Monitoring of three criteria air pollutants at an international port of entry

<u>Wen-Whai Li</u>, Evan Williams, Leonardo Vazquez, Mayra Chavez Department of Civil Engineering, The University of Texas at El Paso, El Paso, TX

2022 National Ambient Air Monitoring Conference August 22-25, Pittsburgh, PA

Acknowledgements

This project was supported by a grant from the U.S. Department of Transportation through the Center for Advancing Research in Transportation Emissions, Energy, and Health (CARTEEH). We thank the U.S. Customs and Border Protection for their assistance. We also thank Mr. Sergio Vasquez, and Eddie Moderow of TCEQ and Mr. Alan Wiernicki, Mr. Ernesto Ortiz, Mr. Abel Carreon, and Mr. Joe Parga of EPISD for their assistance in setting up the low-cost sensors on EPISD campuses.

The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the U.S. DOT, TCEQ, or U.S. CBP.

Background

- Vehicular emissions of transportation-related air pollutants (TRAPs) at international ports of entry (POEs) are a major health concern for the users of the facilities as well as residents of nearby communities
- 15 to 16 million passenger cars and 750,000 commercial vehicles cross the 4 POEs between El Paso, Texas, and Cd. Juárez, Chihuahua each year
- Prolonged wait time at the POE potentially increases users' exposure
- The Bridge of the Americas (BOTA) has the highest volume of traffic in El Paso, Texas with 3.3 million northbound vehicles crossed from Cd. Juarez to El Paso and over 600,000 pedestrians crossing on foot in 2021
- Few air quality studies have been conducted at the POEs due to concerns of security compromise, traffic interruption, and vandalism

Objectives

This study addresses the potential air pollution impacts on the health of bridge users or POE workers as well as the residents of nearby community with two objectives:

- Establish the baseline exposure concentrations for POE workers and users; and
- Evaluate the pollution impacts of POE emissions on the nearby community using concurrent monitoring and by collecting and analyzing pollutant data at the traffic lanes on the BOTA

To the best of our knowledge, no similar studies have been conducted to monitor in-traffic air pollution at a POE. Our results do not apply to in-vehicle exposure.

Study Design

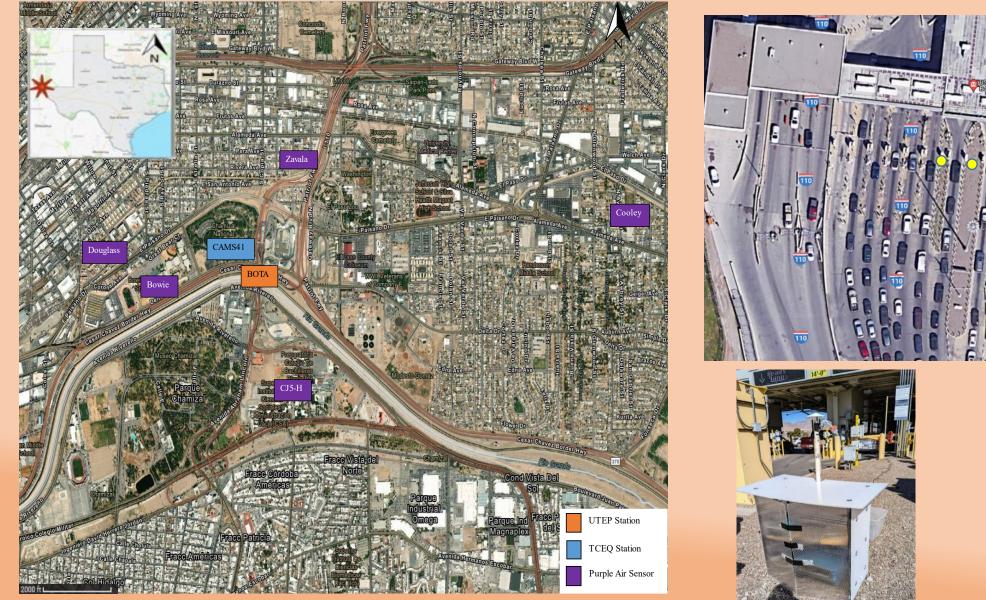
- Study Period: Feb. 7 March 12, 2022
- Two sets of instruments for continuous PM_{2.5}, O₃, and NO₂ monitoring at the Bridge of the Americas (BOTA)
- Continuous PM_{2.5} monitoring at 5 community locations within 3 miles from the BOTA
- A State-operated FRM monitoring site within 0.4 miles from BOTA

