5 39.7 ug/L 0.30 99 Toluene 38.1 38.4 ug/L 0.84 95 Trichloroethene 32.1 33.4 ug/L 3.91 80  TCH NO: 72591  SAMPLE NO: H4                                                                                                                                                                                                                                                                     | 97        |
| 1,1-Dichloroethene 37.6 37.8 ug/L 0.42 94 Benzene 39.2 38.9 ug/L 0.69 98 Chlorobenzene 39.5 39.7 ug/L 0.30 99 Toluene 38.1 38.4 ug/L 0.84 95 Trichloroethene 32.1 33.4 ug/L 3.91 80  ATCH NO: 72591  SAMPLE NO: H4                                                                                                                                                                                                                                                                                                          | 445321    |
| 1,1-Dichloroethene 37.6 37.8 ug/L 0.42 94  Benzene 39.2 38.9 ug/L 0.69 98  Chlorobenzene 39.5 39.7 ug/L 0.30 99  Toluene 38.1 38.4 ug/L 0.84 95  Trichloroethene 32.1 33.4 ug/L 3.91 80  TCH NO: 72591                                                                                                                                                                                                                                                                                                                      |           |
| Benzene 39.2 38.9 ug/L 0.69 98 Chlorobenzene 39.5 39.7 ug/L 0.30 99 Toluene 38.1 38.4 ug/L 0.84 95 Trichloroethene 32.1 33.4 ug/L 3.91 80  TCH NO: 72591  SAMPLE NO: H4                                                                                                                                                                                                                                                                                                                                                     |           |
| Chlorobenzene 39.5 39.7 ug/L 0.30 99 Toluene 38.1 38.4 ug/L 0.84 95 Trichloroethene 32.1 33.4 ug/L 3.91 80  TCH NO: 72591  SAMPLE NO: H4                                                                                                                                                                                                                                                                                                                                                                                    | 94        |
| Toluene 38.1 38.4 ug/L 0.84 95 Trichloroethene 32.1 33.4 ug/L 3.91 80  TCH NO: 72591  SAMPLE NO: H4                                                                                                                                                                                                                                                                                                                                                                                                                         | 97        |
| Trichloroethene 32.1 33.4 ug/L 3.91 80  TCH NO: 72591  SAMPLE NO: H4                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99        |
| SAMPLE NO: H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| USVICS ICL - Semi-volatile Extractables in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46363     |
| 4.7.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 1,2,4-Trichlorobenzene 690 790 ug/kg 13.5 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120       |
| 7,4-bichtorobenzene 590 790 ug/kg 20.0 en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120       |
| 2,4-01n1trotoluene 820 1.100 ug/kg 20.2 13/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83        |
| 2-Chlorophenol 1,200 1,600 ug/kg 28.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121       |
| 4-Nitrophenol 1,100 1,600 ug/kg 37.0 eg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121       |
| Acenaphthene 820 1 000 15/65 10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83        |
| N-Nitrosodi-n-propylamine 890 1 200 ug/kg 24 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83        |
| rentachtorophenol 160 165 ug/kg 3.00 13%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| Phenot 1,100 1,400 ug/kg 25 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13*       |
| Pyrene 380 580 UG/kg /1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 106       |
| p-chloro-m-cresol 1.300 1.600 um/km 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 89<br>121 |
| * The recovery of the target was outside of QC acceptance limits.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 121       |
| CH NO: 72727 SAMPLE NO: H44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7241      |
| OSVSKW Skinner List Semi-volatiles in Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| 1,2,4-Trichlorobenzene 68 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 1,4-Dichlorobenzene 42 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93        |
| 2.4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 82        |
| 2-Chlorophenol 140 470 ug/L 28* 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 130       |
| 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85        |
| Acenaphthene 80 ug/L 5 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40        |
| Pentachlorophenol 400 110 ug/L 24* 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110       |
| Pentachlorophenol 180 280 ug/L 43* 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 140       |

214

# REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

April 11, 1997
Report No.: 00060410
Section H Page 4

### MATRIX SPIKE AND MATRIX SPIKE DUPLICATE DATA

| TEST<br>CODE | DETERMINATION                                                                                 | MS<br>RESULT           | MSD<br>RESULT            | UNITS                        | RPD                    | MS PCT<br>RCVRY      | MSD PCT<br>RCVRY        |
|--------------|-----------------------------------------------------------------------------------------------|------------------------|--------------------------|------------------------------|------------------------|----------------------|-------------------------|
|              |                                                                                               |                        |                          |                              |                        |                      |                         |
|              | Phenol Pyrene n-Nitrosodi-n-propylamine p-Chloro-m-cresol RPD is outside of AC acceptance lim | 110<br>92<br>79<br>160 | 120<br>130<br>110<br>210 | ug/L<br>ug/L<br>ug/L<br>ug/L | 9<br>34*<br>33*<br>27* | 55<br>92<br>79<br>80 | 60<br>130<br>110<br>105 |

# Pace, Analytical

| CHAIN-OF-CUSTODY RECORD Analytical Request  Pace Client No.  Pace Project Manager E. Smness  Pace Project No. | ACCEPTED BY / AFFILIATION DATE TIME  **ACCEPTED BY / AFFILIATION DATE TIME  **BOLTON BY / AFFILIATION DATE TIME  **BOLTON BY / AFFILIATION DATE TIME  **BOLTON BY / AFFILIATION BY / ACCEPTED BY / AFFILIATION BY / ACCEPTED BY / AFFILIATION BY / ACCEPTED BY / AFFILIATION BY / ACCEPTED BY / AFFILIATION BY / ACCEPTED BY / AFFILIATION BY / ACCEPTED BY / AFFILIATION BY / ACCEPTED BY / AFFILIATION BY / ACCEPTED BY / AFFILIATION BY / ACCEPTED BY / AFFILIATION BY / ACCEPTED BY / AFFILIATION BY / ACCEPTED BY / AFFILIATION BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / AFFILIATION BY / ACCEPTED BY / AFFILIATION BY / ACCEPTED BY / AFFILIATION BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACCEPTED BY / ACC |  |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Report To: Curt Jucs Bill To: Curt Jacs P.O. #/Billing Reference Project Name / No.                           | AMALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE ANALYSE |  |
| 230                                                                                                           | PACE NO. OF CONTRINERS  PACE NO. OF CONTRINERS  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER  NUMBER |  |
| ranckt<br>101 collage<br>whad Park<br>(913) 696                                                               | Sampler Signature O Date Sampled  The Law 3/4 ly 3/4 ly 3/4 ly 3/4 ly 3/4 ly 3/4 ly 3/4 ly 3/4 ly 3/4 ly 3/4 ly 3/4 ly 3/4 ly 3/4 ly 3/4 ly 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/4 ly 2/5 soil 3/ |  |

SEE REVERSE SIDE FOR INSTRIICTIONS

OPIGINAI

# Pace Analytical

| }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHAIN-<br>Analyti                    | CHAIN-OF-CUSTODY RECORD<br>Analytical Request |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------|
| CHANCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Report To:                           | ent No.                                       |
| ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DIVE SUITE 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bill To:                             | Pace Project Manager E. Sommer                |
| 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P.O. # / Billing Reference           |                                               |
| Sampled By (PRINT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Name / No.                   | *Requested Due Date: Newsof TR if             |
| Roger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PRESERVATIVES ANALYSES / / A REQUEST |                                               |
| Sampler Signature Date Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CONTA                                |                                               |
| ITEM SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TIME MATRIX PACENO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10PRE<br>1004<br>1004<br>1004        |                                               |
| 1 HWPW-5863-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | $\leq$                                        |
| 2 HWPW-5803-519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | arlone Odor                                   |
| 3 HWPW-5B03-824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0835 Soil 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                                               |
| 4 HWPW-SB03-534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 4eh   1 105   91 Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                                               |
| \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                               |
| - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yen I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                                               |
| the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t | er-c                                 |                                               |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                               |
| COOLER NOS. BAILERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SHIPMENT METHOD OUT/DATE RETURNED/DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ITEM RELINQUISHED BY / AFFILIATION   | ATION DATE TIME                               |
| Additional Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | elet St. Callynn                     | -5-501 79-5-                                  |
| 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D. Chunkerl                          | & 36pm 11:4                                   |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                               |

SEE REVERSE SIDE FOR INSTRUCTIONS

OPIGINAI

# Pace Analytical

| CHAIN-OF-CUSTODY RECORD Analytical Request | Sill To: Curt Sing   Pace Client No.   Pace Project Manager E. Sommers   Pace Project Nanager E. Sommers   Pace Project Nanager E. Sommers   Project Name / No.   HUPW 44102069   Pace Project No.   Project Name / No.   HUPW 44102069   Pace Project No.   Project Name / No.   HUPW 44102069   Pace Project No.   Project Name / No.   HUPW 44102069   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Project No.   Pace Pr | ES AN CONTROL OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T | ST 2                                                        | 7        | HETURINED DATE TIME  TIME  ACCEPTED BY / AFFILIATION DATE TIME  3697 / OSS  PE(97 11/15)  THE TIME |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------|
|                                            | college Blod. e 230, Overland Park (413) 646-1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lawb  Date Sampled  3/5/47  MPLE DESCRIPTION  TIME MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 Hupu - SBO4-Sa.5 1235 sil (<br>2 Hupu - SBO4-基3391320 / C | 1425 V C | OUTDATE COLUMN (S)                                                                                 |

SEE REVERSE SIDE FOR INSTRUCTIONS

ORIGINAL

| Terronext                    | PROJECT NAME<br>Houston |                     | SITELOCATII<br>4910 Liberty<br>Lood       | CHAIN         | CHAIN OF CUSTODY RECORD | Y RECORI       |       | # 500                |
|------------------------------|-------------------------|---------------------|-------------------------------------------|---------------|-------------------------|----------------|-------|----------------------|
|                              |                         |                     | X - 2                                     | S             |                         | S              | 1 - 0 | SHIP TO:             |
| 303/914-1700                 | 00 WORKS                | PROJECT # * *       | CT# * * * * * * * * * * * * * * * * * * * | 00/51         | ////                    | 31/            | 7V3   | 0000                 |
| SAMPLERS NAME & SIGNATURE    |                         | CONTA               | CONTACT & PHONE                           | CHINA         |                         |                |       | ACE.                 |
| SAMPLE#                      | DATE TIME P.            | AB SAMPLE           | LE #OF                                    |               |                         | PLSNO<br>PSZYY |       | LAB. CONTACT & PHONE |
|                              | 00                      | 19                  |                                           | 0/0/          |                         | YES NO YES     | 1     | *REMARKS:            |
| HWPW.5807.52.5               | 16/97 (B:20)            | 5807                | 2                                         | X             | 436                     | X              | X     | STRONK DONG          |
| HW/W-5807.519                | 0h:89                   |                     |                                           | X             | 437                     |                |       | 704                  |
| HWPW.5B07.521                | 34:80                   |                     |                                           | X             | 438                     |                |       |                      |
| HWPW-5507.522                | 08:20                   |                     |                                           | X             | 439                     |                |       |                      |
| MWPW-5807-524                | 08:00                   | <del>}</del>        | >                                         |               | 946                     |                |       |                      |
| HWPW-51808-54                | 09:25                   | SB08                | 2                                         |               | 124                     |                |       |                      |
| HWPW-5608-514                | 04:40                   |                     | 5                                         |               | ehh                     |                |       |                      |
| HW/W . SBOB . SIB            | 54:45                   |                     | N                                         | X             | Chh                     |                | 30    | Soci - ( 1/2) STORY  |
| HWPW . 5608 . SEE 522 .      | 06:30                   |                     | ħ                                         | X             | hhh                     |                |       |                      |
| HW/W-5808.                   | ₩ 09:57 ₩               | <b>→</b>            | 7                                         | X             | Shh                     | *              | >     | >                    |
| 2                            |                         |                     |                                           |               |                         |                |       |                      |
| (C)                          |                         |                     |                                           |               |                         |                |       |                      |
|                              |                         |                     |                                           |               |                         |                |       |                      |
| RELINOUISHED BY (Signature)  | DATE & TIME REC         | RECEIVED BY         | RELEASED BY                               | DATE & TIME R | RECEIVED BY             | *REMARKS:      | IKS:  |                      |
| REL INQUISHED BY (Signature) | DATER TIME REC          | песемер в у         | RELEASED BY                               | DATE & TIME B | EXECUTE BY              |                |       |                      |
| RELINQUISHED BY (Signature)  | DATE & TIME REC         | RECEIVED AT LAB. BY | METHOD OF SHIPMENT                        | ┥.            |                         | 2              |       |                      |
| 40107                        |                         |                     |                                           |               |                         |                |       |                      |

Pace Analytica

Tel: 281-488-1810 Fax: 281-488-4661

April 24, 1997 Report No.: 00060793 Section A Page 1

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-A1-SSO

SAMPLE NO: H449055

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44758

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 08-APR-97 1615

DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          | DILUTION |         |       |
|----|--------|------------------------------------------|----------|---------|-------|
| LN | CODE   | DETERMINATION                            | FACTOR   | RESULT  | UNITS |
|    |        |                                          |          |         |       |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |          |         |       |
|    |        | 1,2-Diphenylhydrazine                    |          |         |       |
|    |        | 2,4-Dimethylphenol                       | 8        | < 2660  | ug/kg |
|    |        | 2,4-Dinitrotoluene                       | 8        | < 2660  | ug/kg |
|    |        | 2,6-Dinitrotoluene                       | 8        | < 2660  | ug/kg |
|    |        | 2-Chloronaphthalene                      | 8        | < 2660  | ug/kg |
|    |        | 2-Methylnaphthalene                      | 8        | < 2660  | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                     | 8        | < 2660  | ug/kg |
|    |        | 4-Nitrophenol                            | 8        | < 12800 | ug/kg |
|    |        | Acenaphthene                             | 8        | < 12800 | ug/kg |
|    |        | Acenaphthylene                           | 8        | < 2660  | ug/kg |
|    |        | Anthracene                               | 8        | < 2660  | ug/kg |
|    |        | Benzo(a)anthracene                       | 8        | < 2660  | ug/kg |
|    |        | Benzo(a)pyrene                           | 8        | < 2660  | ug/kg |
|    |        | Chrysene                                 | 8        | < 2660  | ug/kg |
|    |        | Di-n-butyl phthalate                     | 8        | < 2660  | ug/kg |
|    |        | Dibenzofuran                             | 8        | < 2660  | ug/kg |
|    |        | Fluoranthene                             | 8        | < 2660  | ug/kg |
|    |        | Fluorene                                 | . 8      | < 2660  | ug/kg |
|    |        | N-Nitrosodiphenylamine                   | 8        |         | ug/kg |
|    |        | Naphthalene                              | 8        |         | ug/kg |
|    |        | Nitrobenzene                             | 8        |         | ug/kg |
|    |        | Pentachlorophenol                        | 8        |         | ug/kg |
|    |        | Phenanthrene                             | 8        |         | ug/kg |
|    | I      | Phenol                                   | . 8      | < 2660  | ug/kg |
|    | 1      | Pyrene                                   | 8        |         | ug/kg |
|    | I      | pis(2-Chloroethoxy)methane               | 8        |         | ug/kg |
|    | i      | pis(2-Ethylhexyl)phthalate               | 8        | < 2660  | ug/kg |
|    |        |                                          | 8        | < 2660  | ug/kg |

COMMENTS: The semi-volatiles analysis was performed by the Pace Analytical - New Orleans

laboratory. See the enclosed report.

# Pace Analytical

Tel: 281-488-1810 Fax: 281-488-4661

April 24, 1997 Report No.: 00060793 Section A Page 2

< 2660 ug/kg

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-A2-SSO SAMPLE NO: H449056

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44758 PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 08-APR-97 1600

DATE RECEIVED: 11-APR-97 PROJECT MANAGER: Elessa Sommers

| LN | CODE   | DETERMINATION                            | DILUTION<br>FACTOR | RESULT  | UNITS |
|----|--------|------------------------------------------|--------------------|---------|-------|
| -  |        |                                          |                    |         |       |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |                    |         |       |
|    |        | 1,2-Diphenylhydrazine                    | 8                  | < 2660  | ug/kg |
|    |        | 2,4-Dimethylphenol                       | 8                  | < 2660  | ug/kg |
|    |        | 2,4-Dinitrotoluene                       | 8                  | < 2660  | ug/kg |
|    |        | 2,6-Dinitrotoluene                       | 8                  | < 2660  | ug/kg |
|    |        | 2-Chloronaphthalene                      | 8                  | < 2660  | ug/kg |
|    |        | 2-Methylnaphthalene                      | 8                  | < 2660  | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                     | 8                  | < 12800 | ug/kg |
|    |        | 4-Nitrophenol                            | 8                  | < 12800 | ug/kg |
|    |        | Acenaphthene                             | 8                  | < 2660  | ug/kg |
|    |        | Acenaphthylene                           | 8                  | < 2660  | ug/kg |
|    |        | Anthracene                               | 8                  | < 2660  | ug/kg |
|    |        | Benzo(a)anthracene                       | 8                  | < 2660  | ug/kg |
|    |        | Benzo(a)pyrene                           | 8                  | < 2660  | ug/kg |
|    |        | Chrysene                                 | 8                  | < 2660  | ug/kg |
|    |        | Di-n-butyl phthalate                     | 8                  | < 2660  | ug/kg |
|    |        | Dibenzofuran                             | 8                  | < 2660  | ug/kg |
|    |        | Fluoranthene                             | 8                  | 9280    | ug/kg |
|    |        | Fluorene                                 | 8                  | < 2660  | ug/kg |
|    |        | N-Nitrosodiphenylamine                   | 8                  | < 2660  | ug/kg |
|    |        | Naphthalene                              | 8                  | < 2660  | ug/kg |
|    |        | Nitrobenzene                             | 8                  | < 2660  | ug/kg |
|    |        | Pentachlorophenol                        | 8                  | < 12800 | ug/kg |
|    |        | Phenanthrene                             | 8                  | 6120    | ug/kg |
|    |        | Phenol                                   | 8                  | < 2660  | ug/kg |
|    |        | Pyrene                                   | 8                  | 8160    | ug/kg |
|    |        | bis(2-Chloroethoxy)methane               | 8                  | < 2660  | ug/kg |
|    |        | bis(2-Ethylhexyl)phthalate               | 8                  | < 2660  | ug/kg |

COMMENTS: The semi-volatiles analysis was performed by the Pace Analytical - New Orleans laboratory. See the enclosed report.

April 24, 1997 Report No.: 00060793 Section A Page 3

### LABORATORY ANALYSIS REPORT

 CLIENT NAME:
 TERRANEXT
 LIMS CLIENT:
 0717 0007

 ADDRESS:
 6200 ROTHWAY, STE 190
 PACE PROJECT:
 H44758

 HOUSTON, TX 77040 PACE CLIENT:
 620437

 ATTENTION:
 BILL GOLDSBY
 P.O. NO:
 03219

SAMPLE ID: HWPW-A3-SSO

SAMPLE NO: H449057

DATE SAMPLED: 08-APR-97 1600

DATE RECEIVED: 11-APR-97

SAMPLE MATRIX: SOIL PROJECT MANAGER: Elessa Sommers

| LN | TEST<br>CODE | DETERMINATION                            | DILUTION<br>FACTOR | RESULT | UNITS          |
|----|--------------|------------------------------------------|--------------------|--------|----------------|
| 3  | OSVTCS       | TCL - Semi-volatile Extractables in Soil |                    |        |                |
| -  | 337735       | 1,2-Diphenylhydrazine                    | 4                  | < 1330 | um (lem        |
|    |              | 2,4-Dimethylphenol                       | 4                  | < 1330 | ug/kg          |
|    |              | 2,4-Dinitrotoluene                       | 4                  | < 1330 | ug/kg          |
|    |              | 2,6-Dinitrotoluene                       | 4                  | < 1330 | ug/kg          |
|    |              | 2-Chloronaphthalene                      | 4                  | < 1330 | ug/kg          |
|    |              | 2-Methylnaphthalene                      | 4                  | < 1330 | ug/kg          |
|    |              | 4,6-Dinitro-o-cresol                     | 4                  | < 6400 | ug/kg          |
|    |              | 4-Nitrophenol                            | 4                  | < 6400 | ug/kg          |
|    |              | Acenaphthene                             | 4                  | < 1330 | ug/kg<br>ug/kg |
|    |              | Acenaphthylene                           | 4                  | < 1330 | ug/kg          |
|    |              | Anthracene                               | 4                  | < 1330 | ug/kg          |
|    |              | Benzo(a)anthracene                       | 4                  | < 1330 | ug/kg          |
|    |              | Benzo(a)pyrene                           | 4                  | < 1330 | ug/kg          |
|    |              | Chrysene                                 | 4                  | < 1330 | ug/kg          |
|    |              | Di-n-butyl phthalate                     | 4                  | < 1330 | ug/kg          |
|    |              | Dibenzofuran                             | 4                  | < 1330 | ug/kg          |
|    |              | Fluoranthene                             | 4                  | < 1330 | ug/kg          |
|    |              | Fluorene                                 | 4                  | < 1330 | ug/kg          |
|    |              | N-Nitrosodiphenylamine                   | 4                  | < 1330 | ug/kg          |
|    |              | Naphthalene                              | 4                  | < 1330 | ug/kg          |
|    |              | Nitrobenzene                             | 4                  | < 1330 | ug/kg          |
|    |              | Pentachlorophenol                        | 4                  | < 6400 | ug/kg          |
|    |              | Phenanthrene                             | 4                  | < 1330 | ug/kg<br>ug/kg |
|    |              | Phenol                                   | 4                  | < 1330 |                |
|    |              | Pyrene                                   | 4                  | < 1330 | ug/kg          |
|    |              | bis(2-Chloroethoxy)methane               | 4                  | < 1330 | ug/kg          |
|    |              | bis(2-Ethylhexyl)phthalate               | •                  |        | ug/kg          |
|    |              | and any continuate                       | 4                  | < 1330 | ug/kg          |

COMMENTS: The semi-volatiles analysis was performed by the Pace Analytical - New Orleans laboratory. See the enclosed report.

April 24, 1997 Report No.: 00060793 Section A Page 4

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-A4-SSO

SAMPLE NO: H449058

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44758 PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 08-APR-97 1545

DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          | DILUTION |         |       |
|----|--------|------------------------------------------|----------|---------|-------|
| LN | CODE   | DETERMINATION                            | FACTOR   | RESULT  | UNITS |
|    |        |                                          |          |         |       |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |          |         |       |
|    |        | 1,2-Diphenylhydrazine                    |          |         |       |
|    |        | 2,4-Dimethylphenol                       | 20       | < 6660  | ug/kg |
|    |        | 2,4-Dinitrotoluene                       | 20       | < 6660  | ug/kg |
|    |        | 2,6-Dinitrotoluene                       | 20       | < 6660  | ug/kg |
|    |        | 2-Chloronaphthalene                      | 20       | < 6660  | ug/kg |
|    |        | 2-Methylnaphthalene                      | 20       | < 6660  | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                     | 20       | < 6660  | ug/kg |
|    |        | 4-Nitrophenol                            | 20       | < 32000 | ug/kg |
|    |        | Acenaphthene                             | 20       | < 32000 | ug/kg |
|    |        | Acenaphthylene                           | 20       | < 6660  | ug/kg |
|    |        | Anthracene                               | 20       | < 6660  | ug/kg |
|    |        | Benzo(a)anthracene                       | 20       | < 6660  | ug/kg |
|    |        |                                          | 20       | < 6660  | ug/kg |
|    |        | Benzo(a)pyrene                           | 20       | < 6660  | ug/kg |
|    |        | Chrysene                                 | 20       | < 6660  | ug/kg |
|    |        | Di-n-butyl phthalate                     | 20       | < 6660  | ug/kg |
|    |        | Dibenzofuran                             | 20       | < 6660  | ug/kg |
|    |        | Fluoranthene                             | 20       | < 6660  | ug/kg |
|    |        | Fluorene                                 | 20       | < 6660  | ug/kg |
|    |        | N-Nitrosodiphenylamine                   | 20       | < 6660  | ug/kg |
|    |        | Naphthalene                              | 20       | < 6660  | ug/kg |
|    |        | Nitrobenzene                             | 20       | < 6660  | ug/kg |
|    |        | Pentachlorophenol                        | 20       | < 32000 | ug/kg |
|    |        | Phenanthrene                             | 20       | < 6660  | ug/kg |
|    |        | Phenol                                   | 20       | < 6660  | ug/kg |
|    |        | Pyrene                                   | 20       | < 6660  | ug/kg |
|    |        | bis(2-Chloroethoxy)methane               | 20       | < 6660  | ug/kg |
|    |        | bis(2-Ethylhexyl)phthalate               | 20       | < 6660  |       |
|    |        |                                          | 20       | 1 0000  | ug/kg |

COMMENTS: The semi-volatiles analysis was performed by the Pace Analytical - New Orleans

laboratory. See the enclosed report.

April 24, 1997
Report No.: 00060793
Section A Page 5

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

.

SAMPLE ID: HWPW-A5-SSO SAMPLE NO: H449059

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007
PACE PROJECT: H44758
PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 08-APR-97 1430

DATE RECEIVED: 11-APR-97
PROJECT MANAGER: Elessa Sommers

| 2.00 | TEST    |                                          | DILUTION |        |        |
|------|---------|------------------------------------------|----------|--------|--------|
| LN   | CODE    | DETERMINATION                            | FACTOR   | RESULT | UNITS  |
|      |         |                                          |          |        | •••••• |
| 3    | 001/700 |                                          |          |        |        |
| 3    | OSVTCS  | TCL - Semi-volatile Extractables in Soil |          |        |        |
|      |         | 1,2-Diphenylhydrazine                    | 1        | < 333  | ug/kg  |
|      |         | 2,4-Dimethylphenol                       | 1        | < 333  | ug/kg  |
|      |         | 2,4-Dinitrotoluene                       | 1        | < 333  | ug/kg  |
|      |         | 2,6-Dinitrotoluene                       | 1        | < 333  | ug/kg  |
|      |         | 2-Chloronaphthalene                      | 1        | < 333  | ug/kg  |
|      |         | 2-Methylnaphthalene                      | 1        | < 333  | ug/kg  |
|      |         | 4,6-Dinitro-o-cresol                     | 1        | < 1600 | ug/kg  |
|      |         | 4-Nitrophenol                            | 1        | < 1600 | ug/kg  |
|      |         | Acenaphthene                             | 1        | < 333  | ug/kg  |
|      |         | Acenaphthylene                           | . 1      | < 333  | ug/kg  |
|      |         | Anthracene                               | 1        | < 333  | ug/kg  |
|      |         | Benzo(a)anthracene                       | 1        | < 333  |        |
|      |         | Benzo(a)pyrene                           | 1        | < 333  | ug/kg  |
|      |         | Chrysene                                 | ;        | < 333  | ug/kg  |
|      |         | Di-n-butyl phthalate                     | 1        | < 333  | ug/kg  |
|      |         | Dibenzofuran                             | <u>'</u> |        | ug/kg  |
|      |         | Fluoranthene                             | 1        | < 333  | ug/kg  |
|      |         | Fluorene                                 | 1        |        | ug/kg  |
|      |         | N-Nitrosodiphenylamine                   | 1        |        | ug/kg  |
|      |         | Naphthalene                              | 1        |        | ug/kg  |
|      |         | Nitrobenzene                             | 1        |        | ug/kg  |
|      |         | Pentachlorophenol                        | 1        |        | ug/kg  |
|      |         | Phenanthrene                             | 1        |        | ug/kg  |
|      |         | Phenol                                   | 1        |        | ug/kg  |
|      |         | Pyrene                                   | 1        |        | ug/kg  |
|      |         | bis(2-Chloroethoxy)methane               | 1        |        | ug/kg  |
|      |         | bis(2-Ethylhexyl)phthalate               | 1        |        | ug/kg  |
|      |         |                                          | 1        | < 333  | ug/kg  |

COMMENTS: The semi-volatiles analysis was performed by the Pace Analytical - New Orleans laboratory. See the enclosed report.

April 24, 1997 Report No.: 00060793 Section A Page 6

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-A6-SSO

SAMPLE NO: H449060

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44758

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 08-APR-97 1515

DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST     |                                          |          |        |       |
|----|----------|------------------------------------------|----------|--------|-------|
| LN |          | DETERMINATION                            | DILUTION |        |       |
|    | ******** | A = 1 PM 1 VM                            | FACTOR   | RESULT | UNITS |
|    |          |                                          |          |        |       |
|    | 3 OSVTCS | TCL - Semi-volatile Extractables in Soil |          |        |       |
|    |          | 1,2-Diphenylhydrazine                    | 4        | < 1330 | ug/kg |
|    |          | 2,4-Dimethylphenol                       | 4        | < 1330 | ug/kg |
|    |          | 2,4-Dinitrotoluene                       | 4        | < 1330 | ug/kg |
|    |          | 2,6-Dinitrotoluene                       | 4        | < 1330 | ug/kg |
|    |          | 2-Chloronaphthalene                      | 4        | < 1330 | ug/kg |
|    |          | 2-Methylnaphthalene                      | 4        | < 1330 |       |
|    |          | 4,6-Dinitro-o-cresol                     | 4        | < 6400 | ug/kg |
|    |          | 4-Nitrophenol                            | 4        | < 6400 | ug/kg |
|    |          | Acenaphthene                             | 4        | < 1330 | ug/kg |
|    |          | Acenaphthylene                           | 4        | < 1330 | ug/kg |
|    |          | Anthracene                               | 4        | < 1330 | ug/kg |
|    |          | Benzo(a)anthracene                       | 4        | < 1330 | ug/kg |
|    |          | Benzo(a)pyrene                           | 4        | < 1330 | ug/kg |
|    |          | Chrysene                                 | 4        | < 1330 | ug/kg |
|    |          | Di-n-butyl phthalate                     | 4        | < 1330 | ug/kg |
|    |          | Dibenzofuran                             | 4        | < 1330 | ug/kg |
|    |          | Fluoranthene                             | 4        | < 1330 | ug/kg |
|    |          | Fluorene                                 | 4        | < 1330 | G. G  |
|    |          | N-Nitrosodiphenylamine                   | 4        | < 1330 | ug/kg |
|    |          | Naphthalene                              | 4        | < 1330 | ug/kg |
|    |          | Nitrobenzene                             | 4        | < 1330 | ug/kg |
|    |          | Pentachlorophenol                        | 4        | < 6400 | ug/kg |
|    |          | Phenanthrene                             | 4        |        | ug/kg |
|    |          | Phenol                                   | 4        |        | ug/kg |
|    |          | Pyrene                                   | 4        |        | ug/kg |
|    |          | bis(2-Chloroethoxy)methane               | 4        |        | ug/kg |
|    |          | bis(2-Ethylhexyl)phthalate               | 4        |        | ug/kg |
|    |          |                                          | 4        | < 1330 | ug/kg |

COMMENTS: The semi-volatiles analysis was performed by the Pace Analytical - New Orleans

laboratory. See the enclosed report.

