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“Carbon”: What do we mean and why does it matter? 
Carbon is embodied in the biomass of plants (above and below ground) and in soil organic matter. 

Relevance to biofuels: changes to carbon stocks incited either directly or indirectly by biofuel production are 
attributable to the greenhouse gas balance of those fuels. 

To estimate these effects and properly evaluate the GHG balance of biofuels, we must know where carbon stocks
are located and in what quantities. 

The data sources we use to assess carbon changes depend on the scale and scope of our analysis. 
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Finest scales: [in]direct measurements 
At the finest scales we can directly measure carbon stocks: harvest and analyze. 

But field data are often actually indirect measurements… 
◦ Inferred from more easily acquired, non-destructive measurements. 

(e.g., Allometry based on tree height or diameter; root-to-shoot ratios; etc.) 

Carbon stocks vary tremendously, even in close proximity 
◦ A single measurement is not likely representative of its surroundings. 
◦ Many samples are needed to generate confident averages 

(Conant & Paustian, 2002; Vanguelova et al., 2016) 

Field averages are the data used to both make and assess the accuracy/uncertainty of our maps and models. 
(Li et al., 2018) 
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Measures of [un]certainty 
CONFIDENCE 

“How much do measurements/estimates vary 
when repeated?” 

e.g., Expressed as the standard deviation of a mean 

ACCURACY 
“How well do predictions match independent, 

[in]direct measurements?” 
e.g., Expressed as Root Mean Square Error (RMSE). 

Figures: Spawn et al., 2020 
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Scaling up: class averages 
Field measurements can be aggregated by category, and their average used to infer stocks elsewhere. 
Examples: 
 IPCC Tier 1 method – “default values”
 In biofuel LCA modelling:
 “AEZ” emissions factors
 “Woods Hole” emissions factors
 “Winrock” emissions factors

Pitfalls: 
 Often based on very small samples
 Assumes uniformity of stocks within a class
 Highly uncertain (whether explicit or not)
 Often biased by sampling scheme

 (Powers et al., 2011, Langner et al., 2014) 

Example: IPCC biomass defaults for young 
secondary forests in North America (IPCC, 2019)

Eco-zone Stock (t/ha) Confidence (CV) 
Mountain 58 136% 
Continental 46 216% 
Oceanic 214 106% 
Desert 26 137% 
Steppe 43 178% 
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Mapping: “paint by number” 
Class averages can be mapped if we know the locations of classes for which we have averages. 

Landcover Map: Biome Averages: Carbon Map (tC/ha): 

Grass Grass Savanna 
Grass Savanna Forest 

Savanna Forest Forest + 
Biome C Stock 
Grass 5 tC/ha 

Savanna 30 tC/ha 
Forest 100 tC/ha 

= 
5 5 
5 30 100 
30 100 100 

Pitfalls: 
 All those associated with averages, plus:  Artificial edge effects from mapped class boundaries
 No variation within classes  Voids where data isn’t available
 Limited by the quality of the landcover map  Temporal and thematic inconsistencies
 Uncertainty rarely noted  Etc.

30 
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Mapping: “paint by number” (biomass) 
Class averages can be mapped if we know the locations of classes for which we have averages 

Basis for the IPCC Tier-1 Global Biomass Carbon 
Map for the Year 2000 (Ruesch and Gibbs, 2007). 

7 



0 2 4 Miles 

0 2 

l 

4 Miles 

Carbon 

High 

Low 

  

  
  

 

     

 
 

Mapping: “paint by number” (soil) 
“Paint by number” has also long been used for soil mapping. 
◦ In soil applications, its often more data-intensive and better resolved. 
◦ Uncertainty is still rarely reported. Soil Type Map: SSURGO (Soil Survey Staff, 2016) 

Soil Carbon Map: 

Example Datasets: 
(order: finest to coarsest resolution) 

• SSURGO or NATSGO (USA) (e.g., Soil Survey Staff, 2016) 

• STATSGO (USA) (West, 2014) 

• Harmonized World Soils Database (GLOBAL) (FAO, 2009) 
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 Mapping: Statistical Approaches 
Statistical relationships between field measurements and mapped variables are identified and then 
used to predict stocks throughout space. 
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 Mapping: Statistical Approaches 

Machine Learning: Paint by Number: 
Promises: 
◦ Spatially consistent 
◦ Spatially continuous 
◦ Far more spatially resolved 
◦ [Often] based on direct observations 
◦ Easily updateable 
◦ Uncertainty is more readily quantified 

(from: Goetz et al., 2009) 
Pitfalls: 
◦ Only as good as the data its given 
◦ Computationally and data intensive 
◦ Can’t explicitly account for unseen factors like land use history (soil) 



    

 

 
   

    

Mapping: Statistical Approaches (biomass) 
Machine learning à la ‘remote sensing’ has been the ‘state of the art’ of forest biomass mapping for decades. 

