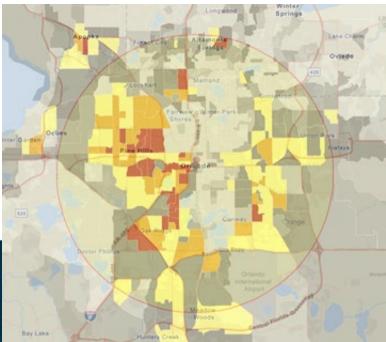

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Differential Impact of Pollution Prevention and Green Chemistry Activities on Marginalized Communities

Cameron Bordinat, Cameron George, Madeline Goodhart, Trip Johnson



Demographic Index & Divisions

• Index based on the average of two demographic indicators:

(EJSCREEN, 2022)

- Minority
- Low-Income
- Analysis at 3 different demographic divisions:
 - Similar population groups
 - Census Block Group Average 9.4 square mi
 - Census Tract Average 26.4 square mi
 - \circ Area Groups
 - 10 Mile Radius 314 square mi

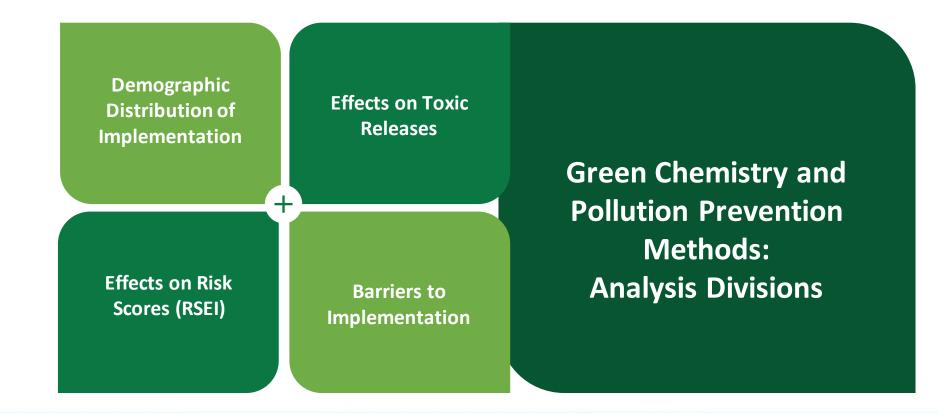
Not at Risk vs At Risk

- EJSCREEN User Manual defines marginalized communities as having a demographic index above the 80th percentile
- Meaning, above 57.51%
 Demographic Index is an At Risk community

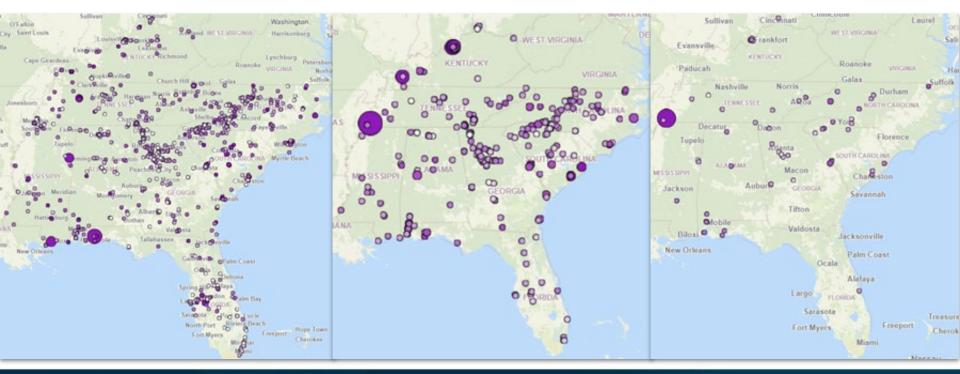
National Percentiles for Demographic Index		
National Percentiles	Percentages	
95 - 100 percentile	≥ 80.01	
90 - 95 percentile	< 80.01	
80 - 90 percentile	< 71.54	
70 - 80 percentile	< 57.51	
60 - 70 percentile	< 45.72	
50 - 60 percentile	< 36.35	
Less than 50 percentile	< 29.26	

