

Going Green for Good: Long-Term Considerations for Operations and Maintenance of Green Infrastructure

Green Infrastructure Webcast Series April 28, 2022

Housekeeping

- This presentation is being recorded and will be made available via <u>https://www.epa.gov/green-infrastructure/green-infrastructure-webcast-series</u>
- All participants are muted to minimize background noise.
- Technical issues or questions?
 - Contact us via the Q&A Box.

What is Green Infrastructure?

- Uses soils, vegetation, and other media to manage rainwater where it falls
- Treats stormwater before it could become a source of pollution
- Provides multiple benefits for communities

Water Infrastructure Improvement Act: "the range of measures that use plant or soil systems, permeable pavement or other permeable surfaces or substrates, stormwater harvest or reuse, or landscaping to store, infiltrate, or evapotranspirate stormwater and reduce flows to sewer systems or to surface waters." 33 U.S.C. 1362(27)

Visit EPA's Green Infrastructure Website: https://www.epa.gov/green-infrastructure/whatgreen-infrastructure

Green Infrastructure Operations and Maintenance

2022 Upcoming Green Infrastructure Webcasts

Research and Tools:

- May 18th: Ecosystem Benefits and Applications of Green Infrastructure
 - https://www.epa.gov/water-research/water-research-webinar-series
- June 2nd : Visualizing Ecosystem Land Management Assets (VELMA)
 - https://www.epa.gov/research-states/epa-tools-and-resources-trainingwebinar-series

Operations and Maintenance:

- Summer 2022: Green Infrastructure Asset Management
- Fall 2022: Green Infrastructure Jobs
- Recordings available online: <u>https://www.epa.gov/green-infrastructure/green-infrastructure-webcast-series</u>

SEPA

Stay in touch: GreenStream List Serve

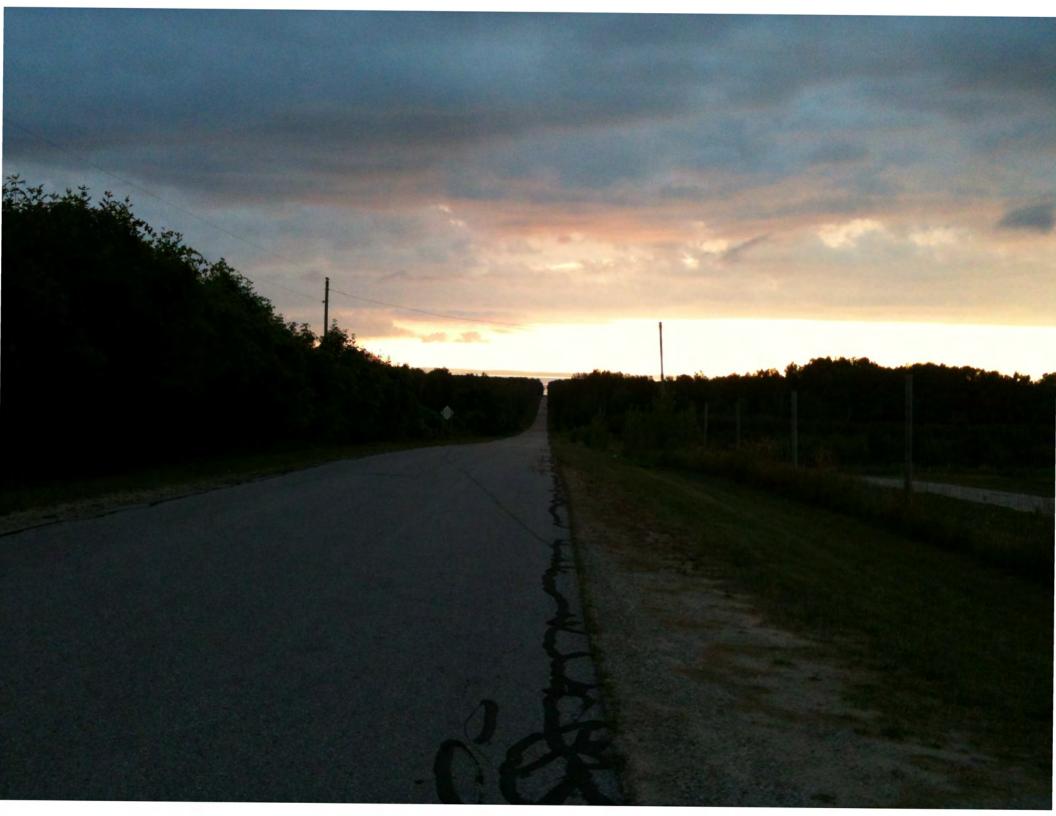
join-greenstream@lists.epa.gov

Today's Speakers

Dr. James Houle, Director of the University of New Hampshire Stormwater Center

Leslie Schehl, Stormwater Control Measures Maintenance Program Manager Metropolitan Sewer District of Greater Cincinnati

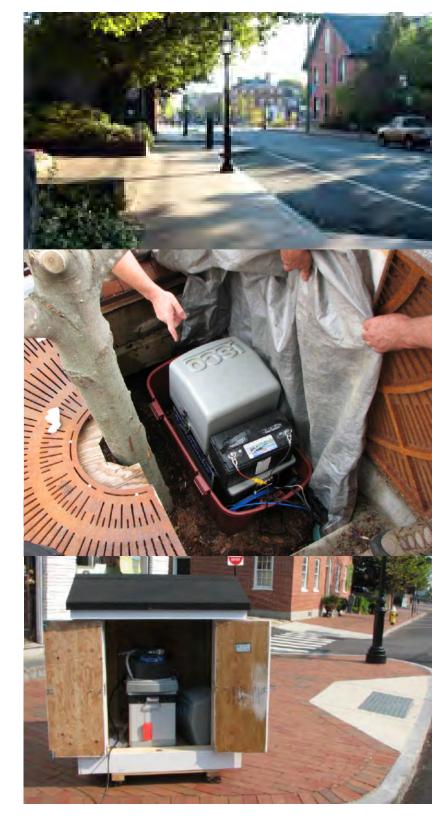
Peter Schultze-Allen, Senior Scientist at EOA, Inc.

