Final Report

Study Title Independent Laboratory Validation of Analytical Method 14125.6100 for the Determination of Novaluron Degradates CPU and CLA in Water

Study Guideline(s) OCSPP 850.6100 OPPTS 860.1340

INTRODUCTION

The objective of this study was to independently validate the analytical method in Study No. 14125.6100, for measuring residues of Novaluron degradates CPU and CLA in aqueous matrices, in accordance with EPA OCSPP 850.6100 (2012) and OPPTS 860.1340 (1996) guidelines.

The analytical method (Study No. 14125.6100) was provided by Smithers ERS, Wareham on behalf of the sponsor. The method was re-written in Smithers ERS, Harrogate format as draft method SMV 3202770-01D, including the instrumentation available at Smithers ERS, Harrogate. This was used for method validation, and re-issued as SMV 3202770-01V when validation was complete.

Control samples of ground and surface water were fortified with CPU and CLA at 0.1 and 1 μ g/L in quintuplicate and analysed. Samples were diluted 1:1 v/v with acetonitrile and then diluted into calibration range with acetonitrile: water (50:50 v/v).

To assess matrix effects, triplicate standards were prepared in acetonitrile: water (50:50 v/v) and in control water final extract.

Samples were analysed for CPU and CLA using Liquid Chromatography with tandem Mass Spectrometry detection (LC-MS/MS).

Matrix effects, linearity and specificity of the method were determined. Precision and accuracy were calculated at each validation level in each water for CPU and CLA. One primary and one confirmatory LC-MS/MS transition were analysed for CPU and CLA.

MATERIALS AND METHODS

Protocol Adherence

The study was conducted in accordance with the protocol and one amendment with no deviations.

Test Substances

Test Substance Name:	CPU
IUPAC Name:	<i>N</i> -{3-chl

N-{3-chloro-4-[1,1,2-trifluoro-2-(trifluoromethoxy)ethoxy]phenyl}urea

Structure:

Molecular Formula: Molecular Weight: Lot Number: Purity: Storage Conditions Retest Date: C₁₀H₇ClF₆N₂O₃ 352.6 g/mol 554-187-01 99.50% Room temperature (15-25°C) 10 August 2022

Test Substance Name:

IUPAC Name:

CLA 3-chloro-4-[1,1,2-trifluoro-2-(trifluoromethoxy)ethoxy]aniline

Structure:

Molecular Formula: Molecular Weight: Lot Number: Purity: Storage Conditions: Retest Date: C₉H₆ClF₆NO₂ 309.6 g/mol 554-136-01 97.33% Room temperature (15-25°C) 10 August 2022

Test Matrices

Control ground and surface water were sourced by Smithers ERS. The waters used were CS38/20 Borehole ground water and CS01/20 Fountains Abbey surface water.

Water Name	Unique ID	Water Type	Suspended Solids (mg/L)	Conductivity (µS/cm)	Hardness (mg/L CaCO ₃)	рН	Dissolved Organic Carbon (mg/L)
Borehole	CS38/20	Ground	1	631	312	8.4	3.68
Fountains Abbey	CS01/20	Surface	5	140	132	7.51	8.53

Water characterisation data are listed in the following table:

Reagents

- Acetonitrile
- Water
- 0.1% Formic acid in water
- 0.1% Formic acid in acetonitrile

HPLC grade, Honeywell Milli-Q (with LCPAK polisher) LC-MS grade, Honeywell LC-MS grade, Honeywell

Equipment

- Shimadzu Nexera series HPLC system with AB Sciex API 5000 MS/MS detector
- HPLC column: Waters Xbridge BEH C18, 2.5 µm, 2.1 x 50 mm
- Analytical balance
- Positive displacement pipettes
- Glass jars
- Volumetric flasks
- Amber glass vials
- Disposable glass vials
- HPLC vials

Analytical Method

Analytical method 14125.6100 was supplied by Smithers ERS, Wareham on behalf of the sponsor. The method was re-written in Smithers ERS, Harrogate format as draft method SMV 3202770-01D, including the instrumentation available at Smithers ERS, Harrogate. This was used for method validation, and re-issued as SMV 3202770-01V when validation was complete. The complete analytical procedure is presented in Appendix 3. A typical batch of thirteen samples can be completed by a skilled analyst within one working day (8 hours).

Preparation of Reagents

Acetonitrile: water (50:50 v/v)

250 mL acetonitrile was mixed with 250 mL Milli-Q water.

Reagents were stored at room temperature and given a nominal expiry date of one month.

Preparation of Stock Solutions

Primary Stock Solutions

Primary stock solutions of CPU and CLA were prepared at $1000 \,\mu$ g/mL in acetonitrile as described in the following table:

Stock ID	Test substance	Amount Weighed (mg)	Purity (%)	Solvent	Final Volume (mL)	Concentration (µg/mL) ¹	Stock Use
Stock 1	CLA	10.43	07.22		10.156	1000	
Stock 2	CLA	10.45	97.55	A aatonitrila	10.175	1000	Secondary
Stock 1	CDU	10.19	00.5	Acetomitme	10.139	1000	solution
Stock 2	CPU	10.23	99.5		10.179	1000	

¹Corrected for Purity.

Duplicate stocks were prepared for correlation purposes.

Primary stocks were stored refrigerated in amber glass bottles and given a nominal expiry of three months.

