

TIN

Long-term Evaluation of Low-Cost PM and Gaseous Sensors in Middle Tennessee

Michelle Oakes, Ph.D.

Tennessee Dept of Environment and Conservation Division of Air Pollution Control

National Ambient Air Monitoring Conference, August, 24, 2022`

What are Low-Cost Air Sensors?

www.purpleair.com

Main Features of Sensors

- Inexpensive
- Portable
- Easy to Use
- Data Accessibility

www.aqmesh.com

https://www.clarity.io/

https://airqualityegg.com/home

https://www.amphenol-sensors.com/

Overview of TDEC's Sensor Study

Multi-year evaluation of gaseous and particulate sensors against regulatory (FEM/FRM) monitors

4 Middle Tennessee Monitoring Sites

Sensors Evaluation Criteria

- Intercomparison with Regulatory Monitors
- Sensor Degradation
- Performance during Special Air Quality Events (dust storms, wildfires, etc)

Sensors Evaluated in the Study

Gaseous Sensors

AQ Egg (O3, SO2, NO2)

Raw Purple Air Overestimates FEMs

With Appropriate Adjustments, Purple Airs Compare Well with FEMs (near 1 to 1)

No Significant Sensor Degradation

Sensors performed well during 1.75 years of sampling with minimal maintenance.

TN

Sensor Performance Impacted during Some Special Events

Nashville Skyline Impacted by Wildfires July 2021

TN

Gaseous Sensor Results Clarity Node and AQ Eggs **Kudos to Kyle Spangle

Clarity Node NO2 Compared well with the FRM, but some bias exists, especially at lower end

TI 401 TI

TN

Sensor Drift towards End of Study

AQ Egg Showed Poor Performance "Out of the Box"

Air Quality Egg O₃ Daily Avg All Sites

.. as did the AQ Egg NO2 and SO2 Sensors

A Few Lessons Learned from our Study

- Sensors are not created equally.
 - PM sensor technology is further along than gaseous technology.
- Caution should be used when interpreting sensor data during special events (dust storms, etc).
- In our experience, sensor data interpretation requires AQ knowledge.
 - Partnering with AQ experts is recommended.

What's Next?

- Determining the role of sensors in AQ Management
 - Not accepted for regulatory applications, but can be used to supplement regulatory data
 - Examples of supplementary regulatory applications
 - Investigating Exceptional PM Events (Wildfires)
 - AQ Forecasting
 - Preliminary complaint response
 - Deploying PM2.5 sensors at regulatory PM and O3 sites
 - Assisting Data Validation
 - More multipollutant information
 - Testing Gaseous Sensors??

What's Next: PM Sensors Dashboard

Real-time readings for quality control

GREAT FOR DIAGNOSTICS!!

Real-time comparison with FEM

GREAT FOR VALIDATION & FORECASTING!!

Acknowledgements to the Sensors Team

Commissioner & Dep Commissioner Site Visit (March 2021)

APC Team (pictured left to right): Alvin Pratt, Kyle Spangle, Brad King, Michelle Oakes, Larry Yocom Not pictured: Director Michelle Owenby

Collaborators

Promoting and Protecting Health

Director John Finke Gillian Walshe-Langford Greg Lowery Morgan Dickie