# Pace Analytical

Tel: 281-488-1810 Fax: 281-488-4661

April 24, 1997 Report No.: 00060793 Section A Page 7

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-B1-SSO

SAMPLE NO: H449061

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44758

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 08-APR-97 1810

DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

| LN | TEST<br>CODE | DETERMINATION                            | DILUTION<br>FACTOR | RESULT | UNITS |
|----|--------------|------------------------------------------|--------------------|--------|-------|
| -  | 001/700      |                                          |                    |        |       |
| 3  | OSVTCS       | TCL - Semi-volatile Extractables in Soil | 4                  |        |       |
|    |              | 1,2-Diphenylhydrazine                    | 4                  | < 1330 | ug/kg |
|    |              | 2,4-Dimethylphenol                       | 4                  | < 1330 | ug/kg |
|    |              | 2,4-Dinitrotoluene                       | 4                  | < 1330 | ug/kg |
|    |              | 2,6-Dinitrotoluene                       | 4                  | < 1330 | ug/kg |
|    |              | 2-Chloronaphthalene                      | 4                  | < 1330 | ug/kg |
|    |              | 2-Methylnaphthalene                      | 4                  | < 1330 | ug/kg |
|    |              | 4,6-Dinitro-o-cresol                     | 4                  | < 6400 | ug/kg |
|    |              | 4-Nitrophenol                            | 4                  | < 6400 | ug/kg |
|    |              | Acenaphthene                             | 4                  | < 1330 | ug/kg |
|    |              | Acenaphthylene                           | 4                  | < 1330 | ug/kg |
|    |              | Anthracene                               | 4                  | < 1330 | ug/kg |
|    |              | Benzo(a)anthracene                       | 4                  | < 1330 | ug/kg |
|    |              | Benzo(a)pyrene                           | 4                  | < 1330 | ug/kg |
|    |              | Chrysene                                 | 4                  | 1800   | ug/kg |
|    |              | Di-n-butyl phthalate                     | 4                  | < 1330 | ug/kg |
|    |              | Dibenzofuran                             | 4                  | < 1330 | ug/kg |
|    |              | Fluoranthene                             | 4                  | 2540   | ug/kg |
|    |              | Fluorene                                 | 4                  | < 1330 | ug/kg |
|    |              | N-Nitrosodiphenylamine                   | 4                  | < 1330 | ug/kg |
|    |              | Naphthalene                              | 4                  | < 1330 | ug/kg |
|    |              | Nitrobenzene                             | 4                  | < 1330 | ug/kg |
|    |              | Pentachlorophenol                        | 4                  | < 6400 | ug/kg |
|    |              | Phenanthrene                             | 4                  | < 1330 | ug/kg |
|    |              | Phenol                                   | 4                  | < 1330 | ug/kg |
|    |              | Pyrene                                   | 4                  | 2090   | ug/kg |
|    |              | bis(2-Chloroethoxy)methane               | 4                  | < 1330 | ug/kg |
|    |              | bis(2-Ethylhexyl)phthalate               | 4                  | < 1330 | ug/kg |
|    |              |                                          |                    |        |       |

COMMENTS: The semi-volatiles analysis was performed by the Pace Analytical - New Orleans laboratory. See the enclosed report.

April 24, 1997
Report No.: 00060793
Section A Page 8

< 333

ug/kg

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040
ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-B2-SSO
SAMPLE NO: H449062

SAMPLE MATRIX: SOII

LIMS CLIENT: 0717 0007

PACE PROJECT: H44758

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 08-APR-97 1745

TEST
LN CODE DETERMINATION DILUTION
FACTOR RESULT UNITS

3 OSVTCS TCL - Semi-volatile Extractables in Soil
1,2-Diphenylhydrazine
2,4-Dimethylphonel

2,4-Dimethylphenol < 333 ug/kg 2,4-Dinitrotoluene < 333 ug/kg 2,6-Dinitrotoluene < 333 ug/kg 2-Chloronaphthalene < 333 ug/kg 2-Methylnaphthalene < 333 ug/kg 4,6-Dinitro-o-cresol < 333 ug/kg 4-Nitrophenol < 1600 ug/kg Acenaphthene ug/kg < 1600 Acenaphthylene < 333 ug/kg < 333 ug/kg Anthracene Benzo(a)anthracene < 333 ug/kg Benzo(a)pyrene < 333 ug/kg Chrysene < 333 ug/kg Di-n-butyl phthalate 382 ug/kg 1 Dibenzofuran < 333 ug/kg < 333 ug/kg Fluoranthene 1 Fluorene 501 ug/kg N-Nitrosodiphenylamine < 333 ug/kg 1 < 333 ug/kg Naphthalene < 333 ug/kg Nitrobenzene 1 Pentachlorophenol 1 < 333 ug/kg Phenanthrene 1 < 1600 ug/kg Phenol 1 < 333 ug/kg Pyrene 1 < 333 ug/kg bis(2-Chloroethoxy)methane 1 463 ug/kg bis(2-Ethylhexyl)phthalate < 333 ug/kg

COMMENTS: The semi-volatiles analysis was performed by the Pace Analytical - New Orleans laboratory. See the enclosed report.

# Pace Analytical

Tel: 281-488-1810 Fax: 281-488-4661

April 24, 1997 Report No.: 00060793 Section A Page 9

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-B3-SSO

**SAMPLE NO: H449063** 

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44758 PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 08-APR-97 1800

DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          | DILUTION |        |        |
|----|--------|------------------------------------------|----------|--------|--------|
| LN | CODE   | DETERMINATION                            | FACTOR   | RESULT | LIMITS |
|    |        |                                          |          |        |        |
|    |        |                                          |          |        |        |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |          |        |        |
|    |        | 1,2-Diphenylhydrazine                    | 1        | < 333  | ug/kg  |
|    |        | 2,4-Dimethylphenol                       | 1        | < 333  | ug/kg  |
|    |        | 2,4-Dinitrotoluene                       | 1        | < 333  | ug/kg  |
|    |        | 2,6-Dinitrotoluene                       | 1        | < 333  | ug/kg  |
|    |        | 2-Chloronaphthalene                      | 1        | < 333  | ug/kg  |
|    |        | 2-Methylnaphthalene                      | 1        | < 333  | ug/kg  |
|    |        | 4,6-Dinitro-o-cresol                     | 1        | < 1600 | ug/kg  |
|    |        | 4-Nitrophenol                            | 1        | < 1600 | ug/kg  |
|    |        | Acenaphthene                             | 1        | < 333  | ug/kg  |
|    |        | Acenaphthylene                           | 1        | < 333  | ug/kg  |
|    |        | Anthracene                               | 1        | < 333  | ug/kg  |
|    |        | Benzo(a)anthracene                       | 1        | < 333  | ug/kg  |
|    |        | Benzo(a)pyrene                           | 1        | < 333  | ug/kg  |
|    |        | Chrysene                                 | 1        | < 333  | ug/kg  |
|    |        | Di-n-butyl phthalate                     | 1        | < 333  | ug/kg  |
|    |        | Dibenzofuran                             | 1        | < 333  | ug/kg  |
|    |        | Fluoranthene                             | 1        | < 333  | ug/kg  |
|    |        | Fluorene                                 | 1        | < 333  | ug/kg  |
|    |        | N-Nitrosodiphenylamine                   | 1        | < 333  | ug/kg  |
|    |        | Naphthalene                              | 1        | < 333  | ug/kg  |
|    |        | Nitrobenzene                             | 1        | < 333  | ug/kg  |
|    |        | Pentachlorophenol                        | 1        | < 1600 | ug/kg  |
|    |        | Phenanthrene                             | 1        |        | ug/kg  |
|    |        | Phenol                                   | 1        |        | ug/kg  |
|    |        | Pyrene                                   | 1        |        | ug/kg  |
|    |        | bis(2-Chloroethoxy)methane               | 1        |        | ug/kg  |
|    |        | bis(2-Ethylhexyl)phthalate               | 1        |        | ug/kg  |
|    |        |                                          | ,        | · 222  | 49/ 14 |

April 24, 1997 Report No.: 00060793 Section A Page 10

# LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-B4-SSO

SAMPLE NO: H449064

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44758
PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 08-APR-97 1730

DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          | DILUTION |        |        |
|----|--------|------------------------------------------|----------|--------|--------|
| LN | CODE   | DETERMINATION                            | FACTOR   | DECLUT | INITTO |
|    |        |                                          | INCION   | KESULI | UNITS  |
|    |        |                                          |          |        |        |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |          |        |        |
|    |        | 1,2-Diphenylhydrazine                    | 1        | . 777  |        |
|    |        | 2,4-Dimethylphenol                       | 1        | < 333  | ug/kg  |
|    |        | 2,4-Dinitrotoluene                       | 1        | < 333  | ug/kg  |
|    |        | 2,6-Dinitrotoluene                       | 1        | < 333  | ug/kg  |
|    |        | 2-Chloronaphthalene                      | 1        | < 333  | ug/kg  |
|    |        | 2-Methylnaphthalene                      | 1        | < 333  | ug/kg  |
|    |        | 4,6-Dinitro-o-cresol                     | 1        | < 333  | ug/kg  |
|    |        | 4-Nitrophenol                            | 1        | < 1600 | ug/kg  |
|    |        | Acenaphthene                             | 1        | < 1600 | ug/kg  |
|    |        | Acenaphthylene                           | 1        | < 333  | ug/kg  |
|    |        | Anthracene                               | 1        | < 333  | ug/kg  |
|    |        | Benzo(a)anthracene                       | 1        | < 333  | ug/kg  |
|    |        | Benzo(a)pyrene                           | 1        | < 333  | ug/kg  |
|    |        | Chrysene                                 | 1        | < 333  | ug/kg  |
|    |        | Di-n-butyl phthalate                     | 1        | < 333  | ug/kg  |
|    |        | Dibenzofuran                             | 1        | < 333  | ug/kg  |
|    |        | Fluoranthene                             | .1       | < 333  | ug/kg  |
|    |        | Fluorene                                 | 1        | 671    | ug/kg  |
|    |        | N-Nitrosodiphenylamine                   | 1        | < 333  | ug/kg  |
|    |        | Naphthalene                              | 1        | < 333  | ug/kg  |
|    |        | Nitrobenzene                             | 1        | < 333  | ug/kg  |
|    |        | Pentachlorophenol                        | 1        | < 333  | ug/kg  |
|    |        | Phenanthrene                             | 1        | < 1600 | ug/kg  |
|    |        | Phenol                                   | 1        | < 333  | ug/kg  |
|    |        | Pyrene                                   | 1        | < 333  | ug/kg  |
|    |        | • 1800cs                                 | 1        |        | ug/kg  |
|    |        | bis(2-Chloroethoxy)methane               | 1        |        | ug/kg  |
|    |        | pis(2-Ethylhexyl)phthalate               | 1        |        | ug/kg  |
|    |        |                                          |          |        |        |

April 24, 1997 Report No.: 00060793 Section A Page 11

## LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-B5-SSO

SAMPLE NO: H449065

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44758

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 08-APR-97 1415

DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

| TEST DILUTION  LN CODE DETERMINATION FACTOR RESULT U | INITS |
|------------------------------------------------------|-------|
|                                                      |       |
| 3 OSVTCS TCL - Semi-volatile Extractables in Soil    |       |
| 1,2-Diphenylhydrazine 4 < 1330 u                     | g/kg  |
| 2 /-Dimothy/lphonol                                  | g/kg  |
| 2 /-Dinitrotalyone                                   | g/kg  |
| 2 6-Dinitrotolyana                                   | g/kg  |
| 2-Chi anananhthal ana                                | g/kg  |
| 2-Mathyl pophthal and                                | g/kg  |
| / 6-Dinitro-o-cross                                  | g/kg  |
| /-Nitraphone                                         | g/kg  |
| Acapanhthana                                         | g/kg  |
| Acanaphthylana                                       | g/kg  |
| Anthrocone                                           | g/kg  |
| Ponto(a)anthracers                                   | g/kg  |
| Ponto (a) mynome                                     | g/kg  |
| Chrysone                                             | g/kg  |
| Diametrical mathematics                              | g/kg  |
| Dibografupon                                         | g/kg  |
| Fluoranthana                                         | g/kg  |
| Fluorena                                             | g/kg  |
| N-Nitrocodiphonylamine                               | g/kg  |
| Manhthalana                                          | g/kg  |
| Witzphonzono                                         | j/kg  |
| Pentach   oronhanol                                  | /kg   |
| Phononthrone                                         | //kg  |
| Phone                                                | /kg   |
| Dyrana                                               | ı/kg  |
| his/2-Chloroothovy/mathons                           | /kg   |
| his/2-Ethylhayyl \nhthalata                          | /kg   |

April 24, 1997 Report No.: 00060793 Section A Page 12

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-B6-SSO SAMPLE NO: H449066

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007
PACE PROJECT: H44758
PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 08-APR-97 1445
DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

| TEST  LN CODE DETERMINATION DILUTION              |    |
|---------------------------------------------------|----|
| LN CODE DETERMINATION FACTOR RESULT UNI           | TS |
|                                                   |    |
| 3 OSVTCS TCL - Semi-volatile Extractables in Soil |    |
| 1.2-Diphenylhydrazine                             |    |
| 2.4-Dimethylphenol 4 < 1330 ug/                   | (g |
| 2.4-Dinitrotoluene 4 < 1330 ug/                   | (g |
| 2.6-Dinitrotaluene 4 < 1530 ug/                   | (g |
| 2-Chloronaphthalene 4 < 1330 ug/                  | (g |
| 2-Methylnaphthalene 4 < 1330 ug/                  | g  |
| 4.6-Dinitro-o-cresol 4 < 1330 ug/                 | g  |
| 4-Nitrophenol 4 < 6400 ug/                        | :g |
| Acenaphthene 4 < 6400 ug/l                        | g  |
| Acenaphthylene 4 < 1330 ug/i                      | g  |
| Anthracene 4 < 1330 ug/l                          | _  |
| Benzo(a)anthracene 4 < 1330 ug/k                  | g  |
| Benzo(a)pyrene 4 < 1330 ug/k                      | g  |
| Chrysene 4 < 1330 ug/k                            | g  |
| Di-n-butyl phthalate 4 < 1330 ug/k                | g  |
| Dibenzofuran 4 < 1330 ug/k                        | g  |
| Fluoranthene 4 < 1330 ug/k                        | g  |
| Fluorene 4 1370 ug/k                              | g  |
| N-Nitrosodiphenylamine 4 < 1330 ug/k              | 9  |
| Naphthalene 4 < 1330 ug/k                         | 3  |
| Nitrobenzene 4 < 1330 ug/k                        | 3  |
| Pentachlorophenol 4 < 1330 ug/k                   | 3  |
| Phenanthrene 4 < 6400 ug/k                        | 3  |
| Phenol 4 < 1330 ug/k                              | 3  |
| Pyrene 4 < 1330 ug/k                              | }  |
| bis(2-Chloroethoxy)methane 4 1340 ug/kg           | J  |
| bis(2-Ethylhexyl)phthalate 4 < 1330 ug/kg         | ļ  |
| 4 < 1330 ug/kg                                    | J  |

April 24, 1997 Report No.: 00060793 Section A Page 13

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-C1-SSO

SAMPLE NO: H449067

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007
PACE PROJECT: H44758

PACE PROJECT: H44758
PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 08-APR-97 1145

DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          | DILUTION |         |       |
|----|--------|------------------------------------------|----------|---------|-------|
| LN | CODE   | DETERMINATION                            | FACTOR   | RESULT  | UNITS |
|    |        |                                          |          |         |       |
| _  |        |                                          |          |         |       |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |          |         |       |
|    |        | 1,2-Diphenylhydrazine                    | 8        | < 2660  | ug/kg |
|    |        | 2,4-Dimethylphenol                       | 8        | < 2660  | ug/kg |
|    |        | 2,4-Dinitrotoluene                       | 8        | < 2660  | ug/kg |
|    |        | 2,6-Dinitrotoluene                       | 8        | < 2660  | ug/kg |
|    |        | 2-Chloronaphthalene                      | 8        | < 2660  | ug/kg |
|    |        | 2-Methylnaphthalene                      | 8        | < 2660  | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                     | 8        | < 12800 | ug/kg |
|    |        | 4-Nitrophenol                            | 8        | < 12800 | ug/kg |
|    |        | Acenaphthene                             | 8        | < 2660  | ug/kg |
|    |        | Acenaphthylene                           | 8        | < 2660  | ug/kg |
|    |        | Anthracene                               | 8        | < 2660  | ug/kg |
|    |        | Benzo(a)anthracene                       | 8        | < 2660  | ug/kg |
|    |        | Benzo(a)pyrene                           | 8        | < 2660  | ug/kg |
|    |        | Chrysene                                 | 8        | < 2660  | ug/kg |
|    |        | Di-n-butyl phthalate                     | 8        | < 2660  | ug/kg |
|    |        | Dibenzofuran                             | 8        | < 2660  | ug/kg |
|    |        | Fluoranthene                             | 8        | < 2660  | -     |
|    |        | Fluorene                                 | 8        | < 2660  | ug/kg |
|    |        | N-Nitrosodiphenylamine                   | 8        |         | ug/kg |
|    |        | Naphthalene                              | 8        |         | ug/kg |
|    |        | Nitrobenzene                             | 8        |         | ug/kg |
|    |        | Pentachlorophenol                        | -        |         | ug/kg |
|    |        | Phenanthrene                             | 8        |         | ug/kg |
|    |        | Phenol                                   | 8        |         | ug/kg |
|    |        | Pyrene                                   | 8        |         | ug/kg |
|    |        | bis(2-Chloroethoxy)methane               | 8        |         | ug/kg |
|    |        | bis(2-Ethylhexyl)phthalate               | 8        |         | ug/kg |
|    |        | DISCE ECHYTHENYT /PHILITATE              | 8        | < 2660  | ug/kg |

April 24, 1997 Report No.: 00060793 Section A Page 14

### LABORATORY ANALYSIS REPORT

| THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLIENT N<br>ADDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SS: 6200 ROTHWAY, STE 190<br>HOUSTON, TX 77040-                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LIMS CLIENT: PACE PROJECT: PACE CLIENT: P.O. NO:                                            | H44758<br>620437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SAMPLE<br>SAMPLE<br>SAMPLE MATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NO: H449068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE SAMPLED:<br>DATE RECEIVED:<br>PROJECT MANAGER:                                         | 11-APR-97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TEST<br>LN CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DILUTION<br>FACTOR                                                                          | RESULT UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TCL - Semi-volatile Extractables in Soil 1,2-Diphenylhydrazine 2,4-Dimethylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Methylnaphthalene 4,6-Dinitro-o-cresol 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Chrysene Di-n-butyl phthalate Dibenzofuran Fluoranthene Fluorene N-Nitrosodiphenylamine Naphthalene Witrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene Dis(2-Chloroethoxy)methane Dis(2-Ethylhexyl)phthalate | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | <ul> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>1600 ug/kg</li> <li>1600 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> <li>333 ug/kg</li> </ul> |

April 24, 1997
Report No.: 00060793
Section A Page 15

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-C3-SSO

SAMPLE NO: H449069 SAMPLE MATRIX: SOIL PACE PROJECT: H44758
PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 08-APR-97 1655

DATE RECEIVED: 11-APR-97
PROJECT MANAGER: Elessa Sommers

**TEST** DILUTION LN CODE DETERMINATION **FACTOR** RESULT UNITS 3 OSVTCS TCL - Semi-volatile Extractables in Soil 1,2-Diphenylhydrazine 20 < 6660 ug/kg 2,4-Dimethylphenol 20 < 6660 ug/kg 2,4-Dinitrotoluene 20 < 6660 ug/kg 2,6-Dinitrotoluene 20 < 6660 ug/kg 2-Chloronaphthalene 20 < 6660 ug/kg 2-Methylnaphthalene 20 < 6660 ug/kg 4,6-Dinitro-o-cresol 20 < 32000 ug/kg 4-Nitrophenol 20 < 32000 ug/kg Acenaphthene 20 < 6660 ug/kg Acenaphthylene 20 < 6660 ug/kg Anthracene 20 < 6660 ug/kg Benzo(a)anthracene 20 < 6660 ug/kg Benzo(a)pyrene 20 < 6660 ug/kg Chrysene 20 10100 ug/kg Di-n-butyl phthalate 20 < 6660 ug/kg Dibenzofuran 20 < 6660 ug/kg Fluoranthene 20 35200 ug/kg Fluorene 20 < 6660 ug/kg N-Nitrosodiphenylamine 20 < 6660 ug/kg Naphthalene 20 < 6660 ug/kg Nitrobenzene 20 < 6660 ug/kg Pentachlorophenol 20 < 32000 ug/kg Phenanthrene 20 12800 ug/kg Phenol 20 < 6660 ug/kg Pyrene 20 20900 ug/kg bis(2-Chloroethoxy)methane 20 < 6660 ug/kg bis(2-Ethylhexyl)phthalate < 6660 ug/kg

April 24, 1997 Report No.: 00060793 Section A Page 16

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040
ATTENTION: BILL GOLDSBY

LIMS CLIENT: 0717 0007

PACE PROJECT: H44758

PACE CLIENT: 620437

P.O. NO: 03219

SAMPLE ID: HWPW-C4-SSO
SAMPLE NO: H449070
SAMPLE MATRIX: SOIL

DATE SAMPLED: 08-APR-97 1715
DATE RECEIVED: 11-APR-97
PROJECT MANAGER: Elessa Sommers

TEST DILUTION LN CODE DETERMINATION **FACTOR** RESULT UNITS 3 OSVTCS TCL - Semi-volatile Extractables in Soil 1,2-Diphenylhydrazine 1 < 333 ug/kg 2,4-Dimethylphenol < 333 ug/kg 2,4-Dinitrotoluene 1 < 333 ug/kg 2,6-Dinitrotoluene 1 < 333 ug/kg 2-Chloronaphthalene 1 < 333 ug/kg 2-Methylnaphthalene < 333 ug/kg 4,6-Dinitro-o-cresol 1 < 1600 ug/kg 4-Nitrophenol 1 < 1600 ug/kg Acenaphthene 1 < 333 ug/kg Acenaphthylene < 333 ug/kg Anthracene 1 < 333 ug/kg Benzo(a)anthracene < 333 ug/kg Benzo(a)pyrene 1 < 333 ug/kg Chrysene 1 < 333 ug/kg Di-n-butyl phthalate 1 < 333 ug/kg Dibenzofuran < 333 ug/kg Fluoranthene 1 < 333 ug/kg Fluorene 1 < 333 ug/kg N-Nitrosodiphenylamine 1 < 333 ug/kg Naphthalene 1 < 333 ug/kg Nitrobenzene < 333 ug/kg 1 Pentachlorophenol 1 < 1600 ug/kg Phenanthrene 1 < 333 ug/kg Phenol 1 < 333 ug/kg Pyrene 1 < 333 ug/kg bis(2-Chloroethoxy)methane 1 < 333 ug/kg bis(2-Ethylhexyl)phthalate < 333 ug/kg

April 24, 1997 Report No.: 00060793 Section A Page 17

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-C5-SSO

SAMPLE NO: H449071

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007 PACE PROJECT: H44758

PACE CLIENT: 620437 P.O. NO: 03219

DATE SAMPLED: 08-APR-97 1500

DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

| LN | TEST   | DETERMINATION                            | ILUTION<br>FACTOR | RESULT | UNITS |
|----|--------|------------------------------------------|-------------------|--------|-------|
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |                   |        |       |
| ,  | 034103 | 1,2-Diphenylhydrazine                    |                   |        |       |
|    |        | 2,4-Dimethylphenol                       | 1                 | < 333  | ug/kg |
|    |        | 2,4-Dinitrotoluene                       | 1                 | < 333  | ug/kg |
|    |        | 2,6-Dinitrotoluene                       | 1                 | < 333  | ug/kg |
|    |        | 2-Chloronaphthalene                      | 1                 | < 333  | ug/kg |
|    |        | 2-Methylnaphthalene                      | 1                 | < 333  | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                     | 1                 | < 333  | ug/kg |
|    |        | 4-Nitrophenol                            | 1                 | < 1600 | ug/kg |
|    |        | Acenaphthene                             | 1                 | < 1600 | ug/kg |
|    |        | Acenaphthylene                           | 1                 | < 333  | ug/kg |
|    |        | Anthracene                               | 1                 | < 333  | ug/kg |
|    |        | Benzo(a)anthracene                       | 1                 | < 333  | ug/kg |
|    |        | Benzo(a)pyrene                           | 1                 | < 333  | ug/kg |
|    |        | Chrysene                                 | 1                 | < 333  | ug/kg |
|    |        | Di-n-butyl phthalate                     | 1                 | < 333  | ug/kg |
|    |        | Dibenzofuran                             | 1                 | < 333  | ug/kg |
|    |        |                                          | 1                 | < 333  | ug/kg |
|    |        | Fluoranthene                             | 1                 | < 333  | ug/kg |
|    |        | Fluorene                                 | 1                 | < 333  | ug/kg |
|    |        | N-Nitrosodiphenylamine                   | 1                 | < 333  | ug/kg |
|    |        | Naphthalene                              | 1                 | < 333  | ug/kg |
|    |        | Nitrobenzene                             | 1                 | < 333  | ug/kg |
|    |        | Pentachlorophenol                        | 1                 | < 1600 | ug/kg |
|    |        | Phenanthrene                             | 1                 | < 333  | ug/kg |
|    |        | Phenol                                   | 1                 | < 333  | ug/kg |
|    |        | Pyrene                                   | 1                 | < 333  | ug/kg |
|    |        | bis(2-Chloroethoxy)methane               | 1                 |        | ug/kg |
|    |        | bis(2-Ethylhexyl)phthalate               | 1                 |        | ug/kg |

COMMENTS: The semi-volatiles analysis was performed by the Pace Analytical - New Orleans

laboratory. See the enclosed report.

April 24, 1997 Report No.: 00060793 Section A Page 18

# LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-C6-SSO SAMPLE NO: H449072

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44758 PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 08-APR-97 1530 DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          |                                         |        |       |
|----|--------|------------------------------------------|-----------------------------------------|--------|-------|
| LN | CODE   | DETERMINATION                            | DILUTION<br>FACTOR                      | RESULT | UNITS |
|    |        |                                          |                                         |        |       |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |                                         |        |       |
|    |        | 1,2-Diphenylhydrazine                    |                                         |        |       |
|    |        | 2,4-Dimethylphenol                       | 4                                       | < 1330 |       |
|    |        | 2,4-Dinitrotoluene                       | 4                                       | < 1330 | ug/kg |
|    |        | 2,6-Dinitrotoluene                       | 4                                       | < 1330 | ug/kg |
|    |        | 2-Chloronaphthalene                      | 4                                       | < 1330 | ug/kg |
|    |        | 2-Methylnaphthalene                      | 4                                       | < 1330 | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                     | 4                                       | < 1330 | ug/kg |
|    |        | 4-Nitrophenol                            | 4                                       | < 6400 | ug/kg |
|    |        | Acenaphthene                             | 4                                       | < 6400 | ug/kg |
|    |        | Acenaphthylene                           | - · · · · · · · · · · · · · · · · · · · | < 1330 | ug/kg |
|    |        | Anthracene                               | 4                                       | < 1330 | ug/kg |
|    |        | Benzo(a)anthracene                       | 4                                       | < 1330 | ug/kg |
|    |        | Benzo(a)pyrene                           | 4                                       | < 1330 | ug/kg |
|    |        | Chrysene                                 | 4                                       | < 1330 | ug/kg |
|    |        | Di-n-butyl phthalate                     | 4                                       | < 1330 | ug/kg |
|    |        | Dibenzofuran                             | 4                                       | < 1330 | ug/kg |
|    |        | Fluoranthene                             | 4                                       | < 1330 | ug/kg |
|    |        | Fluorene                                 | 4                                       | < 1330 | ug/kg |
|    |        | N-Nitrosodiphenylamine                   | 4                                       | < 1330 | ug/kg |
|    |        | Naphthalene                              | 4                                       | < 1330 | ug/kg |
|    |        | Nitrobenzene                             | 4                                       | < 1330 | ug/kg |
|    |        | Pentachlorophenol                        | 4                                       |        | ug/kg |
|    |        | Phenanthrene                             | 4                                       | < 6400 | ug/kg |
|    |        | Phenol                                   | 4                                       | < 1330 | ug/kg |
|    |        | Pyrene                                   | 4                                       |        | ug/kg |
|    |        | bis(2-Chloroethoxy)methane               | 4                                       |        | ug/kg |
|    |        | bis(2-Ethylhexyl)phthalate               | 4                                       |        | ug/kg |
|    |        | and any they to pricinatate              | 4                                       |        | ug/kg |

COMMENTS: The semi-volatiles analysis was performed by the Pace Analytical - New Orleans

laboratory. See the enclosed report.