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

9


Scope

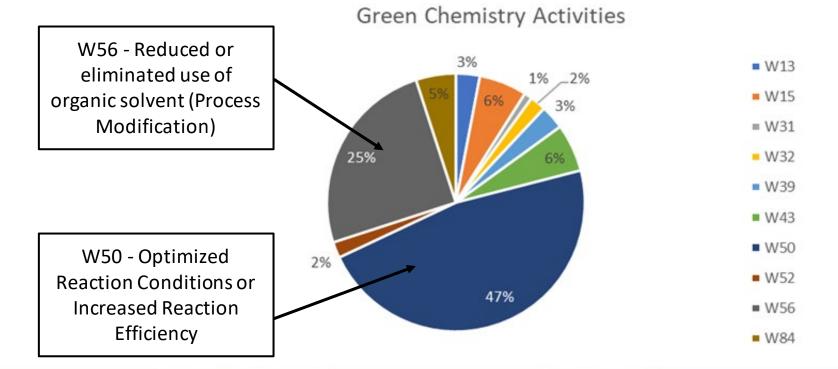
- EPA Region 4
 - 3rd greatest toxic releasing region
 - Multiple areas with high minority populations
 - Prominence of the chemical industry
- North American Industry Classification System (NAICS) Codes
 - Chemical Industry (325)
 - \circ Subsectors of chemical industry
- Air and Water Releases
 - \circ Land releases excluded



THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DE

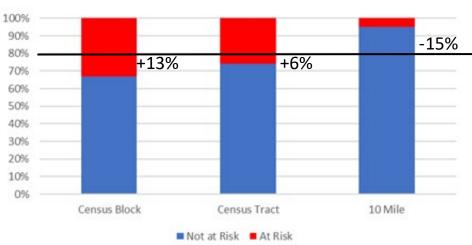
Green Chemistry/Pollution Prevention Implementation

All facilities with release reports

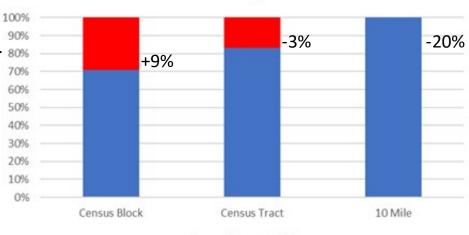

Facilities with P2 activities

Facilities with GC activities

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC12


(TRI Toxics Tracker, 2022)

Green Chemistry Implementation by W-Code


THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC 13

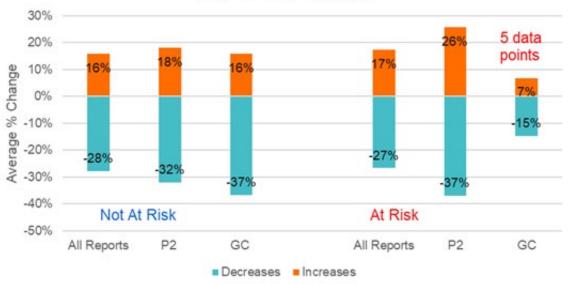
Demographic Distribution of Facilities

172 Facilities total

Source Reduction Activites

Green Chemistry Activities

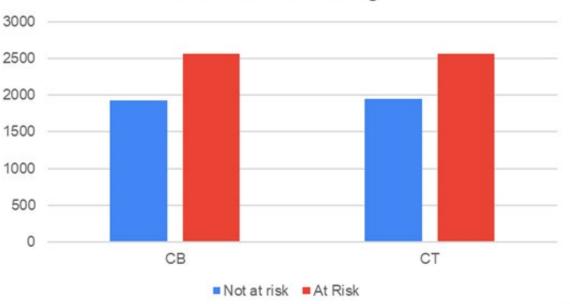
Not at Risk At Risk


24 Facilities total

Outcomes: Year-to-Year changes

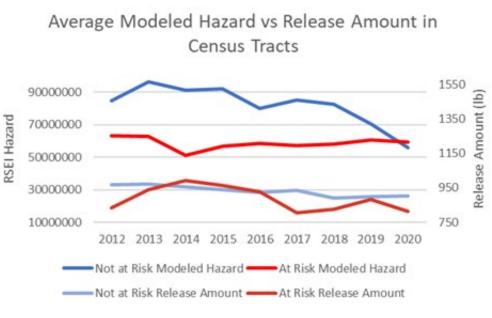
- With P2 and GC activities have greater reductions of RSEI scores.
- GC in at risk communities has a much smaller impact.

