CORRECTIVE ACTION MONITORING REPORT 2007 SECOND SEMIANNUAL EVENT

FORMER HOUSTON WOOD PRESERVING WORKS 4910 LIBERTY ROAD HOUSTON, TEXAS

January 8, 2008

Prepared for:

Mr. Geoffrey Reeder, P.G. UNION PACIFIC RAILROAD COMPANY

> 24125 Aldine Westfield Road Spring, Texas 77373

> > *Prepared by:*

PASTOR, BEHLING & WHEELER, LLC

2201 Double Creek Drive, Suite 4004 Round Rock, Texas 78664 (512) 671-3434

PBW Project No. 1358

TABLE OF CONTENTS

Page

LIST	OF TABL	ES	ii
LIST	OF FIGUI	RES	ii
LIST	OF APPE	NDICES	ii
1.0	EXECU	JTIVE SUMMARY	1
2.0	INTRO	DUCTION	2
3.0	2007 FI	RST SEMIANNUAL GROUNDWATER MONITORING EVENT	4
	3.1	Narrative Summary of First Semiannual Monitoring Activities	.4
		3.1.1 Corrective Action Program	.4
		3.1.2 Groundwater Monitoring	.) -
	3.2	Purge Water Management	.5 6
	3.3	Monitoring and Corrective Action System Wells	.0 2
	3.4	Analytical Results	.0
	3.5	Well Measurements	.0
	3.6	Potentiometric Surface Maps	. /
	3.7	Non-Aqueous Phase Liquids	./
	3.8	Recovered Groundwater and NAPL	0. 0
	3.9	Contaminant Mass Recovered	0. 0
	3.10	Analytical Data Evaluation	٥. ٥
	3.11	Reported Concentration Maps	۶. ۵
	3.12	Extent of NAPL	.9 10
	3.13	Updated Compliance Schedule	10
	3.14	Summary of Changes Made to Corrective Action Program	10
	3.15	Modifications and Amendments to Compliance Plan	10
	3.16	Corrective Measures Implementation (CMI) Report	10
	3.17	Well Casing Elevations	10
	3.18	Recommendation for Changes	1U 11
	3.19	Well Installation and/or Abandonment	11
	3.20	Activity Within Area Subject to Institutional Control	11
	3.21	Other Requested Items	11

i

LIST OF TABLES

Table Title

- Summary of Analytical Results for the A-Transmissive Zone (A-TZ) 1
- Summary of Analytical Results for the B-Transmissive Zone (B-TZ) 2
- Summary of Analytical Results for Quality Assurance/Quality Control Samples 3
- Water Level Measurements 4
- Compliance Status of Wells and Piezometers 5

LIST OF FIGURES

Figure Title

- Site Location Map 1
- Corrective Action Monitoring Well Network 2
- A-TZ Potentiometric Surface Contour Map July 17-18, 2007 3
- 4
- 5
- B-TZ Potentiometric Surface Contour Map July 17-18, 2007 A-TZ Reported Concentrations 2007 2nd Semi Annual Monitoring Event B-TZ Reported Concentrations 2007 2nd Semi Annual Monitoring Event 6

LIST OF APPENDICES

Title Appendix

- **Compliance** Plan Tables А
- **Field Parameters** В
- Laboratory and Analytical Reports and Data Usability Summaries С
- Updated Compliance Schedule D

January 8, 2008

1.0 EXECUTIVE SUMMARY

This semi-annual report presents a summary and evaluation of the Corrective Action Groundwater Monitoring for the Closed Surface Impoundment (Solid Waste Management Unit No. 1) at the former Wood Preserving Works facility (the Site) located in Houston, Texas. The groundwater monitoring activities for this period were performed by Delta Environmental Consultants, Inc. (Delta) in July 2007.

The two uppermost groundwater bearing units, the A-Transmissive Zone (A-TZ) and the B-Transmissive Zone (B-TZ), were monitored during this period. Groundwater elevation data collected during the July 2007 sampling event show groundwater flow to the west in the A-TZ with a hydraulic gradient of approximately 0.0038. A-TZ groundwater flow direction has changed slightly relative to the groundwater flow direction observed during the January 2007 first semi-annual monitoring event, when flow was observed to be to the south-southwest. However, westerly groundwater flow in the A-TZ has been observed in the past (i.e. January 2006).

Groundwater elevation data collected in the B-TZ show groundwater flow to the west-northwest with a hydraulic gradient of approximately 0.004. Groundwater flow in the B-TZ zone is similar to the flow direction observed during previous monitoring events.

Analytical results from the July 2007 sampling event were compared to Texas Commission on Environmental Quality Texas Risk Reduction Program Protective Concentration Limits, as designated in Section IV.D of the Compliance Plan, dated June 10, 2005. Constituent concentrations were below their respective PCLs for the fourth consecutive semi-annual monitoring event. Monitoring wells in both the A-TZ and B-TZ are considered to be complaint for this monitoring period.

1

2.0 INTRODUCTION

This semi-annual report presents a summary and evaluation of groundwater monitoring data collected during the 2007 second semi-annual monitoring period (July through December) at the former Houston Wood Preserving Works facility (the Site) located at 4910 Liberty Road in Houston, Texas (Figure 1). Semi-annual groundwater monitoring is required for the Site as a condition of the Texas Commission on Environmental Quality (TCEQ) Hazardous Waste Permit No. 50343 and associated Compliance Plan (CP) No. 50343, both renewed and issued on June 10, 2005. Groundwater monitoring at the Site is performed to monitor groundwater quality beneath the Closed Surface Impoundment Unit No. 001 (Solid Waste Management Unit (SWMU) No. 1).

Delta Environmental Consultants, Inc. (Delta) conducted groundwater monitoring activities at the Site on July 17-18, 2007. Groundwater monitoring activities included sampling and gauging the background and point of compliance (POC) wells and piezometers associated with SWMU No. 1. The sampling event, analytical data, and data evaluation provided in this report fulfill the semi-annual corrective action reporting requirements for the second half of 2007 as described in the CP, Section VII.C.2. This section requires the following reporting elements:

Semi-Annual Corrective Action Report Requirements	Report Section, Table(s) and/or Figure(s)
A narrative summary of the evaluations made in accordance with CP Sections V, VI, and VII for the preceding six-month period. These periods shall be January 1 through June 30 and July 1 through December 31 (VII.C.2.a.)	3.0
Summary of Methods utilized for management of recovered/purged water (VII.C.2.b.) An updated table and map of the monitoring and corrective action system wells (VII.C.2.c.)	3.2 Section 3.1.1 and Figure 2
The results of the chemical analyses, submitted in a tabulated format in a form acceptable to the Executive Director, which clearly indicates each parameter that exceeds the Groundwater Protection Standard (GWPS). Copies of the original laboratory report for chemical analyses showing detection limits and quality control and quality assurance data shall be provided if requested by the Executive Director (VII.C.2.d.)	Tables 1 & 2 Appendix C
Tabulation of the water level elevations (relative to mean sea level), depth to water measurements, and total depth of well measurements collected since the data that was submitted in the previous semiannual report (VII.C.2.e.)	Table 4
Potentiometric surface maps showing the elevation of the water table at the time of sampling and direction of groundwater flow gradients (VII.C.2.f.)	Figures 3 & 4
A notation of the presence or absence of non-aqueous phase liquids (NAPLs), both light and dense phases, in each well during each sampling event since the last event covered in the previous semiannual report and tabulation of depth and thickness of NAPLs, if detected (VII.C.2.g.)	Table 4

Semi-Annual Corrective Action Report Requirements (cont'd)	Report Section, Table(s) and/or Figure(s)
Quarterly tabulations of quantities of recovered groundwater and NAPLs, and graphs of monthly recorded flow rates versus time for the recovery wells during each period. A narrative summary describing and evaluating the NAPL recovery program shall also be included (VII.C.2.h.)	Not Applicable
Tabulation of the total contaminant mass recovered from each recovery system for each reporting period, if such a system is installed (VII.C.2.i.)	Not Applicable
Tabulation of the data evaluation results pursuant to Section VI.D and status of each well listed on CP Table V with regard to compliance with the corrective action objectives and compliance with the GWPSs (VII.C.2.j.)	Table 5
Maps of the contaminated area depicting concentrations of constituents listed in Table IV and any newly detected Table III constituents as isopleths contours or discrete concentrations if isopleths contours cannot be inferred (VII.C.2.k.)	Not Applicable
Maps indicating the extent and thickness of the LNAPLs and DNAPLs, if detected (VII.C.2.1.)	Not Detected
An updated schedule summary as required by Section X (VII.C.2.m.)	Appendix D
Summary of any changes made to the monitoring/corrective action program and a summary of recovery well inspections, repairs, and any operational difficulties (VII.C.2.n.)	None
A table of the modifications and amendments made to this Compliance Plan with their corresponding approval dates by the executive director or the Commission and a brief description of each action (VII.C.2.o.)	None
Corrective Measures Implementation (CMI) Report to be submitted in accordance with Section VIII.F, if necessary (VII.C.2.p.)	Not Applicable
Tabulation of well casing elevations in accordance with Attachment B No. 16 (VII.C.2.q.)	Table 4
Recommendation for any changes (VII.C.2.r.)	None
Certification and well installation diagram for any new well installation or replacement and certification for any well plugging and abandonment (VII.C.2.s.)	Not Applicable
A summary of any activity within an area subject to institutional control (VII.C.2.t.)	None
Any other items requested by the Executive Director (VII.C.2.u.)	None

As of December 2007, a recovery system had not been installed at this facility. Therefore,

Provisions 8, 9, and 10 that relate to recovery wells or recovery system, are not applicable to this reporting period.

Responses to each of the semi-annual report provisions required by CP Section VII.C.2 are provided in Section 3.0. Conclusions and recommendations are provided in Section 4.0.

3.0 2007 SECOND SEMI-ANNUAL GROUNDWATER MONITORING EVENT

A discussion of each of the semi-annual report provisions required by CP Section VII.C.2, are presented below by reference number to the list of provisions in Section 2.0.

3.1 Narrative Summary of Second Semi-annual Monitoring Activities

The CP requires an evaluation of the Corrective Action Program (Section V) and Groundwater Monitoring Program summarizing the overall effectiveness of the Corrective Action Program (Section VI). This narrative summary includes provisions for response and reporting requirements as detailed in the CP Section VII, as discussed below.

3.1.1 Corrective Action Program

Groundwater samples were collected from the Background and POC wells (as detailed in CP Table V, which is provided in Appendix A) to assess potentially affected groundwater quality in the A-Transmissive Zone (A-TZ) and the B-Transmissive Zone (B-TZ). These water-bearing zones are defined as:

- A-TZ refers to the first sand unit encountered at approximately 13 feet below ground surface (bgs) and averages 7 feet in thickness; and
- B-TZ refers to the second sand unit encountered at approximately 30 feet bgs and averages 9 feet in thickness.

The definitions of the A-TZ and B-TZ are consistent with the Uppermost Transmissive Zone (UTZ) and Second Transmissive Zone (STZ), respectively, as defined in CP Provision I.A.

The following monitoring wells were sampled during this event (Figure 2):

- A-TZ POC wells: MW-01A, MW-02, MW-07, MW-10A, and MW-11A;
- A-TZ Background well: MW-08;
- B-TZ POC wells: MW-10B, MW-11B, and P-10; and
- B-TZ background well: P-12.

January 8, 2008

3.1.2 Groundwater Monitoring

Delta performed quarterly well inspections and semi-annual groundwater sampling activities on July 17-18, 2007. Groundwater sampling was performed using procedures outlined in a U.S. Environmental Protection Agency (EPA) document titled *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures* (EPA/540/S-95/504) published in April 1996 and approved in the CP application. Groundwater samples were analyzed for the Detected Hazardous and Solid Waste Constituents listed in the CP, Table III (Appendix A).

Monitoring wells are equipped with dedicated polytetrafluoroethylene (PTFE) tubing for groundwater sampling. A Master-Flex[®] peristaltic pump was used to collect the groundwater samples. An approximate one-foot section of disposable silicon tubing was placed around the pump head and attached to the PTFE tubing for proper operation of the pump. Groundwater was pumped from the screened interval of each well at a flow rate of less than 0.5 L/min using a flow-through cell, field parameters including temperature, pH, specific conductivity, dissolved oxygen, and turbidity were measured during purging and sampling activities. When field parameters had stabilized to the EPA-specified criteria, a sample was then collected for analysis. The samples were also collected at a flow rate of less than 0.5 L/min. Recorded field parameters are summarized in Appendix B.

For each well, sample bottles were filled directly from the pumping apparatus described above, and were sealed and packed in coolers with sufficient ice to maintain a sample temperature of approximately 4°C. The sample coolers were delivered to TestAmerica Laboratory, in Nashville, Tennessee for analysis. Chain-of-Custody (COC) forms were completed and kept with their respective samples. Copies of the analytical data and COCs are included in Appendix C. Groundwater samples were then analyzed for the Detected Hazardous and Solid Waste Constituents listed in the CP, Table III (Appendix A).

3.2 Purge Water Management

Approximately 10 gallons of purge water was generated during the July 2007 low-flow groundwater sampling event. The purge water was containerized in a Department of Transportation (DOT) certified, 55-gallon steel drum and temporarily stored on site in a fenced and locked container storage area (NOR 006). Since the groundwater sampled and analyzed

5

during this event did not contain hazardous constituents above the applicable health-based levels (i.e. PCLs discussed in Section 3.10), the purge water generated was not considered hazardous in accordance with the EPA "contained-in determination" detailed in the 1986 EPA memorandum "RCRA Regulatory Status of Contaminated Groundwater". Purge water and associated personal protective equipment (PPE) were disposed of at the Allied Waste McCarty Road Landfill in Houston, Texas on December 20, 2007.

3.3 Monitoring and Corrective Action System Wells

A summary of the current monitoring and corrective action groundwater wells is discussed in Section 3.1.1. Configuration of the current monitoring and corrective action well network is presented on Figure 2.

3.4 Analytical Results

The 2007 second semi-annual groundwater analytical results from the A-TZ and B-TZ are summarized in Tables 1 and 2, respectively and the laboratory analytical report is provided in Appendix C. The analytical results were compared to the Detected Hazardous and Solid Waste Constituent limits, which are taken from the TCEQ Texas Risk Reduction Program (TRRP) Tier 1 Protective Concentration Levels (PCLs). TRRP PCLs serve as the Groundwater Protection Standard (GWPS), as detailed in Section IV.D and Table III of the CP. If any concentrations exceeded the concentration limits of this report, the concentration is bolded within the table.

Quality assurance/quality control (QA/QC) samples (field blank, matrix spike and matrix spike duplicate results) are summarized in Table 3.

3.5 Well Measurements

During the sampling event, the following information was recorded at each monitoring well:

Before Sampling

- The presence of light NAPLs was evaluated; and
- Depth to groundwater below the top of casing was measured to the nearest 0.01 foot.

After Sampling

- The presence of dense non-aqueous phase liquids (DNAPLs) were evaluated using visual observations and an oil-water interface probe; and
- Total well depths of the wells were measured.

Table 4 provides a summary of these measurements. None of the compliance wells had measurable amounts or any indication of LNAPL or DNAPL.

3.6 Potentiometric Surface Maps

Groundwater elevation data recorded during the 2007 second semi-annual monitoring event were used to create potentiometric surface maps of the A-TZ and B-TZ, presented on Figures 3 and 4, respectively.

Groundwater elevation data collected during the July 2007 sampling event show groundwater flow in the A-TZ to the west with a hydraulic gradient of approximately 0.0038. A-TZ groundwater flow direction has changed slightly relative to the flow direction observed during the January 2007 first semi-annual monitoring event, when flow was observed to be to the south southwest. However, flow to the west in the A-TZ has been observed in the past (i.e. January 2006).

Groundwater elevation data collected in the B-TZ show groundwater flow to the west-northwest with a hydraulic gradient of approximately 0.004. Groundwater flow in the B-TZ zone is similar to the flow direction observed during previous monitoring events.

3.7 Non-Aqueous Phase Liquids

Measurable amounts of LNAPL and/or DNAPL were not observed in any of the compliance wells.

3.8 Recovered Groundwater and NAPL

To date, a recovery system has not been installed at the SWMU No. 1; therefore, this provision is not applicable.

3.9 Contaminant Mass Recovered

To date, a recovery system has no been installed at the SWMU No. 1; therefore, this provision is not applicable.

3.10 Analytical Data Evaluation

Section VI.D of the CP describes two methods which may be used to determine the compliance status of a given well:

- 1) Analytical results may be either directly compared with PCLs (CP Table III; included in Appendix A), or
- 2) Analytical results can be statistically compared PCLs using the Confidence Interval Procedure for the mean concentration based on normal, log-normal, or non-parametric distribution, which the 95% confidence coefficient of the t-distribution will be used in construction of the confidence interval.

Direct comparison to PCLs was used to evaluate the analytical data. Tables 1 and 2 show the results of a direct comparison of data for this sampling event to the respective PCLs. Wells and piezometers are in compliance if each of the constituents listed in the CP Table III was reported at a concentration less than or equal to the PCL. Based on the analytical results from the July 2007 monitoring event the compliance wells completed in both transmissive zones are compliant with groundwater results below their respective PCLs; therefore the monitoring wells are considered to be complaint for this monitoring period. Compliance status for each of the monitoring wells is provided in Table 5.

Monitoring wells in A-TZ and B-TZ have not exceeded the established CP PCLs since July 2005, at which time dibenzofuran exceeded its respective PCL of 0.098 mg/L in MW-01A (0.11 mg/L).

Pastor, Behling & Wheeler, LLC

8

Including the 2007 second semi-annual analytical data, the SMWU No. 1 monitoring wells have been complaint for four consecutive semi-annual monitoring events (two years).

A QA/QC review and Data Usability Summary (DUS) were prepared for the July 2007 analytical data. Analytical results were flagged based on the data validation review of the QA/QC samples.

The following samples were qualified as *Estimated (J)* or (UJ):

- P-10 and DUP-02 for Acenaphthene
- P-10 and DUP-02 for Anthracene
- P-10 and DUP -02 for Dibenzofuran;
- P-10 and DUP-02 for Fluoranthene;
- P-10 and DUP-02 for Fluorene; and
- P-10 and DUP-02 for Napthalene.

The following samples were qualified as *Estimated High (JH)*:

- P-12 MS (7073727-MS-1) for 2-Methylnapthalene; and
- P-12 MSD (7073727-MSD-1) for 2-Methylnapthalene

A DUS for the laboratory analyses is included in Appendix C, and validated qualifiers were added to the data tables (Tables 1 and 2). Based on the QA/QC data review, the analytical data are usable for the intended use.

3.11 Reported Concentration Maps

Reported concentrations of each constituent analyzed for the 2007 Second Semi-Annual Groundwater Monitoring Event are presented on Figures 5 and 6 for the A-TZ and B-TZ compliance wells, respectively. In the event a constituent exceeded their respective PCL, the value would be highlighted on the figures. There were no exceedances of PCLs for any of the required constituents.

3.12 Extent of NAPL

Measurable amounts of LNAPL or DNAPL were not detected in any of the compliance wells.

9

3.13 Updated Compliance Schedule

Section X of the CP requires that the Permittee submit a schedule summarizing the activities required by the Compliance Plan issued on June 10, 2005, which was originally submitted to the TCEQ on August 4, 2004. An updated compliance schedule is included as Appendix D of this report.

3.14 Summary of Changes Made to Corrective Action Program

No changes have been made to the corrective action program.

3.15 Modifications and Amendments to Compliance Plan

A compliance plan renewal application was submitted to TCEQ on December 23, 2003 consistent with the renewal requirements for the RCRA permit at the site. The RCRA permit and CP were issued June 10, 2005. There have been no modifications or amendments to the Compliance Plan since the last permit issued.

3.16 Corrective Measures Implementation (CMI) Report

A Response Action Plan (RAP) has not been submitted; therefore, this provision does not apply.

3.17 Well Casing Elevations

Top-of-casing elevations referenced to feet above Mean Sea Level (MSL) for each compliance monitoring well are summarized in Table 4.

3.18 Recommendation for Changes

There are no recommendations for changes to the monitoring program or to the Corrective Action Program.

3.19 Well Installation and/or Abandonment

No monitoring wells were installed or abandoned as part of the monitoring program or the Corrective Action Program during the reporting period.

3.20 Activity Within Area Subject to Institutional Control

No areas are under institutional control; therefore, this provision does not apply.

3.21 Other Requested Items

No other items have been requested by the executive director.

TABLES

Summary of Analytical Results for the A-Transmissive Zone (A-TZ) Semiannual Monitoring Report: 2007 Second Semiannual Event Table 1

Houston Wood Preserving Works

Houston, Texas

				Monitorin	Monitoring Well IDs (Concentrations mg/L)	ions mg/L)			
Analyte	PCL				70 AN	NIN OG	MM/ 10.A	MAN/-11 A	-
	(mg/r)	MW-01A	10-400	20- VV M	10- VV IVI	00- AA IAI	t		ł
		7/18/2007 LQ VQ	2 7/18/2007 LQ VQ	7/18/2007 LQ VQ	1/17/2007 LQ VQ	7/17/2007 LQ VQ	7/17/2007 LQ VQ	7/17/2007 L	a va
Acenaphthene	1.5	0.11	0.116	0.0256	0.00114 U	0.00114 U	0.00114 U	0.0404	
Acenaphthylene	1.5	0.00114 U	0.00114 U	0.00114 U	0.00114 U	0.00114 U	0.00114 U	0.00114 1	
Anthracene	7.3	0.000952 U	0.000952 U	0.00138 J	0.000952 U	0.00135 J	0.000952 U	0.000952	
bis(2-ethvlhexvl)phthalate	0.006	0.00352 U	0.00352 U	0.00352 U	0.00352 U	0.00352 U	0.00352 U	0.00352	
Dihenzofuran	0.098	0.00849 J	0.00891 J	0.0174	0.0041 U	0.0041 U	0.0041 U	0.0041	
Fluoranthene	0.98	0.00696 J	0.00801 J	0.00165 J	0.000952 U	0.000952 U	0.000952 U	0.00297	
Fluorene	0.98	0.0514	0.0551	0.0157	0.000952 U	0.000952 U	0.000952 U	0.000952	
2-Methylnaphthalene	0.098	0.00133 U	0.00133 U	0.0024 J	0.00133 U	0.00133 U	0.00133 U	0.00133	
Naphthalene	0.49	0.00124 U	0.00124 U	0.0188	0.00124 U	0.00124 U	0.00124 U	0.00124	
Phenanthrene	0.73	0.00336 J	0.00391 J	0.00167 J	0.000952 U	0.000952 U	0.000952 U	0.0011	۔
Pyrene	0.73	0.00304 J	0.00343 J	0.000952 U	0.000952 U	0.000952 U	0.000952 U	0.00148	۔

Notes:

PCL = Protective Concentration Level

The Compliance Plan Section IV.D defines the Groundwater Protection Standard (GWPS) as the PCL DUP-01= Duplicate sample collected at MW-01A

<u>LQ - Lab Qualifier</u>

J = Estimated value between the SQL and the MDL

U = Value not detected greater than the MDL

VQ - Validation Qualifier

J^(N) = Estimated data; The reported sample concentration is approximate due to the exceedance of one or more QC requirements U^(v) = Blank affected; The analyte was not detected above 5x (10x for common contaminants) the level in an associated blank

Summary of Analytical Results for the B-Transmissive Zone (B-TZ) Semiannual Monitoring Report: 2007 Second Semiannual Event Table 2

Houston Wood Preserving Works

Houston, Texas

MW-10B MW-11B 7/17/2007 LQ VQ 7/17/2007 7/17/2007 LQ VQ 7/17/2007 0.0961 0.0088 0.088 0 0.00114 U 0.00396 J 0 0.0019 U 0.0019 U 0 0 0.00325 U 0.0019 U 0 0 0.00325 U 0.00362 U 0 0 0.00267 U 0.00362 U 0 0 0 0.0252 U 0.0353 U 0.0353 U 0 0						Monitorin	Monitoring Well IDs (Concentrations mg/L)	ncentration	ons mg/L)				
ne $7/17/2007$ LQ VQ $7/17/2007$ LQ VQ 0.000319 J U 0.000319 J U 0.000319 J U 0.000316 U 0.000326 U 0.000362 U 0.000362 U 0.000267 U 0.00267 <t< th=""><th>Analyte</th><th>PCL</th><th>1014_1AUA</th><th>a a</th><th>-1-WW</th><th>ŭ</th><th>P-10</th><th></th><th>DUP-02</th><th>02</th><th></th><th>P-12</th><th></th></t<>	Analyte	PCL	1014_1AUA	a a	-1-WW	ŭ	P-10		DUP-02	02		P-12	
ne 1.5 0.0961 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.00114 0.088 0.00136 0.00366 0.00136 0.00336 0.00136 0.0		(IIII)/L/	7/17/2007		7/17/2007	La va	7/17/2007	ğ	7/17/2007	Ø	ð	7/17/2007	LQ VG
ene 1.5 0.00114 U 0.00114 U xsyl)phthalate 0.0066 0.0019 U 0.00396 J C n 0.0066 0.0019 U 0.00396 J C	consultinena	15	0 0961		0.088		0.0688		0.0166		(v) (v)	0.00114	n n
xy(l)phthalate 0.00437 J 0.00396 J 0 xy(l)phthalate 0.006 0.0019 U 0.0019 U 0.0019 U n 0.098 0.0325 U 0.0019 U 0.0019 U n 0.098 0.0325 U 0.00362 U 0.00362 U e 0.98 0.0028 J 0.0029 J 0.00353 U 0.00353 0.98 0.0399 0.03552 U 0.03533 J 0.03533 J 0 0.49 0.03552 U 0.03553 U 0.03567 U 0 J 0	cenapituleito	, t	0.00114		0.00114	D	0.00114		0.00114	D		0.00114	⊃
exyl)phthalate 0.006 0.0019 U 0.0019 U n 0.098 0.0325 U 0.0411 U nthalate 0.098 0.03362 U 0.0362 U e 0.0388 0.0028 J 0.00353 U 0.00353 e 0.988 0.0399 0.0353 U 0.0353 U 0 a 0.49 0.0252 U 0.0367 U 0.0367 U 0	nthracene	7.3	0.00437		0.00396	-7	0.00319	ر ب	0.000952	⊃		0.000952	
0.098 0.0325 0 0.0411 2.4 0.00362 U 0.0362 U 0.0362 U 0.0362 U 0.0362 U 0.0353 0.0399 J 0.0353 0.0353 0.0301 U 0.0353 U 0.030145 U 0.00267 U 0.002667 U 0	is/2_ethv/hevv/\nhthalate	0.006	0 0019		0.0019	р	0.0019	D	0.0019	⊃		0.0019	D
phthalate 2.4 0.00362 U 0.00362 U 0.00362 U C ene 0.98 0.0028 J 0.0029 J C C ene 0.98 0.0028 J 0.0029 J C C ene 0.98 0.0252 U 0.0353 J C C ene 7.3 0.00267 U 0.0901 J C C	is(z-curymexyr)primiaiaic	0.008	0.0325)	0.0411		0.0272		0.0041	⊃		0.0041	⊃
ene 0.98 0.0028 J 0.0029 J 0.0029 J 0.0029 J 0.0029 J 0.0353 0.0353 0.0367 U 0.0367 U 0.00267 U 0.00267 U	ilion-britty https/sta	0.000	0.00362		0.00362	D	0.00362		0.00362	⊃		0.00362	⊃
ene 0.98 0.0399 0.0353 0.0353 0.0367 U 0.0901 0.00267 U 0.00267 U 0.00267 U 0.00267 U 0.00267 U	l'increathone	0 08	0 0028	,	0.0029		0.0021	۔ ٦	0.000952			0.000952	⊃
ene 0.49 0.0252 0.0901 0.0901 0.00267 U 0.00267 U 0.00267 U 0.00267 U 0.00267 U	Tuolallilelie	0.00	0.0399	>	0.0353	,	0.0291		0.00352	J	<u>ی</u>	0.000952	n D
7.3 0.00267 U 0.00267 U 0.00267 U		0.49	0.0252		0.0901		0.297		0.00169	J	<u>ی</u> ر	0.00124	ר ר
	apriniaci ic	2.5	0 00267		0.00267		0.00267	D	0.00267	⊃		0.00267	⊃
	Vrene	0.73	0.000952	0 0	0.00146	۔ م	0.001	J	0.000952	n (^(v) U	0.0075	L L

Notes:

PCL = Protective Concentration Level

The Compliance Plan Section IV.D defines the Groundwater Protection Standard (GWPS) as the PCL DUP-02 = Duplicate sample collected at P-12

LQ - Lab Qualifier

J = Estimated value between the SQL and the MDL U = Value not detected greater than the MDL

<u>VQ - Validation Qualifier</u> J^(V) = Estimated data; The reported sample concentration is approximate due to the exceedance of one or more QC requirements

UJ^(v) = Analyte was not detected above the SQL; The reported sample concentration is approximate due to the exceedance of one or more QC requirements

Summary of Analytical Results for Quality Assurance/Quality Control Samples Semiannual Monitoring Report: 2007 Second Semiannual Event

Houston Wood Preserving Works Houston, Texas

				Sample II	Ds (C	Sample IDs (Concentrations mg/L	s mg	(L)	
	PCL	FB-01		FB-02		P-12(MIS) ⁽¹⁾		P-12(MSD) ⁽¹⁾	
Analyte	(mg/L)	Field Blank		Field Blank	2	Matrix Spike		Matrix Spike Duplicate	a
		7/17/2007		7/18/2007		7/17/2007		7/17/2007	
Acenaphthene	1.5	0.0012	Л	0.00115		0.0426		0.0434	
Acenaphthylene	1.5	0.0012	⊃	0.00115	⊃	0.0418		0.0441	
Anthracene	7.3	0.001		0.000962	⊃	0.0489		0.0492	
bis(2-ethylhexyl)phthalate	0.006	0.0037	C	0.00356	⊃	0.0460		0.0444	
Dibenzofuran	0.098	0.0043	⊃	0.00413	⊃	0.0446		0.0436	
Di-n-butvl phthalate	2.4	0.0038	⊃	0.00365	⊃	0.0484		0.0473	
Fluoranthene	0.98	0.001	⊃	0.000962	⊃	0.0447		0.0446	
Fluorene	0.98	0.001	⊃	0.000962	⊃	0.0414		0.0414	
2-Methylnaphthalene	0.098	0.0014	⊃	0.00135	⊃	0.0550	H	0.0578	H
Naphthalene	0.49	0.0013	⊃	0.00125	⊃	0.0389		0.0405	
Phenanthrene	0.73	0.001	С	0.000962	⊃	0.0431		0.0441	
Phenol	7.3	0.0028	⊃	0.00269	⊃	0.0137		0.0140	
Pvrene	0.73	0.001	⊃	0.000962	D	0.0449		0.0472	

