\$EPA

Validation of Permeable Reactive Barrier Technology for Non-Point Source Groundwater Nitrogen Remediation

Matthew Charette, Kristen Rathjen, Paul Henderson, Paul Dombrowski, Richard Raymond, and Michael Lee

Nitrogen Pollution-A \$Multi-Billion Problem on Cape Cod

 Housing boom on Cape Cod has led to severe ecological impacts to coastal water bodies

Nitrogen Pollution-A \$Multi-Billion Problem on Cape Cod

On Cape Cod, virtually all freshwater that enters the coastline is derived from groundwater – even the rivers are groundwater fed.

Nitrogen Pollution-A \$Multi-Billion Problem on Cape Cod

 Estimated cost of wastewater systems on Cape Cod: \$5.2 billion to \$7.6 billion (up to \$50K per property owner)

EPA

 Alternative, lower cost strategies needed, but many need to be validated before they will be adopted by municipalities

Alternative Approaches Under Consideration

SEPA Permeable Reactive Barrier (PRB)

Set EPA

Injection Event – July 2020

EVO Storage and Batching within secondary containment

Water from hydrant with hose ramps to cross the road

Injection Event – July 2020

EVO Injection Pressures and Flow Rates

		One Year Dosage					Two Year Dosage							
		IP-1	IP-2	IP-3	IP-4	IP-5	IP-6	IP-7	IP-8	IP-9	IP-10	IP-11	IP-12	<10 psi
														10-20 psi
Pressure (psi)	Shallow	5-12	40-56	3	20-28	3	22	5	4	5	5	3	3	20-30 psi
	Intermediate	5-40	42	4	14-18	5	36-58	16	5	10	7	2-5	3	30-40 psi
	Deep	20-24	42	5	55-62	12	No Injection 100+	40-64	40-80	20-72	45-70	10	16-22	40-50 psi
														50-60 psi
														>60 psi
Flow Rate (gpm)	Shallow	5.07	3.07	6.14	3.02	4.49	4.38	4.73	4.79	5.38	5.3	4.93	4.07	>5 gpm
	Intermediate	1.72	2.89	5.07	4.27	5	3.3	7.14	4.61	4.61	5.47	4.49	4.61	4-5 gpm
	Deep	1.98	3.4	6.25	2.43	4.67	No Injection	2.85	3.02	1.37-3.88	2.1	3.76	3.76	3-4 gpm
	-													2-3 gnm
														1-2 gnm
														<1 gpm

EPA Monitoring Scheme

TOC Time Series: Downgradient Wells

€PA

Nitrate+Nitrite Plumes Entering the Site

EPA

Year 2 EVO Dosage: Nitrate removal

SEPA

pH and Dissolved Oxygen

€EPA

Ancillary groundwater chemistry

SEPA

Arsenic EPA drinking water limit = 0.01 mg/L

Lessons Learned and Next Steps

• Pre-injection hydrogeological survey work is critical

SHA

- Significant spatial and temporal variability in groundwater nitrate concentrations
- EVO dosing scheme is meeting minimum expected longevity
- Decrease EVO injection spacing or employ two row injection (sawtooth)
- Calculate nitrate removal due to PRB and compare with model inputs
- Produce a design manual for larger scale PRB installations

\$EPA

Example Alternative Approach for Nitrogen Removal

Bournes Pond, Falmouth, MA

Excess Nitrogen Load: ~4000 kg N/yr

Year 1 EVO Dosage: Nitrate removal

€PA

\$EPA

PRB Design (as installed)

Permeable Reactive Barrier Design Parameters	July 2020	Installation				
PRB Width (ft)	60	60				
Vertical Interval (ft)	24	24				
PRB Length (ft)	12	12				
Porosity	0.3	0.3				
PRB Pore Volume (gallons)	38,776	38,776				
PRB Design Life (months)	24	12				
Total Injection Volume (gallons) ¹	6,300	6,300				
	12	2,600				
Percent of Total Pore Volume to Inject	16.2%	16.2%				
Emul. Vegetable Oil Dosage	20%	10%				
Emul. Vegetable Oil Stock (gallons) ²	2,100	1,100				
Total CaCO3 Buffer (lbs.)	725	725				
	1	,450				
Total Injection Points	12	12				
		24				
Injection Flow Rate (gal/min)		1 - 7				
Injection Flow Rate (gal/min, average)		3.7				
Injection Days		4				