April 24, 1997 Report No.: 00060793 Section A Page 19

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-D1-SSO

SAMPLE MATRIX: SOIL

SAMPLE NO: H449073

HOUSTON, TX 77040-

LIMS CLIENT: 0717 0007

PACE PROJECT: H44758 PACE CLIENT: 620437 P.O. NO: 03219

DATE SAMPLED: 08-APR-97 1130

DATE RECEIVED: 11-APR-97 PROJECT MANAGER: Elessa Sommers

| LN | TEST<br>CODE | DETERMINATION                            | DILUTION<br>FACTOR | RESULT | UNITS          |
|----|--------------|------------------------------------------|--------------------|--------|----------------|
| 3  | OSVTCS       | TCL - Semi-volatile Extractables in Soil |                    |        |                |
| •  | 001100       | 1,2-Diphenylhydrazine                    | 1                  | < 333  | ua/ka          |
|    |              | 2,4-Dimethylphenol                       | . 1                | < 333  | ug/kg<br>ug/kg |
|    |              | 2,4-Dinitrotoluene                       | 1                  | < 333  |                |
|    |              | 2,6-Dinitrotoluene                       | 1                  | < 333  | ug/kg          |
|    |              | 2-Chloronaphthalene                      | 1                  | < 333  | ug/kg          |
|    |              | 2-Methylnaphthalene                      | 1                  | < 333  | ug/kg          |
|    |              | 4,6-Dinitro-o-cresol                     | 1                  | < 1600 | ug/kg<br>ug/kg |
|    |              | 4-Nitrophenol                            | i                  | < 1600 | ug/kg          |
|    |              | Acenaphthene                             | 1                  | < 333  | ug/kg          |
|    |              | Acenaphthylene                           | 1                  | < 333  | ug/kg          |
|    |              | Anthracene                               | 1                  | 456    | ug/kg          |
|    |              | Benzo(a)anthracene                       | 1                  | 385    | ug/kg          |
|    |              | Benzo(a)pyrene                           | 1                  | 472    | ug/kg          |
|    |              | Chrysene                                 | 1                  | 586    | ug/kg          |
|    |              | Di-n-butyl phthalate                     | 1                  | < 333  | ug/kg          |
|    |              | Dibenzofuran                             | 1                  | < 333  | ug/kg          |
|    |              | Fluoranthene                             | 1                  | 1060   | ug/kg          |
|    |              | Fluorene                                 | 1                  | < 333  | ug/kg          |
|    |              | N-Nitrosodiphenylamine                   | 1                  | < 333  | ug/kg          |
|    |              | Naphthalene                              | 1                  | < 333  | ug/kg          |
|    |              | Nitrobenzene                             | 1                  | < 333  | ug/kg          |
|    |              | Pentachlorophenol                        | 1                  | < 1600 | ug/kg          |
|    |              | Phenanthrene                             | - 1                | 493    | ug/kg          |
|    |              | Phenol                                   | 1                  | < 333  | ug/kg          |
|    |              | Pyrene                                   | 1                  | 832    | ug/kg          |
|    |              | bis(2-Chloroethoxy)methane               | 1                  | < 333  | ug/kg          |
|    |              | bis(2-Ethylhexyl)phthalate               | 1                  | < 333  | ug/kg          |

April 24, 1997 Report No.: 00060793 Section A Page 20

PROJECT MANAGER: Elessa Sommers

1

< 333 ug/kg

< 333 ug/kg

### LABORATORY ANALYSIS REPORT

TEST DILUTION CODE LN DETERMINATION **FACTOR** RESULT UNITS 3 OSVTCS TCL - Semi-volatile Extractables in Soil 1,2-Diphenylhydrazine 1 < 333 ug/kg 2,4-Dimethylphenol 1 < 333 ug/kg 2,4-Dinitrotoluene 1 < 333 ug/kg 2,6-Dinitrotoluene 1 < 333 ug/kg 2-Chloronaphthalene 1 < 333 ug/kg 2-Methylnaphthalene < 333 ug/kg 4,6-Dinitro-o-cresol < 1600 ug/kg 4-Nitrophenol 1 < 1600 ug/kg Acenaphthene 1 < 333 ug/kg Acenaphthylene 1 < 333 ug/kg Anthracene < 333 ug/kg Benzo(a)anthracene 1 < 333 ug/kg Benzo(a)pyrene 1 < 333 ug/kg Chrysene 1 < 333 ug/kg Di-n-butyl phthalate < 333 ug/kg Dibenzofuran 1 < 333 ug/kg Fluoranthene 1 < 333 ug/kg Fluorene 1 < 333 ug/kg N-Nitrosodiphenylamine < 333 ug/kg 1 Naphthalene < 333 ug/kg Nitrobenzene < 333 ug/kg 1 Pentachlorophenol 1 < 1600 ug/kg Phenanthrene 1 < 333 ug/kg Phenol 1 < 333 ug/kg Pyrene < 333 ug/kg 1

COMMENTS: The semi-volatiles analysis was performed by the Pace Analytical - New Orleans laboratory. See the enclosed report.

bis(2-Chloroethoxy)methane

bis(2-Ethylhexyl)phthalate

April 24, 1997 Report No.: 00060793 Section A Page 21

### LABORATORY ANALYSIS REPORT

 CLIENT NAME:
 TERRANEXT
 LIMS CLIENT:
 0717 0007

 ADDRESS:
 6200 ROTHWAY, STE 190
 PACE PROJECT:
 H44758

 HOUSTON, TX 77040 PACE CLIENT:
 620437

 ATTENTION:
 BILL GOLDSBY
 P.O. NO:
 03219

SAMPLE ID: HWPW-8G-SSO

SAMPLE NO: H449075

SAMPLE MATRIX: SOIL

DATE SAMPLED: 09-APR-97 0840

DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

TEST DILUTION
LN CODE DETERMINATION SACTOR

| LN | CODE   | DETERMINATION                            | FACTOR | RESULT           | UNITS          |
|----|--------|------------------------------------------|--------|------------------|----------------|
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |        |                  |                |
|    |        | 1,2-Diphenylhydrazine                    | . 5    | < 1670           | um/lem         |
|    |        | 2,4-Dimethylphenol                       | 5      | < 1670           | ug/kg          |
|    |        | 2,4-Dinitrotoluene                       | 5      | < 1670           | ug/kg          |
|    |        | 2,6-Dinitrotoluene                       | 5      | < 1670           | ug/kg          |
|    |        | 2-Chloronaphthalene                      | 5      | < 1670           | ug/kg          |
|    |        | 2-Methylnaphthalene                      | 5      |                  | ug/kg          |
|    |        | 4,6-Dinitro-o-cresol                     | 5      | < 1670<br>< 8000 | ug/kg          |
|    |        | 4-Nitrophenol                            | 5      |                  | ug/kg          |
|    |        | Acenaphthene                             | 5      | < 8000<br>< 1670 | ug/kg          |
|    |        | Acenaphthylene                           | 5      | < 1670           | ug/kg          |
|    |        | Anthracene                               | . 5    | 2510             | ug/kg          |
|    |        | Benzo(a)anthracene                       | 5      | 2720             | ug/kg          |
|    |        | Benzo(a)pyrene                           | 5      | 1690             | ug/kg<br>ug/kg |
|    |        | Chrysene                                 | 5      | 3600             | ug/kg          |
|    |        | Di-n-butyl phthalate                     | 5      | < 1670           | ug/kg<br>ug/kg |
|    |        | Dibenzofuran                             | 5      | < 1670           | ug/kg          |
|    |        | Fluoranthene                             | 5      | 11100            | ug/kg          |
|    |        | Fluorene                                 | 5      | < 1670           | ug/kg          |
|    |        | N-Nitrosodiphenylamine                   | 5      | < 1670           | ug/kg          |
|    |        | Naphthalene                              | 5      | < 1670           | ug/kg          |
|    |        | Nitrobenzene                             | 5      | < 1670           | ug/kg          |
|    |        | Pentachlorophenol                        | 5      | < 8000           | ug/kg          |
|    |        | Phenanthrene                             | 5      | 2630             | ug/kg          |
|    |        | Phenol                                   | 5      | < 1670           | ug/kg          |
|    |        | Pyrene                                   | 5      | 8930             | ug/kg<br>ug/kg |
|    |        | bis(2-Chloroethoxy)methane               | 5      | < 1670           | ug/kg          |
|    |        | bis(2-Ethylhexyl)phthalate               | 5      | < 1670           | •              |
|    |        |                                          | ,      | 10/0             | ug/kg          |

April 24, 1997 Report No.: 00060793 Section A Page 22

< 1330 ug/kg

## LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-7G-SSO

SAMPLE NO: H449076 SAMPLE MATRIX: SOIL

DATE SAMPLED: 09-APR-97 0900 DATE RECEIVED: 11-APR-97

P.O. NO: 03219

LIMS CLIENT: 0717 0007

PACE PROJECT: H44758

PACE CLIENT: 620437

PROJECT MANAGER: Elessa Sommers

| LN  | TEST<br>CODE | DETERMINATION                                                                                                                                                                                      | DILUTION<br>FACTOR RESULT UNITS                                                                                                                       | ••••• |
|-----|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 3 ( | OSVTCS       | TCL - Semi-volatile Extractables in Soil 1,2-Diphenylhydrazine 2,4-Dimethylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Methylnaphthalene 4,6-Dinitro-o-cresol 4-Nitrophenol | 4 < 1330 ug/kg 4 < 1330 ug/kg 4 < 1330 ug/kg 4 < 1330 ug/kg 4 < 1330 ug/kg 4 < 1330 ug/kg 4 < 1330 ug/kg 4 < 6400 ug/kg 4 < 6400 ug/kg 4 < 6400 ug/kg |       |

| 2. Washington asked a large | , | . 1550 | 49/ 49 |
|-----------------------------|---|--------|--------|
| 2-Methylnaphthalene         | 4 | < 1330 | ug/kg  |
| 4,6-Dinitro-o-cresol        | 4 | < 6400 | ug/kg  |
| 4-Nitrophenol               | 4 | < 6400 | ug/kg  |
| Acenaphthene                | 4 | < 1330 | ug/kg  |
| Acenaphthylene              | 4 | < 1330 | ug/kg  |
| Anthracene                  | 4 | 4130   | ug/kg  |
| Benzo(a)anthracene          | 4 | < 1330 | ug/kg  |
| Benzo(a)pyrene              | 4 | < 1330 |        |
| Chrysene                    |   |        | ug/kg  |
| Di-n-butyl phthalate        | 4 | < 1330 | ug/kg  |
| Dibenzofuran                | 4 | < 1330 | ug/kg  |
|                             | 4 | < 1330 | ug/kg  |
| Fluoranthene                | 4 | < 1330 | ug/kg  |
| Fluorene                    | 4 | < 1330 | ug/kg  |
| N-Nitrosodiphenylamine      | 4 | < 1330 | ug/kg  |
| Naphthalene                 | 4 | < 1330 | ug/kg  |
| Nitrobenzene                | 4 | < 1330 | ug/kg  |
| Pentachlorophenol           | 4 | < 6400 | -      |
| Phenanthrene                |   |        | ug/kg  |
| Phenol                      | 4 | < 1330 | ug/kg  |
| Pyrene                      | 4 | < 1330 | ug/kg  |
| 1.6 (4.33)                  | 4 | < 1330 | ug/kg  |
| bis(2-Chloroethoxy)methane  | 4 | < 1330 | ug/kg  |
|                             |   |        |        |

COMMENTS: The semi-volatiles analysis was performed by the Pace Analytical - New Orleans

laboratory. See the enclosed report.

bis(2-Ethylhexyl)phthalate

April 24, 1997 Report No.: 00060793 Section A Page 23

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040
ATTENTION: BILL GOLDSBY

LIMS CLIENT: 0717 0007

PACE PROJECT: H44758

PACE CLIENT: 620437

P.O. NO: 03219

SAMPLE ID: HWPW-9G-SSO

SAMPLE NO: H449077

SAMPLE MATRIX: SOIL

DATE SAMPLED: 09-APR-97 0915

DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

| LN | TEST<br>CODE | DETERMINATION                            | DILUTION<br>FACTOR | RESULT | UNITS |
|----|--------------|------------------------------------------|--------------------|--------|-------|
| 7  | 001/700      |                                          |                    |        |       |
| 3  | OSVTCS       | TCL - Semi-volatile Extractables in Soil |                    |        |       |
|    |              | 1,2-Diphenylhydrazine                    | 1                  | < 333  | ug/kg |
|    |              | 2,4-Dimethylphenol                       | 1                  | < 333  | ug/kg |
|    |              | 2,4-Dinitrotoluene                       | 1                  | < 333  | ug/kg |
|    |              | 2,6-Dinitrotoluene                       | 1                  | < 333  | ug/kg |
|    |              | 2-Chloronaphthalene                      | 1                  | < 333  | ug/kg |
|    |              | 2-Methylnaphthalene                      | 1                  | < 333  | ug/kg |
|    |              | 4,6-Dinitro-o-cresol                     | 1                  | < 1600 | ug/kg |
|    |              | 4-Nitrophenol                            | 1 .                | < 1600 | ug/kg |
|    |              | Acenaphthene                             | 1                  | < 333  | ug/kg |
|    |              | Acenaphthylene                           | 1                  | < 333  | ug/kg |
|    |              | Anthracene                               | · 1                | < 333  | ug/kg |
|    |              | Benzo(a)anthracene                       | 1                  | < 333  | ug/kg |
|    |              | Benzo(a)pyrene                           | 1                  | < 333  | ug/kg |
|    |              | Chrysene                                 | 1                  | < 333  | ug/kg |
|    |              | Di-n-butyl phthalate                     | 1                  | < 333  | ug/kg |
|    |              | Dibenzofuran                             | 1                  | < 333  | ug/kg |
|    |              | Fluoranthene                             | 1                  | < 333  | ug/kg |
|    | 6            | Fluorene                                 | \ 1                | < 333  | ug/kg |
|    |              | N-Nitrosodiphenylamine                   | 1                  | < 333  | ug/kg |
|    |              | Naphthalene                              | 1                  | < 333  | ug/kg |
|    |              | Nitrobenzene                             | 1                  | < 333  | ug/kg |
|    |              | Pentachlorophenol                        | 1                  | < 1600 | ug/kg |
|    |              | Phenanthrene                             | 1                  | < 333  | ug/kg |
|    |              | Phenol                                   | 1                  | < 333  | ug/kg |
|    |              | Pyrene                                   | 1                  | < 333  | ug/kg |
|    |              | bis(2-Chloroethoxy)methane               | 1                  |        | ug/kg |
|    |              | bis(2-Ethylhexyl)phthalate               | 1                  |        | ug/kg |

April 24, 1997 Report No.: 00060793 Section A Page 24

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-10G-SSO

SAMPLE NO: H449078

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007
PACE PROJECT: H44758

PACE CLIENT: 620437 P.O. NO: 03219

DATE SAMPLED: 09-APR-97 0930

DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

| LN | TEST<br>CODE | DETERMINATION                            | DILUTION<br>FACTOR | RESULT | UNITS          |
|----|--------------|------------------------------------------|--------------------|--------|----------------|
| 3  | OSVTCS       | TCL - Semi-volatile Extractables in Soil |                    |        |                |
|    |              | 1,2-Diphenylhydrazine                    | 1                  | < 333  | ug/kg          |
|    |              | 2,4-Dimethylphenol                       | 1                  | < 333  | ug/kg<br>ug/kg |
|    |              | 2,4-Dinitrotoluene                       | 1                  | < 333  | ug/kg          |
|    |              | 2,6-Dinitrotoluene                       | 1                  | < 333  | ug/kg          |
|    |              | 2-Chloronaphthalene                      | 1                  | < 333  | ug/kg          |
|    |              | 2-Methylnaphthalene                      | 1                  | < 333  | ug/kg          |
|    |              | 4,6-Dinitro-o-cresol                     | 1                  | < 1600 | ug/kg          |
|    |              | 4-Nitrophenol                            | 1                  | < 1600 | ug/kg          |
|    |              | Acenaphthene                             | 1                  | < 333  | ug/kg          |
|    |              | Acenaphthylene                           | 1                  | < 333  | ug/kg          |
| -  |              | Anthracene                               | 1                  | < 333  | ug/kg          |
|    |              | Benzo(a)anthracene                       | 1                  | < 333  | ug/kg          |
|    |              | Benzo(a)pyrene                           | 1                  | < 333  | ug/kg          |
|    |              | Chrysene                                 | 1                  | < 333  | ug/kg          |
|    |              | Di-n-butyl phthalate                     | 1                  | < 333  | ug/kg          |
|    |              | Dibenzofuran                             | 1                  | < 333  | ug/kg          |
|    |              | Fluoranthene                             | 1                  | < 333  | ug/kg          |
|    |              | Fluorene                                 | 1                  | < 333  | ug/kg          |
|    |              | N-Nitrosodiphenylamine                   | 1                  | < 333  | ug/kg          |
|    |              | Naphthalene                              | 1                  | < 333  | ug/kg          |
|    |              | Nitrobenzene                             | 1                  | < 333  | ug/kg          |
|    |              | Pentachlorophenol                        | 1                  | < 1600 | ug/kg          |
|    |              | Phenanthrene                             | 1                  | < 333  | ug/kg          |
|    |              | Phenol                                   | 1                  | < 333  | ug/kg          |
|    |              | Pyrene                                   | 1                  | < 333  | ug/kg          |
|    |              | bis(2-Chloroethoxy)methane               | 1                  |        | ug/kg          |
|    |              | bis(2-Ethylhexyl)phthalate               | 1                  |        | ug/kg          |
|    |              |                                          | •                  | , 333  | ug/ kg         |

April 24, 1997 Report No.: 00060793 Section A Page 25

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-11G-SSO

SAMPLE NO: H449079

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007

PACE PROJECT: H44758

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 09-APR-97 0945

DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

| LN | TEST   | DETERMINATION                            | DILUTION<br>FACTOR | RESULT | UNITS |
|----|--------|------------------------------------------|--------------------|--------|-------|
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |                    |        |       |
|    |        | 1,2-Diphenylhydrazine                    | 4                  | < 1330 | ug/kg |
|    |        | 2,4-Dimethylphenol                       | 4                  | < 1330 | ug/kg |
|    |        | 2,4-Dinitrotoluene                       | 4                  | < 1330 | ug/kg |
|    |        | 2,6-Dinitrotoluene                       | 4                  | < 1330 | ug/kg |
|    |        | 2-Chloronaphthalene                      | 4                  | < 1330 | ug/kg |
|    |        | 2-Methylnaphthalene                      | 4                  | < 1330 | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                     | 4                  | < 6400 | ug/kg |
|    |        | 4-Nitrophenol                            | 4                  | < 6400 | ug/kg |
|    |        | Acenaphthene                             | 4                  | < 1330 | ug/kg |
|    |        | Acenaphthylene                           | 4                  | < 1330 | ug/kg |
|    |        | Anthracene                               | 4                  | < 1330 | ug/kg |
|    |        | Benzo(a)anthracene                       | 4                  | < 1330 | ug/kg |
|    |        | Benzo(a)pyrene                           | 4                  | < 1330 | ug/kg |
|    |        | Chrysene                                 | 4                  | < 1330 | ug/kg |
|    |        | Di-n-butyl phthalate                     | 4                  | < 1330 | ug/kg |
|    |        | Dibenzofuran                             | 4                  | < 1330 | ug/kg |
|    |        | Fluoranthene                             | 4                  | < 1330 | ug/kg |
|    |        | Fluorene                                 | 4                  | < 1330 | ug/kg |
|    |        | N-Nitrosodiphenylamine                   | 4                  | < 1330 | ug/kg |
|    |        | Naphthalene                              | 4                  | < 1330 | ug/kg |
|    |        | Nitrobenzene                             | 4                  | < 1330 | ug/kg |
|    |        | Pentachlorophenol                        | 4                  | < 6400 | ug/kg |
|    |        | Phenanthrene                             | 4                  | < 1330 | ug/kg |
|    |        | Phenol                                   | 4                  | < 1330 | ug/kg |
|    |        | Pyrene                                   | 4                  | 1510   | ug/kg |
|    |        | bis(2-Chloroethoxy)methane               | 4                  | < 1330 | ug/kg |
|    |        | bis(2-Ethylhexyl)phthalate               | 4                  |        | ug/kg |

April 24, 1997 Report No.: 00060793 Section A Page 26

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
ADDRESS: 6200 ROTHWAY, STE 190
HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

ATTENTION. BILL GOLDSBI

SAMPLE ID: HWPW-7F-SSO SAMPLE NO: H449080 SAMPLE MATRIX: SOIL LIMS CLIENT: 0717 0007
PACE PROJECT: H44758
PACE CLIENT: 620437
P.O. NO: 03219

DATE SAMPLED: 09-APR-97 1000 DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          |          |         |                |
|----|--------|------------------------------------------|----------|---------|----------------|
| LN | CODE   | DETERMINATION                            | DILUTION |         |                |
|    |        | DETERMINATION                            | FACTOR   | RESULT  | UNITS          |
|    |        |                                          |          |         |                |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |          |         |                |
|    |        | 1,2-Diphenylhydrazine                    | 20       |         | 2000000        |
|    |        | 2,4-Dimethylphenol                       | 20       | < 6660  | ug/kg          |
|    |        | 2,4-Dinitrotoluene                       | 20       | < 6660  | ug/kg          |
|    |        | 2,6-Dinitrotoluene                       | 20       | < 6660  | ug/kg          |
|    |        | 2-Chloronaphthalene                      | 20       | < 6660  | ug/kg          |
|    |        | 2-Methylnaphthalene                      | 20       | < 6660  | ug/kg          |
|    |        | 4,6-Dinitro-o-cresol                     | 20       | < 6660  | ug/kg          |
|    |        | 4-Nitrophenol                            | 20       | < 32000 | ug/kg          |
|    |        | Acenaphthene                             | 20       | < 32000 | ug/kg          |
|    |        | Acenaphthylene                           | 20       | < 6660  | ug/kg          |
| •  |        | Anthracene                               | 20       | < 6660  | ug/kg          |
|    |        | Benzo(a)anthracene                       | 20       | < 6660  | ug/kg          |
|    |        | Benzo(a)pyrene                           | 20       | < 6660  | ug/kg          |
|    |        | Chrysene                                 | 20       | < 6660  | ug/kg          |
|    |        | Di-n-butyl phthalate                     | 20       | < 6660  | ug/kg          |
|    |        | Dibenzofuran                             | 20       | < 6660  | ug/kg          |
|    |        | Fluoranthene                             | 20       | < 6660  | ug/kg          |
|    |        | Fluorene                                 | 20       | < 6660  | ug/kg          |
|    |        |                                          | 20       | < 6660  | ug/kg          |
|    |        | N-Nitrosodiphenylamine                   | 20       |         | ug/kg          |
|    |        | Naphthal ene                             | 20       |         | ug/kg          |
|    |        | Nitrobenzene                             | 20       |         | ug/kg          |
|    |        | Pentachlorophenol                        | 20       |         | ug/kg          |
|    |        | Phenanthrene                             | 20       |         | ug/kg          |
|    |        | Phenol                                   | 20       |         | ug/kg          |
|    |        | Pyrene                                   | 20       |         | ug/kg<br>ug/kg |
|    |        | bis(2-Chloroethoxy)methane               | 20       |         |                |
|    | 1      | bis(2-Ethylhexyl)phthalate               | 20       |         | ug/kg          |
|    |        |                                          | 20       | < 6660  | ug/kg          |

April 24, 1997 Report No.: 00060793 Section A Page 27

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-8F-SSO

SAMPLE NO: H449081

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007 PACE PROJECT: H44758

PACE CLIENT: 620437
P.O. NO: 03219

DATE SAMPLED: 09-APR-97 1015

DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

| TEST<br>LN CODE | DETERMINATION                            | DILUTION<br>FACTOR | RESULT | UNITS |
|-----------------|------------------------------------------|--------------------|--------|-------|
| 3 OSVTCS        | TCL - Semi-volatile Extractables in Soil |                    |        |       |
| 5 001100        | 1,2-Diphenylhydrazine                    | 4                  | < 1330 | ug/kg |
|                 | 2,4-Dimethylphenol                       | 4                  | < 1330 | ug/kg |
|                 | 2,4-Dinitrotoluene                       | 4                  | < 1330 | ug/kg |
|                 | 2,6-Dinitrotoluene                       | . 4                | < 1330 | ug/kg |
|                 | 2-Chloronaphthalene                      | 4                  | < 1330 | ug/kg |
|                 | 2-Methylnaphthalene                      | 4                  | < 1330 | ug/kg |
|                 | 4,6-Dinitro-o-cresol                     | 4                  | < 6400 | ug/kg |
|                 | 4-Nitrophenol                            | 4                  | < 6400 | ug/kg |
|                 | Acenaphthene                             | 4                  | < 1330 | ug/kg |
|                 | Acenaphthylene                           | 4                  | < 1330 | ug/kg |
|                 | Anthracene                               | 4                  | < 1330 | ug/kg |
|                 | Benzo(a)anthracene                       | 4                  | < 1330 | ug/kg |
|                 | Benzo(a)pyrene                           | 4                  | < 1330 | ug/kg |
|                 | Chrysene                                 | 4                  | < 1330 | ug/kg |
|                 | Di-n-butyl phthalate                     | 4                  | < 1330 | ug/kg |
|                 | Dibenzofuran                             | 4                  | < 1330 | ug/kg |
|                 | Fluoranthene                             | 4                  | 1460   | ug/kg |
|                 | Fluorene                                 | 4                  | < 1330 | ug/kg |
|                 | N-Nitrosodiphenylamine                   | 4                  | < 1330 | ug/kg |
|                 | Naphthalene                              | 4                  | < 1330 | ug/kg |
|                 | Nitrobenzene                             | 4                  | < 1330 | ug/kg |
|                 | Pentachlorophenol                        | 4                  | < 6400 | ug/kg |
|                 | Phenanthrene                             | 4                  | < 1330 | ug/kg |
|                 | Phenol                                   | 4                  | < 1330 | ug/kg |
|                 | Pyrene                                   | 4                  |        | ug/kg |
|                 | bis(2-Chloroethoxy)methane               | 4                  |        | ug/kg |
|                 | bis(2-Ethylhexyl)phthalate               | 4                  | < 1330 | ug/kg |

April 24, 1997 Report No.: 00060793 Section A Page 28

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040
ATTENTION: BILL GOLDSBY

LIMS CLIENT: 0717 0007

PACE PROJECT: H44758

PACE CLIENT: 620437

P.O. NO: 03219

SAMPLE ID: HWPW-9F-SSO

SAMPLE NO: H449082

SAMPLE MATRIX: SOIL

DATE SAMPLED: 09-APR-97 1030

DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                          | DILUTION |        |       |
|----|--------|------------------------------------------|----------|--------|-------|
| LN | CODE   | DETERMINATION                            | FACTOR   | RESULT | UNITS |
|    |        |                                          |          |        |       |
| _  |        |                                          |          |        |       |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |          |        |       |
|    |        | 1,2-Diphenylhydrazine                    | 4        | < 1330 | ug/kg |
|    |        | 2,4-Dimethylphenol                       | 4        | < 1330 | ug/kg |
|    |        | 2,4-Dinitrotoluene                       | 4        | < 1330 | ug/kg |
|    |        | 2,6-Dinitrotoluene                       | 4        | < 1330 | ug/kg |
|    |        | 2-Chloronaphthalene                      | 4        | < 1330 | ug/kg |
|    |        | 2-Methylnaphthalene                      | 4        | < 1330 | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                     | 4        | < 6400 | ug/kg |
|    |        | 4-Nitrophenol                            | 4        | < 6400 | ug/kg |
|    |        | Acenaphthene                             | 4        | < 1330 | ug/kg |
|    |        | Acenaphthylene                           | 4        | < 1330 | ug/kg |
|    |        | Anthracene                               | 4        | < 1330 | ug/kg |
|    |        | Benzo(a)anthracene                       | 4        | < 1330 | ug/kg |
|    |        | Benzo(a)pyrene                           | 4        | < 1330 | ug/kg |
|    |        | Chrysene                                 | 4        | < 1330 | ug/kg |
|    |        | Di-n-butyl phthalate                     | 4        | < 1330 | ug/kg |
|    |        | Dibenzofuran                             | 4        | < 1330 | ug/kg |
|    |        | Fluoranthene                             | 4        | < 1330 | ug/kg |
|    |        | Fluorene                                 | 4        | < 1330 | ug/kg |
|    |        | N-Nitrosodiphenylamine                   | 4        | < 1330 | ug/kg |
|    |        | Naphthalene                              | 4        | < 1330 | ug/kg |
|    |        | Nitrobenzene                             | 4        | < 1330 | ug/kg |
|    |        | Pentach loropheno l                      | 4        | < 6400 | ug/kg |
|    |        | Phenanthrene                             | 4        | < 1330 | ug/kg |
|    |        | Phenol                                   | 4        | < 1330 | ug/kg |
|    |        | Pyrene                                   | 4        | < 1330 |       |
|    |        | bis(2-Chloroethoxy)methane               | 4        |        | ug/kg |
|    |        | bis(2-Ethylhexyl)phthalate               | 4        |        | ug/kg |
|    |        |                                          | 4        | < 1330 | ug/kg |

April 24, 1997 Report No.: 00060793 Section A Page 29

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-10F-SSO

SAMPLE NO: H449083

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007 PACE PROJECT: H44758

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 09-APR-97 1045

DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

| LN | TEST<br>CODE | DETERMINATION                            | DILUTION<br>FACTOR | RESULT   | UNITS |
|----|--------------|------------------------------------------|--------------------|----------|-------|
|    |              |                                          |                    |          |       |
| 3  | OSVTCS       | TCL - Semi-volatile Extractables in Soil |                    |          |       |
|    |              | 1,2-Diphenylhydrazine                    | 100                | < 33300  | ug/kg |
|    |              | 2,4-Dimethylphenol                       | 100                | < 33300  | ug/kg |
|    |              | 2,4-Dinitrotoluene                       | 100                | < 33300  | ug/kg |
|    |              | 2,6-Dinitrotoluene                       | 100                | < 33300  | ug/kg |
|    |              | 2-Chloronaphthalene                      | 100                | < 33300  | ug/kg |
|    |              | 2-Methylnaphthalene                      | 100                | < 33300  | ug/kg |
|    |              | 4,6-Dinitro-o-cresol                     | 100                | < 160000 | ug/kg |
|    |              | 4-Nitrophenol                            | 100                | < 160000 | ug/kg |
|    |              | Acenaphthene                             | 100                | < 33300  | ug/kg |
|    |              | Acenaphthylene                           | 100                | < 33300  | ug/kg |
|    |              | Anthracene                               | 100                | < 33300  | ug/kg |
|    |              | Benzo(a)anthracene                       | 100                | 44600    | ug/kg |
|    |              | Benzo(a)pyrene                           | 100                | < 33300  | ug/kg |
|    |              | Chrysene                                 | 100                | 57100    | ug/kg |
|    |              | Di-n-butyl phthalate                     | 100                | < 33300  | ug/kg |
|    |              | Dibenzofuran                             | 100                | < 33300  | ug/kg |
|    |              | Fluoranthene                             | 100                | 237000   | ug/kg |
|    |              | Fluorene                                 | 100                | < 33300  | ug/kg |
|    |              | N-Nitrosodiphenylamine                   | 100                | < 33300  | ug/kg |
|    |              | Naphthalene                              | 100                | < 33300  | ug/kg |
|    |              | Nitrobenzene                             | 100                | < 33300  | ug/kg |
|    |              | Pentachlorophenol                        | 100                | < 160000 | ug/kg |
|    |              | Phenanthrene                             | 100                | < 33300  | ug/kg |
|    |              | Phenol                                   | 100                | < 33300  | ug/kg |
|    |              | Pyrene                                   | 100                | 204000   | ug/kg |
|    |              | bis(2-Chloroethoxy)methane               | 100                | < 33300  | ug/kg |
|    |              | bis(2-Ethylhexyl)phthalate               | 100                |          | ug/kg |
|    |              |                                          |                    |          |       |

COMMENTS: The semi-volatiles analysis was performed by the Pace Analytical - New Orleans

laboratory. See the enclosed report.