RSEI Average magnitude Year-to-Year Change



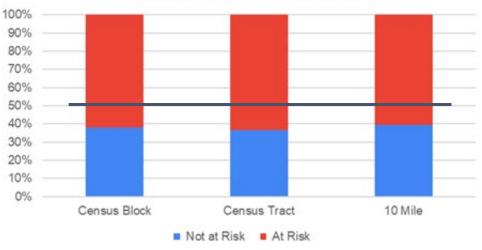
Average RSEI Score

- At risk communities have a higher per report RSEI score
- RSEI score includes affected population


RSEI Scores Average

Modeled Hazard vs Release Amount

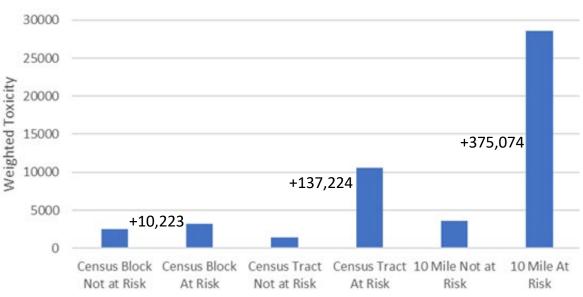
- Average Modeled Hazard decreases across Not at Risk communities
- Average Release Amount stays constant in both Not at Risk and At Risk communities



HE GEORGI

Outliers - Toxic Releases

- Outliers report releases greater than 7,171 pounds
- Average releases were greater in At Risk communities than Not at Risk Communities


Outlier Releases per Report

Weighted Toxicity

- Weighted Toxicity removes influence of release amount
- Top releases in At Risk communities release more toxic chemicals

Weighted Toxicity of Top 15 Releases

Barriers (B) to Pollution Prevention (P2)

B1 - Insufficient capital to install new source reduction equipment or implement new source reduction activities/initiatives

B2 - Require technical information on pollution prevention techniques applicable to specific production processes

B3 - Concern that product quality may decline as a result of source reduction

B4 - Source reduction activities were implemented but were unsuccessful

B5 - Specific regulatory/permit burdens

B6 - Pollution prevention previously implemented; additional reduction does not appear technically or economically feasible

B7 - No known substitutes or alternative technologies

B8 - Reduction does not appear to be technically feasible

B99 - Other Barriers

Cost/Regulatory

B1 - *Insufficient capital* to install new source reduction equipment or implement new source reduction activities/initiatives

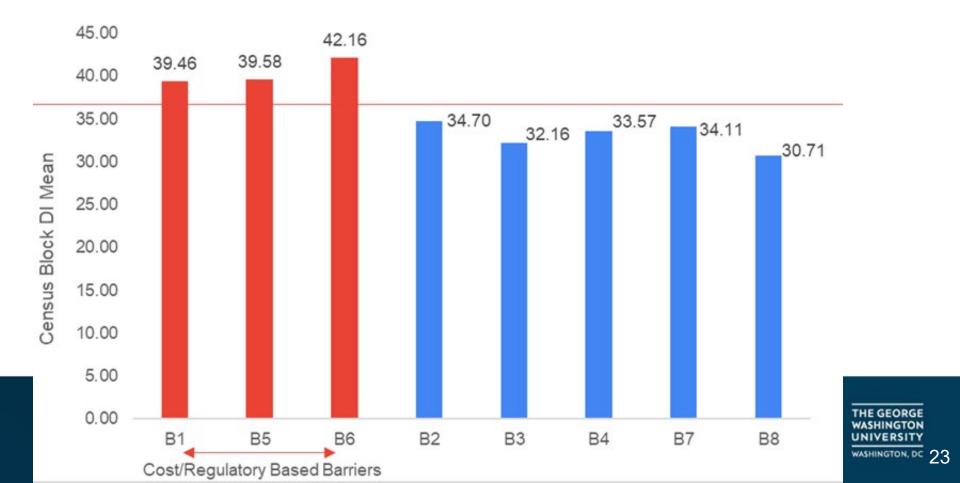
B5 - Specific *regulatory/permit burdens*

B6 - Pollution prevention previously implemented; additional reduction does not appear technically or economically feasible