SEPA Tech Transfer

- PRB technology has existed for decades, though most applications are for treating chlorinated solvents in low permeability soils
- A major project deliverable will be an open source design tool for denitrification PRBs in southeastern New England and beyond (e.g. Long Island) including cost of treatment based on EVO longevity

Site Name:	ale PPI	2		RETURN TO COVER PAGE				
One Nume.		Exam						
Treatment Zone Physical Dim	ensions							
		Values	Unite		Va	lues	Unite	
Width (perpendicular to groundwa	ater flow)	200	feet			61	meters	
Length (parallel to groundwater f	low)	20	feet		(5.1	meters	
Saturated Thickness	,	40	feet		1	2.2	meters	
Design Period of Performance		5	years			5	years	
. Treatment Zone Hydrogeolog	ic Properties							
T (10)		Values	Units		Va	lues	Units	
Total Porosity		0.25	perce	nt	0	.25	percent	
Average Aguifer Hydraulic Condu	uctivity	300	ft/day	nu	11	E_01	cm/sec	
Average Hydraulic Gradient	icuvity	0.001	ft/ft		0	001	m/m	
Average Groundwater Seepage	Velocity	1.20	ft/day		3.7	E+01	cm/day	
Average Groundwater Seepage	Velocity	438	ft/yr ໌		1:	33.5	m/yr Í	
Effective Treatment Zone Pore V	olume	299,280	gallor	IS	1,13	32,866	liters	
Groundwater Flux (per year)		6,554,232	gallor	is/year	24,8	09,774	liters/year	
Total Groundwater Volume Treat	ed	33,070,440	gallor	is total	125,1	181,735	liters total	
(over entire design period)								
. Distribution of Electron Accep	otor Demand			Di	stribution	of Electro		•
		Hudrogon			SUIDUUOII		Acceptor	5
	Percent of Total	Demand (lb)						
Aerobic Respiration	12.9%	295.421		12.9%				Aerobic Respiration
Nitrate Reduction	11.7%	268.821	5	11.7%				Nitrate Reduction
Sulfate Reduction	10.1%	231.702	p d	0.6%				□Mangan ese R eduction
Manganese Reduction	0.6%	14.178	- ö	4.29				
Iron Reduction	4.3%	99.606	Ă	4.3%				□Iron Reduction
Dechlorination	60.4%	1386.722	5	10.1%				Sulfate Reduction
Perchlorate Reduction	0.0%	0.000	t l			60.4%		Methan ogenes is
Totals:	100.00%	2296.45	8	0.0%				Dechlorination
			1	0.0%				Decinomation
Hydrogen dem a	nd in pounds/gallon:	6.94E-05					L	Perchlorate Reduction
Hydrogen demar	nd in grams per liter.	8.32E-03		0% 20%	40%	60% 80)% 100%	
					Perc	ent		
. Substrate Equivalents : Desig	n Factor =	2.0						
	0		6 -	Effective				
Product	(lb)	Quantity (gallons)	0	(mg/l)	of ground	concentration	is for total vo	lume
1 Sodium Lactate Product	212.886	19 353		372	as lactic a	rid	-	
2 Molasses Product	162 466	13,539		353	as sucros	<u>-</u>		
3. Fructose Product	128,292	11,455		372	as fructos	e		
4. Ethanol Product	65,599	9,507		190	as ethano			
5. Sweet Dry Whey (lactose)	101,189	sold by pound		257	as lactose			
6. HRC [®]	77,785	sold by pound		225	as 40% la	ctic acid/40%	glycerol	
7. Linoleic Acid (Soybean Oil)	39,940	5,121		145	as soybea	in oil		
8. Emulsified Vegetable Oil	66,567	8,534		145	as soybea	in oil		
Notes:								
 Quantity assumes product is 6 	0% sodium lactate by	weight.						
Quantity assumes product is 6	0% sucrose by weight	and weighs 12 pour	ids per (gallon.				
	and the set of the last second s	and wough c 11 2 no	unds pe	rgallon				
 Quantity assumes product is 8 Quantity assumes product is 8 	0% fructose by weight	and weight 6.0	anao pe	aglion.				

