FINAL REPORT

Independent Laboratory Validation of an Analytical Method for the Determination of Residues of Tri-allate and its Metabolite TCPSA in Drinking Water

GUIDELINES

Regulation (EC) No 1107/2009 Guidance document SANCO/825/00 rev.8.1 of November 16, 2010, European Commission

2 Study Objective

The study objective was to perform an independent laboratory validation (ILV) of analytical methods developed at Laboratorio de Análisis de Residuos de Plaguicidas, Universitat Jaume I, Castellón / Spain in 2016 (López Benet, F., study code 268-16) for the determination of residues of Tri-allate and TCPSA in drinking water according to guideline SANCO/825/00 rev.8.1 using HPLC-MS/MS.

3 Material and Methods

3.1 Test and Reference Items

Name:	Tri-allate
Chemical name (IUPAC):	S-2,3,3-trichloroallyl di-isopropylthiocarbamate
CAS Registry No.:	2303-17-5
Structural formula:	
Molecular formula:	C ₁₀ H ₁₆ Cl ₃ NOS
Molecular Mass:	304.66 g/mol
CIP code:	10105
Supplier:	Sigma-Aldrich
Batch.:	SZBD301XV
Purity:	98.8 %
Date Certificate of Analysis:	12 November 2013
Recommended Storage Conditions:	Refrigerated
Storage Conditions at CIP:	Refrigerated
Date of Expiry:	28 October 2018

All specifications of purity and composition were provided by the supplier.

3.1.2 TCPSA

Name:	TCPSA
Chemical name (IUPAC):	2,3,3-trichloro-prop-2-en-sulfonic acid, sodium salt
CAS Registry No.:	65600-61-5
Structural formula:	
Molecular formula:	C ₃ H ₂ Cl ₃ O ₃ S Na
Molecular Mass:	247.46 g/mol (free acid: 225.48 g/mol)
CIP code:	10106
Supplier:	Synpura
Batch.:	SP17-100-1-1 & SP17-100-1-2
Purity:	99.4%
Date Certificate of Analysis	09 February 2017
Recommended Storage Conditions:	Ambient
Storage Conditions at CIP:	Refrigerated
Date of Expiry:	09 February 2019

All specifications of purity and composition were provided by the supplier.

3.2 Analytical Procedure

3.2.1 Specimen Origin

Drinking water was taken from a local water supplier in Pforzheim, Germany. The parameters of the used water sample are given in Table 1:

Table 1:	Typical parameters of the used drinking water
----------	---

	drinking water
Origin	Drinking Water Pforzheim / Germany
рН	7.66
Conductivity (25°C) [µS/cm]	423
TOC [mg/L]	0.7
Total hardness [mmol/L]	2.42

All parameters were analysed according to DIN EN ISO/IEC 17025:2005 (non-GLP).

3.2.2 Specimen Preparation and Storage

The drinking water sample was stored refrigerated ($\leq 8^{\circ}$ C) until start of analysis and was homogenised by shaking before use.

3.3 Outline of the Method

Residues of Tri-allate were analysed after dilution with HPLC water. Residues of TCPSA were analysed after filtration. Analysis was performed by HPLC coupled with tandem mass spectrometry (HPLC-MS/MS) for both analytes.

A detailed description of the method is given in chapter 3.6.

Representative chromatograms are presented in Appendix 3.

3.3.1 Hazards or Precautions

For conduct of this method the German guidelines for laboratories "Working Safely in Laboratories, Basic Principles and Guidelines" or comparable guidelines in other countries are to be observed. The following chemicals are used, which are classified by the hazardous material regulations according to Regulation (EC) No 1272/2008 [EU-GHS/CLP].

The pertinent safety instructions must be observed when working with all compound mentioned in this method (e.g. hazard (H) and precautionary (P) statements).