Secondary Stock Solutions

Secondary stock solutions of CPU and CLA were prepared as described in the following table:

Test substance	Primary Stock Concentration (µg/mL)	Volume Taken (mL)	Solvent	Final Volume (mL)	Secondary Stock Concentration (µg/mL)	Stock Use
CPU	1000	0.1	Acatomitmila	10	10	Sub-stock
CLA	1000	0.1	Acetomume	10	10	solution

Secondary stock solutions were stored refrigerated in amber glass bottles for up to one month.

Sub-Stock Solutions

Sub-stock solutions of CPU and CLA were prepared as described in the following table:

Test substance name	Secondary Stock Concentration (µg/mL)	Volume Taken (mL)	Solvent	Final Volume (mL)	Sub-Stock Concentration (µg/mL)	Stock Use
CPU	10	0.01		10	0.01	Fortification
CLA	10	0.01	Aastonitrila	10	0.01	10 x LOQ and
Mixed	0.01	1	Acetomtrite	10	0.001	Intermediate calibration standard

Volumes may have been scaled as appropriate.

Sub-stock solutions were prepared on the day of use and stored refrigerated until the corresponding analysis was complete.

Preparation of Non-Matrix Matched Standards for Matrix Assessment

Non-matrix matched standards of CPU and CLA were prepared in acetonitrile: water (50:50 v/v) for comparison with matrix-matched standards as described in the following table:

Stock Concentration (µg/L)	Volume Taken (mL)	Solvent	Final Volume (mL)	Concentration (µg/L)
1	0.25	A	5	0.05
1	0.25	Acetomitrile: water (50.50 w/w)	5	0.05
1	0.25	(30.30 V/V)	5	0.05

Preparation of Matrix Matched Standards for Matrix Assessment

Matrix-matched standards of CPU and CLA were prepared in control water final extract.

Stock Concentration (µg/L)	Volume Taken (mL)	Solvent	Final Volume (mL)	Concentration (µg/L)
1	0.25	Carrow d restor	5	0.05
1	0.25	Ground water	5	0.05
1	0.25	innai extract	5	0.05
1	0.25	Courfe an orante a	5	0.05
1	0.25	Surface water	5	0.05
1	0.25	innai extract	5	0.05

The three matrix-matched standards for each water were analysed alternately with three non-matrix matched standards and their peak areas compared.

Preparation of Calibration Standards

Non-matrix matched calibration standards of CPU and CLA were prepared for the validation of ground water and surface water as described in the following table:

Stock Concentration	Volume Taken	Solvent	Final Volume	Concentration
(µg/L)	(mL)		(mL)	(µg/L)
1	0.5		10	0.05
0.05	0.8		1	0.04
0.05	0.6		1	0.03
0.05	0.4	Acetonitrile: water	1	0.02
0.05	0.2	(50:50 v/v)	1	0.01
0.05	0.15		1	0.0075
0.05	0.1		1	0.005
0.05	0.06		1	0.003

A single set of calibration standards was prepared for each validation batch, which was analysed twice during the batch, interspersed with the samples.

Sample Preparation and Fortification

5 mL of water was measured into a glass vial. Quintuplicate water samples were fortified at the LOQ ($0.1 \mu g/L$) and at $10 \times LOQ$ ($1 \mu g/L$) with stock solutions of CPU and CLA. Duplicate control water samples and a reagent blank were also prepared, as described in the following tables:

Borehole ground water

Sample ID	Sample Volume (mL)	Stock Concentration (µg/L)	Volume Added (mL)	Fortified Concentration (µg/L)
Reagent Blank A	5	N/A	N/A	N/A
Control E+F	5	N/A	N/A	N/A
F0.1 A-E	5	10	0.05	0.1
F1 A-E	5	10	0.5	1

N/A = Not applicable.

Additional controls were prepared for the initial matrix assessment, which was not reported.

Fountains Abbey surface water

Sample ID	Sample Volume (mL)	Stock Concentration (µg/L)	Volume Added (mL)	Fortified Concentration (µg/L)
Reagent Blank B	5	N/A	N/A	N/A
Control G+H	5	N/A	N/A	N/A
F0.1 F-J	5	10	0.05	0.1
F1 F-J	5	10	0.5	1

N/A = Not applicable.

Additional controls were prepared for the initial matrix assessment, which was not reported.

Sample Dilution

5 mL of acetonitrile was added to the 5 mL of water and mixed. Samples were diluted further into the calibration range using acetonitrile: water (50:50 v/v).

Borehole ground water

Sample ID	Fortified Concentration (µg/L)	Sample Volume (mL)	Final Volume (mL)	Sample Dilution (mL to mL)	Overall Dilution Factor
Reagent Blank A	N/A	5	10	N/A	10
Control E+F	N/A	5	10	0.2-1	10
F0.1 A-E	0.1	5	10	0.2-1	10
F1 A-E	1	5	10	0.08-1	25

N/A = Not applicable.

Fountains Abbey surface water

Sample ID	Fortified	Sample	Final	Sample	Overall
	Concentration	Volume	Volume	Dilution	Dilution
	(µg/L)	(mL)	(mL)	(mL to mL)	Factor
Reagent Blank B	N/A	5	10	N/A	10
Control G+H	N/A	5	10	0.2-1	10
F0.1 F-J	0.1	5	10	0.2-1	10
F1 F-J	1	5	10	0.08-1	25

N/A = Not applicable.

