
Ambient Air Monitoring and NAAQS Overview

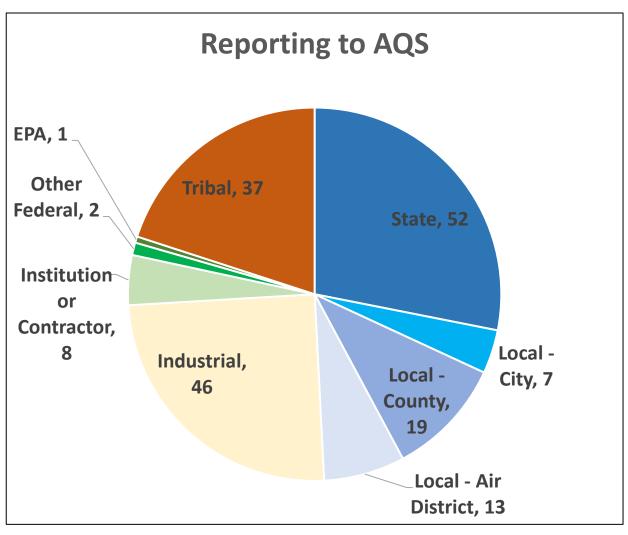
Tim Hanley
Ambient Air Monitoring Group
EPA's Office of Air Quality Planning and Standards
RTP, NC

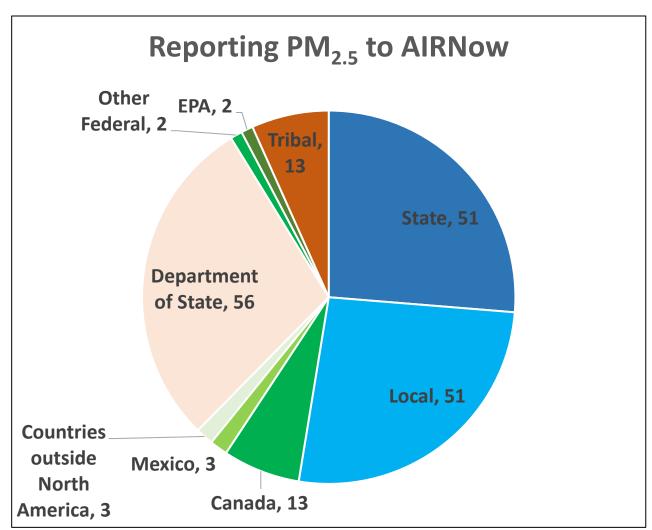
Tuesday August 23rd, 2022 – Plenary Session National Ambient Air Monitoring Conference Pittsburgh, PA

What is encompassed in the U.S. Ambient Air Monitoring Networks?

(as reported to AQS)