April 24, 1997 Report No.: 00060793 Section A Page 30

### LABORATORY ANALYSIS REPORT

| ADDRESS:                                   | TERRANEXT 6200 ROTHWAY, STE 190 HOUSTON, TX 77040- BILL GOLDSBY | LIMS CLIENT: PACE PROJECT: PACE CLIENT: P.O. NO:    | H44758<br>620437 |
|--------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|------------------|
| SAMPLE ID:<br>SAMPLE NO:<br>SAMPLE MATRIX: |                                                                 | DATE SAMPLED:<br>DATE RECEIVED:<br>PROJECT MANAGER: |                  |

| LN | TEST   | DETERMINATION                            | DILUTION<br>FACTOR | RESULT  | UNITS |
|----|--------|------------------------------------------|--------------------|---------|-------|
|    |        |                                          |                    |         |       |
| 3  | OSVTCS | TCL - Semi-volatile Extractables in Soil |                    |         |       |
|    |        | 1,2-Diphenylhydrazine                    | 25                 | < 8330  | ug/kg |
|    |        | 2,4-Dimethylphenol                       | 25                 | < 8330  | ug/kg |
|    |        | 2,4-Dinitrotoluene                       | 25                 | < 8330  | ug/kg |
|    |        | 2,6-Dinitrotoluene                       | 25                 | < 8330  | ug/kg |
|    |        | 2-Chloronaphthalene                      | 25                 | < 8330  | ug/kg |
|    |        | 2-Methylnaphthalene                      | 25                 | < 8330  | ug/kg |
|    |        | 4,6-Dinitro-o-cresol                     | 25                 | < 40000 | ug/kg |
|    |        | 4-Nitrophenol                            | 25                 | < 40000 | ug/kg |
|    |        | Acenaphthene                             | 25                 | < 8330  | ug/kg |
|    |        | Acenaphthylene                           | 25                 | < 8330  | ug/kg |
|    |        | Anthracene                               | 25                 | 13000   | ug/kg |
|    |        | Benzo(a)anthracene                       | 25                 | 10800   | ug/kg |
|    |        | Benzo(a)pyrene                           | 25                 | < 8330  | ug/kg |
|    |        | Chrysene                                 | 25                 | 10800   | ug/kg |
|    |        | Di-n-butyl phthalate                     | 25                 | < 8330  | ug/kg |
|    |        | Dibenzofuran                             | 25                 | < 8330  | ug/kg |
|    |        | Fluoranthene                             | 25                 | 57800   | ug/kg |
|    |        | Fluorene                                 | 25                 | < 8330  | ug/kg |
|    |        | N-Nitrosodiphenylamine                   | 25                 | < 8330  | ug/kg |
|    |        | Naphthalene                              | 25                 | < 8330  | ug/kg |
|    |        | Nitrobenzene                             | 25                 | < 8330  | ug/kg |
|    |        | Pentachlorophenol                        | 25                 | < 40000 | ug/kg |
|    |        | Phenanthrene                             | 25                 | 60200   | ug/kg |
|    |        | Phenol                                   | 25                 | < 8330  | ug/kg |
|    |        | Pyrene                                   | 25                 | 40000   | ug/kg |
|    |        | bis(2-Chloroethoxy)methane               | 25                 | < 8330  | ug/kg |
|    |        | bis(2-Ethylhexyl)phthalate               | 25                 | < 8330  | ug/kg |

April 24, 1997 Report No.: 00060793 Section A Page 31

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 6200 ROTHWAY, STE 190

HOUSTON, TX 77040-

ATTENTION: BILL GOLDSBY

SAMPLE ID: HWPW-AOC5E-SOO

SAMPLE NO: H449085

SAMPLE MATRIX: SOIL

LIMS CLIENT: 0717 0007 PACE PROJECT: H44758

PACE CLIENT: 620437

P.O. NO: 03219

DATE SAMPLED: 10-APR-97 1150

DATE RECEIVED: 11-APR-97

PROJECT MANAGER: Elessa Sommers

| LN  | TEST<br>CODE | DETERMINATION                            | DILUTION<br>FACTOR | RESULT  | UNITS |
|-----|--------------|------------------------------------------|--------------------|---------|-------|
|     | _            |                                          |                    |         |       |
| . 1 | OVTCS2       | 8260A TCL Volatiles in Soil              |                    |         |       |
|     |              | 1,2-Dichloroethane                       | 1                  | < 5     | ug/kg |
|     |              | Benzene                                  | 1                  | < 5     | ug/kg |
|     |              | Chlorobenzene                            | 1                  | < 5     | ug/kg |
|     |              | Ethylbenzene                             | 1                  | < 5     | ug/kg |
|     |              | Methylene chloride                       | 1                  | < 5     | ug/kg |
|     |              | Toluene                                  | 1                  | < 5     | ug/kg |
| -   | 001/200      | Xylenes (total)                          | 1                  | < 5     | ug/kg |
| 3   | OSVTCS       | TCL - Semi-volatile Extractables in Soil |                    |         |       |
|     |              | 1,2-Diphenylhydrazine                    | 40                 | < 13300 | ug/kg |
|     |              | 2,4-Dimethylphenol                       | 40                 | < 13300 | ug/kg |
|     |              | 2,4-Dinitrotoluene                       | 40                 |         | ug/kg |
|     |              | 2,6-Dinitrotoluene                       | 40                 |         | ug/kg |
|     |              | 2-Chloronaphthalene                      | 40                 |         | ug/kg |
|     |              | 2-Methylnaphthalene                      | 40                 |         | ug/kg |
|     |              | 4,6-Dinitro-o-cresol                     | 40                 | < 64000 | ug/kg |
|     |              | 4-Nitrophenol                            | 40                 | < 64000 | ug/kg |
|     |              | Acenaphthene                             | 40                 | < 13300 | ug/kg |
|     |              | Acenaphthylene                           | 40                 | < 13300 | ug/kg |
|     |              | Anthracene                               | 40                 | < 13300 | ug/kg |
|     |              | Benzo(a)anthracene                       | 40                 | 21500   | ug/kg |
|     |              | Benzo(a)pyrene                           | 40                 | 17800   | ug/kg |
|     |              | Chrysene                                 | 40                 | 34000   | ug/kg |
|     |              | Di-n-butyl phthalate                     | 40                 | < 13300 | ug/kg |
|     |              | Dibenzofuran                             | 40                 | < 13300 | ug/kg |
|     |              | Fluoranthene                             | 40                 | 50900   | ug/kg |
|     |              | Fluorene                                 | 40                 | < 13300 | ug/kg |
|     |              | N-Nitrosodiphenylamine                   | 40                 | < 13300 | ug/kg |
|     |              | Naphthalene                              | 40                 | < 13300 | ug/kg |
|     |              | Nitrobenzene                             | 40                 | < 13300 | ug/kg |
|     |              | Pentachlorophenol                        | 40                 |         | ug/kg |
|     |              | Phenanthrene                             | 40                 | < 13300 | ug/kg |
|     |              | Phenol                                   | 40                 |         | ug/kg |
|     |              | Pyrene                                   | 40                 | 58300   | ug/kg |
|     |              | bis(2-Chloroethoxy)methane               | 40                 | < 13300 | ug/kg |
|     |              |                                          |                    |         |       |

250

# REPORT OF LABORATORY ANALYSIS

April 24, 1997 Report No.: 00060793 Section A Page 32

# LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

SAMPLE ID: HWPW-AOC5E-SOO

SAMPLE NO: H449085

TEST

LN CODE

DETERMINATION

DILUTION

RESULT UNITS

bis(2-Ethylhexyl)phthalate

< 13300 ug/kg

COMMENTS: The semi-volatiles analysis was performed by the Pace Analytical - New Orleans

laboratory. See the enclosed report.

April 24, 1997 Report No.: 00060793 Section B Page 1

### SUPPLEMENTAL INFORMATION

|     |      | TEST   | LCSR<br>BLNK | DUP/MS<br>MS/MSD |    | SAMPLE PREPAR | ATION   |           | SAMPLE ANALY     | SIS                |
|-----|------|--------|--------------|------------------|----|---------------|---------|-----------|------------------|--------------------|
| L   | .N   | CODE   |              | BATCH            |    | DATE/TIME     | ANALYST | LR-METHOD | DATE/TIME        | ANALYST INSTRUMENT |
| SA  | MPLI | E ID:  | HWPW-A1-S    | SSO              |    |               | -       |           | SAMPLE NO        | D: H449055         |
|     | 3    | OSVTCS | 73646        | 73646            | NA |               |         | 19-8270В  | 19-APR-97 1225   | TTT                |
| SA  | MPLE | ID:    | HWPW-A2-S    | so               |    |               |         |           | SAMPLE NO        | : H449056          |
|     | 3    | OSVTCS | 73646        | 73646            | NA |               |         | 19-8270В  | 19-APR-97 1312   | TTT                |
| SA  | MPLE | ID:    | HWPW-A3-S    | so               |    |               |         |           | SAMPLE NO        | : н449057          |
|     | 3    | OSVTCS | 73646        | 73646            | NA |               |         | 19-8270в  | 19-APR-97 1358   | TTT                |
| SAI | MPLE | ID:    | HWPW-A4-S    | so               |    |               |         |           | SAMPLE NO        | : H449058          |
|     | 3    | OSVTCS | 73646        | 73646            | NA |               |         | 19-8270в  | 19-APR-97 1444   | TTT                |
| SAI | MPLE | ID:    | HWPW-A5-S    | so               |    |               |         |           | SAMPLE NO        | : н449059          |
|     | 3    | OSVTCS | 73646        | 73646            | NA |               |         | 19-8270в  | 20-APR-97 1928   | гтт                |
| SAN | 4PLE | ID:    | HWPW-A6-SS   | 80               |    |               |         |           | SAMPLE NO        | : н449060          |
|     | 3    | osvtcs | 73646        | 73646            | NA |               |         | 19-8270в  | 19-APR-97 1617   | TTT.               |
| SAM | IPLE | ID:    | HWPW-B1-SS   | 80               |    |               |         |           | SAMPLE NO:       | H449061            |
|     | 3 (  | OSVTCS | 73646        | 73646            | NA |               |         | 19-8270в  | 19-APR-97 1704 1 | тт                 |
| SAM | IPLE | ID: I  | HWPW-B2-SS   | 60               |    |               |         |           | SAMPLE NO:       | H449062            |
|     | 3 (  | OSVTCS | 73646        | 73646            | NA |               |         | 19-8270в  | 21-APR-97 1214 T |                    |
| SAM | PLE  | ID: H  | IWPW-B3-SS   | 0                |    |               |         |           | SAMPLE NO:       | H449063            |
|     | 3 (  | SVTCS  | 73646        | 73646            | NA |               |         | 19-8270в  | 21-APR-97 1300 T |                    |
| SAM | PLE  | ID: H  | IWPW-B4-SS   | 0                |    |               |         |           | SAMPLE NO:       |                    |
|     | 3 0  | SVTCS  | 73646        | 73646            | NA |               |         | 19-8270R  | 20-APR-97 2014 T |                    |
|     |      |        |              |                  |    |               |         | 52.00     | == AFR 77 2014   | 11                 |

# REPORT OF LABORATORY ANALYSIS

April 24, 1997 Report No.: 00060793 Section B Page 2

# SUPPLEMENTAL INFORMATION

|        | 7507   | LCSR       | DUP/MS          |           | - SAMPLE PREPA | RATION  |           | SAMPLE ANALYSIS    |
|--------|--------|------------|-----------------|-----------|----------------|---------|-----------|--------------------|
| LN     | CODE   |            | MS/MSD<br>BATCH | LR-METHOD | DATE/TIME      | ANALYST | LR-METHOD |                    |
| SAMPL  | E ID:  | HWPW-B5-S  | so              |           |                |         |           | SAMPLE NO: H449065 |
| 3      | OSVTC  | 73646      | 73646           | NA        |                |         | 19-8270в  | 19-APR-97 2009 TTT |
| SAMPLI | E ID:  | HWPW-B6-S  | so              |           |                |         |           | SAMPLE NO: H449066 |
| 3      | OSVTCS | 73646      | 73646           | NA        |                |         | 19-8270в  | 19-APR-97 2055 TTT |
| SAMPLE | ID:    | HWPW-C1-S  | so              |           |                |         |           | SAMPLE NO: H449067 |
| 3      | OSVTCS | 73646      | 73646           | NA        |                |         | 19-8270в  | 19-APR-97 2141 TTT |
| SAMPLE | ID:    | HWPW-C2-S  | so              |           |                |         |           | SAMPLE NO: H449068 |
| 3      | OSVTCS | 73646      | 73646           | NA        |                |         | 19-8270B  | 20-APR-97 2101 TTT |
| SAMPLE | ID:    | HWPW-C3-SS | 30              |           |                |         |           | SAMPLE NO: H449069 |
| 3      | OSVTCS | 73646      | 73646           | NA        |                |         | 19-8270в  | 20-APR-97 1145 TTT |
| SAMPLE | ID:    | HWPW-C4-SS | 60              |           |                |         |           | SAMPLE NO: H449070 |
| 3      | OSVTCS | 73646      | 73646           | NA        |                |         | 19-8270в  | 20-APR-97 1231 TTT |
| SAMPLE | ID:    | HWPW-C5-SS | 0               |           |                |         |           | SAMPLE NO: H449071 |
| 3 (    | OSVTCS | 73646      | 73646           | NA        |                |         | 19-8270в  | 20-APR-97 1317 TTT |
| SAMPLE | ID:    | HWPW-C6-SS | 0               |           |                |         |           | SAMPLE NO: H449072 |
| 3 (    | OSVTCS | 73646      | 73646           | NA        |                |         | 19-8270В  | 20-APR-97 1404 TTT |
| SAMPLE | ID: }  | IWPW-D1-SS | 0               |           |                |         |           | SAMPLE NO: H449073 |
| 3 (    | SVTCS  | 73646      | 73646           | NA        |                |         | 19-8270в  | 20-APR-97 1450 TTT |
| SAMPLE | ID: H  | IWPW-D2-SS | 0               |           |                |         |           | SAMPLE NO: H449074 |
| 3 0    | SVTCS  | 73646      | 73646           | NA        |                |         | 19-8270В  | 20-APR-97 1536 TTT |

April 24, 1997 Report No.: 00060793 Section B Page 3

## SUPPLEMENTAL INFORMATION

|        | TEST   | LCSR<br>BLNK | DUP/MS<br>MS/MSD |           | SAMPLE PREPA |         |           | SAMPLE ANALYSIS              |
|--------|--------|--------------|------------------|-----------|--------------|---------|-----------|------------------------------|
| LN     | CODE   |              |                  | LR-METHOD | DATE/TIME    | ANALYST | LR-METHOD | DATE/TIME ANALYST INSTRUMENT |
| SAMPL  | E ID:  | HWPW-8G-S    | SSO              |           |              |         |           | SAMPLE NO: H449075           |
| 3      | OSVTC  | s 73646      | 73646            | NA        |              |         | 19-8270в  | 20-APR-97 1755 TTT           |
| SAMPLI | E ID:  | HWPW-7G-S    | SO               |           |              |         |           | SAMPLE NO: H449076           |
| 3      | OSVTCS | 73646        | 73646            | NA        |              |         | 19-8270в  | 18-APR-97 1256 TTT           |
| SAMPLE | ID:    | HWPW-9G-S    | so               |           |              |         |           | SAMPLE NO: H449077           |
| 3      | OSVTCS | 73646        | 73646            | NA        |              |         | 19-8270в  | 17-APR-97 1658 TTT           |
| SAMPLE | ID:    | HWPW-10G-    | sso              |           |              |         |           | SAMPLE NO: H449078           |
| 3      | OSVTCS | 73646        | 73646            | NA        |              |         | 19-8270в  | 17-APR-97 1745 TTT           |
| SAMPLE | ID:    | HWPW-11G-    | sso              |           |              |         |           | SAMPLE NO: H449079           |
| 3      | OSVTCS | 73646        | 73646            | NA        |              |         | 19-8270B  | 18-APR-97 1343 TTT           |
| SAMPLE | ID:    | HWPW-7F-S    | SO               |           |              |         |           | SAMPLE NO: H449080           |
| 3      | OSVTCS | 73646        | 73646            | NA        |              |         | 19-8270в  | 18-APR-97 1429 TTT           |
|        |        | HWPW-8F-SS   |                  |           |              |         |           | SAMPLE NO: H449081           |
| 3      | OSVTCS | 73646        | 73646            | NA        |              |         | 19-8270B  | 18-APR-97 1517 TTT           |
|        |        | HWPW-9F-SS   |                  |           |              |         |           | SAMPLE NO: H449082           |
| 3      | OSVTCS | 73646        | 73646            | NA        |              |         | 19-8270В  | 18-APR-97 1604 TTT           |
|        |        | HWPW-10F-S   |                  |           |              |         |           | SAMPLE NO: H449083           |
| ,      |        | 73646        |                  | NA        |              |         | 19-8270B  | 17-APR-97 2140 TTT           |
|        |        | IWPW-11-SS   |                  |           |              |         |           | SAMPLE NO: H449084           |
| 3 (    | SVTCS  | 73646        | 73646            | NA        |              |         | 19-8270В  | 20-APR-97 1842 TTT           |

# Pace Analytical

Tel: 281-488-1810 Fax: 281-488-4661

**GCMSB** 

April 24, 1997 Report No.: 00060793 Section B Page 4

23-APR-96 1727 MH

18-APR-97 1651 TTT

## SUPPLEMENTAL INFORMATION

|        | TEST  | LCSR<br>BLNK | DUP/MS<br>MS/MSD |           | · SAMPLE PREPAR | ATION   |           | - SAMPLE ANALY | YSIS               |
|--------|-------|--------------|------------------|-----------|-----------------|---------|-----------|----------------|--------------------|
| LN     | CODE  | BATCH        | BATCH            | LR-METHOD | DATE/TIME       | ANALYST | LR-METHOD | DATE/TIME      | ANALYST INSTRUMENT |
| SAMPLE | ID: H | IWPW-AOC     | 5E-S00           |           |                 |         |           | SAMPLE N       | NO: H449085        |

19-8260A

19-8270B

LR Method Literature Reference

73695

73646

72847 NA

73646 NA

1 OVTCS2

3 OSVTCS

19 EPA-Test Methods for Evaluating Solid Waste, 3rd ed, Nov. 1986 and updates

# Pace Analytical

Tel: 281-488-1810 Fax: 281-488-4661

April 24, 1997 Report No.: 00060793 Section C Page 1

### SURROGATE STANDARD RECOVERY

| LN    | TEST<br>CODE | SURROGATE COMPOUND                                                                              | PERCENT<br>RECOVERY | ACCEPTANCE<br>LIMITS | REF LN  |
|-------|--------------|-------------------------------------------------------------------------------------------------|---------------------|----------------------|---------|
| SAMPL | E ID: 1      | HWPW-AOC5E-SOO                                                                                  |                     | SAMPLE NO:           | H449085 |
| 2     | \$VOA2S      | GC/MS Volatiles Surrogates (8260)<br>4-Bromofluorobenzene<br>Dibromofluoromethane<br>Toluene-d8 | 105<br>105<br>99    | -<br>-<br>-          | 1       |

April 24, 1997 Report No.: 00060793 Section D Page 1

# LABORATORY CONTROL SAMPLE RECOVERY

| TEST<br>CODE | DETERMINATION               | LCS %<br>Recovery | ACCEPTANCE<br>LIMITS | • |
|--------------|-----------------------------|-------------------|----------------------|---|
| BATCH NO: 7  | 3695                        |                   | SAMPLE NO: H385748   | - |
| OVTCS2       | 8260A TCL Volatiles in Soil |                   |                      |   |
|              | 1,1-Dichloroethene          | 79                | -                    |   |
|              | Benzene                     | 100               | -                    |   |
|              | Chlorobenzene               | 100               | -                    |   |
|              | Toluene                     | 100               | -                    |   |
|              | Trichloroethene             | 105               | -                    |   |

April 24, 1997 Report No.: 00060793 Section E Page 1

### METHOD BLANK DATA

| DETERMINATION               | RESULT                                                                                                             | UNIT                                                 |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 73695                       | SAM                                                                                                                | PLE NO: H385749                                      |
| 8260A TCL Volatiles in Soil |                                                                                                                    |                                                      |
| 1,2-Dichloroethane          | < 5                                                                                                                | ug/kg                                                |
| Benzene                     | < 5                                                                                                                | ug/kg                                                |
| Chlorobenzene               | . < 5                                                                                                              | ug/kg                                                |
| Ethylbenzene                | < 5                                                                                                                | ug/kg                                                |
| Methylene chloride          | < 5                                                                                                                | ug/kg                                                |
| Toluene                     | < 5                                                                                                                | ug/kg                                                |
| Xylenes (total)             | < 5                                                                                                                | ug/kg                                                |
|                             | 3695  8260A TCL Volatiles in Soil 1,2-Dichloroethane Benzene Chlorobenzene Ethylbenzene Methylene chloride Toluene | 3695  8260A TCL Volatiles in Soil 1,2-Dichloroethane |

April 24, 1997 Report No.: 00060793 Section H Page 1

# MATRIX SPIKE AND MATRIX SPIKE DUPLICATE DATA

| TEST<br>CODE | DETERMINATION                                                                                               | MS<br>Result                         | MSD<br>RESULT                        | UNITS                                     | RPD                                  | MS PCT<br>RCVRY            | MSD PCT<br>RCVRY              |
|--------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|----------------------------|-------------------------------|
| BATCH NO: 7  | 2847                                                                                                        |                                      |                                      |                                           | SAMI                                 | PLE NO: H447               | <b>7</b> 507                  |
| OVTCS2       | 8260A TCL Volatiles in Soil<br>1,1-Dichloroethene<br>Benzene<br>Chlorobenzene<br>Toluene<br>Trichloroethene | 36.4<br>37.4<br>33.0<br>34.8<br>36.0 | 41.0<br>42.3<br>37.1<br>38.9<br>40.1 | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg | 11.7<br>12.4<br>11.7<br>11.0<br>10.8 | 91<br>93<br>82<br>87<br>90 | 102<br>106<br>93<br>97<br>100 |

- 60,

SEE REVERSE SIDE FOR INSTRUCTIONS

# Pac. Analytical

| CHAIN-OF-CUSTODY RECORD | Pace Client No. Pace Project Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *Reguested Due Date:      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LEMARKS                               |                |                     |                           |     | ACCEPTED BY / AFFILIATION DATE TIME | 10 00 1 (4) 1610    | 12 o 4/5/47   |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|---------------------|---------------------------|-----|-------------------------------------|---------------------|---------------|
|                         | Bill To: TEWOLLE X 7 Bill To: P.O. # / Billing Reference () 2.3   (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | ESERVATIVES ANALYSES REQUEST ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES A |                                       |                |                     |                           |     |                                     | 0.                  | to the things |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | PACE NO. OF CONTAINERS  PACE NO. OF CONTAINERS  PACE NO. OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *                                     | 3 (S           |                     | →<br>-><br>-><br>-><br>-> |     | NETURNED/DATE NUMBER                | Section 1           |               |
|                         | 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | TIME MATRIX P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) 1100 0181                           | 3.60           | 3                   | 11146                     |     | SHIPMENT METHOD OUTDATE RETURN      |                     | Jan Da        |
|                         | Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Address and Addres | Phone 7(2) / (0 - 1/2 3.0 | Sampler Signature Date Sampled    The Control Sampled   Control Sampled   Control Sampled   Control Sampled   Control Sampled   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample   Control Sample | · · · · · · · · · · · · · · · · · · · | 3 HUPUL B3 550 | 5 HIPPING B. W. 250 | ì                         | . 8 | GGGLEH NOS. BAILEHS                 | Additional Comments | 161           |

SEE REVERSE SIDE FOR INSTRUCTIONS

# Pac Analytical

|                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHAIN-OF-CUSTODY RECORD Analytical Request |
|--------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Client in the contract of      |                                        | Report To: William Copylete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |
| Address A 200 Path South # 190 |                                        | Bill To: /ERCENT V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | race Client No.                            |
| Crossen Tr 77080               |                                        | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pace Project Manager                       |
| 160. Y3 30                     | 400-4227                               | 3210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pace Project No.                           |
|                                |                                        | PRESERVATIVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *Requested Due Date:                       |
| Sampler Signature              |                                        | Œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |
| Date Sample                    | 1.8-77 ////                            | SESERVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |
| I EM<br>NO. SAMPLE DESCRIPTION | TIME MATRIX PACE NO.                   | 9ЧИР<br>6ОР<br>6ОИН<br>4О\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |
| 1 100000 01 500                | (1) (C) 1105 2411                      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | REMARKS                                    |
| 2 /10/00 .20 550               | 30 - 54.91                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 3 101810-03-550                | 100)                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 4 MECHANICE SEC                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 5 1191 6 10 1 1 1 2 2 2 2      | 282                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| QSS_9 2 - (n d u) 11 9         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 7 HIM . D. C. 550              | 1                                      | HIGH LUBS 25 TO STATE STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES AND  |                                            |
| C) (2) (1) (1) (2) (3) (8)     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| EGOLER Nos. BAILERS            | SHIPMENT METHOD OUT/DATE RETURNED/DATE | ITEM RELINQUISHED BY / AFFILIATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |
|                                |                                        | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |                                            |
| Additional Comments            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 - 4/11/2 140                           |
| 26                             | ×                                      | 7. FER EX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22 / A. 41.5/2 0922                        |
| 2                              | La down                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |

SEE REVERSE SIDE FOR INSTRUCTIONS

# Pac. Analytical

| CHAIN-OF-CUSTODY RECORD Analytical Request | Pace Client No.<br>Pace Project Manager | Pace Project No.                              | Hequested Due Date:            |                                          | REMARKS                                       |                    |                    |                        |                          |                     |                   |                | ACCEPTED BY / AFFILIATION DATE TIME | Taken 1             |
|--------------------------------------------|-----------------------------------------|-----------------------------------------------|--------------------------------|------------------------------------------|-----------------------------------------------|--------------------|--------------------|------------------------|--------------------------|---------------------|-------------------|----------------|-------------------------------------|---------------------|
|                                            | X                                       | P.O. # / Billing Reference Project Name / No. |                                | AV AV AV AV AV AV AV AV AV AV AV AV AV A | )<br>)<br>)<br> <br> <br> <br> <br> <br> <br> |                    |                    |                        |                          |                     |                   |                | BY / AFFILIATION                    |                     |
|                                            | 061                                     |                                               | SHANIAT                        | TIME MATRIX PACE NO                      |                                               | 040                | C No               | 02.8                   | 16Ca 1 360               | 1000<br>1000        | Jos Sior          | 100 C)         | OUT/DATE RETURNED/DATE              |                     |
| Client Contracts of                        | School Fothway #                        | Phone 131 440 92 50                           | Sampler Signature Date Sampled | ITEM SAMPLE DESCRIPTION                  | 1 "artigle 065 - 350                          | 2 Harry 11. 16-550 | 055-96 - 6 - 8 - 8 | 4 Hru Pub. 10 6 - 1550 | 5 /1111Pall 11 G - 2 - 0 | 9 355 - AL - MAIN 9 | OSK - 18 - 1880 / | 8 This leading | BAILERS                             | Additional Comments |

SEE REVERSE SIDE FOR INSTRUCTIONS

263

Pa. Analytical

|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | CHAIN-OF-CUSTODY RECORD Analytical Request |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------|
| Address (270 CAll Lange) #190  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Report To: FREKNEXT                                |                                            |
| C II refrance                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Billing                                            | Pace Project Manager (2ch.p.e.p.s.         |
| Phone Sampled By Delivity.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Name / No. Hruston Whop Piesser VING WORKS |                                            |
| Campies Dy (Frink).            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                            |
| Sampler Signature Date Sampled | 3///                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CONTA                                              |                                            |
| ITEM SAMPLE DESCRIPTION        | TIME MATHIX PACENO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                                            |
| 1 RUPUL OF SED                 | 100 Nos 24.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    | REMARKS                                    |
| 2 1000 00 11 - 550             | 1000 1 con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |                                            |
| r                              | Property of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    | S. P. A. Bakarilanum                       |
| 4                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                            |
| 5 11 11 11 11 11 11 5 5 5      | 115 sol 085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |                                            |
| 9                              | 100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles (100 miles ( |                                                    |                                            |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                            |
| 8                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                            |
| Marketter NGS. BAILERS         | SHIPMENT METHOD  OUT/DATE RETURNED/DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ITEM RELINQUISHED BY / AFFILIATION                 | ACCEPTED BY / AFFILIATION DATE TIME        |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                            |
| Additional Comments            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | " Children III                                     | 100/1/1/1/2001                             |
| 264                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ed the Mar the                                     | 1/2/10 1/2/10 0500                         |
|                                | Jan 3 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                                            |

SEE REVERSE SIDE FOR INSTRUCTIONS

May 19, 1997 Report No.: 00061433 Section A Page 1

< 10.0 ug/L

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210-

ATTENTION: CURTIS L. JONES, CHMM

SAMPLE ID: HP17-UTZ SAMPLE NO: H450536

SAMPLE NO: H450536 SAMPLE MATRIX: WATER



LIMS CLIENT: 0717 0007
PACE PROJECT: H45136
PACE CLIENT: 620437
P.O. NO: 03410

DATE SAMPLED: 08-MAY-97

DATE RECEIVED: 10-MAY-97

PROJECT MANAGER: Elessa Sommers

**TEST** DILUTION DETERMINATION **FACTOR** RESULT UNITS 1 OVTCW2 8260A TCL Volatiles in Water 1,2-Dichloroethane < 5 ug/L Benzene < 5 ug/L Chlorobenzene < 5 ug/L Ethylbenzene 1 < 5 ug/L Methylene chloride < 5 ug/L Toluene < 5 ug/L Xylenes (total) < 5 ug/L 3 OSVTCW TCL - Semi-volatile Extractables in Water 1,2-Diphenylhydrazine 1 < 10.0 ug/L 2,4-Dimethylphenol 1 < 10.0 ug/L 2,4-Dinitrotoluene 1 < 10.0 ug/L 2,6-Dinitrotoluene < 10.0 ug/L 2-Chloronaphthalene < 10.0 ug/L 2-Methylnaphthalene 1 < 10.0 ug/L 4,6-Dinitro-o-cresol < 25.0 ug/L 4-Nitrophenol < 25.0 ug/L Acenaphthene 32.9 ug/L Acenaphthylene < 10.0 ug/L Anthracene < 10.0 ug/L Benzo(a)anthracene < 10.0 Benzo(a)pyrene < 10.0 ug/L Chrysene < 10.0 ug/L Di-n-butylphthalate < 10.0 ug/L Dibenzofuran < 10.0 ug/L Fluoranthene 1 < 10.0 ug/L Fluorene 1 16.3 ug/L N-Nitrosodiphenylamine < 10.0 ug/L Naphthalene 1 < 10.0 ug/L Nitrobenzene 1 < 10.0 ug/L Pentachlorophenol < 25.0 ug/L Phenanthrene < 10.0 ug/L Phenol 1 18.4 ug/L Pyrene 1 < 10.0 ug/L bis(2-Chloroethoxy)methane

265

# REPORT OF LABORATORY ANALYSIS

May 19, 1997 Report No.: 00061433

Section A Page 2

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT SAMPLE ID: HP17-UTZ SAMPLE NO: H450536

TEST DILUTION LN CODE DETERMINATION

bis(2-Ethylhexyl)phthalate

< 10.0 ug/L

RESULT UNITS

**FACTOR** 

COMMENTS: The organic analyses were performed by Pace Analytical - New Orleans laboratory.