Parsons Infrastructure & Technology Group, DOD ESTCP Program

We measure Nitrogen in wastewater

Equaders

Dr Qingzhi Zhu – Inventor, R&D

- PhD, Associate Professor, Environmental Analytical Chemist, 100 papers
- 20 years testing and developing instrumentation, previous inventions
- Inventor, Exclusive License of IP from SBU

Dr Chris Gobler – Funding, Oversight, Contacts

- Director: New York State Center for Clean Water Technology at Stony Brook
- Over 20 scientists and engineers focused on advanced septic systems
- Ph.D. ,Endowed Chair at Stony Brook University, water ecosystems

Bud Dunbar – Business Development, Start-Up

- Built a \$BB public company, Top 100 Growth Companies in US, Ran M&A
- 7 years sales and business development in wastewater domain
- Principal investor in Early-Stage Tech Venture Capital, Five startups
- MBA, BS Civil/Environmental Engineering

Team - Electro Mechanical Engineer, Informal Advisory Board - CCWT

The Problem: Septic Systems don't work They don't remove dissolved pollutants

Nitrate flows into Drinking and Surface Mater Causes cancer in drinking water Causes harmful algae blooms like this

150 Year Old technology Used by 26 million (24%) US homes

We can't afford sewers & centralized treatment

Nitrogen flows into ecosystems and well sources

Top 17 States by Number of Households **ERA** Septic

				Number of	nousenoius on	raneu Septic	
	Population	Counties	% on Septic	Households	Septic	Systems	Failure Rates
Florida	21,944,577	67	25%	8,708,165	2,177,041		
North Carolina	10,701,022	100	45%	4,246,437	1,910,897	334,407	18%
Texas	29,730,311	254	15%	11,797,742	1,769,661	221,208	13%
Pennsylvania	12,804,123	67	25%	5,081,001	1,270,250		
Ohio	11,714,618	88	25%	4,648,658	1,162,164	319,595	28%
New York	19,299,981	62	15%	7,658,723	1,148,808	45,952	4%
Washington	7,796,941	39	35%	3,094,024	1,082,908	357,360	33%
Georgia	10,830,007	159	25%	4,297,622	1,074,405	18,265	2%
Michigan	9,992,427	83	25%	3,965,249	991,312		
Tennessee	6,944,260	95	35%	2,755,659	964,481		
Indiana	6,805,663	92	35%	2,700,660	945,231		
South Carolina	5,277,830	46	45%	2,094,377	942,470	56,548	6%
Alabama	4,934,193	67	45%	1,958,013	881,106	176,221	20%
Virginia	8,603,985	133	25%	3,414,280	853,570		
California	39,613,493	58	5%	15,719,640	785,982	15,720	2%
Illinois	12,569,321	102	15%	4,987,826	748,174		
Massachusetts	6,912,239	14	25%	2,742,952	685,738	171,434	_25%

There is strong data out of northern Europe that correlates

Various forms of cancer to nitrate concentrations in drinking water > 2-3 mg/L

Most US limits are 10 mg/L

If you live near a red dot, you should be concerned

Percent of New Homes with Septic Systems (2013)

Share of new homes built with septic systems by region, 2013.

This slide shows sewers are a question of political will, not density

New England has the greatest density and therefore the lowest cost of running sewers

But it has the highest percentage of new homes not on sewers

Suffolk County New York has more homes on septic

For Rural and Suburban Homes, Average cost per home Strongly Favors Decentralized Treatment

Centralized Treatment with Sewer Collection \$35,000-\$150,000/home

Decentralized Treatment Verified Water = \$20,000-\$60,000/home

Grinder pump basin Raw wastewater

Lateral Kit

To Treatment

Pump discharge line

High Cost of Centralized Treatment and Sewers

					Pro	oject Cost	C	Cost per		
				# parcels	(\$ MM's)		Parcel		
Carll	s Riv	er Waters	hed - Babylon	3,958	\$	140.2	\$	35,422		
	Path	nogue Rive	er - Patchague	513	\$	29.6	\$	57,700		Average
		Oak	dale Phase 1A	420	\$	30.2	\$	71,905		\$ 59,983
	Kin	gs Park Bu	siness District	267	\$	20.0	\$	74,906		
			Total	5,158	\$	220.0				
			Typical OWTS	1			\$	25,000	42%	
				plus \$	490,	/year annu	ial s	ewer fees		

The APSwer – Decentralized, Onsite Treatment

This is happening! ½ cost of sewers 2.6 million drain into impaired water bodies \$65 billion early-stage market 200,000 of these in Suffolk County alone \$40K/home subsidies available

Innovative and Alternative Onsite Wastewater Treatment Disruptive Technology – better/cheaper/impsystems faster/I/A OWTS" or Onsite Systems

Solution – Decentralized Treatment

Onsite Wastewater Treatment Systems ("OWTS") or "Advanced Septic Systems"

Advanced Septic Systems can already produce effluent TN < 10 mg/L

How are you going to manage millions of mini wastewater treatment plants?