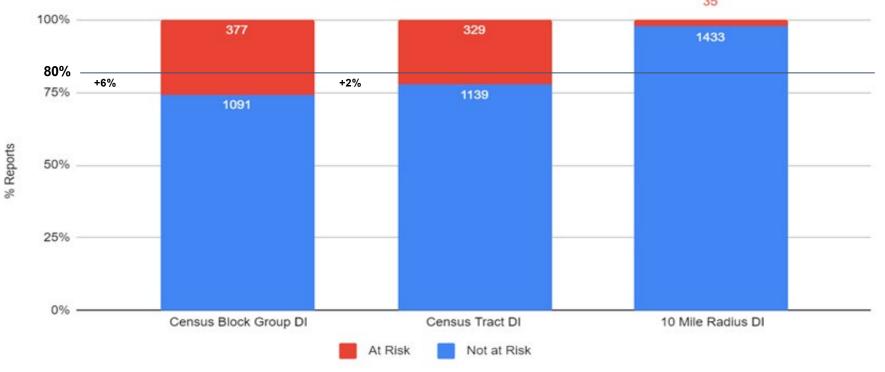
Lack of Knowledge/Technical Ingenuity

B2 - *Require technical information* on pollution prevention techniques applicable to specific production processes

B3 - Concern that *product quality may decline* as a result of source reduction

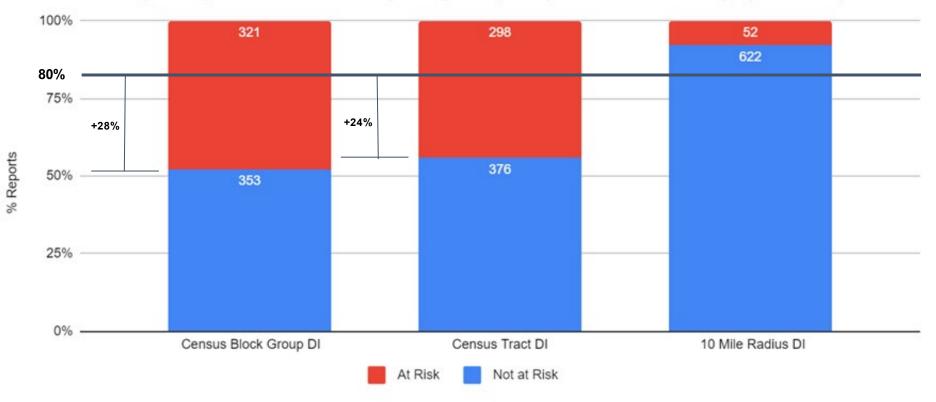

B4 - *Source reduction* activities were implemented but were *unsuccessful*

B7 - *No known substitutes* or alternative technologies

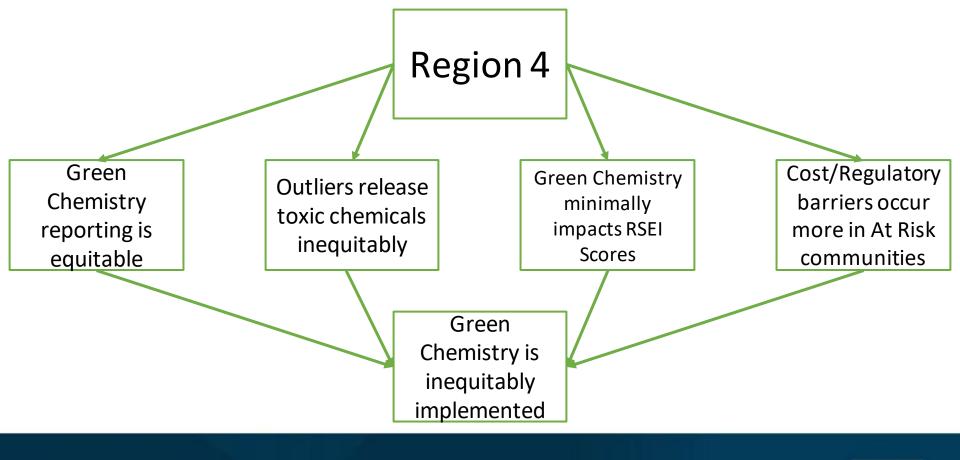

B8 - Reduction does not appear to be *technically feasible*

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC 22

Reported Barrier Demographic Index Averages



Lack of Knowledge/Technical Ingenuity Based Barriers Reporting Frequency for At Risk Demographic Groups



THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC 24

Cost/Regulatory Based Barriers Reporting Frequency for At Risk Demographic Groups

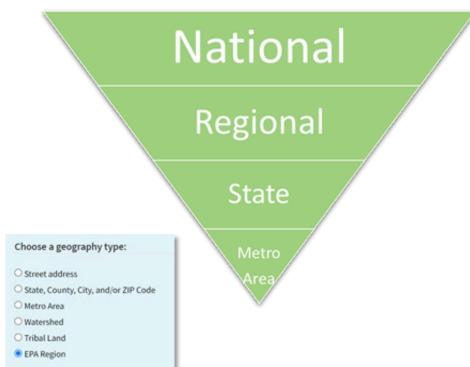
Limitations

With TRI data:

- Releases are related to productivity.
- Accidents and unexpected events.
- Green chemistry practices reported are not widespread.