3.4 Equipment and Apparatus

- Adjustable pipettes (Eppendorf/Germany or Thermo Labsystems/Finnland)
- Microliter syringes
- HPLC Autosampler vials, 1.8 mL
- HPLC with MS/MS detection (Dionex Ultimate 3000 with AB Sciex API 5500 QTRAP)
- Laboratory balance (Sartorius A 200 S)
- Standard laboratory glassware

3.5 Reagents and Materials

- Acetonitrile, HPLC gradient grade (LGC No.SO-9128-B025)
- Acetone, for residue analysis (LGC No. SO-1142-B025
- Water, HPLC grade (LGC No. SO-6795-B025)
- Methanol, Chromasol (Honeywell No. 34966-2.5L)
- Formic acid (Merck No.1.00264.1000)
- Acetonitrile, LCMS grade (LGC No.SO-9340-B010)
- Water, LCMS grade (LGC No.SO-9368-B010)
- PTFE syringe filters, 0.2 µm, 25 mm (Wicom No. WIC80120)

3.6 Sample preparation

3.6.1 Method

Tri-allate: 0.5 mL of water sample and 0.5 mL of HPLC water were transferred into an autosampler vial. Analysis was performed by HPLC-MS/MS monitoring two mass transitions.

TCPSA: An aliquot of the water sample was filtered through a 0.2 µm PTFE filter and transferred into an autosampler vial. Analysis was performed by HPLC-MS/MS using two different chromatographic columns (quantification: phenyl hexyl, confirmation: C18).

HPLC-MS/MS:	Dionex Ultimate 3000 with AB Sciex API 5500 QTRAP								
Column:	Phenomenex Luna C18(2), 150 mm x 2.0 mm, 5.0 μm (Part No. 00F-4252-B0)								
Mobile phase:	A: Water +0.01% formic acid B: Methanol +0.01% formic acid								
	Time [min]	A [%]	-						
	0.00	60	40	350					
	1.00	60	40	350					
	10.0	5	95	350					
	15.0	5	95	350					
	15.1	60	40	350	_				
	19.0	60	40	350					
Gradient:	Linear								
Column temp.:	30 °C	30 °C							
Interface:	ESI	ESI							
Source polarity:	Positive								
Ion Source:	Turbo Spray								
Curtain gas	20 units								
Collision gas:	Medium								
lon spray voltage:	5.5 kV								
Interface	550 °C								
temperature:									
GS1:	40 units								
GS2:	70 units								
Injection volume:	30 µL*								
Retention time:	~ 14.4 min								
Split:	-								
Valve:	0.1-8 min waste; 8-16 min MS/MS; 1619 min waste								
Quantification:	Matrix-matche	ed extern	al standar	ds					

3.7 HPLC-MS/MS Conditions for Analysis of Tri-allate

*In the primary method validation an injection volume of 15 μ L has been used. In the current ILV the injection volume has been set to 30 μ L due to the needs of the analytical instrumentation used within this study for determination of Tri-allate.

Mass spectrometer parameters:

Analyte Monitored	lons Monitored	DP	EP	CE	CXP	Dwell Time
	m/z	[V]	[V]	[V]	[V]	[ms]
Tri allata	304 → 86	66	10	21	14	150
Tri-allate	304 → 128	66	10	19	14	150

The linearity was proven by injecting matrix-matched standard solutions in the range of $0.0125 \,\mu$ g/L to $2.5 \,\mu$ g/L for Tri-allate.

3.8 HPLC-MS/MS Conditions for Analysis of TCPSA using Phenyl-Hexyl Column (quantification)

HPLC-MS/MS:	Dionex Ultimate 3000 with AB Sciex API 5500 QTRAP									
Column:	Thermo Betasil Phenyl-Hexyl, 150 mm x 2.1 mm, 3.0 µm (Part No. 73003-152130)									
Mobile phase:		A: Water +0.01% formic acid B: Acetonitrile								
	Time [min]	Time [min] Α [%] Β [%] Flow [μL/min]								
	0.00	0.00 90 10 300								
	8.00	10	90	300						
	11.0	10	90	300	_					
	11.1	90	10	300	-					
	16.0	90	10	300						
Gradient:	Linear									
Column temp.:	30 °C									
Interface:	ESI	ESI								
Source polarity:	Negative									
Ion Source:	Turbo Spray									
Curtain gas	20 units									
Collision gas:	Medium									
lon spray voltage:	-4.5 kV									
Interface temperature:	650 °C									
GS1:	40 units									
GS2:	80 units									
Injection volume:	25 µL									
Retention time:	~ 6.6 min									
Split:	-									
Valve:	0-1 min waste; 1-16 min MS/MS									
Quantification:	Matrix-match	ed externa	al standar	ds						