185
Reporting
Agencies

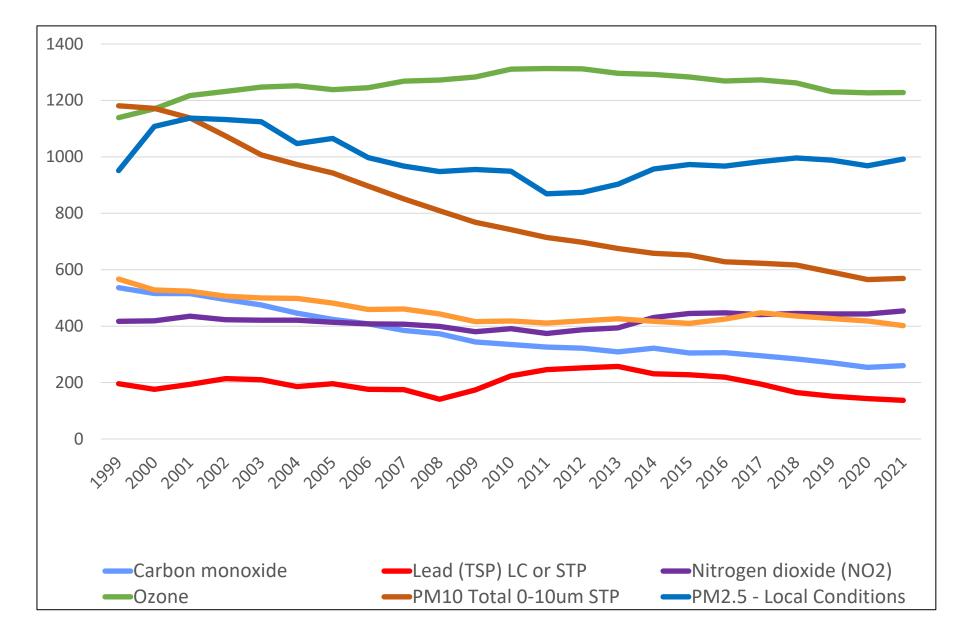

4,857 Sites


49,336 Monitors¹

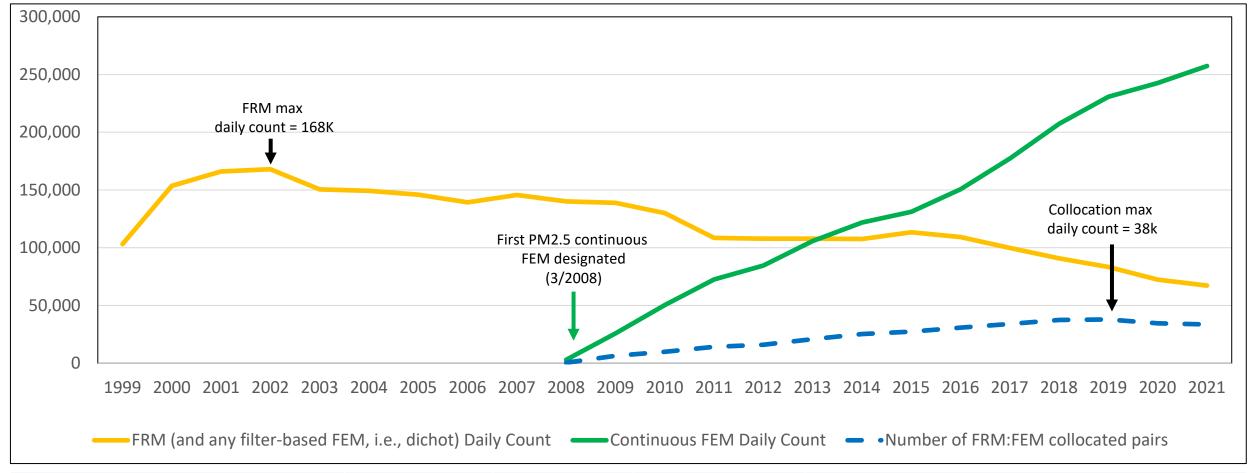
~121 M measurements a year

^{1–}Each measurement is reported as its own monitor.

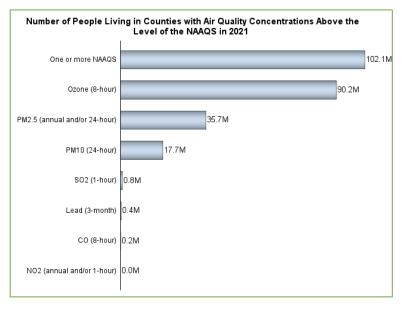
What types of Reporting Agencies are represented in our ambient air monitoring network databases? – AQS and AIRNow reporting

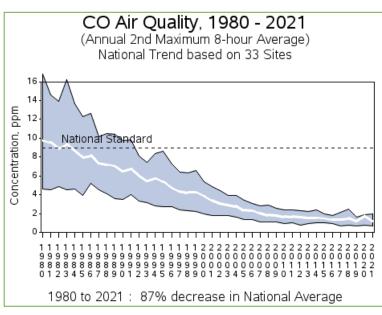


AQS is EPA's long-term repository of data

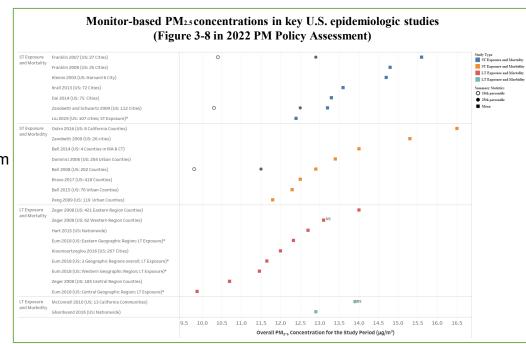

AirNow is EPA's real-time database for reporting and forecasting of the AQI

Number of NAAQS Sites Reporting by Pollutant since 1999


- Large robust networks for:
 - Ozone
 - PM_{2.5}
- Stable networks for:
 - Nitrogen dioxide
 - Sulfur dioxide
- Networks with a decreasing number of sites in recent years:
 - PM₁₀
 - Carbon monoxide
 - Lead