May 19, 1997 Report No.: 00061433 Section A Page 3

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210-

ATTENTION: CURTIS L. JONES, CHMM

SAMPLE ID: HP17-STZ

SAMPLE NO: H450537

SAMPLE MATRIX: WATER

LIMS CLIENT: 0717 0007

PACE PROJECT: H45136

PACE CLIENT: 620437

P.O. NO: 03410

DATE SAMPLED: 08-MAY-97

DATE RECEIVED: 10-MAY-97

PROJECT MANAGER: Elessa Sommers

| LN | TEST    | DETERMINATION                             |     | DILUTION FACTOR | RESULT | UNITS    |
|----|---------|-------------------------------------------|-----|-----------------|--------|----------|
| 1  | OVTCW2  | 8260A TCL Volatiles in Water              |     |                 |        |          |
| ·  | 0110112 | 1,2-Dichloroethane                        |     |                 | _      |          |
|    |         | Benzene                                   |     | 1               | < 5    | <b>.</b> |
|    |         | Chlorobenzene                             |     | 1               | < 5    | •        |
|    |         | Ethylbenzene                              |     | 1               | < 5    | -0, -    |
|    |         | Methylene chloride                        |     | 1               | < 5    | -3, -    |
|    |         | Toluene                                   |     | 1               | < 5    | •        |
|    |         | Xylenes (total)                           |     | 1               | < 5    | •        |
| 3  | OSVTCW  | TCL - Semi-volatile Extractables in Water |     | 1               | < 5    | ug/L     |
|    |         | 1,2-Diphenylhydrazine                     |     |                 | . 40   |          |
|    |         | 2,4-Dimethylphenol                        |     | 1<br>1          | < 10   | ug/L     |
|    |         | 2,4-Dinitrotoluene                        |     | 1               | < 10   |          |
|    |         | 2,6-Dinitrotoluene                        |     | 1               | < 10   | •        |
|    |         | 2-Chloronaphthalene                       |     | 1               |        | ug/L     |
|    |         | 2-Methylnaphthalene                       |     | 1               | < 10   | ug/L     |
|    |         | 4,6-Dinitro-o-cresol                      |     | 1               | < 25   | -0, -    |
|    |         | 4-Nitrophenol                             |     | 1               | < 25   | -        |
|    |         | Acenaphthene                              |     | 1               | < 10   | ug/L     |
|    |         | Acenaphthylene                            |     | 1               | < 10   | <b>.</b> |
|    |         | Anthracene                                |     | 1               | < 10   | •        |
|    |         | Benzo(a)anthracene                        |     | 1               | < 10   | ug/L     |
|    |         | Benzo(a)pyrene                            |     | 1               | < 10   | ug/L     |
|    |         | Chrysene                                  |     | 1               | < 10   | ug/L     |
|    |         | Di-n-butylphthalate                       |     | 1               | 14.2   | ug/L     |
|    |         | Dibenzofuran                              |     | 1               |        |          |
|    |         | Fluoranthene                              |     | 1               |        | ug/L     |
|    |         | Fluorene                                  |     | 1               |        | ug/L     |
|    |         | N-Nitrosodiphenylamine                    |     | 1               |        | ug/L     |
|    |         | Naphthalene                               |     | 1               |        | ug/L     |
|    |         | Nitrobenzene                              |     | 1               |        | ug/L     |
|    |         | Pentachlorophenol                         |     | 1               |        | ug/L     |
|    |         | Phenanthrene                              |     | 1               |        | ug/L     |
|    |         | Phenol                                    |     | 1               |        | ug/L     |
|    |         | Pyrene                                    |     | 1               |        | ug/L     |
|    |         | bis(2-Chloroethoxy)methane                |     | 1               |        | ug/L     |
|    |         | ,                                         | 267 | 1               | < 10   | ug/L     |

## REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

900 Gemini Avenue Houston, TX 77058

Tel: 281-488-1810 Fax: 281-488-4661

May 19, 1997 Report No.: 00061433 Section A Page 4

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT SAMPLE ID: HP17-STZ SAMPLE NO: H450537

TEST DILUTION LN CODE DETERMINATION **FACTOR** RESULT UNITS

bis(2-Ethylhexyl)phthalate

1 < 10 ug/L

COMMENTS: The organic analyses were performed by Pace Analytical - New Orleans laboratory.

May 19, 1997 Report No.: 00061433 Section A Page 5

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210
ATTENTION: CURTIS L. JONES, CHMM

LIMS CLIENT: 0717 0007

PACE PROJECT: H45136

PACE CLIENT: 620437

P.O. NO: 03410

SAMPLE ID: HP18-UTZ
SAMPLE NO: H450538

SAMPLE MATRIX: WATER

DATE SAMPLED: 08-MAY-97
DATE RECEIVED: 10-MAY-97
PROJECT MANAGER: Elessa Sommers

| LN | TEST<br>CODE | DETERMINATION                             | DILUTION<br>FACTOR | RESULT           | UNITS        |
|----|--------------|-------------------------------------------|--------------------|------------------|--------------|
| 1  | OVTCW2       | 8260A TCL Volatiles in Water              |                    |                  |              |
|    |              | 1,2-Dichloroethane                        | 4                  | . 5.00           |              |
|    |              | Benzene                                   | 1                  | < 5.00           |              |
|    |              | Chlorobenzene                             | 1                  | < 5.00           | ug/L         |
|    |              | Ethylbenzene                              | 1                  | < 5.00           | ug/L         |
|    |              | Methylene chloride                        | 1                  | < 5.00<br>< 5.00 | ug/L         |
|    |              | Toluene                                   | 1                  |                  | ug/L         |
|    |              | Xylenes (total)                           | 1                  |                  | ug/L<br>ug/L |
| 3  | OSVTCW       | TCL - Semi-volatile Extractables in Water | '                  | · 3.00           | ug/L         |
|    |              | 1,2-Diphenylhydrazine                     | 1                  | < 10             | ug/L         |
|    |              | 2,4-Dimethylphenol                        | ·<br>1             |                  | ug/L         |
|    |              | 2,4-Dinitrotoluene                        | . 1                |                  | ug/L         |
|    |              | 2,6-Dinitrotoluene                        | 1                  |                  | ug/L         |
|    |              | 2-Chloronaphthalene                       | 1                  |                  | ug/L         |
|    |              | 2-Methylnaphthalene                       | 1                  |                  | ug/L         |
|    |              | 4,6-Dinitro-o-cresol                      | <u>i</u>           |                  | ug/L         |
|    |              | 4-Nitrophenol                             | 1                  |                  | ug/L         |
|    |              | Acenaphthene                              | 5                  |                  | ug/L         |
|    |              | Acenaphthylene                            | 1                  |                  | ug/L         |
|    |              | Anthracene                                | 1                  |                  | ug/L         |
|    |              | Benzo(a)anthracene                        | 1                  |                  | ug/L         |
|    |              | Benzo(a)pyrene                            | . 1                |                  | ug/L         |
|    |              | Chrysene                                  | 1                  |                  | ug/L         |
|    |              | Di-n-butylphthalate                       | 1                  |                  | ug/L         |
|    |              | Dibenzofuran                              | 5                  |                  | ug/L         |
|    |              | Fluoranthene                              | 1                  |                  | ug/L         |
|    |              | Fluorene                                  | 5                  |                  | ug/L         |
|    |              | N-Nitrosodiphenylamine                    | 1                  |                  | 1g/L         |
|    |              | Naphthalene                               | 5                  |                  | 19/L         |
|    |              | Nitrobenzene                              | 1                  |                  | ıg/L         |
|    |              | Pentachlorophenol                         | 1                  |                  | 19/L         |
|    |              | Phenanthrene                              | 1                  |                  | ig/L         |
|    |              | Phenol                                    | · 1                |                  | ıg/L         |
|    |              | Pyrene                                    | 1                  |                  | ıg/L         |
|    |              | bis(2-Chloroethoxy)methane                | 1                  |                  | ıg/L         |
|    |              | ማ ድ                                       | m ·                |                  | J            |

## REPORT OF LABORATORY ANALYSIS

269

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

May 19, 1997 Report No.: 00061433 Section A Page 6

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT SAMPLE ID: HP18-UTZ SAMPLE NO: H450538

| LN | TEST         | DETERMINATION                                                                  | DILUTION<br>FACTOR RESI | JLT | UNITS                |
|----|--------------|--------------------------------------------------------------------------------|-------------------------|-----|----------------------|
|    | 1590<br>1610 | bis(2-Ethylhexyl)phthalate Solids, Dissolved at 180C Solids, Suspended at 103C | 1 9                     | 14  | ug/L<br>mg/L<br>mg/L |

COMMENTS: The organic analyses were performed by Pace Analytical - New Orleans laboratory.

May 19, 1997
Report No.: 00061433
Section A Page 7

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210
ATTENTION: CURTIS L. JONES, CHMM

LIMS CLIENT: 0717 0007

PACE PROJECT: H45136

PACE CLIENT: 620437

P.O. NO: 03410

SAMPLE ID: HP18-STZ
SAMPLE NO: H450539

SAMPLE MATRIX: WATER

DATE SAMPLED: 08-MAY-97
DATE RECEIVED: 10-MAY-97
PROJECT MANAGER: Elessa Sommers

| LN | TEST<br>CODE | DETERMINATION                             | DILUTION<br>FACTOR | RESULT  | UNITS |
|----|--------------|-------------------------------------------|--------------------|---------|-------|
|    |              |                                           |                    |         |       |
| 1  | OVTCW2       | 8260A TCL Volatiles in Water              |                    |         |       |
|    |              | 1,2-Dichloroethane                        | 1                  | < 5     | ug/L  |
|    |              | Benzene                                   | 1                  | < 5     | ug/L  |
|    |              | Chlorobenzene                             | 1                  | < 5     | ug/L  |
|    |              | Ethylbenzene                              | 1                  | < 5     | ug/L  |
|    |              | Methylene chloride                        | 1                  | < 5     | ug/L  |
|    |              | Toluene                                   | 1                  | < 5     | ug/L  |
| _  |              | Xylenes (total)                           | 1                  | < 5     | ug/L  |
| 3  | OSVTCW       | TCL - Semi-volatile Extractables in Water |                    |         |       |
|    |              | 1,2-Diphenylhydrazine                     | 1                  | < 11.1* | ug/L  |
|    |              | 2,4-Dimethylphenol                        | 1                  | < 11.1* | ug/L  |
|    |              | 2,4-Dinitrotoluene                        | 1                  | < 11.1* | ug/L  |
|    |              | 2,6-Dinitrotoluene                        | <sub>~</sub> 1     | < 11.1* | ug/L  |
|    |              | 2-Chloronaphthalene                       | 1                  | < 11.1* | ug/L  |
|    |              | 2-Methylnaphthalene                       | 1                  | 63.7*   | ug/L  |
|    |              | 4,6-Dinitro-o-cresol                      | 1                  | < 27.7* | ug/L  |
|    |              | 4-Nitrophenol                             | 1.                 | < 27.7* | ug/L  |
|    |              | Acenaphthene                              | 5                  | 185 *   | ug/L  |
|    |              | Acenaphthylene                            | 1                  | < 11.1* | ug/L  |
|    |              | Anthracene                                | 1                  | < 11.1* | ug/L  |
|    |              | Benzo(a)anthracene                        | 1                  | < 11.1* | ug/L  |
|    |              | Benzo(a)pyrene                            | 1                  |         | ug/L  |
|    |              | Chrysene                                  | 1                  | < 11.1* | ug/L  |
|    |              | Di-n-butylphthalate                       | 1                  | < 11.1* | ug/L  |
|    |              | Dibenzofuran                              | 5                  | 145 *   | ug/L  |
|    |              | Fluoranthene                              | 1                  | < 11.1* | ug/L  |
|    |              | Fluorene                                  | 5                  | 126 *   | ug/L  |
|    |              | N-Nitrosodiphenylamine                    | . 1                | < 11.1* | ug/L  |
|    |              | Naphthalene<br>Nitrobenzene               | 10                 | 476 *   | ug/L  |
|    |              |                                           | 1                  |         | ug/L  |
|    |              | Pentachlorophenol Phenanthrene            | 1                  |         | ug/L  |
|    |              | Phenol                                    | 1                  |         | ug/L  |
|    |              | Pyrene                                    | 1                  |         | ug/L  |
|    |              | •                                         | 1                  |         | ug/L  |
|    |              | bis(2-Chloroethoxy)methane                | 1                  | < 11.1* | ug/L  |
|    |              | 271                                       |                    |         |       |

# REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services. Inc.

# Pace Analytical

Tel: 281-488-1810 Fax: 281-488-4661

May 19, 1997 Report No.: 00061433 Section A Page 8

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT SAMPLE ID: HP18-STZ SAMPLE NO: H450539

| LN     | CODE         | DETERMINATION                                                                                                                                                                                                                                                                                                            | DILUTION<br>FACTOR | RESULT                   | UNITS                |
|--------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------|----------------------|
| 5<br>6 | 1590<br>1610 | bis(2-Ethylhexyl)phthalate<br>Solids, Dissolved at 180C<br>Solids, Suspended at 103C                                                                                                                                                                                                                                     | 1<br>1<br>10       | < 11.1*<br>881<br>16,070 | ug/L<br>mg/L<br>mg/L |
| COM    |              | * A reduced sample aliquot was extracted. The reporting limit is elevated accordingly.  The values for Acenaphthene, Dibenzofuran, Fluorene, and Naphthalene were based upon analysis at a dilution due to the high analyte concentration. The organic analyses were performed by Pace Analytical - New Orleans laborato | P.V.               |                          |                      |

May 19, 1997 Report No.: 00061433 Section A Page 9

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210-

ATTENTION: CURTIS L. JONES, CHMM

SAMPLE ID: HP19-UTZ

SAMPLE NO: H450540

SAMPLE MATRIX: WATER

PACE PROJECT: H45136 PACE CLIENT: 620437

LIMS CLIENT: 0717 0007

P.O. NO: 03410

DATE SAMPLED: 08-MAY-97

DATE RECEIVED: 10-MAY-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DILUTION |                                         |              |
|----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------|--------------|
| LN | CODE   | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FACTOR   | RESULT                                  | UNITS        |
|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                         |              |
|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                         |              |
| 1  | OVTCW2 | The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th |          |                                         |              |
|    |        | 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 5                                     | ug/L         |
|    |        | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 1      | < 5                                     | ug/L         |
|    |        | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        | < 5                                     | ug/L         |
|    |        | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | < 5                                     | ug/L         |
|    |        | Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 5                                     | ug/L         |
|    |        | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        | < 5                                     | ug/L         |
|    |        | Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | < 5                                     | ug/L         |
| 3  | OSVTCW | TCL - Semi-volatile Extractables in Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                         |              |
|    |        | 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1        | < 12.7*                                 | ug/L         |
|    |        | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 12.7*                                 | ug/L         |
|    |        | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 12.7*                                 | ug/L         |
|    |        | 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | < 12.7*                                 | •            |
|    |        | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        | < 12.7*                                 | ug/L         |
|    |        | 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        | < 12.7*                                 | ug/L         |
|    |        | 4,6-Dinitro-o-cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1        | < 31.7*                                 | ug/L         |
|    |        | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        | < 31.7*                                 | ug/L         |
|    |        | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | < 12.7*                                 | ug/L         |
|    |        | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1        |                                         | ug/L         |
|    |        | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        |                                         | ug/L         |
|    |        | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | 100000000000000000000000000000000000000 | ug/L         |
|    |        | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1        |                                         | ug/L         |
|    |        | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        |                                         | ug/L         |
|    |        | Di-n-butylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        |                                         | ug/L         |
|    |        | Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        |                                         | ug/L         |
|    |        | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        |                                         | ug/L         |
|    |        | Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        |                                         | ug/L         |
|    |        | N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        |                                         | ug/L         |
|    |        | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |                                         | ug/L         |
|    |        | Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        |                                         | ug/L<br>ug/L |
|    |        | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        |                                         | ug/L<br>ug/L |
|    |        | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        |                                         | -            |
|    |        | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        |                                         | ug/L         |
|    |        | Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        |                                         | ug/L         |
|    |        | bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        |                                         | ug/L         |
|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | < 12./*                                 | ug/L         |

273

## REPORT OF LABORATORY ANALYSIS

# Pace Analytical

Tel: 281-488-1810 Fax: 281-488-4661

May 19, 1997 Report No.: 00061433 Section A Page 10

## LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT SAMPLE ID: HP19-UTZ SAMPLE NO: H450540

| LN  | TEST<br>CODE | DETERMINATION                                                                                                                                                         | DILUTION<br>FACTOR | RESULT                 | UNITS |
|-----|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|-------|
|     | 1590<br>1610 | bis(2-Ethylhexyl)phthalate<br>Solids, Dissolved at 180C<br>Solids, Suspended at 103C                                                                                  | 1<br>1<br>20       | 13.6*<br>748<br>20,340 | mg/L  |
| COM | MENTS:       | * A reduced sample aliquot was extracted. The reporting limit is elevated accordingly.  The organic analyses were performed by Pace Analytical - New Orleans laborato | rv.                |                        |       |

May 19, 1997 Report No.: 00061433 Section A Page 11

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210-

ATTENTION: CURTIS L. JONES, CHMM

SAMPLE ID: HP20-UTZ SAMPLE NO: H450541

SAMPLE MATRIX: WATER

DATE SAMPLED: 09-MAY-97 DATE RECEIVED: 10-MAY-97 PROJECT MANAGER: Elessa Sommers

LIMS CLIENT: 0717 0007

PACE PROJECT: H45136

PACE CLIENT: 620437

P.O. NO: 03410

TEST DILUTION CODE LN DETERMINATION **FACTOR** RESULT UNITS 1 OVTCW2 8260A TCL Volatiles in Water 1,2-Dichloroethane < 5 ug/L Benzene < 5 ug/L Chlorobenzene 1 < 5 ug/L Ethylbenzene 1 < 5 ug/L Methylene chloride 1 < 5 ug/L Toluene 1 < 5 ug/L Xylenes (total) < 5 ug/L 3 OSVTCW TCL - Semi-volatile Extractables in Water 1,2-Diphenylhydrazine 1 < 10 ug/L 2,4-Dimethylphenol 1 < 10 ug/L 2,4-Dinitrotoluene < 10 ug/L 2,6-Dinitrotoluene 1 < 10 ug/L 2-Chloronaphthalene < 10 ug/L 2-Methylnaphthalene 1 < 10 ug/L 4,6-Dinitro-o-cresol < 25 ug/L 4-Nitrophenol < 25 ug/L Acenaphthene 1 < 10 ug/L Acenaphthylene < 10 ug/L 1 Anthracene < 10 ug/L Benzo(a)anthracene < 10 ug/L Benzo(a)pyrene < 10 ug/L Chrysene 1 < 10 Di-n-butylphthalate < 10 ug/L Dibenzofuran < 10 ug/L Fluoranthene < 10 ug/L Fluorene 1 < 10 ug/L N-Nitrosodiphenylamine 1 < 10 ug/L Naphthalene 1 < 10 ug/L Nitrobenzene < 10 ug/L Pentachlorophenol 1 < 25 ug/L Phenanthrene < 10 ug/L Phenol 1 < 10 ug/L Pyrene 1 < 10 ug/L bis(2-Chloroethoxy)methane < 10 ug/L 1

## REPORT OF LABORATORY ANALYSIS

275

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 281-488-1810 Fax: 281-488-4661

May 19, 1997 Report No.: 00061433 Section A Page 12

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT SAMPLE ID: HP20-UTZ SAMPLE NO: H450541

| LN     | TEST<br>CODE | DETERMINATION                                                                        | ILUTION<br>FACTOR | RESULT                | UNITS                |  |
|--------|--------------|--------------------------------------------------------------------------------------|-------------------|-----------------------|----------------------|--|
| 5<br>6 | 1590<br>1610 | bis(2-Ethylhexyl)phthalate<br>Solids, Dissolved at 180C<br>Solids, Suspended at 103C | 1<br>1<br>20      | < 10<br>912<br>13,300 | ug/L<br>mg/L<br>mg/L |  |
| COM    | MENTS:       | The organic analyses were performed by Pace Analytical - New Orleans laborators      | , ,               | ·                     | -                    |  |

May 19, 1997
Report No.: 00061433
Section A Page 13

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210-

ATTENTION: CURTIS L. JONES, CHMM

SAMPLE ID: HP20-STZ

SAMPLE NO: H450542

SAMPLE MATRIX: WATER

LIMS CLIENT: 0717 0007

PACE PROJECT: H45136

PACE CLIENT: 620437

P.O. NO: 03410

DATE SAMPLED: 09-MAY-97

DATE RECEIVED: 10-MAY-97

PROJECT MANAGER: Elessa Sommers

| .N | CODE   | DETERMINATION                             | DILUTION<br>FACTOR                      | RESULT | UNITS        |
|----|--------|-------------------------------------------|-----------------------------------------|--------|--------------|
| 1  | OVTCW2 | 8260A TCL Volatiles in Water              | ,                                       |        |              |
|    |        | 1,2-Dichloroethane                        | _                                       | _      |              |
|    |        | Benzene                                   | * 1                                     | < 5    | ug/L         |
|    |        | Chlorobenzene                             | 1                                       | < 5    | ug/L         |
|    |        | Ethylbenzene                              | 1                                       | < 5    | ug/L         |
|    |        | Methylene chloride                        | 1                                       | < 5    | ug/L         |
|    |        | Toluene                                   | 1                                       | < 5    | ug/L         |
|    |        | Xylenes (total)                           | 1                                       | < 5    | ug/L         |
| 3  | OSVTCW | TCL - Semi-volatile Extractables in Water | 1                                       | < 5    | ug/L         |
|    |        | 1,2-Diphenylhydrazine                     |                                         |        |              |
|    |        | 2,4-Dimethylphenol                        | 1                                       | < 10   | ug/L         |
|    |        | 2,4-Dinitrotoluene                        | 1                                       | < 10   | ug/L         |
|    |        | 2,6-Dinitrotoluene                        | 1                                       | < 10   | ug/L         |
|    |        | 2-Chloronaphthalene                       | 1                                       | < 10   | ug/L         |
|    |        | 2-Methylnaphthalene                       | 1                                       | < 10   | ug/L         |
|    |        | 4,6-Dinitro-o-cresol                      | 1                                       | < 10   | ug/L         |
|    |        | 4-Nitrophenol                             | 1                                       | < 25   | ug/L         |
|    |        |                                           | 1                                       | < 25   | ug/L         |
|    |        | Acenaphthene                              | 1                                       | < 10   | ug/L         |
|    |        | Acenaphthylene                            | 1                                       | < 10   | ug/L         |
|    |        | Anthracene                                | 1                                       |        | ug/L         |
|    |        | Benzo(a)anthracene                        | 1                                       |        | ug/L         |
|    |        | Benzo(a)pyrene                            | 1                                       |        | ug/L         |
|    |        | Chrysene                                  | 1                                       |        | ug/L         |
|    |        | Di-n-butylphthalate                       | 1                                       |        | ug/L         |
|    |        | Dibenzofuran                              | 1                                       |        | ug/L         |
|    |        | Fluoranthene                              | 1                                       |        | ug/L         |
|    |        | Fluorene                                  | 1                                       |        | ug/L         |
|    |        | N-Nitrosodiphenylamine                    | 1                                       |        | ug/L         |
|    |        | Naphthalene                               | 1                                       |        | •            |
|    |        | Nitrobenzene                              | 1                                       |        | ug/L         |
|    |        | Pentach loropheno l                       | * · · · · · · · · · · · · · · · · · · · |        | ug/L         |
|    |        | Phenanthrene                              | 1                                       |        | ug/L         |
|    |        | Phenol                                    | 1                                       |        | ug/L         |
|    |        | Pyrene                                    | •                                       |        | ug/L         |
|    |        | bis(2-Chloroethoxy)methane                | 1                                       |        | ug/L<br>ug/L |

277

# REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services. Inc.

May 19, 1997 Report No.: 00061433 Section A Page 14

## LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT SAMPLE ID: HP20-STZ SAMPLE NO: H450542

| LN  | TEST<br>CODE | DETERMINATION                                                                        | DILUTION<br>FACTOR | RESULT                 | UNITS |
|-----|--------------|--------------------------------------------------------------------------------------|--------------------|------------------------|-------|
| 5   | 1590<br>1610 | bis(2-Ethylhexyl)phthalate<br>Solids, Dissolved at 180C<br>Solids, Suspended at 103C | 1<br>2<br>4        | < 10<br>1,310<br>2,676 |       |
| COM | MENTS:       | The organic analyses were performed by Pace Analytical - New Orleans laborate        | nrv.               | 2,0.0                  | mg/ L |

May 19, 1997 Report No.: 00061433 Section A Page 15

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210-

ATTENTION: CURTIS L. JONES, CHMM

SAMPLE ID: HP19-STZ

SAMPLE NO: H450543

SAMPLE MATRIX: WATER

LIMS CLIENT: 0717 0007

PACE PROJECT: H45136

PACE CLIENT: 620437

P.O. NO: 03410

DATE SAMPLED: 09-MAY-97

DATE RECEIVED: 10-MAY-97

PROJECT MANAGER: Elessa Sommers

| LN | TEST<br>CODE | DETERMINATION                                                                                                                             | DILUTION<br>FACTOR         | RESULT                                         | UNITS                                                |
|----|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------|------------------------------------------------------|
| 1  | OVTCW2       | 8260A TCL Volatiles in Water 1,2-Dichloroethane Benzene Chlorobenzene Ethylbenzene Methylene chloride Naphthalene Toluene Xylenes (total) | 1<br>1<br>1<br>1<br>1<br>1 | < 5<br>< 5<br>< 5<br>< 5<br>< 10<br>< 5<br>< 5 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L |

COMMENTS: The analysis was performed by Pace Analytical - New Orleans laboratory.

May 19, 1997 Report No.: 00061433 Section A Page 16

### LABORATORY ANALYSIS REPORT

|                                            | TERRANEXT 8101 COLLEGE BLVD., SUITE 230 OVERLAND PARK, KS 66210- CURTIS L. JONES, CHMM | LIMS CLIENT: PACE PROJECT: PACE CLIENT: P.O. NO:    | H45136<br>620437 |
|--------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------|------------------|
| SAMPLE ID:<br>SAMPLE NO:<br>SAMPLE MATRIX: | H450544                                                                                | DATE SAMPLED:<br>DATE RECEIVED:<br>PROJECT MANAGER: | 10-MAY-97        |

| LN | TEST<br>CODE | DETERMINATION                                                   | DILUTION<br>FACTOR | RESULT  | UNITS | • • • • •  |
|----|--------------|-----------------------------------------------------------------|--------------------|---------|-------|------------|
|    |              |                                                                 |                    |         |       |            |
| 1  | OVTCW2       | 9240A 701 Welenston 1                                           |                    |         |       |            |
|    | OVICWZ       | 8260A TCL Volatiles in Water<br>1,2-Dichloroethane              |                    |         |       |            |
|    |              | Benzene                                                         | 1                  | < 5     | ug/L  |            |
|    |              | Chlorobenzene                                                   | 1                  | < 5     | ug/L  |            |
|    |              | Ethylbenzene                                                    | · ,,               | < 5     | ug/L  |            |
|    |              | Methylene chloride                                              | 1                  | < 5     | ug/L  |            |
|    |              | Toluene                                                         | 1                  | < 5     | ug/L  |            |
|    |              | Xylenes (total)                                                 | 1                  | < 5     | ug/L  | 7.         |
| 3  | OSVTCW       |                                                                 | 1                  | < 5     | ug/L  |            |
| ,  | 03410        | TCL - Semi-volatile Extractables in Water 1,2-Diphenylhydrazine |                    |         |       |            |
|    |              |                                                                 | 1                  | < 11.1* | ug/L  |            |
|    |              | 2,4-Dimethylphenol 2,4-Dinitrotoluene                           |                    | < 11.1* | ug/L  | -          |
|    |              | 2,6-Dinitrotoluene                                              | 1                  | < 11.1* | ug/L  |            |
|    |              |                                                                 | 1                  | < 11.1* | ug/L  |            |
|    |              | 2-Chloronaphthalene<br>2-Methylnaphthalene                      | 1                  | < 11.1* | ug/L  |            |
|    |              | 4,6-Dinitro-o-cresol                                            | 1                  | < 11.1* | ug/L  |            |
|    |              |                                                                 | 1                  | < 27.7* | ug/L  |            |
|    |              | 4-Nitrophenol                                                   | 1                  | < 27.7* | ug/L  |            |
|    |              | Acenaphthele                                                    | 1                  | < 11.1* | ug/L  |            |
|    |              | Acenaphthylene Anthracene                                       | 1                  | < 11.1* | ug/L  |            |
|    |              | Benzo(a)anthracene                                              | 1                  | < 11.1* | ug/L  |            |
|    |              |                                                                 | 1                  | < 11.1* | ug/L  |            |
|    |              | Benzo(a)pyrene                                                  | 1                  | < 11.1* | ug/L  |            |
|    |              | Chrysene                                                        | 1                  | < 11.1* | ug/L  |            |
|    |              | Di-n-butylphthalate Dibenzofuran                                | 1                  | < 11.1* | ug/L  |            |
|    |              |                                                                 | 1                  | < 11.1* | ug/L  |            |
|    |              | Fluoranthene                                                    | 1                  | < 11.1* | ug/L  |            |
|    |              | Fluorene                                                        | 1                  | < 11.1* | ug/L  |            |
|    |              | N-Nitrosodiphenylamine                                          | 1                  |         | ug/L  |            |
|    |              | Naphthalene<br>Nitrobenzene                                     | 1                  | < 11.1* | ug/L  |            |
|    |              |                                                                 | 1                  | < 11.1* | ug/L  |            |
|    |              | Pentachlorophenol<br>Phenanthrene                               | 1                  |         | ug/L  |            |
|    |              | Phenanthrene<br>Phenol                                          | 1                  |         | ug/L  |            |
|    |              |                                                                 | 1                  |         | ug/L  |            |
|    |              | Pyrene                                                          | 1                  |         | ug/L  |            |
|    |              | bis(2-Chloroethoxy)methane                                      | 1                  |         | ug/L  | <i>i</i> : |

# REPORT OF LABORATORY ANALYSIS

280

May 19, 1997
Report No.: 00061433
Section A Page 17

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT SAMPLE ID: HP21-UTZ SAMPLE NO: H450544

| LN  | TEST<br>CODE | DETERMINATION                                                                                                                                                         | DILUTION<br>FACTOR | RESULT                    | UNITS |
|-----|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------|-------|
| _   | 1590<br>1610 | bis(2-Ethylhexyl)phthalate<br>Solids, Dissolved at 180C<br>Solids, Suspended at 103C                                                                                  | 1<br>1<br>5        | < 11.1*<br>1,119<br>5,230 | mg/L  |
| COM | MENTS:       | * A reduced sample aliquot was extracted. The reporting limit is elevated accordingly.  The organic analyses were performed by Pace Analytical - New Orleans laborate | ory.               |                           |       |

May 19, 1997 Report No.: 00061433 Section A Page 18

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210-

ATTENTION: CURTIS L. JONES, CHMM

SAMPLE ID: HP21-STZ SAMPLE NO: H450545

SAMPLE MATRIX: WATER

LIMS CLIENT: 0717 0007

PACE PROJECT: H45136 PACE CLIENT: 620437

P.O. NO: 03410

DATE SAMPLED: 09-MAY-97

DATE RECEIVED: 10-MAY-97 PROJECT MANAGER: Elessa Sommers

|    | 7707 |                                                                                                                               |                            |                                          |              |
|----|------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------|--------------|
| LN | CODE | DETERMINATION                                                                                                                 | DILUTION<br>FACTOR         | RESULT                                   | UNITS        |
| 1  |      | 8260A TCL Volatiles in Water 1,2-Dichloroethane Benzene Chlorobenzene Ethylbenzene Methylene chloride Toluene Xylenes (total) | 1<br>1<br>1<br>1<br>1<br>1 | < 5<br>6.72<br>< 5<br>64.3<br>< 5<br>< 5 | ug/L<br>ug/L |

COMMENTS: The analysis was performed by Pace Analytical - New Orleans laboratory.