Various types of remotely sensed imagery used: 

Imagery Type: Measuring Record Length Systematic Issues 
Optical Reflectance Reflectance/Color Long Saturates in areas of dense biomass 
Synthetic Aperture Radar (SAR) Surface Texture Long Sensitivity varies with biomass density 
LiDAR Plant Height/Structure Short Previously sparse coverage. 

Accuracy of biomass maps has improved as combined use of different imagery types has become more common. 
Burgeoning LiDAR records are expected to further improved accuracy. 

(Goetz et al., 2009, Xiao et al., 2019) 
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Mapping: Statistical Approaches (biomass) 
There are many remotely-sensed biomass maps available (non exhaustive sample): 

Wide range of scope and resolution; all include accuracy stats (many also with maps of pixel confidence) 

Baccini et al., 2012 

Also: Annual 30m resolution global forest biomass maps (e.g., Baccini et al., 2017)—Direct obs. of carbon changes. 

…BUT: 
• Remotely sensed biomass maps only represent aboveground biomass (i.e., they exclude root biomass). 
• Typically, only report the biomass of a single type of vegetation (usually trees) 
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Mapping: Statistical Approaches (biomass) 

Solution? Harmonize and 
combine maps of above and 
below ground biomass and 
their confidence across a range 
of vegetation types; all 
representing conditions in the 
same year. 

(Spawn et al., 2020) 
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Mapping: Statistical Approaches (soil) 
Recently, machine learning methods have also infiltrated soil carbon mapping 

The challenge: Unlike aboveground biomass, soil can’t typically be directly observed from space. 

The answer: Use similar algorithms but with much more and diverse data. 
◦ More field measurements 
◦ Use imagery + maps of relevant variables: 
◦ Climate 
◦ Physiography 
◦ Soil properties 
◦ Land use 
◦ Etc. 

Locations of 150,000 field measurements used by Hengl et al., 2017 

A recent global soil mapping effort used more than 240,000 field measurements and 400 global maps/images (Poggio et al., 2021). 

(for comparison: global biomass efforts typically use <10,000 field measurements and 10s of global images) 



 
  

     
     

   

Mapping: Statistical Approaches (soil) 
Harmonized World Soils Database (paint by number): Open Land Map (machine learning): 

• Machine learning results in more finely resolved predictions, revealing patterns not seen in courser maps. 
Wieder et al., 2014 Hengl et al., 2018 

• Finer scale predictions can more meaningfully be compared to field measurements to assess accuracy. 



 
 

 

 

     

 

Mapping: Statistical Approaches (soil) 
There are many soil carbon maps that have been produced via machine learning (non exhaustive sample): 

Global Coverage: 
Name Release Reference Note 
SoilGrids1km 2014 Hengl et al., 2014 [superseded] 

Also… 

USA Coverage: SoilGrids250m 2017 Hengl et al., 2017 [superseded] SoilGridsUSA (Ramcharan et al., 2018) 
OpenLandMap 2018 Hengl and Wheeler, 2018 
SoilGrids2.0 2021 Poggio et al. 2021 

Earlier versions of SoilGrids [highly] (e.g., Hengl et al., 20xx) overestimated carbon stocks in peat and permafrost 

SoilGrids2.0 (i.e., Poggio et al., 2021) appears to have resolved these issues. 
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Mapping: Statistical Approaches (soil) 
SoilGrids2.0 is the first to be accompanied 
by pixel level confidence estimates. 

There remains substantial disagreement between 
SoilGrids2.0 and Open Land Map in some areas: 

+ 

SoilGrids2.0 
(Poggio et al. 2021) 
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Model Simulations (soil) 
Rather than using existing carbon data, biophysical models often generate (i.e., “spin-up”) their own stock 
predictions by simulating soil development under a prescribed land use history. 
Advantage: Can simulate less-visible factors like legacy management that observational approaches may miss. 