Notes:

PCL = Protective Concentration Level

(1) = P-12(MS) and P-12(MSD) are matrix spike and matrix spike duplicate samples collected at P-12, respectively. U = Not detected above the Method Detection Limit JH = concentration estimated high due to MS/MSD recovery outside of acceptance limits

Table 4

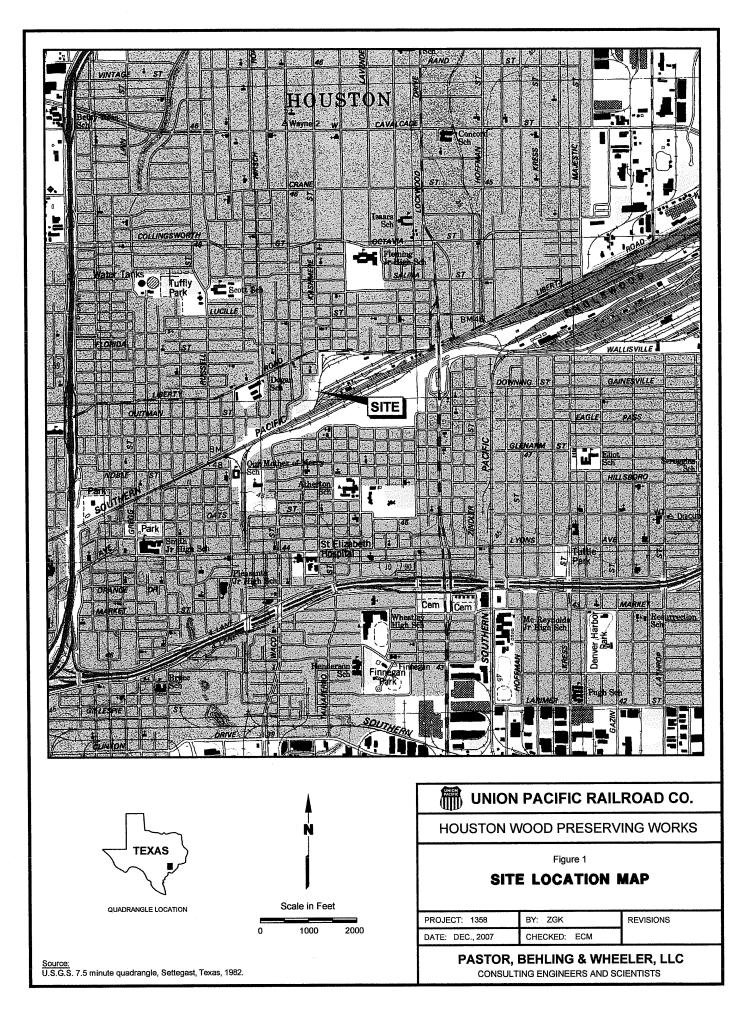
Semiannual Monitoring Report: 2007 Second Semiannual Event Water Level Measurements

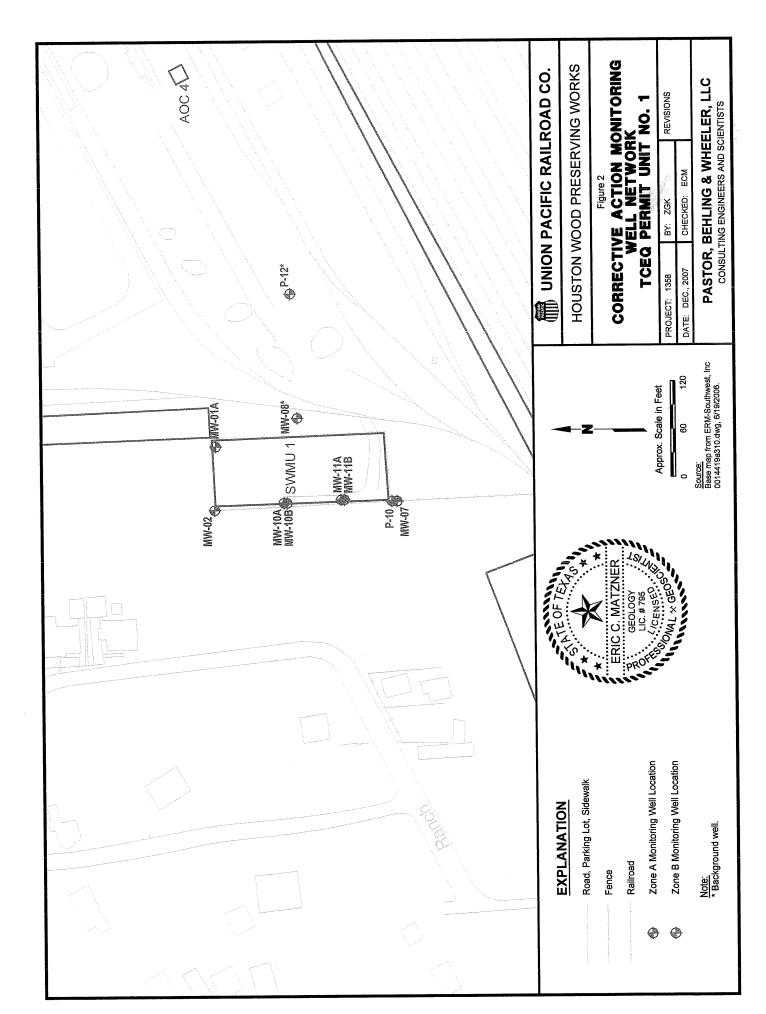
Houston Wood Preserving Works Houston, Texas

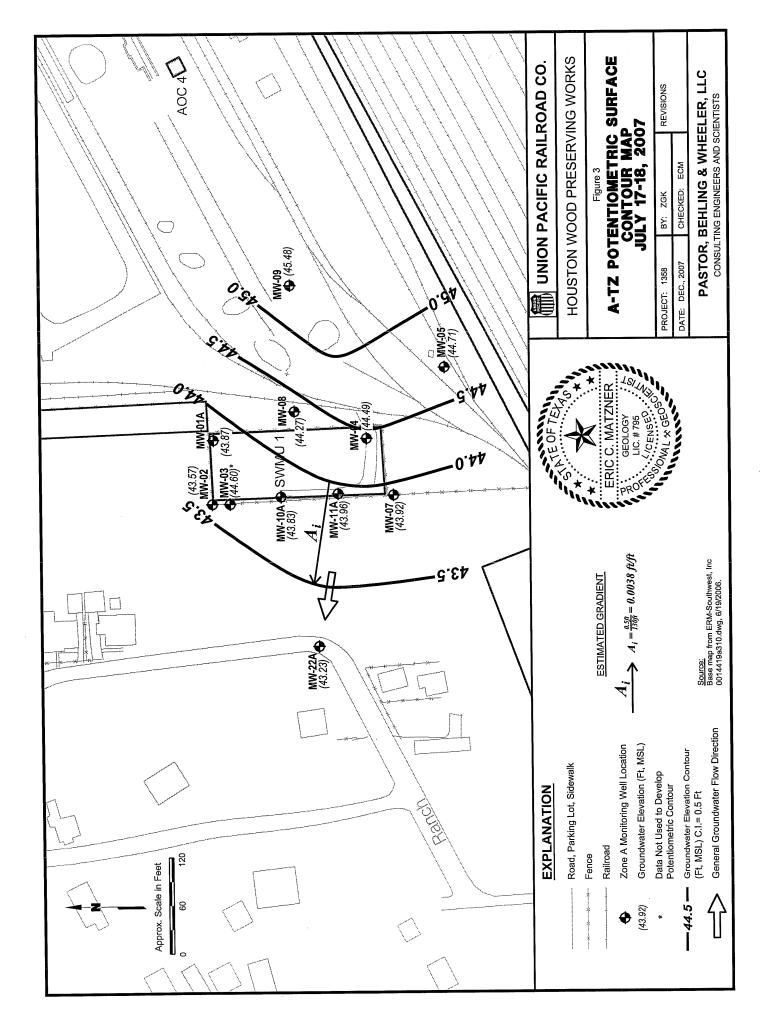
Well ID	Top of Casing Elevation (TOC) (ft MSL)	Date Measured	Water Depth (ft. BTOC)	Depth to NAPL (ft. BTOC)	Total Well Depth as Completed (ft. BTOC)	Total Well Depth (ft. BTOC)	Potentiometric Elevation (ft. MSL)
			A-TZ Monito	A-TZ Monitoring Locations			
MW-01A	47.92	7/18/2007	4.05	ND	20.2	19.90	43.87
	анны панания и порта и области продативали и порта и по Порта и панания и порта	n fa na martin ann an Anna Anna Anna Anna Anna Anna					an da dan yan da kananan da kanana
MW-02	47.97	7/18/2007	4.40	ND	20.3	20.23	43.57
MW-07	48.86	7/17/2007	4.94	ND	NA	24.82	43.92
	والمعالم المعالم						
MW-08	49.33	7/17/2007	5.06	ND	26.8	25.10	44.27
		n de se	NAME IN A REAL PROVIDED AND A R				
MW-10A	49.86	7/17/2007	6.03	ND	25.9	25.62	43.83
MW-11A	50.05	7/17/2007	6.09	ND	24.4	24.06	43.96
			B-TZ Monite	B-TZ Monitoring Locations			
MW-10B	49.94	7/17/2007	6.15	DN	48.8	47.88	43.79
MW-11B	50.18	7/17/2007	- 6.29	ND .	46.8	46.72	. 43.89
							NAMA AND AN AND TAKAN ANA PARAMAMANA ANA ANA ANA ANA ANA ANA ANA ANA
P-10	47.69	7/17/2007	3.75	ŊD	40.0	42.88	43.94
	na Maria Na						na (-) MAAN WAXAMA KANA MANANA MANANA MATANA MAT
P-12	48.78	7/17/2007	4.22	ND	40.0	42.89	44.56

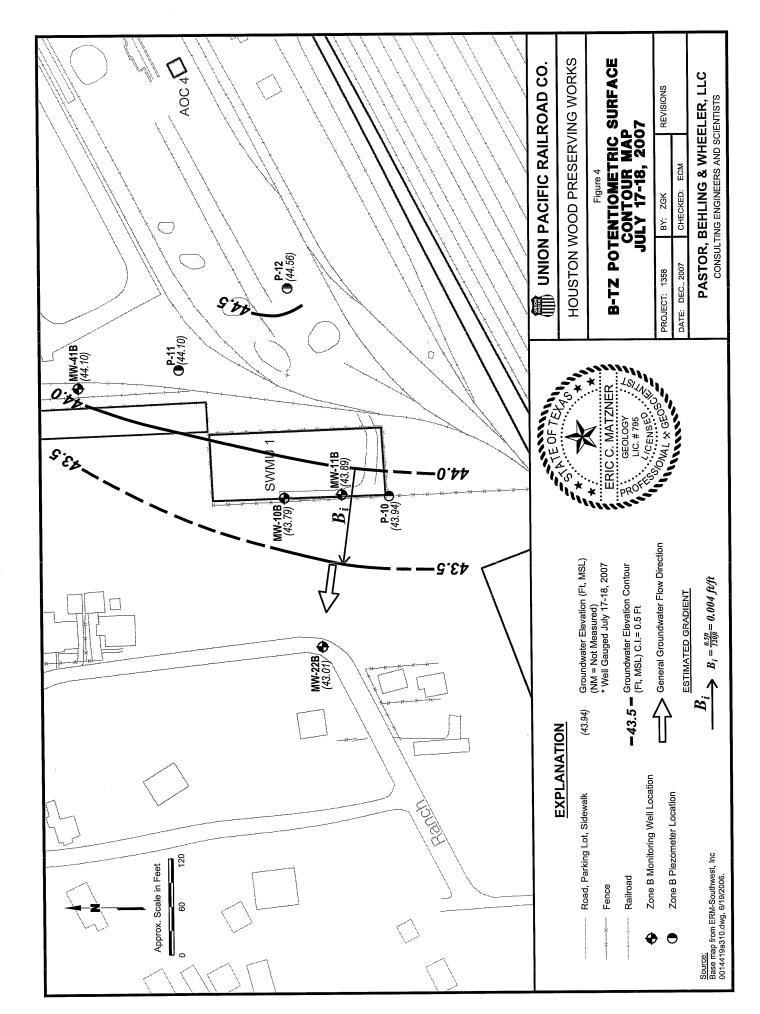
Notes

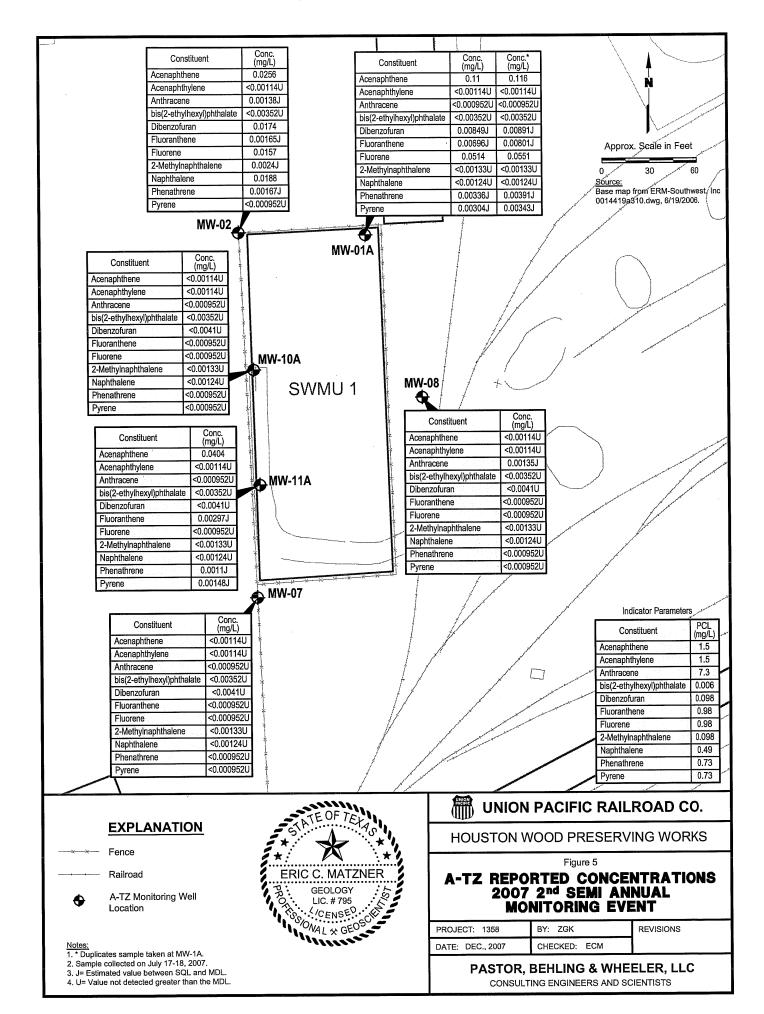
BTOC = feet below the top of the well casing

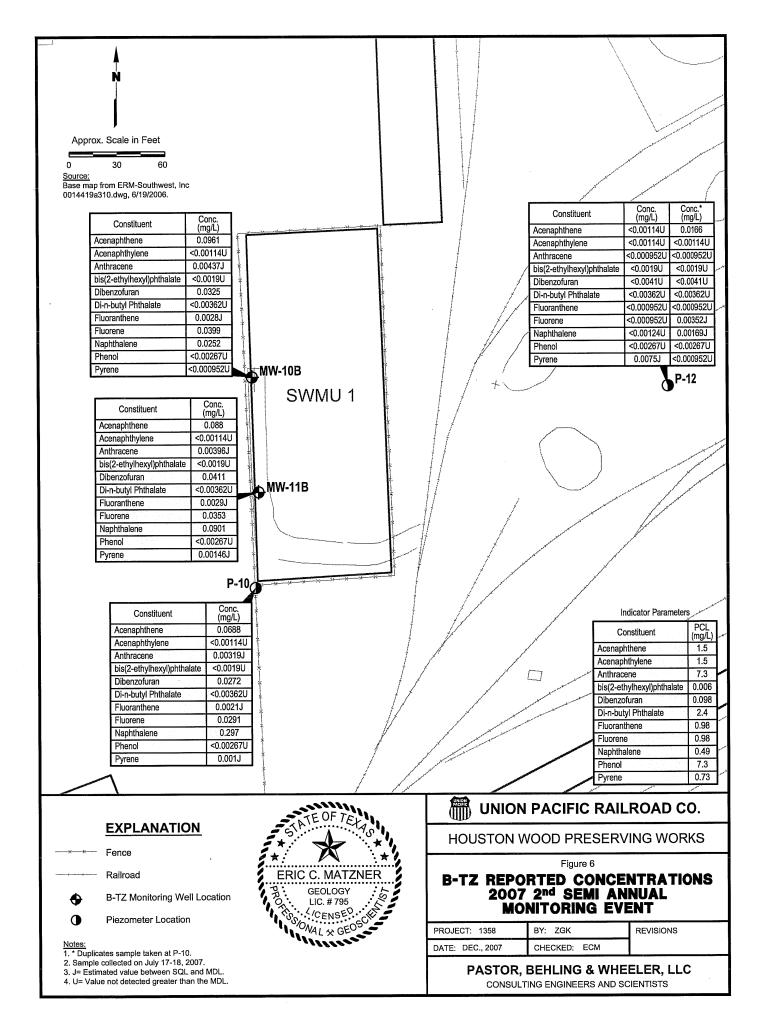

ft. MSL = feet above Mean Sea Level NA = Information not available ND = Not Detected


Table 5Compliance Status of Wells and PiezometersSemiannual Monitoring Report: 2007 Second Semiannual Event


Houston Wood Preserving Works Houston, Texas


Zone	Monitoring Well Location	Well Designation	Compliance Status
A-TZ Monitoring Location	MW-01A	Point of Compliance	Compliant
	MW-02	Point of Compliance	Compliant
	MW-07	Point of Compliance	Compliant
	MW-08	Background Well	Compliant
	MW-10A	Point of Compliance	Compliant
	MW-11A	Point of Compliance	Compliant
B-TZ Monitoring Location	MW-10B	Point of Compliance	Compliant
	MW-11B	Point of Compliance	Compliant
	P-10	Point of Compliance	Compliant
	P-12	Background Well	Compliant


FIGURES



APPENDIX A COMPLIANCE PLAN TABLES

Sheet 1 of 1

Union Pacific Railroad Company - Houston Tie Plant Compliance Plan No. 50343

TABLE III - CORRECTIVE ACTION PROGRAM Table of Detected Hazardous and Solid Waste Constituents and Concentration Limits for the Ground-Water Protection Standard

Closed Surface Impoundment (NOR Unit No. 001, SWMU No. 01)

A-Transmissive Zone

B-Transmissive Zone

COLUMN A Hazardous Constituents	COLUMN B Concentration Limits (mg/l)	COLUMN A Hazardous Constituents	COLUMN B Concentration Limits (mg/l)
Acenaphthene	1.5^{PCL}	Acenaphthene	1.5 ^{PCL}
Acenaphthylene	1.5 ^{PCL}	Acenaphthylene	1.5 ^{PCL}
Anthracene	7.3 ^{PCL}	Anthracene	7.3 ^{PCL}
Dibenzofuran	0.098 ^{pcl}	Dibenzofuran	0.098 ^{PCL}
Bis(2-ethylhexyl)phthalate	0.006 ^{PCL}	Bis(2-ethylhexyl)phthalate	0.006 ^{PCL}
Fluoranthene	0.98 ^{PCL}	Fluoranthene	0.98 ^{PCL}
Fluorene	0.98 ^{PCL}	Fluorene	0.98 ^{PCL}
2-Methylnaphthalene	0.098 ^{pcl}	Di-n-butyl phthalate	2.4 ^{PCL}
Naphthalene	0.49^{PCL}	Naphthalene	0.49 ^{PCL}
Phenanthrene	0.73 ^{PCL}	Phenol	7.3 ^{PCL}
Pyrene	0.73 ^{PCL}	Pyrene	0.73 ^{PCL}

PCL Alternate Concentration Limit pursuant to 30 TAC §335.160(b) based upon the Protective Concentration Level determined under 30 TAC Chapter 350 for Residential Land Use. The PCL value, Column B, will change as updates to the rule are promulgated. Changes to the rule automatically change the concentration value established in Column B in this table.

APPENDIX B FIELD PARAMETERS

1

TABLE B-1 Groundwater Sampling Field Parameters Semiannual Monitoring Report: 2007 Second Semiannual Event

Houston Wood Preserving Works Houston, Texas

				Monitoring	Monitoring Well IDs (Concentrations mg/L)	Concentrat	ions mg/L)			
			A-Transmi	A-Transmissive Zone				B-Transmis	B-Transmissive Zone	
Field Parameter	MW-01A	0-WW	MW-07	MW-08	MW-10A	MW-11A	MW-10B	MW-11B	P-10	P-12
	7/18/2007 7/	7/18/2007	18/2007 7/17/2007			7/17/2007	7/17/2007	7/17/2007	7/17/2007 7/17/2007 7/17/2007 7/17/2007 7/17/2007	7/17/2007
Time Sampled (hrs CST)	8:16	9:13	13:56	12.21	18:09	17:30	18:40	17:02	14:35	11:01
Temperature (°C)	23.16	22.27	23.86	24.18	21.70	21.80	21.49	22.17	22.64	24.98
pH (Standard Units)	6.31	6.01	5.94	6.23	6.56	6.45	6.50	6.47	6.25	5.96
Specific Conductivity (μS)	1,592	610	886	636	980	1,130	1,237	1,157	1,152	1,364
Dissolved Oxvaen (ma/L)	MN	MN	MN	MN	MN	MN	MZ	ΜN	MN	MN
Turbidity (NTU)	2.85	1.52	3.59	0.74	1.57	1.59	1.87	1.23	1.39	5.97

.

APPENDIX C LABORATORY ANALYTICAL REPORTS and DATA USABILITY SUMMARIES

SITE:	Union Pacific Railroad Company (UPRR)	
	Houston Wood Preserving Works	
	Houston, Texas	
	(PBW Project No. 1358)	
CLIENT:	Pastor, Behling & Wheeler, LLC (PBW)	
EVENT:	Semi-Annual Compliance Monitoring – July 200	7
INTENDED USE:	Ten groundwater samples from background and	d compliance wells were collected
	during a semi-annual monitoring event from t	the closed surface impoundment
	SWMU No. 1. The analytical data will be used	to monitor chemicals of concern
	(COCs) in the groundwater that have been ide	entified during past investigations
	and to evaluate whether migration of COCs c	ould result in a risk to human or
	ecological health.	
LABORATORY:	TestAmerica Analytical Testing Corporation (Na	shville, TN)
	Work Order: NQG2056	
PARAMETERS/METHODS:	Semivolatile Organics (SVOC)	SW-846 3510C/ 8270C
SAMPLES:	Ten groundwater samples	
	Two field duplicates	
	One matrix spike/matrix spike duplicate (MS/MS	SD) pair
	Two field blanks	
	(See Table 1 for a complete listing of samples a	and target analytes.)

PBW prepared a review of the above chemical analysis data for conformance with the requirements of the Texas Risk Reduction Program (TRRP) guidance document, *Review and Reporting of COC Concentration Data* (RGG-366/TRRP-13) and adherence to project objectives. The results of the review are discussed in this Data Usability Summary (DUS).

All samples collected during the event were included in the review. PBW completed the review using the following laboratory submittals and project data:

- the laboratory reportable data as defined in TRRP-13;
- the Laboratory Review Checklists (LRCs) and associated exception reports;
- the laboratory Electronic Data Deliverables (EDDs), which are spreadsheets containing results for all investigative and field QC samples; and
- the field notes on sampling activities.

The review of the reportable data included the Quality Control (QC) parameters listed below, as required per TRRP-13, using the applicable analytical method and project requirements:

- Chain-of-Custody Procedures
- Sample Condition Holding Time, Preservation, and Containers
- Field Procedures
- Results Reporting Procedures
- Laboratory and Field Blanks
- Laboratory Control Spike and Matrix Spike Recoveries
- Surrogate Recoveries
- Laboratory, Matrix, and Field Duplicate Precision

Additionally, PBW used the LRCs to evaluate the following QC parameters:

- Method Quantitation Limits (MQLs)
- Method Detection Limits (MDLs)
- Instrument Tuning, Calibration and Performance
- Internal Standards

No project specific criteria have been specified for this site and thus the reviewer selected appropriate criteria as follows:

- Organics: 60-140% spike recovery (but not less than 10%) and 40% RPD (for laboratory duplicates) as recommended in TRRP-13
- Aqueous Samples: <u>+</u> 2 x MQL difference or 30% RPD (for field duplicates)

The results of the review are summarized in Table 2, which lists all of the qualified sample results. All data usability qualifiers (DUQs) and the reason for qualification were added to the EDDs (320110wQAA.xls and 320124wQAA.xls). The checklists used by the reviewer are included as Attachment 1.

USABILITY SUMMARY

- 1. Usability Of Unqualified Non-Detects For all parameters, non-detects are reported as less than the Sample Quantitation Limit (SQL) as required per TRRP. Additionally, according to the LRC, an MDL study was performed for each target analyte and the MDLs were checked for reasonableness. The Levels of Required Performance (LORPs) for the site have been defined by PBW as the Tier 1 Protective Concentration Levels (PCLs), ^{GW}GW_{Ing}, for residential land use. As needed per TRRP, the Unadjusted MQL stated by the laboratory is at or below the LORP and thus the results can be used to demonstrate conformance with critical PCLs.
- 2. Usability Of Qualified Data There are no major QC deficiencies and thus all data is usable for the intended use. Data for various analytes is qualified as estimated (J or UJ) or biased high (JH or UJH) due to minor QC deficiencies (see Table 2). Results that are biased low can be used for determining the presence of the analyte and as an indication that the concentration of the analyte exceeds a given criterion. However, the concentration reported for detects or the SQL for non-detects may be low. Results that are biased high can be used for determining the presence of the analyte is less than a given criterion. However, the concentration reported for detects. However, the concentration reported for detects or the set and as an indication that the concentration of the analyte is less than a given criterion. However, the concentration reported for detects may be high. Similarly, results that are setimated may be either low or high.

PBW Reviewer:

Jennifer Pavesi (Name/Signature) 1/8/08 (Date)

QC PARAMETER	QCOUTCOME
Chain-of-Custody	Proper sample custody procedures were followed. This confirms that the integrity of the samples was maintained.
Sample Condition	Samples were collected in appropriate containers, properly preserved in the field, and prepared and analyzed within the holding times as required in the analytical methods, which ensures that the samples were not affected by analyte degradation.
Field Procedures	Wells were inspected and gauged and then purged and sampled using a low-flow technique (less than 0.5 liters per minute) and dedicated tubing. Field instruments were calibrated daily. All samples were immediately put on ice and kept on ice until delivered to the laboratory. Two field duplicates (one for each transmissive zone), one MS/MSD pair, and one field blank were collected with the ten investigative samples.
	Readings for pH, temperature, turbidity, dissolved oxygen, and specific conductivity were recorded and wells were purged until the well conditions stabilized (i.e., no parameter measurement varied by more than 10% between two consecutive readings).
Results Reporting	The analytical results (in the hardcopy report and EDD) include a Result, MDL, MQL, and SQL. The MQL is unadjusted, i.e., does not include correction for sample- specific actions such as dilution. Results are reported in mg/L. As required per TRRP, results for non-detects are reported as less than the SQL. The laboratory qualified results for detects between the SQL and the MQL with a J-flag to indicate that the concentration is estimated. The DUQ includes a flag for the concentration being below the MQL plus any other QC deficiencies.
MQLs	The LORPs for the site are defined as the Tier 1 Protective Concentration Levels (PCLs) for residential land use and a Class 2 groundwater resource (i.e., the ^{GW} GW _{Ing} in TCEQ Table 3 dated April 20, 2007). For each requested analyte, the unadjusted MQLs are at or below the LORPs.
MDLs	According to the LRC, an MDL study was performed for each target analyte, and the MDLs were checked for reasonableness and either adjusted or supported by the analysis of Detectability Check Standards (DCSs) as required per TRRP-13.
Laboratory Blanks	The laboratory blank concentrations for batch NQG2056 were all non-detect which indicates that the samples were not affected by laboratory contamination.
Field Blanks	Field Blank concentrations were all non-detect.
Laboratory Control Spike Recovery	For all parameters, the laboratory prepared one Laboratory Control Spike (LCS) for the analytical batch and reported the recoveries for all target analytes. The recoveries for the specified contaminants of concern are within the recommended TRRP limits, which indicates good accuracy for the preparation and analysis technique on a sample free of matrix effects.
Matrix Spike Recovery	The laboratory prepared a Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

	using a sample from the site for both analytical batches and reported recoveries for all target analytes. The MS/MSD recovery for 2-Methylnapthalene (116%) was outside of the acceptance limits (27%-106%) and therefore the MS/MSD concentrations are biased high. The recoveries for both MS/MSD pairs for the remaining contaminants of concern are within the recommended TRRP limits, which indicates good accuracy for the preparation/ analysis technique on this particular sample matrix.	
Surrogate Recovery	Recoveries for the contaminants of concern are within the laboratory limits, which indicates that the accuracy of the preparation and analysis technique is acceptable for each particular sample.	
Laboratory Duplicate Precision	The laboratory did not prepare Laboratory Control Spike Duplicates (LCSD) as they are not required per the analytical methods or TRRP. The reviewer used the matrix and field duplicates to assess precision.	
Matrix Duplicate Precision	The laboratory prepared a MSD using a sample from the site for the analytical batch and reported RPDs for all target analytes. The RPDs are all within the recommended TRRP limit, which indicates good precision for the preparation and analysis technique on this particular sample matrix.	
Field Duplicate Precision	Two field duplicates were collected with the ten investigative samples. RPDs (or the difference between results for concentrations <5xMQL and non-detects) are within the TRRP criteria for all target analytes, which indicates good precision for the	

the TRRP criteria for all target analytes, which indicates good precision for the collection, preparation, and analysis techniques on this particular sample matrix, except as follows:

Collection Date	Parent Sample ID	Analyte	RPD
7/17/07	P-10	Acenapthene	122
7/17/07	P-10	Anthracene	108
7/17/07	P-10	Dibenzofuran	148
7/17/07	P-10	Fluoranthene	75
7/17/07	P-10	Fluorene	157
7/17/07	P-10	Napthalene	198

The reviewer qualified all detects in the associated samples (collected on the same date) as estimated (J).

GCMS Tuning According to the LRCs, tuning data met the criteria for ion abundance in the analytical method.

Instrument Calibration According to the LRC, initial and continuing calibration data met method requirements. This indicates the instruments were properly calibrated to measure target analyte concentrations.

Internal Standards According to the LRCs, area counts and retention times were within method.