Mass spectrometer parameters:

Analyte Monitored		DP	EP	CE	CXP	Dwell Time
	m/z	[V]	[V]	[V]	[V]	[ms]
TCPSA	223 → 80	-74	-10	-35	-7	150

The linearity was proven by injecting matrix-matched standard solutions in the range of $0.025 \,\mu$ g/L to $2.5 \,\mu$ g/L for TCPSA.

3.9 HPLC-MS/MS Conditions for Analysis of TCPSA using C18 Column (confirmation)

HPLC-MS/MS:	Dionex Ultimate 3000 with AB Sciex API 5500 QTRAP									
Column:	Phenomenex Luna C18(2), 150 mm x 2.0 mm, 5.0 μm (Part No. 00F-4252-B0)									
Mobile phase:		A: Water +0.01% formic acid B: Acetonitrile								
	Time [min]	Time [min] A [%] B [%] Flow [µL/min]								
	0.00	90	10	500						
	6.00	10	90	500						
	11.0	10	90	500	_					
	11.1	90	10	500	-					
	16.0	90	10	500						
Gradient:	Linear									
Column temp.:	30 °C									
Interface:	ESI									
Source polarity:	Negative									
Ion Source:	Turbo Spray									
Curtain gas	20 units									
Collision gas:	Medium									
lon spray voltage:	-4.5 kV									
Interface temperature:	650 °C									
GS1:	40 units									
GS2:	80 units									
Injection volume:	15 µL*									
Retention time:	~ 6.6 min									
Split:	-									
Valve:	0-0.1 min waste; 0.1-16 min MS/MS									
Quantification:	Matrix-matched external standards									

*In the primary method validation an injection volume of 25 μ L has been used. In the current ILV the injection volume has been set to 15 μ L due to the needs of the analytical instrumentation used within this study for determination of TCPSA using a C18 chromatographic column.

Mass spectrometer parameters:

Analyte Monitored		DP	EP	CE	CXP	Dwell Time
	m/z	[V]	[V]	[v]	[V]	[ms]
TCPSA	223 → 80	-74	-10	-35	-7	150

The linearity was proven by injecting matrix-matched standard solutions in the range of $0.025 \,\mu$ g/L to $2.5 \,\mu$ g/L for TCPSA.

3.10 Calculation of the Residues

Matrix-matched external standard solutions comparable to the concentration expected in specimens were injected before and after every 2-4 samples in each analytical sequence.

The residues (R) in $[\mu g/L]$ of Tri-allate and TCPSA were calculated using external matrix-matched bracketing standards according to the following equations:

$$R = \frac{A_x \cdot C_{St,nominal}}{A_{St}} \cdot df$$

where

A_x: Peak area of the analyte

C_{St, nominal}: Nominal concentration of the analyte in external bracketing standard solutions, in µg/L

- A_{St}: Peak area of the analyte in external standard solution (mean from bracketing standards)
- df: Dilution factor: Dilution 1:2 for Tri-allate, df=2 No dilution for TCPSA, df=1

Recoveries were calculated by the following equation:

$$Rec = \frac{R_{found}}{R_{fortified}} \cdot 100\%$$

Rec: Recovery [%]

 R_{found} : Analyte determined [µg/L]

R_{fortified}: Fortification level [µg/L]

Final Report

Example calculation:

Recovery 0.1 μ g/L in drinking water (Tri-allate, quantifier 304 \rightarrow 86):

Sample ID: RDW 0.1-1

A_x: 28047 counts

C_{St, nominal}: 0.05 µg/L

A_{St}: 29420 counts (mean of two bracketing standards)

 $R = \frac{28047 \cdot 0.05\,\mu\text{g/L}}{29420} \cdot 2 = 0.0953\,\mu\text{g/L}$

 $Rec = \frac{0.0953 \, \mu g/L}{0.1 \, \mu g/L} \cdot 100\% = 95\%$

3.11 Standard Solutions

3.11.1 Stock Solutions

A stock solution containing 400 mg/L Tri-allate (S400 (10105)) was prepared as follows:

20.2 mg of the reference item (purity 98.8 %) were weighed into a 50 mL volumetric flask and the volume was adjusted to 50 mL with acetone.