Challenges: 
◦ Computational burdens often necessitate coarser thematic and spatial resolution. 
◦ The confidence and accuracy of model predictions are often not assessed due to computational burdens. 

◦ Model predictions often go unverified and can falsely-imply high degrees of certainty. 

◦ Predicted carbon stocks [and fluxes], can be very sensitive to the quality of input data and assumptions. 

Note: Studies using simulation models to estimate land use change emissions rarely report the initial stocks they spin 
up, making it difficult resolve disagreement among studies. 
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Take Homes: 
There is no perfect carbon data – what’s best depends on an application’s scale and scope. 

All carbon data sources are uncertain to varying degrees—whether noted or not. 
◦ Biofuel LCAs have typically used very rudimentary carbon data that lag the accuracy and certainty of newer data sources. 
◦ Newer data sources are typically more accurate, better resolved, and more transparent about their uncertainties. 
◦ Simulation models can address the invisible, but their computational demands require tradeoffs and often precludes uncertainty estimation. 

My recommendations: 
◦ Evaluate, track, and report data/model uncertainty and favor sources and methods that enable transparency. 
◦ Consider using ensemble approaches that employ multiple data sources to represent the same stocks. 
◦ Look to examples being set elsewhere in the relevant sciences: 

◦ Innovative data and methods (e.g., Baccini et al. 2017, Harris et al. 2021, Hong et al. 2021, etc.). 

◦ Honest and productive treatment of data/model uncertainty/disagreement (e.g., Grassi et al. 2008, Ogle et al., 2010, Wallach et al. 2018, etc.). 
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 West, T.O., 2014. Soil Carbon Estimates in 20-cm Layers to 1-meter Depth, Conterminous US, 1970-1993 141.696259 MB. https://doi.org/10.3334/ORNLDAAC/1238 

 Wieder, W.R., Boehnert, J., Bonan, G.B., Langseth, M., 2014. Regridded Harmonized World Soil Database v1.2 59.234908 MB. https://doi.org/10.3334/ORNLDAAC/1247 

20 

https://doi.org/10.5194/essd-13-3927-2021
https://doi.org/10.1038/s41597-020-0444-4
https://doi.org/10.3334/ORNLDAAC/1247
https://doi.org/10.3334/ORNLDAAC/1238
https://doi.org/10.2136/sssaj2017.04.0122
https://doi.org/10.5281/zenodo.2536040
https://doi.org/10.1371/journal.pone.0105992
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1073/pnas.1019576108
http://cdiac.ess-dive.lbl.gov
https://doi.org/10.3334/ORNLDAAC/1161
https://doi.org/10.1126/science.aam5962
https://doi.org/10.1038/nclimate1354


          

              

           

               
    

             

             

           

              

           

             
      

           
          

           

                           
  

Studies Referenced 
 Conant, R.T., Paustian, K., 2002. Spatial variability of soil organic carbon in grasslands: implications for detecting change at different scales. Environmental Pollution 116, S127–S135. https://doi.org/10.1016/S0269-7491(01)00265-2 

 Goetz, S.J., Baccini, A., Laporte, N.T., Johns, T., Walker, W., Kellndorfer, J., Houghton, R.A., Sun, M., 2009. Mapping and monitoring carbon stocks with satellite observations: a comparison of methods. Carbon Balance and Management 4, 2. 
https://doi.org/10.1186/1750-0680-4-2 

 Grassi, G., Monni, S., Federici, S., Achard, F., Mollicone, D., 2008. Applying the conservativeness principle to REDD to deal with the uncertainties of the estimates. Environ. Res. Lett. 3, 035005. https://doi.org/10.1088/1748-9326/3/3/035005 

 Harris, N.L., Gibbs, D.A., Baccini, A., Birdsey, R.A., de Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M.C., Herold, M., Houghton, R.A., Potapov, P.V., Suarez, D.R., Roman-Cuesta, R.M., Saatchi, S.S., Slay, C.M., Turubanova, S.A., Tyukavina, A., 2021. Global maps of 
twenty-first century forest carbon fluxes. Nat. Clim. Chang. 11, 234–240. https://doi.org/10.1038/s41558-020-00976-6 

