Contaminants Associated with Microplastics

How concerned should we be?

Bart Koelmans Wageningen University, NL bart.koelmans@wur.nl

Content & aim:

- The big picture: what is the problem and what are the questions?
- What are the basic mechanisms you need to know of?
- Does plastic affect (global) transport of contaminants in nature?
- Is ingestion of microplastic dangerous because of the associated chemicals?
- Implications for hazards and risks

Concerns:

- **1.** Plastic carries contaminants to previously clean places
- 2. Plastic carries contaminants to previously clean organisms

Contaminants?

These chemicals are big and they don't like water

They are referred to as 'hydrophobic'

Where do they go?

Organic matter (in sediments, in soils, free floating in water)

Body fat or lipids (in biota; plants, man, animals)

And... Since the 1950's... Plastic

They absorb from to water to plastic, or they desorb from plastic to water, which takes time (sorption kinetics)

Contaminants are absorbed by plastic like water by a sponge

Sorption Equilibrium – in situ

Recalculated from in situ data published by Chelsea Rochman et al, ES&T, 2013.

Endo, S., Koelmans, A.A. 2016. Sorption of hydrophobic organic compounds to plastics in marine environments: equilibrium/mechanism/monitoring. In: H.Takada and H.Karapanagioti (Eds.), Hazardous Chemicals Associated with Plastics in the Environment, *The Handbook of Environmental Chemistry, In prep.*

Compared to other particles?

Velzeboer, I., C.J.A.F. Kwadijk, A.A. Koelmans. 2014. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes and fullerenes. *Environ. Sci. Technol.* 48, 4869–4876.

Compared to other particles?

Velzeboer, I., C.J.A.F. Kwadijk, A.A. Koelmans. 2014. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes and fullerenes. *Environ. Sci. Technol.* 48, 4869–4876.

Chemicals bind to organic matter, algae, black carbon in a similar way as they do to plastic

Context: The *Environment* is a cocktail of contaminants

Context: The *Environment* is a cocktail of contaminants

Is plastic a relevant carrier medium for contaminants?

- Importance of a carrier medium depends on the strength of the binding
- Importance depends on the age of the plastic (was there enough time to completely absorb or desorb?)
- Importance of a carrier depends on the abundance of that carrier medium
- \rightarrow Evaluate these criteria on an average ocean scale
- \rightarrow Evaluate them on more local scales

Can we assume (near-)equilibrium?

Probably 'Yes', for microplastic because:

- Sorption half lives: 0.5 5 mm: months 2 yr (Endo, 2005; Rochman, 2013)
 < 0.5 mm: weeks - months
- The smaller plastic is the older plastic → equilibrium
- The fraction of 'young' < 2 yr plastic is small considering emissions becoming substantial in the 1950s → so most plastic must be 'older' plastic
- → Most ingestible plastic is 'small' and 'old' plastic, and therefore at or close to equilibrium.

How old is the plastic? – A closer look

Mass Distribution of Oceanic Media

Chemical Mass Distribution in **Oceanic Media**

Mass of compartment in the

Percentage of HOC bound to environmental media in the

2009antton

Bacteria

BlackCalbon

Plastic

Α

Is plastic a relevant carrier to a remote vulnerable system like the Arctic?

Are marine plastic particles transport vectors for organic pollutants to the Arctic?

Christiane Zarfl, Michael Matthies*

Institute of Environmental Systems Research, University of Osnabrück, Barbarastr. 12, 49076 Osnabrück, Germany

Is ingestion of microplastic dangerous because of the associated contaminants?

- The chemicals are hazardous, but the hazard does not necessarily imply a risk
- The plastics are hazardous, but the hazard does not necessarily imply a risk
- → Does plastic modify hazard and/or risk of contaminants?

Prerequisites for an effect on risk

- Need a gradient (water flows downhill, not uphill)
- Need plastic to be a substantial carrier compared to other carriers (e.g., dermal uptake or dietary uptake)
- Needs to be bigger than biological variability (in lab experiments, more than a factor of two; in nature probably much more)
- Needs the exceeding of a toxicity threshold (for the whole cocktail), due to the ingestion of plastic

1. Chemical transfer requires a gradient

Contaminated plastic in clean gut fluids leads to desorption →Plastic contaminates the organism

Clean plastic in gut fluids with contaminated food →Plastic cleans the organism

Environment: Cocktail of ab- and desorbing chemicals, so both directions of transfer occur simultaneously

Tsaroucha, Chen, Huang, Koelmans, 2017 in prep.

1. Chemical transfer requires a gradient

Shorter term

Longer term; nothing happens

1. Chemical transfer requires a gradient

- As of birth, fish is 'loaded' (equilibrated) with contaminants from its (contaminated) environment
- Like a sponge can be loaded with water
- Once 'saturated' with contaminants a fish cannot take up <u>more</u> chemicals, not from food, not from water, not from plastic.
- Like a wet sponge cannot take up more water
- Plastic thus will not increase chemical uptake

Approaches used in lab studies

Teuten et al, 2009; Browne, 2013; Chua et al, 2014; Wardrop et al, 2016

Teuten et al, 2007; Chua et al, 2014

Rochman et al, 2013; Besseling et al, 2013, 2017; Paul-Pont et al, 2016

Numerous studies (Kukkonen, Landrum, Ingersoll, Ankley...)