May 19, 1997
Report No.: 00061433
Section A Page 19

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210-

ATTENTION: CURTIS L. JONES, CHMM

SAMPLE ID: HP21-STZ

COMMENTS: Continued on next page.

SAMPLE NO: H450555

SAMPLE MATRIX: WATER

LIMS CLIENT: 0717 0007 PACE PROJECT: H45136

PACE PROJECT: H45136
PACE CLIENT: 620437

P.O. NO: 03410

DATE SAMPLED: 12-MAY-97

DATE RECEIVED: 12-MAY-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                             | DILUTION     |       |       |
|----|--------|---------------------------------------------|--------------|-------|-------|
| LN | CODE   | DETERMINATION                               | FACTOR R     | ESULT | UNITS |
|    |        | · · · · · ·                                 |              |       |       |
| -  | SOSVTC | W TCL - Semi-volatile Extractables in Water |              |       |       |
| -  | 03410  | 1,2-Diphenylhydrazine                       |              |       |       |
|    |        | • • • • • • • • • • • • • • • • • • • •     | 1            | < 10  | ug/L  |
|    |        | 2,4-Dimethylphenol                          | 1            | < 10  | ug/L  |
|    |        | 2,4-Dinitrotoluene                          | 1            | < 10  | ug/L  |
|    |        | 2,6-Dinitrotoluene                          | . <b>1</b> " | < 10  | ug/L  |
|    |        | 2-Chloronaphthalene                         | 1            | < 10  | ug/L  |
|    |        | 2-Methylnaphthalene                         | 5            | 118*  | ug/L  |
|    |        | 4,6-Dinitro-o-cresol                        | 1            | < 25  | ug/L  |
|    |        | 4-Nitrophenol                               | 1            | < 25  | ug/L  |
|    |        | Acenaphthene                                | 5            | 212*  | ug/L  |
|    |        | Acenaphthylene                              | 1            | < 10  | ug/L  |
|    |        | Anthracene                                  | 1            | 10.2  | ug/L  |
|    |        | Benzo(a)anthracene                          | 1            | < 10  | ug/L  |
|    |        | Benzo(a)pyrene                              | 1            | < 10  | ug/L  |
|    |        | Chrysene                                    | 1            | < 10  | ug/L  |
|    |        | Di-n-butylphthalate                         | 1            | < 10  | ug/L  |
|    |        | Dibenzofuran                                | 1            | 25.9  | ug/L  |
|    |        | Fluoranthene                                | 1            | < 10  | ug/L  |
|    |        | Fluorene                                    | 1            |       | ug/L  |
|    |        | N-Nitrosodiphenylamine                      | 1            | < 10  | ug/L  |
|    |        | Naph tha lene                               |              | 176*  | ug/L  |
|    |        | Nitrobenzene                                | _            |       | ug/L  |
|    |        | Pentachlorophenol                           |              |       | ug/L  |
|    |        | Phenanthrene                                |              |       | ug/L  |
|    |        | Phenol                                      |              |       | ug/L  |
|    |        | Pyrene                                      |              |       | ug/L  |
|    |        | bis(2-Chloroethoxy)methane                  |              |       | ug/L  |
|    |        | bis(2-Ethylhexyl)phthalate                  |              | < 10  |       |
| 5  | 1590   | Solids, Dissolved at 180C                   |              |       |       |
| 6  | 1610   | Solids, Suspended at 103C                   |              |       | mg/L  |
|    |        | 1 100000                                    | , ,          | ,735  | mg/L  |
|    |        |                                             |              |       |       |

# Pace Analytical

Tel: 281-488-1810 Fax: 281-488-4661

May 19, 1997 Report No.: 00061433 Section A Page 20

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT SAMPLE ID: HP21-STZ SAMPLE NO: H450555

TEST

CODE

LN

DETERMINATION

DILUTION

**FACTOR** 

RESULT UNITS

COMMENTS: \* The value for this analyte was based upon analysis at a dilution due to the high analyte concentration.

The organic analysis was performed by Pace Analytical - New Orleans laboratory.

May 19, 1997
Report No.: 00061433
Section B Page 1

### SUPPLEMENTAL INFORMATION

|        | TEST           | LCSR<br>BLNK | DUP/MS<br>MS/MSD |                | - SAMPLE PREP | ARATION | ,"                   | SAMPLE ANAL                      | YSIS      |           |
|--------|----------------|--------------|------------------|----------------|---------------|---------|----------------------|----------------------------------|-----------|-----------|
| LN<br> | CODE           | BATCH        | BATCH            | LR-METHOD      | DATE/TIME     | ANALYST | LR-METH              | IOD DATE/TIME                    | ANALYST   | INSTRUMEN |
| SAMP   | LE ID:         | HP17-UTZ     |                  |                |               |         |                      | SAMPLE I                         | NO: H450  | 536       |
| 1      | OVTCW2         | 2 0          | 0                | NA             |               |         | 19-8260A             | 14-MAY-97 1513                   | P         |           |
| 3      | OSVTC          | 0            | 0                | 19-3510B       |               |         | 19-8270B             |                                  |           |           |
| SAMP   | E ID:          | HP17-STZ     |                  |                |               |         |                      | SAMPLE N                         | Ю: Н4505  | 37        |
| 1      | OVTCW2         | 2 0          | 0                | NA             |               |         | 19-8260A             | 14-MAY-97 1541                   | Р         |           |
| 3      | OSVTCW         | 0            | 0                | 19-3510B       |               |         | 19-8270B             |                                  |           |           |
| AMPL   | E ID:          | HP18-UTZ     |                  |                |               |         |                      | SAMPLE N                         | о: н4505  | 38        |
| 1      | OVTCW2         | . 0          | 0                | NA             |               |         | 19-8260A             | 14-MAY-97 1609                   | р         |           |
| 5      | 1590           | 74329        | 74329            |                |               |         | 02-160.1             |                                  |           | TAW800    |
| 6      | 1610           | 74229        | 74229            |                |               |         | 02-160.2             |                                  |           | TAW800    |
| 3      | OSVTCW         | 0            | , 0              | 19-3510B       |               |         | 19-8270В             | 15-MAY-97 1153                   | Р         |           |
| AMPL   | E ID:          | HP18-STZ     |                  |                |               |         |                      | SAMPLE N                         | о: н4505  | 39        |
|        |                | 0            | 0                |                |               |         | 19-8260A             | 14-MAY-97 1638                   | Р         |           |
|        |                | 74329        |                  |                |               |         | 02-160.1             | 14-MAY-97 1755                   | CP        | TAW800    |
|        | I610<br>OSVTCW | 74229<br>0   | 74229<br>0       | NA<br>19-3510B |               |         | 02-160.2<br>19-8270B | 12-MAY-97 1600<br>15-MAY-97 1232 |           | TAW800    |
|        |                |              |                  |                |               |         | 19-02/08             | 13-MAT-97 1232                   | ۲         |           |
| AMPL   | E 10: 1        | HP19-UTZ     |                  |                |               |         |                      | SAMPLE N                         | D: H4505  | 40        |
|        | OVTCW2         |              | 0                |                |               |         | 19-8260A             | 14-MAY-97 1706                   | Р         |           |
|        |                | 74329        |                  |                |               |         | 02-160.1             | 14-MAY-97 1755                   | CP        | TAW800    |
|        | 1610           | 74229        | 74229            |                |               |         | 02-160.2             | 12-MAY-97 1600                   | CP        | TAW800    |
| ,3     | OSVTCW         | 0            | U                | 19-3510B       |               |         | 19-8270В             | 14-MAY-97 1812                   | Р         |           |
| AMPLI  | E ID: H        | IP20-UTZ     |                  |                |               |         |                      | SAMPLE NO                        | ): H45054 | <b>¥1</b> |
| 1      | OVTCW2         | 0            | 0                | NA             |               |         | 19-8260A             | 14-MAY-97 1803                   | Р         |           |
|        | 1590           | 74329        | 74329            |                |               |         | 02-160.1             | 14-MAY-97 1755                   |           | TAW800    |
|        | 1610           | 74229        | 74229            |                |               |         | 02-160.2             | 12-MAY-97 1600                   |           | TAW800    |
| 3      | OSVTCW         | 0            | 0                | 19-3510B       |               |         | 19-8270B             | 14-MAY-97 1852                   | Р         |           |
| MPLE   | ID: H          | IP20-STZ     |                  |                |               |         |                      | SAMPLE NO                        | : H45054  | -2        |
| 1      | OVTCW2         | 0            | 0                | NA             |               |         | 19-8260A             | 14-MAY-97 1831                   | P         |           |
| 5      | 1590           | 74329        | 74329            | NA             |               |         | 02-160.1             | 14-MAY-97 1755                   |           | TAW800    |
| 6      | 1610           | 74229        | 74229            | NA             |               |         | 02-160.2             | 12-MAY-97 1600                   |           | TAW800    |

# **REPORT OF LABORATORY ANALYSIS**

# Pace Analytical

Tel: 281-488-1810

Fax: 281-488-4661

May 19, 1997
Report No.: 00061433
Section B Page 2

### SUPPLEMENTAL INFORMATION

|       | TEST     | LCSR<br>BLNK          | DUP/MS<br>MS/MSD |                | SAMPLE PREP | ARATION |           | SAMPLE ANAL    | YSIS       |            |
|-------|----------|-----------------------|------------------|----------------|-------------|---------|-----------|----------------|------------|------------|
| LN    | CODE     | BATCH                 | BATCH            | LR-METHOD      | DATE/TIME   | ANALYST | LR-METHOD | DATE/TIME      | ANALYST    | INSTRUMENT |
| CAME  | U.E. ID. | UD30 077              |                  | a              |             |         |           |                |            |            |
| SAMP  | LE ID:   | HP20-STZ              |                  |                | *           |         |           | SAMPLE         | NO: H4505  | i42        |
| 3     | OSVTC    | M 0                   | 0                | 19-3510B       |             |         | 10-82700  | 14-MAY-97 0931 | - 7. 65. 1 |            |
|       |          |                       |                  |                |             |         | 17 02708  | 14-MAT-97 U931 | Р          |            |
| SAMP  | LE ID:   | HP19-STZ              |                  |                |             |         |           | SAMPLE         | NO: H4505  | 43         |
| 1     | OVTCW    | 2 0                   | 0                | NA             |             |         | 40.00     |                |            |            |
|       |          |                       | ·                | NA             |             |         | 19-8260A  | 14-MAY-97 1859 | Р          |            |
| SAMP  | LE ID:   | HP21-UTZ              |                  |                |             |         |           | SAMPLE         | NO: H4505  | <i></i> .  |
| 1     | OVTCW2   |                       | •                | ***            |             |         |           | 57411 22 1     | 10: 11-505 | 7-7        |
|       | 1590     | ? 0<br>74 <b>32</b> 9 | 74329            | NA             |             |         |           | 15-MAY-97 1420 |            |            |
|       | 1610     | 74229                 | 74229            |                |             |         |           | 14-MAY-97 1755 |            | TAW800     |
|       | OSVTCW   |                       |                  | NA<br>19-3510B |             |         | 02-160.2  | 12-MAY-97 1600 | CP         | TAW800     |
| -     | 034108   |                       | U                | 13-22108       |             |         | 19-8270B  | 15-MAY-97 1035 | P          |            |
| SAMPL | E ID:    | HP21-STZ              |                  |                |             |         |           | 2000           |            |            |
|       |          |                       |                  |                |             |         |           | SAMPLE N       | IO: H45054 | <b>5</b>   |
| 1     | OVTCW2   | 0                     | 0                | NA             |             |         | 19-8260A  | 14-MAY-97 1956 | D          |            |
| CAMPI |          |                       |                  |                |             |         | 525071    | 14 MAI 27 1920 | P          |            |
| SAMPL | E ID:    | HP21-STZ              |                  |                |             |         |           | SAMPLE N       | O: H45055  | 5          |
| 5     | 1590     | 74329                 | 74329            | NA             |             |         |           |                |            |            |
|       | 1610     | 74298                 | 74298            |                |             |         |           | 14-MAY-97 1755 |            | TAW800     |
|       | OSVTCW   |                       |                  | 19-3510B       |             |         |           | 14-MAY-97 1515 |            | TAW800     |
|       |          |                       | J                | 17 33 100      |             |         | 19-8270в  | 15-MAY-97 1311 | P          |            |
| I R   | Method   | Litaratur             | a Dofon          |                |             |         |           |                |            |            |

## LR Method Literature Reference

O2 EPA-Methods for Chemical Analysis of Water & Wastes, 1984.

<sup>19</sup> EPA-Test Methods for Evaluating Solid Waste, 3rd ed, Nov. 1986 and updates

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 281-488-1810 Fax: 281-488-4661

May 19, 1997
Report No.: 00061433
Section D Page 1

LABORATORY CONTROL SAMPLE RECOVERY

TEST LCS % LCSD % ACCEPTANCE
CODE DETERMINATION RECOVERY RECOVERY LIMITS RPD

BATCH NO: 74329

SAMPLE NO: H386743

I590 Solids, Dissolved at 1800

100.5

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 281-488-1810 Fax: 281-488-4661

May 19, 1997 Report No.: 00061433 Section E Page 1

### METHOD BLANK DATA

| TES1<br>CODE |                           | RESUL | T    | UNIT    |         |
|--------------|---------------------------|-------|------|---------|---------|
| BATCH NO:    | 74229                     |       | SAMI | PLE NO: | H386581 |
| 1610         | Solids, Suspended at 103C | <     | 4    | mg/L    |         |
| BATCH NO:    | 74298                     |       | SAME | PLE NO: | H386694 |
| 1610         | Solids, Suspended at 103C | < 4   | •    | mg/L    |         |
| BATCH NO:    | 74329                     |       | SAMP | LE NO:  | H386744 |
| 1590         | Solids, Dissolved at 180C | < 5   |      | mg/L    |         |

May 19, 1997
Report No.: 00061433
Section F Page 1

## DUPLICATE AND MATRIX SPIKE DATA

| TES       |         | DETERMINATION     | ORIGINAL<br>RESULT | DUPLICATE<br>RESULT | UNITS | RANGE<br>RPD | /      | MS<br>RESULT | r       | MS %<br>RCVRY |
|-----------|---------|-------------------|--------------------|---------------------|-------|--------------|--------|--------------|---------|---------------|
| BATCH NO: | 74229   |                   |                    |                     |       |              | SAMPLE | NO: H        | 1450465 |               |
| 1610      | Solids, | Suspended at 103C | < 4                | < 4                 | mg/L  | 0.0          |        |              |         |               |
| BATCH NO: | 74298   |                   |                    |                     |       |              | SAMPLE | NO: H        | 444981  |               |
| 1610      | Solids, | Suspended at 103C | 9                  | 9                   | mg/L  | 0.0          |        |              |         |               |
| BATCH NO: | 74329   |                   |                    |                     |       |              | SAMPLE | NO: H        | 444981  |               |
| 1590      | Solids, | Dissolved at 1800 | 2,852              | 2,932               | mg/L  | 2.8          |        |              |         |               |

## Pace Analytical

Tel: 281-488-1810 Fax: 281-488-4661

June 05, 1997 Report No.: 00061878 Section A Page 1

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210-

ATTENTION: CURTIS L. JONES, CHMM

SAMPLE ID: HWPW-MW-14

SAMPLE NO: H450662 SAMPLE MATRIX: WATER

LIMS CLIENT: 0717 0007 PACE PROJECT: H45189 PACE CLIENT: 620437

P.O. NO: 03422

DATE SAMPLED: 14-MAY-97 0820

DATE RECEIVED: 14-MAY-97 PROJECT MANAGER: Elessa Sommers

1

1

1

1

1

1

1

1

1

1

1

1

TEST DILUTION DETERMINATION **FACTOR** RESULT UNITS 1 OVTCW2 8260A TCL Volatiles in Water 1,2-Dichloroethane < 5 ug/L Benzene 1 < 5 ug/L Chlorobenzene 1 < 5 ug/L Ethylbenzene ug/L Methylene chloride 1 < 5 ug/L Toluene < 5 ug/L Xylenes (total)

3 OSVTCW TCL - Semi-volatile Extractables in Water

1,2-Diphenylhydrazine

2,4-Dimethylphenol 2,4-Dinitrotoluene

2,6-Dinitrotoluene

2-Chloronaphthalene

2-Methylnaphthalene

4,6-Dinitro-o-cresol

4-Nitrophenol

Acenaphthene

Acenaphthylene

Anthracene

Benzo(a)anthracene Benzo(a)pyrene

Chrysene

Di-n-butylphthalate Dibenzofuran

Fluoranthene

Fluorene

N-Nitrosodiphenylamine

Naphthalene Nitrobenzene

Pentachlorophenol Phenanthrene

Phenol Pyrene

bis(2-Chloroethoxy)methane

< 5 ug/L 1 < 10.0 ug/L < 10.0 ug/L

> < 10.0 ug/L < 10.0 ug/L < 10.0 ug/L < 10.0 ug/L < 25.0 ug/L

< 25.0 ug/L < 10.0 ug/L < 10.0 ug/L

< 10.0 ug/L < 10.0 ug/L

< 10.0 ug/L < 10.0 ug/L

< 10.0 < 10.0 ug/L

< 10.0 ug/L < 10.0 ug/L < 10.0 ug/L

< 10.0 ug/L < 10.0 ug/L < 25.0 ug/L

< 10.0 ug/L < 10.0 ug/L < 10.0 ug/L

< 10.0 ug/L

290

# REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

# Pace Analytical

Tel: 281-488-1810 Fax: 281-488-4661

June 05, 1997
Report No.: 00061878
Section A Page 2

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-MW-14
SAMPLE NO: H450662

| LN  | TEST<br>CODE | DETERMINATION                                                                                       | DILUTION<br>FACTOR | RESULT                 | UNITS                |
|-----|--------------|-----------------------------------------------------------------------------------------------------|--------------------|------------------------|----------------------|
| 6   |              | bis(2-Ethylhexyl)phthalate<br>Solids, Dissolved at 180C<br>Solids, Suspended at 103C                | 1<br>1<br>1        | < 10.0<br>1,020<br>116 | ug/L<br>mg/L<br>mg/L |
| COM | MENTS:       | The volatile and semi-volatile analyses were performed by Pace Analytical - New Orleans laboratory. |                    |                        |                      |

June 05, 1997 Report No.: 00061878 Section A Page 3

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210-

ATTENTION: CURTIS L. JONES, CHMM

SAMPLE ID: HWPW-MW-15A

SAMPLE NO: H450663

SAMPLE MATRIX: WATER

DATE SAMPLED: 14-MAY-97 0900

DATE RECEIVED: 14-MAY-97 PROJECT MANAGER: Elessa Sommers

LIMS CLIENT: 0717 0007

PACE PROJECT: H45189

PACE CLIENT: 620437

P.O. NO: 03422

| LN | TEST<br>CODE | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DILUTION<br>FACTOR | RESULT | UNITS |
|----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|-------|
| 1  | OVTCW2       | 8260A TCL Volatiles in Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |        |       |
| •  | or ronz      | 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                  |        |       |
|    |              | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                  | < 5    | •     |
|    |              | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                  | 6.81   | ug/L  |
|    |              | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  | < 5    | ug/L  |
|    |              | Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·                  | 15.1   | ug/L  |
|    |              | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                  | < 5    | ug/L  |
|    |              | Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  | < 5    | •     |
| 3  | OSVTCW       | TCL - Semi-volatile Extractables in Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                  | 23.8   | ug/L  |
| -  | 3377311      | 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |        |       |
|    |              | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 10   | ug/L  |
|    |              | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 10   | ug/L  |
|    |              | 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 10   | ug/L  |
|    |              | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                  | < 10   | ug/L  |
|    |              | 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                  | < 10   | ug/L  |
|    |              | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 10                 | 138    | ug/L  |
|    |              | 4,6-Dinitro-o-cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                  | < 25   | ug/L  |
|    |              | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                  | < 25   | ug/L  |
|    |              | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                 | 142    | ug/L  |
|    |              | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                  | < 10   | ug/L  |
|    |              | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                  | < 10   | ug/L  |
|    |              | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 10   | ug/L  |
|    |              | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                  | < 10   | ug/L  |
|    |              | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                  | < 10   | ug/L  |
|    |              | Di-n-butylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                  | < 10   | ug/L  |
|    |              | Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  | 42.3   | ug/L  |
|    |              | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  | < 10   | ug/L  |
|    |              | Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                  | 42.8   | ug/L  |
|    |              | N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                  | < 10   | ug/L  |
|    |              | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50                 | 1,210  | ug/L  |
|    |              | Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  | < 10   | ug/L  |
|    |              | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                  | < 25   | ug/L  |
|    |              | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  |        | ug/L  |
|    |              | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                  |        | ug/L  |
|    |              | Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                  |        | ug/L  |
|    |              | bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 1                |        | ug/L  |
|    |              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | 10.00  |       |

June 05, 1997 Report No.: 00061878 Section A Page 4

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-MW-15A
SAMPLE NO: H450663

| LN  | CODE    | DETERMINATION                                                                                       | DILUTION<br>FACTOR | RESULT | UNITS |
|-----|---------|-----------------------------------------------------------------------------------------------------|--------------------|--------|-------|
|     |         | hig/2-Ethylhamul >-bab. L                                                                           |                    |        |       |
| 6   | 1590    | bis(2-Ethylhexyl)phthalate                                                                          | 1                  | < 10   | ug/L  |
| 7   |         | Solids, Dissolved at 1800                                                                           | 1                  | 945    | mg/L  |
| ,   | 1610    | Solids, Suspended at 103C                                                                           | 1                  |        | mg/L  |
| COM | IMENTS: | The volatile and semi-volatile analyses were performed by Pace Analytical - New Orleans laboratory. |                    |        |       |

June 05, 1997 Report No.: 00061878 Section A Page 5

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210-

ATTENTION: CURTIS L. JONES, CHMM

SAMPLE ID: HWPW-MW-15C

SAMPLE NO: H450664

SAMPLE MATRIX: WATER

LIMS CLIENT: 0717 0007

PACE PROJECT: H45189

PACE CLIENT: 620437

P.O. NO: 03422

DATE SAMPLED: 14-MAY-97 0930

DATE RECEIVED: 14-MAY-97

PROJECT MANAGER: Elessa Sommers

|    | TEST     |                                           | DILUTION |        |       |
|----|----------|-------------------------------------------|----------|--------|-------|
| LN | CODE     | DETERMINATION                             | FACTOR   | RESULT | UNITS |
|    |          |                                           |          |        |       |
|    | 4 017010 | 20/24 700 11 1 11 11 11 11                |          |        |       |
|    | 1 OVTCW2 | 8260A TCL Volatiles in Water              |          |        |       |
|    |          | 1,2-Dichloroethane                        | 1        | < 5    | ug/L  |
|    |          | Benzene                                   | 1        | < 5    | ug/L  |
|    |          | Chlorobenzene                             | 1        | < 5    | ug/L  |
|    |          | Ethylbenzene                              | 1        | < 5    | ug/L  |
|    |          | Methylene chloride                        | 1        | < 5    | ug/L  |
|    |          | Toluene                                   | 1        | < 5    | ug/L  |
|    | 7        | Xylenes (total)                           | 1        | 19.9   | ug/L  |
|    | 3 OSVTCW | TCL - Semi-volatile Extractables in Water |          |        |       |
|    |          | 1,2-Diphenylhydrazine                     | 1        | < 10   | ug/L  |
|    |          | 2,4-Dimethylphenol                        | 1        | < 10   | ug/L  |
|    |          | 2,4-Dinitrotoluene                        | 1        | < 10   | ug/L  |
|    |          | 2,6-Dinitrotoluene                        | 1        | < 10   | ug/L  |
|    |          | 2-Chloronaphthalene                       | 1        | < 10   | ug/L  |
|    |          | 2-Methylnaphthalene                       | 1        | 19.8   | ug/L  |
|    |          | 4,6-Dinitro-o-cresol                      | 1        | < 25   | ug/L  |
|    |          | 4-Nitrophenol                             | 1        | < 25   | ug/L  |
|    |          | Acenaphthene                              | 1        | 37.7   | ug/L  |
|    |          | Acenaphthylene                            | 1        | < 10   | ug/L  |
|    |          | Anthracene                                | 1        | < 10   | ug/L  |
|    |          | Benzo(a)anthracene                        | 1        | < 10   | ug/L  |
|    |          | Benzo(a)pyrene                            | 1        | < 10   | ug/L  |
|    |          | Chrysene                                  | 1        | < 10   | ug/L  |
|    |          | Di-n-butylphthalate                       | 1        | < 10   | ug/L  |
|    |          | Dibenzofuran                              | 2        | 104    | ug/L  |
|    |          | Fluoranthene                              | 1        | < 10   | ug/L  |
|    |          | Fluorene                                  | 1        | < 10   | ug/L  |
|    |          | N-Nitrosodiphenylamine                    | 1        | < 10   | ug/L  |
|    |          | Naphthalene                               | 1        | 40.9   | ug/L  |
|    |          | Nitrobenzene                              | 1        | < 10   | ug/L  |
|    |          | Pentachlorophenol                         | 1        | < 25   | ug/L  |
|    |          | Phenanthrene                              | 1        |        | ug/L  |
|    |          | Phenol                                    | 1        |        | ug/L  |
|    |          | Pyrene                                    | * 1      |        | ug/L  |
|    |          | bis(2-Chloroethoxy)methane                | 1        |        | ug/L  |
|    |          |                                           |          |        | -     |

June 05, 1997 Report No.: 00061878 Section A Page 6

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-MW-15C
SAMPLE NO: H450664

|     | TEST         |                                                                                      |                        |                          |       |
|-----|--------------|--------------------------------------------------------------------------------------|------------------------|--------------------------|-------|
| LN  | CODE         | DETERMINATION                                                                        | DILUTIO<br>FACTOR      |                          | UNITS |
|     | 1590<br>1610 | bis(2-Ethylhexyl)phthalate<br>Solids, Dissolved at 180C<br>Solids, Suspended at 103C |                        | 1 < 10<br>1 705<br>1 149 |       |
| COM | MENTS:       | The volatile and semi-volatile analyses were performe New Orleans laboratory.        | d by Pace Analytical - |                          |       |

June 05, 1997 Report No.: 00061878 Section A Page 7

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210
ATTENTION: CURTIS L. JONES, CHMM

SAMPLE ID: HWPW-MW-16

SAMPLE NO: H450665

SAMPLE MATRIX: WATER

LIMS CLIENT: 0717 0007

PACE PROJECT: H45189

PACE CLIENT: 620437

P.O. NO: 03422

DATE SAMPLED: 14-MAY-97 1000

DATE RECEIVED: 14-MAY-97

PROJECT MANAGER: Elessa Sommers

| L | TES<br>N COL  |     |                          | DETERMINATION       | DILUTION<br>FACTOR | DESIII T | UNITS |
|---|---------------|-----|--------------------------|---------------------|--------------------|----------|-------|
|   |               |     |                          |                     |                    |          |       |
|   |               |     |                          |                     |                    |          |       |
|   | 1 OVT         | CM5 | 8260A TCL Volatiles in   | Water               |                    |          |       |
|   |               |     | 1,2-Dichloroethane       |                     | 1                  | < 5      | ug/L  |
|   |               |     | Benzene                  |                     | 1                  | 10.1     | ug/L  |
|   |               |     | Chlorobenzene            |                     | 1                  | < 5      | ug/L  |
|   |               |     | Ethylbenzene             |                     | 1                  | 32.1     | ug/L  |
|   |               |     | Methylene chloride       |                     | 1                  | < 5      | •     |
|   |               |     | Toluene                  |                     | 1                  | 8.32     |       |
|   | with more and |     | Xylenes (total)          |                     | 1                  | 66.6     | •     |
|   | 3 OSVT        | CCM | TCL - Semi-volatile Ext  | tractables in Water |                    |          |       |
|   |               |     | 1,2-Diphenylhydrazine    |                     | 1                  | < 10     | ug/L  |
|   |               |     | 2,4-Dimethylphenol       |                     | 1                  | 29.1     | ug/L  |
|   |               |     | 2,4-Dinitrotoluene       |                     | 1                  | < 10     |       |
|   |               |     | 2,6-Dinitrotoluene       |                     | 1                  | < 10     | •     |
|   |               |     | 2-Chloronaphthalene      |                     | 1                  | < 10     | ug/L  |
|   |               |     | 2-Methylnaphthalene      |                     | 1                  | 39.3     |       |
|   |               |     | 4,6-Dinitro-o-cresol     |                     | 1                  | < 25     | ug/L  |
|   |               |     | 4-Nitrophenol            |                     | . 1                | < 25     | ug/L  |
|   |               |     | Acenaphthene             |                     | 5                  | 139      | ug/L  |
|   |               |     | Acenaphthylene           |                     | 1                  | < 10     |       |
|   |               |     | Anthracene               |                     | 1                  | 16.3     | _     |
|   |               |     | Benzo(a)anthracene       |                     | 1                  | < 10     |       |
|   |               |     | Benzo(a)pyrene           |                     | 1                  | < 10     | _     |
|   |               |     | Chrysene                 |                     | 1                  | < 10     | ug/L  |
|   |               |     | Di-n-butylphthalate      |                     | 1                  | < 10     | ug/L  |
|   |               |     | Dibenzofuran             |                     | 1                  | 80.2     |       |
|   |               |     | Fluoranthene             |                     | 1                  |          |       |
|   |               |     | Fluorene                 |                     | 1                  |          | •     |
|   |               |     | N-Nitrosodiphenylamine   |                     | 1                  | < 10     | ug/L  |
|   |               |     | Naphthalene              |                     | 10                 | 472      |       |
|   |               |     | Nitrobenzene             |                     | 1                  |          | ug/L  |
|   |               |     | Pentachlorophenol        |                     | 1                  |          | ug/L  |
|   |               |     | Phenanthrene             |                     | 5                  | 96.8     |       |
|   |               |     | Phenol                   |                     | 1                  | < 10     |       |
|   |               |     | Pyrene                   |                     | 1                  |          | ug/L  |
|   |               | ŀ   | ois(2-Chloroethoxy)metha | ane                 | 1                  | < 10     |       |
|   |               |     |                          |                     |                    |          | J     |