TABLE 1

UPRR HOUSTON WOOD PRESERVING WORKS SEMI-ANNUAL COMPLIANCE MONITORING – JULY 2007

	SAMPLE	SAMPLE	SAMPLE	ANALYTE	QC BATCH
LABORATORY		MATRIX		LIST	QU Di li Oli
ID	ID		DATE		
NQG2056-01	P-12	water	7/17/07	В	7073727
7073727-MS-1	P-12 MS	water	7/17/07	В	7073727
7073727-MSD1	P-12 MSD	water	7/17/07	В	7073727
NQG2056-02	MW-08	water	7/17/07	A	7073727
NQG2056-03	MW-07	water	7/17/07	A	7073727
NQG2056-04	P-10	water	7/17/07	В	7073727
NQG2056-05	MW-11B	water	7/17/07	В	7073727
NQG2056-06	MW-11A	water	7/17/07	A	7073727
NQG2056-07	MW-10A	water	7/17/07	A	7073727
NQG2056-08	MW-10B	water	7/17/07	В	7073727
NQG2056-09	FB-01 ⁽¹⁾	water	7/17/07	A & B	7073727
NQG2056-10	DUP-02 ⁽²⁾	water	7/17/07	В	7073727
NQG2056-11	FB-02 ⁽¹⁾	water	7/18/07	A & B	7073727
NQG2056-12	MW-01A	water	7/18/07	A	7073727
NQG2056-13	MW-02	water	7/18/07	A	7073727
NQG2056-14	DUP-01 ⁽³⁾	water	7/18/07	A	7073727

SAMPLES COLLECTED

(1) Field Blank

(2) Field duplicate of P-12

(3) Field duplicate of MW-01A

TARGET ANALYTES

A-Transmissive Zone	B-Transmissive Zone
(A list)	(B list)
2-Methylnaphthalene	Acenaphthene
Acenaphthene	Acenaphthylene
Acenaphthylene	Anthracene
Anthracene	bis(2-ethylhexyl)phthalate
bis(2-ethylhexyl)phthalate	Dibenzofuran
Dibenzofuran	Di-n-butyl Phthalate
Fluoranthene	Fluoranthene
Fluorene	Fluorene
Naphthalene	Naphthalene
Phenanthrene	Phenol
Pyrene	Pyrene

TABLE 2 UPRR HOUSTON WOOD PRESERVING WORKS SEMI-ANNUAL COMPLIANCE MONITORING – JULY 2007

QUALIFIED SAMPLE RESULTS

SAMPLE(S)	ANALYTE(S)	QUALIFIER	REASON
MW-01A	Dibenzofuran	J	result is between the SQL and MQL
MW-01A	Fluoranthene	J	result is between the SQL and MQL
MW-01A	Phenanthrene	J	result is between the SQL and MQL
MW-01A	Pyrene	J	result is between the SQL and MQL
DUP-01*	Dibenzofuran	J	result is between the SQL and MQL
DUP-01*	Fluoranthene	J	result is between the SQL and MQL
DUP-01*	Phenanthrene	J	result is between the SQL and MQL
DUP-01*	Pyrene	J	result is between the SQL and MQL
MW-02	Anthracene	J	result is between the SQL and MQL
MW-02	Fluoranthene	J	result is between the SQL and MQL
MW-02	2-Methylnapthalene	J	result is between the SQL and MQL
MW-02	Phenanthrene	J	result is between the SQL and MQL
MW-08	Anthracene	J	result is between the SQL and MQL
MW-10B	Anthracene	J	result is between the SQL and MQL
MW-10B	Fluoranthene	J	result is between the SQL and MQL
MW-11A	Fluoranthene	J	result is between the SQL and MQL
MW-11A	Phenanthrene	J	result is between the SQL and MQL
MW-11A	Pyrene	J	result is between the SQL and MQL
MW-11B	Anthracene	J	result is between the SQL and MQL
MW-11B	Fluoranthene	J	result is between the SQL and MQL
MW-11B	Pyrene	J	result is between the SQL and MQL
P-10	Anthracene	J	result is between the SQL and MQL
P-10	Fluoranthene	J	result is between the SQL and MQL
P-10	Pyrene	J	result is between the SQL and MQL
DUP-02*	Acenapthene	J	poor field duplicate precision (174 RPD); P-12 less than SQL
DUP-02*	Fluoranthene	J	poor field duplicate precision (115 RPD); P-12 less than SQL
DUP-02*	Napthalene	J	poor field duplicate precision (31 RPD); P-12 less than SQL
DUP-02*	Pyrene	UJ	poor field duplicate precision (155 RPD) ; DUP-02 less than SQL
P-12	Acenapthene	UJ	poor field duplicate precision (174 RPD); P-12 less than SQL
P-12	Fluoranthene	UJ	poor field duplicate precision (115 RPD); P-12 less than SQL
P-12	Napthalene	UJ	poor field duplicate precision (31 RPD); P-12 less than SQL
P-12	Pyrene	UJ	poor field duplicate precision (155 RPD) ; DUP-02 less than SQL

TABLE 2

UPRR HOUSTON WOOD PRESERVING WORKS

SEMI-ANNUAL COMPLIANCE MONITORING - JULY 2007

QUALIFIED SAMPLE RESULTS

SAMPLE(S)			REASON			
P-12 MS	2-Methylnapthalene	JH	MS recovery outside of acceptance limits			
P-12 MSD	2-Methylnapthalene	JH	MSD recovery outside of acceptance limits			

* field duplicate

UJ - Estimated data; The analyte was not detected above the reported method detection limit

J – Estimated data; The reported sample concentration is approximate due to exceedance of one or more QC requirements.

JH – Concentration estimated high due to MS/MSD recovery outside of acceptance limits

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>JL/JH and R>UJ>UJL)

ATTACHMENT 1 REVIEWER CHECKLISTS

Data Usability Review Checklist			Draiget Number: 1358							
Site Name: UPRR HWPW										
_aboratory: TestAmerica Nashville		1								
Reviewer: Jennifer Pavesi										
Parameters: SVOC										
		st Project Number: 1358 Project Manager: Eric Matzner Laboratory Job No: NQG2056 Date Checked: 11/26/07 Methods: 3510C/ 8270C YES X								
ITEM	22 YORNUL LANAR DU DOM	NO	N/A	COMMENIS						
Signed Cover Page included?										
R1 Date of sample collection included?										
R1 Sample temp (2-6 C)?										
R1 COCs properly executed and seals used?										
R1 Samples rec'd within 2 days of collection?	-									
R2 Field, Laboratory, and Batch ID included?				· · · · · · · · · · · · · · · · · · ·						
R3 Date of analysis included?										
R3 Date of sample preparation included? R3 NDs at SQL and MQLs included?				MOLs are upadiusted i.e. po dil correction						
R3 Holding time to analysis not expired?										
R3 Holding time to preparation not expired?				3000 - 7 days						
R3 Met Method Quantitation Limits?										
R3 Method references included?										
R3 Sample matrix included?			<u> </u>							
R3 Sample results included?	+ <u>*</u> -									
R3 Soils on dry weight?			<u> </u>							
R9 Evaluate unadjusted MQLs? (<lorps)< td=""><td></td><td></td><td></td><td></td></lorps)<>										
R10 <i>LRC covers all necessary items?</i> R10 Case narrative included, where required	<u> </u>									
(QC deficiency or elev SQL for 350.51,.79)?	l v									
S10 MDLs reasonable per DCS or LCS?				per LBC (used DCS not LCS)						
FN1 Field instruments calibrated daily?		-								
FN2 Well conditions constant before sampling?										
FN3 Containers and preservative appropriate?				(SVOC G 4 C)						
FN4 Samples filtered? If so, give turbid/size	<u> </u>	+ x								
FN5 Sampling sequence from low to high conc?		<u> </u>	X	dedicated tubing						
Definitions: AA - Atomic Absorption; %D - Perce	ent Diffe	rence, l	CP - Ind	ductively Coupled Plasma; IDL - Instrument Detection Lim						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						
MDL - Method Detection Limit: %R - Percent Rec	overy: R	F - Res	ponse F	ductively Coupled Plasma; IDL - Instrument Detection Lim Factor; RPD - Relative Percent Difference; RRT - Relative						

	Name: Pastor, Behling & W	w Checklist: GC/MS	Projec	t Numb	er: 135	58
	ame: UPRR HWPW					ic Matzner
	atory: TestAmerica Nashvill	<u>م</u>				NQG2056
	wer: Jennifer Pavesi	6		Checke		
Cevie	wer. berinner i avesi			ds: 351		
121-11-121		ITEM	YES			COMMENTS
<u></u> 84	Surrogate data included i		X	1998533742754099	I DARBON MORE	
~ 7	Required surrogates inclu		x			
	%R criteria met? (lab lim			x		LRC note N001
		-50/+100% of last calib chk)?		<u> </u>	x	
		ec diff from last calib chk?)			x	
5	Method blank data includ	ed in Lab Package?	x		 ^^	
	Criteria met? (<mdl)< td=""><td></td><td>x</td><td></td><td></td><td>per LRC</td></mdl)<>		x			per LRC
	Criteria met for field blank	ks? (<mdl)< td=""><td>X</td><td></td><td></td><td>per LRC</td></mdl)<>	X			per LRC
26		data included in lab package?	x			
.0	all project COCs or TAs in		x			
	%R criteria met? (TRRP	60-140%) Reject <10%	<u> </u>	x		LRC note N002
	RPD criteria met? (TRR			x		LRC note N003
7	Matrix spike data include		x	^-	1	
	%R criteria met? (TRRP		<u> </u>	x		LRC note N004
	RPD criteria met? (TRRP			x		LRC note N005
		et? (TRRP 50%sol, 30%aq, diff)		x		
1		ntation included in lab package?		x		-
	all target analytes include		x	<u> </u>		per LRC
	DDE mot SPCCs/TAs/0 (05/0.01)? SPCC RRF<0.05 reject	1 x			per LRC
	%PSD criteria met for	CCCs/TAs? (<30% RSD for CCC,				
	>15% RSD must have fit		x		1	per LRC
32		ata included in lab package?		x		
02		05/0.01)? SPCC RRF<0.05 reject	x	<u> </u>		per LRC
		<i>TAs</i> ? (20% Max, Qualify >25%D)	x			per LRC
33		MS included in lab package?	<u> </u>	x		
53 54	Internal standard data inc			x		
54		-50/+100% of last calib check)?	x	<u> </u>		per LRC
	Areas within limits (within	c diff from last calib check)?	x			per LRC
34	Surrogate	Control Limits				
14	246TBP	40-161				
	2401BP	20-86				
	2FP	10-82				
	d5NB	24-125				
	d5PH	11-76				
					-	
					ALL DE LA CALLER	
COM	d14TERP	29-149				
	· · · · · · · · · · · · · · · · · · ·					
	· · · · · · · · · · · · · · · · · · ·					
						:

.

August 01, 2007 11:18:03AM

Client: Attn:	Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664 Eric Matzner	Work Order: Project Name: Project Nbr: P/O Nbr: Date Received:	NQG2056 Houston.TX - Wood Preserving Works [none] UPRR Contract Audit # 734645 / SO# 35415 07/20/07
	SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
P-12		NQG2056-01	07/17/07 11:01
MW		NQG2056-02	07/17/07 12:21
MW	-07	NQG2056-03	07/17/07 13:56
P-10		NQG2056-04	07/17/07 14:35
	′-11B	NQG2056-05	07/17/07 17:02
MW	V-11A	NQG2056-06	07/17/07 17:30
MW	V-10A	NQG2056-07	07/17/07 18:09
MW	7-10B	NQG2056-08	07/17/07 18:40
FB-(01	NQG2056-09	07/17/07 18:15
DUI	P-02	NQG2056-10	07/17/07 00:01
FB-(02	NQG2056-11	07/18/07 08:01
MW	V-01A	NQG2056-12	07/18/07 08:16
MW	<i>v</i> -02	NQG2056-13	07/18/07 09:13
DUI	P-01	NQG2056-14	07/18/07 00:01

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

Texas Certification Number: T104704077-06-TX

The Chain(s) of Custody, 11 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory.

All solids results are reported in wet weight unless specifically stated. Estimated uncertainity is available upon request. This report has been electronically signed. Report Approved By:

Mark Hollingsworth Program Manager - National Accounts

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Pastor, Behling, and Wheeler, LLC / UPRR (14157)	Work Order:	NQG2056
	2201 Double Creek Drive, Suite 4004	Project Name:	Houston.TX - Wood Preserving Works
	Round Rock, TX 78664	Project Number:	[none]
Attn	Eric Matzner	Received:	07/20/07 07:50

				4.0.1		Dil	A - a lucia	AAAAAAT A. T. A. T. H. T.			UNADJ
Parameter	Result	Flag	Units	ADJ MQL	SQL	Dil Factor	Analysis Date/Time	Method	Analys	Batch	MQL
Sample ID: NQG2056-01 (P-12	- Water) San	npled: (07/17/07 1	1:01							
Semivolatile Organic Compounds by	y EPA Method	8270C									
Acenaphthene	<1.14		ug/L	9.52	1.14	1	07/22/07 21:33	SW846 8270C	SCS	7073727	10.000
Acenaphthylene	<1.14		ug/L	9.52	1.14	1	07/22/07 21:33	SW846 8270C	SCS	7073727	10.000
Anthracene	<0.952		ug/L	9.52	0.952	1	07/22/07 21:33	SW846 8270C	SCS	7073727	10.000
Dibenzofuran	<4.10		ug/L	9.52	4.10	1	07/22/07 21:33	SW846 8270C	SCS	7073727	10.000
Di-n-butyl phthalate	<3.62		ug/L	9.52	3.62	1	07/22/07 21:33	SW846 8270C	SCS	7073727	10.000
Bis(2-ethylhexyl)phthalate	<1.90		ug/L	9.52	1.90	1	07/22/07 21:33	SW846 8270C	SCS	7073727	10.000
Fluoranthene	<0.952		ug/L	9.52	0.952	1	07/22/07 21:33	SW846 8270C	SCS	7073727	10.000
Fluorene	<0.952		ug/L	9.52	0.952	1	07/22/07 21:33	SW846 8270C	SCS	7073727	10.000
Naphthalene	<1.24		ug/L	9.52	1.24	1	07/22/07 21:33	SW846 8270C	SCS	7073727	10.000
Phenol	<2.67		ug/L	9.52	2.67	1	07/22/07 21:33	SW846 8270C	SCS	7073727	10.000
Pyrene	7.50	J	ug/L	9.52	0.952	1	07/22/07 21:33	SW846 8270C	SCS	7073727	10.000
Surr: 2-Fluorophenol (10-82%)	29 %										
Surr: Phenol-d5 (11-76%)	19 %										
Surr: Nitrobenzene-d5 (24-125%)	88 %										
Surr: 2-Fluorobiphenyl (20-86%)	79 %										
Surr: 2,4,6-Tribromophenol (40-161%)	72 %										
Surr: Terphenyl-d14 (29-149%)	86 %										

Sample ID: NQG2056-02 (MW-08 - Water) Sampled: 07/17/07 12:21

Sumple IDT RQ Grobe of (RTR		-									
Semivolatile Organic Compounds by	EPA Method	8270C									
Acenaphthene	<1.14		ug/L	9.52	1.14	1	07/22/07 21:55	SW846 8270C	SCS	7073727	10.000
Acenaphthylene	<1.14		ug/L	9.52	1.14	1	07/22/07 21:55	SW846 8270C	SCS	7073727	10.000
Anthracene	1.35	J	ug/L	9.52	0.952	1	07/22/07 21:55	SW846 8270C	SCS	7073727	10.000
Dibenzofuran	<4.10		ug/L	9.52	4.10	1	07/22/07 21:55	SW846 8270C	SCS	7073727	10.000
Bis(2-ethylhexyl)phthalate	<3.52		ug/L	9.52	3.52	1	07/22/07 21:55	SW846 8270C	SCS	7073727	10.000
Fluoranthene	<0.952		ug/L	9.52	0.952	1	07/22/07 21:55	SW846 8270C	SCS	7073727	10.000
Fluorene	<0.952		ug/L	9.52	0.952	1	07/22/07 21:55	SW846 8270C	SCS	7073727	10.000
2-Methylnaphthalene	<1.33		ug/L	9.52	1.33	1	07/22/07 21:55	SW846 8270C	SCS	7073727	10.000
Naphthalene	<1.24		ug/L	9.52	1.24	1	07/22/07 21:55	SW846 8270C	SCS	7073727	10.000
Phenanthrene	<0.952		ug/L	9.52	0.952	1	07/22/07 21:55	SW846 8270C	SCS	7073727	10.000
Pyrene	<0.952		ug/L	9.52	0.952	1	07/22/07 21:55	SW846 8270C	SCS	7073727	10.000
Surr: Terphenyl-d14 (29-149%)	88 %										
Surr: 2,4,6-Tribromophenol (40-161%)	96 %										
Surr: Phenol-d5 (11-76%)	26 %										
Surr: 2-Fluorobiphenyl (20-86%)	79 %										
Surr: 2-Fluorophenol (10-82%)	40 %						·				
Surr: Nitrobenzene-d5 (24-125%)	89 %										

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004	Work Order: Project Name:	NQG2056 Houston TX - Wood Preserving Works
	Round Rock, TX 78664	Project Number:	[none]
Attn	Eric Matzner	Received:	07/20/07 07:50

			ANA	LYTICAL	REPORT	ſ					
Parameter	Result	Flag	Units	ADJ MQL	SQL	Dil Factor	Analysis Date/Time	Method	Analys	Batch	UNADJ MQL
Sample ID: NQG2056-03 (MW	-07 - Water)	Sampled	: 07/17/0	07 13:56							
Semivolatile Organic Compounds b	y EPA Method	8270C									
Acenaphthene	<1.14		ug/L	9.52	1.14	1	07/22/07 22:16	SW846 8270C	SCS	7073727	10.000
Acenaphthylene	<1.14		ug/L	9.52	1.14	1	07/22/07 22:16	SW846 8270C	SCS	7073727	10.000
Anthracene	<0.952		ug/L	9.52	0.952	1	07/22/07 22:16	SW846 8270C	SCS	7073727	10.000
Dibenzofuran	<4.10		ug/L	9.52	4.10	1	07/22/07 22:16	SW846 8270C	SCS	7073727	10.000
Bis(2-ethylhexyl)phthalate	<3.52		ug/L	9.52	3.52	1	07/22/07 22:16	SW846 8270C	SCS	7073727	10.000
Fluoranthene	<0.952		ug/L	9.52	0.952	1	07/22/07 22:16	SW846 8270C	SCS	7073727	10.000
Fluorene	<0.952		ug/L	9.52	0.952	1	07/22/07 22:16	SW846 8270C	SCS	7073727	10.000
2-Methylnaphthalene	<1.33		ug/L	9.52	1.33	1	07/22/07 22:16	SW846 8270C	SCS	7073727	10.000
Naphthalene	<1.24		ug/L	9.52	1.24	1	07/22/07 22:16	SW846 8270C	SCS	7073727	10.000
Phenanthrene	<0.952		ug/L	9.52	0.952	1	07/22/07 22:16	SW846 8270C	SCS	7073727	10.000
Pyrene	<0.952		ug/L	9.52	0.952	1	07/22/07 22:16	SW846 8270C	SCS	7073727	10.000
Surr: Terphenyl-d14 (29-149%)	80 %										
Surr: 2,4,6-Tribromophenol (40-161%)	103 %										
Surr: Phenol-d5 (11-76%)	26 %										
Surr: 2-Fluorobiphenyl (20-86%)	78 %										
Surr: 2-Fluorophenol (10-82%)	40 %										
Surr: Nitrobenzene-d5 (24-125%)	86 %										

Sample ID: NQG2056-04 (P-10 - Water) Sampled: 07/17/07 14:35

94 %

55 %

Semivolatile Organic Compounds by EPA Method 8270C

Semivolume Organie Compounds o	j Di ni niculoa (52700									
Acenaphthene	68.8		ug/L	9.52	1.14	1	07/22/07 22:38	SW846 8270C	SCS	7073727	10.000
Acenaphthylene	<1.14		ug/L	9.52	1.14	1	07/22/07 22:38	SW846 8270C	SCS	7073727	10.000
Anthracene	3.19	J	ug/L	9.52	0.952	1	07/22/07 22:38	SW846 8270C	SCS	7073727	10.000
Dibenzofuran	27.2		ug/L	9.52	4.10	1	07/22/07 22:38	SW846 8270C	SCS	7073727	10.000
Di-n-butyl phthalate	<3.62		ug/L	9.52	3.62	1	07/22/07 22:38	SW846 8270C	SCS	7073727	10.000
Bis(2-ethylhexyl)phthalate	<1.90		ug/L	9.52	1.90	1	07/22/07 22:38	SW846 8270C	SCS	7073727	10.000
Fluoranthene	2.10	J	ug/L	9.52	0.952	1	07/22/07 22:38	SW846 8270C	SCS	7073727	10.000
Fluorene	29.1		ug/L	9.52	0.952	1	07/22/07 22:38	SW846 8270C	SCS	7073727	10.000
Naphthalene	297		ug/L	47.6	6.19	5	07/24/07 07:36	SW846 8270C	SCS	7073727	10.000
Phenol	<2.67		ug/L	9.52	2.67	1	07/22/07 22:38	SW846 8270C	SCS	7073727	10.000
Pyrene	1.00	J	ug/L	9.52	0.952	1	07/22/07 22:38	SW846 8270C	SCS	7073727	10.000
Surr: 2-Fluorophenol (10-82%)	35 %						•				
Surr: Phenol-d5 (11-76%)	25 %										
Surr: Nitrobenzene-d5 (24-125%)	89 %										
Surr: 2-Fluorobiphenyl (20-86%)	76 %										

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Pastor, Behling, and Wheeler, LLC / UPRR (14157)	Work Order:	NOG2056
Chem	2201 Double Creek Drive, Suite 4004	Project Name:	Houston.TX - Wood Preserving Works
	Round Rock, TX 78664	Project Number:	[none]
Attn	Eric Matzner	Received:	07/20/07 07:50

			ANA	LYTICAL	REPORT						
Parameter	Result	Flag	Units	ADJ MQL	SQL	Dil Factor	Analysis Date/Time	Method	Analys	Batch	UNADJ MQL
Sample ID: NQG2056-05 (MW-	11B - Water) Sample	ed: 07/17	/07 17:02							
Semivolatile Organic Compounds by	EPA Method	8270C									
Acenaphthene	88.0		ug/L	9.52	1.14	1	07/22/07 23:00	SW846 8270C	SCS	7073727	10.000
Acenaphthylene	<1.14		ug/L	9.52	1.14	1	07/22/07 23:00	SW846 8270C	SCS	7073727	10.000
Anthracene	3.96	J	ug/L	9.52	0.952	1	07/22/07 23:00	SW846 8270C	SCS	7073727	10.000
Dibenzofuran	41.1		ug/L	9.52	4.10	1	07/22/07 23:00	SW846 8270C	SCS	7073727	10.000
Di-n-butyl phthalate	<3.62		ug/L	9.52	3.62	1	07/22/07 23:00	SW846 8270C	SCS	7073727	10.000
Bis(2-ethylhexyl)phthalate	<1.90		ug/L	9.52	1.90	1	07/22/07 23:00	SW846 8270C	SCS	7073727	10.000
Fluoranthene	2.90	J	ug/L	9.52	0.952	1	07/22/07 23:00	SW846 8270C	SCS	7073727	10.000
Fluorene	35.3		ug/L	9.52	0.952	1	.07/22/07 23:00	SW846 8270C	SCS	7073727	10.000
Naphthalene	90.1		ug/L	9.52	1.24	1	07/22/07 23:00	SW846 8270C	SCS	7073727	10.000
Phenol	<2.67		ug/L	9.52	2.67	1	07/22/07 23:00	SW846 8270C	SCS	7073727	10.000
Pyrene	1.46	J	ug/L	9.52	0.952	1	07/22/07 23:00	SW846 8270C	SCS	7073727	10.000
Surr: 2-Fluorophenol (10-82%)	27 %										
Surr: Phenol-d5 (11-76%)	18 %										
Surr: Nitrobenzene-d5 (24-125%)	72 %										
Surr: 2-Fluorobiphenyl (20-86%)	66 %										
Surr: 2,4,6-Tribromophenol (40-161%)	87 %										
Surr: Terphenyl-d14 (29-149%)	77 %										

Sample ID: NQG2056-06 (MW-11A - Water) Sampled: 07/17/07 17:30

Semivolatile Organic Compounds by EPA Method 8270C

Semi organie organie oompoundo of	Dirititotiou											
Acenaphthene	40.4		ug/L	9.52	1.14	1	07/22/07 23:21	SW846 8270C	SCS	7073727	10.000	
Acenaphthylene	<1.14		ug/L	9.52	1.14	1	07/22/07 23:21	SW846 8270C	SCS	7073727	10.000	
Anthracene	<0.952		ug/L	9.52	0.952	1	07/22/07 23:21	SW846 8270C	SCS	7073727	10.000	
Dibenzofuran	<4.10		ug/L	9.52	4.10	1	07/22/07 23:21	SW846 8270C	SCS	7073727	10.000	
Bis(2-ethylhexyl)phthalate	<3.52		ug/L	9.52	3.52	1	07/22/07 23:21	SW846 8270C	SCS	7073727	10.000	
Fluoranthene	2.97	J	ug/L	9.52	0.952	1	07/22/07 23:21	SW846 8270C	SCS	7073727	10.000	
Fluorene	<0.952		ug/L	9.52	0.952	1	07/22/07 23:21	SW846 8270C	SCS	7073727	10.000	
2-Methylnaphthalene	<1.33		ug/L	9.52	1.33	1	07/22/07 23:21	SW846 8270C	SCS	7073727	10.000	
Naphthalene	<1.24		ug/L	9.52	1.24	1	07/22/07 23:21	SW846 8270C	SCS	7073727	10.000	
Phenanthrene	1.10	J	ug/L	9.52	0.952	1	07/22/07 23:21	SW846 8270C	SCS	7073727	10.000	
Pyrene	1.48	J	ug/L	9.52	0.952	1	07/22/07 23:21	SW846 8270C	SCS	7073727	10.000	
Surr: Terphenyl-d14 (29-149%)	88 %											
Surr: 2,4,6-Tribromophenol (40-161%)	96 %											
Surr: Phenol-d5 (11-76%)	25 %											
Surr: 2-Fluorobiphenyl (20-86%)	73 %											
Surr: 2-Fluorophenol (10-82%)	38 %											
Surr: Nitrobenzene-d5 (24-125%)	79 %											

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004	Work Order: Project Name:	NQG2056 Houston.TX - Wood Preserving Works
	Round Rock, TX 78664	Project Number:	[none]
Attn	Eric Matzner	Received:	07/20/07 07:50

			ANA	LYTICAL	REPORT		,				
Parameter	Result	Flag	Units	ADJ MQL	SQL	Dil Factor	Analysis Date/Time	Method	Analys	Batch	UNADJ MQL
Sample ID: NQG2056-07 (MW-	10A - Water) Sample	ed: 07/17	/07 18:09							
Semivolatile Organic Compounds by	EPA Method	8270C									
Acenaphthene	<1.14		ug/L	9.52	1.14	1	07/22/07 23:43	SW846 8270C	SCS	7073727	10.000
Acenaphthylene	<1.14		ug/L	9.52	1.14	1	07/22/07 23:43	SW846 8270C	SCS	7073727	10.000
Anthracene	<0.952		ug/L	9.52	0.952	1	07/22/07 23:43	SW846 8270C	SCS	7073727	10.000
Dibenzofuran	<4.10		ug/L	9.52	4.10	1	07/22/07 23:43	SW846 8270C	SCS	7073727	10.000
Bis(2-ethylhexyl)phthalate	<3.52		ug/L	9.52	3.52	1	07/22/07 23:43	SW846 8270C	SCS	7073727	10.000
Fluoranthene	<0.952		ug/L	9.52	0.952	1	07/22/07 23:43	SW846 8270C	SCS	7073727	10.000
Fluorene	<0.952		ug/L	9.52	0.952	1	07/22/07 23:43	SW846 8270C	SCS	7073727	10.000
2-Methylnaphthalene	<1.33		ug/L	9,52	1.33	1	07/22/07 23:43	SW846 8270C	SCS	7073727	10.000
Naphthalene	<1.24		ug/L	9.52	1.24	1	07/22/07 23:43	SW846 8270C	SCS	7073727	10.000
Phenanthrene	< 0.952		ug/L	9.52	0.952	1	07/22/07 23:43	SW846 8270C	SCS	7073727	10.000
Pyrene	<0.952		ug/L	9.52	0.952	1	07/22/07 23:43	SW846 8270C	SCS	7073727	10.000
Surr: Terphenyl-d14 (29-149%)	85 %										
Surr: 2,4,6-Tribromophenol (40-161%)	96 %										
Surr: Phenol-d5 (11-76%)	25 %										
Surr: 2-Fluorobiphenyl (20-86%)	72 %										
Surr: 2-Fluorophenol (10-82%)	37 %										
Surr: Nitrobenzene-d5 (24-125%)	82 %										
Surr: 2-Fluorophenol (10-82%)	37 %										

Sample ID: NQG2056-08 (MW-10B - Water) Sampled: 07/17/07 18:40

87 %

Semivolatile Organic Compounds by EPA Method 8270C

Semivolatile Organie Compounds by		02700									
Acenaphthene	96.1		ug/L	9.52	1.14	1	07/23/07 00:04	SW846 8270C	SCS	7073727	10.000
Acenaphthylene	<1.14		ug/L	9.52	1.14	1	07/23/07 00:04	SW846 8270C	SCS	7073727	10.000
Anthracene	4.37	J	ug/L	9.52	0.952	1	07/23/07 00:04	SW846 8270C	SCS	7073727	10.000
Dibenzofuran	32.5		ug/L	9.52	4.10	1	07/23/07 00:04	SW846 8270C	SCS	7073727	10.000
Di-n-butyl phthalate	<3.62		ug/L	9.52	3.62	1	07/23/07 00:04	SW846 8270C	SCS	7073727	10.000
Bis(2-ethylhexyl)phthalate	<1.90		ug/L	9.52	1.90	1	07/23/07 00:04	SW846 8270C	SCS	7073727	10.000
Fluoranthene	2.80	J	ug/L	9.52	0.952	1	07/23/07 00:04	SW846 8270C	SCS	7073727	10.000
Fluorene	39.9		ug/L	9.52	0.952	1	07/23/07 00:04	SW846 8270C	SCS	7073727	10.000
Naphthalene	25.2		ug/L	9.52	1.24	1	07/23/07 00:04	SW846 8270C	SCS	7073727	10.000
Phenol	<2.67		ug/L	9.52	2.67	1	07/23/07 00:04	SW846 8270C	SCS	7073727	10.000
Pyrene	<0.952		ug/L	9.52	0.952	1	07/23/07 00:04	SW846 8270C	SCS	7073727	10.000
Surr: 2-Fluorophenol (10-82%)	40 %										
Surr: Phenol-d5 (11-76%)	25 %						,				
Surr: Nitrobenzene-d5 (24-125%)	87 %										
Surr: 2-Fluorobiphenyl (20-86%)	82 %										
Surr: 2,4,6-Tribromophenol (40-161%)	94 %										