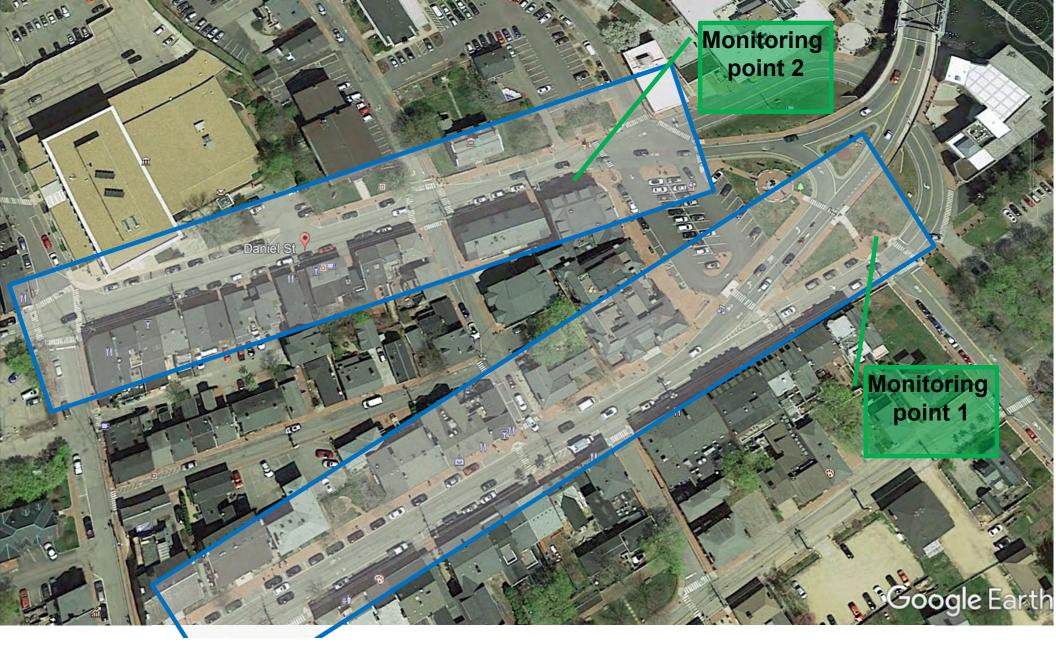

Green Infrastructure O&M Webcast, USEPA

James Houle, Ph.D, CPSWQ, CPESC

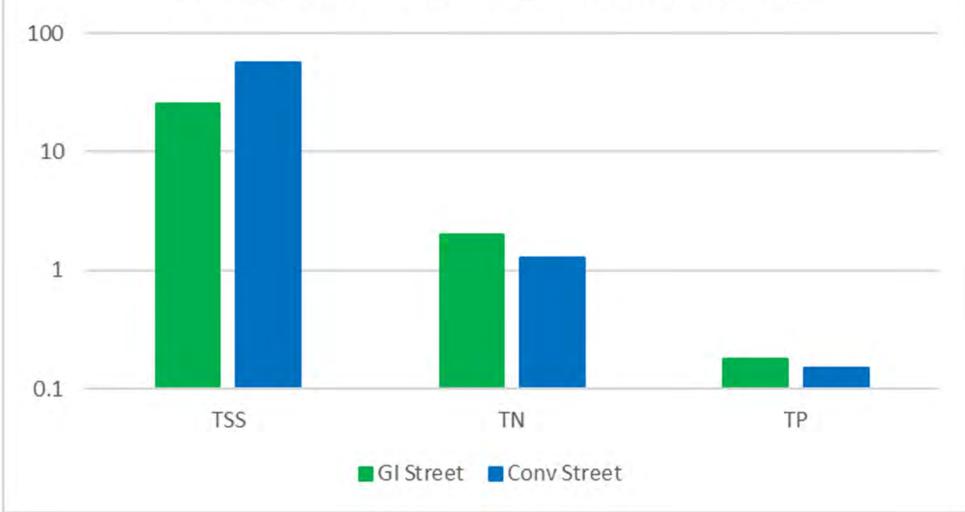
UNH Stormwater Center

April 28, 2022



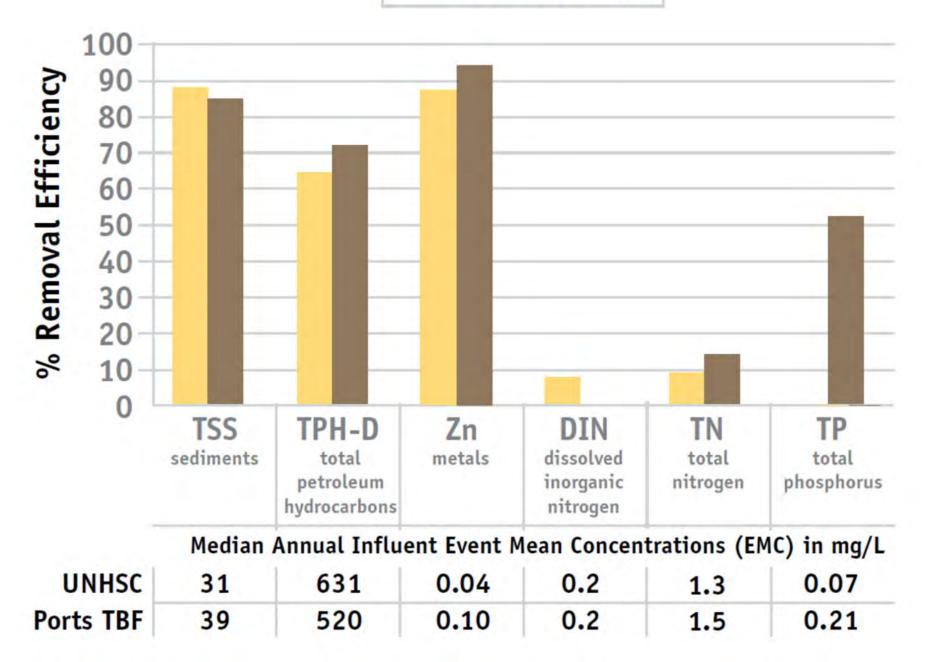


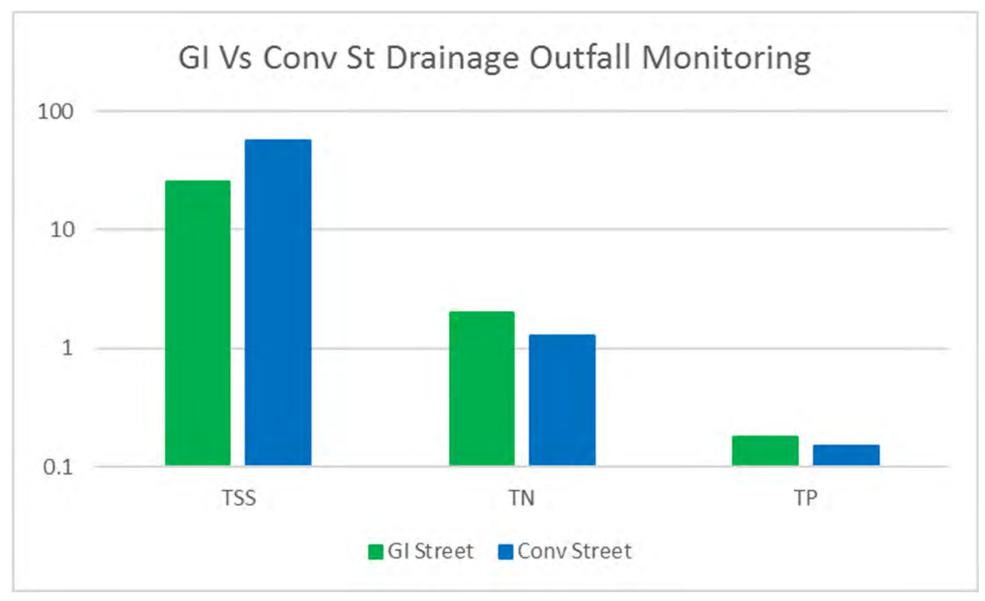
Outstanding Civil Engineering Achievement Award, 2010, **American Society of Civil Engineers, NH Section** Complete reconstruction of utilities, including wastewater/stormwater separation and stormwater treatment, with construction of pedestrian- and businessfriendly streetscape.



Side by side outfall investigation

Outfall Comparison

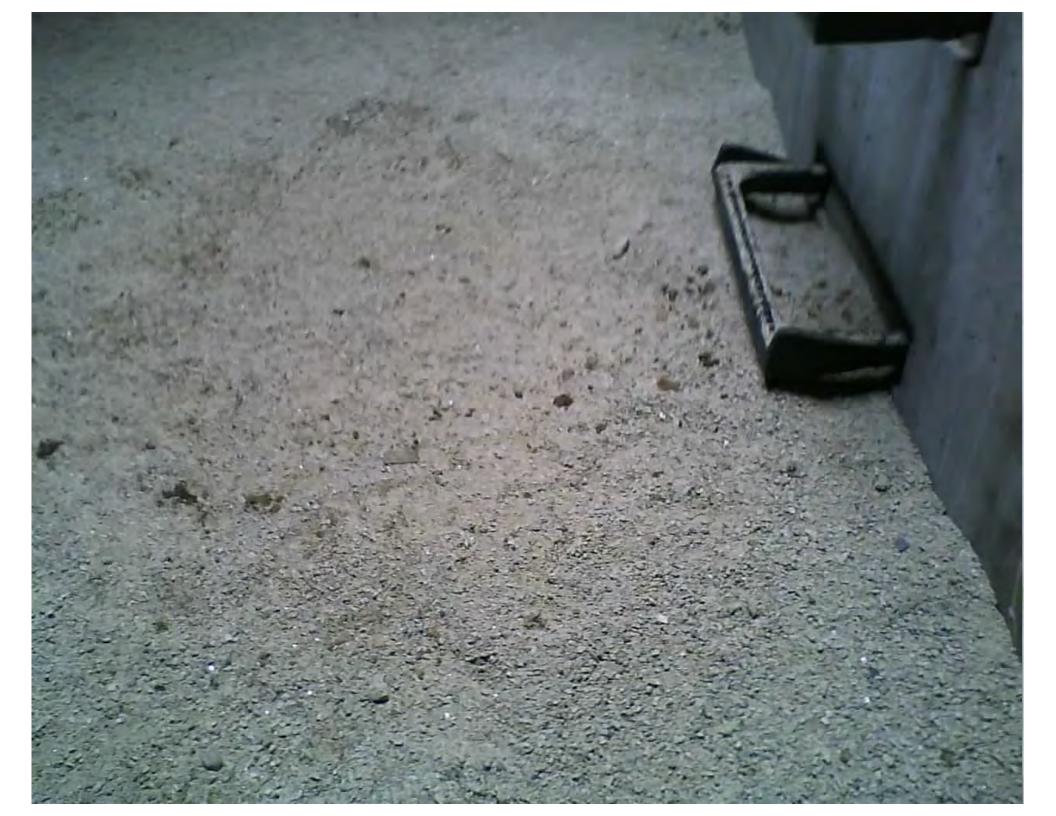

GI Vs Conv St Drainage Outfall Monitoring


• Location 1 = GI Location 2 = Conventional

TREE FILTER PERFORMANCE

UNHSC Ports TBF

Outfall Comparison



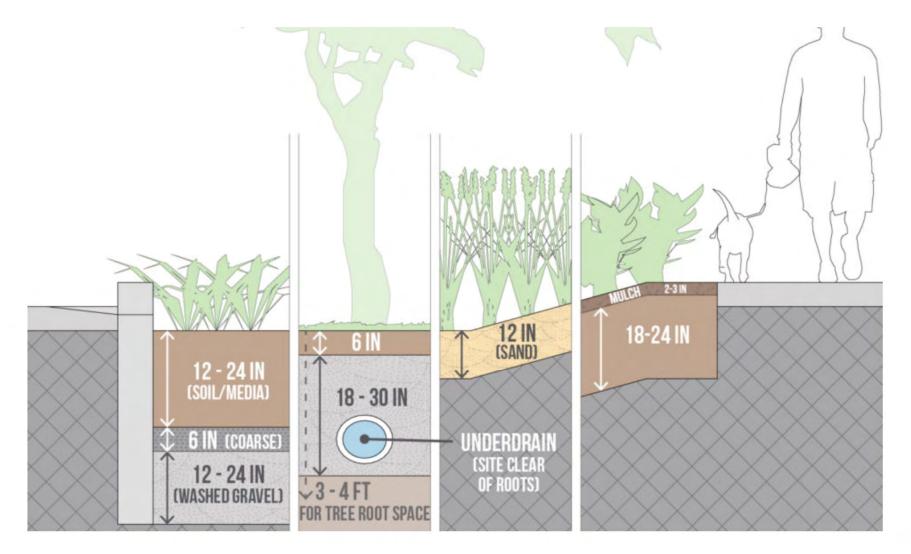
• Location 1 = GI Location 2 = Conventional

Is this predictable?

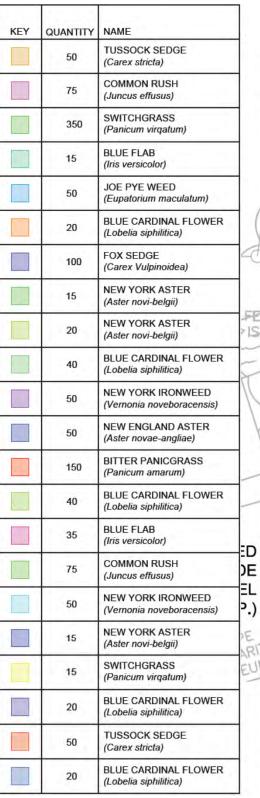
- Maintenance staff was not involved in the design,
- Little communication
- No co-development of solutions...

Maintenance December 2021

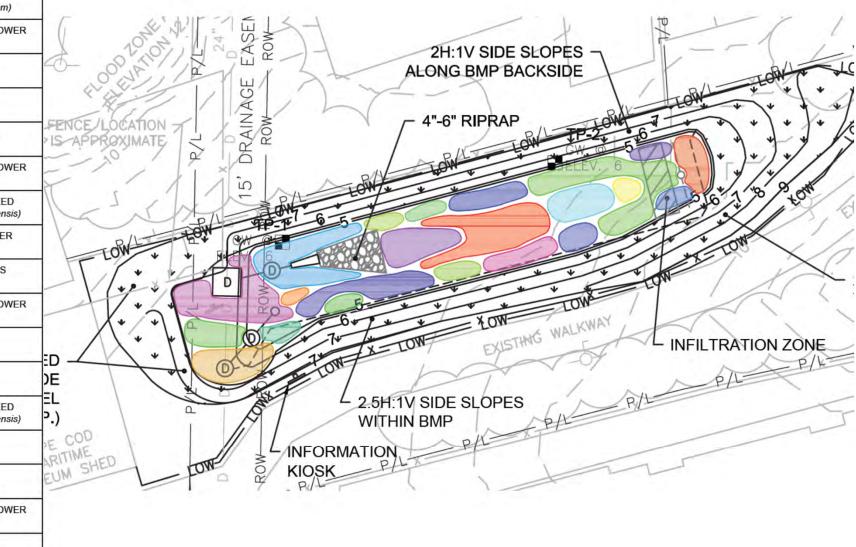
Stormwater Names Can Be Challenging


•Because we don't always speak the same language

Swale Permeable Interlocking Concrete Pavers Subsurfacence anterno Water Concrete Pavers Permeable Interlocking Concrete Pavers Downstream Defender Rio Swale Laturalized Basins e Interieuration Storm vort-Sentr rekengavorscrete Paverser Permeable Intern permentelenerer pitters Filtera Sand Filter C Delaware Austin ADS Sector Sector Austin ADS Sector Sector Austing Concrete Pavers StormTech Netland Supface Wetland Gravel Wetlar able Interiockin Pervious cted Wetland


Anatomy of a BMP

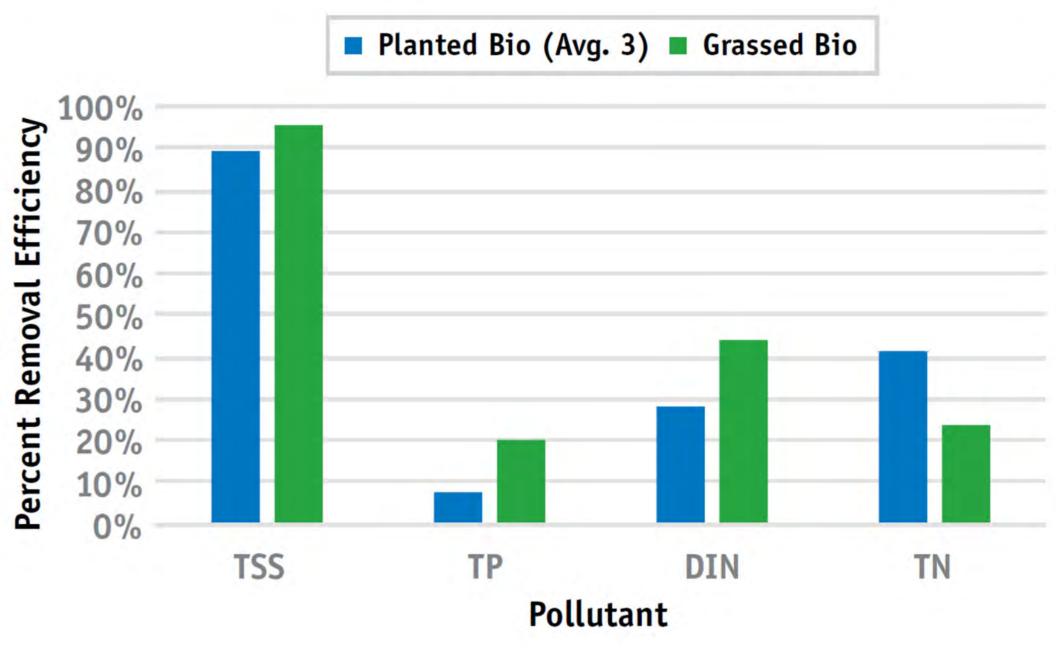
- System sizing guided by local regulations, varies with respect to new development, re-development or retrofit.
- Inlet: Hydraulic contingencies, local code and maintenance preferences.
- Pretreatment: Maintenance contingencies, local code
- Outlet: Hydraulic contingencies, local code and maintenance preferences.
- Media and vegetation: Maintenance and aesthetic contingencies, local code


The "in-between": flexible based on preference or opinion

https://nacto.org/publication/urban-street-stormwater-guide/stormwaterelements/bioretention-design-considerations/soil-media-plantings/

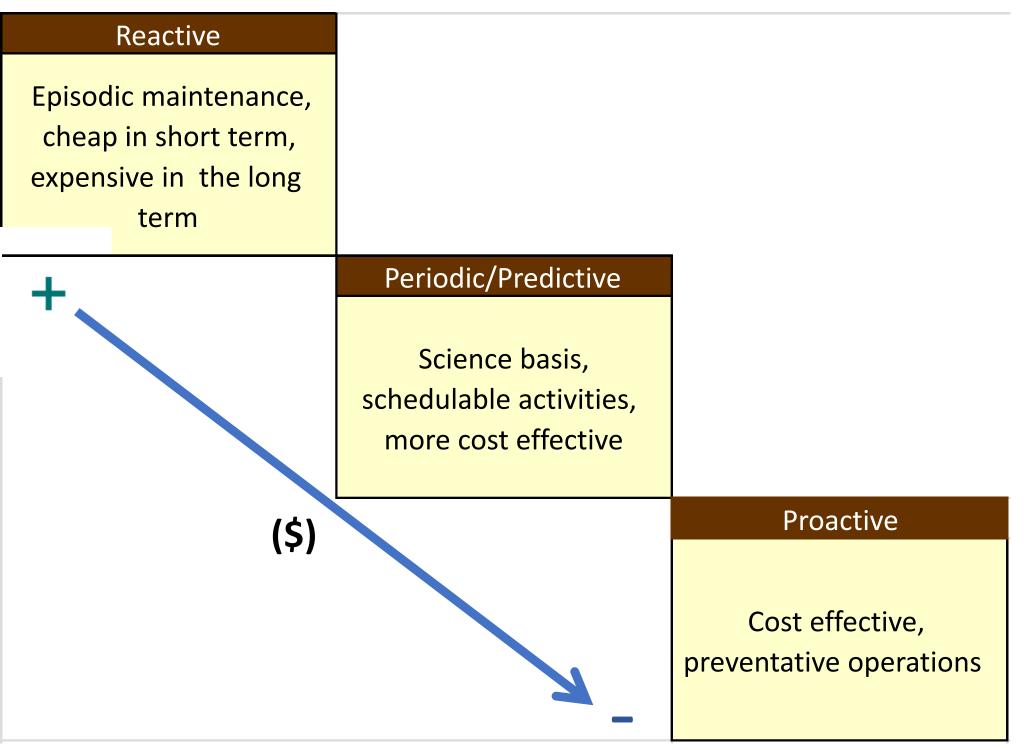
Traditional Approach

The Site Today



The tale of two raingardens.

Comparison of Pollutant Removal Efficiency Planted vs Grassed Bioretention



CHECKLIST FOR INSPECTION OF BIORETENTION SYSTEM / TREE FILTERS Location: Inspector: Date: Time: Site Conditions: Days Since Last Rain Event:					CHECKLIST-FOR-INSPECTION-OF-BIORETENTION-SYSTEM-/-TREE-FILTERS# Location: ¶ Inspector: ¶ Date: ¶ Time: ¶ Site-Conditions:¶ Days-Since-Last-Rain-Event:¤					
1. Initial Inspection After Planting				1. Vegetation			\rightarrow	×	×	
Plants are stable, roots not exposed	S	U	7	Plants-are-sta	Plants-are-stable,-no-evidence-of-erosion¤SU¤					
Surface is at design level, no evidence of	S	U	-		2Appearance-(1-time/year-minimum,-Spring/Fall)X			×		
preferential flow/shoving					Evidence of trach or debris¤S					
Inlet and outlet/bypass are functional	S	U		3. Inlet and 0	3. Inlet and Outlet Condition (1. time/year and/or after large storm events)			Ħ		
2. Debris Cleanup (1 time/year minimum, Spring/Fall) Litter, leaves, and dead vegetation removed from	S	U	-	No-obstruction hours-since-r			anding·water·after·24-48·	XX	×	
the system				4. Other Issues			×			
Prune/mow vegetation	S	U		Note any additional issues not previously covered. ISU						
3. Standing Water (1 time/year and/or after large storm events)				Inspector-Signature¤				DateX		
No evidence of standing water after 24-48 hours since rainfall	s	U		ц					я	
4. Vegetation Condition and Coverage										
Vegetation condition good with good coverage (typically > 75%)	5	U								
5. Other Issues				Stormwater BMP Inspection Checklist				cklist		
Note any additional issues not previously covered.	S	U								
Corrective Action Needed		Due Date	Visu	Visual Indicators						
1.				Pass						
2.						Inter/Ordet and Stimmer C				
3.			_	□ □ Inlet/Outlet conditions: Can water enter and exit the system						
Inspector Signature		Date				System Operability: Does the system appear to be operating as designed?				
		Dute				Inorganic/Organic Material Build-up: Is there Noticeable build-up of debris, sediment, trash, vegetation etc.?				
						ב	System Integrity: Do syst	em slopes look stable, is the	ere notable damage in the system?	

https://www.unh.edu/unhsc/maintenance

Maintenance Complexity is defined as:

Minimal	Simple				
Stormwater Professional	Stormwater Professional or				
or Consultant is seldom	Consultant is occasionally				
needed	needed				
Moderate	Complicated				
Stormwater Professional or	Stormwater Professional or				
Consultant is needed half	Consultant is always				
the time	needed				

MEMORANDUM

DATE: February 20, 2016

TO: Opti-Tool TAC

FROM: Karen Mateleska, EPA Region-I

SUBJECT: Methodology for developing cost estimates for Opti-Tool

Table 3: Maintenance Costs (\$) and Hours per year for select BMPs – From UNHSC

BMP	Maintenance Cost (\$) per year	Annual Maintenance Hours
Bioretention	\$1,890.00	20.7
Chamber System	Not Assessed	Not Assessed
Detention Pond	\$2,380.00	24.0
Gravel Wetland	\$2,138.33	21.7
Porous Asphalt	\$1,080.00	6.0
Pervious Concrete	\$1,080.00	6.0
Retention Pond	\$3,060.00	28.0
Sand Filter	\$2,807.50	28.5

*Note: initial costs based on cost of maintenance per year per acre of IC treated

Economics of Installation vs Maintenance Costs, normalized by area

Parameter	Vegetated Swale	Wet Pond	Dry Pond	Sand Filter	Gravel Wetland	Bioretention	Porous Asphalt
Capital Cost (\$)	12,000	13,500	13,500	12,500	22,500	21,550	21,800
Inflated 2012	14,600	16,500	16,500	15,200	27,400	25,600	26,600
Capital Cost Maintenance and Capital Cost Comparison	17.8	5.4	6.9	5.4	12.8	13.5	24.6
Personnel (hr/yr)	9.5	28.0	24.0	28.5	21.7	20.7	6.0
Personnel (\$/yr)	823	3,060	2,380	2,808	2,138	1,890	380
Subcontractor Cost (\$/yr)	0	0	0	0		0	700
Total Operational Cost (\$/yr)	823	3,060	2,380	2,808	2,138	1,890	1,080
Operation/Capital Cost (%)	6%	19%	14%	18%	8%	8%	4%

Additional Resources

- EPA Region 1 has developed a cost estimation tool that calculates maintenance hours for typical BMPs the method is documented here: <u>https://https://www.unh.edu/unhsc/sites/default/files/media/epacost-memo_0.pdf</u>
- This is also included in the performance stormwater calculator: <u>https://www.unh.edu/unhsc/ms4-resources</u>
- International Stormwater BMP Database is continuing to develop resources for implementers and has expanded the database to track BMP costs: <u>https://bmpdatabase.org/urban-bmp-cost</u>
- NCSU BAE is finalizing a cost calculator for BMP maintenance, when available the tool will be located here: <u>https://stormwater.bae.ncsu.edu/resources/</u>

Questions

Going Green for Good:

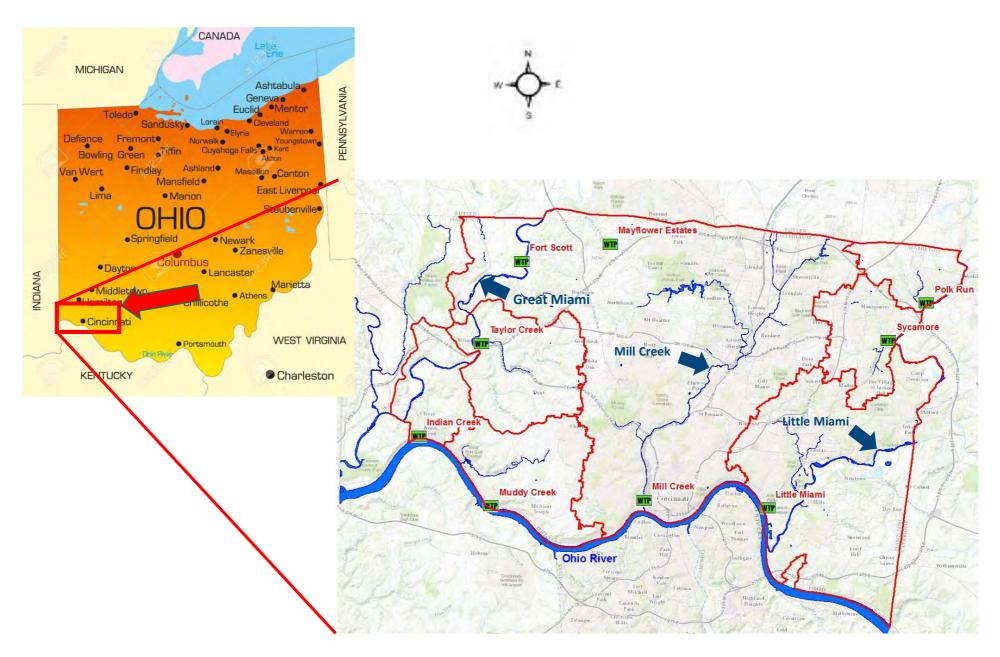
Long Term Considerations for the Operations and Maintenance of Green Infrastructure

Stormwater Control Measures O&M Program

April 28, 2022

Agenda

- Background
- Green Infrastructure Program
- SCM Inspection Program Evolution
- SCM Maintenance Program Evolution
- Lessons Learned



It's All About Clean Water

MSD collects, treats, and manages wastewater from Greater Cincinnati communities, protecting the environment and public health by returning clean water to local rivers and streams.

MSD At A Glance

MSD At A Glance

MSD has 9 treatment plants and other assets

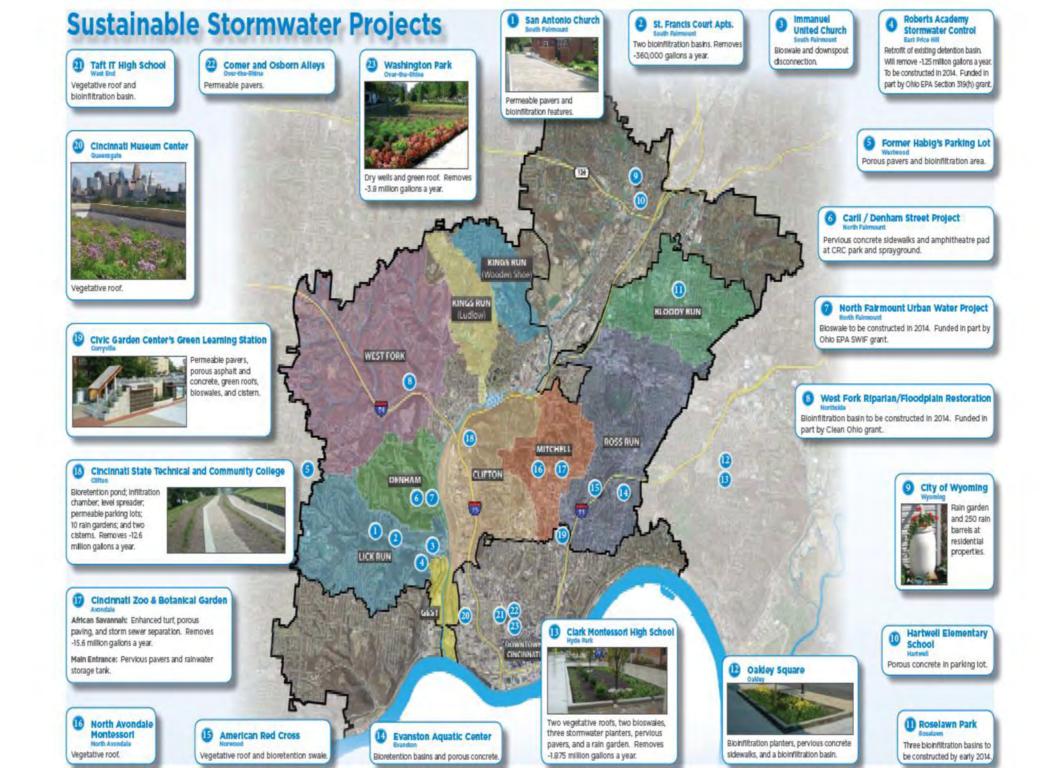
MSD treats 190 million gallons of wastewater a day

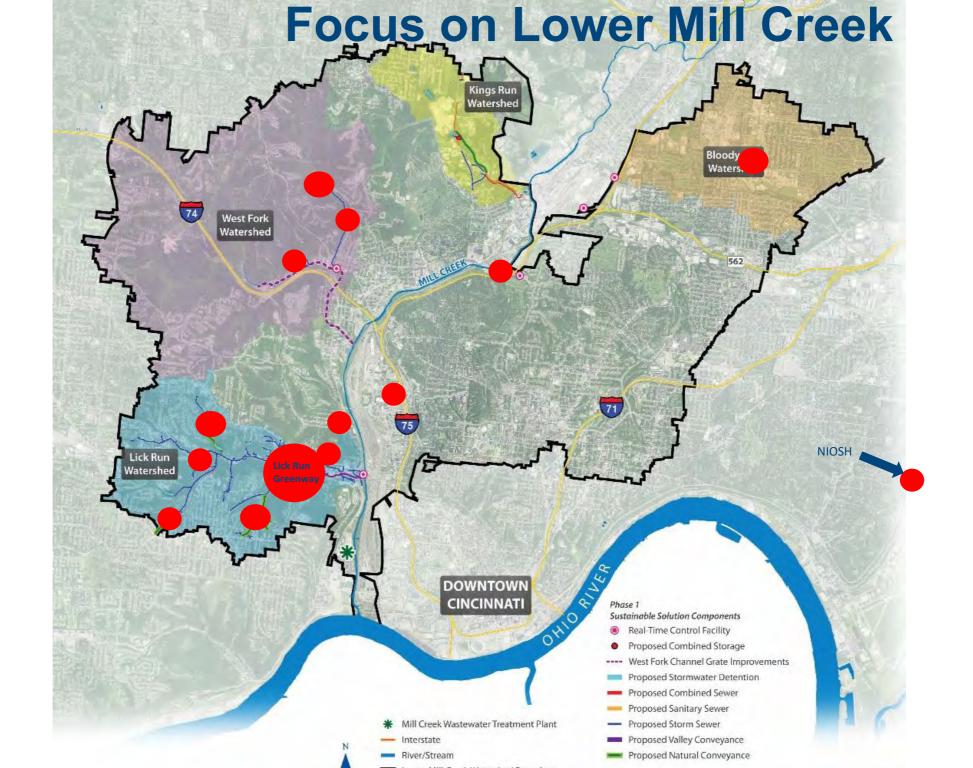
MSD maintains more than 3,000 miles of sewer pipe

Wet Weather Program

- MSD is under a federal mandate to reduce <u>combined</u> <u>sewer overflows</u> into local rivers and streams.
 - ~800 communities across the U.S. are also under consent decrees for "CSOs"

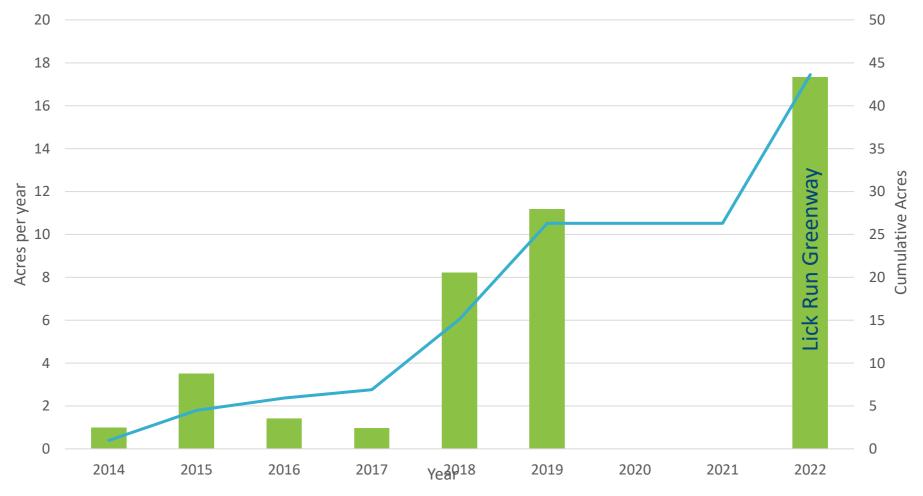
Status of Our Weather Program


- Completed 1st phase in 2020; entire program will take many decades to complete
- To date, eliminated **6 billion gallons** of sewer overflows a year (from 14 billion to 8 billion)
- Invested **more than \$1 billion** in infrastructure improvements
- Evaluating and implementing green infrastructure as one of the solutions to reduce overflows and improve water quality in local creeks and rivers.



Green Infrastructure Program

Enabled Impact Program


- About 50 million gallons per year of stormwater removed from the combined system from 30+ Green Demonstration projects.
 - 290,000 square feet of bioinfiltration practices;
 - 168,000 square feet of vegetative (green) roofs;
 - 155,000 square feet of porous/pervious paving;
 - 125,000 gallons of rainwater storage for reuse;
 - 2,040 linear feet of storm sewer separation; and
 - 5 large capacity stormwater dry wells.

By the Numbers

Acres —Cummulative

SCM Inspection and Maintenance Program Goals

Goals for sites...

- Function
- Safe
- Aesthetically acceptable

Programmatic Goals ...

- Data to flow seamlessly from inspection to maintenance
- Inspection and maintenance to be data driven
- Eliminate all paper forms
- Skilled labor at all levels

Lick Run Greenway

Inspection Program

Inspection Program

You've probably heard this before....

Inspection is the key to keeping SCM's functioning at peak performance.

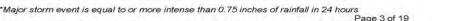
What MSDGC <u>WAS</u> doing:

- Inspect each asset monthly
- Borrowed internal labor
- Used paper forms and separate photos
- Information manually transferred to CMMS

Rapid Run Park

Performance Indicators

Visual aspects of GI that provide information on the health and function of that asset


Vegetated systems

- Structure clogging
- Standing water
- Plant viability
- Erosion
- Sediment
- Trash
- Infestation

Non-vegetated systems

- Structure clogging
- Structure failure

		Vegetated Systems	
		Bioretention Systems	
Indications of Poor Function	Evidence	Remedies	Consequences of Inaction
Excessive Sediment at inlet	 Sediment buildup immediately downstream of inlet (at splash pad, level spreader, etc.) Sediment upstream of inlet (e.g., in gutter) is evidence of flow into bioretention system being blocked or slowed down which allows sediment to settle out prior to entering bioretention system. Sediment deposition depth should not be greater than 20% of the design freeboard depth (distance between top of bioretention system and surface of mulch). 	 Perform regular maintenance so that sediment does not build up to an excessive amount at, upstream, or downstream of inlet. Install sediment trap to keep sediment from impairing performance of bioretention system between regularly scheduled maintenance. 	 Drowning hazard due to flooding A blocked inlet will keep flow from entering bioretention system and cause a loss of storage volume capacity and water quality improvement Sediment buildup at the level spreader or energ dissipater will counteract erosion controls Street flooding or flooding of adjacent property Loss of desired plants due to sediment buildup within bioretention system Repair and replacement cost Poor aesthetics
Invasive plants	 Invasive species coverage greater than 30% of the bioretention system by area Common invasive species include reed canary grass, common reed, purple loosestrife, and cattails 	 Removal of invasive species and replanting of deeply rooted native species, particularly during establishment period. Invasive species shall be eradicated within one month of discovery to prevent further spreading. If design species continue to fail to become dominant, soil pH, soil permeability, hydrology, or salt content may be incorrect for the selected species. Consult designer for plant material adjustment and implement soil testing. 	 Invasive species outcompete deeply rooted native species which maintain proper infiltration Increase in flooding and standing water due to loss of infiltration Loss of storage volume and/or water quality improvement due to loss of infiltration Repair and replacement cost Poor aesthetics
Damage by vehicles/plows	 Chipped or broken curb Tire marks on curb Tire tracks within bioretention system Crushed structures, piping, cleanouts 	 Add reflective signage or stakes within the asset near areas of frequent strikes. Stakes shall be of sufficient height to be visible above banked snow. Redesign or retrofit as necessary to reduce vehicle strikes. 	 Inlet blockage due to curb breaks Damage to soils, underdrains, overflow grates, structures, and vegetation Damage to private and public property Repair and replacement cost Poor aesthetics
Blockage to outlet (e.g., downstream curb cut, overflow grate, or underdrain)	 Flow from the bioretention system is partially or completely obstructed by sediment, debris, or vegetation 	 Remove blockage. Remove or relocate vegetation near the outlet. Remedies to excessive sediment at the inlet and erosion problems will limit sediment build up at the outlet. 	 Increases flooding or standing water which limit volume capacity and water quality improvement Loss of desired plants Repair and replacement cost Poor aesthetics

Inspection Program

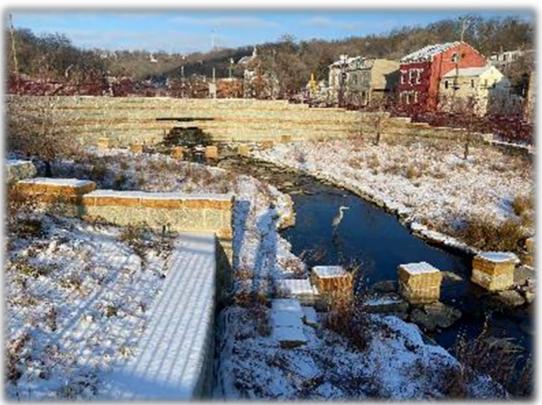
What MSDGC <u>IS</u> doing:

- Inspect each asset monthly
- Use own internal labor
- Utilize CMMS for scheduling
- Use an app that pushes info directly to network and a monthly workorder

Harrison Street Planter

Tracking Data

DOMAIN INB	OX New V	Nork Ord	der 🗸 New	Inspectior	n 🗸 Pro	oject N	lanager	New Contra	act 🗸	Reports Ch	arts/KPI's 🗸	Asse
🗲 Workorder	✓	t Preview	ave Save	Close	🛱 Delet	e (
		Work Ore	der		۵	T		Loc	cation Info	rmation		^
Description:	SCM Inspection				~		WO Address:	LR1 - STATE TO	HARRISON			
Number:	399000	~					Quadrants:	Central Southwe	st 🗸			
Initiated By:	ECKHOFF, MARIS	SAD	Date:	03/12/2021 1	10:05 AM 🛗	Lo	cation Details:					
Entity Type:	BIOINFILTRATION	BASIN										
Is Reactive?			Reason for Work		~		X Location:		_	Y Location:		_
Category	Planned				~		A Location:	1,38	8,072.511	Y Location:	416,481.	760
Account:	Watershed Oper	ratior 💌							Asset	S		
Requested By	ECKHOFF, MARI	SA D 🗸	Work Group	MSD SCM,	~		Total Entities:	15				
Request Agency	WWC	~					Asset		AssetID	Location	Warranty Date	
Status:	Supervisor Review	w 🗸	Priority:	Routine	~		BIOINFILTRA	TION_SYSTEMS	1098	STATE TO HARRISON	N	
SubmitTo	SCHEHL, LESLIE	•	Date SubmitTo	03/12/2021 1	10:05 AM 🛗		BIOINFILTRA	TION_SYSTEMS	1008	STATE TO HARRISON	N	
Completed By	ECKHOFF, MARI	SAD 🗸					BIOINFILTRA	TION_SYSTEMS	1001	STATE TO HARRISON	N	
Projected Start	02/1/2021 07:00 #	AM 🛗	Projected Finish	12/31/2021 0	09:00 PM 🛗		BIOINFILTRA	TION_SYSTEMS	1007	STATE TO HARRISON	N	
Actual Start	02/25/2021 01:46	PM 🛗	Actual Finish	12/10/2021 1	10:47 AM 🛗		BIOINFILTRA	TION BASIN	2235081			
Originating WO#			Orig WO# Desc				BIOINFILTRA	TION_SYSTEMS	1094	STATE TO HARRISON	N	
Structural Risk			Maint. Risk					TION_SYSTEMS	1004	STATE TO HARRISON	N	
HOLD For WO#							BIOINFILTRA	TION_SYSTEMS	1093	STATE TO HARRISON	N	
Description		~	Work Length		C			TION_SYSTEMS	1095	STATE TO HARRISON		
	Cancel							TION_SYSTEMS	1096	STATE TO HARRISON		
Cancelled By			Date Cancelled		Ħ			TION_SYSTEMS		STATE TO HARRISON		
Cancel Reason		~			_		BIOINFILTRA	TION_SYSTEMS	1006	STATE TO HARRISON	V ▼	•
Cancel Comments						-	Pink rows indic	ate inventory still	under warra	inty.		
								俞 圀	R			
Comments:	Add Comment				Sort V			XY when adding/re		ate?		
				-		Upda	le work order.	A t when adding/re	emoving ass	SEIS : 🎽		



Maintenance Program

Maintenance Program

How MSDGC is getting it done:

- Frequency/tasks are outlined in maintenance manual; re-evaluated yearly
- **MOST** labor is contracted (seasonal, on demand)
 - Create the schedule
 - Assigned sites
 - Use maintenance app in the field
- Manually enter labor and materials
- Tracked in CMMS
 - Routine v. Non-routine \$\$\$
 - Hot spots

Lick Run Greenway Headwaters

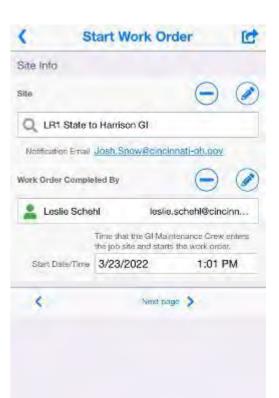
Maintenance Program

Maintenance Program for GI used existing MSDGC Collection Division processes/procedures for work order creation/tracking.

But...

It's still different!

- Tasks
- GIS Depiction
- Tools
- Materials



Work Orders

Tracking Data

Work Order 🛆					Location Information							
Description:	SCM Maintenance			~		WO Address	ELR1 -	STATE TO I	HARRISON	GI		
Number:	429583	۲				Quadrants	Centr	al Southwe	st 🗸			
Initiated By:	ECKHOFF, MARISA D		Date:	01/25/2022 07:35 AM 🛗	Lo	cation Details	5					
Entity Type:	BIOINFILTRATION BAS	SIN										
Is Reactive?			Reason for Work	~								_
Category	Planned			~		X Location	10	1,38	8,022.044	Y Location:	416,45	54.957
Account:	Watershed Operation	-							Asset	s		
	ECKHOFF, MARISA D		Work Group	MSD SCM, 🗸		Total Entities	: 15					
Request Agency	WWC	~				Asset			AssetID	Location	Warranty Da	te
Status:	Scheduled	~	Priority:	Routine 🗸		BIOINFILTE		SYSTEMS	1005	STATE TO HARRISON		<u>^</u>
SubmitTo	SCHEHL, LESLIE	~	Date SubmitTo	03/1/2022 06:48 AM		BIOINFILTE	ATION_	SYSTEMS	1002	STATE TO HARRISON		
Completed By	FOREVERGREEN CO					BIOINFILTE	ATION_	SYSTEMS	1006	STATE TO HARRISON		
		曲	Projected Finish	03/31/2022 09:00 PM 🗰		BIOINFILTE	ATION_	SYSTEMS	1003	STATE TO HARRISON		
				03/21/2022 10:15 AM 🗰		BIOINFILTE	ATION	BASIN	2235081			
Driginating WO#			Orig WO# Desc			BIOINFILTE	ATION_	SYSTEMS	1095	STATE TO HARRISON		
Structural Risk			Maint. Risk			BIOINFILTE	ATION_	SYSTEMS	1001	STATE TO HARRISON		
HOLD For WO#						BIOINFILTE	ATION_	SYSTEMS	1096	STATE TO HARRISON		
Description		~	Work Length	0		BIOINFILTE	ATION_	SYSTEMS	1097	STATE TO HARRISON		
	Cancel			Ű		BIOINFILTE	ATION_	SYSTEMS	1007	STATE TO HARRISON		
Cancelled By			Date Cancelled	m		BIOINFILTE	ATION_	SYSTEMS	1008	STATE TO HARRISON		
Cancel Reason		v				BIOINFILTE	ATION_	SYSTEMS	1093	STATE TO HARRISON		- *
incel Comments		•				Pink rows inc	dicate inv	entory still	under warra	ntv.		
Comments:							Ē	超	Ľ			
Commenta.	Add Comment			Sort V	Updat	te Work Orde	r XY wh	en adding/re	moving ass	sets? 🗹		
			no comments						ap Layer	Fielde		
Instructions:									ap Layer	Tielus		
					Re	iset						
									Tasks	;		
		Details	\$	_	Seql	D Name			Descr	iption	Status	Proce
Project: roject Tree	2022 15x12859 Forev	e 🗸			1	GI Preve	entative	Maintenar	ce GI Pre	eventative Maintenance	COMPLETE	True
Contract:		¥	Contractor	FOREVERGREEN CO V	2	GI Preve	entative	Maintenar	ce GI Pre	eventative Maintenance	COMPLETE	True
ock Units Desc.:			2 3111 40101	I OREVEROREEN COL	3	GI Preve	entative	Maintenar	ce GI Pre	eventative Maintenance	COMPLETE	True
Labor Cost:	_		Material Cost:	\$0.00	4	GI Preve	entative	Maintenar	ce GI Pre	eventative Maintenance	COMPLETE	True
auipment Cost:			Permit Cost:		4							•
quipment Cost:	30.00		Permit COSE	30.00	_							

Lessons Learned

Lessons Learned

Asset Management

- Criticality and risk
- Proper condition assessments
- Levels of service
 - Tracking the right data
- Workforce
- Technology

When nothing is going right, go left.

Lick Run Greenway

For more information:

Leslie Schehl leslie.schehl@cincinnati-oh.gov

www.youtube.com/user/CincinnatiMSD www.projectgroundwork.org/lickrun/

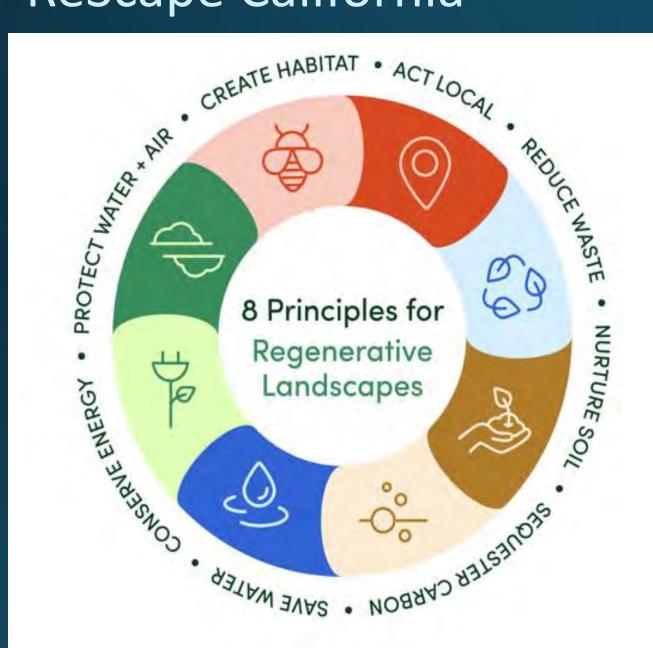
Going Green for Good: Long-Term Considerations for Operation & Maintenance of Green Infrastructure

EPA Webcast: April 28, 2022

Healthy Plants for Better Bioretention Performance: An Approach from the San Francisco Bay Area

Peter Schultze-Allen, Senior Scientist CPSWQ, ReScapeQP

EOA, Inc. Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP)



Presentation Outline

- Regenerative Landscaping Principles and Bioretention Measures
- Plant Groups in Bioretention Measures
- Mulch for Bioretention Measures
- San Francisco Bay Area GSI and Bioretention Measure Maintenance Resources

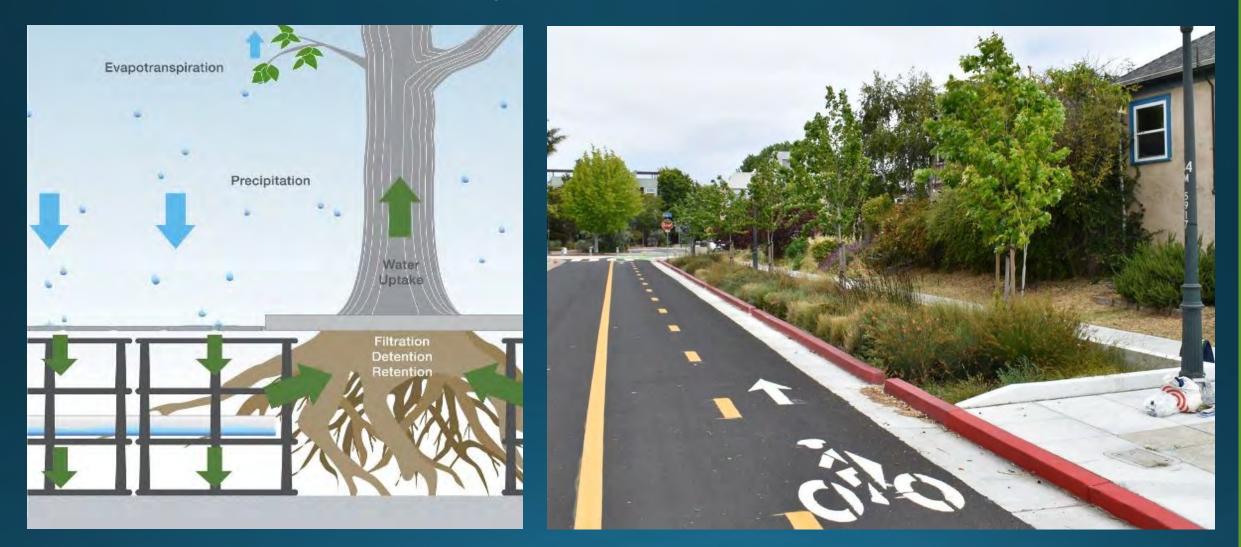
Regenerative Landscaping in Bioretention Measures

ReScape California

ReScape California's holistic and regenerative landscaping principles include:

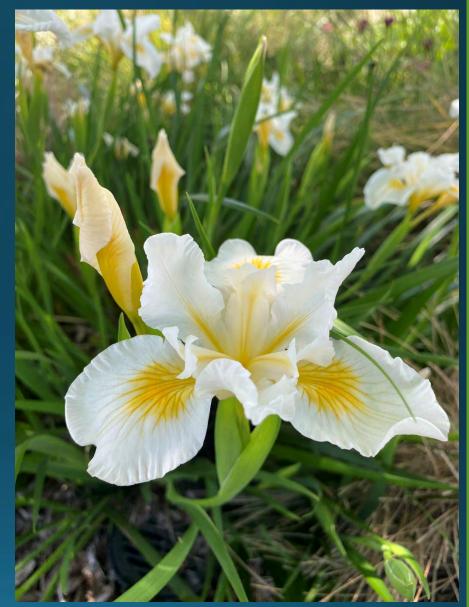
- Using climate-appropriate vegetation and minimizing planting of intensiveresource landscapes such as turfgrass
- Using compost and mulch enhances fertility, soil structure, and improves nutrient and water retention; they inoculate the soil with beneficial organisms, and provide other benefits
- More information at: <u>www.rescapeca.org</u>

Regenerative Bioretention Measure Maintenance Practices


• Know your plants

- Identify the plant or at least know how its maintained
- Right plant in the right place reduces pruning and waste
- Know your weeds and what they are telling you
- Avoid pesticides and synthetic fertilizers
 - Can kill beneficial insects and soil life
 - Can impact water quality discharges
- Use compost and wood mulch
 - Improve soils, reduce water consumption and weeds
 - Inoculate soil and improve plant health

Bioretention Measure Examples



Tree Well Filter Example

Plant Maintenance Tips/Questions

- Plant spacing and coverage:
 - How large will it grow?
 - How long will it take to grow to full size?
 - Are plants too close together?
 - Are more plants needed?
- How much water and sunlight does it need?
- When does it flower?
- Is it a "weed" or a desired plant?
- What time of year is best to prune?
- Does it really need to be pruned?
- Should it be divided and replanted?
- How long does it live?
- Is it dormant or dead?

Iris douglasiana – Pacific Coast Iris

GSI Maintenance Field Guide - San José

Plant Density

4 Excellent Condition

- » 100% plant coverage at plant maturity*
- » Plants are appropriately spaced
- » No obstruction of inlets, overflow, or irrigation infrastructure

*Newly planted systems may not have full coverage, but systems must have full coverage after plant establishment and maturity

3 Good Condition

- » At least 90% plant coverage at maturity*
- Some sporadic bare spots present (0-10%)
- » Most plants are appropriately spaced
- » Partial obstruction of one or more inlet, overflow, or irrigation system

2 Moderate Condition

- » At least 50% plant coverage at maturity*
- Moderate number of small bare spots with no large, continuous bare spots (10-20%)
- » Significant obstruction of one or more inlets, overflows, or irrigation systems

1 Poor Condition

- » Less than 50% plant coverage at maturity*
- » Significant number of bare spots or large, continuous bare spots (more than 20%)
- Full obstruction of one or more inlets, overflows, or irrigation systems

Images courtesy of the City of San José, a member of SCVURPPP

Why Plant Identification Matters

- If you don't know your plant, you might kill it!
- Three plant "maintenance groups":
 - Rushes
 - Sedges/grasses
 - "Flowers"*

Calamagrostis x acutiflora – Reed Grass

*Botanically speaking, all three of these groups of plants have flowers, but for the purposes of our three "maintenance groups", we are using "Flowers" to mean the group with large, very noticeable flowers.

Plant "Maintenance Groups"

Rushes

Rush stems are round and solid

Sedges/Grasses

Flowers

Sedges have edges, grass stems are hollow – both have flat leaves; sedges and grasses can have shorter lifespans; some can turn brown in summer if not irrigated; and some grasses are colorful Flowers are broadleaved or longstemmed and often have larger, more colorful flowers than the other two groups of plants.

Rushes

Chondropetulum tectorum – Cape Rush

Juncus patens – California Gray Rush

If possible, do not prune at all!

Care: Remove dead stems only - dethatch by hand with textured rubber gloves. If live growth needs pruning, remove only tips (top 4-6 inches)

Sedges/Grasses

Carex tumulicola – Berkeley Sedge

Muhlenbergia capillaris – Pink Muhly Grass

Care: Dethatch with rubber gloves; divide larger plants in fall; will be greener with more water – can turn brown in summer without irrigation.

Flowers

Penstemon heterophyllus Foothill Penstemon

Carpenteria californica Bush Anemone

Care: Deadhead spent flowers and remove dead growth

Plant Pruning Example

A newly installed bioretention measure with two types of rushes

Improper Pruning of Rushes

One year later, improper and unnecessary pruning of rushes leads to poor plant health issues

Results of Improper Rush Pruning

Two years later, repeated pruning has led to almost complete plant failure

Mulch Topics

Purpose of mulch

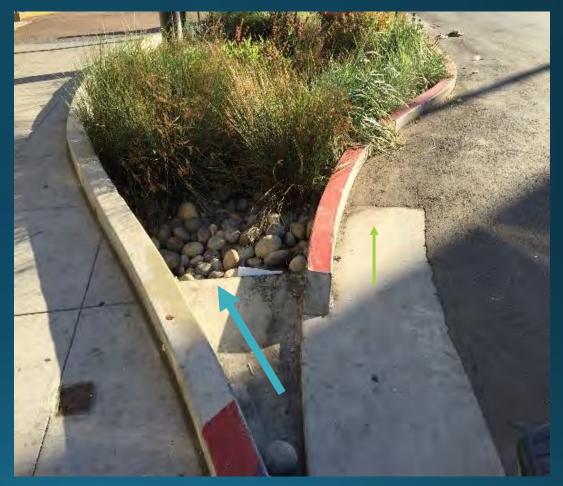
- Reduces weed growth
- Conserves water by minimizing soil dehydration
- Keeps soil cool
- Reduces soil erosion
- Depth of mulch
 - 3 inches is required in California for water-efficient landscaping and conservation

Mulch considerations

- Depends on site and design
- Wood mulch
 - Improves soil
 - Holds moisture
 - Needs periodic replacement
- Rock mulch
 - Prevents erosion
 - Can heat up soil
 - Doesn't improve soil
 - Can make weeding difficult
 - Potential vandalism (cobble)

Mulch Types

- Wood Mulch (recommended):
 - Uncomposted Wood Mulch
 - Composted Wood Mulch


Rock Mulch (only when really needed):

- Gravel (small)
- Medium-sized rock
- Cobble (large)
- Combination
 - Rock mulch can be used in the flow line with wood mulch on the sloped sides
 - Jute netting can also be used to temporarily hold the mulch in place until plants are established

The Bioretention Measure Design Affects the Mulch Choice

Off-line design with trench drains & wood mulch

In-line design with Splash Apron and Cobbles

Combination Wood and Rock Mulch Design

Where space allows and when you have sloped sides, a combination of rock mulch in the flow line and wood mulch on the sides can be used

Composted Wood Mulch Benefits

The composting process provides benefits:

- Inoculates mulch and soil media with beneficial organisms
- Holds more water
- Floats less (heavier and less resinous)
- Less flammable
- Reduces pathogens that might be in the mulch like Sudden Oak Death (Phytopthora ramorum)

The Biotreatment Wood Mulch (BWM) Specification can be downloaded from the SCVURPPP website:

https://scvurppp.org/2021/07/01/biotreatment-soilmedia-supplier-list/

Uncomposted Wood Mulch


Composted Wood Mulch (BWM)

Gravel Rock Mulch (Small)

Medium-sized Rock Mulch and Cobble (Large)

SF Bay Area Bioretention Resources

SCVURPPP GSI Handbook (2019)

https://scvurppp.org/2019/09/01/scvurppp-green-stormwaterinfrastructure-handbook/

City of San José GSI Maintenance Field Guide (2019) <u>www.sanjoseca.gov/home/showdocument?id=40709</u>

SMCWPPP GI Design Guide (2020) https://www.flowstobay.org/data-resources/resources/greeninfrastructure-design-guide/

San Francisco GI Maintenance Guide Book (2018) https://sfpuc.sharefile.com/share/view/sb83923c24cb4298a

Green Stormwater Infrastructure Handbook

CITY OF SAN JOSE GREEN STORMWATER INFRASTRUCTURE MAINTENANCE FIELD GUIDE

GREEN INFRASTRUCTURE

Contact Information

Peter Schultze-Allen

Senior Scientist CPSWQ, ReScapeQP pschultze-allen@eoainc.com EOA, Inc. and SCVURPPP

Pollution Prevention Program

Mimulus aurantiacus – Sticky Monkey Flower