Instrument Conditions

LC-MS/MS analysis was performed using the following instrument conditions:

LC Parameters:

Column#	Waters XBridge BEH C18, 2.5 μ m, 2.1 \times 50 mm				
Mobile Phase A#	0.1% Formic acid in water				
Mobile Phase B#	0.1% Formic acid in acetonitrile				
Flow Rate	0.3 mL/min				
Gradient	Time (min)	Mobile Phase A (%)	Mobile Phase B (%)		
	0.0	70	30		
	0.5	70	30		
	1.5	40	60		
	4.0	0	100		
	5.0	0	100		
	5.1	70	30		
	6.1	70	30		
Run Time	6.1 minutes				
Column Temperature	40°C				
Autosampler Temperature	4°C				
Injection Volume	20 µL				
Retention Time	Approx. 2.5 minutes	(CPU)			
	Approx. 2.9 minutes	(CLA)			
Valco Valve Diverter	Time (min))	Position		
	0		A (to waste)		
	0.5		B (to MS)		
	5.5		A (to waste)		

MS/MS Parameters:

Instrument	AB Sciex API 5000 Triple Quadrupole Mass Spectrometer				
Ionisation Type#	Electrospray (ESI)				
Polarity#	Positive				
Scan Type#	Multiple reaction monitoring (MRM)				
Ion Spray Voltage	5000 V				
Collision Gas (CAD)	5				
Curtain Gas (CUR)	25				
Gas Flow 1 (GS1)	50				
Gas Flow 2 (GS2)	50				
Vaporiser Temperature (TEM)	500°C				
Interface Heater (ihe)	On				
Entrance Potential (EP)	10				
Collision Exit Potential (CXP)	13				
Compound Name	MRM	Declustering	Collision	Dwell Time	
	Transition	Potential (DP)	Energy (CE)	(ms)	
	Ions				
	Monitored				
CPU (Primary)	353.0/275.1	90.0	35.0	400	
CPU (Confirmatory)	353.0/108.0	90.0	55.0	200	
CLA (Primary)	310.0/108.0	90.0	45.0	100	
CLA (Confirmatory)	310.0/127.0	90.0	45.0	100	

Parameters marked # may not be modified. Minor adjustments to the remaining parameters may be required in order to fully optimise the system.

To optimise instrument sensitivity, the CPU and CLA transitions were monitored in a separate sequence. This was not specified in the method validated in study 14125.6100, however a more sensitive instrument was used in that study.

Calculation of Results

When the calibration fit is linear as in this study, Analyst uses the following formula to calculate the concentration of test substance present in the sample:

$$x = \frac{(y-c)}{m} \times DF$$

Where:

x = concentration of test substance in sample (µg/L) y = peak area due to test substance c = y intercept on calibration graph m = gradient of the calibration graph DF = sample dilution factor

Procedural recovery data from fortified samples are calculated via the following equation:

Recovery (%) =
$$\frac{A}{S} \times 100$$

Where:-

A = concentration found in fortified sample ($\mu g/L$) S = concentration added to fortified sample ($\mu g/L$)

The Limit of Detection (LOD) based upon the sample concentration equivalent to three times the baseline noise of a control sample was calculated as follows:

LOD (μ g/L) = 3 × height of control baseline noise × control sample dilution factor × calibration standard concentration (μ g/L) / height of calibration standard peak

The Method Detection Limit (MDL) based upon the sample concentration equivalent to the lowest calibration standard was calculated as follows:

MDL ($\mu g/L$) = lowest calibration standard concentration ($\mu g/L$) × control sample dilution factor

Validation Pass Criteria

The validation was deemed acceptable if the following criteria were met for the primary and confirmatory transitions monitored for CPU and CLA:

Mean Recovery and Precision

Recovery and precision were acceptable if each fortification level had a mean recovery between 70 and 110% and a %RSD (relative standard deviation) $\leq 20\%$.

Specificity/Selectivity

Specificity was acceptable if no significant interferences were found in the control samples at > 20% of the LOQ or > 50% of the MDL peak height response at the retention time of CPU or CLA.

Linearity

The Linear range was acceptable if the lowest calibration standard concentration was $\leq 30\%$ of the equivalent LOQ concentration (after dilution) and the highest calibration standard concentration was $\geq 120\%$ of the $10 \times LOQ$ concentration (after dilution). The correlation coefficient (r) was acceptable if it was ≥ 0.9975 .

LOD (Limit of Detection) Assessment

An estimate of the LOD was made at $3 \times$ the height of the baseline noise of the control samples for primary and confirmatory transitions for CPU and CLA.

MDL (Method Detection Limit)

The MDL was calculated as the initial sample concentration equivalent to the lowest calibration standard (based upon a lowest standard concentration of 0.003 μ g/L and a dilution factor of 10).

Matrix Assessment

An assessment of matrix effects was made by comparison of peak areas for triplicate standards prepared in acetonitrile: water (50:50 v/v) and in control water final extract. This was assessed for CPU and CLA for both the primary and confirmatory transitions.

Results were presented as a % difference from the mean non-matrix standard value.

A difference of $\geq 20\%$ was considered significant.

If matrix effects were determined to be significant, matrix matched calibration standards would be used for method validation.

Solvent calibration lines were used for both the ground water and surface water validations.

The lowest calibration point was equivalent to an initial sample concentration of $0.03 \ \mu g/L$ (using a dilution factor of 10), which is 30% of the LOQ concentration after dilution.

The highest calibration point was equivalent to 1.25 μ g/L (using a dilution factor of 25), which is \geq 120% of the 10 × LOQ concentration after dilution.

Limit of Quantification (LOQ)

The LOQ based upon the lowest level validated was confirmed to be 0.1 μ g/L for CPU and CLA in ground water and surface water.

Limit of Detection (LOD)

The LOD based upon the sample concentration equivalent to $3 \times$ baseline noise was calculated in ground water and surface water for CPU and CLA (primary and confirmatory). The LOD values are presented in the summary tables at the beginning of the results section.

