Estimating Multiple Benefits from Stormwater Capture Projects- Why and How

Water Reuse Action Plan Action 3.3

September 7, 2021

Building Capacity to Capture and Reuse Stormwater

Water Reuse Action Plan (2020)

- WRAP partnerships help advance integrated water management and recycling
 45+ actions with implementation plans
- Action 3.3 focuses on advancing stormwater capture and use

Understanding SCU Opportunities & Challenges

- Webcast series to explore key issues affecting SCU
 - 4 webcasts and 1 technical meeting 2021
- Today's webcast focuses on evaluation of multiple benefits
- National meeting at Johnson Foundation at Wingspread September 2021
- Meeting report and followup actions

Today's Webcast

Introductions

Multiple Benefits As The Springboard

- Anne Thebo, Pacific Institute

Current Approaches to Evaluating Benefits

- T.J. Moon, Los Angeles County
- Spencer Joplin, CA State Water Resources Control Board

How Can We Estimate Multiple Benefits?

- Sybil Sharvelle, Colorado State University
- Janet Clements, Corona Environmental
- Katie Spahr, Water Research Foundation

Where Do We Go From Here?

What We Heard From You

- About 400 Registrants
- > Half from West, 10% each from East, South, Southwest
- Quarter each from local agencies, states, and consultants
- 2/3 from water limited areas
- Most want several kinds of help with benefits evaluation:
 - Examples of how others do it
 - Matching benefits methods with different audiences
 - New benefit evaluation tools

What benefits do you think stormwater capture and use projects can provide your community?

Other

- Improve water quality
- Increase water supply or save higher quality water for other uses
 Flood control
- Improve water supply resiliency
- Aquifer protection or recharge
- Enhance community quality of life
- Aid permit compliance

Estimating Multiple Benefits from Stormwater Capture Projects – Why and How?

Multiple Benefits as the Springboard

EPA Webinar Series September 7, 2021

Anne Thebo, Ph.D. Senior Researcher, Pacific Institute

Today's Webinar

Why Should We Look at the Multiple Benefits? Current Approaches to Evaluating Benefits

How Can We Estimate Multiple Benefits?

Where Do We Go From Here?

Why Should We Look at the Multiple Benefits of Stormwater Capture and Use?

- Benefits motivate action, but costs are a common barrier
- Benefits can build public support, motivate integrated approaches, and build co-funding opportunities

What do we mean by 'stormwater capture'?

Decentralized

Centralized

Household Raingarden (Portland, OR) Source: City of Portland

Bioretention Bed in Greenstreet (Queens, NY) Source: NYC Parks

Rory M. Shaw Wetlands Park (Los Angeles County) Source: Maven's Notebook

Tujunga Spreading Grounds (Los Angeles County) Source: LADWP

Multiple Scales, Direct and Indirect Reuse, Wide Ranging Geographies, and Diverse Project Drivers

What Benefits Have Historically Motivated Stormwater Capture?

- Water Supply
- Water Quality Improvement
- Flood
 Management

PACIFIC

INSTITUTE

Data: Water Stress Indicator (WRI AQUEDUCT v3.0); 303(d) Listed Waters (USEPA)

Abundant, but Underrealized Opportunities for Stormwater Capture

- Opportunity for 420,000 to 630,000 AFY in Bay Area and Southern California (NRDC and Pacific Institute 2014)
- Up to 34,000 MAFY stormwater potentially available for capture in the U.S. (EPA 2004; Aguilar and Brown 2020)
- U.S. Urban Water Use is Approximately 47,000 MAFY (USGS 2020)

PACIFIC

INSTITUTE

Source: NRDC and Pacific Institute. Stormwater Capture Potential in Urban and Suburban California. June 2014.

Stormwater Can Be Less Expensive than Other Alternative Supplies

Median Costs per Acre-Foot

Cooley, et al. (2019)

- Large (> 6,500 AFY): \$590 / AF
- Small (< 1,500 AFY): \$1,500 / AF

Perone and Rohde (2016)

 Managed aquifer recharge: \$1,550 / AF (between \$410 to \$2,660 / AF)

Sources: Cooley, et al. (2019) Environ. Res. Commun. and Perone and Rohde. (2016) SF Est and Wtrshd Sci.

Lifecycle Costs Vary Across Different Types of Stormwater Capture

Source: LADWP (2015) from NAS (2016)

Total Lifecycle Cost (\$/AF)

Stormwater Capture Exists as Part of the Broader Water System

To accurately compare water projects, we need to systematically evaluate the benefits and costs of each water management option, as well as understand who benefits and who pays.

Austin's Rain Catcher Pilot Program

<u>Project Goals</u> Reduce erosive events, improve instream flows, engage with residents

<u>Project Options</u> Rain cisterns, rain gardens, trees

Project Partners Austin Water Austin WPD Local NGOs

How can multiple benefits increase engagement with other city departments, homeowners, and local NGOs?

