Assessment of In-Stream Channel Improvements to Promote Thermal Mixing and Diversify Native Fish Habitat in an Effluent-Dominated Segment of the South Platte River

Jordan Parman Senior Water Quality Scientist November 16, 2021

South Platte River Urban Waters Partnership Quarterly Meeting

Metro Water Recovery

- Serve ~ 2 million people in Metro Denver area
- Treat ~ 130 MGD at Robert W. Hite Treatment Facility (RWHTF)
- Discharge into effluentdominated segment of the South Platte River
- History of continuous treatment upgrades with immediate instream impact

- Effluentdominated
- Numerous ditch withdrawals
- Channelized
- Transition to agricultural land use downstream
- Warm water fish species

- Effluentdominated
- Numerous ditch withdrawals
- Channelized
- Transition to agricultural land use downstream
- Warm water fish species

South Platte at 64th Avenue (Upstream of Outfalls)

~2.0 cfs

Long-Term Temperature Monitoring

Temperature Reduction Options

- Portfolio approach
- Environmentally friendly and sustainable
- Utilize nature to help cool the South Platte (instream projects)
- Sewer heat recovery onsite and offsite
- Incremental progress and adaptive management

Instream Mixing Project Goals

- Improve thermal mixing and heat dissipation to reduce
 wintertime
 temperatures and
 create more
 consistent
 thermal
 conditions for
 aquatic life
- Incorporate aquatic life habitat enhancements

Project Components

Monitoring Cross-Channel Thermal Gradient

South Platte River Cross-Channel Thermal Gradient Downstream of Clear Creek Confluence

· 200 m Downstream of CC · 200 m Downstream of 74th Avenue

Maximum Weekly Average Temperature (MWAT) Downstream of Clear Creek Confluence

Historical Streamflow

- Recent low flows upstream of RWHTF
- Availability of cool Clear Creek water in winter months

Future flow projections?

Season	Clear Creek at York Street Average Discharge (cfs)	South Platte at 64th Avenue Average Discharge (cfs)	South Platte at 88th Avenue Average Stream Temperature (deg C)
Winter 2011-2012	23.6	11.1	Data Gap
Winter 2012-2013	9.1	5.9	13.1
Winter 2013-2014	37.1	19.8	11.8
Winter 2014-2015	45.6	35.3	Data Gap
Winter 2015-2016	31.3	33.3	11.9
Winter 2016-2017	21.9	24.3	12.6
Winter 2017-2018	21.8	3.7	13.0
Winter 2018-2019	20.9	5.4	12.5
Winter 2019-2020	22.7	4.7	12.4
Winter 2020-2021	19.3	5.1	12.4

Climate Change Impacts?

Adapted from "Climate Change in Colorado: A Synthesis to Support Water Resources Management and Adaptation"

Target Fish Species Habitat Preference

Common Name – Species Name	Preferred Microhabitat	Current/ Depth	Substrate	Guild	Vegetation/ Cover	Spawning Habits
White Sucker Catostomus commersonii	Pools, runs and riffles, riprap banks, bridge abutments, undercut banks, are all preferred locations	Low to moderate flows	Rock, gravel, and sand	Pool	Prefers shade and cover from large woody debris or bank vegetation	Spring. Migrates to moving water w/gravel substrates, eggs adhere to substrate in pools and eddies; spawn in moving water at velocities between 0.5-3 ft/sec
Green Sunfish Lepomis cyanellus	Pools and backwaters w/abundant instream cover	Adults prefer low velocity 0.32 ft/sec, juveniles less than 0.26 ft/sec	Sand	Pool	Often occur near vegetation	Spring to summer. Nests are built in gravel or sand between 1.6-13" deep
Sand Shiner Notropis stramineus	School in riffles, downstream of submerged sand bars, or in sandy backwaters	Adults use depths between 0.3- 0.6 ft w/velocities between 0.1-1 ft/sec	Silt and sand, gravel and cobble	Riffle	Will use vegetation as instream cover	Summer. Eggs are laid over sand or deposited on gravel
Longnose Dace Rhinichthys cataractae	Narrow riffles, runs, and pools	Depths ranging from less than 1 ft to 2 ft.	Rubble, gravel 5-8" in diameter or sand, directly above or spaces between substrate	Riffle	Abundance was positively correlated w/aquatic vegetation	Spring through summer. Spawn over pits in riffles w/loose gravel and sand; spawns in currents between 1.5 and 2 ft/sec

Target Fish Species

White Sucker

Sand Shiner

Longnose Dace

Green Sunfish

Fish Data

Before and After Construction

Before

After

 Fish assemblage dominated by native minnows

 Constructed habitat designed for native species, but preferred habitat for introduced species as well

 High species diversity including darters

Common Name	2016	2017	2018	2019	2020	2021			
Native									
Fathead Minnow	186	5180	1280	864	5770	6641			
Sand Shiner	86	507	57	61	59	5			
White Sucker	111	1	25	46	20	47			
Green Sunfish	4	7	2	69	10	21			
lowa Darter		1		6	20	30			
Longnose Dace		7	18	6	7				
Johnny Darter	5				2	3			
Longnose Sucker			3		2				
Creek Chub		1	3						
Brook Stickleback			1						
Introduced									
Common Carp	7	2	32	58	9	13			
Largemouth Bass	29		2	28	4	25			
Western Mosquitofish	20	5	10	1	33	5			
Smallmouth Bass	1			3	9	5			
Yellow Perch	6			9		3			
Black Crappie		3		3		4			
Bluegill						2			
Golden Shiner			1						
Rainbow Trout	1								
Total Individuals	456	5714	1434	1154	5945	6804			
Species Richness	11	10	12	12	12	13			

Conclusions and Future Plans

- Habitat improvements are improving thermal mixing
- Impact on overall temperature reductions is less certain and will heavily depend on future air temperature and streamflow
- Evidence of healthy, diverse and predominantly native fish assemblage in project reach
- Continue to evaluate impact of instream habitat improvements in combination with other temperature reduction projects
- Monitor, monitor, monitor....

Questions...

2

Jordan Parman Senior Water Quality Scientist Metro Water Recovery jparman@metrowaterrecovery.com

