US EPA BENTHIC HABS DISCUSSION GROUP WEBINAR

February 8, 2022, 10:00am – 11:30am Pacific Daylight Time

Webinar registration:

https://zoom.us/webinar/register/WN_t5PYEKJcTjSeHeCqG86BCw

GUEST SPEAKERS:

TRIANTAFYLLOS KALOUDIS, ATHENS WATER SUPPLY AND SEWERAGE COMPANY, GREECE

SZE TEE, RESEARCH ASSISTANT, UNIVERSITY OF AUCKLAND, NEW ZEALAND

I. AGENDA

- Welcome, Agenda Overview, Announcements, and Introductions Keith Bouma-Gregson, Margaret Spoo-Chupka, and Eric Zimdars
- II Presentation: Seasonal Geosmin Production from Benthic
 Cyanobacteria in a Freshwater Canal, with Implications for
 Drinking Water Supplies
 Guest Speaker Triantafyllos Kaloudis
- III Presentation: Growth or Toxicity: Genetic Divergence, Flexibility and Secondary Metabolism Distinguishing Toxic and Non-toxic Member of a Widespread Freshwater Cyanobacteria Genus Guest Speaker Sze Tee
- IV 2022 Schedule, Wrap Up & Next Steps
 Facilitators & Benthic HAB members

I. INTRODUCTIONS

Name	Affiliation	Contact Information			
Margaret Spoo-	Metropolitan Water District of	Phone: 909-392-5127			
<u>Chupka</u>	Southern CA	Email: MSpoo-Chupka@mwdh2o.com			
Keith Bouma-Gregson	United States Coological Survey	Phone: 510-230-3691			
	Officed States Geological Survey	Email: kbouma-gregson@usgs.gov			
Eric Zimdars	United States Army Corps of Engineers	Email:Eric.S.Zimdars@usace.army.mil			
Dr. Lesley D'Anglada	ILIS EPA Washington DC	Phone: 202-566-1125 Email: Danglada.Lesley@epa.gov			

I. ANNOUNCEMENTS

Upcoming Meetings

- 12th International Conference on Toxic Cyanobacteria: May 22-27, 2022 Toledo, Ohio Registration March 1, 2022
- U.S. Symposium on Harmful Algae: October 23-28, 2022, Albany, New York Abstract Deadline: May 6, 2022

Recent Papers

- Gaget et al., 2022 Benthic Cyanobacteria: A Utility-Centered Field Study
- Yao et al., 2022 Potential Influence of Overwintering Benthic Algae on Water Quality

Other News

- ITRC Benthic HCB (HCB-2) webpages go live in March 2022.
 - https://itrcweb.org/teams/active/hcb

ITEM II

GUEST PRESENTATION: SEASONAL GEOSMIN PRODUCTION FROM BENTHIC CYANOBACTERIA IN A FRESHWATER CANAL, WITH IMPLICATIONS FOR DRINKING WATER SUPPLIES

Triantafyllos Kaloudis, Athens Water Supply and Sewerage Company, Greece

ITEM III

GROWTH OR TOXICITY: GENETIC DIVERGENCE, FLEXIBILITY AND SECONDARY METABOLISM DISTINGUISHING TOXIC AND NON-TOXIC MEMBERS OF A WIDESPREAD FRESHWATER CYANOBACTERIAL GENUS

Sze Tee, Research Assistant, University of Auckland, New Zealand

2022 Schedule, Wrap Up, & Next Steps Facilitators & Benthic HAB members

Seasonal geosmin production from benthic cyanobacteria in a freshwater canal, with implications for drinking water supplies.

Triantafyllos Kaloudis¹, Angelika-Ioanna Gialleli¹, Christos Avagianos¹, Sevasti-Kiriaki Zervou², Anastasia Hiskia², Maria van Herk³, Petra Visser³, Nico Salmaso⁴, Manthos Panou⁵, Spyros Gkelis⁵, Nikolaos Deftereos¹, Phani Miskaki¹

Contact: <u>kaloudis@eydap.gr</u> (TK), <u>nd.iwwc@eydap.gr</u> (ND), <u>miskaki@eydap.gr</u> (PM)

¹ Water Quality Control Department, Athens Water Supply and Sewerage Company (EYDAP SA), Greece ² Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Athens, Greece ³ Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The Netherlands. ⁴ Hydrobiology Research Unit, Fondazione Edmund Mach, Trento, Italy ⁵ School of Biology, Aristotle University of Thessaloniki, Greece.

