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Since the inception of major biofuels policy in the United States, the quality 
and frequency of land cover data has increased. 

● National Agriculture Imagery Program has increased resolution to 1 meter 

● Google Earth has become a major platform for open-source land cover 

analyses 

● Private companies such as Planet acquire high-frequency, high-resolution 

imagery 

With these data available, what are the complementary roles of LUC GHG 

modeling and land cover data in understanding land cover changes and 

whether policies targeting biofuels with low life-cycle GHG emissions are 

achieving their desired outcomes? 



   

 

 

  

  

 

 

 

       

              
                   

Summarized the methodology, frequency, resolution, and accuracy of 

● June Area Survey 

● Census of Agriculture 

● Farm Service Agency crop acreage data 

● National Resources Inventory 

● Forest Inventory Analysis 

● National Wetland Inventory 

● Cropland Data Layer 

● National Land Cover Dataset 

Data in these models is often used to help parameterize LUC models or evaluate 

their results. 

Wang, Minzi; Wander, Michelle; Mueller, Steffen; Martin, Nico; Dunn, Jennifer. “Evaluation of survey and remote sensing data products used to 
estimate land use change in the United States: Evolving issues and emerging opportunities.” Environmental Science and Policy, 2022, 129: 68-
78. 
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JAS! June Area Survey 
COA: Census ,of Agricultu r,e 
FSA:: Fa rim Servi,ce Agency 
NRI: Natura1I Resources Inventory 
FIA! Forest Inventory Ana1lysis 
CDL: Croplland Data1 La1y,er 
NLCD: National land Cover Data Set 

Wang, Minzi; Wander, Michelle; Mueller, Steffen; Martin, Nico; Dunn, Jennifer.  “Evaluation of survey and remote sensing data products 

used to estimate land use change in the United States: Evolving issues and emerging opportunities.” Environmental Science and 

Policy, 2022, 129: 68-78. 
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Wang, Minzi; Wander, Michelle; Mueller, Steffen; Martin, Nico; Dunn, Jennifer.  “Evaluation of survey and remote sensing dataproducts 

used to estimate land use change in the United States: Evolving issues and emerging opportunities.” Environmental Science and 

Policy, 2022, 129: 68-78. 
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Wang, Minzi; Wander, Michelle; Mueller, Steffen; Martin, Nico; Dunn, Jennifer.  “Evaluation of survey and remote sensing data products 

used to estimate land use change in the United States: Evolving issues and emerging opportunities.” Environmental Science and 

Policy, 2022, 129: 68-78. 
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Wang, Minzi; Wander, Michelle; Mueller, Steffen; Martin, Nico; Dunn, Jennifer.  “Evaluation of survey and remote sensing data products 

used to estimate land use change in the United States: Evolving issues and emerging opportunities.” Environmental Science and 

Policy, 2022, 129: 68-78. 
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Examining the Characteristics of the Cropland Data 
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Estimated Change to and from Cropland 
In Between Years Not Estimated in 2012 to 2017 

(Continental United States) 
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Issues with Cropland Data Layer 
And Estimating Land Cover 
Change 

All land in green and red on 
the map is land that is being 
estimated as change in years 
between 2012 and 2017 
but is not identified as change 
from 2012 to 2017. 

Much more land moving 
in and out of crop than 
consistently indicating 
change. 



     

     

 

      

       

     

        

     

      

 

Key conclusions from data source summary 

Economic modeling relies heavily on cropland-pasture and/or “marginal lands” yet 

data sources diverge on the amounts of these lands that exist 

Modeling therefore needs to acknowledge and account for this limited information 

Modeling should investigate variation in this land type as an initial condition and a 

range of results should be reported along with uncertainty estimates. 

Caution is merited when we try to apply these data sets to retrospective analyses of 

LUC GHG emissions. 