2. Uptake through plastic needs to be substantial compared to other pathways

Diepens & Koelmans, 2017. Accumulation of microplastic and microplastic-associated contaminants in marine food webs, in prep.

Implications of plastic-associated chemicals for bioaccumulation?

Well-established

Principles of organic matter sorption

Principles of polymer sorption

Principles of bioconcentration/bioaccumulation

Fairly well-established

Mass transfer in the gut - toxicodynamics

Calculate & compare pathways: (a) Lugworm

 \rightarrow Marginal role of plastic ingestion at environmentally realistic MP concentrations

Koelmans, A.A., E. Besseling, A. Wegner, E.M. Foekema. 2013. Plastic as a carrier of POPs to aquatic organisms. A model analysis. Environ. Sci. Technol. 47, 7812–7820.

Calculate & compare pathways: (b) Lugworm & cod

Simulations with validated model for lugworm and North Sea cod:

- Take environmental NP & BPA concentrations in all media
- Calculate contribution of leaching of NP and BPA to concentration in species
- Cover uncertainties by Monte Carlo Probabilistic modelling
- Compare with concentrations in the field
- Assess relative importance

→ Marginal role of plastic ingestion at environmentally realistic MP concentrations

Koelmans, A.A., E. Besseling, E.M. Foekema. 2014. Leaching of Plastic Additives to Marine Organisms. *Environmental Pollution*, 187, 49-54.

Calculate & compare pathways: (c) Fin whale and basking shark

\rightarrow Marginal role of plastic ingestion at environmentally realistic MP concentrations

Can we ever measure this in nature?

Probably not
(a) Problem of Multiple Causality
(b) Biological variability

Koelmans et al., 2016.., ES&T.

Biological variability

Figure 1. Comparison of PCB-153 bioaccumulation metrics between selected field data sets and model simulations for the model organisms (A) mayfly, (B) polychaete, (C) yellow perch, and (D) birds. Box charts present mean (\blacksquare), median (horizontal line), 25th and 75th percentiles (box edges), 5th and 95th percentiles (whiskers), and 1st and 99th percentiles (\times). Mayfly and yellow perch raw field data from the Detroit River (n = 13 mayfly BSAFs; Drouillard 2010; n = 24 yellow perch; Kashian et al. 2010); Raw polychaete BSAF data from Nesto et al. 2010; Guillemot data generated from Lundsted-Enkel et al. (2005).

Measured variability in uptake of contaminants by organisms is two to three orders of magnitude →In many cases effects of plastic on uptake are likely to be small → Undetectable

Integrated Environmental Assessment and Management © 2011 SETAC

Explaining Differences Between Bioaccumulation Measurements in Laboratory and Field Data Through Use of a Probabilistic Modeling Approach

Henriette Selck, *† Ken Drouillard, ‡ Karen Eisenreich, § Albert A Koelmans, || Annemette Palmqvist, † Anders Ruus, # Daniel Salvito, †† Irv Schultz, ‡‡ Robin Stewart, §§ Annie Weisbrod, |||| Nico W van den Brink, ## and Martine van den Heuvel-Greve†††

Summary

- Transfer may occur into or from the organism, dependent on the concentration gradient, so the exposure scenario matters
- Relative magnitude of plastic-mediated transfer compared to other pathways matters
- <u>Retrospective risk assessment</u>: quantify fluxes and relative importance of pathways for different exposure scenarios (realistic, 'hot spot', worst case...)
 <u>—Tools are available</u>
- <u>Prospective risk assessment</u>: same, yet take future emissions into account; use probabilistic models.

Concluding Notes

- Chemicals and plastic contribute to a 'multiple stress' environment, thus are a concern
- Present data seem not to support high concerns for plastic acting as vectors for extra transport or bioaccumulation
- This cannot be fully generalized, however;
 Specific 'higher risk' cases may exist and plastic abundances will rise

Thanks to colleagues, co-workers and collaborators:

- Ellen Besseling
- Merel Kooi
- Paula Redondo-Hasselerharm
- Nur Hazimah Mohamed
 Nor
- Noël Diepens
- Svenja Mintenig
- Joris Quik
- Edwin Foekema
- Martine van den Heuvel
- Christiaan Kwadijk
- Jan Andries v Franeker
- Muzhi Sun
- Anna Wegner
- Renske Vroom
- Enya Hermsen
- Lijing Liu
- Fani Tsaroucha

- Ilona Velzeboer
- Michiel Kotterman
- Huerta Lwanga, E
 - Violette Geissen
 - Annemarie van Wezel
 - Carolien Kroeze
 - Claudia Halsband
- Colin Janssen
- Chelsea Rochman
- Adil Bakir
- Richard Thompson
- Todd Gouin 🤎
- Courtney Arthur
- Ann-Marie Cook
- Julia Reisser
- Serena Consulo
- Satoshi Endo
- Won-Joon Shim

- Cristina Fossi
- Cristina Panti
- Arianna Bellingeri
- Ilaria Corsi
- Allen Burton
- Dorte Herzke