Reporting of PM_{2.5} Federal Reference Methods (FRMs) and continuous Federal Equivalent Methods (FEMs) to AQS by <u>daily days loaded</u>

Required sample frequency	-	Typically - 1:3	Daily	Collocated paired days	
Total sample days reported	2021	72,055	257,414	33,654	


Monitoring Objectives for NAAQS data

- Comparison with air quality standards (i.e., NAAQS) and supporting technical uses of the data.
 - Development and assessment of emission control strategies (Accountability) including long term trends.
- Public awareness (Air Quality Index).
- Support for air pollution research studies.
 - > Atmospheric processes
 - Health effects/exposure

NAAQS Background and Statutory Requirements

- EPA sets National Ambient Air Quality Standards (NAAQS) for six criteria pollutants; the Clean Air Act requires EPA to review the standards every 5 years
 - Carbon monoxide
 - Ground-level ozone
 - Particulate matter

- Oxides of Nitrogen
- Oxides of Sulfur
- Lead
- **Primary (health-based) standards:** in the "judgment of the Administrator" must be "requisite" to protect public health with an "adequate margin of safety"
 - The term requisite means "sufficient, but not more than necessary" [a zero-risk standard is neither possible nor required]
 - By requiring an "adequate margin of safety", Congress was directing EPA to build a buffer to protect against uncertain and unknown dangers to human health
- Secondary (welfare-based) standards: "...specify a level of air quality the attainment and maintenance of which" in the
 "judgment of the Administrator" are "requisite to protect the public welfare from any known or anticipated adverse
 effects"
 - Welfare effects include "effects on soils, water, crops, vegetation, man-made materials, animals, wildlife, weather, visibility and climate . . ."
- In setting NAAQS, EPA is **barred from considering the cost of implementing the standards** or adjusting a protective standard solely on the basis of attainability in light of background concentrations of the pollutant

Ambient Air Monitoring data are used throughout the **National Ambient Air Quality Standards** (NAAQS) process

Policy Assessment – EPA staff present conclusions regarding the policy options supported by the current scientific evidence and quantitative assessments. CASAC provides independent review of this process.

NAAQS are set by the EPA Administrator with four key elements

- Indicator
- Averaging Period
 - Level
 - Form

Networks and Data -SLT's operate their networks and data are compared to the NAAQS

Integrated Science
Assessment (ISA) - EPA
reviews the peer
reviewed literature and
issues an ISA. CASAC
provides independent
review of this process.

Health and
Atmospheric Studies –
Ambient air monitoring
data are used in a
variety of studies

Summary of Current U.S. Standards

Pollutant Type		Туре	Averaging Time	Level	Form	
Carbon Monoxide (CO)		primary	8 hours	9 ppm	Not to be exceeded more than once per year	
			1 hour	35 ppm		
Lead (Pb)		primary & secondary	Rolling 3-month average	0.15 μg/m ³	Not to be exceeded	
Nitrogen Dioxide (NO ₂)		primary	1 hour	100 ppb	98 th percentile of 1-hour daily maximum concentrations, averaged over 3 years	
		primary & secondary	1 year	53 ppb	Annual mean	
Ozone (O ₃)		primary & secondary	8 hours	0.070 ppm	Annual fourth highest daily maximum 8-hour concentration, averaged over 3 years	
Particle Pollution (PM)	PM _{2.5}	primary	1 year	12.0 μg/m ³	annual mean averaged over 3 years	
		secondary	1 year	15.0 μg/m ³		
		primary & secondary	24 hours	35 μg/m ³	98 th percentile, averaged over 3 years	
	PM ₁₀	primary & secondary	24 hours	150 μg/m ³	Not to be exceeded more than once per year on average over 3 years	
Sulfur Dioxide (SO ₂)		primary	1 hour	75 ppb	99 th percentile of 1-hour daily maximum concentration, averaged over 3 years	
		secondary	3 hours	0.5 ppm	Not to be exceeded more than once per year	