296

## REPORT OF LABORATORY ANALYSIS

June 05, 1997 Report No.: 00061878 Section A Page 8

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-MW-16
SAMPLE NO: H450665

| LN  | TEST         | DETERMINATION                                                                                     | DILUTION<br>FACTOR | RESULT            | UNITS |  |
|-----|--------------|---------------------------------------------------------------------------------------------------|--------------------|-------------------|-------|--|
| 6   | 1590<br>1610 | bis(2-Ethylhexyl)phthalate<br>Solids, Dissolved at 180C<br>Solids, Suspended at 103C              | 1<br>1<br>1        | < 10<br>538<br>73 | mg/L  |  |
| COM | MENTS:       | The volatile and semi-volatile analyses were performed by Pace Analytical New Orleans laboratory. | -                  |                   |       |  |

June 05, 1997 Report No.: 00061878 Section A Page 9

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210-

ATTENTION: CURTIS L. JONES, CHMM

SAMPLE ID: HWPW-MW-18C

SAMPLE NO: H450666

SAMPLE MATRIX: WATER

LIMS CLIENT: 0717 0007 PACE PROJECT: H45189

PACE CLIENT: 620437

P.O. NO: 03422

DATE SAMPLED: 14-MAY-97 1110

DATE RECEIVED: 14-MAY-97

PROJECT MANAGER: Elessa Sommers

|    |        |                                           |          | <b></b> |       |
|----|--------|-------------------------------------------|----------|---------|-------|
|    | TEST   |                                           | DILUTION |         |       |
| LN | CODE   | DETERMINATION                             | FACTOR   | RESULT  | UNITS |
|    |        |                                           |          |         |       |
| 1  | OVTCW2 | 8260A TCL Volatiles in Water              |          |         |       |
| '  | OVICWE | 1,2-Dichloroethane                        | 4        |         |       |
|    |        | Benzene                                   | 1        | < 5     | ug/L  |
|    |        | Chlorobenzene                             | 1        | < 5     | ug/L  |
|    |        | Ethylbenzene                              | 1        | < 5     | ug/L  |
|    |        | Methylene chloride                        | 1        | 27.9    | ug/L  |
|    |        | Toluene                                   | 1        | < 5     | ug/L  |
|    |        | Xylenes (total)                           | 1        | 11.9    | ug/L  |
| 3  | OSVTCW | TCL - Semi-volatile Extractables in Water | 1        | 66.5    | ug/L  |
| -  | 03410# | 1,2-Diphenylhydrazine                     |          | . 40    |       |
|    |        | 2,4-Dimethylphenol                        | 1        | < 10    | ug/L  |
|    |        | 2,4-Dinitrotoluene                        | 1        | < 10    | ug/L  |
|    |        | 2,6-Dinitrotoluene                        | 1        | < 10    | ug/L  |
|    |        | 2-Chloronaphthalene                       | 1        | < 10    | ug/L  |
|    |        | 2-Methylnaphthalene                       | 1        | < 10    | ug/L  |
|    |        | 4,6-Dinitro-o-cresol                      | 10       | 125     | ug/L  |
|    |        | 4-Nitrophenol                             | 1        | < 25    | ug/L  |
|    |        | Acenaphthene                              | 1        | < 25    | ug/L  |
|    |        | Acenaphthylene                            | 1        | 54.1    | ug/L  |
|    |        | Anthracene                                | 1        | < 10    | ug/L  |
|    |        | Benzo(a)anthracene                        | 1        | < 10    | ug/L  |
|    |        | • •                                       | 1        | < 10    | ug/L  |
|    |        | Benzo(a)pyrene Chrysene                   | 1        | < 10    | ug/L  |
|    |        | Di-n-butylphthalate                       | 1        | < 10    | ug/L  |
|    |        | Dibenzofuran                              | 1        | < 10    | ug/L  |
|    |        | Fluoranthene                              | 1        | 48.8    | ug/L  |
|    |        | Fluorene                                  | 1 .      |         | ug/L  |
|    |        |                                           | 1        |         | ug/L  |
|    |        | N-Nitrosodiphenylamine                    | 1        | < 10    | ug/L  |
|    |        | Naphthalene<br>Nitrobenzene               | 20       | 905     | ug/L  |
|    |        |                                           | 1        |         | ug/L  |
|    |        | Pentachlorophenol Phenanthrene            | 1        |         | ug/L  |
|    |        |                                           | 1        |         | ug/L  |
|    |        | Phenol                                    | 1        |         | ug/L  |
|    |        | Pyrene                                    | , 1      |         | ug/L  |
|    |        | bis(2-Chloroethoxy)methane                | 1        | < 10    | ug/L  |

# Pace Analytical

Tel: 281-488-1810 Fax: 281-488-4661

June 05, 1997 Report No.: 00061878 Section A Page 10

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-MW-18C
SAMPLE NO: H450666

| LN  | CODE         | DETERMINATION                                                                                       | DILUTION<br>FACTOR | RESULT | UNITS                |
|-----|--------------|-----------------------------------------------------------------------------------------------------|--------------------|--------|----------------------|
| 6 7 | 1590<br>1610 | bis(2-Ethylhexyl)phthalate<br>Solids, Dissolved at 180C<br>Solids, Suspended at 103C                | 1<br>1<br>1        | 1,050  | ug/L<br>mg/L<br>mg/L |
| COM | MENTS:       | The volatile and semi-volatile analyses were performed by Pace Analytical - New Orleans laboratory. |                    |        |                      |

299

June 05, 1997 Report No.: 00061878 Section A Page 11

### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210-

ATTENTION: CURTIS L. JONES, CHMM

SAMPLE ID: HWPW-MW-18A

SAMPLE NO: H450667

SAMPLE MATRIX: WATER

LIMS CLIENT: 0717 0007

PACE PROJECT: H45189

PACE CLIENT: 620437

P.O. NO: 03422

DATE SAMPLED: 14-MAY-97 1145

DATE RECEIVED: 14-MAY-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   | . DETERMINATION                           | DILUTION |        |       |
|----|--------|-------------------------------------------|----------|--------|-------|
| LN | CODE   | DETERMINATION                             | FACTOR   | RESULT | UNITS |
|    |        |                                           |          |        |       |
| 1  | OVTCW2 | 8260A TCL Volatiles in Water              |          |        |       |
|    |        | 1,2-Dichloroethane                        | 10       | < 50   | ug/L  |
|    |        | Benzene                                   | 10       | 700    | ug/L  |
|    |        | Chlorobenzene                             | 10       | < 50   | ug/L  |
|    |        | Ethylbenzene                              | 10       | 919    | _     |
|    |        | Methylene chloride                        | 10       | < 50   | ug/L  |
|    |        | Toluene                                   | 10       | 805    | ug/L  |
|    |        | Xylenes (total)                           | 10       | 218    | ug/L  |
| 3  | OSVTCW | TCL - Semi-volatile Extractables in Water |          |        | -3/ - |
|    |        | 1,2-Diphenylhydrazine                     | 20       | < 200  | ug/L  |
|    |        | 2,4-Dimethylphenol                        | 200      | 9,210  | ug/L  |
|    |        | 2,4-Dinitrotoluene                        | 20       | < 200  | ug/L  |
|    |        | 2,6-Dinitrotoluene                        | 20       | < 200  | ug/L  |
|    |        | 2-Chloronaphthalene                       | 20       | < 200  | ug/L  |
|    |        | 2-Methylnaphthalene                       | 20       | 617    | ug/L  |
|    |        | 4,6-Dinitro-o-cresol                      | 20       | < 500  | ug/L  |
|    |        | 4-Nitrophenol                             | 20       | < 500  | ug/L  |
|    |        | Acenaphthene                              | 20       | 350    | ug/L  |
|    |        | Acenaphthylene                            | 20       | < 200  | ug/L  |
|    |        | Anthracene                                | 20       | < 200  | ug/L  |
|    |        | Benzo(a)anthracene                        | 20       | < 200  | ug/L  |
|    |        | Benzo(a)pyrene                            | 20       | < 200  | ug/L  |
|    |        | Chrysene                                  | 20       | < 200  | ug/L  |
|    |        | Di-n-butylphthalate                       | 20       | < 200  | ug/L  |
|    |        | Dibenzofuran                              | 20       | < 200  | ug/L  |
|    |        | Fluoranthene                              | 20       | < 200  | ug/L  |
|    |        | Fluorene                                  | 20       | < 200  | ug/L  |
|    |        | N-Nitrosodiphenylamine                    | 20       | < 200  | ug/L  |
|    |        | Naphthalene                               | 200      | 7,870  | ug/L  |
|    |        | Nitrobenzene                              | 20       | < 200  | ug/L  |
|    |        | Pentachlorophenol                         | 20       | < 500  | ug/L  |
|    |        | Phenanthrene                              | 20       | < 200  | ug/L  |
|    |        | Phenol                                    | 100      | -      | ug/L  |
|    |        | Pyrene                                    | 20       | < 200  | ug/L  |
|    |        | bis(2-Chloroethoxy)methane                | 20       | < 200  | ug/L  |
|    |        |                                           |          |        |       |

June 05, 1997
Report No.: 00061878
Section A Page 12

# LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-MW-18A
SAMPLE NO: H450667

| LN  | TEST<br>CODE | DETERMINATION                                                                                        | DILUTION<br>FACTOR | RESULT | UNITS                |
|-----|--------------|------------------------------------------------------------------------------------------------------|--------------------|--------|----------------------|
| 6 7 | 1590<br>1610 | bis(2-Ethylhexyl)phthalate<br>Solids, Dissolved at 180C<br>Solids, Suspended at 103C                 | 20<br>2<br>1       | 1,480  | ug/L<br>mg/L<br>mg/L |
| COM | MENTS:       | The volatile and semi-volatile analyses were performed by the Pace Analytica New Orleans laboratory. | ι -                |        |                      |

June 05, 1997 Report No.: 00061878 Section A Page 13

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210-

ATTENTION: CURTIS L. JONES, CHMM

SAMPLE NO: H450668 SAMPLE MATRIX: WATER

SAMPLE ID: HWPW-MW-17A

PACE PROJECT: H45189 PACE CLIENT: 620437 P.O. NO: 03422

LIMS CLIENT: 0717 0007

DATE SAMPLED: 14-MAY-97 1310

DATE RECEIVED: 14-MAY-97

PROJECT MANAGER: Elessa Sommers

|    | TEST   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DILUTION |        |       |
|----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-------|
| LN | CODE   | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FACTOR   | RESULT | UNITS |
|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |       |
|    |        | ed , white                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |       |
| 1  | OVTCW2 | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |          |        |       |
|    |        | 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | < 25   | ug/L  |
|    |        | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5        | 580    | ug/L  |
|    |        | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5        | < 25   | ug/L  |
|    |        | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5        | 205    | ug/L  |
|    |        | Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | < 25   | ug/L  |
|    |        | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5        | 780    | ug/L  |
|    |        | Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 105    | ug/L  |
| 3  | OSVTCW | TCL - Semi-volatile Extractables in Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        |       |
|    |        | 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50       | < 500  | ug/L  |
|    |        | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 250      | 7,140  | ug/L  |
|    |        | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50       | < 500  | ug/L  |
|    |        | 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50       | < 500  | ug/L  |
|    |        | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50       | < 500  | ug/L  |
|    |        | 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50       | 711    | ug/L  |
|    |        | 4,6-Dinitro-o-cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50 <     | 1,250  | ug/L  |
|    |        | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 1,250  | ug/L  |
|    |        | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50       | < 500  | ug/L  |
|    |        | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50       | < 500  | ug/L  |
|    |        | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50       | < 500  | ug/L  |
|    |        | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50       | < 500  | ug/L  |
|    |        | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50       | < 500  | ug/L  |
|    |        | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50       | < 500  | ug/L  |
|    |        | Di-n-butylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50       |        | ug/L  |
|    |        | Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50       |        | ug/L  |
|    |        | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50       |        | ug/L  |
|    |        | Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50       |        | ug/L  |
|    |        | N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50       |        | ug/L  |
|    |        | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |        | ug/L  |
|    |        | Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | -      | ug/L  |
|    |        | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |        | ug/L  |
|    |        | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        | ug/L  |
|    |        | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |        | ug/L  |
|    |        | Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _        |        | ug/L  |
|    |        | bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        | ug/L  |
|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        | -J, - |

June 05, 1997 Report No.: 00061878 Section A Page 14

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT SAMPLE ID: HWPW-MW-17A SAMPLE NO: H450668

| LN     | TEST         | DETERMINATION                                                                                       | DILUTION<br>FACTOR | RESULT       | UNITS                |  |
|--------|--------------|-----------------------------------------------------------------------------------------------------|--------------------|--------------|----------------------|--|
| 6<br>7 | 1590<br>1610 | bis(2-Ethylhexyl)phthalate Solids, Dissolved at 180C Solids, Suspended at 103C                      | 50<br>1<br>1       | < 500<br>758 | ug/L<br>mg/L<br>mg/L |  |
| COM    | MENTS:       | The volatile and semi-volatile analyses were performed by Pace Analytical - New Orleans laboratory. |                    | 40           | iig/ L               |  |

June 05, 1997 Report No.: 00061878 Section A Page 15

## LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210-

ATTENTION: CURTIS L. JONES, CHMM

SAMPLE ID: HWPW-MW-12C

SAMPLE NO: H450669

SAMPLE MATRIX: WATER

LIMS CLIENT: 0717 0007 PACE PROJECT: H45189

PACE CLIENT: 620437

P.O. NO: 03422

DATE SAMPLED: 14-MAY-97 1345

DATE RECEIVED: 14-MAY-97

PROJECT MANAGER: Elessa Sommers

| TEST |         |                                           | DILUTION |        |       |
|------|---------|-------------------------------------------|----------|--------|-------|
| LN   | CODE    | DETERMINATION                             | FACTOR   | RESULT | UNITS |
|      |         |                                           |          |        |       |
| 1    | OVTCW2  | 92/04 781 1/21 1/21                       |          |        |       |
| •    | OVICWZ  | The state of the water                    |          |        |       |
|      |         | 1,2-Dichloroethane                        | 1        | < 5    | ug/L  |
|      |         | Benzene                                   | . 1      | < 5    | ug/L  |
|      |         | Chlorobenzene                             | 1        | < 5    | ug/L  |
|      |         | Ethylbenzene                              | 1        | < 5    | ug/L  |
|      |         | Methylene chloride                        | 1        | < 5    | ug/L  |
|      |         | Toluene                                   | 1        | < 5    | ug/L  |
| 7    | 0017011 | Xylenes (total)                           | 1        | < 5    | ug/L  |
| 3    | OSVTCW  | TCL - Semi-volatile Extractables in Water |          |        |       |
|      |         | 1,2-Diphenylhydrazine                     | 1        | < 10.4 | ug/L  |
|      |         | 2,4-Dimethylphenol                        | 1        | < 10.4 |       |
|      |         | 2,4-Dinitrotoluene                        | 1        | < 10.4 |       |
|      |         | 2,6-Dinitrotoluene                        | 1        | < 10.4 |       |
|      |         | 2-Chloronaphthalene                       | 1        | < 10.4 | ug/L  |
|      |         | 2-Methylnaphthalene                       | 1        | < 10.4 |       |
|      |         | 4,6-Dinitro-o-cresol                      | 1        | < 26.0 |       |
|      |         | 4-Nitrophenol                             | 1        | < 26.0 | ug/L  |
|      |         | Acenaphthene                              | 1        | < 10.4 |       |
|      |         | Acenaphthylene                            | 1        |        | ug/L  |
|      |         | Anthracene                                | 1        |        | ug/L  |
|      |         | Benzo(a)anthracene                        | 1        |        | ug/L  |
|      |         | Benzo(a)pyrene                            | 1        |        | ug/L  |
|      |         | Chrysene                                  | 1        |        | ug/L  |
|      |         | Di-n-butylphthalate                       | 1        |        | ug/L  |
|      |         | Dibenzofuran                              | 1        | < 10.4 |       |
|      |         | Fluoranthene                              | 1        | < 10.4 |       |
|      |         | Fluorene                                  | 1        |        | ug/L  |
|      |         | N-Nitrosodiphenylamine                    | 1        |        | ug/L  |
|      |         | Naphtha Lene                              | 1        |        | ug/L  |
|      |         | Nitrobenzene                              | 1        |        | ug/L  |
|      |         | Pentach loropheno l                       | 1        |        | ug/L  |
|      |         | Phenanthrene                              | 1        |        | ug/L  |
|      |         | Phenol                                    | 1        |        | ug/L  |
|      |         | Pyrene                                    | 1        |        | ug/L  |
|      |         | bis(2-Chloroethoxy)methane                | 1        | < 10.4 |       |
|      |         | ·                                         | •        | . 10.4 | 49/ L |

# Pace Analytical

Tel: 281-488-1810 Fax: 281-488-4661

June 05, 1997
Report No.: 00061878
Section A Page 16

## LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-MW-12C
SAMPLE NO: H450669

| LN  | TEST         | DETERMINATION                                                                                       | DILUTION<br>FACTOR | RESULT                 | UNITS |
|-----|--------------|-----------------------------------------------------------------------------------------------------|--------------------|------------------------|-------|
| 6   | 1590<br>1610 | bis(2-Ethylhexyl)phthalate<br>Solids, Dissolved at 180C<br>Solids, Suspended at 103C                | 1<br>2<br>1        | < 10.4<br>1,566<br>112 | •     |
| COM | MENTS:       | The volatile and semi-volatile analyses were performed by Pace Analytical - New Orleans laboratory. |                    |                        |       |

June 05, 1997 Report No.: 00061878 Section A Page 17

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210-

ATTENTION: CURTIS L. JONES, CHMM

SAMPLE ID: HWPW-MW-12A

**SAMPLE NO: H450670** 

SAMPLE MATRIX: WATER

LIMS CLIENT: 0717 0007

PACE PROJECT: H45189

PACE CLIENT: 620437

P.O. NO: 03422

DATE SAMPLED: 13-MAY-97 1210

DATE RECEIVED: 14-MAY-97

PROJECT MANAGER: Elessa Sommers

| LN | TEST<br>CODE | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DILUTION<br>FACTOR | RESULT | UNITS |
|----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|-------|
|    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |       |
|    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |       |
| 1  | OVTCW2       | and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o |                    |        |       |
|    |              | 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 5.00 | ug/L  |
|    |              | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                  | < 5.00 | ug/L  |
|    |              | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                  | < 5.00 | ug/L  |
|    |              | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  | 17.1   | ug/L  |
|    |              | Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 5.00 |       |
|    |              | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                  | 8.46   | ug/L  |
|    |              | Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  | 28.1   | ug/L  |
| 3  | OSVTCW       | TCL - Semi-volatile Extractables in Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |        |       |
|    |              | 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                  | < 10.2 | ug/L  |
|    |              | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | 12.2   | ug/L  |
|    |              | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 10.2 | ug/L  |
|    |              | 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 10.2 | ug/L  |
|    |              | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                  | < 10.2 | ug/L  |
|    |              | 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                 | 397    | ug/L  |
|    |              | 4,6-Dinitro-o-cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                  | < 25.5 | ug/L  |
|    |              | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                  | < 25.5 | ug/L  |
|    |              | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                 | 186    | ug/L  |
|    |              | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                  | < 10.2 | ug/L  |
|    |              | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                  | 15.9   |       |
|    |              | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | < 10.2 | ug/L  |
|    |              | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                  | < 10.2 | ug/L  |
|    |              | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                  | < 10.2 | ug/L  |
|    |              | Di-n-butylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                  | < 10.2 | ug/L  |
|    |              | Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                 | 148    | ug/L  |
|    |              | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  | 17.7   | ug/L  |
|    |              | Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                 | 125    | ug/L  |
|    |              | N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                  | < 10.2 | ug/L  |
|    |              | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200                | 5,210  | ug/L  |
|    |              | Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                  | < 10.2 | ug/L  |
|    |              | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                  | < 25.5 | ug/L  |
|    |              | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                 |        | ug/L  |
|    |              | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                  | < 10.2 | ug/L  |
|    |              | Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                  | < 10.2 | ug/L  |
|    |              | bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                  | < 10.2 | ug/L  |
|    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |       |

# Pace Analytical

Tel: 281-488-1810 Fax: 281-488-4661

June 05, 1997
Report No.: 00061878
Section A Page 18

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT
SAMPLE ID: HWPW-MW-12A
SAMPLE NO: H450670

| LN     | TEST<br>CODE | DETERMINATION                                                                                     | DILUTION<br>FACTOR | RESULT              | UNITS                | ••• |
|--------|--------------|---------------------------------------------------------------------------------------------------|--------------------|---------------------|----------------------|-----|
| 6<br>7 | 1590<br>1610 | bis(2-Ethylhexyl)phthalate<br>Solids, Dissolved at 180C<br>Solids, Suspended at 103C              | 1<br>1<br>1        | < 10.2<br>705<br>27 | ug/L<br>mg/L<br>mg/L |     |
| COM    | MENTS:       | The volatile and semi-volatile analyses were performed by Pace Analytical New Orleans laboratory. |                    |                     |                      |     |

June 05, 1997 Report No.: 00061878 Section A Page 19

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

OVERLAND PARK, KS 66210-

SAMPLE NO: H450671

SAMPLE MATRIX: WATER

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

ATTENTION: CURTIS L. JONES, CHMM

SAMPLE ID: HWPW-MW-12B

LIMS CLIENT: 0717 0007

PACE PROJECT: H45189

PACE CLIENT: 620437

P.O. NO: 03422

DATE SAMPLED: 13-MAY-97 1315

DATE RECEIVED: 14-MAY-97

PROJECT MANAGER: Elessa Sommers

| LN | TEST<br>CODE | DETERMINATION                             | DILUTION<br>FACTOR | RESULT | UNITS |
|----|--------------|-------------------------------------------|--------------------|--------|-------|
| 1  | OVTCW2       | 8260A TCL Volatiles in Water              |                    |        |       |
| 1  | OVICWZ       | 1,2-Dichloroethane                        |                    | _      |       |
|    |              | Benzene                                   | 1                  |        | ug/L  |
|    |              | Chlorobenzene                             | 1                  | 6.54   | •     |
|    |              | Ethylbenzene                              | 1                  | < 5    | ug/L  |
|    |              | Methylene chloride                        | 1                  | 27.6   | ug/L  |
|    |              | Toluene                                   | 1                  | < 5    | ug/L  |
|    |              | Xylenes (total)                           | 1                  | 6.48   | ug/L  |
| 3  | OSVTCW       | TCL - Semi-volatile Extractables in Water | 1                  | 28.7   | ug/L  |
| ,  | OSVICE       | 1,2-Diphenylhydrazine                     |                    |        |       |
|    |              | 2,4-Dimethylphenol                        | 1                  | < 10.1 | ug/L  |
|    |              | 2,4-Dinitrotoluene                        | 1                  | < 10.1 |       |
|    |              | 2,6-Dinitrotoluene                        | 1                  | < 10.1 | - J.  |
|    |              | 2-Chloronaphthalene                       | 1                  | < 10.1 | ug/L  |
|    |              | 2-Methylnaphthalene                       | 1                  | < 10.1 | ug/L  |
|    |              | 4,6-Dinitro-o-cresol                      | 10                 | 233    | ug/L  |
|    |              | 4-Nitrophenol                             | 1                  | < 25.2 | ug/L  |
|    |              | Acenaphthene                              | 1                  | < 25.2 | ug/L  |
|    |              | Acenaphthylene                            | 10                 | 216    | ug/L  |
|    |              | Anthracene                                | 1                  | < 10.1 | ug/L  |
|    |              | Benzo(a)anthracene                        | 1                  | 19.7   | ug/L  |
|    |              | Benzo(a)pyrene                            | 1                  | < 10.1 | ug/L  |
|    |              | Chrysene                                  | 1                  | < 10.1 | •     |
|    |              | Di-n-butylphthalate                       | 1                  | < 10.1 |       |
|    |              | Dibenzofuran                              | 1                  | < 10.1 | ug/L  |
|    |              | Fluoranthene                              | 10                 | 158    | ug/L  |
|    |              | Fluorene                                  | 1                  |        | -     |
|    |              | N-Nitrosodiphenylamine                    | 10                 |        | ug/L  |
|    |              | Naphthalene                               | 1                  | < 10.1 | ug/L  |
|    |              | Nitrobenzene                              | 100                |        | ug/L  |
|    |              | Pentachlorophenol                         | 1                  | < 10.1 | ug/L  |
|    |              | Phenanthrene                              | 1                  | < 25.1 | ug/L  |
|    |              | Phenol                                    | 10                 |        | ug/L  |
|    |              | Pyrene                                    | 1                  |        | ug/L  |
|    |              | bis(2-Chloroethoxy)methane                | 1                  | 10.2   |       |
|    |              | 575(2 direction)//illetifatie             | 1                  | < 10.1 | ug/L  |

308

# REPORT OF LABORATORY ANALYSIS

June 05, 1997 Report No.: 00061878 Section A Page 20

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT SAMPLE ID: HWPW-MW-12B SAMPLE NO: H450671

| LN  | TEST         | DETERMINATION                                                                        | DILUTION<br>FACTOR | RESULT                 | UNITS                |
|-----|--------------|--------------------------------------------------------------------------------------|--------------------|------------------------|----------------------|
|     | 1590<br>1610 | bis(2-Ethylhexyl)phthalate<br>Solids, Dissolved at 180C<br>Solids, Suspended at 103C | 1<br>1<br>1        | < 10.1<br>1,088<br>180 | ug/L<br>mg/L<br>mg/L |
| COM | MENTS:       | The volatile and semi-volatile analyses were performed by Pace Analytical -          |                    |                        |                      |

New Orleans laboratory.

June 05, 1997 Report No.: 00061878 Section A Page 21

#### LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT

ADDRESS: 8101 COLLEGE BLVD., SUITE 230

OVERLAND PARK, KS 66210-

ATTENTION: CURTIS L. JONES, CHMM

SAMPLE ID: HWPW-MW-13

**SAMPLE NO: H450672** 

SAMPLE MATRIX: WATER

LIMS CLIENT: 0717 0007 PACE PROJECT: H45189

PACE CLIENT: 620437

P.O. NO: 03422

DATE SAMPLED: 13-MAY-97 1445

DATE RECEIVED: 14-MAY-97 PROJECT MANAGER: Elessa Sommers

| LN | CODE   | DETERMINATION                             | DILUTION<br>FACTOR | RESULT | UNITS |
|----|--------|-------------------------------------------|--------------------|--------|-------|
|    |        |                                           |                    | •••••  |       |
| 1  | OVTCW2 | 8260A TCL Volatiles in Water              |                    |        |       |
|    |        | 1,2-Dichloroethane                        | 1                  | < 5    | ug/L  |
|    |        | Benzene                                   | 1                  | < 5    | ug/L  |
|    |        | Chlorobenzene                             | 1                  | < 5    | ug/L  |
|    |        | Ethylbenzene                              | 1                  | < 5    | ug/L  |
|    |        | Methylene chloride                        | 1                  | < 5    | ug/L  |
|    |        | Toluene                                   | 1                  | < 5    | ug/L  |
|    |        | Xylenes (total)                           | 1                  | < 5    | ug/L  |
| 3  | OSVTCW | TCL - Semi-volatile Extractables in Water |                    |        | -0, - |
|    |        | 1,2-Diphenylhydrazine                     | 1                  | < 10.4 | ug/L  |
|    |        | 2,4-Dimethylphenol                        | 1                  | < 10.4 | ug/L  |
|    |        | 2,4-Dinitrotoluene                        | 1                  | < 10.4 |       |
|    |        | 2,6-Dinitrotoluene                        | 1                  | < 10.4 |       |
|    |        | 2-Chloronaphthalene                       | 1                  | < 10.4 |       |
|    |        | 2-Methylnaphthalene                       | 1                  | < 10.4 |       |
|    |        | 4,6-Dinitro-o-cresol                      | 1                  | < 26.0 | ug/L  |
|    |        | 4-Nitrophenol                             | 1                  | < 26.0 | ug/L  |
|    |        | Acenaphthene                              | . 1                | < 10.4 | ug/L  |
|    |        | Acenaphthylene                            | 1                  | < 10.4 | ug/L  |
|    |        | Anthracene                                | 1                  | < 10.4 | ug/L  |
|    |        | Benzo(a)anthracene                        | 1                  |        | ug/L  |
|    |        | Benzo(a)pyrene                            | 1                  | < 10.4 | ug/L  |
|    |        | Chrysene                                  | 1                  | < 10.4 | ug/L  |
|    |        | Di-n-butylphthalate                       | 1                  | < 10.4 | ug/L  |
|    |        | Dibenzofuran                              | 1                  | < 10.4 | ug/L  |
|    |        | Fluoranthene                              | 1                  | < 10.4 | ug/L  |
|    |        | Fluorene                                  | 1                  | < 10.4 |       |
|    |        | N-Nitrosodiphenylamine                    | 1                  | < 10.4 | ug/L  |
|    |        | Naphthalene                               | 1.                 | < 10.4 | ug/L  |
|    |        | Nitrobenzene                              | 1                  | < 10.4 | ug/L  |
|    |        | Pentachlorophenol                         | 1                  | < 26.0 | ug/L  |
|    |        | Phenanthrene                              | 1                  | < 10.4 | ug/L  |
|    |        | Phenol                                    | 1                  |        | ug/L  |
|    |        | Pyrene                                    | 1                  | < 10.4 | ug/L  |
|    |        | bis(2-Chloroethoxy)methane                | 1                  | < 10.4 | ug/L  |

June 05, 1997 Report No.: 00061878 Section A Page 22

# LABORATORY ANALYSIS REPORT

CLIENT NAME: TERRANEXT SAMPLE ID: HWPW-MW-13 SAMPLE NO: H450672

| LN     | TEST         | DETERMINATION                                                                                       | DILUTION<br>FACTOR | RESULT              | UNITS                |     |
|--------|--------------|-----------------------------------------------------------------------------------------------------|--------------------|---------------------|----------------------|-----|
| 6<br>7 | 1590<br>1610 | bis(2-Ethylhexyl)phthalate<br>Solids, Dissolved at 180C<br>Solids, Suspended at 103C                | 1<br>1<br>1        | < 10.4<br>738<br>36 | ug/L<br>mg/L<br>mg/L | , = |
| COM    | MENTS:       | The volatile and semi-volatile analyses were performed by Pace Analytical - New Orleans laboratory. |                    |                     |                      |     |