Connecting Benefits with Beneficiaries

PAC INS

Theme	Benefit	Stakeholder Interested		
Water	Minimize erosive events	WPD		
	Reduce nuisance flooding on-site	WPD, residents		
	Reduce water pollution	WPD		
	Reduce water demand	Austin Water, residents		
	Augment water supply	Austin Water, residents		
Energy	Energy for water treatment and delivery	Austin Energy, Austin Water		
	Energy related to heating/cooling buildings	Austin Energy, residents		
Land and Environment	Improve habitat and biodiversity	Environmental NGOs, Development Services Department (Forestry), WPD, Office of Sustainability, Parks and Recreation Department		
	Improve air quality	Office of Sustainability, Austin Health Department, Austin Energy, Environmental NGOs		
	Improve in-stream flows, extend hydrograph	WPD, Environmental NGOs		
	Greenhouse gas emissions reduction and sequestration	Office of Sustainability, WPD, Environmental NGOs		
Community Benefits	Reduce urban heat island effect	Parks and Recreation Department, Development Services Department (Forestry), Public Works Department, Office of Sustainability, WPD, Environmental NGOs, residents		

Rain Catcher Rebates from Two City Departments

Can Multiple Benefits Help Motivate Private Sector Investment in Landscape Improvements (Including Stormwater Capture)?

Analysis at watershed and parcel scale:

- Water supply
- Water quality

PACIFIC INSTITUTE

- Flood risk mitigation
- Disadvantaged communities

Incorporating Multiple Benefits Into Funding Programs

Benefits of Stormwater Capture Cited In California Prop 1E and 84 Proposals

PACIFIC
INSTITUTE

Benefit	Benefit Metric (2018 USD)				
Water Supply	 Avoided cost of purchasing imported supplies Cost savings for water users relative to the status quo Revenue from sales of water to other users Avoided operations and maintenance costs 				
Flood Damage Reduction	 Avoided flood damage to residential and non-residential properties Avoided loss of revenue and wages from flood disruptions to business Avoided emergency response costs Reduced insurance premiums Avoided public safety and health impacts 				
Water Quality	Avoided cost of water treatment				
Energy and/or Electrical Savings	• Avoided or reduced energy use from groundwater pumping or surface water transfers				
Community Benefits	 Added public active and passive recreation space (acres of space) Increased property values 				
Habitat	Economic value of ecosystem services of wildlife habitatValue of in stream flows				
Greenhouse Gases Avoided	 Avoided greenhouse gas emissions (metric tons of CO2e per year) Carbon sequestration (metric tons of CO2e per year) 				
Avoided Costs	 Avoided lowest-cost project alternative Avoided operations and maintenance, including groundwater pumping 				

Value and Diversity of Stormwater Capture Related Benefits Identified in Prop 84 and 1 Proposals

Stormwater capture is economically feasible, but prioritizing projects that yield the greatest benefits is challenging.

Incorporating multiple benefits provides opportunities to:

- Develop standardized project proposals,
- Allow funders to determine the net benefits,
- Co-fund projects,
- Optimize investments in water.

Including a Greater Range of Benefits in Benefit-Cost Analyses Can Reduce the Effective Cost of Stormwater Capture

PACIFIC

Stormwater capture costs decreased when multiple benefits were included

Incorporating multiple benefits can improve decision making

- \$
- Optimize investment of time, money, and resources

Identify opportunities to share costs

Building community support for a project or program

Minimize adverse and unintended consequences

Promote equitable and transparent decisions

Thank You!

Contact Information Anne Thebo, Ph.D. Senior Researcher athebo@pacinst.org www.pacinst.org

Evaluating Stormwater Capture Project Benefits in Los Angeles County

September 7, 2021

Evaluating Benefits

- 2012 Los Angeles MS4 Permit encouraged the development of multi-benefit, regional stormwater capture projects
- How do you balance all the potential multibenefits?
 - Water Quality
 - Water Supply
 - Community Enhancements
- Can you assign monetary value?
- Is one formula appropriate for all projects

Safe Clean Water Program – Scoring Criteria

- Stakeholder Advisory Group consisting of environmental groups, water supply, MS4 agencies, regulators developed scoring criteria in 2017-2018
- Watershed Management Modeling System (WMMS) Water Quality model developed by LA County was instrumental in determining metrics to evaluate most benefits
- November 2018 Safe Clean Water Program passed
 - Generates ~\$280M towards stormwater capture projects
- Scoring Committee has evaluated over 120 Multi-Benefit Projects

Safe Clean Water Program – Scoring Criteria

Water Quality

- Cost Effectiveness 24-hour Capacity (acre-feet) / Construction Cost
 - Ratio of 1 or greater was determined to be optimal
- Performance Effectiveness WMMS generated pollutant reduction results