Connecting the Criteria Pollutant PM to the measurements (FRMs and FEMs) for PM

Criteria pollutant in Clean Air Act - PM (Particulate Matter)

Indicators in final agency rulemakings

- Coarse particles as PM₁₀ mass
- Fine particles as PM_{2.5} mass

Federal Reference Methods

(FRMs) in Final Agency rulemakings:

- Appendix J to Part 50.
 Reference Method for the
 Determination of Particulate
 Matter as PM10 in the
 Atmosphere
- Appendix L to Part 50. Reference Method for the Determination of Fine Particulate Matter as PM2.5 in the Atmosphere

Includes design (e.g., inlet and separator) and performance specifications (e.g., flow rate, temperature control)

Federal Equivalent Methods (FEMs)

Designated in accordance with 40 CFR Part 53

Continuous methods are performance based

Integrated Science Assessment

Literature Search & Study Selection

- Comprehensive evaluation and synthesis of the policyrelevant scientific information that is the foundation for the review
 - Characterization of the strengths and uncertainties of the evidence
 - Conclusions on causality for health and welfare effects
 - Characterization of evidence for at-risk populations
 - Assessment of evidence for dose/concentrationresponse relationships

http://www.epa.gov/isa

Evaluation of Individual Study Quality

After study selection, the quality of individual studies is evaluated by EPA or outside experts in the fields of atmospheric science, exposure assessment, dosimetry, animal toxicology, controlled human exposure studies, epidemiology, ecology, and other welfare effects, considering the design, methods, conduct, and documentation of each study. Strengths and limitations of individual studies that may affect the interpretations of the study are considered.

Develop Initial Sections

Review and summarize new study results as well as findings and conclusions from previous assessments by category of outcome/effects and by discipline, e.g., toxicologic studies of lung function.

Peer Input Consultation Review of initial draft materials by scientists from both outside and within EPA in public meeting or public

teleconference

Evaluation, Synthesis, and Integration of Evidence

Integrate evidence from scientific disciplines - for example, toxicological, controlled human exposure, and epidemiologic study findings for a particular health outcome. Evaluate evidence for related groups of endpoints or outcomes to draw conclusions regarding health or welfare effect categories, integrating health or welfare effects evidence with information on mode of action and exposure assessment.

Development of Scientific Conclusions and Casual Determinations

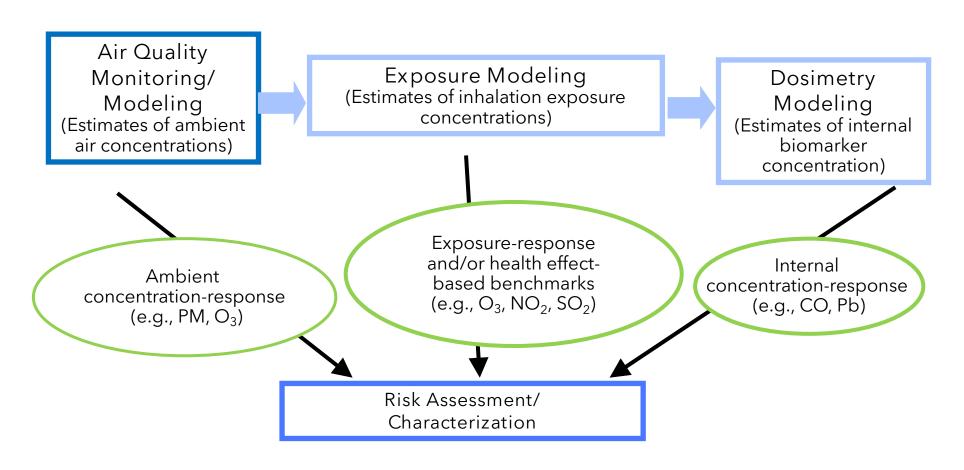
Characterize weight of evidence and develop judgements regarding causality for health or welfare effect categories. Develop conclusions regarding concentration- or dose-response relationships, potentially atrisk populations, lifestages, or ecosystems.

Draft Integrated Science Assessment Evaluation and integration of newly published studies after each draft.

