

Extent of the Nitrogen and Phosphorus Problem: Key NITG Findings

- Nutrient-related pollution significantly impacts drinking water supplies, aquatic life, and recreational water quality
- Knowledge, collaboration, and incentives <u>will fail</u> absent joint accountability
- Current CWA tools <u>underused;</u> additional tools rarely used
- Current regs <u>disproportionately</u> address certain sources to the exclusion of others
- Parts of state Nonpoint Source Programs highly successful, <u>but broader application undercut</u> by absence of a common multi-state framework of mandatory point and nonpoint source accountability

National Scope of Nitrogen and Phosphorus Pollution: EPA database information

- 14,000 Nutrient-related impairment listings in 49 states
 - 2.5 million acres of lakes and reservoirs
 - 80,000 miles of rivers and streams
 - And this is an underestimate . . .
- Over 47% of streams have medium-to-high levels of P and over 53% have medium-to-high levels of N
- 78% of assessed continental U.S. coastal waters exhibit eutrophication, many with harmful algal blooms
- Nutrient impacts reflect doubling of U.S. population over past 50 years
 - · Increased construction, wastewater, and food production

WRS

V

Cyanotoxins

- Some other algae produce toxins Prymnesium, or golden blossom, can kill fish; marine dinoflagellates, or red tides, can be toxic to many animals and humans.
- Cyanobacteria are the primary toxin threats to people from freshwater; acute toxicity is rare, but chronic effects may be significant and are difficult to detect.
- Research (e.g., 3 papers in Lake and Reservoir Management in September 2009) indicates widespread occurrence of toxins but highly variable concentrations, even within lakes.
- Water treatment in typical supply facilities is adequate to minimize risk; the greatest risk is from substandard treatment systems and direct recreational contact.

Sources of Nutrients

 Natural background: P that falls from the sky, dissociates from soil or is released from decaying vegetation, also P in manure from wild animals

- Fecal material: Inadequately treated human or domestic/farm animal wastes
- Fertilizers: Improperly applied or poorly retained agricultural or residential growth enhancing materials
- Stormwater runoff: Not an actual source, but conveyance linked to impervious surfaces and inadequate buffer zones
- Internal recycling: "The ghost of loadings past", nutrients that come back out of the sediments by multiple mechanisms and become available again.

Doing the math on watershed controls

Can we get the land on the right to act like it is land on the left?

Questions?

Ken Wagner Water Resource Manager, Water Resource Services LLC

Land Use	e in the Watershed	
Cropland	73%	
	14%	
Developed	and the second	
Pasture	9%	
Forest	3%	
Wetlands	<1%	104
	Population	
	Mercer County: 40,666 Auglaize County: 46,576	1
		32

Importance of Grand Lake to the Community

Public drinking water supply.

Hosts more than 100 fishing tournaments per year.

Lake-based recreation and tourism accounts for up to \$150 million annually.

Grand Lake State Park enjoyed by more than 700,000 visitors each year.

Extensive lakeshore residential development.

A focal point for community and fellowship with many festivals and events each year.

Specific efforts to reduce agricultural nutrients

"Distressed Watershed" Rule Prohibition of Winter Manure Application Nutrient Management Planning Mandatory Soil Testing Community Anaerobic Digester (proposed) Refining the P-Index (proposed) Continued expansion of special EQIP

57

Sources to La	ake Waco							
Partitioning the loa	ad by drainage							
area and direct sources								
	9/ of T							

				% of		TN:TP
	% of Total	% of Total	% of Total	Ortho P	% of Total	Load
Source	Area	Flow	P Load	Load	N Load	Ratio
NBR	74.8	60.8	66.9	69.5	37.0	5.4
MBR	12.1	15.5	17.4	6.3	41.2	23.3
SBR	5.3	7.4	8.2	3.8	9.6	11.6
HC	5.0	7.6	3.0	3.8	4.6	15.0
Direct Drainage	2.2	3.3	2.8	9.1	3.1	11.1
Atmosphere	0.7	5.3	0.6	1.5	0.6	10.0
Groundwater	0.1	0.3	0.1	0.6	0.2	19.4
Recreation	0.7	0.0	0.1	0.4	0.0	3.1
Waterfowl	0.7	0.0	0.1	0.5	0.0	4.8
Internal	0.7	0.0	0.9	4.6	3.6	39.7
Total	100	100	100	100	100	₆₇ 9.8

Sources to	Lake Waco
Dentitioning the D la	

Partitioning the P load by source type

	% of Contribution to Lake Waco				
Source Type	ТР	OP	Available P	TN	
Woodland and rangeland (natural)	28	5	3	22	
Urban runoff	10	15	12	5	
Wastewater discharges	4	9	8	1	
Cropland (row and cover crops)	19	15	10	51	
Pasture (non-dairy animals)	13	15	12	17	
Dairy operations (CAFOs and					
WAFs)	26	41	55	5	

• Natural land is the largest TP contributor, but represents 63% of watershed land.

• Dairy operations provide >50% of the available P and represent <5% of the land.

WRS

- Crops provide >50% of TN and represent 15% of the land.

Dairy Waste Application Fields

- Manure spread on fields
- P binding capacity exhausted over time
- Large storms move P into streams, NBR and Lake Waco
- Low N:P ratio during these pulsed events

Ken Wagner

Water Resource Manager, Water Resource Services LLC 144 Crane Hill Road, Wilbraham, MA 01095 413-219-8071 kjwagner@charter.net

Russ Gibson Nonpoint Source Program Manager Ohio EPA 614-644-2020 russ.gibson@epa.gov.state.oh.us

Joe Piotrowski Senior Advisor US EPA, Office of Wetlands, Oceans and Watersheds piotrowski.joe@epa.gov