You are going to start with getting some data

Our Product

- Measure nitrogen
- In-situ, reliable, accurate
- Long term
 deployment
- Replace manual sampling and lab work
- Online, real time
- Independent, verified

The Stonybrook

Measures Ammonium and Nitrate/Nitrite separately and simultaneously (2-70 mg/L)

It gets buried at grade level inside of a standard riser. The box is watertight.

In-Situ: sampling system filters and suctions water from the source

Highly reliable: it ran for over 12 months without missing a measurement in six kinds of wastewater, > 450 samples

Interface – Screen shot of the Data tab

Technology Validation

Won EPA's "Low-Cost Nitrogen Sensor Challenge" Nobody else even finished

Our prize:

1. \$50,000

SEPA

- 2. 6 Month ISO 14034 technology verification
- 3. 200 Unit Commercial Order to Suffolk County

Verification Results

n=135	NH ₄	NO ₃ /NO ₂		
R ²	0.997	.986		
% Recovery	98.8%	93.5%		
Rel.Std.Dev.	3.3%	2.4%		

Test Sponsors

NSF Certified Test Facilities

Independent Test Oversight

Technology Validation

Comparison with Certified Lab data

Completed all 449 readings, 6 types of water

Low Maintenance ran for six months, no problem

Near perfect correlation accuracy precision

We Nailed it!

The Nitrogen Sensor is Accurate Proxy for TN in 96% of Samples

DIN is Predictive of TN in 126/131 (96%) of samples

DIN predicted compliance when system was noncompliant 1/131 (0.7%) of samples

Independent 3rd Party Validation

Trailblazer[™] Assessment Report

Low-Cost and Long-Term Deployment Nitro Simultaneously Measuring Nitrate and Ar Advanced Septic Systems

Science/Technology Fields: Environmental Management, Environ Pollution

> Technology Type: Product Geographic Region: USA

Project Number: RFC0165TB The Research Foundation for State University 050.Zhu TAF Class of 2020

> was Prepared by John H. Hallman, Ph.D. 936-697-1945 John.hallman.foresightst@gmail.com

Foresight Science & Technology, 34 Hayden Rowe Street, Suite 300, H

Voice: 401-273-4844; Fax: 401-273-4744; Web: http://www.fore

This report contains proprietary information. It is provided for you not be further disseminated for any purpose without the express Research Foundation for State University of New Phase II Advanced Septic System Nitrogen Sensor Project

FINAL

Six-Month Field Performance Test Report – Stony Brook Nitrogen Sensor

November 2020 – May 2021 Testing Period

Prepared by:

Battelle 505 King Avenue Columbus, Ohio 43201

Submitted to:

U.S. Environmental Protection Agency Office of Research and Development

July 27, 2021

Long Island Scientist Wins EPA Advanced Septic System I

Contact: Sonia Mohabir, (212) 637-3241, mohabir.sonia@epa.gov

NEW YORK (May 5, 2020) Today, the U.S. Environmental Protection A scientist from Stony Brook University in Stony Brook, NY, has won the Nitrogen Sensor Challenge, an international competition to advance tl sensors to measure nitrogen levels discharged from advanced home s with Stony Brook University and the New York State Center for Clean 1 Challenge's prize of \$50,000, the opportunity for commercialization st testing and verification for Standardization (ISO) Environmental Te 14034 standard.

"This competition shows that great innovations start small and can ha said EPA Regional Administrator Pete Lopez. "EPA encourages the de sensor technologies to help reduce nitrogen load and protect human l

SUNY Technology Accelerator Fund Funding Agreement

This Funding Agreement ("Agreement) sets forth the terms and conditions of a Technology Accelerator Fund ("TAF") Class of 2020 Award ("TAF Award"). The term of the TAF Award shall be March 15, 2021 to March 14, 2021. The Project must be conducted in accordance with State University of New York ("SUNY") and The Research Foundation for The State University of New York ("RF") policies, TAF Class of 2020 Application and Administrative Guidelines, and the objectives, milestones and deliverables identified in the proposal entitled, Low-Cost and Long-Term Deployment Nitrogen Sensor for Simultaneously Measuring Nitrate and Ammonium in Advanced Septic Systems.