Final Integrated Science Assessment

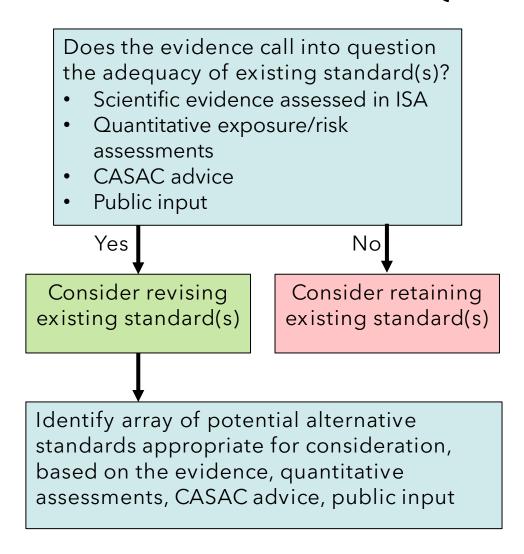
Clean Air Scientific Advisory Committee Independent review of draft documents for scientific quality and sound implementation of causal framework; anticipated review of two drafts of ISA in public meetings.

Public Comments
Comments on draft ISA solicited by EPA


PM ISA includes detailed chapter on: Sources,
Atmospheric Chemistry, and Ambient Concentrations.
This includes subsection on Measurement and Monitoring.

CHAPTER 2 SOURCES ATMOSPHERIC CHEMISTRY, AND AMBIENT

со	NCENTRATIONS	2-1
2.1 Summary Ov	erview	2-1
	Size Distributions	2-2
2.3 Primary Sour	ces and Atmospheric Formation	2-5
	y PM _{2.5} Emissions	2-7
2.3.1.1	National-Scale Emissions	2-7
2.3.1.2	Urban-Scale Emissions	2-9
2.3.2 Second	dary PM _{2.5} Formation Precursor Emissions	2-12
2.3.2.1	Precursor Emissions	2-13
	Secondary Organic Aerosols	2-17
	y PM10-2.5 Emissions	
	ne Particles	
	Primary Sources	
	New Particle Formation	2-25
2.4 Measurement	t, Monitoring, and Modeling	2-26
2.4.1 PM _{2.5} 8	and PM ₁₀	2-26
2.4.2 PM ₁₀₋₂	.5	2-27
2.4.3 Ultrafin	ne Particles: Number, Surface Area, Mass	2-29
	Particle Number and Number Distribution	2-29
		2-32
	cal Components	2-33 2-35
	te Remote Sensing	2-35
	ring Networks	
	cal Transport Models	2-41
2.5 Ambient Con-	centrations	2-44
2.5.1 Spatial	Distribution	2-44
	Variability Across the U.S.	2-44
2.5.1.1.1	PM _{2.5}	2-44
2.5.1.1.2		
2.5.1.1.3	PM _{10-2.5}	2-51
2.5.1.1.4		
2.5.1.1.5		
25.1.1.5		
2.5.1.1.7		
2.5.1.1.8	Ultrafine Particle Components	2-63
2.5.1.1.9	Reactive Oxygen Species	2-64
2.5.1.2	Urban and Neighborhood-Scale Variability	2-65
2.5.1.2.1	PM _{2.5}	2-65
2.5.1.2.2	PM ₁₀	
2.5.1.2.3	PM _{10-2.5}	
2.5.1.2.4	Ultrafine Particles	
2.5.1.2.5	Chemical Components	
2.5.2 Temporal V		2-69
2.5.2.1 Reg 2.5.2.1.1	ional Trends	2-69
	PM _{2.5}	
2.5.2.1.2	PM ₁₀	
2.5.2.1.3	PM _{10-2.5}	2-74
2.5.2.1.4	Ultrafine Particles	
2.5.2.1.5	Chemical Components	
	•	
	sonal Variations	
2.5.2.2.1	PM2.5	
2.5.2.2.2	PM _{10-2.5}	2-80
2.5.2.2.3	Ultrafine Particles	2-83
2.5.2.2.4	Particulate Matter (PM) Components	2-83
2.5.2.3 Hou	irly and Weekday-Weekend Variability	
253 Common P	atterns of Particulate Matter Characteristics in the U.S.	2-86
	d Particulate Matter	
	ural Background	
	rcontinental Transport	
2.6 Summary		2-94
2.7 References		2-97