Data Collection

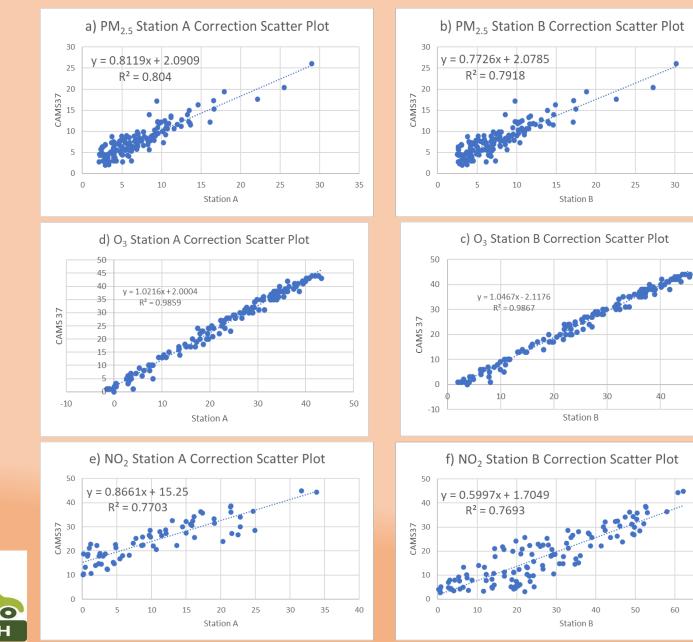
- PM_{2.5}
 - GRIMM 11A Portable Laser Aerosol Spectrometer and Dust Monitor
 - PurpleAir PA-II
- 03