Dilutions at 10 mg/L (S10 (10105)), 1 mg/L (S1 (10105)), 0.1 m/L (S0.1 (10105)) and 0.01 mg/L (S0.01 (10105)) were prepared in acetonitrile.

A stock solution containing 400 mg/L TCPSA (S400 (10106)) was prepared as follows:

20.1 mg of the reference item (purity 99.4 %) were weighed into a 50 mL volumetric flask and the volume was adjusted to 50 mL with methanol.

Dilutions at 10 mg/L (S10 (10106)), 1 mg/L (S1 (10106)), 0.1 m/L (S0.1 (10106)) and 0.01 mg/L (S0.01 (10106)) were prepared in methanol.

All solutions were stored at $< 8^{\circ}$ C in the dark.

3.11.2 Preparation of Standard Solutions for Tri-allate

Dilutions of the 1 mg/L standard solution of Tri-allate (S1(10105)) were prepared in acetonitrile. The preparation of these dilutions is described in Table 2. These dilutions were used for fortification of recovery samples and as pre-dilution step for preparation of matrix-matched calibration standards.

Standard solution	Standard solution used for preparation	Volume used [µL]	Solvent used [µL]	Solvent	Concentration obtained [µg/L]
Std 500 µg/L	S1 (10105)	500	500		500
Std 250 µg/L	Std 500 µg/L	500	500		250
Std 100 µg/L	S1 (10105)	100	900		100
Std 50 µg/L	Std 100 µg/L	500	500	Acetonitrile	50
Std 25 µg/L	Std 50 µg/L	500	500	Acetonitine	25
Std 10 µg/L	Std 100 µg/L	100	900		10
Std 5 µg/L	Std 50 µg/L	100	900		5
Std 2.5 µg/L	Std 5 µg/L	500	500		2.5

	Table 2:	Preparation of standard solutions of Tri-allate
--	----------	---

Std: Standard solution

3.11.3 Preparation of Matrix-matched Calibration Standards for the Determination of Triallate

For preparation of matrix-matched standard solutions, dilutions of Tri-allate standard solutions in acetonitrile (Table 2) were further diluted with drinking water as described in Table 3. These standard solutions (intermediate standard solutions) prepared in drinking water were finally diluted 1:2 with water (HPLC gradient grade) to receive matrix-matched calibration standards used for quantification of Tri-allate (Table 4).

 Table 3: Preparation of intermediate standard solutions for preparation of matrixmatched standard solutions for Tri-allate

Standard solution	Standard solution used for preparation	Volume used [µL]	Final dilution volume* [mL]	Solvent	Concentration obtained [µg/L]
Std 5 µg/L V1	Std 500 µg/L	100	10		5
Std 2.5 µg/L V1	Std 250 µg/L	100	10		2.5
Std 1 µg/L V1	Std 100 µg/L	100	10		1
Std 0.5 µg/L V1	Std 50 µg/L	100	10	Drinking	0.5
Std 0.25 µg/L V1	Std 25 µg/L	100	10	water	0.25
Std 0.1 µg/L V1	Std 10 µg/L	100	10		0.1
Std 0.05 µg/L V1	Std 5 µg/L	100	10		0.05
Std 0.025 µg/L V1	Std 2.5 µg/L	100	10		0.025

* using volumetric flasks; V1: Dilution 1 (intermediate standard solution)

Table 4:	Preparation	of	matrix-matched	calibration	standard	solutions	for	analysis of	F
	Tri-allate								