I: THE PROJECT

The RF has approved funding to support the research project defined by the Scope of Work specified in Appendix A of this Agreement (hereinafter the "Project"). The Project will be carried out by Dr Qing Zhu (hereinafter the "Principal Investigator"). The Institutional Official for the Project is Dorna Turninelio (hereinafter the "Institutional Official").

II: AWARD AMOUNT

The amount of the TAF Award to support the Project is «\$50,000. The TAF Award will be audited and any charges not included as eligible expenses under the TAF Class of 2020Application and Administrative Guidelines and in Appendix A will be rejected. Any amounts remaining after termination or expiration of this Agreement or the achievement of each milestone specified in Appendix A shall be reclaimed by the TAF.

III: PROJECT MILESTONES

If the Project Milestones specified in Appendix A cannot be achieved within the timelines set forth, the Principal Investigator must notify in writing the Institutional Official, who must then consult with the TAF Managing Director or delegate to determine whether it is possible to modify the Scope Of Work. If the progress towards achieving a Project Milestone becomes more than thirty (30) days behind schedule, the TAF Managing Director or delegate reserves the right to terminate this Agreement, discontinue funding the TAF Award, and the remaining TAF Award balance will be reclaimed by the TAF.

IV: FUNDING

A Project account will be funded with an initial amount of \$22,500 upon commencement of the Project to cover the anticipated costs of achieving Project Milestone(s) 1,2, 3,2 and 3,3, as specified in Appendix A. Thereafter, funds to support the achievement of milestones will be discussed after the Principal Investigator and Institutional Official certify that the preceding milestone(s) <u>are</u> successfully achieved by submitting a Milestone Report (see Appendix B) to the TAF Managing Director or delegate. Milestone Reports will be reviewed and accepted ordjreicted within three (3) business

Sampling and Testing are a huge impediment to widespread adoption of I/A Systems

Avg \$300/sample

8 parameters, \$150 of lab fees, a week to report

18 Monthly samples X \$300/sample \$5,400/pilot site x 12 pilots + 12 Monthly samples X \$300/sample

\$3,600/provisional site X 38 Provisional sites

> \$200,000/vender
And 3 years!
For 1 data point per month

Our Solution

- Real time, on demand
- NH_4 + and NO_3/NO_2

Reusable: OWTS Vendors buy them and reuse them

Price/Pilot <\$1,000/ site vs \$10,800/pilot site for current lab methods

Independent, third party Verified data quality

€EP ⁄		Frequency	Cost per	Cost per Pilot per	Total Number of	Total Cost to Pilot 20	Time to Verify 1 Pilot	Access to	Data		
Comparison	Set up	of Samples	Sample	home	Samples	homes	System	Data	management	Alarms	Bias
Real Time Monitor	Install sensor on site, Uninstall after pilot	Hourly, daily, weekly, monthly, or combination	\$ 2.50	\$1,000	400 per home	\$ 20,000	3 months	Real time data, via smart phone or desk top	Data is organized, downloaded to Excel	Yes	Independent Third Party Verification, Vendors cant bias the measurements
Manual Sampling	Send technician to every site	Monthly - random times of day, random days of week	\$300 to \$500 per sample	\$10,800	36 per home	\$216,000	3 years	pdf file via email, Available within days	Requires staffing to manage the data	Νο	Regulators don't have enough staff to send technicians so vendors do the sampling.

Real time data tells a much richer story than a single monthly data point

Some Boring but Important Things to think about:

- 1. Concentrations vary within a basin. Where does your technician sample from in your system? Same place every time? Same place every technician?
- 2. Concentrations vary by time of day, day of week, and temperature. What day of the week was the sample taken? What was the temperature?
- 3. What did the vendor do to the system before the sample was taken?
- 4. How do you know the sample even came from the OWTS in question?
- 5. How accurate are commercial labs? If you took the same sample to 3 different labs, how far apart would they be?
- 6. Given all those variables, how nice would it be to have an independent third party, quality controlled, accurate performance measurement?
- 7. With hundreds of data points could you better characterize the performance of a system or a vendor than with single samples taken monthly, or quarterly, or annually?
- 8. How do various vendors perform over many years? How do you compare them when their data is all gathered differently?