Water Supply

۲

- Cost Effectiveness Total Life-Cycle Costs / Total Water Supply Benefit (ac-ft)
- Water Supply Annual Water Supply Benefit (ac-ft) generated by WMMS

Community Investments

- Metrics Flooding, recreational, access
- Community Support

Water Quality (50 Points)

Water Supply (25 Points)

Community Investment (25 Points)

Leveraging Funds (10 Points)

Ladera Park Stormwater Capture Project

Water Quality

- Capacity 5.1 ac-ft (Infiltration)
- Construction Cost: \$5.9 M
- Ratio: 0.86

Water Supply

- No Recharge Potential (Near Coast)
- Dry Weather runoff (1 cfs) is used for water harvesting/treatment

Community Enhancements

- Bioswales
- Demonstration Garden/ Shade Structure
- Education Outreach

Total Score: 69

Roosevelt Park Stormwater Capture Project

Water Quality

- Capacity 8.0 ac-ft (Infiltration)
- Construction Cost: \$9.7 M
- Ratio: 0.82

Water Supply

Recharge Potential in Los Angeles River – 80 ac-ft/year

Community Enhancements

- Education Garden
- Bioswales/Native Landscaping
- Exercise Equipment
- Skate Park
- Soccer Field

Total Score: 67

Gates Canyon Park Stormwater Capture Project

Water Quality

- Capacity 3.5 ac-ft (On-site Treamtent)
- Construction Cost: \$8.9 M
- Ratio: 0.39 (Not Cost-Effective in comparison)

Water Supply

- No recharge potential due to geological constraints
- Water Harvesting System (35 ac-ft/year)

Community Enhancements

- New park amenities
- Reduced irrigation costs

Total Score: N/A. Didn't meet base score

County of Los Angeles Stormwater Projects

Project Name	Туре	Note	Construction Costs	24- hour Capacity (ac-ft)	Water Supply (ac-ft/year)	Safe Clean Water Program Score
Ladera Park	Infiltration Wells & Irrigation Reuse	No Recharge Potential	\$5.9M	5.1	22	69
Roosevelt Park	Infiltration Wells & Gallery	Recharge Potential	\$9.7M	8.0	80	67
Gates Canyon Park	Infiltration Wells & Irrigation Reuse	High Treatment Cost	\$8.9M	3.5	35	N/A

Conclusions

- 1. Every project has different challenges/opportunities
 - Geotechnical constraints & Water Supply Opportunities vary
 - Water Treatment Projects are most expensive
 - Dry Weather vs. Wet Weather Projects
 - Difficult to use a singular formula that applies to all projects
- 2. Recommend comparing similar projects per region
 - Project in areas where groundwater recharge is possible provide "more" benefit compared to areas that don't recharge
- 3. Community Enhancements are difficult to compare/evaluate
 - Need further stakeholder engagement to develop agreed upon quantification
 - Metrics are being developed by Safe Clean Water Program team expected in June 2022
- 4. Developing stormwater BMP models help evaluate benefits

Questions

TJ Moon LA County Public Works tmoon@dpw.lacounty.gov

Funding Perspective on Project Benefits

Presenter: Spencer Joplin, P.E. Water Resource Control Engineer

Water Boards

Storm Water Grant Program, September 2021
Outline

- Grant Program Requirements (for Project Benefits)
- How benefits are presented in an application
- How benefits are evaluated by the Grant Program Staff

- Only one (1) Primary Benefit per Project
- Water Supply/Quality Preferred/Incentivized
- Must be a quantifiable benefit

- Up to two (2) Secondary Benefits per Project (for scoring purposes)
- Not required to be a quantifiable benefit; However, quantification expected (when feasible) depending on the type of benefit claimed

California Water Boards

39

Examples of quantifiable benefits

Benefit	Example	Metric Units
Water Quality while contributing to compliance with applicable permit and/or TMDL requirements Water Supply	 Increased filtration and/or treatment of runoff Nonpoint source pollution control Reestablished natural water drainage and treatment 	 Load Reduction: lb/day, kg/day. Concentration: mg/l, μg/l, MPN/ml. Unit cost: \$/lb, \$/kg, \$/MPN. Treatment capacity: MGD, AFY. Volume Captured: MGD, AFY.
through groundwater management and/or runoff capture and use	 Water supply reliability Water conservation Conjunctive use 	 Unit Cost: \$/AF (along with volume)
Flood Management	 Decreased flood risk by reducing runoff rate and/or volume Reduced sanitary sewer overflows 	 Rate: CFS. Area protected: acres. Volume: CF, AF Storm: x-year storm, inches in 24 hours.
Environmental	 Environmental and habitat protection and improvement, including: wetland enhancement/creation; riparian enhancement; and/or instream flow improvement Increased urban green space Reduced energy use, greenhouse gas emissions, or provides a carbon sink 	 Size and/or Rate acres cubic feet per second (cfs) carbon sequestration (megagrams of carbon per area) Other area units of landscape and buffer measure of improved hydrology number of biotic structure number of physical structuress reduced temperature (degrees)
Community	 Enhanced and/or created recreational and public use areas Community involvement Employment opportunities provided 	 Size size of population served number of people number of jobs acres

How are Benefits presented in an Application?