With Demographic data:

- Census Blocks and Tracts are irregular.
- Nearby populations can be excluded due to block boundaries.
- At Risk grouping only considers the two dimensions.


Expanded Applications of the Method

Reproducible

- Individual Companies
- Subsectors
- Chemical Specific
- Other Nations

Scalable

TRI geography filters

(TRI Toxics Tracker 2022)

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC 28

Acknowledgements and Closing Remarks

- Capstone Advisor
 - o Dr. Jakub Kostal
- EPA Panel of Advisors
 - Charlie Snyder
 - Sandra Ganoa
 - Steve DeVito

"Injustice anywhere is a threat to justice everywhere."

- Dr. Martin Luther King

- External Partners
 - Adrian Horotan, Safer Made
 - Dr. David Constable, American Chemical Society
 - Dr. Hans Plugge, Safer Chemical Analytics LLC
 - Dr. Joel Tickner, University of Massachusetts Lowell Center for Sustainable Production
 - Dr. Lauren Heine, ChemForward

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

References

-Elliot, M.R.; Wang, Y.; Lowe, R.A.; Kleindorfer, P.R.; Environmental justice: frequency and severity of US chemical industry accidents and the socioeconomic status of surrounding communities. J. -Enidemical nucleus and the social community Health 2004, 58, 24–30. -"Environmental Justice Timeline." EPA, Environmental Protection Agency, https://www.epa.gov/environmentaljustice/environmental-justice-timeline. -Holffield, R.; Defining Environmental Justice and Environmental Racism. Urban Geography, 2001, 1, 78-90. -Ikeme, J.; Equity, environmental justice and sustainability: incomplete approaches in climate change politics. J. Global Env. Change 2003, 13, 195-206. -Johnston, J; Cushing, L. "Chemical Exposures, Health, and Environmental Justice in Communities Living on the Fenceline of Industry." Current Environmental Health Reports 2020, 7, 48–57

-Gochfeld, M.; Burger, J. Disproportionate Exposures in Environmental Justice and Other Populations: The Importance of Outliers. American Journal of Public Health 2011, 101

-"What Is the Toxics Release Inventory?" EPA, Environmental Protection Agency, https://www.epa.gov/toxics-release-inventory-tri-program/what-toxics-release-inventory.

-USEPA. Reporting for TRI Facilities. 2021.

-About EPA Region 4. EPA, Environmental Protection Agency, https://www.epa.gov/aboutepa/about-epa-region-4-southeast. -Wilson, Sacoby M., et al. "Assessment of the Distribution of Toxic Release Inventory Facilities in Metropolitan Charleston: An Environmental Justice Case Study." American Journal of Public Health 2012, 102. 1974–1980.

-Gaona, S.D. The Utility of the Toxics Release Inventory in Tracking Implementation and Environmental Impact of Industrial Green Chemistry Practices in the United States, Green Chemistry, 2017. -Seng J. S. et. Al. Marginalized Identities. Discrimination Burden, and Mental Health: Empirical Exploration of an Interpersonal-Level Approach to Modeling Intersectionality. Social Science & Medicine. 2012, 75, 2437-2445.

-USEPA. Environmental Justice Indexes in EJScreen. EPA, https://www.epa.gov/ejscreen/environmental-justice-indexes-

ejscreen#:~:text=An%20EJ%20Index%20combines%20demograph ic,The%20Iow%2Dincome%20population. -USEPA. How to Interpret a Standard Report in EJScreen. EPA, https://www.epa.gov/ejscreen/how-interpret-standard-report-ejscreen.

-Driver, A. et al. Utilization of the Maryland Environmental Justice Screening Tool: A Bladensburg, Maryland Case Study. International Journal of Environmental Research and Public Health 2019, 16, 348 -Kuruppuarachchi, Lakshika Nishadhi, et al. "A Comparison of Major Environmental Justice Screening and Mapping Tools." Environmental Management and Sustainable Development, vol. 6, no. 1, 2017. p. 59., https://doi.org/10.5296/emsd.v6i1.10914.