 Hong, C., Burney, J.A., Pongratz, J., Nabel, J.E.M.S., Mueller, N.D., Jackson, R.B., Davis, S.J., 2021. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561. https://doi.org/10.1038/s41586-020-03138-y 

 Langner, A., Achard, F., Grassi, G., 2014. Can recent pan-tropical biomass maps be used to derive alternative Tier 1 values for reporting REDD+ activities under UNFCCC? Environ. Res. Lett. 9, 124008. https://doi.org/10.1088/1748-9326/9/12/124008 

 Li, X., McCarty, G.W., Karlen, D.L., Cambardella, C.A., Effland, W., 2018. Soil Organic Carbon and Isotope Composition Response to Topography and Erosion in Iowa. Journal of Geophysical Research: Biogeosciences 123, 3649–3667. 
https://doi.org/10.1029/2018JG004824 

 Ogle, S.M., Breidt, F.J., Easter, M., Williams, S., Killian, K., Paustian, K., 2010. Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process-based model. Global Change Biology 16, 810–822. https://doi.org/10.1111/j.1365-
2486.2009.01951.x 

 Powers, J.S., Corre, M.D., Twine, T.E., Veldkamp, E., 2011. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. PNAS 108, 6318–6322. https://doi.org/10.1073/pnas.1016774108 

 Vanguelova, E.I., Bonifacio, E., De Vos, B., Hoosbeek, M.R., Berger, T.W., Vesterdal, L., Armolaitis, K., Celi, L., Dinca, L., Kjønaas, O.J., Pavlenda, P., Pumpanen, J., Püttsepp, Ü., Reidy, B., Simončič, P., Tobin, B., Zhiyanski, M., 2016. Sources of errors and 
uncertainties in the assessment of forest soil carbon stocks at different scales—review and recommendations. Environ Monit Assess 188, 630. https://doi.org/10.1007/s10661-016-5608-5 

 Wallach, D., Martre, P., Liu, B., Asseng, S., Ewert, F., Thorburn, P.J., van Ittersum, M., Aggarwal, P.K., Ahmed, M., Basso, B., Biernath, C., Cammarano, D., Challinor, A.J., De Sanctis, G., Dumont, B., Eyshi Rezaei, E., Fereres, E., Fitzgerald, G.J., Gao, Y., Garcia-Vila, 
M., Gayler, S., Girousse, C., Hoogenboom, G., Horan, H., Izaurralde, R.C., Jones, C.D., Kassie, B.T., Kersebaum, K.C., Klein, C., Koehler, A.-K., Maiorano, A., Minoli, S., Müller, C., Naresh Kumar, S., Nendel, C., O’Leary, G.J., Palosuo, T., Priesack, E., Ripoche, D.,
Rötter, R.P., Semenov, M.A., Stöckle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Wolf, J., Zhang, Z., 2018. Multimodel ensembles improve predictions of crop–environment–management interactions. Global Change Biology 24, 5072–5083. 
https://doi.org/10.1111/gcb.14411 

 Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J.A., Huete, A.R., Ichii, K., Ni, W., Pang, Y., Rahman, A.F., Sun, G., Yuan, W., Zhang, L., Zhang, X., 2019. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of 
Environment 233, 111383. https://doi.org/10.1016/j.rse.2019.111383 

21 

https://doi.org/10.1073/pnas.1016774108
https://doi.org/10.1016/j.rse.2019.111383
https://doi.org/10.1111/gcb.14411
https://doi.org/10.1007/s10661-016-5608-5
https://doi.org/10.1111/j.1365
https://doi.org/10.1029/2018JG004824
https://doi.org/10.1088/1748-9326/9/12/124008
https://doi.org/10.1038/s41586-020-03138-y
https://doi.org/10.1038/s41558-020-00976-6
https://doi.org/10.1088/1748-9326/3/3/035005
https://doi.org/10.1186/1750-0680-4-2
https://doi.org/10.1016/S0269-7491(01)00265-2

	Carbon: Where is it and how can we know?
	“Carbon”: What do we mean and why does it matter?
	Finest scales: [in]direct measurements
	Measures of [un]certainty
	Scaling up: class averages
	Mapping: “paint by number”
	Mapping: “paint by number” (biomass)
	Mapping: “paint by number” (soil)
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Mapping: Statistical Approaches (soil)
	Mapping: Statistical Approaches (soil)
	Slide Number 18
	Take Homes:
	Data Sources Referenced
	Studies Referenced