Method Detection Limit (MDL)

The MDL for CPU and CLA was calculated to be equivalent to an initial sample concentration of 0.03 μ g/L (based upon the lowest standard concentration of 0.003 μ g/L and a dilution factor of 10).

Matrix Effects

An assessment of matrix effects was made by comparison of peak areas from standards prepared using acetonitrile: water (50:50 v/v) and control water final extract. The difference from the mean non-matrix standard peak areas was calculated.

The initial matrix assessment for the CPU primary transition was inconclusive due to poor sensitivity resulting in unacceptable precision in ground and surface water. The matrix assessment was repeated after re-tuning the instrument to improve sensitivity and acceptable precision was obtained for both transitions of CPU and CLA.

Matrix effects were insignificant (< 20% difference from non-matrix standards) for CPU and CLA for both mass transitions in ground and surface water. Therefore, non-matrix matched calibration standards were used for the validation of ground and surface water, which is in agreement with the method validated in study 14125.6100.

Validation Attempts

Surface water

The first validation attempt for CPU and CLA in surface water passed the method validation acceptance criteria.

Ground water

The first validation attempt for CLA in ground water passed the method validation acceptance criteria. However, the lowest calibration point for CPU was excluded as an outlier. Therefore, the required MDL was not demonstrated. The same samples were re-injected the next day with freshly prepared calibration standards and the calibration line was acceptable. As the same vials of samples were injected, this was not considered to be a second validation attempt. Therefore, the first validation attempt for CLA in ground water was considered to have passed the method validation acceptance criteria.

PERFORMANCE CRITERIA

The method validation for CPU in Borehole ground water met the performance criteria as presented in the following table:

Criterion Accentable Limits		Study Performance			
Criterion	Acceptable Linits	Primary	Confirmatory		
Specificity	Peaks attributable to the test substance should be sufficiently resolved from any peaks found in the samples of control matrix to enable quantification.	No extraneous peaks occurred which could interfere with quantification of the peak attributable to the test substance.	No extraneous peaks occurred which could interfere with quantification of the peak attributable to the test substance.		
Linearity: Correlation Coefficient	The data should have a correlation coefficient (r) of not less than 0.9975.				
Matrix Effects	Possible effects of sample components will be evaluated. The effects of matrix enhancement or suppression will be evaluated through the comparison of solvent- based and matrix-matched standards.	Matrix-matched and solver prepared and analysed. Ma insignificant (< 20% differ standards).	nt-based standards were trix effects were ence from non-matrix		
Accuracy: Mean	Mean recoveries of 70.0 to 110%	LOQ, 0.1 µg/L:	LOQ, 0.1 µg/L:		
Recoveries	for each fortification level will be considered acceptable.	10×LOQ, 1 µg/L:	10×LOQ, 1 μg/L:		
Accuracy: Test Concentrations	The study will be performed at two fortification levels which are set by anticipated testing levels, the lowest of which is the LOQ for this analysis and the high being the highest predicted level to be used during testing.	This portion of the study was performed at levels of 0.1 and 1 μ g/L; 0.1 μ g/L was set as the LOQ.			
Precision: Relative Standard	Relative Standard Deviation (RSD) <20% for each fortification level	LOQ, 0.1 µg/L:	LOQ, 0.1 µg/L:		
Deviation (RSD)	will be considered acceptable.	10×LOQ, 1 μg/L:	10×LOQ, 1 μg/L:		
Precision: Repeatability of Recovery	Five determinations will be made at each fortification level.	Five replicates were prepar each of the two fortification	ed and analysed for n levels.		
Limit Of Quantitation (LOQ)	Blank values (reagent blanks and untreated control samples) should not exceed 20% of the LOQ.	All blank sample values were $< 20\%$ of the LOQ (0.1 µg/L).	All blank sample values were $< 20\%$ of the LOQ (0.1 µg/L).		
Limit Of Detection (LOD)	The LOD will be estimated as the sample concentration equivalent to three times the baseline height in the control samples.	0.01944 μg/L	0.01511 µg/L		
Method Detection Limit (MDL)	The MDL will be set at the lowest concentration that can be detected in test solution samples. This value is calculated based on the concentration of the low calibration standard and the dilution factor of the control samples.	0.03 μg/L	0.03 µg/L		
Confirmation of Analyte Identification	A chromatographic confirmatory method will be used to determine test solution concentrations during validation.	Primary ion: 353.0/275.1 amu Meets all method and guideline specifications outlined in this table.	Confirmatory ion: 353.0/108.0 amu Meets all method and guideline specifications outlined in this table.		