Standard solution	Standard solution used for preparation	Volume used [µL]	Solvent used [µL]	Solvent	Concentration obtained [µg/L]
MStd 2.5 µg/L DW	Std 5 µg/L V1	500	500		2.5
MStd 1.25 µg/L DW	Std 2.5 µg/L V1	500	500		1.25
MStd 0.5 µg/L DW	Std 1 µg/L V1	500	500	Water	0.5
MStd 0.25 µg/L DW	Std 0.5 µg/L V1	500	500	(HPLC	0.25
MStd 0.125 µg/L DW	Std 0.25 µg/L V1	500	500	gradient	0.125
MStd 0.05 µg/L DW	Std 0.1 µg/L V1	500	500	grade)	0.05
MStd 0.025 µg/L DW	Std 0.05 µg/L V1	500	500		0.025
MStd 0.0125 µg/L DW	Std 0.025 µg/L V1	500	500		0.0125

MStd: Matrix-matched standard solution; DW: Drinking water

In addition, standard solutions in pure solvent (HPLC gradient grade water) at LOQ and 10 fold LOQ were prepared accordingly using HPLC gradient grade water instead of drinking water to check for matrix effects.

3.11.4 Preparation of Standard Solutions for TCPSA

Dilutions of the 1 mg/L standard solution of TCPSA (S1(10106)) were prepared in methanol. The preparation of these dilutions is described in Table 5. These dilutions were used for fortification of recovery samples and as pre-dilution step for preparation of matrix-matched calibration standards.

Standard solution	Standard solution used for preparation	Volume used [µL]	Solvent used [µL]	Solvent	Concentration obtained [µg/L]
Std 250 µg/L M	S1 (10106)	100	300		250
Std 100 µg/L M	S1 (10106)	100	900		100
Std 50 µg/L M	Std 100 µg/L M	500	500		50
Std 25 µg/L M	Std 50 µg/L M	500	500	Methanol	25
Std 10 µg/L M	Std 100 µg/L M	100	900		10
Std 5 µg/L M	Std 50 µg/L M	100	900		5
Std 2.5 µg/L M	Std 5 µg/L M	50	500		2.5

Table 5: Preparation of standard solutions of TCPSA

Std: Standard solution; M: Metabolite (TCPSA)

3.11.5 Preparation of Matrix-matched Calibration Standards for the Determination of TCPSA

Matrix-matched calibration standards were prepared in drinking water by dilution of the TCPSA standard solutions prepared in methanol (Table 5). Preparation of these matrix-matched calibration standards is described in Table 6.

TCI SA					
Standard solution	Standard solution used for preparation	Volume used [µL]	Solvent volume [mL]	Solvent	Concentration obtained [µg/L]
MStd 2.5 µg/L DWM	Std 250 µg/L M	50	5		2.5
MStd 1 µg/L DWM	Std 100 µg/L M	50	5		1
MStd 0.5 µg/L DWM	Std 50 µg/L M	50	5	Drinking	0.5
MStd 0.25 µg/L DWM	Std 25 µg/L M	50	5	Drinking water	0.25
MStd 0.1 µg/L DWM	Std 10 µg/L M	50	5		0.1
MStd 0.05 µg/L DWM	Std 5 µg/L M	50	5		0.05
MStd 0.025 µg/L DWM	Std 2.5 µg/L M	50	5		0.025

Table 6:	Preparation	of	matrix-matched	calibration	standard	solutions	for	analysis	
	TCPSA								

MStd: Matrix-matched standard solution; DW: Drinking water; M: Metabolite (TCPSA)

4 Fortifications

Control (untreated) specimens were fortified prior to extraction with the standard solutions as follows:

Analyte	Specimen volume [mL]	Fortification level [µg/L]	Fortification solution	Added [µL]
Total Hada	10	0.1	Std 10 µg/L	100
Tri-allate	10	1	Std 100 µg/L	100
TODOA	5	0.1	Std 10 µg/L M	50
TCPSA	5	1	Std 100 µg/L M	50

Table 7: Fortification of specimens for matrix drinking water

5 Deviations from the Study Plan

The study was performed according to the study plan dated 29 January 2018 with the following minor deviation. For characterisation of the water sample the TOC (Total Organic Carbon) instead of the DOC (Diluted Organic Carbon) has been analysed. Therefore, the TOC is provided in this final report.