More important things to think about Put yourself in OWTS Vendors' Shoes

- 1. How can we reduce the cost of pilot testing?
- 2. How many vendors can afford over \$200,000 of pilot testing to enter one jurisdiction? How many jurisdictions can each vendor go after at that cost? Will any one jurisdiction have the best vendors competing for their market?
- 3. Can you really expect homeowners to pay \$10,000/house for lab testing a pilot system?
- 4. Would it help to have an alarm let you know when an OWTS is not functioning properly?
- 5. Could you reduce the number of site visits if you knew the system was producing good effluent quality
- 6. What incentive is there for OWTS Vendors to build quality, reliable, low maintenance, long life cycle products spoiler: their incentive is to build something as cheap as possible. What incentive is there for vendors to improve from 19 mg/L to 10 mg/L to 5 to 2?

Some Bigger things to think about New product Development Policy

- 1. We have three options. Centralized, Decentralized, and Do Nothing. Those of us who know, know "Do Nothing" should not be an option. How are we going to get everyone to see that?
- 2. Under current and proposed regulations, what incentive is there for vendors to build quality products that achieve TN of 5
- 3. Why would the performance data of an OWTS in Massachusetts not be applicable in New York? Why would the performance data of an OWTS in New York not be applicable in Massachusetts? How can we fix that? Who needs to fix that?
- 4. In Sweden, they have been implementing OWTS's for 30 years. They have a national testing service where new products get thoroughly independently vetted and certified once and for all. It works fine.
- 5. What could the EPA do to support nationalized OWTS certification that is rigorous enough for states to rely on it?
- 6. How could NSF testing be improved so all jurisdictions could accept it?
- 7. What can the states do to support, encourage, and streamline new technology development and promulgate either centralized or decentralized treatment?
- 8. If "Yes" is adopting new disruptive OWTS technologies, what can the local jurisdictions do to "get to 'yes'"

Some Even Bigger things to Think About Politicians' Perspective

- George Hawkins is a highly respected municipal utility operator who ran DC Water for a long time and "made it sexy". He would say one of his greatest accomplishments was getting an average of 4.5% rate increase every year for 6 years. Sewage treatment infrastructure has been underfunded for decades.
- 2. How are we going to muster political support for \$billions of expenditures? How are we going to "make it sexy"
- 3. How much non-point nitrogen is dumping into a water body? Is 19 mg/L enough to save the water bodies? 10 mg/L? 5 mg/L?
- 4. Who is going to own responsibility for maintaining decentralized infrastructure?
- 5. How are regulators going to staff to oversee 100,000 mini wastewater treatment plants in one county? The installation of 5,000 new WWTP's per year?

I searched for a man among them to repair the wall and stand in the gap before Me on behalf of the land... Ezekiel 22:30

Special thanks to all these people who Phelped us get this far:

Pioneers

Maggie Theroux Fieldsteel, Retired US EPA **

Dr. Chris Gobler, Director NYS Center for Clean Water Technology *

Donna Tuminello, Director, Stony Brook Univ. Research Foundation

Gail DeRuzzo, ASQ CQM/OE Sr Quality Officer Envir & Ag, Battelle

Kristina Heinemann, US EPA

Kevin McDonald, Project Director, The Nature Conservancy

Nicholas Calderon, Policy Advisor, The Nature Conservancy John Neate, Verify Global

Walter Dawidiak, Suffolk County

* Funded the team to startup

**Championed The Challenge through EPA Funding

***Special thanks

Nitrogen Sensor Challenge Technical Panel

- Jose Amador, Univ Rhode Island, Professor, Soil Science and Microbial Ecology
- Brian Baumgaertel, Assoc. Director, Massachusetts Alternative Septic System Test Center
- Jim Bell, Retired VP Engineering, BioMicrobics, Inc
- Christopher Clapp, The Nature Conservancy ***
- Ian Dombroski, US EPA
- Brian Dudley, Massachusetts State DEC
- George Heufelder, Retired Director, MASSTC
- Justin Jobin, former manager, Suffolk County Dept Health Services I/A OWTS program ***
- George Loomis, Research and Extension Soil Scientist and the Senior Program Advisor to the New England Onsite Wastewater Training Center at URI.
- Brian Pellerin, USGS
- Hal Walker, Professor Envir. Engr, Worcester Polytech Inst.