Critorion Accontable Limits		Study Performance			
Criterion	Acceptable Linits	Primary	Confirmatory		
Specificity	Peaks attributable to the test substance should be sufficiently resolved from any peaks found in the samples of control matrix to enable quantification.	No extraneous peaks occurred which could interfere with quantification of the peak attributable to the test substance.	No extraneous peaks occurred which could interfere with quantification of the peak attributable to the test substance.		
Linearity: Correlation Coefficient	The data should have a correlation coefficient (r) of not less than 0.9975.				
Possible effects of sample components will be evaluated. The effects of matrix enhancement or suppression will be evaluated through the comparison of solvent-based and matrix matched areadards		Matrix-matched and solvent-based standards were prepared and analysed. Matrix effects were insignificant (< 20% difference from non-matrix standards).			
Accuracy: Mean	Mean recoveries of 70.0 to 110%	LOQ, 0.1 µg/L:	LOQ, 0.1 µg/L:		
Recoveries	for each fortification level will be considered acceptable.	10×LOQ, 1 μg/L:	10×LOQ, 1 µg/L:		
Accuracy: Test Concentrations	The study will be performed at two fortification levels which are set by anticipated testing levels, the lowest of which is the LOQ for this analysis and the high being the highest predicted level to be used during testing.	This portion of the study was performed at levels of 0.1 and 1 μ g/L; 0.1 μ g/L was set as the LOQ.			
Precision: Relative	Relative Standard Deviation (RSD) ≤20% for each fortification	LOQ, 0.1 µg/L:	LOQ, 0.1 µg/L:		
Standard Deviation (RSD)	level will be considered acceptable.	10×LOQ, 1 μg/L:	10×LOQ, 1 μg/L:		
Precision: Repeatability of Recovery	Five determinations will be made at each fortification level.	Five replicates were prepared of the two fortification levels	l and analysed for each		
Limit Of Quantitation (LOQ)	Blank values (reagent blanks and untreated control samples) should not exceed 20% of the LOQ.	All blank sample values were $< 20\%$ of the LOQ (0.1 µg/L).	All blank sample values were $< 20\%$ of the LOQ (0.1 µg/L).		
Limit Of Detection (LOD)	The LOD will be estimated as the sample concentration equivalent to three times the baseline height in the control samples.	0.00302 μg/L	0.00870 μg/L		
Method Detection Limit (MDL)	The MDL will be set at the lowest concentration that can be detected in test solution samples. This value is calculated based on the concentration of the low calibration standard and the dilution factor of the control samples.	0.03 µg/L	0.03 µg/L		
Confirmation of Analyte Identification	A chromatographic confirmatory method will be used to determine test solution concentrations during validation.	Primary ion: 310.0/108.0 amu Meets all method and guideline specifications outlined in this table	Confirmatory ion: 310.0/127.0 amu Meets all method and guideline specifications outlined in this table		

The method validation for CLA in Borehole ground water met the performance criteria as presented in the following table:

The method validation for CPU in Fountains Abbey surface water met the performance criteria as presented in the following table:

Critorian	A acoutable I imita	Study Performance		
Criterion	Acceptable Limits	Primary	Confirmatory	
Specificity	Peaks attributable to the test substance should be sufficiently resolved from any peaks found in the samples of control matrix to enable quantification.	No extraneous peaks occurred which could interfere with quantification of the peak attributable to the test substance.	No extraneous peaks occurred which could interfere with quantification of the peak attributable to the test substance.	
Linearity: Correlation Coefficient	The data should have a correlation coefficient (r) of not less than 0.9975.			
Matrix Effects	Possible effects of sample components will be evaluated. The effects of matrix enhancement or suppression will be evaluated through the comparison of solvent- based and matrix-matched standards.	Matrix-matched and solvent-based standards were prepared and analysed. Matrix effects were insignificant (< 20% difference from non-matrix standards).		
Accuracy: Mean	Mean recoveries of 70.0 to 110% for	LOQ, 0.1 µg/L:	LOQ, 0.1 µg/L:	
Recoveries	each fortification level will be considered acceptable.	10×LOQ, 1 μg/L:	10×LOQ, 1 μg/L:	
Accuracy: Test Concentrations	The study will be performed at two fortification levels which are set by anticipated testing levels, the lowest of which is the LOQ for this analysis and the high being the highest predicted level to be used during testing.	This portion of the study was performed at le of 0.1 and 1 μ g/L; 0.1 μ g/L was set as the LC		
Precision:	Relative Standard Deviation (RSD)	LOQ, 0.1 µg/L:	LOQ, 0.1 µg/L:	
Deviation (RSD)	be considered acceptable.	10×LOQ	10×LOQ, 1 μg/L:	
Precision: Repeatability of Recovery	Five determinations will be made at each fortification level.	Five replicates were prep each of the two fortificati	ared and analysed for on levels.	
Limit Of Quantitation (LOQ)	Blank values (reagent blanks and untreated control samples) should not exceed 20% of the LOQ.	All blank sample values were $< 20\%$ of the LOQ (0.1 µg/L).	All blank sample values were $< 20\%$ of the LOQ (0.1 µg/L).	
Limit Of Detection (LOD)	The LOD will be estimated as the sample concentration equivalent to three times the baseline height in the control samples.	0.02317 μg/L	0.01001 μg/L	
Method Detection Limit (MDL)	The MDL will be set at the lowest concentration that can be detected in test solution samples. This value is calculated based on the concentration of the low calibration standard and the dilution factor of the control samples.	0.03 µg/L	0.03 μg/L	
Confirmation of Analyte Identification	A chromatographic confirmatory method will be used to determine test solution concentrations during validation.	Primary ion: 353.0/275.1 amu Meets all method and guideline specifications outlined in this table.	Confirmatory ion: 353.0/108.0 amu Meets all method and guideline specifications outlined in this table.	