The Athens water supply aqueduct

Κόρινθος

coagulation/sedimentation, sand filtration.

Kiveta E94

ATHENS

Seasonal geosmin episodes in Athens water supplies

- Three (3) consumer complaints on 22 March 2019.
- Samples analyzed (GC-MS), geosmin was 6-7 ng/L.
- Geosmin was found in all WTPs and in DW network.
- No previous history of geosmin occurrence in Athens.
- Wide monitoring scheme initiated.

- Geosmin was the only T&O compound present in intake and treated water.
- The episode lasted from March to late summer 2019.

Geosmin

γεω- (earth) + οσμή (smell)

- C₁₂H₂₂O, MW: 182.3 g/mol
- Bicyclic terpenoid, semi-volatile
- Earthy odor (rain on soil)
- Odor Threshold Concentration (OTC) in water : ~ 4 ng/L (Young et al., WatRes 1996)
- Produced by benthic and planktonic cyanobacteria (Watson, J Tox Env Health 2004)
- Production by actinomycetes in soil (Zaitlin & Watson, Wat Res 2006)
- Drinking water: main source of consumer complaints (second to chlorinous taste)

Production of geosmin in a section of the main water canal

- Geosmin was not detected in the main water reservoir, Mornos Lake.
- Concentrations of geosmin increased downstream a section (~ 20km) of the main water canal transferring water to WTPs.
- Sampling points X1 to X9 were established along the problematic section of the canal (X1 to X9 = 20km).

Benthic mats on the walls of the canal

Benthic mats on canal walls, (a waterproofing membrane is used in this part of canal)

Benthic samples in the lab

Benthic cyanobacteria on the walls of the canal

Microscopic examination of benthic mats. (A-B): Spirogyra, (Γ-Θ): Possibly benthic cyanobacteria communities, (I): Spirogyra and organic matter (photos: Maria vah Herk and Petra Visser, UvA).

Investigation for cyanotoxins and toxin genes (2019)

Samples	CYN	Anatoxin- a	[D-Asp3] MC-RR	MC- RR	NOD	MC-YR	MC- HtyR	[D-Asp3] MC-LR	MC-LR	MC- HilR	MC-WR	MC-LA	MC-LY	MC-LW	MC-LF
All WTPs, treated	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
All WTPs, intake	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Canal water	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benthic samples	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LOD (ng/L)	1	1	2	1	2	4	7	4	4	6	6	3	6	4	5

Summarized results of cyanotoxins analysis. Method: SPE-LC-MS/MS at NCSR Demokritos. LODs refer to water samples.

	Gene copies/ml					
Samples	Cyanobacteria (16s RNA)	MC-NOD (mcyE)	CYN (cyrA)	SXT (sxtA)		
X5 – Canal water	3427	ND	ND	ND		
X7 – Canal water	4360	ND	ND	ND		
X5-Benthic sample	216450	ND	ND	ND		

Additional screening for MCs was carried out with PP2A assay (Abraxis).

Cyanotoxins/cyanotoxin genes were NOT detected.

Metagenomic analysis (Nico Salmaso, FEM)

Sampling and eDNA extraction protocols:

 Rimet et al. 2021, Lake biofilms sampling for both downstream DNA analysis and microscopic counts. https://dx.doi.org/10.17504/protocols.io.br2xm8fn

Library preparation and bioinformatic analyses:

• Salmaso et al., 2018. Diversity and Cyclical Seasonal Transitions in the Bacterial Community in a Large and Deep Perialpine Lake. http://link.springer.com/10.1007/s00248-017-1120-x

 Salmaso et al., 2021. Metabarcoding protocol – Analysis of Bacteria (including Cyanobacteria) using the 16S rRNA gene and a DADA2 pipeline (Version 1). https://doi.org/10.5281/zenodo.5232772

Sampling: 22 March 2021

Main cyanobacteria found with % sequence similarity > 99.5%:

Calothrix spp.

Rivularia spp.

Nostoc spp.

Scytonema spp.

Tolypothrix spp.

Many sequences did not find taxonomic coverage in reference databases (GenBank)

Management and control measures

challenge: the flow must go on...