Any questions?

You can find us at robert.dunbar@stonybrook .edu

qing.zhu@stonybrook.edu

The following slides provide additional perspective for Q&A

Who is the Buyer, who pays, why do they buy **Customer: OWTS Vendors**Customer: Regulators

I get a call a week – when can we get one

Funding Source:

Reduced cost of Lab work, Vendors pay for lab work, not the homeowner

They buy to:

- Reduce # of site visits during piloting
- Speed up regulatory approval, Enter markets faster
- Process Design, Trouble shooting
- Real time provides more and better data

Customer: Regulators Suffolk County buying 200 sensors Funding Source: Federal, State and Local Programs

They buy to:

- Manage non-point sources for TMDL credits
- Reduce work, better data mgmt
- Hold vendors accountable
- Real time data is much better

Our Value Proposition

For Vendors

Reduce number of site visits (\$300-500/ea)

• From 36 to 6 in first 3 years

Avoided cost of entry

- \$216,000 = cost to Vendor to enter a market
- \$60,000 = cost using our 10 of our Sensors
- 3 years = time it takes to pilot test
- 1 year = time it would take us

Improve process design

- 600 data points 24/7 = what we can provide
- 36 data points, 1/month = what they get now
- Helps with process design, troubleshooting

For Regulators

Easier access to better Vendors

- New Vendors can enter the market sooner
- Regulators can really understand which Vendors do a good job
- Can influence Engineers

Better ecosystem management for Regulators' Funding Sources

- We can aggregate data by vendor, water shed, and time of year
- Better manage ecosystems
- Better return on investment metrics

Competitive Analysis – Municipal Segment

Key Driver is Market	Long Island Clean Water	#1 Competitor is manual Lab	Market Share Leaders (Municipal)	Other Market Share Lagards	New Entrant competes on price
Price	Ś	ŚŚŚŚŚ	ŚŚŚŚ	ŚŚŚ	(Municipal)
Maintenance Cost	\$	\$	\$\$\$\$	\$\$\$	\$\$\$
Product Reliability	5	5	3	1	3
Market Share	1	5	3	2	2
Sales Channel	1	5	5	3	2
Depth of Product Line	1	5	4	3	2
Service	1	2	5	3	2

SWOT

Our **Strength** is the low price, reliability, and low maintenance, **no one can do what we do**

Our **Weakness** is lack of **market share** which impacts sales channel, service, and breadth of product line

The Threat is we can't reach or serve our market

We have an **Opportunity** to establish a market share **beachhead** then attack the **multiple market segments** **Decentralized Residential Onsite Systems**

Our Customer Segments

Centralized **Municipal WWTP's**

Environmental Monitoring

Industrial process control

How we plan to Go to Market

Early Adoptors (NGO's)	Word of Mouth	Year 5 Unit Volume 20 Units
Vendors 20-30 Companies	Direct Sales	500 Units
Regulators & Early Municipal >3000 jurisdictions	Manufactures' Reps Website	250 Units 200 Units
Municipal Market	License Agreement with Market Share Leader e.g. Hach, YSI	Exit Strategy

 \mathbf{O}

EPAitrate levels in Drinking Water Need to be Addressed

- "Increased nitrate in water supplies has been linked to colon, ovarian, thyroid, kidney and bladder cancers with the strongest association with colon cancer resulting in an estimated 6,500 cases of nitrateattributable cancers." **
- A study from Denmark reported a statistically significant increase in colon cancer with nitrate in drinking water at levels of 0.7-2 PPM
- Most jurisdictions in the US only limit nitrate to 10 PPM.
- Those limits are likely to get tighter

** https://www.unitypoint.org/desmoines/services-cancer-article.aspx?id=6c79a192-ecbd-48e5-bdcd-f4d399d2801e

 \mathbf{O}

EFPO much Nitrogen causes Harmful Algae Blooms

Warning sign One of thousands

Keep children away from

Do not drink the water or use it for cooking.

For fish caught here, throw away guts and clean fillets with tap water or bottled water before cooking.

Blue-Green Algae Watch

Harmful algae may be present in this water. For your awareness:

When in Doubt, Stay Out

Avoid water that is foamy, scummy, thick like paint, pea green, blue-green, or reddish brown.

Blue-green algae may cause skin rash, vomiting, diarrhea, cramps, dizziness, fainting, numbness, and paralysis.