The method validation for CLA in Fountains Abbey surface water met the
performance criteria as presented in the following table:

Critorian	Accontable Limite	Study Performance		
Criterion	Acceptable Limits	Primary	Confirmatory	
Specificity	Peaks attributable to the test substance should be sufficiently resolved from any peaks found in the samples of control matrix to enable quantification.	No extraneous peaks occurred which could interfere with quantification of the peak attributable to the test substance.	No extraneous peaks occurred which could interfere with quantification of the peak attributable to the test substance.	
Linearity: Correlation Coefficient	The data should have a correlation coefficient (r) of not less than 0.9975.			
Matrix Effects	Possible effects of sample components will be evaluated. The effects of matrix enhancement or suppression will be evaluated through the comparison of solvent- based and matrix-matched standards.	Matrix-matched and solvent-based standards were prepared and analysed. Matrix effects were insignificant (< 20% difference from non-matrix standards).		
Accuracy: Mean	Mean recoveries of 70.0 to 110%	LOQ, 0.1 µg/L:	LOQ, 0.1 µg/L:	
Recoveries	considered acceptable.	10×LOQ, 1 µg/L:	10×LOQ, 1 µg/L:	
Accuracy: Test Concentrations	The study will be performed at two fortification levels which are set by anticipated testing levels, the lowest of which is the LOQ for this analysis and the high being the highest predicted level to be used during testing.	This portion of the study was performed at levels of 0.1 and 1 μ g/L; 0.1 μ g/L was set as the LOQ.		
Precision: Relative Standard	Relative Standard Deviation (RSD) <20% for each fortification level	LOQ, 0.1 µg/L:	LOQ, 0.1 µg/L:	
Deviation (RSD)	will be considered acceptable.	10×LOQ, 1 μg/L:	10×LOQ, 1 µg/L:	
Precision: Repeatability of Recovery	Five determinations will be made at each fortification level.	Five replicates were prepa of the two fortification lev	red and analysed for each els.	
Limit Of Quantitation (LOQ)	Blank values (reagent blanks and untreated control samples) should not exceed 20% of the LOQ.	All blank sample values were < 20% of the LOQ $(0.1 \ \mu g/L)$.	All blank sample values were $< 20\%$ of the LOQ (0.1 µg/L).	
Limit Of Detection (LOD)	The LOD will be estimated as the sample concentration equivalent to three times the baseline height in the control samples.	0.00339 µg/L	0.00751 μg/L	
Method Detection Limit (MDL)	The MDL will be set at the lowest concentration that can be detected in test solution samples. This value is calculated based on the concentration of the low calibration standard and the dilution factor of the control samples.	0.03 μg/L	0.03 μg/L	
Confirmation of Analyte Identification	A chromatographic confirmatory method will be used to determine test solution concentrations during validation.	Primary ion: 310.0/108.0 amu Meets all method and guideline specifications outlined in this table.	Confirmatory ion: 310.0/127.0 amu Meets all method and guideline specifications outlined in this table.	

Appendix 3 Analytical Procedure

Analytical Procedure

Procedure Title	Determination of Novaluron Degradates CPU and CLA in Ground Water and Surface Water by LC-MS/MS
Procedure Code	SMV 3202770-01V
Issue Date	17 September 2020
Page Number	1 of 11

The methodology described in this procedure has been validated in Borehole Ground Water and Fountains Abbey Surface Water at 0.1 and 1 μ g/L.

REVISION HISTORY

SMV 3202770-01D New method for independent laboratory validation based upon Smithers ERS, Wareham study 14125.6100.

SMV 3202770-01V Method re-issued following validation

SAFETY PRECAUTIONS

Operators should take the normal precaution of wearing gloves, laboratory coats and safety glasses when handling compound and matrix samples.

Safety assessments (Control of Substances Hazardous to Health, COSHH) have been made of those procedural steps involving preparation of solutions, reagents and analysis of matrix samples. Appropriate safety codes have been included in the text and are defined in the section titled General Handling Control Categories.

The hazards and risks of the substances hazardous to health used in this method have been considered. Provided the method is accurately followed and the control measures specified in the method are correctly used, there should be no foreseeable hazards to health.

INTRODUCTION

This method describes the procedure for determining concentrations of Novaluron degradates CPU and CLA in ground water and surface water by LC-MS/MS. Water samples are diluted with acetonitrile. An aliquot is diluted into calibration range with acetonitrile: water (50:50 v/v) and quantified using LC-MS/MS.

Matrix effects for CPU and CLA in ground and surface water will be determined by comparing peak areas of calibration standards prepared in control water final extract and acetonitrile: water (50:50 v/v). Matrix effects are considered significant if the matrix matched standard area is $\geq 20\%$ different from the non-matrix standard area. Provide that matrix effects are insignificant, non-matrix matched calibration standards should be used.

CPU and CLA may contaminate re-usable glassware, therefore disposable glassware should be used where possible, to avoid cross-contamination.

- 2 -

HPLC grade, Honeywell

LC-MS grade, Honeywell

LC-MS grade, Honeywell

Milli-Q (with LCPAK polisher)

APPARATUS, MATERIALS, REAGENTS AND SOLUTIONS

Apparatus and Glassware

- Shimadzu Nexera series HPLC system with AB Sciex API 5000 MS/MS detector
- HPLC column: Waters Xbridge BEH C18, 2.5 μm, 2.1 x 50 mm
- Analytical balance
- Positive displacement pipettes
- Glass jars
- Volumetric flasks
- Amber glass vials
- Disposable glass vials
- HPLC vials

Equivalent equipment may be used if required

Materials

- Acetonitrile
- Water
- 0.1% Formic acid in water
- 0.1% Formic acid in acetonitrile

Equivalent materials may be used if required

Reagents

Acetonitrile: water (50:50 v/v) Mix 250 mL HPLC grade acetonitrile with 250 mL Milli-Q water.

Reagent volumes may be scaled as appropriate.