This report reflects the conduct of the study.

6.2 Limit of Quantification, Limit of Detection, Blanks

The limit of quantification (LOQ) was defined as the lowest fortification level at 0.1 µg/L with mean recoveries ranging from 70 % to 110 % at a relative standard deviation (RSD) of \leq 20 % and blanks not exceeding 30 % of the LOQ. These criteria were fulfilled for Tri-allate and TCPSA in matrix drinking water. The limit of detection (LOD) was defined as 30 % of the limit of quantification as required by SANCO/825/00 rev. 8.1 (2010) for residues in control samples (i.e. 0.03 µg/L). Residues in the untreated samples used for recovery experiments were below 30 % of the LOQ, respectively below the limit of detection (LOD).

6.3 Matrix Effects

The matrix effect was tested at two concentration levels corresponding to the LOQ and 10 fold LOQ level by injecting standard solutions in pure solvent against matrix-matched standard solutions (double injection). For both analytes matrix effects were found to be below 20 % in matrix drinking water. Nevertheless, matrix-matched calibrations were used.

6.4 Calibration Information

Tri-allate and TCPSA respectively, were used for preparing external calibration standard solutions in the range of $0.0125 \mu g/L$ to $2.5 \mu g/L$ (Tri-allate) and $0.025 \mu g/L$ to $2.5 \mu g/L$ (TCPSA). External standard calibrations (Tri-allate: eight-point calibration, TCPSA: seven-point calibration) were carried out using the peak area in integrator units (counts) from injection of known standards versus standard concentrations in $\mu g/L$. In the analytical sequence after each 2-4 samples external standard solutions were injected. The found analyte concentration (Tri-allate and TCPSA, respectively), expressed in $\mu g/L$, was calculated against the bracketing standards to compensate drifting detector response.

6.5 Linearity

The linearity of the detector response was confirmed by injecting matrix-matched standard solutions covering the working range of $0.0125 \mu g/L$ to $2.5 \mu g/L$ (Tri-allate) and $0.025 \mu g/L$ to $2.5 \mu g/L$ (TCPSA) with correlation coefficients of $r \ge 0.9981$ (Tri-allate) and $r \ge 0.9993$ (TCPSA, two different columns). The lower margin of the linearity test was at least 30 % of the LOQ and the upper margin was higher by at least 20 % as the 10 fold LOQ. These margins cover the minimum range as required by SANCO/825/00 rev.8.1 (2010).

6.6 Selectivity

The concentrations of the analytes in prepared samples were determined by high performance liquid chromatography (HPLC) with MS/MS detection. For Tri-allate two mass transitions were monitored in order to ensure unambiguous identification. For TCPSA a single mass trasition was analysed using two chromatographic columns with different stationary phases (phenyl hexyl column and C18 column). No significant interferences from the specimen matrix were detected at the retention time corresponding to the analyte under investigation in any of the control specimens.

6.7 Stability

Analysis has been performed within 24 hours after sample preparation. The stability of final extracts during storage in a freezer (<-18°C) has been assessed for at least 7 days within the primary method validation study (López Benet, F., Laboratorio de Análisis de Residuos de Plaguicidas, Universitat Jaume I, study code 268-16, Spain, 2016).

7 Discussion and Conclusions

Analytical methods for analysis of residues of Tri-allate and TCPSA in drinking water, developed at Laboratorio de Análisis de Residuos de Plaguicidas, Universitat Jaume I, Castellón / Spain in 2016 (López Benet, F., study code 268-16), were successfully validated at a limit of quantification (LOQ) of 0.1 μ g/L. The specimens were analysed using liquid chromatography with mass selective detection (HPLC-MS/MS).

The data presented demonstrate that the methods permit the determination of residues of Triallate and TCPSA in drinking water with satisfactory accuracy, precision and repeatability according to guideline SANCO/825/00 rev.8.1 (2010).