-USEPA. Technical Guidance for Assessing Environmental Justice in Regulatory Analysis. EPA. 2016. Pg 49

-USEPA. Pollution Prevention Law Policies. EPA.

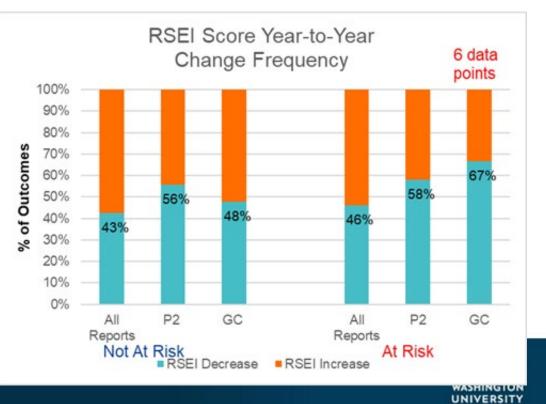
-Anastas, P.; Warner, J. 12 Principles of Green Chemistry. American Chemical Society: Green Chemistry Institute. 1998. -USEPA. Barriers to Source Reduction. EPA. 2021. -EPA. TRI Reporting Forms and Instructions. Section 8.10: Did Your Facility Engage in Any Newly Implemented Source Reduction. Activities for This Chemical During the Reporting Year?

-OECD. Enterprises by Business Size. 2019. Data.oecd.org/entrepreneur/enterprises-by-business-size.html -Redmond, J.; Walker, E.A.; Wang, C.W.; Parker, C.M. The Impact of Small Business On The Environment. Edith Cowan University, Institute for Small Business & Entrepreneurship. 2008.

-Khanna, M.; Deltas, G.; Harrington, D.R. Adoption of Pollution Prevention Techniques: The Role of Management Systems and Regulatory Pressures. Environmental and Resource Economics. 2009. 44, 85-106

-Becker, R.A.; Paskura Jr., C; Shadbegian, R.J. Do Environmental Regulations Disproportionately Affect Small Businesses? Evidence from the Pollution Abatement Costs and Expenditures Survey. -USEPA National Center for Environmental Economics, 2013.

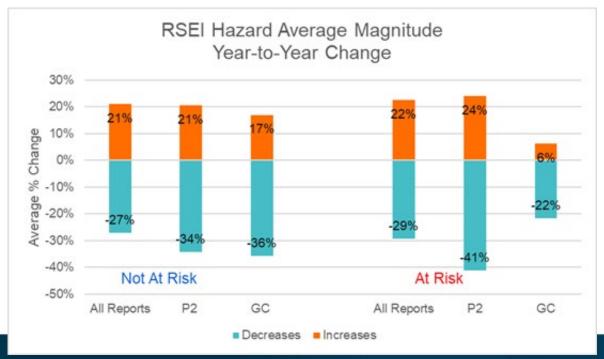
-Boser, R.; Bierma, T.; El-Gafy, M. Overcoming Barriers to P2 and Recycling for Construction Waste. Illinois Digital Environment for Access to Learning and Scholarship, Illinois University. 2010.


Backup Slides

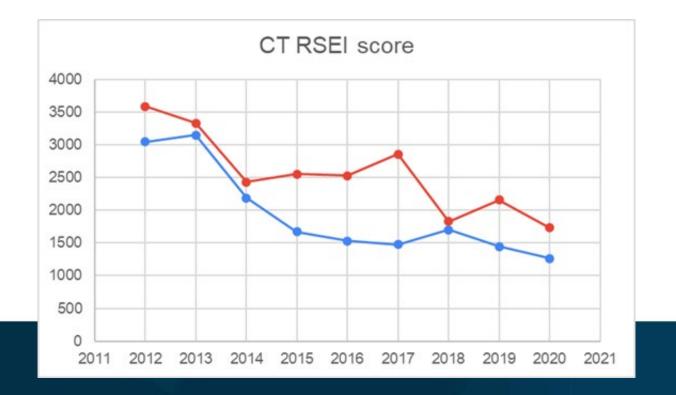
THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Outcomes: Frequency


- There is a greater frequency of Chemicals increasing in RSEI score.
- P2 and GC activities improve the occurrence of decreasing RSEI score.