Standard Solution Preparation [1b, 4a]

Primary Standard Stock

Separately prepare duplicate stock solutions of CPU and CLA at 1000 μ g/mL in acetonitrile. Accurately weigh \geq 10 mg test substance, corrected for purity and transfer into a 10 mL volumetric flask. Adjust the volume to give exactly 1000 $\mu\text{g/mL}.$ Transfer into an amber glass bottle. The primary stocks should be stored refrigerated and given a nominal expiry date of 3 months.

Standard Correlation

Dilute the duplicate primary stocks to the mid-point of the calibration line. Correlate the standard solutions by injecting each of the two calibration standards 5 times into the LC-MS/MS. Ensure that the two solutions are injected alternately in the run sequence. The results for the correlation should be \pm 5% of the overall mean calculated by peak areas.

Review of Results

Review the data and document the correlation calculations. If the correlation is out of specification, either repeat the injections, re-dilute, or prepare two new stock standards and repeat the procedures in sections << Primary Standard Stock>> to <<Review cf Results>>.

- 3 -

If the acceptance criteria from section \ll *Standard Correlation*>> have been met, then the calibration solutions are acceptable for use. If required, fortification solutions for method validation will be made from the same stock standard, or its dilutions, from which the calibration line has been prepared.

Secondary Standard Stocks

Prepare secondary stock solutions of CPU and CLA in acetonitrile. The following dilution scheme is suggested:

Test substance	Primary stock concentration (µg/mL)	Volume taken (mL)	Solvent	Final volume (mL)	Secondary Stock Concentration (µg/mL)
CPU	1000	0.1	A	10	10
CLA	1000	0.1	Acetominie	10	10

Transfer into amber glass bottles. The secondary stocks should be stored refrigerated and given a nominal expiry date of 1 month.

Sub-Stocks

Prepare sub-stock solutions of CPU and CLA in acetonitrile. The following dilution scheme is suggested:

Test Substance	Fortifying stock concentration (µg/mL)	Volume taken (mL)	Solvent	Final volume (mL)	Concentration (µg/mL) ¹
CPU	10	0.01		10	0.01
CLA	10	0.01	Acetonitrile	10	0.01
Mixed	0.01	1		10	0.001 ²
¹ Mixed stock of Cl	PU and CLA.				

² Equivalent to 1 µg/L

Transfer into disposable glass vials. The sub-stock solutions should be prepared on the day of use.

Matrix Matched Standards for Matrix Assessment

Prepare ground water or surface water matrix matched standards of CPU and CLA in disposable glass vials as described in the following table:

Stock concentration (µg/L)	Volume taken (mL)	Solvent	Final volume (mL)	Concentration (µg/L)
1	0.05	C	5	0.01
1	0.05	Control water	5	0.01
1	0.05	nnai extract	5	0.01

- 4 -

Non-Matrix Matched Standards for Matrix Assessment Prepare non-matrix matched standards of CPU and CLA in acetonitrile: water (50:50 v/v). The following dilution scheme is suggested:

Stock Concentration (µg/L)	Volume Taken (mL)	Solvent	Final Volume (mL)	Concentration (µg/L)
1	0.25	A	5	0.05
1	0.25	(S0-S0 w/w)	5	0.05
1	0.25	(00.00 WV)	5	0.05

Calibration Standards

Prepare calibration standards of CPU and CLA in acetonitrile: water (50:50 v/v). The following dilution scheme is suggested:

Stock Concentration	Volume	Solvent	Final Volume	Concentration
(µg/L)	Taken (mL)		(mL)	(µg/L)
1	0.5		10	0.05
0.05	0.8		1	0.04
0.05	0.6		1	0.03
0.05	0.4	Acetonitrile: water	1	0.02
0.05	0.2	(50:50 v/v)	1	0.01
0.05	0.15		1	0.0075
0.05	0.1		1	0.005
0.05	0.06		1	0.003

A single set of calibration standards should be prepared for each validation batch and injected twice, interspersed with and bracketing the samples.

PROCEDURES

All procedures will be carried out in compliance with departmental SOPs, following departmental safety procedures in conjunction with COSHH assessments.

All work should be carried out under the minimum control categories listed under the safety precautions section. Additional controls are listed with the individual steps of the procedure.

Fortification of Control Samples for Method Validation [1b, 4a]

Measure 5 mL of either ground water or surface water into a glass vial. Fortify samples using the sub-stocks of CPU and CLA in acetonitrile as shown in the following table:

Number of	Sample Type	Stock	Volume	Sample	Fortified
Replicates		Concentration	Added	Volume	Concentration
		(μg/L)	(mL)	(mL)	(μg/L)
1	Reagent blank ¹	N/A	N/A	5	N/A
2	Control	N/A	N/A	5	N/A
5	LOQ	10	0.05	5	0.1
5	$10 \times LOQ$	10	0.5	5	1

N/A = Not Applicable.

¹Use Milli-Q water as the reagent blank.

- 5 -

- Sample Dilution [1b, 4a]
 Measure 5 mL of water into a glass jar.
 Fortify the samples as shown above.
 Add 5 mL of acetonitrile to each sample.
 - 4. Mix well.
 - 5. Dilute further into the calibration range using acetonitrile: water (50:50 v/v) or control water final extract if matrix matching.6. Transfer into an HPLC vial for analysis.

Sample type	Fortified Concentration (µg/L)	Sample Volume (mL)	Final Volume (mL)	Dilution (mL-mL)	Dilution Factor
Reagent blank	N/A	5	10	N/A	10
Control	N/A	5	10	0.2-1	10
LOQ	0.1	5	10	0.2-1	10
$10 \times LOQ$	1	5	10	0.08-1	25

N/A = Not Applicable.