Canal wall scraping

- Scraping 15km of canal walls (where there was no waterproofing membrane), using excavators.
- Only side walls were scrapped (not the bottom of the canal).
- Care not to damage canal walls divers to safeguard the process.

Copper sulfate dosing

- Dose: 0.11 ppm, for 3 consecutive days, 10-11 h/day during daytime
- Max Cu concentration measured in water was 0.070 ppm.
- Spikes of geosmin were observed, as expected from cell lysis.

Outcome:

- No complete elimination of cyanobacteria/geosmin after wall scraping & copper sulfate dosing.
- Geosmin levels dropped gradually to < 4 ng/L in midsummer.

Consumer complaints

- Complaints spiked during copper dosing.
- Correlation of geosmin in canal with number of complaints after 2 days.
- Training of the call center personnel and personnel handling the complaints and sampling from taps. Q&A list to answer consumers' questions (Burlingame et al. Chapter 9 in "T&O in Source & Drinking Water" IWA 2019, EPA/600/R-07/027, 2007).

Methods

Analysis of geosmin and T&O (EYDAP):

- Untargeted analysis of a wide range of T&O with automated HS-SPME-GC-MS.
- HS-SPME-GC-MS & GC-MS/MS methods for geosmin-MIB. (accredited, ISO 17025)

(PAL autosampler - Bruker 456 GC – TQ MS) (Kaloudis et al., Handbook Cyan. Mon. Cyan. Anal. 2016).

Analysis of cyanotoxins (NCSR Demokritos, EYDAP):

- Targeted determination of MCs, NOD, ATX-a and CYN with SPE-LC-MS/MS (Thermo LC-TSQ-MS)
 (Zervou et al., HazMat 2017). (accredited, ISO 17025)
- Additional screening of MCs-NOD by PP2A (Abraxis) in microplate format (TECAN M200 reader) (Kaloudis et al., HazMat 2013).

Metagenomic analysis (FEM):

■ Extraction of eDNA from biofilms/nets (Rimet et al. 2020; Vautier et al., 2020), followed by amplicon sequencing analysis (Illumina MiSeq) of 16S rRNA genes, and determination of amplicon sequence variants (ASVs) using DADA2 (Callahan et al., 2016; Salmaso et al., 2021).

Cyanobacteria and cyanotoxin genes (EYDAP):

■ 16s rRNA (total cyanobacteria), mcyE (MCs-NOD), cyrA (CYN), sxtA (SXTs) genes (Phytoxigene - CyanoDTec kit) with multiplex qPCR (Cepheid SmartCycler II), (McKindles et al., Toxins 2019).

Microscopic analysis (UvA, AUTH):

 Microscopic examination of samples (e.g. Zeiss Axio imager z2 microscope - Axio Cam MRc5 digital camera).

Future research and management plans

- Recurring episodes: 2020 and 2021 (March-September), less consumer complaints.
- March 2022: Pilot project using H₂O₂ and possibly solid peroxides (sodium percarbonate). Collaboration with Petra Visser's group.
 - a) Laboratory scale experiments to test effectiveness and optimal conditions (key parameter: photosynthetic vitality).
 - b) Pilot application of peroxides in the canal.
- Switch to canal brushing instead of scraping.
- Continuation of geosmin and cyanotoxins monitoring.
- Spatiotemporal detection of benthic cyanometabolites (untargeted LC-HRMS).
- Long term: Upgrades in water treatment and light barriers at the canal.

Impact II LC-qToF at LOM-EYDAP

Acknowledgements

Now open (till July 2022):

Theory and Practice of Safe, Sustainable Water

Guest Editors: Donysios (Dion) Dionysiou, Nicole Blute, Tri Kaloudis, Lauren Weinrich, Arash Zamyadi

AWWA Water Science Topical Collection Link

Growth or Toxicity

GENETIC DIVERGENCE, FLEXIBILITY AND SECONDARY METABOLISM DISTINGUISHING TOXIC AND NON-TOXIC MEMBERS OF A WIDESPREAD FRESHWATER CYANOBACTERIAL GENUS – MICROCOLEUS

What is cyanobacteria?

- Ancient, 2 billion years ago
- Produce oxygen

Harmful cyanobacterial bloom

- Disrupt habitat/ Outcompete
- Water quality/eutrophication, oxygen depletion
- Toxins /taste & odour compounds

DANGEROUS!