Surr: Terphenyl-d14 (29-149%)

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004	Work Order: Project Name:	NQG2056 Houston.TX - Wood Preserving Works
	Round Rock, TX 78664	Project Number:	[none]
Attn	Eric Matzner	Received:	07/20/07 07:50

				ADJ		Dil	Analysis				UNADJ
Parameter	Result	Flag	Units	MQL	SQL	Factor	Date/Time	Method	Analys	Batch	MQL
Sample ID: NQG2056-09 (FB-0)	1 - Water) Sa	ampled:	07/17/07	18:15							
Semivolatile Organic Compounds by	EPA Method	8270C									
Acenaphthene	<1.20		ug/L	10.0	1.20	1	07/23/07 00:26	SW846 8270C	SCS	7073727	10.000
Acenaphthylene	<1.20		ug/L	10.0	1.20	1	07/23/07 00:26	SW846 8270C	SCS	7073727	10.000
Anthracene	<1.00		ug/L	10.0	1.00	1	07/23/07 00:26	SW846 8270C	SCS	7073727	10.000
Dibenzofuran	<4.30		· ug/L	10.0	4.30	1	07/23/07 00:26	SW846 8270C	SCS	7073727	10.000
Di-n-butyl phthalate	<3.80		ug/L	10.0	3.80	1	07/23/07 00:26	SW846 8270C	SCS	7073727	10.000
Bis(2-ethylhexyl)phthalate	<3.70		ug/L	10.0	3.70	1	07/23/07 00:26	SW846 8270C	SCS	7073727	10.000
Fluoranthene	<1.00		ug/L	10.0	1.00	1	07/23/07 00:26	SW846 8270C	SCS	7073727	10.000
Fluorene	<1.00		ug/L	10.0	1.00	1	07/23/07 00:26	SW846 8270C	SCS	7073727	10.000
2-Methylnaphthalene	<1.40		ug/L	10.0	1.40	1	07/23/07 00:26	SW846 8270C	SCS	7073727	10.000
Naphthalene	<1.30		ug/L	10.0	1.30	1	07/23/07 00:26	SW846 8270C	SCS	7073727	10.000
Phenanthrene	<1.00		ug/L	10.0	1.00	1	07/23/07 00:26	SW846 8270C	SCS	7073727	10.00
Pyrene	<1.00		ug/L	10.0	1.00	1	07/23/07 00:26	SW846 8270C	SCS	7073727	10.000
Phenol	<2.80		ug/L	10.0	2.80	1	07/23/07 00:26	SW846 8270C	SCS	7073727	10.000
Surr: 2-Fluorophenol (10-82%)	58 %										
Surr: Terphenyl-d14 (29-149%)	101 %										
Surr: 2,4,6-Tribromophenol (40-161%)	111 %						•				
Surr: Phenol-d5 (11-76%)	37 %										
Surr: Nitrobenzene-d5 (24-125%)	106 %										
Surr: Phenol-d5 (11-76%)	37 %										
Surr: 2-Fluorobiphenyl (20-86%)	95 %	Z10									
Surr: 2-Fluorobiphenyl (20-86%)	95 %	Z10									
Surr: 2,4,6-Tribromophenol (40-161%)	111 %										
Surr: 2-Fluorophenol (10-82%)	58 %										
Surr: Nitrobenzene-d5 (24-125%)	106 %						1				
Surr: Terphenyl-d14 (29-149%)	101 %										

Sample ID: NQG2056-10 (DUP-02 - Water) Sampled: 07/17/07 00:01

Semivolatile Organic Compounds by EPA Method 8270C

Acenaphthene	16.6		ug/L	9.52	1.14	1	07/23/07 00:48	SW846 8270C	SCS	7073727	10.000
Acenaphthylene	<1.14		ug/L	9.52	1.14	1	07/23/07 00:48	SW846 8270C	SCS	7073727	10.000
Anthracene	<0.952		ug/L	9.52	0.952	1	07/23/07 00:48	SW846 8270C	SCS	7073727	10.000
Dibenzofuran	<4.10		ug/L	9.52	4.10	1	07/23/07 00:48	SW846 8270C	SCS	7073727	10.000
Di-n-butyl phthalate	<3.62		ug/L	9.52	3.62	1	07/23/07 00:48	SW846 8270C	SCS	7073727	10.000
Bis(2-ethylhexyl)phthalate	<1.90		ug/L	9.52	1.90	1	07/23/07 00:48	SW846 8270C	SCS	7073727	10.000
Fluoranthene	<0.952		ug/L	9.52	0.952	1	07/23/07 00:48	SW846 8270C	SCS	7073727	10.000
Fluorene	3,52	J	ug/L	9.52	0.952	1	07/23/07 00:48	SW846 8270C	SCS	7073727	10.000
Naphthalene	1.69	J	ug/L	9.52	1.24	1	07/23/07 00:48	SW846 8270C	SCS	7073727	10.000
Phenol	<2.67		ug/L	9.52	2.67	1	07/23/07 00:48	SW846 8270C	SCS	7073727	10.000
Pyrene	<0.952		ug/L	9.52	0.952	1	07/23/07 00:48	SW846 8270C	SCS	7073727	10.000
Surr: 2-Fluorophenol (10-82%)	37 %										
Surr: Phenol-d5 (11-76%)	25 %										
Surr: Nitrobenzene-d5 (24-125%)	76 %										

Surr: Terphenyl-d14 (29-149%)

Surr: Nitrobenzene-d5 (24-125%)

Surr: 2-Fluorobiphenyl (20-86%)

Surr: 2-Fluorobiphenyl (20-86%)

Surr: 2-Fluorophenol (10-82%)

Surr: Terphenyl-d14 (29-149%)

Surr: Nitrobenzene-d5 (24-125%)

Surr: 2,4,6-Tribromophenol (40-161%)

Surr: Phenol-d5 (11-76%)

Surr: Phenol-d5 (11-76%)

Surr: 2,4,6-Tribromophenol (40-161%)

ANALYTICAL TESTING CORPORATION

90 %

103 %

27 %

96 %

27 %

83 %

83 %

103 %

39 %

96 %

90 %

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004	Work Order: Project Name:	NQG2056 Houston.TX - Wood Preserving Works
	Round Rock, TX 78664	Project Number:	[none]
Attn	Eric Matzner	Received:	07/20/07 07:50
		· ···· · · · · · · · · · · · · · · · ·	T T T T Alabert T

			ANA	LYTICAL	KEPUK						
Parameter	Result	Flag	Units	ADJ MQL	SQL	Dil Factor	Analysis Date/Time	Method	Analys	Batch	UNADJ MQL
Sample ID: NQG2056-10 (DUP Semivolatile Organic Compounds by				07/17/07	00:01						
Surr: 2-Fluorobiphenyl (20-86%)	71 %										
Surr: 2,4,6-Tribromophenol (40-161%)	90 %										
Surr: Terphenyl-d14 (29-149%)	84%										
Semivolatile Organic Compounds by Acenaphthene	<1.15	8270C	ug/L	9.62	1.15	1	07/23/07 01:09	SW846 8270C	SCS	7073727	10.000
Acenaphthylene	<1.15		ug/L	9.62	1.15	1	07/23/07 01:09	SW846 8270C	SCS	7073727	10.000
Anthracene	<0.962		ug/L	9.62	0.962	1	07/23/07 01:09	SW846 8270C	SCS	7073727	10.000
Dibenzofuran	<4.13		ug/L	9.62	4.13	1	07/23/07 01:09	SW846 8270C	SCS	7073727	10.000
Di-n-butyl phthalate	<3.65		ug/L	9.62	3.65	1	07/23/07 01:09	SW846 8270C	SCS	7073727	10.000
Bis(2-ethylhexyl)phthalate	<3.56		ug/L	9.62	3.56	1	07/23/07 01:09	SW846 8270C	SCS	7073727	10.000
Fluoranthene	<0.962		ug/L	9.62	0.962	1	07/23/07 01:09	SW846 8270C	SCS	7073727	10.000
Fluorene	<0.962		ug/L	9.62	0.962	1	07/23/07 01:09	SW846 8270C	SCS	7073727	10.000
2-Methylnaphthalene	<1.35		ug/L	9.62	1.35	1	07/23/07 01:09	SW846 8270C	SCS	7073727	10.000
Naphthalene	<1.25		ug/L	9.62	1.25	1	07/23/07 01:09	SW846 8270C	SCS	7073727	10.000
Phenanthrene	<0.962		ug/L	9.62	0.962	1	07/23/07 01:09	SW846 8270C	SCS	7073727	10.000
Pyrene	<0.962		ug/L	9.62	0.962	1	07/23/07 01:09	SW846 8270C	SCS	7073727	10.000
Phenol	<2.69		ug/L	9.62	2.69	1	07/23/07 01:09	SW846 8270C	SCS	7073727	10.000
Surr: 2-Fluorophenol (10-82%)	39 %										

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004	Work Order: Project Name:	NQG2056 Houston.TX - Wood Preserving Works
	Round Rock, TX 78664	Project Number:	[none]
Attn	Eric Matzner	Received:	07/20/07 07:50

		ANA	LYHCAL	REPORT	-					
Result	Flag	Units	ADJ MQL	SQL	Dil Factor	Analysis Date/Time	Method	Analys	Batch	UNADJ MQL
W-01A - W	'ater) Sa	mpled: 0	7/18/07 0	8:16						
PA Method	8270C									
110		ug/L	19.0	2.29	2	07/24/07 08:22	SW846 8270C	SCS	7073727	10.000
<1.14		ug/L	9.52	1.14	1	07/23/07 01:31	SW846 8270C	SCS	7073727	10.000
<0.952		ug/L	9.52	0.952	1	07/23/07 01:31	SW846 8270C	SCS	7073727	10.000
8.49	J	ug/L	9.52	4.10	1	07/23/07 01:31	SW846 8270C	SCS	7073727	10.000
<3.52		ug/L	9.52	3.52	1	07/23/07 01:31	SW846 8270C	SCS	7073727	10.000
6.96	J	ug/L	9.52	0.952	1	07/23/07 01:31	SW846 8270C	SCS	7073727	10.000
51.4		ug/L	9.52	0.952	1	07/23/07 01:31	SW846 8270C	SCS	7073727	10.000
<1.33		ug/L	9.52	1.33	1	07/23/07 01:31	SW846 8270C	SCS	7073727	10.000
<1.24		ug/L	9.52	1.24	1	07/23/07 01:31	SW846 8270C	SCS	7073727	10.000
3,36	J	ug/L	9.52	0.952	1	07/23/07 01:31	SW846 8270C	SCS	7073727	10.000
3.04	J	ug/L	9.52	0.952	1	07/23/07 01:31	SW846 8270C	SCS	7073727	10.000
70 %										
106 %										
27 %										
81 %										
42 %										
90 %										
	W-01A - W EPA Method 110 <1.14 <0.952 8.49 <3.52 6.96 51.4 <1.33 <1.24 3.36 3.04 70 % 106 % 27 % 81 % 42 %	W-01A - Water) Sa EPA Method 8270C 110 <1.14 <0.952 8.49 J <3.52 6.96 J 51.4 <1.33 <1.24 3.36 J 3.04 J 70 % 106 % 27 % 81 % 42 %	W-01A - Water) Sampled: 0 EPA Method 8270C 110 ug/L <1.14	Result Flag Units MQL W-01A - Water) Sampled: 07/18/07 0 0 CPA Method 8270C 07/18/07 0 0 CPA Method 8270C 09/1 19.0 <1.10	Result Flag Units MQL SQL W-01A - Water) Sampled: 07/18/07 08:16 07/18/07 08:16 CPA Method 8270C 09/1 19.0 2.29 <110	Result Flag Units MQL SQL Factor W-01A - Water) Sampled: 07/18/07 08:16	Result Flag Units MQL SQL Factor Date/Time W-01A - Water) Sampled: 07/18/07 08:16 07/18/07 08:16 07/18/07 08:16 07/24/07 08:22 07/24/07 08:22 07/24/07 08:22 07/24/07 08:22 07/23/07 01:31 0.952 0.952 1.14 1 07/23/07 01:31 0.952 0.952 1 07/23/07 01:31 0.952 0.952 1 07/23/07 01:31 0.952 0.952 1 07/23/07 01:31 0.952 0.952 1 07/23/07 01:31 0.952 0.952 1 07/23/07 01:31 0.952 0.952 1 07/23/07 01:31 0.952 1.07/23/07 01:31 0.952 0.952 1 07/23/07 01:31 0.952 1.07/23/07 01:31 0.952 0.952 1 07/23/07 01:31 0.952 0.952 1 07/23/07 01:31 0.952 0.952 1 07/23/07 01:31 0.952 0.952 1 07/23/07 01:31 0.952 0.952 1 07/23/07 01:31 0.952 0.952 1 07/23/07 01:31 0.952 0.952 1 <td>Result Flag Units MQL SQL Factor Date/Time Method W-01A - Water) Sampled: 07/18/07 08:16 07/18/07 08:22 SW846 8270C SW</td> <td>Result Flag Units MQL SQL Factor Date/Time Method Analys W-01A - Water) Sampled: 07/18/07 08:16 SCS SCS SCS SCS SCS SCS SCS SCS SCS SCS SCS SCS SCS SCS SCS SC</td> <td>Result Flag Units MQL SQL Factor Date/Time Method Analys Batch W-01A - Water) Sampled: 07/18/07 08:16 </td>	Result Flag Units MQL SQL Factor Date/Time Method W-01A - Water) Sampled: 07/18/07 08:16 07/18/07 08:22 SW846 8270C SW	Result Flag Units MQL SQL Factor Date/Time Method Analys W-01A - Water) Sampled: 07/18/07 08:16 SCS SCS SCS SCS SCS SCS SCS SCS SCS SCS SCS SCS SCS SCS SCS SC	Result Flag Units MQL SQL Factor Date/Time Method Analys Batch W-01A - Water) Sampled: 07/18/07 08:16

Sample ID: NQG2056-13 (MW-02 - Water) Sampled: 07/18/07 09:13

Semivolatile Organic Compounds by EPA Method 8270C

Di i i i i i i i i i i i i i i i i i i	02/00									
25.6		ug/L	9.52	1.14	1	07/23/07 01:53	SW846 8270C	SCS	7073727	10.000
<1.14		ug/L	9.52	1.14	1	07/23/07 01:53	SW846 8270C	SCS	7073727	10.000
1.38	J	ug/L	9.52	0.952	1	07/23/07 01:53	SW846 8270C	SCS	7073727	10.000
17.4		ug/L	9.52	4.10	1	07/23/07 01:53	·SW846 8270C	SCS	7073727	10.000
<3.52		ug/L	9,52	3.52	1	07/23/07 01:53	SW846 8270C	SCS	7073727	10.000
1.65	J	ug/L	9.52	0.952	1	07/23/07 01:53	SW846 8270C	SCS	7073727	10.000
15.7		ug/L	9,52	0.952	1	07/23/07 01:53	SW846 8270C	SCS	7073727	10.000
2.40	J	ug/L	9.52	1.33	1	07/23/07 01:53	SW846 8270C	SCS	7073727	10.000
18.8		ug/L	9.52	1.24	1	07/23/07 01:53	SW846 8270C	SCS	7073727	10.000
1.67	J	ug/L	9.52	0.952	1	07/23/07 01:53	SW846 8270C	SCS	7073727	10.000
<0.952		ug/L	9.52	0.952	1	07/23/07 01:53	SW846 8270C	SCS	7073727	10.000
108 %										
132 %										
34 %										
102 %	Z10									
52 %										
124 %										
	25.6 <1.14 1.38 17.4 <3.52 1.65 15.7 2.40 18.8 1.67 <0.952 108 % 132 % $34 %$ 102 % $52 %$	<1.14 1.38 J 17.4 <3.52 1.65 J 15.7 2.40 J 18.8 1.67 J <0.952 108 % 132 % 34 % 102 % Z10 52 %	25.6 ug/L <1.14	25.6ug/L 9.52 <1.14	25.6 ug/L 9.52 1.14 <1.14	25.6ug/L9.521.141<1.14	25.6 ug/L 9.52 1.14 1 07/23/07 01:53 <1.14	25.6 ug/L 9.52 1.14 1 07/23/07 01:53 SW846 8270C <1.14	25.6 ug/L 9.52 1.14 1 07/23/07 01:53 SW846 8270C SCS <1.14	25.6 ug/L 9.52 1.14 1 07/23/07 01:53 SW846 8270C SCS 7073727 <1.14 ug/L 9.52 1.14 1 07/23/07 01:53 SW846 8270C SCS 7073727 1.38 J ug/L 9.52 0.952 1 07/23/07 01:53 SW846 8270C SCS 7073727 1.38 J ug/L 9.52 4.10 1 07/23/07 01:53 SW846 8270C SCS 7073727 1.74 ug/L 9.52 4.10 1 07/23/07 01:53 SW846 8270C SCS 7073727 <3.52 ug/L 9.52 3.52 1 07/23/07 01:53 SW846 8270C SCS 7073727 Ug/L 9.52 0.952 1 07/23/07 01:53 SW846 8270C SCS 7073727 1.65 J ug/L 9.52 1.33 1 07/23/07 01:53 SW846 8270C SCS 7073727 1.64 J ug/L 9.52 0.952 1 07/23/07 01:53 SW846 8270C SCS 7073727 1.67

ANALYTICAL TESTING CORPORATION

Client	Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004	Work Order: Project Name:	NQG2056 Houston.TX - Wood Preserving Works
	Round Rock, TX 78664	Project Number:	[none]
Attn	Eric Matzner	Received:	07/20/07 07:50

			ANA	LYTICAL	REPORT						
Parameter	Result	Flag	Units	ADJ MQL	SQL	Dil Factor	Analysis Date/Time	Method	Analys	Batch	UNAD. MQL
Sample ID: NQG2056-14RE1 (I	DUP-01 - Wa	ter) San	pled: 07	/18/07 00	:01						
Semivolatile Organic Compounds by	EPA Method	8270C									
Acenaphthene	116		ug/L	19.0	2.29	2	07/24/07 07:59	SW846 8270C	SCS	7073727	10.000
Acenaphthylene	<1.14		ug/L	9.52	1.14	1	07/23/07 02:14	SW846 8270C	SCS	7073727	10.000
Anthracene	<0.952		ug/L	9.52	0.952	1	07/23/07 02:14	SW846 8270C	SCS	7073727	10.000
Dibenzofuran	8.91	J	ug/L	9.52	4.10	1	07/23/07 02:14	SW846 8270C	SCS	7073727	10.000
Bis(2-ethylhexyl)phthalate	<3.52		ug/L	9.52	3.52	1	07/23/07 02:14	SW846 8270C	SCS	7073727	10.000
Fluoranthene	8.01	J	ug/L	9.52	0.952	1	07/23/07 02:14	SW846 8270C	SCS	7073727	10.000
Fluorene	55.1		ug/L	9.52	0.952	1	07/23/07 02:14	SW846 8270C	SCS	7073727	10.000
2-Methylnaphthalene	<1.33		ug/L	9.52	1.33	1	07/23/07 02:14	SW846 8270C	SCS	7073727	10.000
Naphthalene	<1.24		ug/L	9.52	1.24	1	07/23/07 02:14	SW846 8270C	SCS	7073727	10.000
Phenanthrene	3.91	J	ug/L	9.52	0.952	1	07/23/07 02:14	SW846 8270C	SCS	7073727	10.000
Pyrene	3.43	J	ug/L	9.52	0.952	1	07/23/07 02:14	SW846 8270C	SCS	7073727	10.000
Surr: Terphenyl-d14 (29-149%)	86 %										
Surr: 2,4,6-Tribromophenol (40-161%)	108 %										
Surr: Phenol-d5 (11-76%)	27 %										
Surr: 2-Fluorobiphenyl (20-86%)	80 %										
Surr: 2-Fluorophenol (10-82%)	40 %										
Surr: Nitrobenzene-d5 (24-125%)	85 %										

TestAmerica ANALYTICAL TESTING CORPORATION

Pastor, Behling, and Wheeler, LLC / UPRR (14157) Client 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664 Eric Matzner Attn

Work Order: NQG2056 Houston.TX - Wood Preserving Works Project Name: [none] Project Number: 07/20/07 07:50 Received:

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracted	Extracted Vol	Date	Analyst	Extraction Method
Semivolatile Organic Compound	ls by EPA Method 82700	3					
SW846 8270C	7073727	NQG2056-01	1050.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-01	1050.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-02	1050.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-03	1050.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-04	1050.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-04RE1	1050.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-05	1050.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-06	1050.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-07	1050.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-08	1050.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-09	1000.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-09	1000.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-10	1050.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-11	1040.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-11	1040.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-12	1050.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-12RE1	1050.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-13	1050.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-14	1050.00	1.00	07/21/07 08:55	BJM	EPA 3510C
SW846 8270C	7073727	NQG2056-14RE1	1050.00	1.00	07/21/07 08:55	BJM	EPA 3510C

ANALYTICAL TESTING CORPORATION

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664 Attn Eric Matzner Work Order:NQG2056Project Name:Houston TX - Wood Preserving WorksProject Number:[none]Received:07/20/07 07:50

PROJECT QUALITY CONTROL DATA Blank

nalyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
emivolatile Organic Compoun	nds by EPA Method 827	0C				
073727-BLK1						
Acenaphthene	<1.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Acenaphthene	<1.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Acenaphthylene	<1.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Acenaphthylene	<1.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Acetophenone	<2.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Anthracene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
-Acetylaminofluorene	<1.60		ug/L	7073727	7073727-BLK1	07/22/07 17:11
alpha-Terpineol	<10.0		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Aniline	<6.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Benzo (a) anthracene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
4-Aminobiphenyl	<2.60		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Benzo (a) pyrene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Anthracene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Benzo (b) fluoranthene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Atrazine	<1.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Benzidine	<38.0		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Benzo (g,h,i) perylene	<1.00		ug/L	7073727	.7073727-BLK1	07/22/07 17:11
enzo (a) anthracene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
enzo (k) fluoranthene	<1.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11
-Bromophenyl phenyl ether	<3.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
enzo (a) pyrene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Benzo (b) fluoranthene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Butyl benzyl phthalate	<3.90		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Benzo (g,h,i) perylene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Carbazole	<3.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11
-Chloro-3-methylphenol	<4.50		ug/L ug/L	7073727	7073727-BLK1	07/22/07 17:11
			-	7073727	7073727-BLK1	07/22/07 17:11
Benzo (k) fluoranthene Benzoic acid	<1.10 <5.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Benzoic acid 4-Chloroaniline	<5.10 <5.70		ug/L	7073727	7073727-BLK1	
			ug/L			07/22/07 17:11
Benzyl alcohol	<12.0		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Siphenyl 1 Bromonhamul nhanul athar	<1.60		ug/L	7073727	7073727-BLK1	07/22/07 17:11
4-Bromophenyl phenyl ether	<3.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Bis(2-chloroethoxy)methane	<4.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Bis(2-chloroethyl)ether	<6.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Butyl benzyl phthalate	<3.90		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Caprolactam	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Bis(2-chloroisopropyl)ether	<6.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Carbazole	<3.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2-Chloronaphthalene	<2.50		ug/L	7073727	7073727-BLK1	07/22/07 17:11
4-Chloro-3-methylphenol	<4.50		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2-Chlorophenol	<5.50		ug/L	7073727	7073727-BLK1	07/22/07 17:11
4-Chloroaniline	<5.70		ug/L	7073727	7073727-BLK1	07/22/07 17:11

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664 Attn Eric Matzner Work Order:NQG2056Project Name:Houston.T2Project Number:[none]Received:07/20/07 07

NQG2056 Houston.TX - Wood Preserving Works [none] 07/20/07 07:50

PROJECT QUALITY CONTROL DATA Blank - Cont.

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Semivolatile Organic Compoun	ds by EPA Method 827	0C				
7073727-BLK1						
4-Chlorophenyl phenyl ether	<3.80		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Chlorobenzilate	<1.90		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Bis(2-chloroethoxy)methane	<4.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Chrysene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Bis(2-chloroethyl)ether	<6.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Dibenz (a,h) anthracene	<1.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Bis(2-chloroisopropyl)ether	<6.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Dibenzofuran	<4.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2-Chloronaphthalene	<2.50		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Di-n-butyl phthalate	<3.80		ug/L	7073727	7073727-BLK1	07/22/07 17:11
1,4-Dichlorobenzene	<1.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2-Chlorophenol	<5.50		ug/L	7073727	7073727-BLK1	07/22/07 17:11
1,2-Dichlorobenzene	<1.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
4-Chlorophenyl phenyl ether	<3.80		ug/L	7073727	'7073727-BLK1	07/22/07 17:11
1,3-Dichlorobenzene	<1.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Chrysene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
3,3-Dichlorobenzidine	<4.90		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Diallate (cis or trans)	<1.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2,4-Dichlorophenol	<4.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Dibenz (a,h) anthracene	<1.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Dibenzofuran	<4.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Diethyl phthalate	<3.60		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2,4-Dimethylphenol	<2.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Di-n-butyl phthalate	<3.80		ug/L	7073727	7073727-BLK1	07/22/07 17:11
1,3-Dichlorobenzene	<1.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Dimethyl phthalate	<3.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
1,2-Dichlorobenzene	<1.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
4,6-Dinitro-2-methylphenol	<3.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11
1,4-Dichlorobenzene	<1.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2,4-Dinitrophenol	<5.70		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2,6-Dinitrotoluene	<5.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
3,3-Dichlorobenzidine	<4.90		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2,4-Dinitrotoluene	<4.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2,6-Dichlorophenol	<4.80		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2,4-Dichlorophenol	<4.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Di-n-octyl phthalate	<3.90		ug/L	7073727	7073727-BLK1	07/22/07 17:11
3,4-Dichlorophenol	<1.40		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Bis(2-ethylhexyl)phthalate	<3.70		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Diethyl phthalate	<3.60		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Dimethoate	<3.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Fluoranthene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Dimethylaminoazobenzene	<1.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11

.

ANALYTICAL TESTING CORPORATION

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664 Eric Matzner Attn

NQG2056 Work Order: Project Name: Project Number: [none] Received:

Houston.TX - Wood Preserving Works 07/20/07 07:50

PROJECT QUALITY CONTROL DATA Blank - Cont.

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Semivolatile Organic Compound	s by EPA Method 827	0C				
7073727-BLK1						
Fluorene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
7,12-Dimethylbenz (a) anthracene	<2.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Hexachlorobenzene	<3.80		ug/L	7073727	7073727-BLK1	07/22/07 17:11
3,3-Dimethylbenzidine	<11.3		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Hexachlorobutadiene	<8.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2,4-Dimethylphenol	<2.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Hexachlorocyclopentadiene	<5.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Dimethyl phthalate	<3.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Hexachloroethane	<5.90		ug/L	7073727	7073727-BLK1	07/22/07 17:11
4,6-Dinitro-2-methylphenol	<3.30		ug/L	7073727	,7073727-BLK1	07/22/07 17:11
Indeno (1,2,3-cd) pyrene	<1.80		ug/L	7073727	7073727-BLK1	07/22/07 17:11
1,3-Dinitrobenzene	<2.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Isophorone	<5.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2,4-Dinitrophenol	<5.70		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2-Methylnaphthalene	<1.40		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2,4-Dinitrotoluene	<4.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2-Methylphenol	<4.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2,6-Dinitrotoluene	<5.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
3/4-Methylphenol	<1.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Di-n-octyl phthalate	<3.90		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Naphthalene	<1.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11
1,4-Dioxane	<0.800		ug/L	7073727	7073727-BLK1	07/22/07 17:11
3-Nitroaniline	<3.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Diphenylamine	<1.80		ug/L	7073727	7073727-BLK1	07/22/07 17:11
1,2-Diphenylhydrazine	<3.50		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2-Nitroaniline	<3.60		ug/L	7073727	7073727-BLK1	07/22/07 17:11
4-Nitroaniline	<2.90		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Bis(2-ethylhexyl)phthalate	<2.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Ethyl Methanesulfonate	<2.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Nitrobenzene	<4.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
4-Nitrophenol	<2.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Famphur	<1.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2-Nitrophenol	<3.40		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Fluoranthene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Fluorene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
N-Nitrosodiphenylamine	<6.40		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Hexachlorobenzene	<3.80		ug/L	7073727	7073727-BLK1	07/22/07 17:11
N-Nitrosodi-n-propylamine	<7.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Hexachlorobutadiene	<8.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Pentachlorophenol	<4.40		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Hexachlorocyclopentadiene	<5.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Phenanthrene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
			<i>o</i> –			

Test Analytical testing corporation

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Pastor, Behling, and Wheeler, LLC / UPRR (14157)
	2201 Double Creek Drive, Suite 4004
	Round Rock, TX 78664
Attn	Eric Matzner

Work Order:NQG2056Project Name:Houston.TX - Wood Preserving WorksProject Number:[none]Received:07/20/07 07:50

		PROJECT QUALITY CONTROL DATA Blank - Cont.							
Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time			
Semivolatile Organic Compound	ls by EPA Method 827	0C							
7073727-BLK1	-								
Hexachloroethane	<2.90		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
Phenol	<2.80		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
Hexachloropropene	<2.60		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
Pyrene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
Indeno (1,2,3-cd) pyrene	<1.80		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
1,2,4-Trichlorobenzene	<5.80		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
Isodrin	<1.70		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
1-Methylnaphthalene	<1.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
2,4,6-Trichlorophenol	<3.70		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
Isophorone	<5.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
2,4,5-Trichlorophenol	<3.50		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
Isosafrole	<12.7		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
Kepone	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
Methapyrilene	<5.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
3-Methylcholanthrene	<1.50		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
Methyl Methanesulfonate	<2.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
1-Methylnaphthalene	<1.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
2-Methylnaphthalene	<1.40		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
2-Methylphenol	<4.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
3/4-Methylphenol	<1.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
Naphthalene	<1.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
1,4-Naphthoquinone	<1.40		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
2-Naphthylamine	<1.80		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
1-Naphthylamine	<2.40		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
4-Nitroaniline	<2.90		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
2-Nitroaniline	<3.60		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
3-Nitroaniline	<3.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
Nitrobenzene	<4.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
2-Nitrophenol	<3.40		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
4-Nitrophenol	<2.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
N-Nitrosodi-n-butylamine	<2.50		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
N-Nitrosodiethylamine	<3.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
N-Nitrosodimethylamine	<6.90		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
N-Nitrosodiphenylamine	<6.40		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
N-Nitrosodi-n-propylamine	<7.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
N-Nitrosomethylethylamine	<3.40		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
N-Nitrosopiperidine	<2.40		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
N-Nitrosopyrrolidine	<1.90		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
5-Nitro-o-toluidine	<1.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
O,O,O-Triethyl phosphorothioate	<4.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11			
Parathion-ethyl	<1.50		ug/L	7073727	7073727-BLK1	07/22/07 17:11			

Test Analytical testing corporation

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664 Attn Eric Matzner

Work Order:NQG2056Project Name:Houston.TX - Wood Preserving WorksProject Number:[none]Received:07/20/07 07:50

PROJECT QUALITY CONTROL DATA Blank - Cont.

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Semivolatile Organic Compound	ls by EPA Method 827	0C				
7073727-BLK1						
Pentachlorobenzene	<2.40		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Pentachloronitrobenzene	<1.40		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Pentachlorophenol	<4.40		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Phenacetin	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Phenanthrene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Phenol	<2.80		ug/L	7073727	7073727-BLK1	07/22/07 17:11
1,4-Phenylenediamine	<50.0		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Pronamide	<1.80		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Pyrene	<1.00		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Pyridine	<4.20		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Safrole	<1.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11
1,2,4,5-Tetrachlorobenzene	<2.80		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2,3,4,6-Tetrachlorophenol	<2.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Thionazin	<1.90		ug/L	7073727	7073727-BLK1	07/22/07 17:11
o-Toluidine	<1.90		ug/L	7073727	7073727-BLK1	07/22/07 17:11
1,2,4-Trichlorobenzene	<5.80		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2,4,6-Trichlorophenol	<3.70		ug/L	7073727	7073727-BLK1	07/22/07 17:11
2,4,5-Trichlorophenol	<3.50		ug/L	7073727	7073727-BLK1	07/22/07 17:11
1,3,5-Trinitrobenzene	<1.30		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Pentachloroethane	<2.10		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Azobenzene	<3.50		ug/L	7073727	7073727-BLK1	07/22/07 17:11
Surrogate: 2-Fluorophenol	43%			7073727	7073727-BLK1	07/22/07 17:11
Surrogate: Terphenyl-d14	92%			7073727	7073727-BLK1	07/22/07 17:11
Surrogate: 2,4,6-Tribromophenol	105%			7073727	7073727-BLK1	07/22/07 17:11
Surrogate: Phenol-d5	28%			7073727	7073727-BLK1	07/22/07 17:11
Surrogate: Nitrobenzene-d5	89%			7073727	7073727-BLK1	07/22/07 17:11
Surrogate: Phenol-d5	28%			7073727	7073727-BLK1	07/22/07 17:11
Surrogate: 2-Fluorobiphenyl	72%			7073727	,7073727-BLK1	07/22/07 17:11
Surrogate: 2-Fluorobiphenyl	72%			7073727	7073727-BLK1	07/22/07 17:11
Surrogate: 2,4,6-Tribromophenol	105%			7073727	7073727-BLK1	07/22/07 17:11
Surrogate: 2-Fluorophenol	43%			7073727	7073727-BLK1	07/22/07 17:11
Surrogate: Nitrobenzene-d5	89%			7073727	7073727-BLK1	07/22/07 17:11
Surrogate: Terphenyl-d14	92%			7073727	7073727-BLK1	07/22/07 17:11

ANALYTICAL TESTING CORPORATION

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664

Attn Eric Matzner

 Work Order:
 NQG20

 Project Name:
 Housto

 Project Number:
 [none]

 Received:
 07/20/0

NQG2056 Houston.TX - Wood Preserving Works [none] 07/20/07 07:50

PROJECT QUALITY CONTROL DATA

LCS

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Semivolatile Organic Compound	s by EPA Method 8270C							
7073727-BS1								
Acenaphthene	50.0	44.7		ug/L	89%	40 - 111	7073727	07/22/07 17:33
Acenaphthene	50.0	44.7		ug/L	89%	40 - 111	7073727	07/22/07 17:33
Acenaphthylene	50.0	46.4		ug/L	93%	43 - 112	7073727	07/22/07 17:33
Acenaphthylene	50.0	46.4		ug/L	93%	43 - 112	7073727	07/22/07 17:33
Acetophenone	50.0	43.2		ug/L	86%	43 - 128	7073727	07/22/07 17:33
Anthracene	50.0	52.8		ug/L	106%	50 - 132	7073727	07/22/07 17:33
alpha-Terpineol	50.0	41.1		ug/L	82%	10 - 199	7073727	07/22/07 17:33
Aniline	50.0	35.5	J	ug/L	71%	24 - 114	7073727	07/22/07 17:33
Benzo (a) anthracene	50.0	46.6		ug/L	93%	55 - 120	7073727	07/22/07 17:33
Benzo (a) pyrene	50.0	48.9		ug/L	98%	51 - 132	7073727	07/22/07 17:33
Anthracene	50.0	52.8		ug/L	106%	50 - 132	7073727	07/22/07 17:33
Benzo (b) fluoranthene	50.0	46.5		ug/L	93%	45 - 132	7073727	07/22/07 17:33
Benzidine	50.0	5.89	J	ug/L	12%	5 - 143	7073727	07/22/07 17:33
Benzo (g,h,i) perylene	50.0	51.6		ug/L	103%	44 - 125	7073727	07/22/07 17:33
Benzo (a) anthracene	50.0	46.6		ug/L	93%	55 - 120	7073727	07/22/07 17:33
Benzo (k) fluoranthene	50.0	48.7		ug/L	97%	45 - 129	7073727	07/22/07 17:33
4-Bromophenyl phenyl ether	50.0	44.3		ug/L	89%	45 - 104	7073727	07/22/07 17:33
Benzo (a) pyrene	50.0	48.9		ug/L	98%	51 - 132	7073727	07/22/07 17:33
Benzo (b) fluoranthene	50.0	46.5		ug/L	93%	45 - 132	7073727	07/22/07 17:33
Butyl benzyl phthalate	50.0	48.1		ug/L	96%	51 - 135	7073727	07/22/07 17:33
Benzo (g,h,i) perylene	50.0	51.6		ug/L	103%	44 - 125	7073727	07/22/07 17:33
Carbazole	50.0	48.3		ug/L	97%	54 - 126	7073727	07/22/07 17:33
4-Chloro-3-methylphenol	50.0	42.4		ug/L	85%	42 - 115	7073727	07/22/07 17:33
Benzo (k) fluoranthene	50.0	48.7		ug/L	97%	45 - 129	7073727	07/22/07 17:33
Benzoic acid	50.0	8.70	J	ug/L	17%	10 - 75	7073727	07/22/07 17:33
4-Chloroaniline	50.0	43.6		ug/L	87%	28 - 122	7073727	07/22/07 17:33
Benzyl alcohol	50.0	34.3	J	ug/L	69%	37 - 101	7073727	07/22/07 17:33
4-Bromophenyl phenyl ether	50.0	44.3		ug/L	89%	45 - 104	7073727	07/22/07 17:33
Bis(2-chloroethoxy)methane	50.0	44.2		ug/L	88%	44 - 112	7073727	07/22/07 17:33
Bis(2-chloroethyl)ether	50.0	38.0		ug/L	76%	40 - 109	7073727	07/22/07 17:33
Butyl benzyl phthalate	50.0	48.1		ug/L	96%	51 - 135	7073727	07/22/07 17:33
Bis(2-chloroisopropyl)ether	50.0	42.0		ug/L	84%	41 - 111	7073727	07/22/07 17:33
Carbazole	50.0	48.3		ug/L .	97%	54 - 126	7073727	07/22/07 17:33
2-Chloronaphthalene	50.0	40.3		ug/L	81%	35 - 107	7073727	07/22/07 17:33
4-Chloro-3-methylphenol	50.0	42.4		ug/L	85%	42 - 115	7073727	07/22/07 17:33
2-Chlorophenol	50.0	39.0		ug/L	78%	39 - 104	7073727	07/22/07 17:33
4-Chloroaniline	50.0	43.6		ug/L	87%	28 - 122	7073727	07/22/07 17:33
4-Chlorophenyl phenyl ether	50.0	45.0		ug/L	90%	45 - 112	7073727	07/22/07 17:33
Bis(2-chloroethoxy)methane	50.0	44.2		ug/L	88%	44 - 112	7073727	07/22/07 17:33
Chrysene	50.0	45.9		ug/L	92%	54 - 120	7073727	07/22/07 17:33
Bis(2-chloroethyl)ether	50.0	38.0		ug/L	76%	40 - 109	7073727	07/22/07 17:33

ANALYTICAL TESTING CORPORATION

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664 Attn Eric Matzner Work Order:NQG2056Project Name:Houston.TX - Wood Preserving WorksProject Number:[none]Received:07/20/07 07:50

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Semivolatile Organic Compounds	s by EPA Method 8270C							
7073727-BS1	•							
Dibenz (a,h) anthracene	50.0	51.5		ug/L	103%	41 - 131	7073727	07/22/07 17:33
Bis(2-chloroisopropyl)ether	50.0	42.0		ug/L	84%	41 - 111	7073727	07/22/07 17:33
Dibenzofuran	50.0	47.7		ug/L	95%	45 - 113	7073727	07/22/07 17:33
2-Chloronaphthalene	50.0	40.3		ug/L	81%	35 - 107	7073727	07/22/07 17:33
Di-n-butyl phthalate	50.0	51.2		ug/L	102%	51 - 131	7073727	07/22/07 17:33
1,4-Dichlorobenzene	50.0	27.8		ug/L	56%	21 - 100	7073727	07/22/07 17:33
2-Chlorophenol	50.0	39.0		ug/L	78%	39 - 104	7073727	07/22/07 17:33
1,2-Dichlorobenzene	50.5	30.6		ug/L	60%	25 - 100	7073727	07/22/07 17:33
4-Chlorophenyl phenyl ether	50.0	45.0		ug/L	90%	45 - 112	7073727	07/22/07 17:33
1,3-Dichlorobenzene	50.0	28.1		ug/L	56%	23 - 97	7073727	07/22/07 17:33
Chrysene	50.0	45.9		ug/L	92%	54 - 120	7073727	07/22/07 17:33
3,3-Dichlorobenzidine	50.0	52.1		ug/L	104%	31 - 133	7073727	07/22/07 17:33
2,4-Dichlorophenol	50.0	43.4		ug/L	87%	42 - 113	7073727	07/22/07 17:33
Dibenz (a,h) anthracene	50.0	51.5		ug/L	103%	41 - 131	7073727	07/22/07 17:33
Dibenzofuran	50.0	47.7		ug/L	95%	45 - 113	7073727	07/22/07 17:33
Diethyl phthalate	50.0	48.9		ug/L	98%	49 - 121	7073727	07/22/07 17:33
2,4-Dimethylphenol	50.0	46.9		ug/L	94%	10 - 122	7073727	07/22/07 17:33
Di-n-butyl phthalate	50.0	51.2		ug/L	102%	51 - 131	7073727	07/22/07 17:33
1,3-Dichlorobenzene	50.0	28.1		ug/L ,	56%	23 - 97	7073727	07/22/07 17:33
Dimethyl phthalate	50.0	47.0		ug/L	94%	50 - 119	7073727	07/22/07 17:33
1,2-Dichlorobenzene	50.5	30.6		ug/L	60%	25 - 100	7073727	07/22/07 17:33
4,6-Dinitro-2-methylphenol	50.0	49.6		ug/L	99%	25 - 143	7073727	07/22/07 17:33
1,4-Dichlorobenzene	50.0	27.8		ug/L	56%	21 - 100	7073727	07/22/07 17:33
2,4-Dinitrophenol	50.0	50.3		ug/L	101%	10 - 162	7073727	07/22/07 17:33
2,6-Dinitrotoluene	50.0	47.5		ug/L	95%	57 - 130	7073727	07/22/07 17:33
3,3-Dichlorobenzidine	50.0	52.1		ug/L	104%	31 - 133	7073727	07/22/07 17:33
2,4-Dinitrotoluene	50.0	46.5		ug/L	93%	56 - 131	7073727	07/22/07 17:33
2,4-Dichlorophenol	50.0	43.4		ug/L	87%	42 - 113	7073727	07/22/07 17:33
Di-n-octyl phthalate	50.0	41.4		ug/L	83%	40 - 139	7073727	07/22/07 17:33
Bis(2-ethylhexyl)phthalate	50.0	47.0		ug/L	94%	36 - 139	7073727	07/22/07 17:33
Diethyl phthalate	50.0	48.9		ug/L	98%	49 - 121	7073727	07/22/07 17:33
Fluoranthene	50.0	47.6		ug/L	95%	52 - 125	7073727	07/22/07 17:33
Fluorene	50.0	45.1		ug/L	90%	49 - 114	7073727	07/22/07 17:33
Hexachlorobenzene	50.0	53.7		ug/L	107%	54 - 122	7073727	07/22/07 17:33
Hexachlorobutadiene	50.0	38.1		ug/L	76%	13 - 108	7073727	07/22/07 17:33
2,4-Dimethylphenol	50.0	46.9		ug/L	94%	10 - 122	7073727	07/22/07 17:33
Hexachlorocyclopentadiene	50.0	39.1		ug/L	78%	10 - 98	7073727	07/22/07 17:33
Dimethyl phthalate	50.0	47.0		ug/L .	94%	50 - 119	7073727	07/22/07 17:33
Hexachloroethane	50.0	33.8		ug/L	68%	21 - 95	7073727	07/22/07 17:33
4,6-Dinitro-2-methylphenol	50.0	49.6		ug/L	99%	25 - 143	7073727	07/22/07 17:33
Indeno (1,2,3-cd) pyrene	50.0	51.1		ug/L	102%	48 - 123	7073727	07/22/07 17:33

ANALYTICAL TESTING CORPORATION

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664 Attn Eric Matzner Work Order:NQG2056Project Name:Houston.TX - Wood Preserving WorksProject Number:[none]Received:07/20/07 07:50

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Semivolatile Organic Compounds	s by EPA Method 8270C							
7073727-BS1	-							
1,3-Dinitrobenzene	50.0	45.3		ug/L	91%	51 - 167	7073727	07/22/07 17:33
Isophorone	50.0	43.1		ug/L	86%	48 - 122	7073727	07/22/07 17:33
2,4-Dinitrophenol	50.0	50.3		ug/L	101%	10 - 162	7073727	07/22/07 17:33
2-Methylnaphthalene	50.0	51.9		ug/L	104%	27 - 106	7073727	07/22/07 17:33
2,4-Dinitrotoluene	50.0	46.5		ug/L	93%	56 - 131	7073727	07/22/07 17:33
2-Methylphenol	50.0	30.6		ug/L	61%	30 - 106	7073727	07/22/07 17:33
2,6-Dinitrotoluene	50.0	47.5		ug/L	95%	57 - 130	7073727	07/22/07 17:33
3/4-Methylphenol	50.0	29.8		ug/L	60%	19 - 117	7073727	07/22/07 17:33
Di-n-octyl phthalate	50.0	41.4		ug/L	83%	40 - 139	7073727	07/22/07 17:33
Naphthalene	50.0	34.5		ug/L	69%	25 - 100	7073727	07/22/07 17:33
3-Nitroaniline	50.0	43.8		ug/L	88%	35 - 129	7073727	07/22/07 17:33
1,2-Diphenylhydrazine	50.0	63.6	L	ug/L	127%	53 - 117	7073727	07/22/07 17:33
2-Nitroaniline	50.0	45.4		ug/L	91%	52 - 122	7073727	07/22/07 17:33
4-Nitroaniline	50.0	44.7		ug/L	89%	37 - 129	7073727	07/22/07 17:33
Bis(2-ethylhexyl)phthalate	50.0	47.0		ug/L	94%	36 - 139	7073727	07/22/07 17:33
Nitrobenzene	50.0	43.6		ug/L	87%	39 - 113	7073727	07/22/07 17:33
4-Nitrophenol	50.0	19.1	J	ug/L	38%	10 - 85	7073727	07/22/07 17:33
2-Nitrophenol	50.0	42.4		ug/L	85%	37 - 117	7073727	07/22/07 17:33
Fluoranthene	50.0	47.6		ug/L	95%	52 - 125	7073727	07/22/07 17:33
Fluorene	50.0	45.1		ug/L	90%	49 - 114	7073727	07/22/07 17:33
N-Nitrosodiphenylamine	50.0	53.7		ug/L	107%	71 - 190	7073727	07/22/07 17:33
Hexachlorobenzene	50.0	53.7		ug/L	107%	54 - 122	7073727	07/22/07 17:33
N-Nitrosodi-n-propylamine	50.0	47.8		ug/L	96%	42 - 126	7073727	07/22/07 17:33
Hexachlorobutadiene	50.0	38.1		ug/L	76%	13 - 108	7073727	07/22/07 17:33
Pentachlorophenol	50.0	60.2		ug/L	120%	38 - 148	7073727	07/22/07 17:33
Hexachlorocyclopentadiene	50.0	39.1		ug/L	78%	10 - 98	7073727	07/22/07 17:33
Phenanthrene	50.0	47.7		ug/L	95%	52 - 120	7073727	07/22/07 17:33
Hexachloroethane	50.0	33.8		ug/L	68%	21 - 95	7073727	07/22/07 17:33
Phenol	50.0	14.2		ug/L	28%	10 - 73	7073727	07/22/07 17:33
Pyrene	50.0	44.3		ug/L	89%	54 - 126	7073727	07/22/07 17:33
Indeno (1,2,3-cd) pyrene	50.0	51.1		ug/L	102%	48 - 123	7073727	07/22/07 17:33
1,2,4-Trichlorobenzene	50.0	32.2		ug/L	64%	22 - 96	7073727	07/22/07 17:33
1-Methylnaphthalene	50.5	33.5		ug/L	66%	25 - 100	7073727	07/22/07 17:33
2,4,6-Trichlorophenol	50.0	50.3		ug/L	101%	43 - 122	7073727	07/22/07 17:33
Isophorone	50.0	43.1		ug/L	86%	48 - 122	7073727	07/22/07 17:33
2,4,5-Trichlorophenol	50.0	46.0		ug/L	92%	48 - 123	7073727	07/22/07 17:33
1-Methylnaphthalene	50.5	33.5		ug/L	66%	25 - 100	7073727	07/22/07 17:33
2-Methylnaphthalene	50.0	51.9		ug/L	104%	27 - 106	7073727	07/22/07 17:33
2-Methylphenol	50.0	30.6		ug/L	61%	30 - 106	7073727	07/22/07 17:33
3/4-Methylphenol	50.0	29.8		ug/L	60%	19 - 117	7073727	07/22/07 17:33
Naphthalene	50.0	34.5		ug/L	69%	25 - 100	7073727	07/22/07 17:33

Test America ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Pastor, Behling, and Wheeler, LLC / UPRR (14157) Client 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664 Eric Matzner Attn

NQG2056 Work Order: Project Name: Project Number: [none] Received:

Houston.TX - Wood Preserving Works 07/20/07 07:50

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Semivolatile Organic Compounds b	by EPA Method 8270C							
7073727-BS1								
4-Nitroaniline	50.0	44.7		ug/L	89%	37 - 129	7073727	07/22/07 17:33
2-Nitroaniline	50.0	45.4		ug/L	91%	52 - 122	7073727	07/22/07 17:33
3-Nitroaniline	50.0	43.8		ug/L	88%	35 - 129	7073727	07/22/07 17:33
Nitrobenzene	50.0	43.6		ug/L	87%	39 - 113	7073727	07/22/07 17:33
2-Nitrophenol	50.0	42.4		ug/L	85%	37 - 117	7073727	07/22/07 17:33
4-Nitrophenol	50.0	19.1	J	ug/L	38%	10 - 85	7073727	07/22/07 17:33
N-Nitrosodimethylamine	50.0	23.8		ug/L	48%	23 - 76	7073727	07/22/07 17:33
N-Nitrosodiphenylamine	50.0	53.7		ug/L	107%	71 - 190	7073727	07/22/07 17:33
N-Nitrosodi-n-propylamine	50.0	47.8		ug/L	96%	42 - 126	7073727	07/22/07 17:33
Pentachlorophenol	50.0	60.2		ug/L	120%	38 - 148	7073727	07/22/07 17:33
Phenanthrene	50.0	47.7		ug/L	95%	52 - 120	7073727	07/22/07 17:33
Phenol	50.0	14.2		ug/L	28%	10 - 73	7073727	07/22/07 17:33
Pyrene	50.0	44.3		ug/L	89%	54 - 126	7073727	07/22/07 17:33
Pyridine	50.0	21.9		ug/L	44%	10 - 75	7073727	07/22/07 17:33
2,3,4,6-Tetrachlorophenol	50.0	53.4		ug/L	107%	45 - 150	7073727	07/22/07 17:33
1,2,4-Trichlorobenzene	50.0	32.2		ug/L	64%	22 - 96	7073727	07/22/07 17:33
2,4,6-Trichlorophenol	50.0	50.3		ug/L	101%	43 - 122	7073727	07/22/07 17:33
2,4,5-Trichlorophenol	50.0	46.0		ug/L	92%	· 48 - 123	7073727	07/22/07 17:33
Surrogate: 2-Fluorophenol	50.0	18.9			38%	10 - 82	7073727	07/22/07 17:33
Surrogate: Terphenyl-d14	50.0	42.0			84%	29 - 149	7073727	07/22/07 17:33
Surrogate: 2,4,6-Tribromophenol	50.0	48.2			96%	40 - 161	7073727	07/22/07 17:33
Surrogate: Phenol-d5	50.0	14.5			29%	11 - 76	7073727	07/22/07 17:33
Surrogate: Nitrobenzene-d5	50.0	44.1			88%	24 - 125	7073727	07/22/07 17:33
Surrogate: Phenol-d5	50.0	14.5			29%	11 - 76	7073727	07/22/07 17:33
Surrogate: 2-Fluorobiphenyl	50.0	36.9			74%	20 - 86	7073727	07/22/07 17:33
Surrogate: 2-Fluorobiphenyl	50.0	36.9			74%	20 - 86	7073727	07/22/07 17:33
Surrogate: 2,4,6-Tribromophenol	50.0	48.2			96%	40 - 161	7073727	07/22/07 17:33
Surrogate: 2-Fluorophenol	50.0	18.9			38%	10 - 82	7073727	07/22/07 17:33
Surrogate: Nitrobenzene-d5	50.0	44.1			88%	24 - 125	7073727	07/22/07 17:33
Surrogate: Terphenyl-d14	50.0	42.0			84%	29 - 149	7073727	07/22/07 17:33

Test America ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664 Eric Matzner Attn

NQG2056 Work Order: Project Name: Project Number: [none] Received:

Houston.TX - Wood Preserving Works 07/20/07 07:50

PROJECT QUALITY CONTROL DATA

LCS Dup

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Semivolatile Organic Compounds	by EPA Met	hod 8270C										
7073727-BSD1	•											
Acenaphthene		44.2		ug/L	50.0	88%	40 - 111	1	35	7073727		07/22/07 18:17
Acenaphthene		44.2		ug/L	50.0	88%	40 - 111	1	35	7073727		07/22/07 18:17
Acenaphthylene		44.3		ug/L	50.0	89%	43 - 112	5	34	7073727		07/22/07 18:17
Acenaphthylene		44.3		ug/L	50.0	89%	43 - 112	5	34	7073727		07/22/07 18:17
Acetophenone		42.6		ug/L	50.0	85%	43 - 128	1	50	7073727		07/22/07 18:17
Anthracene		49.4		ug/L	50.0	99%	50 - 132	7	33	7073727		07/22/07 18:17
alpha-Terpineol		42.9		ug/L	50.0	86%	10 - 199	4	50	7073727		07/22/07 18:17
Aniline		35.2	J	ug/L	50.0	70%	24 - 114	1	50	7073727		07/22/07 18:17
Benzo (a) anthracene		44.2		ug/L	50.0	88%	55 - 120	6	32	7073727		07/22/07 18:17
Benzo (a) pyrene		46.1		ug/L	50.0	92%	51 - 132	6	33	7073727		07/22/07 18:17
Anthracene		49.4		ug/L	50.0	99%	50 - 132	7	33	7073727		07/22/07 18:17
Benzo (b) fluoranthene		41.3		ug/L	50.0	83%	45 - 132	12	43	7073727		07/22/07 18:17
Benzidine		13.4	R7, J	ug/L	50.0	27%	5 - 143	78	50	7073727		07/22/07 18:17
Benzo (g,h,i) perylene		46.7		ug/L	50.0	93%	44 - 125	10	36	7073727		07/22/07 18:17
Benzo (a) anthracene		44.2		ug/L	50.0	88%	55 - 120	6	32	7073727		07/22/07 18:17
Benzo (k) fluoranthene		45.1		ug/L	50.0	90%	45 - 129	8	39	7073727		07/22/07 18:17
4-Bromophenyl phenyl ether		39.7		ug/L	50.0	79%	45 - 104	11	34	7073727		07/22/07 18:17
Benzo (a) pyrene		46.1		ug/L	50.0	92%	51 - 132	6	33	7073727		07/22/07 18:17
Benzo (b) fluoranthene		41.3		ug/L	50.0	83%	45 - 132	12	43	7073727		07/22/07 18:17
Butyl benzyl phthalate		45.1		ug/L	50.0	90%	51 - 135	6	38	7073727		07/22/07 18:17
Benzo (g,h,i) perylene		46.7		ug/L	50.0	93%	44 - 125	10	36	7073727		07/22/07 18:17
Carbazole		44.6		ug/L	50.0	89%	54 - 126	8	39	7073727		07/22/07 18:17
4-Chloro-3-methylphenol		38.3		ug/L	50.0	77%	42 - 115	10	50	7073727		07/22/07 18:17
Benzo (k) fluoranthene		45.1		ug/L	50,0	90%	45 - 129	8	39	7073727		07/22/07 18:17
Benzoic acid		9.26	J	ug/L	50.0	19%	10 - 75	6	50	7073727		07/22/07 18:17
4-Chloroaniline		41.6	5	ug/L	50.0	83%	28 - 122	5	50	7073727		07/22/07 18:17
Benzyl alcohol		34.4	J	ug/L	50.0	69%	37 - 101	0.4	37	7073727		
4-Bromophenyl phenyl ether		39.7	5	ug/L	50.0	79%	45 - 104	11	34	7073727		07/22/07 18:17
Bis(2-chloroethoxy)methane		42.6		ug/L	50.0	85%	44 - 112	4	50	7073727		07/22/07 18:17
Bis(2-chloroethyl)ether		38.7		ug/L	50.0	77%	40 - 109	2	38	7073727		07/22/07 18:17
Butyl benzyl phthalate		45.1		ug/L	50.0	90%	51 - 135	6	38	7073727		07/22/07 18:17
Bis(2-chloroisopropyl)ether		37.9		ug/L	50.0	76%	41 - 111	10	38 42			07/22/07 18:17
Carbazole		44.6		ug/L	50.0	89%	54 - 126	8	42 39	7073727		07/22/07 18:17
2-Chloronaphthalene		42.4		ug/L ug/L	50.0			_		7073727		07/22/07 18:17
4-Chloro-3-methylphenol		38.3			50.0	85%	35 - 107	5	50	7073727		07/22/07 18:17
2-Chlorophenol		36.5		ug/L ug/L	50.0	77% 73%	42 - 115 39 - 104	10	50 41	7073727		07/22/07 18:17
4-Chloroaniline		41.6			50.0			7	41	7073727		07/22/07 18:17
4-Chlorophenyl phenyl ether		41.8		ug/L	50.0	83%	28 - 122	5	50	7073727		07/22/07 18:17
Bis(2-chloroethoxy)methane		44.5 42.6		ug/L		89%	45 - 112	2	36	7073727		07/22/07 18:17
Chrysene		42.6 43.4		ug/L	50.0	85%	44 - 112	4	50	7073727		07/22/07 18:17
Bis(2-chloroethyl)ether				ug/L	50.0	87%	54 - 120	5	32	7073727		07/22/07 18:17
		38.7		ug/L	50.0	77%	40 - 109	2	38	7073727		07/22/07 18:17

TestAmerica ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664

Attn Eric Matzner

Work Order:NQG2056Project Name:Houston.TX - Wood Preserving WorksProject Number:[none]Received:07/20/07 07:50

PROJECT QUALITY CONTROL DATA

LCS Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Semivolatile Organic Compounds	by EPA Metl	hod 8270C										
7073727-BSD1												
Dibenz (a,h) anthracene		46.8		ug/L	50.0	94%	41 - 131	9	37	7073727		07/22/07 18:17
Bis(2-chloroisopropyl)ether		37.9		ug/L	50.0	76%	41 - 111	10	42	7073727		07/22/07 18:17
Dibenzofuran		46.2		ug/L	50.0	92%	45 - 113	3	36	7073727		07/22/07 18:17
2-Chloronaphthalene		42.4		ug/L	50.0	85%	35 - 107	5	50	7073727		07/22/07 18:17
Di-n-butyl phthalate		46.1		ug/L	50.0	92%	51 - 131	11	36	7073727		07/22/07 18:17
1,4-Dichlorobenzene		39.8		ug/L	50.0	80%	21 - 100	36	39	7073727		07/22/07 18:17
2-Chlorophenol		36.5		ug/L	50.0	73%	39 - 104	7	41	7073727		07/22/07 18:17
1,2-Dichlorobenzene		40.0		ug/L	50.5	79%	25 - 100	27	39	7073727		07/22/07 18:17
4-Chlorophenyl phenyl ether		44.3		ug/L	50.0	89%	45 - 112	2	36	7073727		07/22/07 18:17
1,3-Dichlorobenzene		38.1		ug/L	50.0	76%	23 - 97	30	40	7073727		07/22/07 18:17
Chrysene		43.4		ug/L	50.0	87%	54 - 120	5	32	7073727		07/22/07 18:17
3,3-Dichlorobenzidine		49.8		ug/L	50.0	100%	31 - 133	4	37	7073727		07/22/07 18:17
2,4-Dichlorophenol		41.0		ug/L	50.0	82%	42 - 113	6	50	7073727		07/22/07 18:17
Dibenz (a,h) anthracene		46.8		ug/L	50.0	94%	41 - 131	9	37	7073727		07/22/07 18:17
Dibenzofuran		46.2		ug/L	50.0	92%	45 - 113	3	36	7073727		07/22/07 18:17
Diethyl phthalate		44.3		ug/L	50.0	89%	49 - 121	10	36	7073727		07/22/07 18:17
2,4-Dimethylphenol		44.0		ug/L	50.0	88%	10 - 122	6	50	7073727		07/22/07 18:17
Di-n-butyl phthalate		46.1		ug/L	50.0	92%	51 - 131	11	36	7073727		07/22/07 18:17
1,3-Dichlorobenzene		38.1		ug/L	50.0	76%	23 - 97	30	40	7073727		07/22/07 18:17
Dimethyl phthalate		44.8		ug/L	50.0	90%	50 - 119	5	36	7073727		07/22/07 18:17
1,2-Dichlorobenzene		40.0		ug/L	50.5	79%	25 - 100	27	39	7073727		07/22/07 18:17
4,6-Dinitro-2-methylphenol		45.2		ug/L	50.0	90%	25 - 143	9	38	7073727		07/22/07 18:17
1,4-Dichlorobenzene		39.8		ug/L	50.0	80%	21 - 100	36	39	7073727		07/22/07 18:17
2,4-Dinitrophenol		46.6		ug/L	50.0	93%	10 - 162	8	50	7073727		07/22/07 18:17
2,6-Dinitrotoluene		46.4		ug/L	50.0	93%	57 - 130	2	36	7073727		07/22/07 18:17
3,3-Dichlorobenzidine		49.8		ug/L	50.0	100%	31 - 133	4	37	7073727		07/22/07 18:17
2,4-Dinitrotoluene		43.7		ug/L	50.0	87%	56 - 131	6	39	7073727		07/22/07 18:17
2,4-Dichlorophenol		41.0		ug/L	50.0	82%	42 - 113	6	50	7073727		07/22/07 18:17
Di-n-octyl phthalate		38.2		ug/L	50.0	76%	40 - 139	8	41	7073727		07/22/07 18:17
Bis(2-ethylhexyl)phthalate		43.1		ug/L	50.0	86%	36 - 139	9	38	7073727		07/22/07 18:17
Diethyl phthalate		44.3		ug/L	50.0	89%	49 - 121	10	36	7073727		07/22/07 18:17
Fluoranthene		43.2		ug/L	50.0	86%	52 - 125	10	35	7073727		07/22/07 18:17
Fluorene		42.4		ug/L	50.0	85%	49 - 114	6	353	7073727		07/22/07 18:17
Hexachlorobenzene		48.5		ug/L	50.0	97%	54 - 122	10	50	7073727		07/22/07 18:17
Hexachlorobutadiene		49.7		ug/L	50.0	99%	13 - 108	27	50	7073727		07/22/07 18:17
2,4-Dimethylphenol		44.0		ug/L	50.0	88%	10 - 122	6	50	7073727		07/22/07 18:17
Hexachlorocyclopentadiene		46.8		ug/L	50.0	94%	10 - 98	18	39	7073727		07/22/07 18:17
Dimethyl phthalate		44.8		ug/L	50.0	90%	50 - 119	5	36	7073727		07/22/07 18:17
Hexachloroethane		45.2		ug/L	50.0	90%	21 - 95	29	39	7073727		07/22/07 18:17
4,6-Dinitro-2-methylphenol		45.2		ug/L	50.0	90%	25 - 143	9	38	7073727		07/22/07 18:17
Indeno (1,2,3-cd) pyrene		47.8		ug/L	50.0	96%	48 - 123	7	38	7073727		07/22/07 18:17

Test Analytical testing corporation

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664

Attn Eric Matzner

 Work Order:
 NQG

 Project Name:
 Hous

 Project Number:
 [none

 Received:
 07/20

NQG2056 Houston.TX - Wood Preserving Works [none] 07/20/07 07:50

PROJECT QUALITY CONTROL DATA

LCS Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Conc	% Rec.	Range	RPD	Limit	Batch	Duplicated	Analyzed Date/Time
Semivolatile Organic Compounds by	EPA Met	10d 8270C						•				
7073727-BSD1												
1,3-Dinitrobenzene		42.3		ug/L	50.0	85%	51 - 167	7	50	7073727		07/22/07 18:17
Isophorone		40.0		ug/L	50.0	80%	48 - 122	7	50	7073727		07/22/07 18:17
2,4-Dinitrophenol		46.6		ug/L	50.0	93%	10 - 162	8	50	7073727		07/22/07 18:17
2-Methylnaphthalene		43.1		ug/L	50.0	86%	27 - 106	19	50	7073727		07/22/07 18:17
2,4-Dinitrotoluene		43.7		ug/L	50.0	87%	56 - 131	6	39	7073727		07/22/07 18:17
2-Methylphenol		29.7		ug/L	50.0	59%	30 - 106	3	44	7073727		07/22/07 18:17
2,6-Dinitrotoluene		46.4		ug/L	50.0	93%	57 - 130	2	36	7073727		07/22/07 18:17
3/4-Methylphenol		29.8		ug/L	50.0	60%	19 - 117	0.2	50	7073727		07/22/07 18:17
Di-n-octyl phthalate		38.2		ug/L	50.0	76%	40 - 139	8	41	7073727		07/22/07 18:17
Naphthalene		41.9		ug/L	50.0	84%	25 - 100	19	38	7073727		07/22/07 18:17
3-Nitroaniline		42.3		ug/L	50,0	85%	35 - 129	4	50	7073727		07/22/07 18:17
1,2-Diphenylhydrazine		61.3	L	ug/L	50.0	123%	53 - 117	4	21	7073727		07/22/07 18:17
2-Nitroaniline		45.7		ug/L	50.0	91%	52 - 122	0.7	46	7073727		07/22/07 18:17
4-Nitroaniline		41.7		ug/L	50.0	83%	37 - 129	7	49	7073727		07/22/07 18:17
Bis(2-ethylhexyl)phthalate		43.1		ug/L	50.0	86%	36 - 139	9	38	7073727		07/22/07 18:17
Nitrobenzene		43.2		ug/L	50.0	86%	39 - 113	0.9	38	7073727		07/22/07 18:17
4-Nitrophenol		20.8	J	ug/L	50.0	42%	10 - 85	9	50	7073727		07/22/07 18:17
2-Nitrophenol		42.0		ug/L	50.0	84%	37 - 117	0.9	39	7073727		07/22/07 18:17
Fluoranthene		43.2		ug/L	50.0	86%	52 - 125	10	35	7073727		07/22/07 18:17
Fluorene		42.4		ug/L	50.0	85%	49 - 114	6	353	7073727		07/22/07 18:17
N-Nitrosodiphenylamine		49.6		ug/L	50.0	99%	71 - 190	8	40	7073727		07/22/07 18:17
Hexachlorobenzene		48.5		ug/L	50.0	97%	54 - 122	10	50	7073727		07/22/07 18:17
N-Nitrosodi-n-propylamine		45.4		ug/L	50.0	91%	42 - 126	5	39	7073727		07/22/07 18:17
Hexachlorobutadiene		49.7		ug/L	50.0	99%	13 - 108	27	50	7073727		07/22/07 18:17
Pentachlorophenol		55.0		ug/L	50.0	110%	38 - 148	9	40	7073727		07/22/07 18:17
Hexachlorocyclopentadiene		46.8		ug/L	50.0	94%	10 - 98	18	39	7073727		07/22/07 18:17
Phenanthrene		44.1		ug/L	50.0	88%	52 - 120	8	33	7073727		07/22/07 18:17
Hexachloroethane		45.2		ug/L	50.0	90%	21 - 95	29	39	7073727		07/22/07 18:17
Phenol		15.3		ug/L	50.0	31%	10 - 73	8	50	7073727		07/22/07 18:17
Pyrene		41.7		ug/L	50.0	83%	54 - 126	6	33	7073727		07/22/07 18:17
Indeno (1,2,3-cd) pyrene		47.8		ug/L	50.0	96%	48 - 123	7	38	7073727		07/22/07 18:17
1,2,4-Trichlorobenzene		40.0		ug/L	50.0	80%	22 - 96	21	50	7073727		07/22/07 18:17
1-Methylnaphthalene		37.1		ug/L	50.5	73%	25 - 100	10	50	7073727		07/22/07 18:17
2,4,6-Trichlorophenol		46.8		ug/L	50.0	94%	43 - 122	7	50	7073727		07/22/07 18:17
Isophorone		40.0		ug/L	50.0	80%	48 - 122	7	50	7073727		07/22/07 18:17
2,4,5-Trichlorophenol		41.4		ug/L	50.0	83%	48 - 123	11	46	7073727		07/22/07 18:17
1-Methylnaphthalene		37.1		ug/L	50.5	73%	25 - 100	10	50	7073727		07/22/07 18:17
2-Methylnaphthalene		43.1		ug/L	50.0	86%	27 - 106	19	50	7073727		07/22/07 18:17
2-Methylphenol		29.7		ug/L	50.0	59%	30 - 106	3	44	7073727		07/22/07 18:17
3/4-Methylphenol		29.8		ug/L	50.0	60%	19 - 117	0.2	50	7073727		07/22/07 18:17
		41.9		-								

Test ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664

Attn Eric Matzner

Work Order:NQG2056Project Name:Houston.T2Project Number:[none]Received:07/20/07 0°

NQG2056 Houston.TX - Wood Preserving Works [none] 07/20/07 07:50

PROJECT QUALITY CONTROL DATA

LCS Dup - Cont.

					Spike		Target				Sample	Analyzed
Analyte	Orig. Val.	Duplicate	Q	Units	Conc	% Rec.	Range	RPD	Limit	Batch	Duplicated	Date/Time
Semivolatile Organic Compounds by	EPA Meth	nod 8270C										
7073727-BSD1												
4-Nitroaniline		41.7		ug/L	50.0	83%	37 - 129	7	49	7073727		07/22/07 18:17
2-Nitroaniline		45.7		ug/L	50.0	91%	52 - 122	0.7	46	7073727		07/22/07 18:17
3-Nitroaniline		42.3		ug/L	50.0	85%	35 - 129	4	50	7073727		07/22/07 18:17
Nitrobenzene		43.2		ug/L	50.0	86%	39 - 113	0.9	38	7073727		07/22/07 18:17
2-Nitrophenol		42.0		ug/L	50.0	84%	37 - 117	0.9	39	7073727		07/22/07 18:17
4-Nitrophenol		20.8	J	ug/L	50.0	42%	10 - 85	9	50	7073727		07/22/07 18:17
N-Nitrosodimethylamine		25.7		ug/L	50.0	51%	23 - 76 '	7	38	7073727		07/22/07 18:17
N-Nitrosodiphenylamine		49.6		ug/L	50.0	99%	71 - 190	8	40	7073727		07/22/07 18:17
N-Nitrosodi-n-propylamine		45.4		ug/L	50.0	91%	42 - 126	5	39	7073727		07/22/07 18:17
Pentachlorophenol		55.0		ug/L	50.0	110%	38 - 148	9	40	7073727		07/22/07 18:17
Phenanthrene		44.1		ug/L	50.0	88%	52 - 120	8	33	7073727		07/22/07 18:17
Phenol		15.3		ug/L	50.0	31%	10 - 73	8	50	7073727		07/22/07 18:17
Pyrene		41.7		ug/L	50.0	83%	54 - 126	6	33	7073727		07/22/07 18:17
Pyridine		26.9		ug/L	50.0	54%	10 - 75	20	50	7073727		07/22/07 18:17
2,3,4,6-Tetrachlorophenol		49.7		ug/L	50.0	99%	45 - 150	7	50	7073727		07/22/07 18:17
1,2,4-Trichlorobenzene		40.0		ug/L	50.0	80%	22 - 96	21	50	7073727		07/22/07 18:17
2,4,6-Trichlorophenol		46.8		ug/L	50.0	94%	43 - 122	7	50	7073727		07/22/07 18:17
2,4,5-Trichlorophenol		41.4		ug/L	50.0	83%	48 - 123	11	46	7073727		07/22/07 18:17
Surrogate: 2-Fluorophenol		19.6		ug/L	50.0	39%	10 - 82			7073727		07/22/07 18:17
Surrogate: Terphenyl-d14		40.5		ug/L	50.0	81%	29 - 149			7073727		07/22/07 18:17
Surrogate: 2,4,6-Tribromophenol		49.4		ug/L	50.0	99%	40 - 161			7073727		07/22/07 18:17
Surrogate: Phenol-d5		14.5		ug/L	50.0	29%	11 - 76			7073727		07/22/07 18:17
Surrogate: Nitrobenzene-d5		44.4		ug/L	50.0	89%	24 - 125			7073727		07/22/07 18:17
Surrogate: Phenol-d5		14.5		ug/L	50.0	29%	11 - 76			7073727		07/22/07 18:17
Surrogate: 2-Fluorobiphenyl		36.4		ug/L	50.0	73%	20 - 86			7073727		07/22/07 18:17
Surrogate: 2-Fluorobiphenyl		36.4		ug/L	50.0	73%	20 - 86 '			7073727		07/22/07 18:17
Surrogate: 2,4,6-Tribromophenol		49.4		ug/L	50.0	99%	40 - 161			7073727		07/22/07 18:17
Surrogate: 2-Fluorophenol		19.6		ug/L	50.0	39%	10 - 82			7073727		07/22/07 18:17
Surrogate: Nitrobenzene-d5		44.4		ug/L	50.0	89%	24 - 125			7073727		07/22/07 18:17
Surrogate: Terphenyl-d14		40.5		ug/L	50.0	81%	29 - 149			7073727		07/22/07 18:17

TestAmerica ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664

Eric Matzner Attn

Work Order: Project Name: Project Number: Received:

NQG2056 Houston.TX - Wood Preserving Works [none] 07/20/07 07:50

	. 15 198 /01	PROJE	-	ALITY CO Matrix Spi	ONTROL DA ke	ATA .				
Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Semivolatile Organic Compounds	by EPA Method	1 8270C								
7073727-MS1	-									
Acenaphthene	ND	42.6		ug/L	47.6	89%	40 - 111	7073727	NQG2056-01	07/22/07 19:44
Acenaphthene	ND	42.6		ug/L	47.6	89%	40 - 111	7073727	NQG2056-01	07/22/07 19:44
Acenaphthylene	ND	41.8		ug/L	47.6	88%	43 - 112	7073727	NQG2056-01	07/22/07 19:44
Acenaphthylene	ND	41.8		ug/L	47.6	88%	43 - 112	7073727	NQG2056-01	07/22/07 19:44
Acetophenone	ND	42.4		ug/L	47.6	89%	10 - 199	7073727	NQG2056-01	07/22/07 19:44
Anthracene	ND	48.9		ug/L	47.6	103%	50 - 132	7073727	NQG2056-01	07/22/07 19:44
alpha-Terpineol	ND	39.5		ug/L	47.6	83%	10 - 199	7073727	NQG2056-01	07/22/07 19:44
Aniline	ND	33.5	J	ug/L	47.6	70%	10 - 114	7073727	NQG2056-01	07/22/07 19:44
Benzo (a) anthracene	ND	42.4		ug/L	47.6	89%	55 - 120	7073727	NQG2056-01	07/22/07 19:44
Benzo (a) pyrene	ND	45.2		ug/L	47.6	95%	51 - 132	7073727	NQG2056-01	07/22/07 19:44
Anthracene	ND	48.9		ug/L	47.6	103%	50 - 132	7073727	NQG2056-01	07/22/07 19:44
Benzo (b) fluoranthene	ND	37.9		ug/L	47.6	80%	45 - 141	7073727	NQG2056-01	07/22/07 19:44
Benzidine	ND	5.54	J	ug/L	47.6	12%	5 - 199	7073727	NQG2056-01	07/22/07 19:44
Benzo (g,h,i) perylene	ND	44.7		ug/L	47.6	94%	10 - 159	7073727	NQG2056-01	07/22/07 19:44
Benzo (a) anthracene	ND	42.4		ug/L	47.6	89%	55 - 120	7073727	NQG2056-01	07/22/07 19:44
Benzo (k) fluoranthene	ND	44.7		ug/L	47.6	94%	45 - 146	7073727	NQG2056-01	07/22/07 19:44
4-Bromophenyl phenyl ether	ND	41.5		ug/L	47.6	87%	45 - 104	7073727	NQG2056-01	07/22/07 19:44
Benzo (a) pyrene	ND	45.2		ug/L	47.6	95%	51 - 132	7073727	NQG2056-01	07/22/07 19:44
Benzo (b) fluoranthene	ND	37.9		ug/L	47.6	80%	45 - 141	7073727	NQG2056-01	07/22/07 19:44
Butyl benzyl phthalate	ND	44.9		ug/L	47.6	94%	51 - 135	7073727	NQG2056-01	07/22/07 19:44
Benzo (g,h,i) perylene	ND	44.7		ug/L	47.6	94%	10 - 159	7073727	NQG2056-01	07/22/07 19:44
Carbazole	ND	45.4		ug/L	47.6	95%	54 - 126	7073727	NQG2056-01	07/22/07 19:44
4-Chloro-3-methylphenol	ND	38.2		ug/L	47.6	80%	42 - 115	7073727	NQG2056-01	07/22/07 19:44
Benzo (k) fluoranthene	ND	44.7		ug/L	47.6	94%	45 - 146	7073727	NQG2056-01	07/22/07 19:44
Benzoic acid	ND	17.0	J	ug/L	47.6	36%	10 - 105	7073727	NQG2056-01	07/22/07 19:44
4-Chloroaniline	ND	37.0		ug/L	47.6	78%	28 - 122	7073727	NQG2056-01	07/22/07 19:44
Benzyl alcohol	ND	31.3	J	ug/L	47.6	66%	39 - 101	7073727	NQG2056-01	07/22/07 19:44
4-Bromophenyl phenyl ether	ND	41.5		ug/L	47.6	87%	45 - 104	7073727	NQG2056-01	07/22/07 19:44
Bis(2-chloroethoxy)methane	ND	40.0		ug/L	47.6	84%	44 - 112	7073727	NQG2056-01	07/22/07 19:44
Bis(2-chloroethyl)ether	ND	36.1		ug/L	47.6	76%	40 - 109	7073727	NQG2056-01	07/22/07 19:44
Butyl benzyl phthalate	ND	44.9		ug/L	47.6	94%	51 - 135	7073727	NQG2056-01	07/22/07 19:44
Bis(2-chloroisopropyl)ether	ND	39.7		ug/L	47.6	83%	41 - 111	7073727	NQG2056-01	07/22/07 19:44
Carbazole	ND	45.4		ug/L	47.6	95%	54 - 126	7073727	NQG2056-01	07/22/07 19:44
2-Chloronaphthalene	ND	40.8		ug/L	47.6	86%	35 - 107	7073727	NQG2056-01	07/22/07 19:44
4-Chloro-3-methylphenol	ND	38.2		ug/L	47.6	80%	42 - 115	7073727	NQG2056-01	07/22/07 19:44
2-Chlorophenol	ND	35.8		ug/L	47.6	75%	39 - 104	7073727	NQG2056-01	07/22/07 19:44

Test America ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004

Round Rock, TX 78664

Attn Eric Matzner

NQG2056 Work Order: Project Name: Project Number: [none] Received:

Houston.TX - Wood Preserving Works 07/20/07 07:50

PROJECT QUALITY CONTROL DATA Matrix Spike - Cont.

			Mati ix opike	· Com.					
Analyte	Orig. Val.	MS Val	Q Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Semivolatile Organic Compour	nds by EPA Method	8270C		• • • • • • • • • • • • • • • • • • • •		••••		• • • • • • • • • • • • • • • • • • • •	
7073727-MS1									
4-Chlorophenyl phenyl ether	ND	40.9	ug/L	47.6	86%	45 - 112	7073727	NQG2056-01	07/22/07 19:44
Bis(2-chloroethoxy)methane	ND	40.0	ug/L	47.6	84%	44 - 112	7073727	NQG2056-01	07/22/07 19:44
Chrysene	ND	41.8	ug/L	47.6	88%	54 - 120	7073727	NQG2056-01	07/22/07 19:44
Bis(2-chloroethyl)ether	ND	36.1	ug/L	47.6	76%	40 - 109	7073727	NQG2056-01	07/22/07 19:44
Dibenz (a,h) anthracene	ND	46.8	ug/L	47.6	98%	10 - 157	7073727	NQG2056-01	07/22/07 19:44
Bis(2-chloroisopropyl)ether	ND	39.7	ug/L	47.6	83%	41 - 111	7073727	NQG2056-01	07/22/07 19:44
Dibenzofuran	ND	44.6	ug/L	47.6	94%	45 - 113	7073727	NQG2056-01	07/22/07 19:44
2-Chloronaphthalene	ND	40.8	ug/L	47.6	86%	35 - 107	7073727	NQG2056-01	07/22/07 19:44
Di-n-butyl phthalate	ND	48.4	ug/L	47.6	102%	51 - 131	7073727	NQG2056-01	07/22/07 19:44
1,4-Dichlorobenzene	ND	36.7	ug/L	47.6	77%	21 - 100	7073727	NQG2056-01	07/22/07 19:44
2-Chlorophenol	ND	35.8	ug/L	47.6	75%	39 - 104	7073727	NQG2056-01	07/22/07 19:44
1,2-Dichlorobenzene	ND	38.0	ug/L	48.1	79%	25 - 100	7073727	NQG2056-01	07/22/07 19:44
4-Chlorophenyl phenyl ether	ND	40.9	ug/L	47.6	86%	45 - 112	7073727	NQG2056-01	07/22/07 19:44
1,3-Dichlorobenzene	ND	38.2	ug/L	47.6	80%	23 - 97	7073727	NQG2056-01	07/22/07 19:44
Chrysene	ND	41.8	ug/L	47.6	88%	54 - 120	7073727	NQG2056-01	07/22/07 19:44
3,3-Dichlorobenzidine	ND	42.8	ug/L	47.6	90%	10 - 133	7073727	NQG2056-01	07/22/07 19:44
2,4-Dichlorophenol	ND	39.9	ug/L	47.6	84%	42 - 113	7073727	NQG2056-01	07/22/07 19:44
Dibenz (a,h) anthracene	ND	46.8	ug/L	47.6	98%	10 - 157	7073727	NQG2056-01	07/22/07 19:44
Dibenzofuran	ND	44.6	ug/L	47.6	94%	45 - 113	7073727	NQG2056-01	07/22/07 19:44
Diethyl phthalate	ND	43.0	ug/L	47.6	90%	49 - 121	7073727	NQG2056-01	07/22/07 19:44
2,4-Dimethylphenol	ND	43.3	ug/L	47.6	91%	10 - 123	7073727	NQG2056-01	07/22/07 19:44
Di-n-butyl phthalate	ND	48.4	ug/L	47.6	102%	51 - 131	7073727	NQG2056-01	07/22/07 19:44
1,3-Dichlorobenzene	ND	38.2	ug/L	47.6	80%	23 - 97	7073727	NQG2056-01	07/22/07 19:44
Dimethyl phthalate	ND	42.8	ug/L	47.6	90%	50 - 119	7073727	NQG2056-01	07/22/07 19:44
1,2-Dichlorobenzene	ND	38.0	ug/L	48.1	79%	25 - 100	7073727	NQG2056-01	07/22/07 19:44
4,6-Dinitro-2-methylphenol	ND	43.5	ug/L	47.6	91%	25 - 143	7073727	NQG2056-01	07/22/07 19:44
1,4-Dichlorobenzene	ND	36.7	ug/L	47.6	77%	21 - 100	7073727	NQG2056-01	07/22/07 19:44
2,4-Dinitrophenol	ND	46.4	ug/L	47.6	97%	10 - 162	7073727	NQG2056-01	07/22/07 19:44
2,6-Dinitrotoluene	ND	41.6	ug/L	47.6	87%	10 - 169	7073727	NQG2056-01	07/22/07 19:44
3,3-Dichlorobenzidine	ND	42.8	ug/L	47.6	90%	10 - 133	7073727	NQG2056-01	07/22/07 19:44
2,4-Dinitrotoluene	ND	41.4	ug/L	47.6	87%	11 - 165	7073727	NQG2056-01	07/22/07 19:44
2,4-Dichlorophenol	ND	39.9	ug/L	47.6	84%	42 - 113	7073727	NQG2056-01	07/22/07 19:44
Di-n-octyl phthalate	ND	40.4	ug/L	47.6	85%	40 - 139	7073727	NQG2056-01	07/22/07 19:44
Bis(2-ethylhexyl)phthalate	ND	46.0	ug/L	47.6	97%	32 - 166	7073727	NQG2056-01	07/22/07 19:44
Diethyl phthalate	ND	43.0	ug/L	47.6	90%	49 - 121	7073727	NQG2056-01	07/22/07 19:44
Fluoranthene	ND	44.7	ug/L	47.6	94%		7073727		07/22/07 19:44
Fluorene	ND	41.4							07/22/07 19:44
			ug/L ug/L	47.6 47.6	94% 87%	52 - 125 49 - 114	7073727 7073727	NQG2056-01 NQG2056-01	

TestAmerica ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664

ND

ND

ND

ŃD

ND

ND

47.4

58.1

47.8

43.1

41.6

13.7

Attn Eric Matzner

Hexachlorobutadiene

Hexachlorocyclopentadiene

Pentachlorophenol

Hexachloroethane

Phenanthrene

Phenol

Work Order: NQG2056 Houston.TX - Wood Preserving Works Project Name: [none] Project Number: 07/20/07 07:50 Received:

		РКОЛ	-	ALITY Co rix Spike -	ONTROL DA Cont.	ATA				
Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Semivolatile Organic Compou	nds by EPA Method	8270C								
7073727-MS1	U U									
Hexachlorobenzene	ND	49.7		ug/L	47.6	104%	40 - 134	7073727	NQG2056-01	07/22/07 19:44
Hexachlorobutadiene	ND	47.4		ug/L	47.6	100%	13 - 108	7073727	NQG2056-01	07/22/07 19:44
2,4-Dimethylphenol	ND	43.3		ug/L	47.6	91%	10 - 123	7073727	NQG2056-01	07/22/07 19:44
Hexachlorocyclopentadiene	ND	47.8		ug/L	47.6	100%	10 - 113	7073727	NQG2056-01	07/22/07 19:44
Dimethyl phthalate	ND	42.8		ug/L	47.6	90%	50 - 119	7073727	NQG2056-01	07/22/07 19:44
Hexachloroethane	ND	41.6		ug/L	47.6	87%	13 - 106	7073727	NQG2056-01	07/22/07 19:44
4,6-Dinitro-2-methylphenol	ND	43.5		ug/L	47.6	91%	25 - 143	7073727	NQG2056-01	07/22/07 19:44
Indeno (1,2,3-cd) pyrene	ND	47.7		ug/L	47.6	100%	11 - 158	7073727	NQG2056-01	07/22/07 19:44
1,3-Dinitrobenzene	ND	41.1		ug/L	47.6	86%	10 - 199	7073727	NQG2056-01	07/22/07 19:44
Isophorone	ND	38.3		ug/L	47.6	80%	26 - 136	7073727	NQG2056-01	07/22/07 19:44
2,4-Dinitrophenol	ND	46.4		ug/L	47.6	97%	10 - 162	7073727	NQG2056-01	07/22/07 19:44
2-Methylnaphthalene	ND	55.0	M7	ug/L	47.6	116%	27 - 106	7073727	NQG2056-01	07/22/07 19:44
2,4-Dinitrotoluene	ND	41.4		ug/L	47.6	87%	11 - 165	7073727	NQG2056-01	07/22/07 19:44
2-Methylphenol	ND	29.5		ug/L	47.6	62%	22 - 106	7073727	NQG2056-01	07/22/07 19:44
2,6-Dinitrotoluene	ND	41.6		ug/L	47.6	87%	10 - 169	7073727	NQG2056-01	07/22/07 19:44
3/4-Methylphenol	ND	28.4		ug/L	47.6	60%	19 - 117	7073727	NQG2056-01	07/22/07 19:44
Di-n-octyl phthalate	ND	40.4		ug/L	47.6	85%	40 - 139	7073727	NQG2056-01	07/22/07 19:44
Naphthalene	ND	38.9		ug/L	47.6	82%	25 - 100	7073727	NQG2056-01	07/22/07 19:44
3-Nitroaniline	ND	38.4		ug/L	47.6	81%	35 - 130	7073727	NQG2056-01	07/22/07 19:44
1,2-Diphenylhydrazine	ND	56.1		ug/L	47.6	118%	51 - 118	7073727	NQG2056-01	07/22/07 19:44
2-Nitroaniline	ND	42.5		ug/L	47.6	89%	52 - 122	7073727	NQG2056-01	07/22/07 19:44
4-Nitroaniline	ND	39.7		ug/L	47.6	83%	37 - 134	7073727	NQG2056-01	07/22/07 19:44
Bis(2-ethylhexyl)phthalate	ND	46.0		ug/L	47.6	97%	32 - 166	7073727	NQG2056-01	07/22/07 19:44
Nitrobenzene	ND	42.9		ug/L	47.6	90%	25 - 117	7073727	NQG2056-01	07/22/07 19:44
4-Nitrophenol	ND	19.1	J.		47.6	40%	10 - 85	7073727	NQG2056-01	07/22/07 19:44
2-Nitrophenol	ND	39.9		ug/L	47.6	84%	37 - 117	7073727	NQG2056-01	07/22/07 19:44
Fluoranthene	ND	44.7		ug/L	47.6	94%	52 - 125	7073727	NQG2056-01	07/22/07 19:44
Fluorene	ND	41.4		ug/L	47.6	87%	49 - 114	7073727	NQG2056-01	07/22/07 19:44
N-Nitrosodiphenylamine	ND	48.7		ug/L	47.6	102%	71 - 190	7073727	NQG2056-01	07/22/07 19:44
Hexachlorobenzene	ND	49.7		ug/L	47.6	104%	40 - 134	7073727	NQG2056-01	07/22/07 19:44
N-Nitrosodi-n-propylamine	ND	43.2		ug/L	47.6	91%	42 - 126	7073727	NQG2056-01	07/22/07 19:44

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

47.6

47.6

47.6

47.6

47.6

47.6

100%

122%

100%

90%

87%

29%

13 - 108

38 - 148

10 - 113

52 - 126

13 - 106

10 - 138

7073727

7073727

7073727

7073727

7073727

7073727

NQG2056-01

NQG2056-01

NQG2056-01

NQG2056-01

NQG2056-01

NQG2056-01

07/22/07 19:44

07/22/07 19:44

07/22/07 19:44

07/22/07 19:44

07/22/07 19:44

07/22/07 19:44

ANALYTICAL TESTING CORPORATION

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664 Attn Eric Matzner

Work Order:NQCProject Name:HousProject Number:[noneReceived:07/20

NQG2056 Houston.TX - Wood Preserving Works [none] 07/20/07 07:50

PROJECT QUALITY CONTROL DATA Matrix Spike - Cont.

Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Semivolatile Organic Compound	ls by EPA Method	82700								• • • • • • • • • • • • • • • • • • • •
7073727-MS1										
Pyrene	7.50	44.9		ug/L	47.6	79%	29 - 179	7073727	NQG2056-01	07/22/07 19:44
Indeno (1,2,3-cd) pyrene	ND	47.7		ug/L	47.6	100%	11 - 158	7073727	NQG2056-01	07/22/07 19:44
1,2,4-Trichlorobenzene	ND	38.8		ug/L	47.6	81%	22 - 96	7073727	NQG2056-01	07/22/07 19:44
1-Methylnaphthalene	ND	35.5		ug/L	48.1	74%	25 - 100	7073727	NQG2056-01	07/22/07 19:44
2,4,6-Trichlorophenol	ND	45.4		ug/L	47.6	95%	14 - 138	7073727	NQG2056-01	07/22/07 19:44
Isophorone	ND	38.3		ug/L	47.6	80%	26 - 136	7073727	NQG2056-01	07/22/07 19:44
2,4,5-Trichlorophenol	ND	42.9		ug/L	47.6	90%	17 - 142	7073727	NQG2056-01	07/22/07 19:44
1-Methylnaphthalene	ND	35.5		ug/L	48.1	74%	25 - 100	7073727	NQG2056-01	07/22/07 19:44
2-Methylnaphthalene	ND	55.0	M7	ug/L	47.6	116%	27 - 106	7073727	NQG2056-01	07/22/07 19:44
2-Methylphenol	ND	29.5		ug/L	47.6	62%	22 - 106	7073727	NQG2056-01	07/22/07 19:44
3/4-Methylphenol	ND	28.4		ug/L	47.6	60%	19 - 117	7073727	NQG2056-01	07/22/07 19:44
Naphthalene	ND	38.9		ug/L	47.6	82%	25 - 100	7073727	NQG2056-01	07/22/07 19:44
4-Nitroaniline	ND	39.7		ug/L	47.6	83%	37 - 134	7073727	NQG2056-01	07/22/07 19:44
2-Nitroaniline	ND	42.5		ug/L	47.6	89%	52 - 122	7073727	NQG2056-01	07/22/07 19:44
3-Nitroaniline	ND	38.4		ug/L	47.6	81%	35 - 130	7073727	NQG2056-01	07/22/07 19:44
Nitrobenzene	ND	42.9		ug/L	47.6	90%	25 - 117	7073727	NQG2056-01	07/22/07 19:44
2-Nitrophenol	ND	39.9		ug/L	47.6	84%	37 - 117	7073727	NQG2056-01	07/22/07 19:44
4-Nitrophenol	ND	19.1	J	ug/L	47.6	40%	10 - 85	7073727	NQG2056-01	07/22/07 19:44
N-Nitrosodimethylamine	ND	26.6		ug/L	47.6	56%	22 - 76	7073727	NQG2056-01	07/22/07 19:44
N-Nitrosodiphenylamine	ND	48.7		ug/L	47.6	102%	71 - 190	7073727	NQG2056-01	07/22/07 19:44
N-Nitrosodi-n-propylamine	ND	43.2		ug/L	47.6	91%	42 - 126	7073727	NQG2056-01	07/22/07 19:44
Pentachlorophenol	ND	58.1		ug/L	47.6	122%	38 - 148	7073727	NQG2056-01	07/22/07 19:44
Phenanthrene	ND	43.1		ug/L	47.6	90%	52 - 126	7073727	NQG2056-01	07/22/07 19:44
Phenol	ND	13.7		ug/L	47.6	29%	10 - 138	7073727	NQG2056-01	07/22/07 19:44
Pyrene	7.50	44.9		ug/L	47.6	79%	29 - 179	7073727	NQG2056-01	07/22/07 19:44
Pyridine	ND	21.2		ug/L	47.6	45%	10 - 75	7073727	NQG2056-01	07/22/07 19:44
2,3,4,6-Tetrachlorophenol	ND	50.2		ug/L	47.6	105%	10 - 199	7073727	NQG2056-01	07/22/07 19:44
1,2,4-Trichlorobenzene	ND	38.8		ug/L	47.6	81%	22 - 96	7073727	NQG2056-01	07/22/07 19:44
2,4,6-Trichlorophenol	ND	45.4		ug/L	47.6	95%	14 - 138	7073727	NQG2056-01	07/22/07 19:44
2,4,5-Trichlorophenol	ND	42.9		ug/L	47.6	90%	17 - 142	7073727	NQG2056-01	07/22/07 19:44
Surrogate: 2-Fluorophenol		21.1		ug/L	47.6	44%	10 - 82	7073727	NQG2056-01	07/22/07 19:44
Surrogate: Terphenyl-d14		34.6		ug/L	47.6	73%	29 - 149	7073727	NQG2056-01	07/22/07 19:44
Surrogate: 2,4,6-Tribromophenol		48.1		ug/L	47.6	101%	40 - 161	7073727	NQG2056-01	07/22/07 19:44
Surrogate: Phenol-d5		14.7		ug/L	47.6	31%	11 - 76	7073727	NQG2056-01	07/22/07 19:44
Surrogate: Nitrobenzene-d5		41.8		ug/L	47.6	88%	24 - 125	7073727	NQG2056-01	07/22/07 19:44
Surrogate: Phenol-d5		14.7		ug/L	47.6	31%	11 - 76	7073727	NQG2056-01	07/22/07 19:44
Surrogate: 2-Fluorobiphenyl		38.5		ug/L	47.6	81%	20 - 86	7073727	NQG2056-01	07/22/07 19:44

Test ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664

Teola Matana

Attn Eric Matzner

 Work Order:
 NQG2056

 Project Name:
 Houston.TX

 Project Number:
 [none]

 Received:
 07/20/07 07

NQG2056 Houston.TX - Wood Preserving Works : [none] 07/20/07 07:50

PROJECT QUALITY CONTROL DATA Matrix Spike - Cont.

Analyte	Orig. Val.	MS Val	Q Ur	iits S _I	oike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time		
Semivolatile Organic Compound	s by EPA Method	8270C						• • • • • • • • • • • • •				
7073727-MS1												
Surrogate: 2-Fluorobiphenyl		38.5	ug	/L	47.6	81%	20 - 86	7073727	NQG2056-01	07/22/07 19:44		
Surrogate: 2,4,6-Tribromophenol		48.1	ug	/L	47.6	101%	40 - 161	7073727	NQG2056-01	07/22/07 19:44		
Surrogate: 2-Fluorophenol		21.1	ug	/L	47.6	44%	10 - 82	7073727	NQG2056-01	07/22/07 19:44		
Surrogate: Nitrobenzene-d5		41.8	ug	/L	47.6	88%	24 - 125	7073727	NQG2056-01	07/22/07 19:44		
Surrogate: Terphenyl-d14		34.6	ug	/L	47.6	73%	29 - 149	7073727	NQG2056-01	07/22/07 19:44		

Test Analytical testing corporation

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664

Attn Eric Matzner

 Work Order:
 NQG2

 Project Name:
 Housto

 Project Number:
 [none]

 Received:
 07/20/0

NQG2056 Houston.TX - Wood Preserving Works [none] 07/20/07 07:50

PROJECT QUALITY CONTROL DATA

Matrix Spike Dup

												
Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD Li	mit	Batch	Sample Duplicated	Analyzed Date/Time
Semivolatile Organic Compoun	ids by EPA Metl	hod 8270C										
7073727-MSD1												
Acenaphthene	ND	43.4		ug/L	47.6	91%	40 - 111	2 3	35	7073727	NQG2056-01	07/22/07 20:06
Acenaphthene	ND	43.4		ug/L	47.6	91%	40 - 111		35	7073727	NQG2056-01	07/22/07 20:06
Acenaphthylene	ND	44.1		ug/L	47.6	93%	43 - 112		34	7073727	NQG2056-01	07/22/07 20:06
Acenaphthylene	ND	44.1		ug/L	47.6	93%	43 - 112		34	7073727	NQG2056-01	07/22/07 20:06
Anthracene	ND	49.2		ug/L	47.6	103%	50 - 132		33	7073727	NQG2056-01	07/22/07 20:06
Aniline	ND	32.7	J	ug/L	47.6	69%	10 - 114		50	7073727	NQG2056-01	07/22/07 20:06
Benzo (a) anthracene	ND	41.9		ug/L	47.6	88%	55 - 120		32	7073727	NQG2056-01	07/22/07 20:06
Benzo (a) pyrene	ND	45.7		ug/L	47.6	96%	51 - 132		33	7073727	NQG2056-01	07/22/07 20:06
Anthracene	ND	49.2		ug/L	47.6	103%	50 - 132		33	7073727	NQG2056-01	07/22/07 20:06
Benzo (b) fluoranthene	ND	38.6		ug/L	47.6	81%	45 - 141		13	7073727	NQG2056-01	07/22/07 20:06
Benzidine	ND	20.1	R2, J	ug/L	47.6	42%	5 - 199		50	7073727	NQG2056-01	07/22/07 20:06
Benzo (g,h,i) perylene	ND	47.8		ug/L	47.6	100%	10 - 159		6	7073727	NQG2056-01	07/22/07 20:06
Benzo (a) anthracene	ND	41.9		ug/L	47.6	88%	55 - 120		32	7073727	NQG2056-01	07/22/07 20:06
Benzo (k) fluoranthene	ND	45.9		ug/L	47.6	96%	45 - 146		9	7073727	NQG2056-01	07/22/07 20:06
4-Bromophenyl phenyl ether	ND	39.5		ug/L	47.6	83%	45 - 104		4	7073727	NQG2056-01	07/22/07 20:06
Benzo (a) pyrene	ND	45.7		ug/L	47.6	96%	51 - 132		3	7073727	NQG2056-01	07/22/07 20:06
Benzo (b) fluoranthene	ND	38.6		ug/L	47.6	81%	45 - 141		.3	7073727	NQG2056-01	07/22/07 20:06
Butyl benzyl phthalate	ND	45.0		ug/L	47.6	94%	51 - 135		8	7073727	NQG2056-01	
Benzo (g,h,i) perylene	ND	47.8		ug/L	47.6	100%	10 - 159		6	7073727	NQG2056-01	07/22/07 20:06
Carbazole	ND	45.5		ug/L	47.6	96%	54 - 126		9	7073727	NQG2056-01	07/22/07 20:06
4-Chloro-3-methylphenol	ND	39.3		ug/L	47.6	83%	42 - 115		0	7073727	-	07/22/07 20:06
Benzo (k) fluoranthene	ND	45.9		ug/L	47.6	96%	45 - 146		9	7073727	NQG2056-01	07/22/07 20:06
Benzoic acid	ND	17.0	I	ug/L	47.6	36%	10 - 105		0	7073727	NQG2056-01	07/22/07 20:06
4-Chloroaniline	ND	39.4	5	ug/L	47.6	83%	28 - 122	6 5			NQG2056-01	07/22/07 20:06
Benzyl alcohol	ND	34.6	J	ug/L	47.6	73%	39 - 101	10 3		7073727 7073727	NQG2056-01	07/22/07 20:06
4-Bromophenyl phenyl ether	ND	39.5	3	ug/L	47.6	83%	45 - 104	5 3			NQG2056-01	07/22/07 20:06
Bis(2-chloroethoxy)methane	ND	40.4		ug/L ug/L	47.6	85%	44 - 112	0.8 5		7073727	NQG2056-01	07/22/07 20:06
Bis(2-chloroethyl)ether	ND	37.4		ug/L	47.6	79%	40 - 109		8	7073727	NQG2056-01	07/22/07 20:06
Butyl benzyl phthalate	ND	45.0		ug/L	47.6	94%	40 - 109 51 - 135	0.1 3		7073727	NQG2056-01	07/22/07 20:06
Bis(2-chloroisopropyl)ether	ND	38.7		ug/L	47.6	81%	41 - 111			7073727	NQG2056-01	07/22/07 20:06
Carbazole	ND	45.5		ug/L ug/L	47.6	96%	54 - 126			7073727	NQG2056-01	07/22/07 20:06
2-Chloronaphthalene	ND	41.2		ug/L ug/L	47.6	90% 87%	35 - 107	0.4 3		7073727	NQG2056-01	07/22/07 20:06
4-Chloro-3-methylphenol	ND	39.3		ug/L ug/L	47.6	83%	42 - 115	1 5 3 5		7073727	NQG2056-01	07/22/07 20:06
2-Chlorophenol	ND	36.8		ug/L ug/L	47.6	83% 77%				7073727	NQG2056-01	07/22/07 20:06
4-Chloroaniline	ND	39.4			47.6		39 - 104	5 7		7073727	NQG2056-01	07/22/07 20:06
4-Chlorophenyl phenyl ether	ND	42.4		ug/L ug/L	47.6	83% 89%	28 - 122 45 - 112	6 5		7073727	NQG2056-01	07/22/07 20:06
Bis(2-chloroethoxy)methane	ND	40.4			47.6			4 3		7073727	NQG2056-01	07/22/07 20:06
Chrysene	ND	40.4		ug/L	47.6	85%	44 - 112	0.8 5		7073727	NQG2056-01	07/22/07 20:06
Bis(2-chloroethyl)ether	ND	42.0 37.4		ug/L ug/I	47.6	88% 70%	54 - 120	0.6 3		7073727	NQG2056-01	07/22/07 20:06
Dibenz (a,h) anthracene	ND	49.5		ug/L	47.6	79%	40 - 109	4 3		7073727	NQG2056-01	07/22/07 20:06
Bis(2-chloroisopropyl)ether	ND	49.5 38.7		ug/L		104%	10 - 157	6 3'		7073727	NQG2056-01	07/22/07 20:06
emotorsopropyi/enor	UND.	50.7		ug/L	47.6	81%	41 - 111	3 42	2	7073727	NQG2056-01	07/22/07 20:06

Test ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664

Attn Eric Matzner

Work Order:NProject Name:HeProject Number:[nReceived:07

NQG2056 Houston.TX - Wood Preserving Works [none] 07/20/07 07:50

PROJECT QUALITY CONTROL DATA

Matrix Spike Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Semivolatile Organic Compou	ids by EPA Metl	10d 8270C										
7073727-MSD1	•											
Dibenzofuran	ND	43.6		ug/L	47.6	92%	45 - 113	2	36	7073727	NQG2056-01	07/22/07 20:06
2-Chloronaphthalene	ND	41.2		ug/L	47.6	87%	35 - 107	1	50	7073727	NQG2056-01	07/22/07 20:06
Di-n-butyl phthalate	ND	47.3		ug/L	47.6	99%	51 - 131 ⁻	. 2	36	7073727	NQG2056-01	07/22/07 20:06
1,4-Dichlorobenzene	ND	39.4		ug/L	47.6	83%	21 - 100	7	39	7073727	NQG2056-01	07/22/07 20:06
2-Chlorophenol	ND	36.8		ug/L	47.6	77%	39 - 104	3	41	7073727	NQG2056-01	07/22/07 20:06
1,2-Dichlorobenzene	ND	41.1		ug/L	48.1	85%	25 - 100	8	39	7073727	NQG2056-01	07/22/07 20:06
4-Chlorophenyl phenyl ether	ND	42.4		ug/L	47.6	89%	45 - 112 [.]	4	36	7073727	NQG2056-01	07/22/07 20:06
1,3-Dichlorobenzene	ND	39.4		ug/L	47.6	83%	23 - 97	3	40	7073727	NQG2056-01	07/22/07 20:06
Chrysene	ND	42.0		ug/L	47.6	88%	54 - 120	0.6	32	7073727	NQG2056-01	07/22/07 20:06
3,3-Dichlorobenzidine	ND	40.1		ug/L	47.6	84%	10 - 133	6	37	7073727	NQG2056-01	07/22/07 20:06
2,4-Dichlorophenol	ND	40.6		ug/L	47.6	85%	42 - 113	2	50	7073727	NQG2056-01	07/22/07 20:06
Dibenz (a,h) anthracene	ND	49.5		ug/L	47.6	104%	10 - 157	6	37	7073727	NQG2056-01	07/22/07 20:00
Dibenzofuran	ND	43.6		ug/L	47.6	92%	45 - 113	2	36	7073727	NQG2056-01	07/22/07 20:06
Diethyl phthalate	ND	44.6		ug/L	47.6	94%	49 - 121	4	36	7073727	NQG2056-01	07/22/07 20:06
2,4-Dimethylphenol	ND	42.4		ug/L	47.6	89%	10 - 123	2	50	7073727	NQG2056-01	07/22/07 20:06
Di-n-butyl phthalate	ND	47.3		ug/L	47.6	99%	51 - 131	2	36	7073727	NQG2056-01	07/22/07 20:06
1,3-Dichlorobenzene	ND	39.4		ug/L	47.6	83%	23 - 97	3	40	7073727	NQG2056-01	07/22/07 20:06
Dimethyl phthalate	ND	42.6		ug/L	47.6	89%	50 - 119	0.5	36	7073727	NQG2056-01	07/22/07 20:06
1,2-Dichlorobenzene	ND	41.1		ug/L	48.1	85%	25 - 100	8	39	7073727	NQG2056-01	07/22/07 20:06
4,6-Dinitro-2-methylphenol	ND	41.7		ug/L	47.6	88%	25 - 143	4	38	7073727	NQG2056-01	07/22/07 20:06
1,4-Dichlorobenzene	ND	39.4		ug/L	47.6	83%	21 - 100	7	39	7073727	NQG2056-01	07/22/07 20:06
2,4-Dinitrophenol	ND	48.9		ug/L	47.6	103%	10 - 162	5	50	7073727	NQG2056-01	07/22/07 20:06
2,6-Dinitrotoluene	ND	45.6		ug/L	47.6	96%	10 - 169	9	36	7073727	NQG2056-01	07/22/07 20:06
3,3-Dichlorobenzidine	ND	40.1		ug/L	47.6	84%	10 - 133	6	37	7073727	NQG2056-01	07/22/07 20:06
2,4-Dinitrotoluene	ND	45.1		ug/L	47.6	95%	11 - 165	8	39	7073727	NQG2056-01	07/22/07 20:06
2,4-Dichlorophenol	ND	40.6		ug/L	47.6	85%	42 - 113	2	50	7073727	NQG2056-01	07/22/07 20:06
Di-n-octyl phthalate	ND	39.5		ug/L	47.6	83%	40 - 139	2	41	7073727	NQG2056-01	07/22/07 20:06
Bis(2-ethylhexyl)phthalate	ND	44.4		ug/L	47.6	93%	32 - 166	4	38	7073727	NQG2056-01 NQG2056-01	07/22/07 20:06
Diethyl phthalate	ND	44.6		ug/L	47.6	94%	49 - 121	4	36	7073727	NQG2056-01 NQG2056-01	07/22/07 20:06
Fluoranthene	ND	44.6		ug/L	47.6	94%	52 - 125	0.2	35	7073727	NQG2056-01 NQG2056-01	07/22/07 20:06
Fluorene	ND	41.4		ug/L	47.6	87%	49 - 114	0.02	35	7073727	-	
Hexachlorobenzene	ND	46.3		ug/L	47.6	97%	40 - 134	0.02 7	50	7073727	NQG2056-01	07/22/07 20:06
Hexachlorobutadiene	ND	48.4		ug/L	47.6	102%	13 - 108	2	50	7073727	NQG2056-01	07/22/07 20:06
2,4-Dimethylphenol	ND	42.4		ug/L	47.6	89%	10 - 123	2	50	7073727	NQG2056-01 NQG2056-01	07/22/07 20:06
Hexachlorocyclopentadiene	ND	50.9		ug/L	47.6		10 - 113	6	39			07/22/07 20:06
Dimethyl phthalate	ND	42.6		ug/L	47.6	89%	50 - 119	0.5	36	7073727 7073727	NQG2056-01	07/22/07 20:06
Hexachloroethane	ND	46.9		ug/L	47.6	98%	13 - 106	12	30 39	7073727	NQG2056-01	07/22/07 20:06
4,6-Dinitro-2-methylphenol	ND	41.7		ug/L	47.6	88%	25 - 143	4	38		NQG2056-01	07/22/07 20:06
Indeno (1,2,3-cd) pyrene	ND	48.7		ug/L	47.6		11 - 158	4 2	38	7073727	NQG2056-01	07/22/07 20:06
Isophorone	ND	39.4		ug/L	47.6	83%	26 - 136	3		7073727	NQG2056-01	07/22/07 20:06
2,4-Dinitrophenol	ND	48.9		ug/L	47.6		10 - 162	5	50 50	7073727	NQG2056-01	07/22/07 20:06

Test America ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664

Eric Matzner Attn

NQG2056 Work Order: Project Name: Project Number: [none] Received:

Houston TX - Wood Preserving Works 07/20/07 07:50

PROJECT QUALITY CONTROL DATA Matrix Spike Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD I		Batch	Sample Duplicated	Analyzed Date/Time
Semivolatile Organic Compounds by	y EPA Metl	nod 8270C										
7073727-MSD1												
2-Methylnaphthalene	ND	57.8	M7	ug/L	47.6	121%	27 - 106	5	50	7073727	NQG2056-01	07/22/07 20:06
2,4-Dinitrotoluene	ND	45.1		ug/L	47.6	95%	11 - 165	8	39	7073727	NQG2056-01	07/22/07 20:06
2-Methylphenol	ND	30.3		ug/L	47.6	64%	22 - 106	3	44	7073727	NQG2056-01	07/22/07 20:06
2,6-Dinitrotoluene	ND	45.6		ug/L	47.6	96%	10 - 169	9	36	7073727	NQG2056-01	07/22/07 20:06
3/4-Methylphenol	ND	30.2		ug/L	47.6	63%	19 - 117	6	50	7073727	NQG2056-01	07/22/07 20:06
Di-n-octyl phthalate	ND	39.5		ug/L	47.6	83%	40 - 139	2	41	7073727	NQG2056-01	07/22/07 20:06
Naphthalene	ND	40.5		ug/L	47.6	85%	25 - 100	4	38	7073727	NQG2056-01	07/22/07 20:06
3-Nitroaniline	ND	42.2		ug/L	47.6	89%	35 - 130	10	50	7073727	NQG2056-01	07/22/07 20:06
1,2-Diphenylhydrazine	ND	59.0	M7	ug/L	47.6	124%	51 - 118	5	21	7073727	NQG2056-01	07/22/07 20:06
2-Nitroaniline	ND	44.1		ug/L	47.6	93%	52 - 122	4	46	7073727	NQG2056-01	07/22/07 20:06
4-Nitroaniline	ND	44.8		ug/L	47.6	94%	37 - 134	12	49	7073727	NQG2056-01	07/22/07 20:06
Bis(2-ethylhexyl)phthalate	ND	44.4		ug/L	47.6	93%	32 - 166	4	38	7073727	NQG2056-01	07/22/07 20:06
Nitrobenzene	ND	41.9		ug/L	47.6	88%	25 - 117	2	38	7073727	-	
4-Nitrophenol	ND	20.8	J	ug/L	47.6	44%	10 - 85	2	50		NQG2056-01	07/22/07 20:06
2-Nitrophenol	ND	41.1	J	ug/L	47.6	86%	37 - 117	3	30 39	7073727	NQG2056-01	07/22/07 20:06
Fluoranthene	ND	44.6		ug/L	47.6	80 <i>%</i> 94%	52 - 125			7073727	NQG2056-01	07/22/07 20:06
Fluorene	ND	41.4			47.6				35	7073727	NQG2056-01	07/22/07 20:06
N-Nitrosodiphenylamine	ND	50.0		ug/L		87%	49 - 114		35	7073727	NQG2056-01	07/22/07 20:06
Hexachlorobenzene	ND			ug/L	47.6	105%	71 - 190	3	40	7073727	NQG2056-01	07/22/07 20:06
N-Nitrosodi-n-propylamine		46.3		ug/L	47.6	97%	40 - 134	7	50	7073727	NQG2056-01	07/22/07 20:06
Hexachlorobutadiene	ND	43.8		ug/L	47.6	92%	42 - 126	1	39	7073727	NQG2056-01	07/22/07 20:06
	ND	48.4		ug/L	47.6	102%	13 - 108	2	50	7073727	NQG2056-01	07/22/07 20:06
Pentachlorophenol	ND	55.0		ug/L	47.6	116%	38 - 148	5	40	7073727	NQG2056-01	07/22/07 20:06
Hexachlorocyclopentadiene	ND	50.9		ug/L	47.6	107%	10 - 113	6	39	7073727	NQG2056-01	07/22/07 20:06
Phenanthrene	ND	44.1		ug/L	47.6	93%	52 - 126	2	33	7073727	NQG2056-01	07/22/07 20:06
Hexachloroethane	ND	46.9		ug/L	47.6	98%	13 - 106	12	39	7073727	NQG2056-01	07/22/07 20:06
Phenol	ND	14.0		ug/L	47.6	29%	10 - 138	2	50	7073727	NQG2056-01	07/22/07 20:06
Pyrene	7.50	47.2		ug/L	47.6	83%	29 - 179	5	33	7073727	NQG2056-01	07/22/07 20:06
Indeno (1,2,3-cd) pyrene	ND	48.7		ug/L	47.6	102%	11 - 158	2	38	7073727	NQG2056-01	07/22/07 20:06
1,2,4-Trichlorobenzene	ND	39.2		ug/L	47.6	82%	22 - 96	1	50	7073727	NQG2056-01	07/22/07 20:06
1-Methylnaphthalene	ND	35.7		ug/L	48.1	74%	25 - 100	0.6	50	7073727	NQG2056-01	07/22/07 20:06
2,4,6-Trichlorophenol	ND	48.3		ug/L	47.6	101%	14 - 138 [.]	6	50	7073727	NQG2056-01	07/22/07 20:06
Isophorone	ND	39.4		ug/L	47.6	83%	26 - 136	3	50	7073727	NQG2056-01	07/22/07 20:06
2,4,5-Trichlorophenol	ND	45.2		ug/L	47.6	95%	17 - 142	5	46	7073727	NQG2056-01	07/22/07 20:06
1-Methylnaphthalene	ND	35.7		ug/L	48.1	74%	25 - 100	0.6	50	7073727	NQG2056-01	07/22/07 20:06
2-Methylnaphthalene	ND	57.8	M7	ug/L	47.6	121%	27 - 106	5	50	7073727	NQG2056-01	07/22/07 20:06
2-Methylphenol	ND	30.3		ug/L	47.6	64%	22 - 106	3	44	7073727	NQG2056-01	07/22/07 20:06
3/4-Methylphenol	ND	30.2		ug/L	47.6	63%	19 - 117	6	50	7073727	NQG2056-01	07/22/07 20:06
Naphthalene	ND	40.5		ug/L	47.6	85%	25 - 100	4	38	7073727	NQG2056-01	07/22/07 20:06
4-Nitroaniline	ND	44.8		ug/L	47.6	94%	37 - 134		49	7073727	NQG2056-01	07/22/07 20:06
2-Nitroaniline	ND	44.1		ug/L	47.6	93%	52 - 122		46		NQG2056-01	07/22/07 20:06
				46,2		2270	52 122	- +	40	7073727	NUU2036-01	0//22/0/ 20:00

Test ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664 Attn Eric Matzner Work Order:NQG2056Project Name:Houston.TXProject Number:[none]Received:07/20/07 07

NQG2056 Houston.TX - Wood Preserving Works [none] 07/20/07 07:50

PROJECT QUALITY CONTROL DATA Matrix Spike Dup - Cont

Matrix Spike Dup - Cont

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Semivolatile Organic Compound	ds by EPA Meth	od 8270C					,					
7073727-MSD1												
Nitrobenzene	ND	41.9		ug/L	47.6	88%	25 - 117	2	38	7073727	NQG2056-01	07/22/07 20:06
2-Nitrophenol	ND	41.1		ug/L	47.6	86%	37 - 117	3	39	7073727	NQG2056-01	07/22/07 20:06
4-Nitrophenol	ND	20.8	J	ug/L	47.6	44%	10 - 85	8	50	7073727	NQG2056-01	07/22/07 20:06
N-Nitrosodimethylamine	ND	29.2		ug/L	47.6	61%	22 - 76	9	38	7073727	NQG2056-01	07/22/07 20:06
N-Nitrosodiphenylamine	ND	50.0		ug/L	47.6	105%	71 - 190	3	40	7073727	NQG2056-01	07/22/07 20:06
N-Nitrosodi-n-propylamine	ND	43.8		ug/L	47.6	92%	42 - 126	1	39	7073727	NQG2056-01	07/22/07 20:06
Pentachlorophenol	ND	55.0		ug/L	47.6	116%	38 - 148	5	40	7073727	NQG2056-01	07/22/07 20:06
Phenanthrene	ND	44.1		ug/L	47.6	93%	52 - 126	2	33	7073727	NQG2056-01	07/22/07 20:06
Phenol	ND	14.0		ug/L	47.6	29%	10 - 138	2	50	7073727	NQG2056-01	07/22/07 20:06
Pyrene	7.50	47.2		ug/L	47.6	83%	29 - 179	5	33	7073727	NQG2056-01	07/22/07 20:06
Pyridine	ND	19.6		ug/L	47.6	41%	10 - 75	8	50	7073727	NQG2056-01	07/22/07 20:06
1,2,4-Trichlorobenzene	ND	39.2		ug/L	47.6	82%	22 - 96	1	50	7073727	NQG2056-01	07/22/07 20:06
2,4,6-Trichlorophenol	ND	48.3		ug/L	47.6	101%	14 - 138	6	50	7073727	NQG2056-01	07/22/07 20:06
2,4,5-Trichlorophenol	ND	45.2		ug/L	47.6	95%	17 - 142	5	46	7073727	NQG2056-01	07/22/07 20:06
Surrogate: 2-Fluorophenol		20.0		ug/L	47.6	42%	10 - 82			7073727	NQG2056-01	07/22/07 20:06
Surrogate: Terphenyl-d14		36.9		ug/L	47.6	77%	29 - 149			7073727	NQG2056-01	07/22/07 20:06
Surrogate: 2,4,6-Tribromophenol		48.9		ug/L	47.6	103%	40 - 161 [.]			7073727	NQG2056-01	07/22/07 20:06
Surrogate: Phenol-d5		15.3		ug/L	47.6	32%	11 - 76			7073727	NQG2056-01	07/22/07 20:06
Surrogate: Nitrobenzene-d5		44.2		ug/L	47.6	93%	24 - 125			7073727	NQG2056-01	07/22/07 20:06
Surrogate: Phenol-d5		15.3		ug/L	47.6	32%	11 - 76			7073727	NQG2056-01	07/22/07 20:06
Surrogate: 2-Fluorobiphenyl		39.8		ug/L	47.6	84%	20 - 86			7073727	NQG2056-01	07/22/07 20:06
Surrogate: 2-Fluorobiphenyl		39.8		ug/L	47.6	84%	20 - 86			7073727	NQG2056-01	07/22/07 20:06
Surrogate: 2,4,6-Tribromophenol		48.9		ug/L	47.6	103%	40 - 161			7073727	NQG2056-01	07/22/07 20:06
Surrogate: 2-Fluorophenol		20.0		ug/L	47.6	42%	10 - 82			7073727	NQG2056-01	07/22/07 20:06
Surrogate: Nitrobenzene-d5		44.2		ug/L	47.6	93%	24 - 125			7073727	NQG2056-01	07/22/07 20:06
Surrogate: Terphenyl-d14		36.9		ug/L	47.6	77%	29 - 149			7073727	NQG2056-01	07/22/07 20:06

Test/America

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664 Attn Eric Matzner Work Order:NQG2056Project Name:Houston.TX - Wood Preserving WorksProject Number:[none]Received:07/20/07 07:50

.