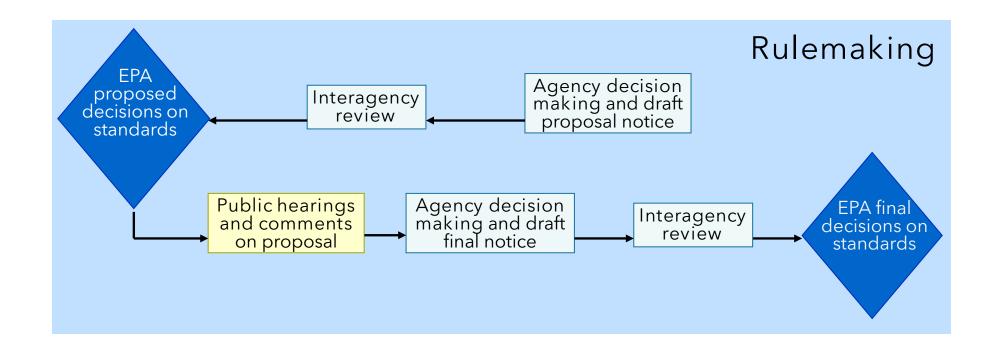

Risk and Exposure Analyses

The nature and strength of evidence influences selection of appropriate quantitative risk characterization model.

Policy Assessment for the Reconsideration of the NAAQS for PM

- Presents
 conclusions
 regarding the policy
 options supported
 by the current
 scientific evidence
 and quantitative
 assessments
- Considers all elements of the standard: indicator, averaging time, form, level

PM PA includes sections detailing PM emissions, monitoring, and air quality


Refer	rences		1-19
2	PM AIR	QUALITY	2-1
2.1	Dis	stribution of Particle Size in Ambient Air	2-1
	2.1.1	Sources of PM Emissions	2-3
2.2 Ambient PM Monitoring Methods and Networks		2-14	
	2.2.1	Total Suspended Particulates (TSP) Sampling	2-15
	2.2.2	PM ₁₀ Monitoring	2-16
	2.2.3	PM _{2.5} Monitoring	2-17
	2.2.4	PM _{10-2.5} Monitoring	2-22
	2.2.5	Additional PM Measurements and Metrics.	2-23
2.3	An	nbient Air Concentrations	2-25
	2.3.1	Trends in Emissions of PM and Precursor Gases	2-25
	2.3.2	Trends in Monitored Ambient Concentrations	2-26
	2.3.3	Predicted Ambient PM _{2.5} Based on Hybrid Modeling Approaches	2-43
2.4	Bac	ckground PM	2-53
	2.4.1	Natural Sources	2-55
	2.4.2	International Transport	2-57
	2.4.3	Estimating Background PM with Recent Data	2-59
		:	

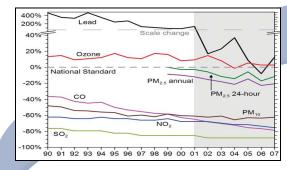
Publication No. EPA-452/R-22-004, May 2022

Available on the web at: https://www.epa.gov/naaqs/particulate-matter-pm-standards-policy-assessments-current-review-0

NAAQS Process: Regulatory Steps

- The Agency decision-making process for the proposed and final rulemaking decisions includes internal EPA deliberation of key issues and decisions, development of proposed and final decision notices and review of draft notices by other federal agencies
 - Interagency review is coordinated through the Office of Management and Budget
- Final decisions are informed by scientific evidence, any quantitative analyses conducted, staff conclusions in the PA, CASAC advice, and public comments on the proposal

NAAQS Designations & Implementation


EPA revises National
Ambient Air Quality
Standards,
Monitoring Requirements

EPA Designates Nonattainment Areas

Air Agency Assesses Expected
Improvement From Federal
Measures, and Develops
Additional Control Strategies to
Attain Standards

Ongoing Evaluation by EPA and Air Agency: Air Quality Monitoring, Tracking Emissions and Implementation of Control Programs Scientific Research

Air Agency Submits Plan to EPA and Implements Control Strategies Through Regulatory and Nonregulatory Approaches

Thank You!