2B Technologies Model 202 Ozone Monitor

 NO₂
2B Technologies Model 405 for NO₂/NO/No_x Monitor







Sampling Locations and Instrumentation Setup

Correlations between FEM and FRM Instruments

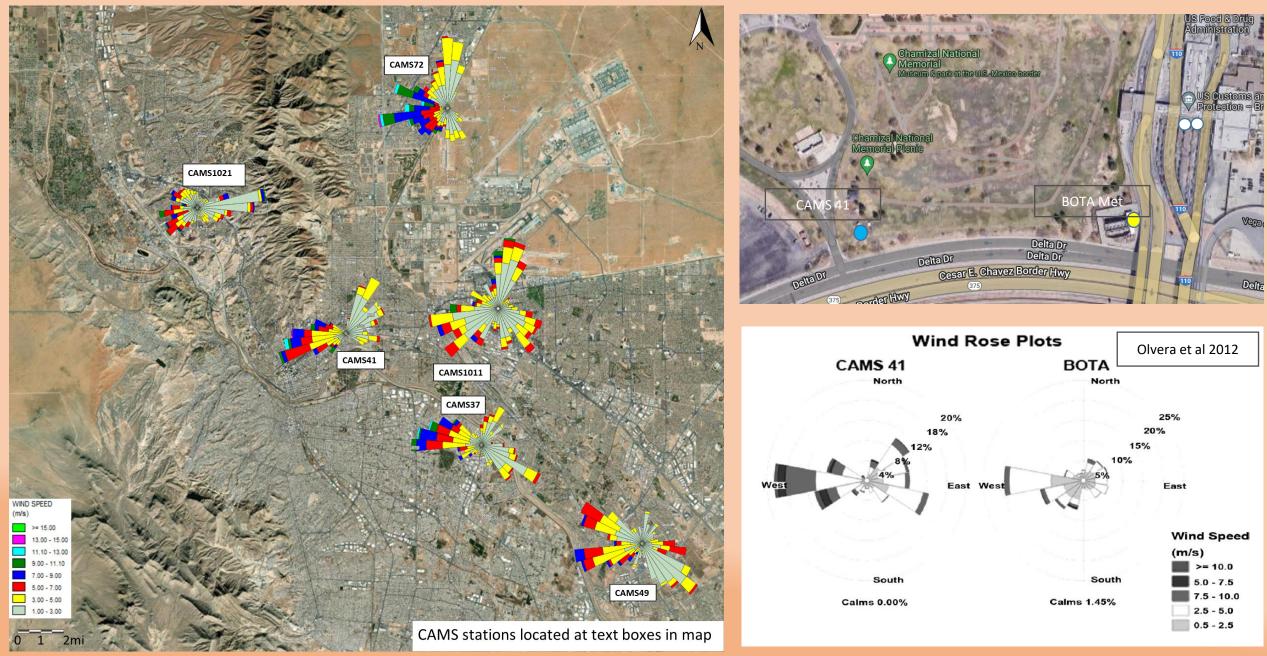
CARTEEH

35

50

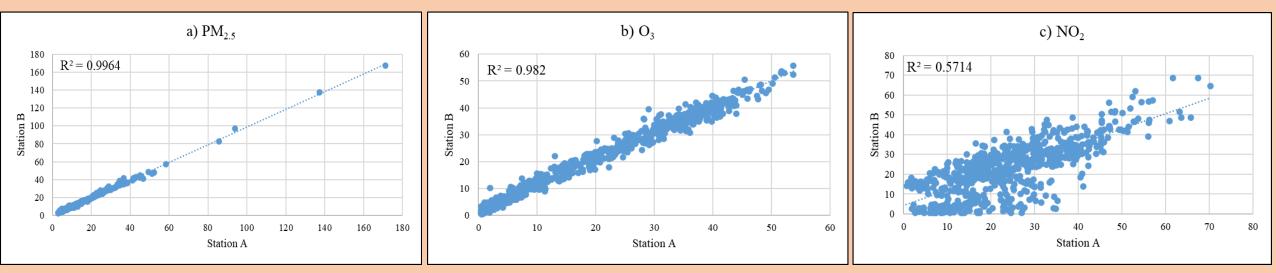
70

Correlations between Low-cost PM_{2.5} Sensors and FRM Instrument


 $\begin{array}{ll} \mbox{Multivariate} & C_{FRM} = \beta 0 + \beta 1 (C_{obs}) + \beta 2 (HR) + \beta 3 (Temp) + \mathcal{E} \\ \mbox{Univariate} & C_{FRM} = A \bullet C_{obs} + B \end{array}$

Sensor		Regression		Univariate Linear Regression			Sensor P	erformance	30 PM _{2.5} Concentrations: MVR Corrected compared to Reference (CAMS) 		
	βΟ	β1	β2	β3	R ²	A	В	R ²	Interchannel Performance (R ²)	Interdevice Performance (R ²)	R ² = 0.7381
Cooley	7.45	0.54	-0.18	-0.15	0.85	0.47	1.33	0.67	0.98	NA	PM _{2,5} Concentrations: UVR corrected compared to Reference (CAMS)
Douglass 1	6.74	0.57	-0.18	-0.13	0.84	0.47	1.34	0.66	0.98	0.54	25
Douglass 2	7.39	0.64	-0.18	-0.11	0.86	0.51	1.52	0.66	0.99	0.51	$R^2 = 0.672$
Zavala 1	6.63	0.64	-0.16	-0.1	0.84	0.56	1.69	0.67	0.96	0.00	Ma MA DA AMA
Zavala 2	5.1	0.64	-0.1	-0.07	0.86	0.58	1.66	0.66	0.82	0.99	march 10 An manual average bar N M
Bowie	5.93	0.52	-0.19	-0.02	0.62	0.62	1.65	0.23	0.99	NA	
СЈ5-Н 1	8.44	0.69	-0.20	-0.16	0.86	0.49	1.45	0.68	0.98		
СЈ5-Н 2	5.49	0.58	-0.15	-0.06	0.85	0.54	2.82	0.22	0.95	0.99	