Annual Benefit Quantities Analysis

- Driving force behind projects
 - (i.e. water shortages, WQ impairments)
- Methodology for quantifying claimed Benefits and supporting documentation
- Description of Non-quantifiable Benefits
- Table Summary of Primary and Secondary Benefits (including quantification)

Cost-Benefit Analysis

INPUT:

- Itemized volumetric benefit quantities for each BMP Type (amount captured, treated, infiltrated/used)
- Estimated Useful Life of each BMP Type
- Capital Costs of each BMP Type
- Annual O&M Costs of each BMP Type

OUTPUT:

Unit (Dollar/Acre-Foot) Cost

Typical Quantification Methods

- Water Balance
- Modeling Tools or Software
- Calculations

How are Benefits evaluated?

- Scoring of Benefits driven by the scoring criteria/rubric within the Program Guidelines (Adopted by the Board)
- Do claimed benefits address Program preferences/priorities?
- Are benefits quantified (when applicable) and supported with technical analysis?
- Geographical scale of benefits
 - (i.e. project addressing regional or watershed scale issues vs. local issues)
- Unit Cost-Benefit in comparison with other proposals

CONTACT INFORMATION

Spencer Joplin, P.E., Water Resource Control Engineer <u>Spencer.Joplin@waterboards.ca.gov</u> Phone: 916.341.5636

Daman Badyal, P.E., Senior Water Resources Control Engineer <u>Damanvir.Badyal@waterboards.ca.gov</u> Phone: 916.319.9436

Connecting world class research with real-world water challenges

Colorado State University

Co-Benefits Assessments – Spectrum of Analysis

Lists of Co-Benefits

Qualitative

Monetary estimates

Quantitative

Low input data needed Local considerations less important

Complex input data needed Local considerations very important

Vision of CLASIC Decision Support System

The CLASIC tool is a user-informed screening tool which utilizes a lifecycle cost framework to support stormwater infrastructure decisions on extent and combinations of green, hybrid green-gray and gray infrastructure practices.

Web Based Decision Support System:

clasic.erams.com

GIS Interfaced for automated data collection of CLASIC inputs (area characteristics)

Three Basic Outputs for User Allows for Integrated Assessment

Life-Cycle Cost

 Rigorous comparison of life cycle costs associated with technologies particularly compared to similar gray infrastructure

Performance

- Runoff Volume Reduction
- Peak Flow Reduction
- Pollutant Load Reduction

Co-Benefit Analysis

 Score for economic, social, and environmental co-benefits based on multicriteria decision analysis

Sand Filter

Rain Garden with Diverse Vegetation

Co-Benefits Assessments – Spectrum of Analysis

Lists of Co-Benefits

Qualitative

Low input data needed Local considerations less important

Complex input data needed Local considerations very important

Monetary estimates

Quantitative

Co-Benefit Analysis in CLASIC Tool

User selects importance factors (1 – 4) for each indicator

Quantitative Data used to Assign Indicator Ratings

For each indicator, relative rating between 1 - 5 is assigned to enable a comparative analysis between scenarios (Multi-Criteria Decision Analysis)

Co-Benefit Indicators	Approach	CLASIC parameters used for estimation
	ECONOMIC	
Property Values	Directly correlated to area of added green space	SCM area (acre) only when vegetated is selected and technology is added to captured impervious
Costs from Illness	Ozone, PM10, nitrogen dioxide, sulfur dioxide, and carbon monoxide removal by each herbaceous plants and trees is estimated. Pollutant removal is used in conjunction with cost of illness treatment associated with each pollutant.	Diverse Vegetated SCM area (acre); Number of trees added; Area of Green Roof
Avoided Costs from Combined Sewer Treatment	Runoff volume	Average annual precipitation that becomes runoff (in/yr)

Summary

- Co- Benefits Analyses range from qualitative to quantitative (monetary)
 - More extensive data inputs required for monetary estimate
- CLASIC utilizes multi-criteria decision analysis approach to provide relative comparisons of co-benefits between scenarios with few user inputs

Welcome to the GSI TBL Tool

This Tool allows you to quantify and monetize the Triple Bottom Line (TBL) benefits of Green Stormwater Infrastructure (GSI).