There is an urgent need for improved accuracy in improving tracking of marginal 

lands classified as grassland-other, or CRP and wetlands, that are vulnerable to 

agricultural expansion 
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L6pez-Tapia S, Ruiz P, Smitlh M, Matt.hews J, z,ercher IB, Sydorenko IL, Vai-ia frll, Jin Y, Wang M, Dunn JB, IKatsa,ggelos AK. "Machine Lea rning wirt h High 
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Machine-learning as a tool to interpret high-resolution aerial 
imagery - National Agricultural Imagery Project 



Red: Ground truth 
Blue: Area segmented by 
model as wetland 

L6pez-Tapia S, Ruiz P, Smith M, Matthews J, Zercher B, Sydorenko L, Varia N, Jin Y, Wang M, Dunn JB, Katsaggelos AK. "Mach ine Learning with High 
Resolution Aerial Imagery and Data Fusion to Improve and Automate the Detection of Wetlands." International Journal of Appl ied Earth Observation and 
Geoinformation . 2021, 105: 102581. 



  
    

  

Satellite Data to Reduce Uncertainty 
Associated with Land Use Management and 
Low iLUC Land Identification 
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Winter Vegetation Activity in Farmer Fields No Till Compliance Map 
Vegetation Index of Sentinel-2 Imagery for November to Ap.,n.,·1 :r,,---,, ..,,.,....,....._."" Residue Index of Sentinel-2 Imagery for November to April 

Moderate to Strong Vegetation 

Very Strong Vegetation 

Use of Remote Sensing to Determine Land Management 

Remote Sensing can inform cover crop, double cropping, soil carbon management, 

residue removal for potential consideration in LCA modeling 

Remote Sensing Source: Ken Copenhaver, CropGrower LLC 15 
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Handling of co-products in life cycle analys is in an evolving co-product market: 
A case study with corn stover removal 
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Identification of Cover Crop, Residue Removal, and Double Cropping 

• Fall and Spring Imagery from Sentinel-2 is used to identify vegetation
• Further geospatial analysis focused on polygon shape separates cover crop from weeds and buffers.
• After analysis to remove other vegetation types accuracy is 89%.

Remote Sensing Source: Ken Copenhaver, CropGrower LLC

https://www.aaas.org/journals


Identification of In-field Buffers in Illinois 
Project Sponsors: The Nature Conservancy & Illinois Corn Growers 

• Fall and Spring Imagery from
Sentinel-2 is used to identify
vegetation

• Further geospatial analysis
focused on polygon shape
separates buffers from weeds
and cover crop.

Spring Sentinel-2 
Composite 

   
   

    
     

   
   

   
  

    
    

 

    

• After analysis to remove other
vegetation types accuracy is
84%

Remote Sensing Source: Ken Copenhaver, CropGrower LLC

Fall Sentinel-2 
Composite



          
      

 

 

 

 

 

  

       
    

icultural Product ion on Reclaimed Surface Coal Mines from 2006-2019: 
Southern Illinois Area in Perry and Surrounding Counties 

- Agasof200&-2007 

- Agasof 2008-2000 

Ag as of 20Hl-20U 

- Agasof20!2-2013 

- Agasof 2014-2015 

- Agasof2016-2017 

- Agasof2013-2019 

Use of Remote Sensing for Low iLUC Risk Lands under CORSIA/EU RED 
Ag Land Reclaimed from Coal Mining 

● Performed for 

International 

Sustainability and 

Carbon 

Certification 

(ISCC) 

● Technical pilot for 

SAF certification 

Source: Southern Illinois University Edwardsville, LASA, Pearson, 
Pritsolas; Randy Pearson, Joshua Pritsolas, Steffen Mueller 
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Conclusions 

• Land use change modeling should explore sensitivity to choice of data source for initial conditions 

(e.g., amount of land in grassland, cropland-pastureland) 

• Land use change modeling should report uncertainty 

• Use of remote sensing data to assess lands for low iLUC risk is possible 

• Double cropping, cover crops, residue removal, marginal lands 

• Use of remote sensing to determine land management practices (reduced till, field buffers) has increased in 

accuracy over the last decade and can be incorporated into modeling 

• Given the advances in spatial and temporal resolution of remote sensing and aerial imagery data, EPA 

should invest in and monitor improvements in AI-based methods for interpreting these data sets 

• The agency should continue to evaluate the possibility of replacing a single LUC GHG estimate for an 

individual biofuel with economic modeling to identify high LUC-risk areas and monitoring of those areas with 

high-resolution satellite data 