Microcoleus sp.
-Bloom in low phosphate condition

Some produce cyanotoxin (Anatoxin-a)

Very Fast Death Factor

Hypotheses:

Toxic *Microcoleus* strains are **less efficient** in nutrient acquisition than non-toxic *Microcoleus* strains, likely due to the cost/investment in toxin production.

Total number of *Microcoleus*: 42 (12 toxic + 30 non-toxic)

Core Marker Genes Maximum-Likelihood tree (GTDB)

Single-Copy Core Orthologs Maximum-likelihood tree (orthoFinder)

Average Nucleotide Identity

9 species among 42 strains

DDH: >70%

ANI: >96.5%

Other cyanobacterial genomes

Species	Strain	Toxic/non-toxic	Genome size (Mb)		
Cylindrospermopsis raciborskii	CS-506	CYN+	4.1		
	CS-505	CYN+	3.9		
	CS-509	CYN-	4.0		
Cylindrospermopsis raciborskii	CS-505	CYN+	4.2		
	CR12	CYN+	3.7		
	CENA302	SXT+	3.5		
	ITEP-A1	SXT+	3.6		
	MVCC14	SXT+	3.6		
	CS-508	CYN-, SXT-	3.6		
	CENA303	CYN-, SXT-	3.4		
Microcystis aeruginosa	NIES-843	MCY+	5.8		
	PCC 7806SL	MCY+	5.1		
	NIES-298	MCY+	5.0		
	NIES-88	MCY+	5.3		
	KW	MCY+	5.9		
	DIANCHI905	MCY+	4.9		
	PCC 7941	MCY+	4.8		
	CHAOHU 1326	MCY+	5.3		
	PCC 9443	MCY+	5.2		
	PCC 9807	MCY+	5.2		
	PCC 9808	MCY+	5.1		
	PCC 9809	MCY+	5.0		
	Sj	MCY+	4.6		
	SPC777	MCY+	5.5		
	PCC 9806	MCY-	4.3		
	PCC 9701	MCY-	4.8		
	PCC 9432	MCY-	5.0		
	NIES-98	MCY-	5.0		
	NIES-1211	MCY-	4.7		
	NIES-2549	MCY-	4.3		
	NIES-2481	MCY-	4.4		
	PCC 7005	MCY-	4.9		
	TAIHU98	MCY-	4.8		
	NIES-87	MCY-	4.9		
	NIES-44	MCY-	4.6		

Biosynthetic Gene Cluster Type

Biosynthetic Gene Cluster Product

Anatoxin-a structures and gene clusters

Anatoxin gene (ana) cluster

Rastogi et al., 2015

Number of Pan-genome Gene Clusters

Nitrogen metabolism and anatoxin biosynthesis

Only in toxic Only in non-toxic In both toxic & non-toxic more copies in toxic ↑ NT more copies in non-toxic

Thiamine metabolism

Toxic and non-toxic strains are phylogenetically different and form distinct clusters

Toxic strains	Properties	Non-toxic strains			
Smaller	Genome size	Larger			
Fewer	BGC clusters	More			
Fewer	Transposases	More			
Fewer	Metabolic genes	More			
Longer	Minimum replication time	Shorter			
Yes	Anatoxin production	No			
No	Thiamine and sucrose synthesis	Yes			
More N assimilation genes	Nitrogen (N) uptake and storage	More cyanophycin for C/N storage			

- Resource allocation tradeoff between toxin production and strains proliferation/ growth
- Genome streamlining in toxic strains cause dependencies on non-toxic strains/ co-occurring bacteria

No man is an island, so does the cyanobacterial biofilm

Tee, H. S., Wood, S. A., Bouma-Gregson, K., Lear, G., & Handley, K. M. (2021). Genome streamlining, plasticity, and metabolic versatility distinguish co-occurring toxic and nontoxic cyanobacterial strains of *Microcoleus*. *MBio*, *12*(5), e02235-21.

Future work

ACKNOWLEDGEMENT

Kim Handley (University of Auckland)

Gavin Lear (University of Auckland)

Susie Wood (Cawthron Institute)

Laura Kelly (cawthron Institute)

Keith Bouma-Gregson (USGS)

Handley's Lab (University of Auckland)

Genomics Aotearoa

Dini (NeSI)

Contact: <a href="https://http