In subsequent tabs, you will provide inputs necessary to develop the GSI scenario you would like to evaluate. You will also enter key inputs necessary to quantify and monetize the GSI benefits relevant to your community. Each benefit is represented by a separate tab/benefits module.

Throughout this Tool, only enter values into Cells shaded in GREEN. Generally, you should not enter values into cells shaded in GRAY (although there are exceptions). Results are shown in cells that are shaded in ORANGE.

To successully navigate the Tool, the MACROS ASSOCIATED WITH THIS FILE MUST BE ENABLED. Simply hit the Enable Content button at the top of the screen to enable macros.

> THE Water Research FOUNDATION

Framework and Tool for Quantifying the Triple Bottom Line Benefits of Green Stormwater Infrastructure

IVI

IN

Janet Clements Director, Water Economics and Planning Corona Environmental Consulting September 7, 2021

5

Q

ĸ

Project Objective

Develop economic framework and Excel-based tool to help practitioners *quantify* and *monetize* the *Triple Bottom Line benefits* of GSI and compare them to *costs*.

What is Triple Bottom Line Analysis?

Comprehensive **benefit-cost analysis** that accounts for:

- financial
- social
- environmental

benefits and costs of a project or program **over time,** and to **whom they accrue**.

Economic Aspects of GSI

A broader *economic* (TBL) perspective can reveal that GSI provides greater benefits for communities.

Social

- ✓ Reduced urban heat stress
- ✓ Flood risk reduction*
- Increased property values
- Improved recreational opportunities
- ✓ Green job creation
- Water supply

Financial

- ✓ Avoided infrastructure costs
- ✓ Asset life extension
- ✓ Utility energy savings

Environmental

- Improved air & water quality
- ✓ Improved habitat/ecosystem
- ✓ Carbon reduction

Why is Quantitative/Monetized TBL Information Needed?

- Build support for GI internally
- Identify stormwater management alternatives that maximize community value
- Compete for scarce funding
- Leverage private capital and alternative funding
- Support alternative project delivery models
- Gain community support and buy-in

Framework and Tool

- Standard economic valuation methods
- Default (regional) values/allows for user customization
- Neighborhood, city, watershed scale
- Excel-based Tool, guidance, report, extensive technical documentation

Establishing a GSI Scenario

GSI Practices - Enter	Acres Manage	ed or Number of BMPs
	-	

υ

А

Б

C

-		•			•	
		Effective				
		Impervious Acres	Number of	Volume Capacity	Calculated BMP	Annual Runoff
GSI Practice (BMP)	CLASIC BMP Name	Managed	BMPs	by BMP type	Area (Footprint)	Volume
		(acres)		(cft)	(square feet)	(cft)
Rain gardens	Rain gardens		-	-	-	-
Bioretention facilities	Infiltration trenches	708.4	802	2,520,062	4,408,272	79,279,098
Green roofs	Green roofs	57	598	202,505	2,987,534	6,370,642
Tree planting/street trees	*	151.2	118,000	548,700	82,962,564	16,916,421
Permeable pavement	Permeable pavement	329	329	1,170,385	7,165,620	36,819,344
Cisterns - rainwater harvesting	Rainwater harvesting	8.29	45	30,080		927,373
Rain barrels - rainwater harvesting	Rainwater harvesting	11.48	1,000	7,352.9		1,284,583
Constructed wetland	*		-	-	-	-
Wet ponds	Wet pond		-	-	-	-
Biofiltration/grass or vegetated swale	e Grass swale		-	-	-	-
		1,265		4,479,085		141,597,462

r u

.

н

1

1

K

* CLASIC does not address "Tree planting/street trees" or "constructed wetland"

E

Benefit Modules: Energy Savings

- Building energy savings (trees and green roofs)
- Avoided stormwater pumping and treatment
- Avoided drinking water treatment and distribution

АВ	C	D	E	F	G	н		J	K	L	M	N	0	P	Q	R	S	r U
Energ - Reduced he - Avoided sto - Avoided driv	y Saving ating and cooling for rmwater pumping an aking water treatmen	S buildings id treatment it and distribution		<mark>Benefit V</mark> Annualize Present V analys	/alue Summarn ed Value /alue sis period (yea	Y S ars)	\$ <u>26,603</u> \$ <u>835,968</u> 50											
		and the second second											USFS C	limate Z	ones			
Building Energy	rgy Savings - Tre	Number of trees	added								Longview	No.		-	Managoots O		a and	and the second s
Minnesota	s at Full Tree Growth	State									Backalaria -		de la compañía de la comp	rt Collins	and Designed	A Law Laws		ARETS Constant
267 12.5 \$ 33.21	kWh (cents/kWh) S / year	Average Annual E Average Cost of E Value of Electrici	Electricity Saving Electricity (Resid	gs Per Tree Iential and (ear Per Tree	Commercial)		lanual entry - cos Ise manual entry No US cents/kWh)	electric rate	(yes or no	o)	Santa Monica See D	A Careencert	Ginestate y A	Concentration Concentration				arieston
\$ 2,989 Natural Gas Savi	\$ / year	Value of Electrici wth (30 years)	ity Savings Per Y	ear for all Tr	rees	Ē.	10.0 Nanual entry - cos	t of natural	gas		 Refere Climate 7 	nce Cities			Anna Anna Anna Anna Anna Anna	and a state of the		ndo
36.47 3.53 9.58	(Therms) Thousand Cubic Fee (S/K Cubic Feet)	Average Annual I t] Conversion Average Cost of N	Natural Gas Sav Natural Gas	ings Per Tree	e		lse manual entry No US dollars/Thous	natural gas i	rate (yes o	or no)	North Interio	n ior West perate Interior Wes	r	Inland Empire Tropical Central Florida	Constant I			tet Landantale Manu
\$ 33.79 \$ 3,041	\$ / year \$ / year	Value of Natural Value of Natural	Gas Savings Pe Gas Savings Pe	r Year Per Tri r Year for all	ee I Trees		12.00		,		Pacifi Inlan South South North	fic Northwest d Valleys hwest Desert hern California Cou hern California Cou	ast A	Coastal Plain South Northeast Lower Midwest Midwest	1		San Juan	Honokulu
Building Ene	rgy Savings - Gre	een Roofs																
MN MINN		Reference State/	/City															
435,600	square foot	Square footage o	of green roof ad	ded														
Green Roof Para Introducti	on Results.Das	shboard Key.	Inputs GS	.Scenario	Costs.Tim	eline	1.Avoided.Inf	rastructure.	.Costs	2.A	.voided.Re	placemen	t.Costs	3.Ener	gy.Savings	4.Wa	ter.Supply	5.Air.Q

A	В	С	D	E	F	G	Н	I	J	К	L	M	N

GSI Benefit/Cost Results

- Benefits by Triple Bottom Line (TBL) category

- Benefits over time

	Anal	ysis	Assum	ptions
--	------	------	-------	--------

Analysis Period	28	Years
Discount Rate	4.0%	

Benefit Categories

Financial

Avoided infrastructure and treatment costs

Avoided replacement costs

Energy savings

Environmental

- Water quality improvements
- Carbon emissions reduction and sequestration
- Ecosystem benefits

-	_	
C 1	-	
	ci	cia

- Improved air quality
- Water supply benefits
- Improved aesthetics (property values)
- Reduced heat stress
- Increased recreation
- Green job creation

<u>Other</u>

Other benefits (enter to the right)

Present Value - All Benefits and Costs

	Total over st	tudy period	Annua	lized values
Benefits	\$	27,893,556	\$	1,673,975
Costs	\$	21,532,600	\$	1,292,235
Benefit-Cost Rati		1.295		

Benefits Calculated Outside Tool

Avera	ge annual (i	non-discounted)	TBL Benefit Type
\$	175,500		Other

.

Case Studies

- **St. Paul (MI)** Green/Gray Alternatives evaluation; 34acre site; Autocase comparison
- Lancaster (PA) Citywide
 Stormwater Management
 Plan; CNT/AR comparison
- Seattle (WA) Neighborhood Improvement; Incorporates MODA analysis
- Cleveland (OH) 9 grantfunded projects

	Saint Paul, MN	Lancaster, PA	Seattle, WA	Cleveland, OH
Description	Compares benefits and costs of two alternatives – gray- and GSI-based approaches – for mixed-	Evaluates benefits and costs of a citywide GSI- based stormwater management plan	Examines benefits and costs of three ROW bioretention projects in high priority	Evaluates benefits and costs of multiple grant funded GSI projects
	use, 134-acre redevelopment site	implemented over 25-	watershed.	in combined sewer
Project proponents	Capitol Region Watershed District/City of Saint Paul	City of Lancaster	Seattle Public Utilities	Northeast Ohio Regional Sewer District.
Key highlights	Results compared to similar analysis using <u>Autocase</u> tool. Compares incremental costs / benefits of gray and GSI scenario.	Results compared to a similar analysis developed using CNT/American Rivers Guide	Incorporates MODA ^b framework that SPU uses to assess GSI project priorities / benefits.	Includes customized property value analysis and analyzes distributed projects.
GSI scenario	Centralized GSI corridor; 4.8 acres of bioretention; 300 trees, large retention pond / wetland system; 10-acres of green space. Stream restoration links development site to recreation/natural area.	Manages 1,265 IA / 1,060 MC of runoff/year through GSI: bioretention (56%)E; permeable pavement (26%); trees (13%)d ⁴ ; green roofs (4.5%); RWH (1%).	ROW bioretention projects managing 6 impervious acres; includes 89 trees, pedestrian/safety improvements, and community gathering space.	Nine distributed projects including bioretention, permeable pavement, and underground systems.
Avoided		*		*
Avoided maint /replace		*		*
Energy savings	*	*	*	*
Water supply		€		×
Air quality	*	*	*	*
Heat stress	*	*		
Recreation	*	*	*	
Enhanced aesthetics	*	*	*	*
Green job creation	*	*	*	*
Water quality/habitat	*		*	
Carbon reduction	*	*	*	*
Terrestrial ecosystem	*	*	*	*
Flood risk reduction	*			
Total PV benefits (SM)	\$27.9 (GSI); \$15.1 (gray); (28-year PV)	\$521.8 (50-year PV)	\$8.98 (50-year PV)	\$3.49 (40-year PV)
Total PV costs (\$M)	\$21.5 (GSI); 18.8 (gray) (28-year PV)	\$241.5	\$5.87	2.40
Benefit-cost ratio	1.3 (GSI); 0.8 (gray)	2.16	1.53	1.455

Key Research Gaps and Next Steps

- Quantification: Flood risk reduction, habitat creation, urban heat stress benefits
- How to design, locate, and implement GSI to achieve benefits
- Incremental benefits and costs (what are the price points for achieving benefits?)
- Informing/integrating with funding and financing options/ alternative project delivery models
- Equity implications
- Alternative frameworks for non-quantified benefits

Contact: Janet Clements jclements@coronaenv.com

Assessing Co-benefits and Moving Towards Multifunctional Design

KATIE SPAHR, PH.D., P.E.

RESEARCH PROGRAM MANAGER, THE WATER RESEARCH FOUNDATION

PRESENTING GRADUATE WORK PERFORMED UNDER

DR. TERRI HOGUE, COLORADO SCHOOL OF MINES

Integrated Decision Support Tool (i-DST) Project

Develop an integrated, scalable, decision support tool (called **i-DST**) for grey, green, and hybrid infrastructure for nationwide implementation

Planning-level tool – suitable for project prioritization (not design)

EPA National Priorities: Life Cycle Costs of Water Infrastructure Alternatives (RFP: EPA-G2015-ORD-D1)

idst.mines.edu

Board Image from the Noun Project

Multi-institutional collaboration

Science Advisory Board 68

State of the cobenefit literature

"This global systematic review highlights the <u>minimal evidence</u> <u>on human health and social</u> <u>well-being</u> relating to green infrastructure for stormwater and flood management"

-Venkataramanan et al. (2019)

"In small parks ... pollutant removal by vegetation is <u>unlikely to make the major</u> <u>contribution to improved air</u> <u>quality</u> in their interiors"

-Xing & Brimblecombe (2020)

Improved air quality(Xing & Brimblecombe, 2020)Human health and well-being(Venkataramanan et al., 2019)Property values(Mazzotta, Besedin, & Speers, 2014)Urban cooling(Yu et al., 2020)Blue InfrastructureSizeDistributionBlue InfrastructureVegetative Characteristics	Benefit	Reference		
Human health and well-being(Venkataramanan et al., 2019)Property values(Mazzotta, Besedin, & Speers, 2014)Urban cooling(Yu et al., 2020)Blue InfrastructureSizeDistributionBlue InfrastructureShapeVegetative Characteristics	Improved air quality	(Xing & Brimblecombe, 2020)		
Property values(Mazzotta, Besedin, & Speers, 2014)Urban cooling(Yu et al., 2020)Blue InfrastructureSizeDistributionBlue InfrastructureShapeVegetative Characteristics	Human health and well-being	(Venkataramanan et al., 2019)		
Urban cooling(Yu et al., 2020)SizeDistributionBlue InfrastructureShapeVegetative Characteristics	Property values	(Mazzotta, Besedin, & Speers, 2014)		
Size Distribution Blue Infrastructure Shape Vegetative Characteristics	Urban cooling	(Yu et al., 2020)		
	Size Distri Shape	oution Blue Infrastructure Vegetative Characteristics		

Previous work using high resolution vegetation modeling showed that GSI installation is not offsetting development in Philadelphia.