-б-

	LC-MS/MS C	CONDITIONS	1	
HPLC Parameters:				
Column# Waters XBridge BEH C18, 2.5 μm, 2.1 Mobile Phase A# 0.1% Formic acid in water Mobile Phase B# 0.1% Formic acid in accontrile				
Flow Rate	0.3 mL/min			
Gradient	Time (min)) Mobile Ph	ase A (%) – Mol	oile Phase B (%)
	0.0	74	0	30
	0.5	71	0	30
	1.5	4	0	60
	4.0	0)	100
	5.0	0)	100
	5.1	7	0	30
	б.1	7	0	30
Run Time	6.1 minutes			
Column Temperature	40°C			
Autosampler Temperature	4°C			
Injection Volume	20 µL			
Retention lime	Approx. 2.9 min	nutes (CPU)		
Valas Valas Discutos	Approx. 5.2 min	nutes (CLA)	D	
valco valve Diverter	lime	(min)	Pos	monto)
		v .s	Di A Di A	Masiej
	0 5	5	u)⊡ Atto	weete)
	,		01) A	wastej
MS/MS Parameters:				
Instrument	AB Sciex API *	i000 Triple Quadr	unole Mass Spec	trometer
Ionisation Type#	Electrospray (E	SD)		
Polaritv#	Positive (2			
Scan Type#	Multiple reactio	n monitoring (MR	2MD	
Ion Spray Voltage	5000 V	0		
Collision Gas (CAD)	5			
Curtain Gas (CUR)	25			
Gas Flow 1 (GS1)	20			
Gas Flow 2 (GS2)	10			
Vaporiser Temperature (TEM)	500°C			
Interface Heater (ihe)	On			
Entrance Potential (EP)	10			
Collision Exit Potential (CXP)	13			
Compound Name	MRM	Declustering	Collision	Dwell Time
	Transition	Potential (DP)	Energy (CE)	(ms)
	Monitored			
(PU (Primary)	352 8,275 2	91-0	35.0	50
CPU (Confirmatory)	352.8/108.2	91.0	53.0	50
CI A (Primary)	309 7/108 0	86.0	45.0	50
CLA (Confirmatory)	309.7/127.0	86.0	50.0	50
		00.0	54.4	20

Parameters marked # may not be modified. Minor adjustments to the remaining parameters may be required in order to fully optimise the system.

- 7 -

CALCULATION OF RESULTS

All peak measurements and calculations are performed on Analyst 1.6.2. From the measured peak area, where the calibration fit is linear as in this study, Analyst uses the following formula to calculate the concentration of test substance present in the sample extract.

$$x = \frac{(y-c)}{m} \times DF$$

Where:-

x =concentration of test substance in sample ($\mu g/L$)

y = area of peak due to test substance

m = gradient

 $c = \mathbf{\tilde{Y}}$ intercept on calibration graph

DF = sample dilution factor

Procedural recovery data from fortified samples are calculated via the following equation:

$$Recovery(\%) = \frac{A}{S} \times 100$$

Where:-

A = concentration found in fortified sample ($\mu g/L$)

S = concentration added to fortified sample ($\mu g/L$)

- 8 -

METHOD CRITERIA

For the analysis by LC-MS/MS to be considered successful the following criteria should be met.

- At least 5 calibration standards will be used in the determination of the calibration line.
- The correlation coefficient (r) for the calibration line will be ≥ 0.9975 with a 1/x weighting.
- All sample extracts should be within the appropriate range of calibration standards.
- Mean recovery from fortified samples should be within the range of 70 to 110% at each concentration.
- Precision of fortified sample recoveries should be ≤ 20% RSD at each concentration.
- The control sample should not contain interference > 30% of the LOQ at the retention time of the test substance.

-9-

CATECODY		CONTROL
CATEGORY		CONTROL
Main Division		Name and Specification
1		GLOVES
	а	Disposable latex
	b	Disposable nitrile
	С	Rubber gloves
	đ	Specific type for the job (see assessment giving details)
2		PROTECTIVE CLOTHING
	а	Laboratory coat or equivalent
	b	Disposable overalls
	С	Oversleeves
	d	Overshoes
	e	Plastic apron
3		EYE/FACE PROTECTION
	а	Safety glasses to BS 2092/2 C or better
	ь	Face shield to BS 2092/2 C or better
	С	Safety goggles to BS 2092/2 C or better
4		ENGINEERING CONTROLS
	а	Open bench in ventilated area
	b	Fume cupboard to BS 7258
	С	Laminar flow cabinet to BS 5295 Class 1
	đ	Re-circulating fume chamber
	е	Radioisotope lab
	f	Biohazard lab
	g	Glove box
5		RESPIRATORY PROTECTIVE EQUIPMENT
	а	Disposable filtering facemask (HSE approved),
		i - organic vapour
		ii - dust
		iii – combination organic vapour/dust
		MUST SPECIFY TYPE
	b	Powered respirators/helmets with safety visor to BS 2092/2 C
		or better (HSE approved)
	С	Respirator with specified canister (HSE approved)
6		SPECIFIC IMMUNISATION REQUIRED (GIVE DETAILS)
7		ALLERGIC PERSONS PROHIBITED (SPECIFY ALLERGY)
8		REFER TO MATERIAL SAFETY DATA SHEET
9		KNOWN OR SUSPECTED REPRODUCTIVE HAZARD TO
		EITHER SEX (must specify details)
10		POISON - ensure antidote is available and is within its expiry
		date (must specify details)

Analytical Procedure SMV 3202770-01V GENERAL HANDLING CONTROL CATEGORIES

- 10 -