WASHINGTON, DB4


Outcomes: Year-to-Year changes (Hazard)

- With P2 and GC activities have greater reductions of RSEI scores.
- GC in at risk communities has a much smaller impact.

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, D35

RSEI score trends

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DG

Chemicals

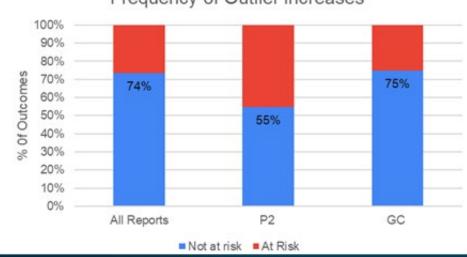
- Weighted Toxicity difference of top releasers
 - Average WT Not at Risk: 2,292.7
 - Average WT At Risk: 16,351.9
- Weighted Toxicity = RSEI Hazard Score ÷ Pounds of Toxic Releases
 - Removes the influence of release amounts per report

	Dioxane	Polycyclic Aromatic Compounds
Not at Risk or At Risk communities?	Not at Risk	At Risk
RSEI Hazard	129,420,000	2,748,993,000
Weighted Toxicity	18,000	390,000

Toxic Release Inventory (TRI)

- Section 313 of Emergency Planning and Community Right to Know Act (EPCRA)
- Mandatory reporting of chemical releases
- Tracks industry progress in waste reduction
- Report source reduction activities
- Voluntarily report barriers to pollution prevention

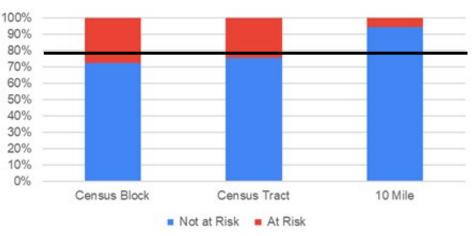
Green Chemistry-Specific W-Codes W15- Introduce process analysis systems W43- Substitution of feedstock or reagent W50- Optimized reaction conditions W56- Reduce/eliminate organic solvent W57- Use biotechnology W84- Developed new chemical product to replace a previous one


Barrier Codes

- B1- Insufficient capital
 B2- Require specific technical information
 B3- Concerned of reduced quality of product
 B4- Source reduction activities were implemented but not successful
 B5- Regulatory/permit burdens
- B6- P2 previously implemented already and not feasible
- B7- No known substitutes or alternatives
- B8- Reduction does not appear to be technically feasible

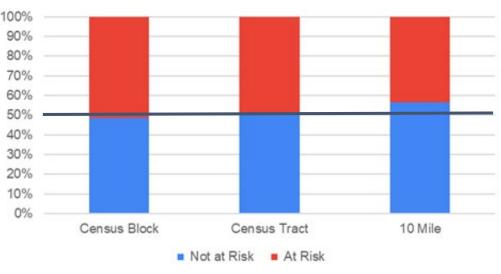
Outliers

Outlier Change magnitude				
	All Reports	P2	GC	
Not at risk	168494%	1137%	150%	
At Risk	466759%	698%	302%	



Toxic Releases

- Releases are reported in four categories: total releases, air releases, and water releases
 - Total Releases: 416,779,450.64 pounds
- Land releases not considered
 - Greater risk of exposure for air and water releases
 - Land releases usually moved to off-site disposal



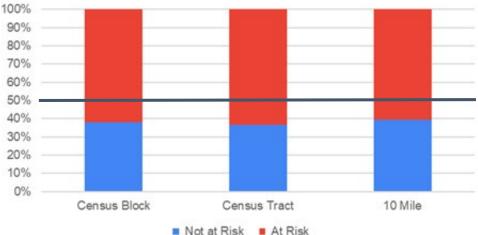
Total Releases across Demographic Divisions

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC 40

Toxic Releases per Report

- Reporting skewed in favor of areas of lower demographic index values
 - Influence of reporting bias analyzed in calculations
- Release Amount per Report
 = Total Releases ÷ Total
 Reports

Total Releases per Report



Outliers

- The same analysis was performed on outlier reports
 - Outlier reports reported more than 7,171 pounds of releases
- Outlier releases show inequitable distribution
 - Demographic divisions show smaller ratio than baseline
 - Outliers in At Risk communities average almost double the amount of releases per report

	Total Releases
Census Block	
Census Tract	

Outlier Releases per Report

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC