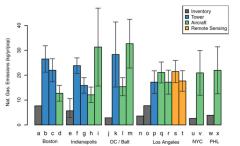
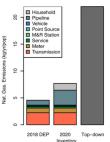
A National Estimate of Methane Leakage from Pipeline Mains in Local Natural Gas Distribution Systems


Zach Weller & Joe von Fischer


Colorado State University zach.weller@colostate.edu joe.von_fischer@colostate.edu

November 17, 2021

Evidence of Urban Emissions Undercounting

- Large gap between bottom-up and top-down that is attributed to distribution and end-use
- Plant et al. (2019):
 - Estimated NG emissions in 5 east coast cities
 - Emissions estimates 10x greater than Gridded EPA inventory
- Sargent et al. (2021):
 - Estimated NG emissions in Boston using top-down approach
 - Found a 2.5% loss rate from distribution and end use (6x greater than MassDEP)

Distribution Emissions: Bottom-Up Basis

- Current EPA activity and emissions factors: Lamb et al. (2015)
 - Emissions factors: measured n = 142 leaks that were known to utility companies
 - Some targeted leaks had been repaired
 - Did not measure any Class/Grade 1 leaks
 - Activity factors: based on utility leak inventories
- Ersoy et al. (2019): emissions from distribution mains and services in CA
 - Estimated EFs 34% larger than Lamb et al. (2015) (across material categories)
 - Plastic pipe and services 4x greater EF
- Moore et al. (2019): emissions from meters nationally
 - 450 meter leaks
 - EFs approximately 8x greater than current EPA values

Vehicle-Based Advanced Leak Detection

- Vehicle based ALD deployments permit rapid detection of leaks and emissions quantification (von Fischer et al., 2017)
- Advantages of vehicle based ALD over traditional surveys:
 - Highly sensitive instruments are finding more leaks than previously thought to exist: estimated 2.6x greater than current inventories (Weller et al., 2018)
 - Rapid spatial coverage
 - Rapid emissions quantification
- We analyzed data from deployments in four U.S. cities, covering 8900 miles of roadway (5800 miles of main pipeline)
 - Differing management histories
 - All have newer material and leak-prone materials of varying ages
 - Local utilities shared GIS database with pipeline location, age, and material

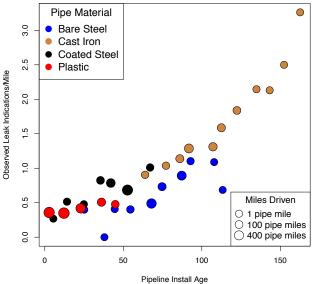
Estimate of Distribution Emissions Nationally

- Goal: estimate total emissions from distribution mains nationally and quantify uncertainty
- Utilize multiple data sources:
 - Pipeline GIS data & mapping results in four cities (activity factors)
 - PHMSA data on U.S. distribution main pipeline by material and age (activity)
 - Three studies validating our emissions quantification in the field (emissions factors)

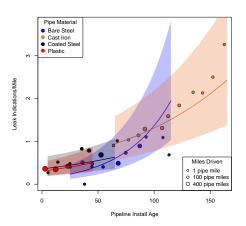
```
Total Emissions = Activity Factors \times Activity \times Emissions Factors = (leaks/mile) \times (miles of pipe) \times (emissions/leak)
```

Activity Factors

- Utility shared GIS database for distribution system mains where we conducted mobile methane surveys, which included:
 - Location
 - Length


- Material
- Install date (proxy for age)
- Material coded as bare steel (BS), cast iron (CI), coated steel (CS), and plastic (PL) to match PHMSA categories

Activity Factors


- Utility shared GIS database for distribution system mains where we conducted mobile methane surveys, which included:
 - Location
 - Length

- Material
- Install date (proxy for age)
- Material coded as bare steel (BS), cast iron (CI), coated steel (CS), and plastic (PL) to match PHMSA categories
- We spatially joined ALD leak indications to nearest distribution main, requiring that pipeline infrastructure be within 40m
- Approximately 4000 leak indications joined to 9300 km (5800 miles) of pipeline
- Leak indications and surveyed pipeline miles (km's) binned by decade

Estimated Activity Factors by Age & Material

Activity Factors

- Activity varies by pipeline age and material type
- Account for city-to-city variation

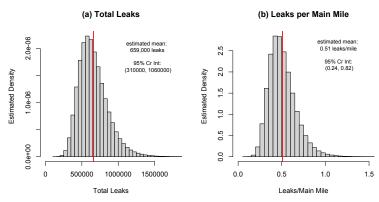
Activity

- Pipeline and Hazardous Materials Safety Administration reports activity: marginal totals of miles of distribution pipeline by decade and by material
- The joint distribution of age and material is not given

	unknown	Pre-	1940-	1950-	1960-	1970-	1980-	1990-	2000-	2010-		
Install		1940	1949	1959	1969	1979	1989	1999	2009	2019		
Decade →												
Age →	unknown	79+	70-79	60-69	50-59	40-49	30-39	20-29	10-19	0-9	Total Miles	Pct Total
Material												
Bare Steel											46583	4
Cast Iron											25056	2
Coated Steel											486305	38
Plastic											738067	57
Total Miles	84975* (84992)	53742	22030	99281	187096	130499	155996	234908	205694	121790	1296011	100
Pct Total	7	4	2	8	14	10	12	18	16	9	100	

^{*}rounding error

Activity

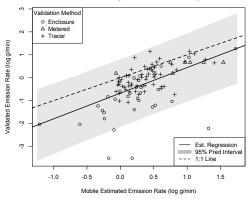

- Make assumptions regarding the joint distribution of age and material

 constraints on the table
- Monte Carlo simulation provides hundreds of possible ways to fill the table, given the constraints. The average table is shown below:

	unknown	Den	1940-	1950-	1960-	1970-	1980-	1990-	2000-	2010-	
Secretary 11	unknown	Pre-									
install		1940	1949	1959	1969	1979	1989	1999	2009	2019	
decade											
Age	unknown	79+	70-79	60-69	50-59	40-49	30-39	20-29	10-19	0-9	Totals
BS	22168	3875	4268	4391	3927	3513	3462	0	0	0	46583
CI	23076	1316	285	378	0	0	0	0	0	0	25055*
CS	21062	48551	17477	94511	108491	138311	39569	45303	25708	6646	486304*
PL	18669	0	0	0	75040	44858	112965	189605	179986	115144	738068*
Totale	04075	F2742	22020	00201*	107006	120400	155006	224000	205.004	121700	1200011
Totals	84975	53742	22030	99281*	187096	130499	155996	234908	205694	121790	1296011

$AF \times Activity$

- Use the pipeline information (activity) + Bayesian model (AF) to estimate the total number of leaks for distribution mains nationally
- Uncertainty in model parameters + uncertainty in pipeline table => uncertainty quantification for the number of leaks


$AF \times Activity$

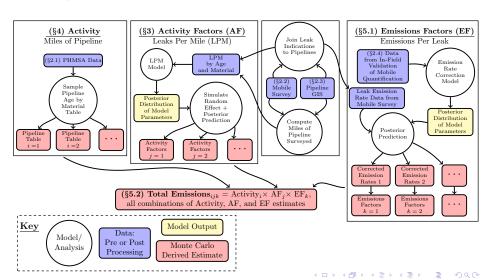
- Our estimated leaks per mile are greater than previous estimates for coated steel and plastic
- Difficult to compare estimates due to different methods for estimating the lifetime of leaks

	study							
	Lamb 2015		GRI/EI	PA 1992	this study			
material	equiv leaks (thousands)	equiv leaks per mile	equiv leaks (thousands)	equiv leaks per mile	leaks (thousands) (95% cr int)	leaks per mile		
bare (unprotected) steel	130.3	2.51	174.7	1.82	23.7 (7.9-43.0)	0.51 (0.17, 0.93)		
cast iron	81.6	2.88	n/a	n/a	25.2 (9.9-43.5)	1.00 (0.40, 1.74)		
coated (protected) steel	55.4	0.11	68.3	0.14	296.0 (111.0-513.5)	0.61 (0.23, 1.06)		
plastic	32.2	0.05	49.2	0.18	314.1 (122.8-547.0)	0.43 (0.17, 0.74)		
total	299.6	0.23	292.2	0.35 ^b	659.1 (310.0-1061.1)	0.51 (0.24, 0.82)		

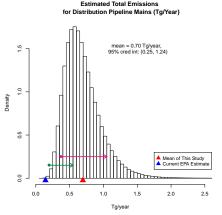
Emissions Factors

- We previously found a positive (upward) bias in our mobile emissions estimates (Weller et al., 2018)
- We de-bias mobile emissions estimates using the results of three validation studies assessing mobile estimates (n = 100 leaks)

• Typically, the correction makes the estimated leak size *smaller*, but not exclusively


Emissions Factors

Material	EPA/GRI 1992* (g/min)	Lamb 2015 (g/min)	This Study (g/min)
	Estimate (90% UCL)	Estimate (95% UCL)	Estimate (95% cr int)
Bare (Unprotected) Steel	1.91 (3.70)	0.77 (2.07)	2.25 (1.22, 3.40)
	n = 20	n=74	n = 821
Cast Iron	3.57 (5.60)	0.90 (3.35)	1.72 (0.94, 2.64)
	n = 21	n = 14	n = 1567
Coated (Protected) Steel	0.76 (1.40)	1.21 (4.59)	2.04 (1.10, 3.12)
	n = 17	n = 31	n = 868
Plastic	1.88 (8.20)	0.33 (0.67)	2.03 (1.10, 3.12)
	n = 6	n = 23	n = 774
Total	n = 64	n = 142	n = 4030


- No meaningful differences in emissions factors (EFs) with pipeline age
- Small differences in EFs among materials
- Our EFs were similar to EPA/GRI (1992) and generally bigger than Lamb et al. (2015)

Total Emissions

Combine previous results to estimate total emissions:

Total Emisssions

- 5x greater than current EPA estimate for main emissions
- 3x greater than current EPA estimate for main & service emissions
- Green arrow: Lamb et al. (2015) with 95% upper confidence level
- Pink arrow: Lamb et al. (2015) with 95% upper confidence level assuming leak find rate from Weller et al. (2018)

Recommendations/Suggestions

- Updated emissions estimates are needed
 - Our findings and others suggest EPA estimates are low
 - Undercounting of number of leaks and emissions from largest leaks are likely contributors
 - Use a combination of best available data (direct measurements, combining of results from various studies)
- Utility reporting (e.g., subpart W) should include pipeline age by material
- Spatially-resolved data reporting will improve EPA gridded emissions and infrastructure equity

Acknowledgements

Funding

This work was funded by Environmental Defense Fund.

Contact

- zach.weller@colostate.edu
- jcvf@colostate.edu

References

- Ersoy, D., Adamo, M., and Wiley, K. (2019). Quantifying methane emissions from distribution pipelines in california.
- Lamb, B. K., Edburg, S. L., Ferrara, T. W., Howard, T., Harrison, M. R., Kolb, C. E., Townsend-Small, A., Dyck, W., Possolo, A., and Whetstone, J. R. (2015). Direct measurements show decreasing methane emissions from natural gas local distribution systems in the united states. *Environ. Sci. & Technol.*, 49(8):5161–5169.
- Moore, C., Stuver, S., and Wiley, K. (2019). Classification of methane emissions from industrial meters, vintage vs modern plastic pipe, and plastic-lined steel and cast-iron pipe.
- Plant, G., Kort, E. A., Floerchinger, C., Gvakharia, A., Vimont, I., and Sweeney, C. (2019). Large fugitive methane emissions from urban centers along the us east coast. *Geophysical research letters*, 46(14):8500–8507.
- Sargent, M. R., Floerchinger, C., McKain, K., Budney, J., Gottlieb, E. W., Hutyra, L. R., Rudek, J., and Wofsy, S. C. (2021). Majority of us urban natural gas emissions unaccounted for in inventories. *Proceedings of the National Academy of Sciences*, 118(44).
- von Fischer, J. C., Cooley, D., Chamberlain, S., Gaylord, A., Griebenow, C. J., Hamburg, S. P., Salo, J., Schumacher, R., Theobald, D., and Ham, J. (2017). Rapid, vehicle-based identification of location and magnitude of urban natural gas pipeline leaks. *Environmental science & technology*, 51(7):4091–4099.
- Weller, Z. D., Roscioli, J. R., Daube, W. C., Lamb, B. K., Ferrara, T. W., Brewer, P. E., and von Fischer, J. C. (2018). Vehicle-based methane surveys for finding natural gas leaks and estimating their size: validation and uncertainty. *Environmental science & technology*, 52(20):11922–11930.