TestAmerica - Nashville, TN

Method	Matrix	AIHA	Nelac	Texas
SW846 8270C	Water	N/A	Х	X

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664 Attn Eric Matzner Work Order:NQG2056Project Name:Houston.TX - Wood Preserving WorksProject Number:[none]Received:07/20/07 07:50

NELAC CERTIFICATION SUMMARY

TestAmerica Analytical - Nashville does not hold NELAC certifications for the following analytes included in this report

Method	<u>Matrix</u>	Analyte

Test Analytical testing corporation

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Pastor, Behling, and Wheeler, LLC / UPRR (14157) 2201 Double Creek Drive, Suite 4004 Round Rock, TX 78664 Attn Eric Matzner Work Order:NQG2056Project Name:Houston.TX - Wood Preserving WorksProject Number:[none]Received:07/20/07 07:50

DATA QUALIFIERS AND DEFINITIONS

- J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- L Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.
- M7 The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).
- **R2** The RPD exceeded the acceptance limit.
- R7 LCS/LCSD RPD exceeded the acceptance limit. Recovery met acceptance criteria.
- Z10 Surrogate outside laboratory historical limits but within method guidelines. No effect on data.
- ND Not detected at the reporting limit (or method detection limit if shown)

METHOD MODIFICATION NOTES

STL Houston 6310 Rothway Drive Houston, TX 77040

STL8222H-600 (0803)		STL Houston	
TestAmerica 111VIE 0750	c J. Hud	win all fest three. up	
5	TIME PRINTED NAME/COMPANY	I'VE/ (MARY I'ME, PRINTED NAME CONTAPANY: 1	PRINTED INAME/COMPANY:
/	19-7 SIGNATURE: 11/1		DDINTED NAME DOLLARS
DATE	DATE 3FRECEIVED BY		SIGNATURE:
	10 m	DATE MERCOLUMPTERS AND STORES STATEMENTS	1 RECEIVED BY
	TIME PRINTED NAME /COMPANY	8	TRINIED NAME/COMPANY:
	High SIGNATURE:	SIGNATURE:	pointer and with
A CARLES AND A CARLES AND DATE	DATE STRELINQUISHED BY	SHEDBY	SIGNATURE:
.R	10 DAYS X ROUTINE COTHER	JURS 48 HOURS 72 HOURS 1 5 DAYS	
	Y.		
-12	1	SHIPMENT METHOD: V	SAMPLER: A. Yow Lunger / Y
	2 X	æ	Dvp-02
۵.	X	5181	1-8-0
À.	X	0481	Rol-wW
L -	2 X		WW LICH
	×××		
2	2		Mw- 11 A
	× 1	1702	MW-11B
	×	52 hi	P-10
	2 X	1356	
	2 X		RO-MN
AXS/ANS N _1	e ₩ X X	7/11/07 1101 Water 11 Amba None	1. 5C
REMARKS/PRECAUTIONS	8	DATE: I SAMILE SAMILE CONTAILER PRESERV	124
	<u>الا</u> ()	DO NO.	FAX:
	; (<u>1</u>	PHONE: 281-350 - 7197	PHONE: SI1 -671-3434
	ANA		Cric. Matzner@ Dbwll
	LYSI	BILL TO: Greaffrey Reader	Monton Eric Matcher
	AINI	+ Whee er BILLING INFORMATION	
		I NOSLOI INAME/NUMBER: UP RR 14 W PW	SENID DEDODT TO:
	1		COSTOMER INFORMATION
CUSTODY RECORD	CHAIN OF CUSTODY		
			TRENT
			SEVERN

*RUSH TURNAROUND MAY REQUIRE SURCHARGE 권 응 권 응 문 일

SIGNATURE SIGNATURE: PRIVIED NAME/COMPANY REQUIRED TURNAROUND* SAMPLER: ADDRESS: eri en matzner@pbullc.com PRINTED NAME COMPANY FAX: PHONE: SEND REPORT TO: Ere SAMPLE NO. COMPANY: L. RELINQUISHED BY A SEVERN RECEIVED BY TRENT CUSTOMER INFORMATION 512-671-3434 An drew Pastor, Behlingt Wheeler WW-02 SAMPLE DESCRIPTION MW-01A Dup-di FB-02 2 Luera NERD 6 Matzner □ SAME DAY □ 24 HOÚRS S T IVLEY AL DA Potrick Marry DATE DATE TIME 9:13 pm -0 191 F TIME 9/ 0/21/ SAMPLE SAMPLE SAMPLE CONTAINER PRESERV 7/18/07 ø PHONE: FAX: BILL TO: PROJECT NAME/NUMBER: UPRR Hupu ADDRESS: PROJECT INFORMATION 2. RELINQUISHED BY: SIGNATURE: 2. RECEIVED BY PRINTED NAME/COMPANY SIGNATURE: PRINTED NAME/COMPANY □ 48 HOURS □ 72 HOURS SHIPMENT METHOD: 1080 9180 0913 281 Geotfrey **BILLING INFORMATION** 1 350 Water ć STL Houston Reeder PO NO: ł 719 1L Hmby v D 5 DAYS None ¢ COVRIER □ 10 DAYS CHAIN OF CUSTODY RECORD 2/2/07 DATE Driger DATE TIME 20 دم IME 20 Ċ دى دم NUMBER OF CONTAINERS ANALYSIS/METHOD REQUEST \succ \sim \succ 8270 82700-PRINTED NAME SIGNATURE; 3 RECEIVED BY PRINTED NAME/COMPANY: 3 RELINQUISHED BY ... SIGNATURE: X ROUTINE 82700-> AIRBILL NO .: EB MSLAUSD OTHER COMPA Test America No. 035997 FPP-13 **REMARKS/PRECAUTIONS** LAB JOB NO DELIVERABLE REQUIPED STL8222H-600 (0803 TIME 75. DATE DATE 7.20.07 TIME <u>ئ</u>ا ت ĥ é

*RUSH TURNAROUND MAY REQUIRE SURCHARGE

6310 Rothway Drive Houston, TX 77040

Bottle Request for Groundwater Sampling Houston Wood Preserving Works Houston, TX

「「「「「「」」」」				
9 Minima	AT7 Melle	ontainer		Analysis Requester and the second
	RTZ Wells			ATZ (See below)
				BTZ (See below)
			None	ATZ (See below)
-	Dub	2x1L	None	BTZ (See below)
	Field Blank	2x1L	None	Field Blank/MS/MSD (See below)
		2x1L	None	
-	MSD	2x1L	None	
A ZWell Greundwater Samples	FUR	B IZ-Welli Stolinowate Samo		HOUSENWARKS MANAGEMAN
MW-01A MW-02	NW			
A CANWARA	MW-11A - Analyze for the following	following		
Acenanhthene				
Acenaphthylene		Aconophthulana		Acenaphtnene
Anthracene				Acenaphinyiene
		Anthracene		Anthracene
bis(2-ethylhexyl)phthalate		bis(2-ethylhexyl)phthalate		bis(2-ethylhexyl)phthalate
Dibenzofuran		Dibenzofuran		Dibenzofuran
Fluoranthene		Di-n-butyl phthalate		Fluoranthene
Fluorene		Fluoranthene	-	Fluorene
2-Methylnaphthalene		Fluorene	Ν	2-Methvlnaphthalene
Naphthalene		Naphthalene	7	Naphthalene
Phenanthrene		Phenol	T	Phenanthrene
Pyrene		Pyrene		Pyrene
			P	Phenol
				Di-n-butyl phthalate

•

$T_{\Delta \phi}$	r in	neur	11/303
100	383273.024	CARLON. TESTRICIO	IL CA
	Nash	ville,	TN

COOLER RECEIPT FORM

NQG2056

Cooler Received/Opened On07/20/07 @ 07:50	NQG2056	
1. Tracking #(last 4 digits, FedEx)		
Courier:FED-EX IR Gun ID_A00750		
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen	1? YES QNA	
4. Were custody seals on outside of cooler?	YES	Not sealed
If yes, how many and where:	•	Not sealed closed.
5. Were the seals intact, signed, and dated correctly?	YESNONA	(1020)
6. Were custody papers inside cooler?		
certify that I opened the cooler and answered questions 1-6 (intial)	ナ	
7. Were custody seals on containers: YES NO and Intact	YESNO	
Were these signed and dated correctly?	YESNO.	
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pap	er Other None	
9. Cooling process:	e Other None	
10. Did all containers arrive in good condition (unbroken)?	(YESNONA	·
11. Were all container labels complete (#, date, signed, pres., etc)?	GesNONA	
12. Did all container labels and tags agree with custody papers?	SNONA	
13a. Were VOA vials received?	YES	
b. Was there any observable headspace present in any VOA vial?	YESNO	
14. Was there a Trip Blank in this cooler? YESNGNA If multiple coolers, sequen	ice #	
I certify that I unloaded the cooler and answered questions 7-14 (intial)	T	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNO.NA	
b. Did the bottle labels indicate that the correct preservatives were used	ESNONA	
If preservation in-house was needed, record standard ID of preservative used here_	<u> </u>	
16. Was residual chlorine present?	YESIONA	
l certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	$-\overline{\sigma}$	
17. Were custody papers properly filled out (ink, signed, etc)?	(YESNONA	
18. Did you sign the custody papers in the appropriate place?	(ESNONA	
19. Were correct containers used for the analysis requested?	ESNONA	
20. Was sufficient amount of sample sent in each container?	EsNONA	
certify that I entered this project into LIMS and answered questions 17-20 (intial)	J_	
certify that I attached a label with the unique LIMS number to each container (intial)	-7	
21. Were there Non-Conformance issues at login? YES Was a PIPE generated? YES	NQ#	

TestAmerica AMALYTICAL TESTING CORPOLATION Nashville, TN

COOLER RECEIPT FORM

Cooler Received/Opened On07/20/07 0750	
1. Tracking #5397 (last 4 digits, FedEx)	
Courier: _FedEx_ IR Gun ID_ 90943149	
2. Temperature of rep. sample or temp blank when opened:	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO. NA
4. Were custody seals on outside of cooler?	Y 53 NONA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	YESNONA
6. Were custody papers inside cooler?	YES NONA
	1hD
I certify that I opened the cooler and answered questions 1-6 (intial)	17
7. Were custody seals on containers: YES NO and intact	YESNO
Were these signed and dated correctly?	YES NO NA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Paper	Other None
9. Cooling process: Cree Ice-pack Ice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	ESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	ESNONA
12. Did all container labels and tags agree with custody papers?	ESNONA
13a. Were VOA vials received?	YESNONA
b. Was there any observable headspace present in any VOA vial?	YESNA
14. Was there a Trip Blank in this cooler? (YESNONA If multiple coolers, sequence	#
I certify that I unloaded the cooler and answered questions 7-14 (intial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNO.
b. Did the bottle labels indicate that the correct preservatives were used	YESNONA
If preservation in-house was needed, record standard ID of preservative used here	_
16. Was residual chlorine present?	YESNA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	0
17. Were custody papers properly filled out (ink, signed, etc)?	ESNONA
18. Did you sign the custody papers in the appropriate place?	ESNONA
19. Were correct containers used for the analysis requested?	TESNONA
20. Was sufficient amount of sample sent in each container?	EsNONA
certify that I entered this project into LIMS and answered questions 17-20 (intial)	T
certify that I attached a label with the unique LIMS number to each container (intial)	T
21. Were there Non-Conformance issues at login? YESNO Was a PIPE generated? YESNO.	

,

COOLER RECEIPT FORM

TestAmerica Mashville, TN

Cooler Received/Opened On: $7/20/07@7:50$		
Tracking #5309(last 4 digits, FedEx)		
Courier: Fed-Ex Gun ID: 101507		
1. Temperature of rep. sample or temp blank when opened: Degrees Celsius		
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank froze	PR YES NO KA	
4. Were custody seals on outside of cooler?	VES A NA	Not,
If yes, how many and where:		Sealed
5. Were the seals intact, signed, and dated correctly?	YESNO.	Shut
6. Were custody papers inside cooler?	ES.NONA	
I certify that I opened the cooler and answered questions 1-6 (initial)		
7. Were custody seals on containers: YES NO and Intact	YESNO.	
Were these signed and dated correctly?	YESNO. MA	
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pa	Per Other Nono	
9. Cooling process:		.
10. Did all containers arrive in good condition (unbroken)?	ce Other None	
11. Were all container labels complete (#, date, signed, pres., etc)?	YESNONA	
12. Did all container labels and tags agree with custody papers?	ESNONA	
13a. Were VOA vials received?	YESNONA	
b. Was there any observable headspace present in any VOA vial?	YESNONA	
14. Was there a Trip Blank in this cooler? YES. NONA If multiple coolers, seque		
I certify that I unloaded the cooler and answered questions 7-14 (initial)		
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level	VES NO MA	
b. Did the bottle labels indicate that the correct preservatives were used	YESNONA	
If preservation in-house was needed, record standard ID of preservative used here_		
16. Was residual chlorine present?	YESNQNA	
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (initial)	TESNOrNA	
17. Were custody papers properly filled out (ink, signed, etc)?	ESNONA	
18. Did you sign the custody papers in the appropriate place?	-	
19. Were correct containers used for the analysis requested?	YES NONA	
20. Was sufficient amount of sample sent in each container?	ESNONA	
I certify that I entered this project into LIMS and answered questions 17-20 (initial)	YESNONA	
I certify that I attached a label with the unique LIMS number to each container (initial)	$\overline{\mathcal{T}}$	-
21. Were there Non-Conformance issues at login? YESNO Was a PIPE generated? YESN	#	

Appendix A Laboratory Data Package Cover Page

This data package consists of:

	Thi	s signature page, the laboratory review checklist, and the following reportable data:
\checkmark	R1	Field chain-of-custody documentation;
\checkmark	R2	Sample identification cross-reference;
	R3	 Test reports (analytical data sheets) for each environmental sample that includes: a) Items consistent with NELAC 5.13 or ISO/IEC 17025 Section 5.10 b) dilution factors, c) preparation methods, d) cleanup methods, and e) if required for the project, tentatively identified compounds (TICs).
\checkmark	R4	Surrogate recovery data including: a) Calculated recovery (%R), and b) The laboratory's surrogate QC limits.
\checkmark	R5	Test reports/summary forms for blank samples;
	R6	 Test reports/summary forms for laboratory control samples (LCSs) including: a) LCS spiking amounts, b) Calculated %R for each analyte, and c) The laboratory's LCS QC limits.
	R7	 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: a) Samples associated with the MS/MSD clearly identified, b) MS/MSD spiking amounts, c) Concentration of each MS/MSD analyte measured in the parent and spiked samples, d) Calculated %Rs and relative percent differences (RPDs), and e) The laboratory's MS/MSD QC limits
\checkmark	R8	 Laboratory analytical duplicate (if applicable) recovery and precision: a) the amount of analyte measured in the duplicate, b) the calculated RPD, and c) the laboratory's QC limits for analytical duplicates.
\checkmark	R9	List of method quantitation limits (MQLs) for each analyte for each method and matrix;
\checkmark	R10	Other problems or anomalies.
\checkmark	The E	exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By me signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: [] This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

ANAZOR Official Title (Printed) Date

RG-366/TRRP-13 December 2002

Appendix A (cont'd): Laboratory Review Checklist: Reportable Data										
Laboratory Name: TestAmerica - Nashville, TN LRC Date: 08/01/07										
Project Name: Houston.TX - Wood Preserving Works Laboratory Job Number: NQG2056										
	Reviewer Name: MDH									
	Prep Batch Number(s): 7073727									
#1	A ²	Description								
# R1		Description		Yes No NA ³ NR ⁴ ER# ⁵						
	101									
		Did samples meet the laboratory's standard conditions of samp	<u> </u>							
R2	OI	Were all departures from standard conditions described in an e Sample and quality control (QC) identification	X		Ŀ					
			x							
1		Are all field sample ID numbers cross-referenced to the laboratory ID numbers?								
R3	OI	Are all laboratory ID numbers cross-referenced to the corresponding QC data? I Test reports						L		
	1	Were all samples prepared and analyzed within holding times?					- 			
		Other than those results < MQL, were all other raw values brack	X			\perp				
		Were calculations checked by a peer or supervisor?	X		_					
		Were all analyte identifications checked by a peer or supervisor	.0	X			ļ			
		Were sample quantitation limits reported for all analytes not de	: taotad?	X			 			
		Were all results for soil and sediment samples reported on a dry	unight hogin?	x						
		Were % moisture (or solids) reported for all soil and sediment s	amples?	4		X	 			
		If required for the project, TICs reported?		-	X	┥──┤				
R4	0	Surrogate recovery data			1	X				
		Were surrogates added prior to extraction?		x		1	<u> </u>			
		Were surrogate percent recoveries in all samples within the laboratory QC limits?					┠──┤	21001		
R5	OI	Test reports/summary forms for blank samples		L	X			N001		
		Were appropriate type(s) of blanks analyzed?	X	T	T					
		Were blanks analyzed at the appropriate frequency?					\vdash			
		Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup proc					\vdash			
		Were blank concentrations < MQL?								
R6	01	Laboratory control samples (LCS):		X	L					
		Were all COCs included in the LCS?		x	1					
[Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?								
		Were LCSs analyzed at the required frequency?								
		Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?						N002		
		Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the S								
		Was the LCSD RPD within QC limits?						N003		
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data			4 <u></u> 1					
		Were the project/method specified analytes included in the MS a	nd MSD?	Х						
		Were MS/MSD analyzed at the appropriate frequency?		Х						
		Were MS (and MSD, if applicable) %Rs within the laboratory Q	C limits?		Х			N004		
R8	OI	Were MS/MSD RPDs within laboratory QC limits?						N005		
10		Analytical duplicate data								
		Were appropriate analytical duplicates analyzed for each matrix?				Х				
1	ł	Were PPDs or relative standard deviations with the later	2			Х				
R9	OI	Were RPDs or relative standard deviations within the laboratory QC limits? Method quantitation limits (MOLs):				Х				
~		Are the MQLs for each method analyte included in the laboratory								
	ł	Do the MOLs correspond to the concentration of the lowest new	X X							
ŀ	ŀ	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? Are unadjusted MQLs included in the laboratory data package?								
R10	OI									
<u> </u>		Are all known problems/anomalies/special conditions noted in this LRC and ER?								
	F	Were all necessary corrective actions performed for the reported data?								
	f	Was applicable and available technology used to lower the SQL n		X						
1. Iten	ns iden	ified by the letter "B" must be included in the laboratory data package submitted in the	annual the matrix interference affects on the sample	Х						

Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the

۰.,

2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable); 3 NA = Not applicable;

4. NR = Not reviewed,

5 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked)

Appendix A (cont'd): Laboratory Review Checklist: Reportable Data										
Laboratory Name: TestAmerica - Nashville, TN LRC Date: 08/01/07							(
Project Name: Houston.TX - Wood Preserving Works Laboratory Job Number: NQG2056										
Rev	Reviewer Name: MDH									
	Prep Batch Number(s): 7073727									
#1	A ²	Description		Yes No NA ³ NR ⁴ ER# ⁵						
S1	OI		· · · · · · · · · · · · · · · · · · ·	Yes No NA ³ NR ⁴ El						
		Were response factors and/or relative response factors for each		x	Т					
		Were percent RSDs or correlation coefficient criteria met?	$-\frac{\Lambda}{X}$							
		Was the number of standards recommended in the method use	$\frac{\Lambda}{X}$	-						
		Were all points generated between the lowest and highest stan	X							
		Are ICAL data available for all instruments used?	$\frac{\Lambda}{X}$							
	1	Has the initial calibration curve been verified using an approp		$\frac{x}{x}$						
S2	OI	Initial and continuing calibration verification (ICCV and	······			L				
		Was the CCV analyzed at the method-required frequency?			X					
ĺ	1	Were percent differences for each analyte within the method-re-	equired QC limits?		$\frac{\Lambda}{X}$	1				
		Was the ICAL curve verified for each analyte?		,	X					
		Was the absolute value of the analyte concentration in the inor	ganic CCB < MDL?		x					
S 3	0	Mass spectral tuning:		· · · · · · · · · · · · · · · · · · ·		Li	1			
		Was the appropriate compound for the method used for tuning		·····	X		T		-	
		Were ion abundance data within the method-required QC limit	,	X						
S4	0	Internal standards (IS):			L	L				
		Were IS area counts and retention times within the method-req	X		Т		w			
<u>S5</u>	OI	Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025 section								
		Were the raw data (for example, chromatograms, spectral data)		X				· ·		
		Were data associated with manual integrations flagged on the raw data?						-		
<u>S6</u>	0	Dual column confirmation								
		Did dual column confirmation results meet the method-require			X					
S 7	0	Tentatively identified compounds (TICs):								
~~~	_	If TICs were requested, were the mass spectra and TIC data sub				X				
<u>S8</u>	I	Interference Check Sample (ICS) results:								
	-	Were percent recoveries within method QC limits?				Х				
<u>S9</u>	I	Serial dilutions, post digestion spikes, and method of standa								
S10		Were percent differences, recoveries, and the linearity within the QC limits specified in the method?								
510	OI	Method detection limit (MDL) studies			· · · · · · · · · · · · · · · · · · ·					
		Was a MDL study performed for each reported analyte?			X					
S11	OT	Is the MDL either adjusted or supported by the analysis of DCS <b>Proficiency test reports:</b>	S?		x					
	01									
S12	OI	Was the laboratory's performance acceptable on the applicable Standards documentation	proficiency tests or evaluation stud	lies?	X					
514	01		- 1 from		<u> </u>					
<b>S13</b>	OI	Are all standards used in the analyses NIST-traceable or obtained Compound/analyte identification procedures	a nom other appropriate sources?		x					
	<u> </u>	Are the procedures for compound/analyte identification docume	ented?		L I					
S14	OI	Demonstration of analyst competency (DOC)		X						
		Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?								
S15	OI									
<b>S16</b>	OI	Laboratory standard operating procedures (SOPs):	iou, and variation, where applicad		X					
		Are laboratory SOPs current and on file for each method perform	ned?		vI					
1 Ite	ms iden	tified by the letter "R" must be included in the laboratory data package submitted in the			X					

1 Items identified by the letter "S" must be included in the laboratory data package submitted in the TRRP-required report(s) Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.
2. O = organic analyses. I = inoreanic analyses (and general chemistry when amplicable).

O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
 NA = Not applicable;

NR = Not reviewed;

5 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked)

RG-366/TRRP-13 December 2002

Laborate	ory Name: TestAmerica - Nashville, TN	LRC Date: 08/01/07						
Project N		Laboratory Job Number: NQG2056						
Reviewe	er Name: MDH							
	tch Number(s): 7073727							
ER#'	Description							
N001	<ul> <li>Surrogate outside laboratory historical limits but within method guidelines. No effect on data.</li> <li>Surrogate Recovery for 2-Fluorobiphenyl (95%) was outside acceptance limits (20-86) in NQG2056-09 for 8270C Semivolatile Organics</li> <li>Surrogate outside laboratory historical limits but within method guidelines. No effect on data.</li> </ul>							
	Surrogate Recovery for 2-Fluorobiphenyl (102%) was outside acceptance limits (20-86) in NQG2056-13 for 8270C Semivolatile Organics - Surrogate outside laboratory historical limits but within method guidelines. No effect on data.							
N002	ide acceptance limits (53-117) in 7073727-BS1 for 8270C Extended SVOA mple Duplicate recovery was above the acceptance limits. Analyte not detected, data not							
	- Laboratory Control Sample and/or Laboratory Control Sample	ide acceptance limits (53-117) in 7073727-BSD1 for 8270C Extended SVOA						
	impleted.	mple Duplicate recovery was above the acceptance limits. Analyte not detected, data not						
N003	LCS Duplicate RPD for Benzidine (78%) was above the acc - LCS/LCSD RPD exceeded the acceptance limit. Recover	ceptance limit (50) in 7073727-BSD1 for 8270C Extended SVOA						
N003 N004	LCS Duplicate RPD for Benzidine (78%) was above the acc - LCS/LCSD RPD exceeded the acceptance limit. Recover	ceptance limit (50) in 7073727-BSD1 for 8270C Extended SVOA y met acceptance criteria.						
	LCS Duplicate RPD for Benzidine (78%) was above the acc - LCS/LCSD RPD exceeded the acceptance limit. Recover Matrix Spike Recovery for 2-Methylnaphthalene (116%) wa - The MS and/or MSD were above the acceptance limits. S	septance limit (50) in 7073727-BSD1 for 8270C Extended SVOA y met acceptance criteria. as outside acceptance limits (27-106) in 7073727-MS1 for 8270C Extended SVOA see Blank Spike (LCS).						
	LCS Duplicate RPD for Benzidine (78%) was above the acc - LCS/LCSD RPD exceeded the acceptance limit. Recover Matrix Spike Recovery for 2-Methylnaphthalene (116%) wa - The MS and/or MSD were above the acceptance limits. S Matrix Spike Recovery for 2-Methylnaphthalene (116%) wa - The MS and/or MSD were above the acceptance limits. S	peptance limit (50) in 7073727-BSD1 for 8270C Extended SVOA y met acceptance criteria. as outside acceptance limits (27-106) in 7073727-MS1 for 8270C Extended SVOA dee Blank Spike (LCS). as outside acceptance limits (27-106) in 7073727-MS1 for 8270C Semivolatile Organics ee Blank Spike (LCS).						
	LCS Duplicate RPD for Benzidine (78%) was above the acc - LCS/LCSD RPD exceeded the acceptance limit. Recovery Matrix Spike Recovery for 2-Methylnaphthalene (116%) wa - The MS and/or MSD were above the acceptance limits. S Matrix Spike Recovery for 2-Methylnaphthalene (116%) wa - The MS and/or MSD were above the acceptance limits. S Matrix Spike Recovery for 1,2-Diphenylhydrazine (124%) w - The MS and/or MSD were above the acceptance limits. S	septance limit (50) in 7073727-BSD1 for 8270C Extended SVOA y met acceptance criteria. as outside acceptance limits (27-106) in 7073727-MS1 for 8270C Extended SVOA lee Blank Spike (LCS). is outside acceptance limits (27-106) in 7073727-MS1 for 8270C Semivolatile Organics ee Blank Spike (LCS). vas outside acceptance limits (51-118) in 7073727-MSD1 for 8270C Extended SVOA ee Blank Spike (LCS).						
	LCS Duplicate RPD for Benzidine (78%) was above the acc - LCS/LCSD RPD exceeded the acceptance limit. Recover Matrix Spike Recovery for 2-Methylnaphthalene (116%) wa - The MS and/or MSD were above the acceptance limits. S Matrix Spike Recovery for 2-Methylnaphthalene (116%) wa - The MS and/or MSD were above the acceptance limits. S Matrix Spike Recovery for 1,2-Diphenylhydrazine (124%) w - The MS and/or MSD were above the acceptance limits. S Matrix Spike Recovery for 2-Methylnaphthalene (121%) wa - The MS and/or MSD were above the acceptance limits. So Matrix Spike Recovery for 2-Methylnaphthalene (121%) wa - The MS and/or MSD were above the acceptance limits. Se Matrix Spike Recovery for 2-Methylnaphthalene (121%) wa - The MS and/or MSD were above the acceptance limits. Se	septance limit (50) in 7073727-BSD1 for 8270C Extended SVOA y met acceptance criteria. as outside acceptance limits (27-106) in 7073727-MS1 for 8270C Extended SVOA is soutside acceptance limits (27-106) in 7073727-MS1 for 8270C Semivolatile Organics ee Blank Spike (LCS). vas outside acceptance limits (51-118) in 7073727-MSD1 for 8270C Extended SVOA ee Blank Spike (LCS). s outside acceptance limits (27-106) in 7073727-MSD1 for 8270C Extended SVOA ee Blank Spike (LCS). s outside acceptance limits (27-106) in 7073727-MSD1 for 8270C Extended SVOA ee Blank Spike (LCS).						

1. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked on the LRC)

.

RG-366/TRRP-13 December 2002

.

#### APPENDIX D UPDATED COMPLIANCE SCHEDULE

ID Task Name/Permit or CP Section No.						2009				
			3rd Quarter	4th Quarte		2nd Quarter A M J	3rd Quarter	4th Quarter	1st Quarter J F M	2nd Quar
1	Facility Management		J A S	O N	D J F M	A M J	J A S	O N D	JFM	AM
2	General Inspection Requirements (quaterly) [Permi	it Section III.D; Table III.D]								
26	Addendum to the Affected Property Assessment Re Section VIII.D]	port (APAR) [Permit Section IX.A; CP	I				•		l	
27	Field Investigation Activities									
28	Addition Delineation Field Investigation (Groundwa	ter/Soil)			-					
29	Prepare and Submit Addendum to the APAR									
30	Corrective Measures Implementation (CMI)/Respons	e Action Plan (RAP) [CP Section VIII.F]								
31	Prepare and Submit Response Action Plan (RAP)					L			1	-
32	Ground-Water Monitoring Program [Permit Section V	VI.A.; CP Section VI.]								
33	Water Level Measurements (Semiannually) [CP Se	ection VI.C.4.a]1								
46	Monitoring Well Inspections (Semiannually) [CP Se	ection VI.C.4.a]1	i i				i			
69	Ground Water Sampling and Data Evaluation (2nd	2006 Semiannual) [CP Setion VI.C.2]								
70	Ground Water Sampling and Data Evaluation (1st S	Semiannual) [CP Setion VI.C.2]								
71	Ground Water Sampling and Data Evaluation (2nd	Semiannual) [CP Setion VI.C.2]		1						
72	Ground Water Sampling and Data Evaluation (1st S	Semiannual) [CP Setion VI.C.2]								
73	Ground Water Sampling and Data Evaluation (2nd	Semiannual) [CP Setion VI.C.2]								
74	Ground Water Sampling and Data Evaluation (1st S	Semiannual) [CP Setion VI.C.2]								-
75	Ground Water Sampling and Data Evaluation (2nd	Semiannual) [CP Setion VI.C.2]								
76	Response and Reporting [Permit Section II.B.7; CP S									
77	First Semi-Annual GW Monitoring Report - July 21	[CP Section VII.C.2]	$\hat{\nabla}$				$\hat{\mathbf{T}}$			
84	Second Semi-Annual GW Monitoring Report - Janu	uary 21 [CP Section VII.C.2]			$\mathbf{\hat{\nabla}}$				$\mathbf{\hat{\nabla}}$	
		Task -	Rolled Up T	ask		External Tasl	ks			
Compliance Schedule UPRR Houston Wood Preserving Works Site Houston, Texas		Progress	Rolled Up N	lilestone $<$	>	Project Sumr	nary			
		Milestone	Rolled Up P	rogress		External Mile	stone 🔶			
		Summary	Split	m		Deadline	Ŷ			
Jan	uary 4, 2008		Page 1 of 1					Pas	tor, Behling & V	/heeler, LLC