Local Meteorology


Results and Discussion

Concentrations at BOTA

PM_{2.5}

03

NO₂

75th

Percentile

13.1

12.9

35.1

35.8

32.4

31.5

THE UNIVERSITY OF TEXAS AT EL PASO

COLLEGE OF ENGINEERING

Absolute

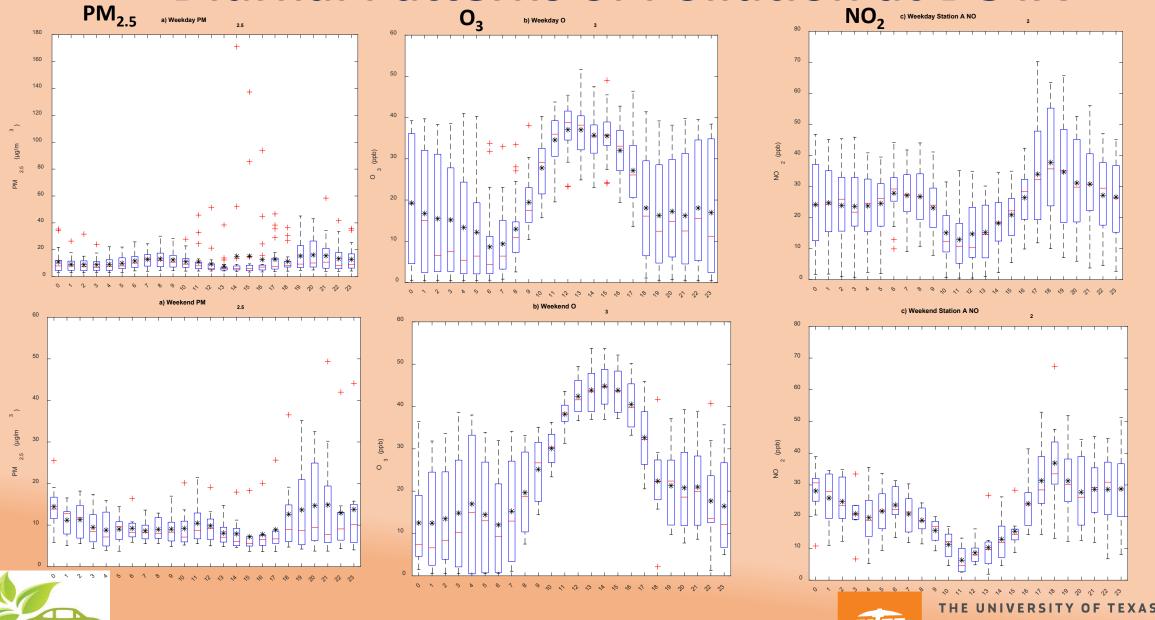
Maximum

171.2

167.5 53.7

55.7

70.2


68.7

	5-Minute Data									1-Hour Data						
Pollutant		Average	Median	Standard Deviation	Minimum	25th Percentile	75th Percentile	Absolute Maximum		Pollutant		Average	Median	Standard Deviation	Minimum	25th Percentile
PM _{2.5}	А	11.6	7.9	13.6	2.7	5.5	12.8	434.4		PM _{2.5}	А	11.6	8.1	11.8	2.9	5.7
(µg/m³)	В	11.6	8.0	13.4	2.6	5.6	12.9	454.0		(µg/m³)	В	11.6	8.3	11.7	2.8	5.7
	А	23.7	25.9	14.2	0.0	10.2	35.7	97.0		O_{i} (mmb)	А	22.2	24.0	14.5	0.4	7.5
O₃ (ppb)	В	23.7	25.6	14.5	0.1	9.9	36.2	110.4		O₃ (ppb)	В	23.3	24.8	14.2	0.5	9.5
	А	24.9	23.9	13.5	0.0	14.9	33.9	107.0			А	24.0	23.3	12.9	0.5	14.5
NO ₂ (ppb)	В	24.9	25.0	12.7	0.0	16.2	32.3	118.9		NO ₂ (ppb)		23.1	23.7	12.9	0.5	14.2

Diurnal Patterns of Pollution at BOTA

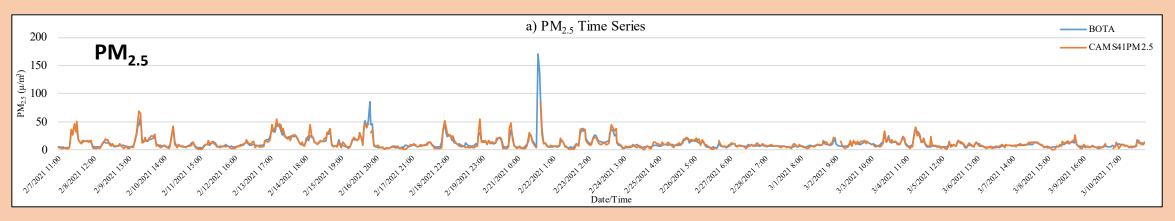
PASO

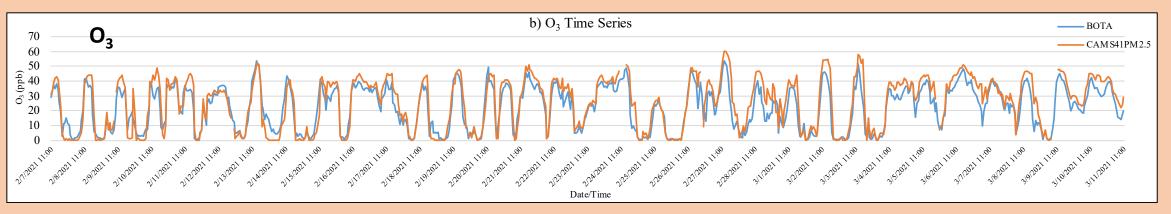
LEGE OF ENGINEERING

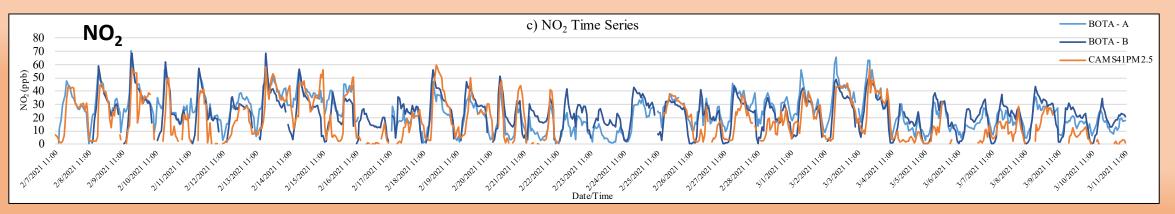
0

Comparison of BOTA to NAAQS

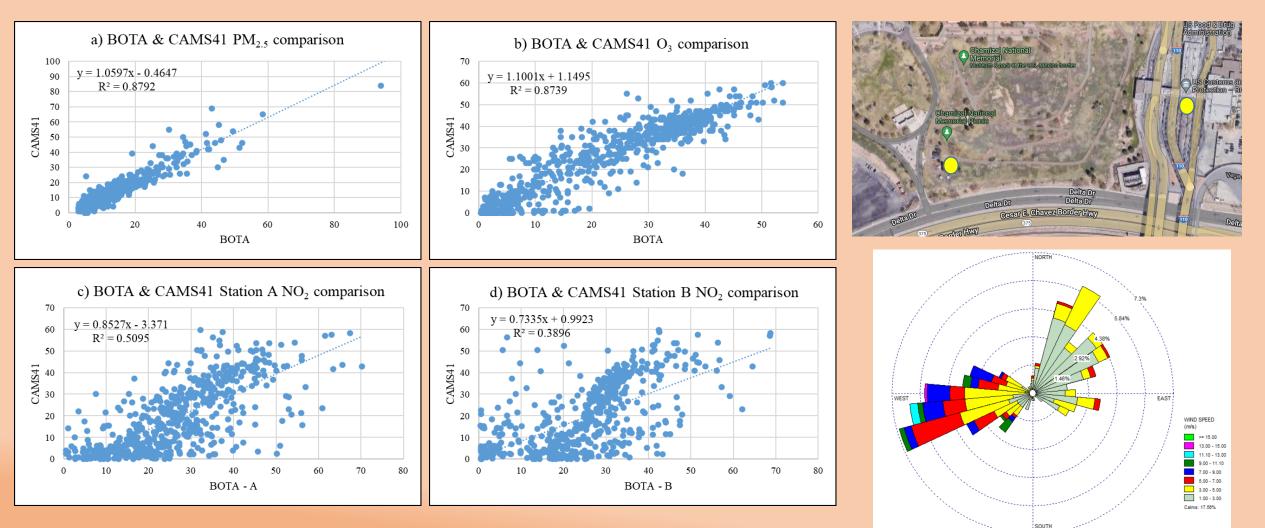
Pollutant	BOTA Concentrations		Reference Standard			
	Observed	Description	NCAAQ	Description		
PM _{2.5}	11.6 μg/m³	All-period Average	12 μg/m ³	Annual Average		
	26 μg/m ³	Max. 24-hr	35 μg/m ³	Max 24-hr Average		
O ₃	56 ppb	Max. 1-hr	70	Max 8-hr Average		
NO ₂	70 ppb	Max 1-hr Average	100 ppb	Max 1-hr Average		
	24 ppb	All-period Average	53 ppb	Annual Average		



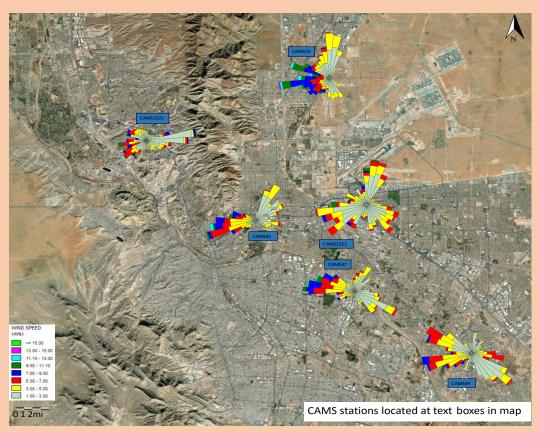



THE UNIVERSITY OF TEXAS AT EL PASO

COLLEGE OF ENGINEERING


Comparison of BOTA to CAMS 41

Comparison of BOTA to CAMS 41



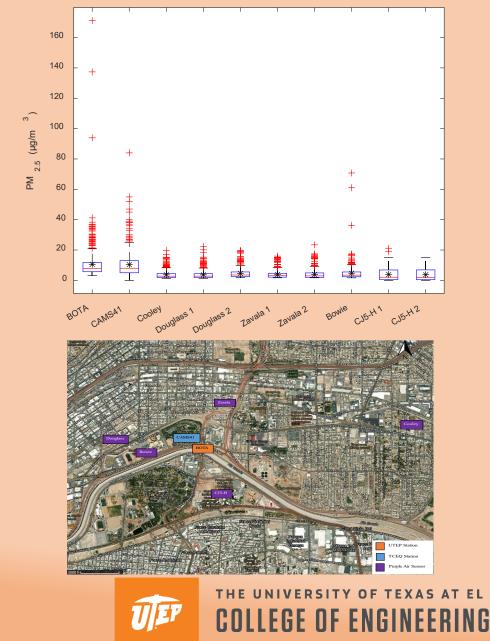
Comparison of BOTA to Other PdN FRM Locations

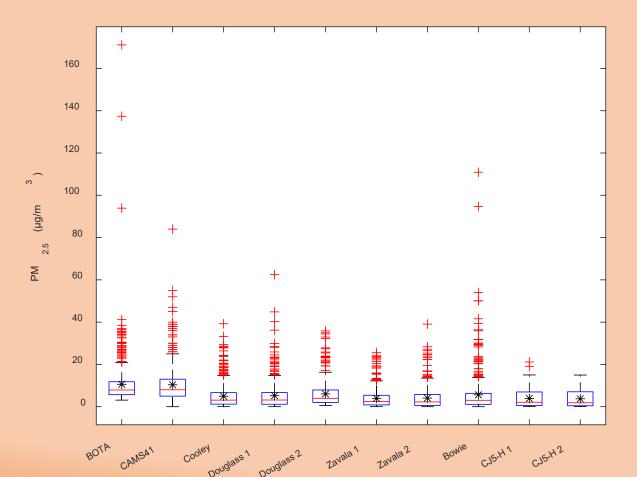
Period Average											
Measurement	BOTA	CAMS41	CAMS37	CAMS49	CAMS72	CAMS1011	CAMS1021				
$PM_{2.5} (\mu g/m^3)$	11.6	11.4	_	9.2	_	_	_				
O ₃ (ppb)	22.2	25.5	24.1	24.9	32.7	_	33.4				
$NO_2 (ppb) \frac{A}{B}$	24.0 23.1	18.7	15.5	_	_	15.1	_				
Distance from BOTA (km)	-	0.4	5.1	18.2	14.3	4.2	14.0				
Period Median											
Measurement	BOTA	CAMS41	CAMS37	CAMS49	CAMS72	CAMS1011	CAMS1021				
$PM_{2.5} (\mu g/m^3)$	8.1	8.0	_	7.4	_	_	_				
O ₃ (ppb)	24.0	29.5	28.0	27.0	37.0	_	38.0				
NO ₂ (ppb) $\frac{A}{B}$	23.3 23.7	15.3	11.6	_	_	10.2	_				
Distance from BOTA (km)	-	0.4	5.1	18.2	14.3	4.2	14.0				

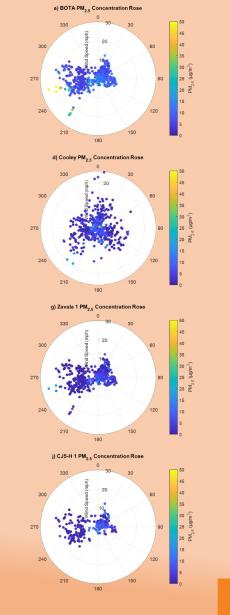
THE UNIVERSITY OF TEXAS AT EL PASO

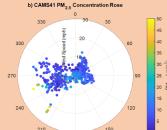
COLLEGE OF ENGINEERING

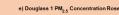
Comparison of BOTA to NAAQS

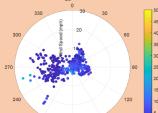

- Acceptable levels of PM_{2.5}, O₃, and NO₂ at BOTA pose no health hazards to the POE workers and users during the study period
- On-road, in-traffic O₃ and NO₂ were almost at background levels
- ~2% decrease in 0.4 miles in mean or median PM_{2.5}, or ~20% decrease in mean or ~9% in median in 18 miles.
- On-road, in-traffic concentrations are less affected by the variability in local vehicle emissions, traffic, and meteorological conditions due to the prevalence of urban background PM and O₃ concentrations, as also reported in San Diego and Australia

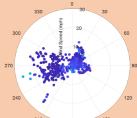

Comparison of BOTA to Community

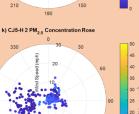



ASO

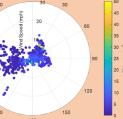

Community PM Data

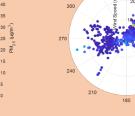


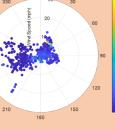







h) Zavala 2 PM_{2.5} Concentration Rose


180



PASO

c) CAMS49 PM2.5 Concentration Rose

f) Douglass 2 PM_{2.5} Concentration Rose

i) Bowie PM_{2.5} Concentration Rose

TEP **OF ENGINEERING** GF

Comparison of BOTA to Community PM_{2.5}

- Low PM_{2.5} was observed in the community, especially lower than those observed at FRM stations
- Low-cost PM_{2.5} sensors are capable of catching PM peaks but less sensitive to low concentrations, likely due to variability in humidity, temperature, location of sensor, and PM characteristics in dry arid region which are different from other regions
- Low PM_{2.5} in the community implies the prevalence of background concentration in the region

Summary

- Exposure concentrations of PM_{2.5}, O₃, and NO₂ for POE workers and users were less than their respective NAAQS during the study period indicating that exposure concentrations on the BOTA are in line with those observed 0.4 miles removed from the BOTA.
- The impacts of BOTA emissions on the local community are basically negligible, or pollutant concentrations are at the same level as those immediately inside the BOTA POE.
- The performance of all three FEM devices was determined to be in excellent agreement with that of the collocated FRM instruments
- Performance and accuracy of the low-cost sensors appear to be less reliable during our study although the devices were capable of detecting the trends and variability in pollutant concentrations in real time.

Future Research

- Apply AERMOD air dispersion model, on-site meteorological data, and dilution ratios to estimate emissions from the BOTA
- Evaluate MOVES performance against emissions estimated from on-site concentrations
- Apply AERMOD air dispersion model to assess the impacts of BOTA emissions on near-road community
- Further on-road and near-road studies on commercial lanes and at other POEs

Comments and Questions

Wen-Whai Li, UTEP <u>wli@utep.edu</u> (915) 747-8755

THE UNIVERSITY OF TEXAS AT EL PASO

COLLEGE OF ENGINEERING