Call your doctor or veterinarian if you or your pet get sick after going in the water.

Micro-siting and Nitrogen Removal Efficiency of a Liquid Injection Permeable Reactive Barrier (PRB)

Jessica Thomas

Advisors: Dr. Brian L. Howes and Dr. Miles Sundermeyer

Problems with Nitrogen Enrichment

- Nitrogen inputs to estuaries can lead to eutrophication
- Estuarine eutrophication is a global environmental problem

Eutrophication in Coastal Communities Can Cause:

- Loss of water and habitat quality
- Financial Impact to
 - Tourism
 - Fisheries
 - Property Values
- Quality of Life
 - Beach Use
 - Native American Subsistence Rights

While eutrophication is a natural process, anthropogenic sources of nutrients can exacerbate the process

Point Sources:

- Wastewater Treatment Facility Discharges
- Stormwater Discharges Non-Point Source:
- Atmospheric Deposition
- Agricultural (Crop/Animals)
- Lawn Fertilization
- Septic Systems

What is a Liquid Injection PRB?

Micro-Siting PRBs

- 1. Select desired Site
- 2. Determine depth to groundwater
- 3. Determine groundwater flow direction and hydraulic conductivity
- 4. Establish nitrogen concentration levels and vertical profiles
- 🞸 5. Establish soil type
- 6. Quantify any tidal influence on groundwater
- 7. Finalize PRB design and placement

Site Selection: Locus Map

Lagoon Pond Estuary

- Coastal Systems Program (CSP): MEP Assessment
- Impaired by N enrichment:
 - TMDL [N] Target = 0.33-0.42 mg/L
- CSP N loading to meet TMDL for N:
 - 74.1 kg/day
- Nitrogen Removal Goal:
 - 5,900 kg/y
- Stewards:

Oak Bluffs Tisbury MV Commission

Site Selection: Site Map

Groundwater Flow & Nitrate Profiles

GW Flow: Natural Gradient Tracer Test

Establish Soil Type: Soil Borings

PRB Pre-Installation Findings

- Groundwater only 0.5 2.5 m below ground surface
- Soils are coarse to fine sand with some silty/clay
- Nitrate is the dominant form of N and corresponds with typical residential levels
 - Total Dissolved Nitrogen: Average 2.7 mg/L (0-13 mg/L)
 - Nitrate + Nitrite: Average 2.0 mg/L (0-12 mg/L)
 - Ammonium: Average 0.3 mg/L (0-0.68 mg/L)
- Freshwater (Salinity <0.2 PSU)
- Hydraulic Conductivity: 20 ft/day (15-25 ft/day)
- Groundwater velocity: Average 0.6 ft/day (0.41-0.75 ft/day)
- Elevated levels of Mn, Fe, and As were observed downgradient in the root zone of *Phragmites* bordering Lagoon Pond

Liquid Injection PRB Installation

Post Injection Findings

Preliminary results show a significant reduction of nitrate in downgradient wells.

Post-Injection Findings

Optimizing PRB Design: Downgradient Movement

2

1

A lighter fraction of the liquid injectate appears to have traveled farther downgradient than a heavier fraction.

Secondary Reactions

Secondary Reactions: Iron

Iron

- Naturally present in its insoluble oxidized forms
- Highly mobile in water in its reduced state Fe(III) -> Fe(II)
- Can cause:
 - Residential and commercial plumbing issues.
 - Staining of beaches

Secondary Reactions: Manganese

Manganese

- Naturally present in soils in insoluble oxidized forms
- Highly mobile in water in its reduced state Mn(IV) -> Mn(II)
- Can be toxic at high levels in its inorganic form

Secondary Reactions: Arsenic

Arsenic

- Naturally Present in some soils
- Highly mobile in water in its reduced state As(V) -> As(III)
- Highly toxic at elevated levels in its inorganic form if ingested.
- Freshwater ecological limit: 0.34 mg/L
- Maximum on-site level: 0.095 mg/L

Conclusions

- Installation of the liquid injection PRB was straight forward
- The PRB began removing Nitrate within days of installation
- Nitrate was reduced to very low levels
- Secondary reduction products were produced at low levels and did not travel far downgradient

Thank You!

Martha's Vineyard Commission Adam Turner and Sheri Caseau EPA's Southeast New England Program Amy Hambrecht and Dan Greening ES&M Terra Systems, Inc. Coastal Systems Program