(Spahr et al., 2020)

0.2 km

For the i-DST, we focused on 13 benefits

Benefits were analyzed by driver:

Hydrologic processes or vegetation

Hydrologic-process-based Benefits

- Improved water quality
- Reduced impacts from flooding
- Reduced burden on
 existing infrastructure
- Increased local groundwater resources
- Cistern-specific benefits
- Increased aquatic biodiversity

Vegetation-based Benefits

- Increased recreational opportunities
- Increased terrestrial biodiversity
- Increased property values
- Neighborhood
 beautification
- Human health and well social well being
- Improved air quality
- Neighborhood cooling

Different benefit drivers require different benefit assessments

Hydrologic-process-based Benefits

Straightforward to measure through stormwater modeling

Benefit	Metric	Lower Value Preferred?	BR	IT	PP	UDS	UIS	V
-	Total capital cost	Yes	1.00	0.06	0.54	0.48	0.26	0.
Vegetated benefits	Total potential vegetated area	No	0.26	0.00	-	-	-	1.
Reduced impacts from flooding	Flow exceedance frequency	Yes	0.32	0.39	0.39	1.00	0.61	0.
Increased groundwater resources	Total groundwater recharge potential	No	0.00	0.12	0.07		1.00	0.
Neighborhood Cooling	Total evapotranspiration	No	1.00	0.82	0.88	-	-	0.
Improved water quality	Average annual load of total phosphorus at outlet	Yes	0.00	0.01	0.09	1.00	0.07	0.

Key:

← More preferred ←

Vegetation-based Benefits

Require knowledge of surrounding urban green infrastructure

4 Cs: Community, context, connectivity, canopy
The 4Cs

Conceptual framework to be used to help practitioners assess trade-offs between benefits

Pulled from common themes in the vegetated benefit literature

Promotes and supports scientifically sound decisions and multi-functional planning

(Spahr et al., 2021)

THE 4Cs

COMMUNITY

Systems-level of analysis of neighborhoods and the incorporation of local demographic data

CONNECTIVITY

Proximity of green stormwater infrastructure to existing urban bluegreen infrastructure

CONTEXT

Background patterns of vegetation and surrounding land use where a SCM is being installed

CANOPY

Influence of trees, including the types of trees installed

i-DST Benefit Factsheets

- Summarize literature
- Identify tradeoffs
- Jumping off point for stormwater managers
- Will be hosted on i-DST website

Preference for co-benefits varies over location and demographics.

(Spahr et al., In press)

Shifting to Multifunctional Design

Moving away from postprocessing analysis [1] to using benefit assessments to help each stage of the design process [2].

We need your help setting the research agenda for stormwater capture and use! WRF Project 4841: Assessing the State of Knowledge and Research Needs for Stormwater Harvesting

Project Lead by Carollo Engineers

Please fill out this quick survey:

https://www.surveymonkey.com/r/stormwat erharvesting

Will drop link into the chat

References

Mazzotta, M., Besedin, E., & Speers, A. (2014). A Meta-Analysis of Hedonic Studies to Assess the Property Value Effects of Low Impact Development. *Resources*, *3*(1), 31–61. <u>https://doi.org/10.3390/resources3010031</u>

Spahr, K.M., Bell, C. D., McCray, J. E., & Hogue, T. S. (2020). Greening up stormwater infrastructure: Measuring vegetation cestablish context and promote cobenefits in a diverse set of US cities. *Urban Forestry and Urban Greening*, 48. https://doi.org/10.1016/j.ufug.2019.126548

Spahr, K. M., J. M. Smith, J.E. McCray, T.S. Hogue, "Public preference for green stormwater infrastructure and ancillary cobenefits: How opinions vary across city, race, and educational attainment" *Journal of Sustainable Water in the Built Environment*. In Press.

Spahr, K. M., Bell, C. D., Gallo, E.M., McCray, J. E., & Hogue, T. S. (2021) Incorporating a multiple benefit analysis into atormwater hydrologic decision support tool at planning level. Journal of Sustainable Water in the Built Environment. 7(3). <u>https://doi.org/10.1061/JSWBAY.0000952</u>

Venkataramanan, V., Packman, A. I., Peters, D. R., Lopez, D., McCuskey, D. J., McDonald, R. I., ... Young, S. L. (2019). A systematic review of the human health and social well-being outcomes of green infrastructure for stormwater and flood management. *Journal of Environmental Management*, *246*, 868–880. <u>https://doi.org/10.1016/j.jenvman.2019.05.028</u>

Xing, Y., & Brimblecombe, P. (2020, February 1). Trees and parks as "the lungs of cities." *Urban Forestry and Urban Greening*, Vol. 48, p. 126552. <u>https://doi.org/10.1016/j.ufug.2019.126552</u>

Yu, Z., Yang, G., Zuo, S., Jørgensen, G., Koga, M., & Vejre, H. (2020, March 1). Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. *Urban Forestry and Urban Greening*, Vol. 49, p. 126630. <u>https://doi.org/10.1016/j.ufug.2020.126630</u>

Where Do We Go From Here?

For more information, please visit:

> EPA's Water Reuse Action Plan Home Page: <u>https://www.epa.gov/waterreuse/water-reuse-action-plan</u>

> Action 3.3 page on the WRAP Online Platform:

https://www.epa.gov/waterreuse/national-water-reuse-action-planonline-platform?action=3.3

Thank You For Joining Us!