June 05, 1997
Report No.: 00061878
Section B Page 1

# SUPPLEMENTAL INFORMATION

|     |      | TEST         | LCSR<br>Blnk   | DUP/MS<br>MS/MSD |           | SAMPLE PREPAR  | RATION  |                      | SAMPLE ANAL                      | YSIS      |            |
|-----|------|--------------|----------------|------------------|-----------|----------------|---------|----------------------|----------------------------------|-----------|------------|
|     | .N   | CODE         | BATCH          | BATCH            | LR-METHOD | DATE/TIME      | ANALYST | LR-METHOD            | DATE/TIME                        | ANALYST   | INSTRUMENT |
| SI  | MPI  | .E ID: H     | IUDU-MU-1      | 14               |           |                |         |                      |                                  |           |            |
| Ů,  |      |              | W W P W        |                  |           |                |         |                      | SAMPLE                           | NO: H450  | 662        |
|     | 1    | OVTCW2       | 0              | 0                | NA        |                |         | 19-8260A             | 19-MAY-97 1434                   | Р         |            |
|     | 6    | 1590         | 74398          | 74398            | NA        |                |         |                      | 16-MAY-97 1730                   | -         | TAW800     |
|     | 7    | 1610         | 74368          | 74368            | NA        |                |         |                      | 16-MAY-97 1415                   |           | TAW800     |
|     | 3    | OSVTCW       | 0              | 0                | 19-3510B  | 16-MAY-97 0800 | Р       | 19-8270В             |                                  |           | -          |
| SA  | MPL  | E ID: H      | WPW-MW-1       | 5A               |           |                |         |                      | SAMPLE !                         | IO: H4506 | 563        |
|     | 1    | OVTCW2       | 0              | 0                | WA        |                |         | 40.0040.             |                                  |           |            |
|     |      | 1590         | 74398          | 74398            |           |                |         |                      | 16-MAY-97 1829                   |           |            |
|     |      | 1610         | 74368          | 74368            |           |                |         |                      | 16-MAY-97 1730                   |           | TAW800     |
|     |      | OSVTCW       | 0              |                  |           | 16-MAY-97 1448 | D.      |                      | 16-MAY-97 1415                   |           | TAW800     |
|     | ,    | OSVICW       | U              | U                | 19-33108  | 10-MAY-97 1448 | P       | 19-82/0B             | 23-MAY-97 1448                   | P         |            |
| SA  | MPL  | E ID: H      | WPW-MW-1       | 5C               |           |                |         |                      | SAMPLE N                         | O: H4506  | 664        |
|     | 1    | OVTCW2       | 0              | 0                | NA        |                |         | 19-8260A             | 16-MAY-97 1857                   | Р         |            |
|     | 6    | 1590         | 74398          | 74398            | NA        |                |         | 02-160.1             | 16-MAY-97 1730                   | •         | TAW800     |
|     | 7    | 1610         | 74368          | 74368            | NA        |                |         |                      | 16-MAY-97 1415                   |           | TAW800     |
|     | 3    | OSVTCW       | 0              | 0                | 19-3510B  | 16-MAY-97 1823 | P       | 19-8270В             | 23-MAY-97 1823                   |           | OGGWAT     |
| SA  | MPL  | E ID: H      | JPW-MW-1       | 6                |           |                |         |                      | SAMPLE N                         | O: H4506  | 65         |
|     | 1    | OVTCW2       | 0              | 0                | NA        |                |         | 19-8260A-            | 14 MAY 07 4004                   | _         |            |
|     |      | 1590         | 74398          | 74398            |           |                |         | 02-160.1             | 16-MAY-97 1926<br>16-MAY-97 1730 |           | 0001117    |
|     |      | 1610         | 74368          | 74368            |           |                |         |                      | 16-MAY-97 1730                   |           | TAW800     |
|     |      | OSVTCW       | 0              |                  |           | 23-MAY-97 1527 | P       | 19-8270B             | 23-MAY-97 1527                   | = 5       | TAW800     |
| SAI | MPL  | E ID: HV     | JPW-MW-1       | ВС               |           |                |         |                      | SAMPLE N                         | D: H4506  | 66         |
|     | 4    | 01/701/2     | •              |                  |           |                |         |                      |                                  |           |            |
|     |      | OVTCW2       | 0              |                  | NA        |                |         |                      | 16-MAY-97 1954                   | -         |            |
|     |      | 1590         | 74398          | 74398            |           |                |         | 02-160.1             | 16-MAY-97 1730                   |           | TAW800     |
|     |      | 1610         | 74368          | 74368            |           |                |         | 02-160.2             | 16-MAY-97 1415                   | CP        | TAW800     |
|     | 3    | OSVTCW       | 0              | 0                | 19-3510B  | 16-MAY-97 1901 | Р       | 19-8270В             | 23-MAY-97 1901                   | Р         |            |
| SAN | (PLE | ID: HW       | IPW-MW-18      | ВА               |           |                |         |                      | SAMPLE NO                        | D: H4506  | 67         |
|     | 1    | OVTCW2       | 0              | 0                | NA        |                |         | 19-8260A             | 19-MAY-97 1503                   | D         |            |
|     |      |              |                | •                |           |                |         | I DEGON              | 17 MM1-71 1303                   | r         |            |
|     |      | 1590         | 74398          | 74398            | NA        |                |         | 02-160 1             | 16-MAY-07 1770                   | CD        | CORLIAT    |
|     | 6    | 1590<br>1610 | 74398<br>74368 | 74398<br>74368   |           |                |         | 02-160.1<br>02-160.2 | 16-MAY-97 1730<br>16-MAY-97 1415 |           | TAW800     |

# REPORT OF LABORATORY ANALYSIS

June 05, 1997
Report No.: 00061878
Section B Page 2

#### SUPPLEMENTAL INFORMATION

|      | TEST    | LCSR<br>BLNK | DUP/MS<br>MS/MSD |           | SAMPLE PREPAR  | RATION  |           | SAMPLE ANAL    | YSIS      |               |
|------|---------|--------------|------------------|-----------|----------------|---------|-----------|----------------|-----------|---------------|
| LN   | CODE    | BATCH        | BATCH            | LR-METHOD | DATE/TIME      | ANALYST | LR-METHOD | DATE/TIME      | ANALYST   | INSTRUMEN     |
| AMPL | E ID: I | HWPW-MW-1    | 7A               |           |                |         |           | SAMPLE !       | NO: H4506 | 568           |
| 1    | OVTCW2  | 0            | 0                | NA        |                |         | 19-8260A  | 19-MAY-97 1531 | Р         |               |
| 6    | 1590    | 74398        | 74398            | NA        |                |         | 02-160.1  | 16-MAY-97 1730 | CP        | <b>TAW800</b> |
| 7    | 1610    | 74368        | 74368            | NA        |                |         | 02-160.2  | 16-MAY-97 1415 | CP        | TAW800        |
| 3    | OSVTCW  | 0            | 0                | 19-3510B  | 16-MAY-97 1135 | P       | 19-8270B  | 23-MAY-97 1135 | Р         |               |
| AMPL | E ID: 1 | HWPW-MW-1    | 2C               |           |                |         |           | SAMPLE N       | NO: H4506 | 669           |
| 1    | OVTCW2  | 0            | 0                | NA        |                |         | 19-8260A  | 16-MAY-97 2119 | P         |               |
| 6    | 1590    | 74398        | 74398            | NA        |                |         | 02-160.1  | 16-MAY-97 1730 |           | TAW800        |
| 7    | 1610    | 74368        | 74368            | NA        |                |         | 02-160.2  | 16-MAY-97 1415 | CP        | TAW800        |
| 3    | OSVTCW  | 0            | 0                | 19-3510B  | 16-JUN-97 1939 | P       | 19-8270B  | 23-MAY-97 1939 | Р         |               |
| AMPL | E ID: H | HWPW-MW-1    | 2A               |           |                |         |           | SAMPLE N       | IO: H4506 | 70            |
| 1    | OVTCW2  | 0            | 0                | NA        |                |         | 19-8260A  | 16-MAY-97 2148 | p         |               |
| 6    | 1590    | 74398        | 74398            | NA        |                |         | 02-160.1  | 16-MAY-97 1730 | -         | TAW800        |
| 7    | 1610    | 74368        | 74368            | NA        |                |         | 02-160.2  |                |           | 008WAT        |
| 3    | OSVTCW  | 0            | 0                | 19-3510B  | 16-MAY-97 1331 | P       | 19-8270B  | 23-MAY-97 1331 |           | COUNT         |
| MPL  | E ID: H | IWPW-MW-1    | 2B               |           |                |         |           | SAMPLE N       | O: H4506  | 71            |
| 1    | OVTCW2  | 0            | 0                | NA        |                |         | 19-8260A  | 19-MAY-97 1628 | Р         |               |
| 6    | 1590    | 74398        | 74398            | NA        |                |         | 02-160.1  | 16-MAY-97 1730 | CP        | TAW800        |
| 7    | 1610    | 74368        | 74368            | NA        |                |         | 02-160.2  | 16-MAY-97 1415 |           | TAW800        |
| 3    | OSVTCW  | 0            | 0                | 19-3510B  | 16-MAY-97 1409 | P       | 19-8270В  | 23-MAY-97 1409 | Р         |               |
| MPL  | E ID: H | IWPW-MW-13   | 3                |           |                |         |           | SAMPLE N       | O: H4506  | 72            |
| 1    | OVTCW2  | 0            | 0                | NA        |                |         | 19-8260A  | 19-MAY-97 1657 | Р         |               |
| 6    | 1590    | 74398        | 74398            | NA        |                |         | 02-160.1  | 16-MAY-97 1730 | CP        | TAW800        |
| 7    | 1610    | 74368        | 74368            | NA        |                |         | 02-160.2  | 16-MAY-97 1415 |           | TAW800        |
| 3    | OSVTCW  | 0            | 0                | 19-3510B  | 16-MAY-97 2017 | Р       | 19-8270В  | 23-MAY-97 2017 |           | J J G M / I   |

# <u>LR</u> <u>Method Literature Reference</u>

- 02 EPA-Methods for Chemical Analysis of Water & Wastes, 1984.
- 19 EPA-Test Methods for Evaluating Solid Waste, 3rd ed, Nov. 1986 and updates

Pace Analytical Services, Inc. 900 Gemini Avenue Houston, TX 77058

> Tel: 281-488-1810 Fax: 281-488-4661

June 05, 1997
Report No.: 00061878
Section D Page 1

**SAMPLE NO: H386848** 

# LABORATORY CONTROL SAMPLE RECOVERY

TEST LCS % LCSD % ACCEPTANCE
CODE DETERMINATION RECOVERY RECOVERY LIMITS RPD

BATCH NO: 74398

1590

Solids, Dissolved at 180C

102

June 05, 1997 Report No.: 00061878 Section E Page 1

# METHOD BLANK DATA

| TEST<br>CODE      |                           | RESULT UN         | IT          |
|-------------------|---------------------------|-------------------|-------------|
| BATCH NO:         |                           | SAMPLE            | NO: H386803 |
| I610<br>BATCH NO: | Solids, Suspended at 103C | < 4 mg/           | L           |
| 1590              | Solids, Dissolved at 180C | SAMPLE<br>< 5 mg/ |             |

June 05, 1997
Report No.: 00061878
Section F Page 1

# DUPLICATE AND MATRIX SPIKE DATA

| TEST      |                           | ORIGINAL<br>RESULT | DUPLICATE<br>RESULT | UNITS | RANGE<br>RPD | -        | MS<br>RESUL |         | MS %<br>RCVRY |
|-----------|---------------------------|--------------------|---------------------|-------|--------------|----------|-------------|---------|---------------|
| BATCH NO: | 74368                     |                    |                     |       |              | SAMPLE   | NO:         | H449447 |               |
| 1610      | Solids, Suspended at 103C | 19                 | 19                  | mg/L  | 0.0          |          |             |         |               |
| BATCH NO: | 74368                     |                    |                     |       |              | SAMPLE ! | NO:         | H450669 |               |
| 1610      | Solids, Suspended at 103C | 1.12               | 112                 | mg/L  | 0.0          | ٠        |             |         |               |
| BATCH NO: | 74398                     |                    |                     |       |              | SAMPLE N | NO:         | H450662 |               |
| 1590      | Solids, Dissolved at 180C | 1,020              | 1,034               | mg/L  | 1.4          |          |             |         |               |
| BATCH NO: | 74398                     |                    | ÷                   |       | :            | SAMPLE N | 10:         | H450672 |               |
| 1590      | Solids, Dissolved at 180C | 738                | 712                 | mg/L  | 3.6          |          |             |         |               |



Client

CHAIN-OF-CUSTODY RECORD Analytical Request REMARKS Pace Project Manager \*Requested Due Date: Pace Project No. Pace Client No. 14100009 Report To: Robert Coffman OV KEO Project Name / No. HUP! ANAL YSES REQUEST P.O. # / Billing Reference 4 **PRESERVATIVES** AOV Bill To: ниО<sup>3</sup> DS2H ОИРЯЕЅЕВУЕD NO. OF CONTAINERS TIME MATRIX PACE "" 9 400-4227 1210 130 1445 1315 EX 5-1397 ab1 # Jour P S Date Sampled Hesston, Tx 77040 SAMPLE DESCRIPTION Phone (713) 460 -4330 Address (2300 Rethusay Granex + 14W-13B MK1. WIN 119m - 1.3 Sampled By (PRINT): Sampler Signature Elston

SEE REVERSE SIDE FOR INSTRUCTIONS

252/ 15-41.5

DATÉ

ACCEPTED BY / AFFILIATION

RELINQUISHED BY / AFFILIATION

HETURNED/DATE

Additional Comments

2

9

317

SHIPMENT METHOD



CHAIN-OF-CUSTODY RECCRD Analytical Request

| lient terroidext              |                     | Report To: Robert Coffinan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pace Client No                                |
|-------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| ddress CAOC Rethering # 190   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table Orientation                             |
|                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pace Project Manager                          |
| 11655 ton 1 k 77040           |                     | P.O. # / Billing Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pace Project No.                              |
| hone (713) 460 - 4230 Few     | 460-4227            | Project Name / No. #WPW 44/03069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *Requested Due Date:                          |
| ampled By (PRINT):            |                     | PRESERVATIVES ANALYSES / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |
| P. Soures                     | r                   | a:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
| ampler Signature Date Sampled |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
| A K                           | 77 HY50             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |
| NG.<br>NG.                    | TIME MÁTRIX PACENO. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | // BEMABKS                                    |
| 1 ,442)-14                    | Casa Had Cold       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |
| 2 MW-15-A                     | 800)   Oals         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
| 3 MW-15-C                     | 9330 (964           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
| 4 1416-16                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
| 5 1114 - 186                  | () SIII             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
| 6 mm -18 A                    | 1145 / 667          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
| 7 rnw - 17A                   | 1310 <b>♦</b> (560  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
| 8 .440-13                     | - <u>&gt;</u>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                                            |
| EXCLERNOS.                    | ENT<br>T            | ITEM HELINGUISHED BY / AFFILIATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ACCEPTED BY / AFFILIATION DATE TIME           |
|                               |                     | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 1 ( ) S.1447 ,750                             |
| dditional Comments            |                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |
|                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
| 31                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の |
| 8                             | ·                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
|                               |                     | The second sections of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the sec |                                               |

SEE REVERSE SIDE FOR INSTRUCTIONS

# Aquifer Slug Test Results Appendix C

February 13, 1998 W.O. #422-09

ERM-SOUTHWEST, INC. 16300 Katy Freeway, Suite 300 Houston, Texas 77094-1611 (281) 579-8999

| west, Inc                             |                          |              | DATA SET: HWPW10A.IN 02/11/98 AGUIFER MODEL: Confined SOLUTION METHOD: | PROJECT DATA:<br>test date: 5/1/97<br>TEST DATA:<br>HO = 0.464 ft<br>rc = 0.167 ft<br>rw = 0.438 ft<br>L = 10. ft<br>b = 13.4 ft<br>H = 13.4 ft | PARAMETER ESTIMATES: K = 0.0004217 cm/sec y0 = 0.4188 ft | AGTESOLV                    |
|---------------------------------------|--------------------------|--------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|
| Company: ERM-Southwest,               | Project: <b>422-009</b>  | 0A Slug Test | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                    |                                                                                                                                                 |                                                          | 16. 20.                     |
| Client: Houston Wood Preserving Works | Location: Houston, Texas | MW-10A       | 1                                                                      | acement (ft)                                                                                                                                    |                                                          | 0.1 4. 4. 8. 12. Time (min) |

|                                      |                |           | DATA SET: HWPW10B.IN 02/11/98 | AQUIFER MODEL: Confined SOLUTION METHOD: Bouwer-Rice | PROJECT DATA:<br>test date: 5/1/97 | TEST DATA: H0 = 0.464 ft  rc = 0.166 ft  rw = 0.5 ft  L = 14.5 ft  b = 34.6 ft  H = 34.6 ft | PARAMETER ESTIMATES: K = 5.261E-05 cm/sec y0 = 0.4424 ft |     | AGTESOLV |
|--------------------------------------|----------------|-----------|-------------------------------|------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----|----------|
| Company: RDM_Courthwoot              | ı              | Slug Test |                               |                                                      |                                    |                                                                                             |                                                          | 30. |          |
| Client Houston Wood Preserving Works | Houston, Texas | MW-10B    | 1.                            |                                                      |                                    | Jacement (ft)                                                                               | qsid                                                     | 0.1 |          |

| west Inc                             | 1                       |           | DATA SET: HWPW12A.IN 02/11/98 | AQUIFER MODEL:<br>Confined<br>SOLUTION METHOD:<br>Bouwer-Rice | PROJECT DATA:<br>test date: 5/1/97 | TEST DATA:  H0 = 1.83 ft  rc = 0.083 ft  rw = 0.343 ft  L = 8.5 ft  b = 22. ft  H = 22. ft | PARAMETER ESTIMATES: K = 0.003127 cm/sec y0 = 0.9148 ft |      |         | AOTESOLV |
|--------------------------------------|-------------------------|-----------|-------------------------------|---------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------|------|---------|----------|
| Company. FRM-Southwest               |                         | Slug Test |                               |                                                               | ļiiri                              |                                                                                            |                                                         |      | 24. 30. |          |
| Client Houston Wood Preserving Works | ocation: Houston, Texas | MW-12A    | 10.                           |                                                               | 1.                                 | Jacement (ft)                                                                              |                                                         | 0.01 | 0.001   |          |

| thwest Inc                                                   | - 1                                 |                                                           |                  | DATA SET: HWPW12B.IN 02/11/98 AQUIFER MODEL: Confined SOLUTION METHOD: Bouwer-Rice | PROJECT DATA:  test date: 5/1/97  TEST DATA:  H0 = 1.713 ft  rc = 0.083 ft  rw = 0.343 ft  L = 10. ft  b = 34.4 ft  H = 34.4 ft  PARAMETER ESTIMATES:  K = 0.00377 cm/sec  y0 = 1.098 ft |
|--------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------|------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client Houston Wood Dreserving Works   Company FRM_Southwest | TICHE MOUSEUM HOOK LICECTAINS HOLDS | Location: <b>Houston, Texas</b>   Project: <b>422-009</b> | MW-12B Slug Test | 10.                                                                                | Displacement (ft)  0.01  0.001  0.001  1.  1.  0.001  0.001  1.  1.                                                                                                                      |

| hwest, Inc.                           |                         |           | DATA SET:<br>HWPW13.IN<br>02/11/98 | AQUIFER MODEL: Confined SOLUTION METHOD: Bouwer-Rice | PROJECT DATA:<br>test date: 5/1/97 | TEST DATA: H0 = 1.73 ft  rc = 0.083 ft  rw = 0.34 ft  L = 10. ft  b = 11.57 ft  H = 11.57 ft | PARAMETER ESTIMATES: K = 0.0007992 cm/sec y0 = 1.082 ft | AGTESOLV |
|---------------------------------------|-------------------------|-----------|------------------------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------|----------|
| Company: ERM-Southwest,               | Project: <b>422-009</b> | Slug Test |                                    |                                                      |                                    |                                                                                              |                                                         | 24. 30.  |
| Client: Houston Wood Preserving Works | n, Tex                  | MW-13     | 10.                                |                                                      |                                    | lacement (ft)                                                                                | qsid                                                    | 0.01     |

| west, Inc.                            |                                 |           | DATA SET:<br>HWPW14.IN<br>02/11/98 | AQUIFER MODEL:<br>Confined<br>SOLUTION METHOD:<br>Bouwer-Rice | PROJECT DATA:<br>test date: 5/1/97 | TEST DATA: H0 = 1.839 ft rc = 0.083 ft rw = 0.5 ft L = 10. ft b = 35.29 ft H = 35.29 ft | PARAMETER ESTIMATES: K = 0.000121 cm/sec y0 = 1.533 ft |      |         | AGTESOLV |
|---------------------------------------|---------------------------------|-----------|------------------------------------|---------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------|------|---------|----------|
| Company: ERM-Southwest,               | Project: <b>422-009</b>         | Slug Test | III                                | •                                                             | <del> </del> III1                  |                                                                                         |                                                        |      | 24. 30. |          |
| Client: Houston Wood Preserving Works | Location: <b>Houston, Texas</b> | MW-14     | 10.                                |                                                               | ;                                  | lacement (ft)                                                                           | qsid                                                   | 0.01 | 0.001   |          |

| west, Inc                                                       |                                           | ·               | DATA SET: HWPW15.IN 02/11/98 | AQUIFER MODEL: Confined SOLUTION METHOD: Bouwer-Rice | PROJECT DATA:<br>test date: 5/1/97 | TEST DATA: H0 = 1.78 ft rc = 0.0833 ft rw = 0.34 ft L = 10. ft b = 15.78 ft H = 15.78 ft | PARAMETER ESTIMATES: K = 0.0006912 cm/sec y0 = 1.245 ft | AGTESOLV |
|-----------------------------------------------------------------|-------------------------------------------|-----------------|------------------------------|------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------|----------|
| Client: Houston Wood Preserving Works   Company: ERM-Southwest, | Location: Houston, Texas Project: 422-009 | MW-15 Slug Test | 10.                          |                                                      | 11                                 | in (ft)                                                                                  | dsid                                                    | 0.001    |

| ERM-Southwest, Inc                        |                                 |           | DATA SET: HWPW16.IN 02/10/98 | AQUIFER MODEL:<br>Confined<br>SOLUTION METHOD:<br>Bouwer-Rice | PROJECT DATA:<br>test date: 5/1/97 | TEST DATA:<br>HO = 1.865 ft<br>rc = 0.083 ft<br>rw = 0.34 ft<br>L = 10. ft<br>b = 17.09 ft<br>H = 17.09 ft | PARAMETER ESTIMATES:  K = 0.0004564 cm/sec  y0 = 1.413 ft |   |         | AGTESOLV |
|-------------------------------------------|---------------------------------|-----------|------------------------------|---------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---|---------|----------|
| Company: ERM—So                           | Project: <b>422-009</b>         | Slug Test |                              | -<br>-<br>-<br>-<br>-<br>-<br>- •                             | <del></del>                        |                                                                                                            | •                                                         |   | 24. 30. |          |
| <br>Client: Houston Wood Preserving Works | Location: <b>Houston, Texas</b> | MW-16 S   | 10.                          |                                                               | 1.                                 | o<br>o<br>o                                                                                                | daid                                                      | 8 | 0.001   |          |

| hwest                                 |                                 |           | DATA SET: HWPW17.IN 02/10/98 | AQUIFER MODEL: Confined SOLUTION METHOD: Bouwer-Rice | PROJECT DATA:<br>test date: 5/1/97 | TEST DATA: H0 = 1.824 ft rc = 0.083 ft rw = 0.34 ft L = 10. ft b = 20.03 ft H = 20.03 ft | PARAMETER ESTIMATES: K = 0.0002886 cm/sec y0 = 1.577 ft | AGTESOLV                    |
|---------------------------------------|---------------------------------|-----------|------------------------------|------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------|
| Company: ERM—Southwest                | Project: <b>422-009</b>         | Slug Test |                              |                                                      | <del> </del> 11111                 |                                                                                          | • •                                                     | 24. 30.                     |
| Client: Houston Wood Preserving Works | Location: <b>Houston, Texas</b> | MW-17 S   | 10.                          |                                                      |                                    | lacement (ft)                                                                            | dsid                                                    | 0.001 6. 12. 18. Time (min) |

|      | ERM-Southwest, Inc.                   | 60                       |           | DATA SET: HWPW18.IN 02/10/98 | AQUIFER MODEL: Confined SOLUTION METHOD: Bouwer-Rice | PROJECT DATA:<br>test date: 5/1/97 | TEST DATA:  HO = 1.779 ft  rc = 0.083 ft  rw = 0.34 ft  L = 10. ft  b = 14.59 ft  H = 14.59 ft | PARAMETER ESTIMATES: K = 0.001387 cm/sec y0 = 0.9848 ft | AQTESOLV |
|------|---------------------------------------|--------------------------|-----------|------------------------------|------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------|
| er i | Company: ERM—S                        | Project: <b>422-009</b>  | Slug Test |                              |                                                      | ·                                  |                                                                                                |                                                         | 16. 20.  |
|      | Client: Houston Wood Preserving Works | Location: Houston, Texas | MW-18     | 10.                          |                                                      | .1                                 | lacement (ft)                                                                                  | qsid                                                    | 0.01     |

# Preliminary Outline for Risk Reduction Implementation Plan

Appendix D

February 13, 1998 W.O. #422-09

ERM-SOUTHWEST, INC. 16300 Katy Freeway, Suite 300 Houston, Texas 77094-1611 (281) 579-8999

# PRELIMINARY OUTLINE RISK REDUCTION IMPLEMENTATION WORK PLAN

# HOUSTON WOOD PRESERVING WORKS HOUSTON, TEXAS

# **EXECUTIVE SUMMARY**

| 1.0 | INTE | ODUCTION                                                   |  |  |  |  |  |  |
|-----|------|------------------------------------------------------------|--|--|--|--|--|--|
|     | 1.1  | SCOPE AND OBJECTIVES                                       |  |  |  |  |  |  |
|     | 1.2  | SITE LOCATION AND DESCRIPTION                              |  |  |  |  |  |  |
|     | 1.3  | SITE HISTORY                                               |  |  |  |  |  |  |
|     | 1.4  | REGULATORY FRAMEWORK                                       |  |  |  |  |  |  |
| 2.0 | REM  | EDIAL INVESTIGATION SUMMARY                                |  |  |  |  |  |  |
|     | 2.1  | SITE CHARACTERIZATION                                      |  |  |  |  |  |  |
|     |      | 2.1.1 Previous Soil Investigations                         |  |  |  |  |  |  |
|     |      | 2.1.2 Previous Ground Water Investigations                 |  |  |  |  |  |  |
|     |      | 2.1.3 Soil Geochemical Analytical Results                  |  |  |  |  |  |  |
|     |      | 2.1.4 Ground Water and Surface Water Analytical Results    |  |  |  |  |  |  |
|     | 2.2  | SITE GEOLOGY AND HYDROGEOLOGY                              |  |  |  |  |  |  |
|     |      | 2.2.1 Environmental Setting                                |  |  |  |  |  |  |
|     |      | 2.2.2 Regional Geology and Hydrogeology                    |  |  |  |  |  |  |
|     |      | 2.2.3 Site-Specific Geology and Hydrogeology               |  |  |  |  |  |  |
|     |      | 2.2.4 Water Well Survey                                    |  |  |  |  |  |  |
|     |      | 2.2.5 Estimates of Horizontal Flow Rate and Flow Direction |  |  |  |  |  |  |
|     |      | 2.2.6 Interaction of the A and B Transmissive Zones        |  |  |  |  |  |  |
|     | 2.3  | EXTENT OF AFFECTED MEDIA                                   |  |  |  |  |  |  |
|     |      | 2.3.1 Extent of Affected Soil                              |  |  |  |  |  |  |
|     |      | 2.3.2 Extent of Affected Ground Water                      |  |  |  |  |  |  |
|     |      | 2.3.3 Site Conceptual Model                                |  |  |  |  |  |  |
| 3.0 | APPL | CATION OF RISK REDUCTION STANDARDS                         |  |  |  |  |  |  |
|     | 3.1  |                                                            |  |  |  |  |  |  |
|     | 3.2  | STANDARD NO. 2                                             |  |  |  |  |  |  |
|     | 3.3  | STANDARD NO. 3                                             |  |  |  |  |  |  |
| 1.0 | PREL | MINARY RISK ASSESSMENT ACTIVITIES                          |  |  |  |  |  |  |
|     | 1 1  | DATE THE TALL THE                                          |  |  |  |  |  |  |

- DATA EVALUATION
  - 4.1.1 Selection of Data Based Upon Useability
  - 4.1.2 Samples Included in the Risk Assessment Database
- TWO-TIERED SCREEN FOR SELECTION OF CONSTITUENTS 4.2 OF CONCERN (COCs)
  - 4.2.1 Selection of Constituents for Standard No. 3 Risk Reduction Evaluation
  - Screening Comparison to Standard No. 2 MSCs and 4.2.2 Identification of COCs for Standard No. 2 Risk Reduction Evaluation

- 5.0 SITE-SPECIFIC RISK ASSESSMENT ISSUES
  - 5.1 RISK ASSESSMENT FOR DERMAL EXPOSURE TO CARCINOGENIC POLYNUCLEAR AROMATIC HYDROCARBONS
  - 5.2 PRACTICAL QUANTITATION LIMITS (PQLs)
  - 5.3 WETLANDS AND ECOLOGICAL ASSESSMENT
- 6.0 PROPOSED CONTENTS OF RISK REDUCTION REPORT
- 7.0 REFERENCES

# LIST OF FIGURES

- 1-1 SITE LOCATION MAP
- 1-2 SITE LAYOUT
- 2-1 RFI SAMPLING LOCATIONS
- 2-2 CROSS-SECTION LOCATIONS
- 2-3 GEOLOGIC CROSS-SECTION A-A'
- 2-4 GEOLOGIC CROSS-SECTION B-B'
- 2-5 GEOLOGIC CROSS-SECTION C-C'
- 2-6 GEOLOGIC CROSS-SECTION D-D'
- 2-7 POTENTIOMETRIC SURFACE MAP A-TZ
- 2-8 POTENTIOMETRIC SURFACE MAP B-TZ
- 2-9 POTENTIOMETRIC SURFACE MAP C-TZ
- 2-10 SITE CONCEPTUAL MODEL
- 3-1 DATA SCREENING PROCESS FOR RISK REDUCTION EVALUATION

## LIST OF TABLES

- 3-1 COMPARISON OF SOIL/RESIDUAL NAPL CONCENTRATIONS TO TNRCC LIMITS FOR 1000 PPM IN VAPOR
- 3-2 SUMMARY OF EXPOSURE PATHWAY ANALYSIS FOR STANDARD NO.3
- 3-3 EXPOSURE PARAMETERS FOR STANDARD NO. 3
- 4-1 SUMMARY OF SOIL SAMPLE LOCATIONS AND DATA SEGREGATION
- 4-2 SUMMARY OF GROUND WATER SAMPLE LOCATIONS AND DATA SEGREGATION
- 4-3 COMPREHENSIVE LIST OF CONSTITUENTS ANALYZED IN SITE MEDIA

- 4-4 CONSTITUENTS OMITTED FROM THE QUANTITATIVE ASSESSMENT FOR SOIL
- 4-5 CONSTITUENTS OMITTED FROM THE QUANTITATIVE ASSESSMENT FOR WATER
- 4-6 SUMMARY OF DETECTED COMPOUNDS SELECTED FOR QUANTITATIVE ASSESSMENT
- 4-7 COMPARISON OF SOIL CONCENTRATIONS TO STANDARD NO. 2
- 4-8 COMPARISON OF GROUND WATER CONCENTRATIONS TO STANDARD NO. 2
- 4-9 COMPARISON OF DITCH SEDIMENT CONCENTRATIONS TO STANDARD NO. 2

# **APPENDIX**

A DERIVATION OF STANDARD NO. 2 MSCs