Analysis of Ethylene Oxide by EPA Method TO-15 / TO-15A

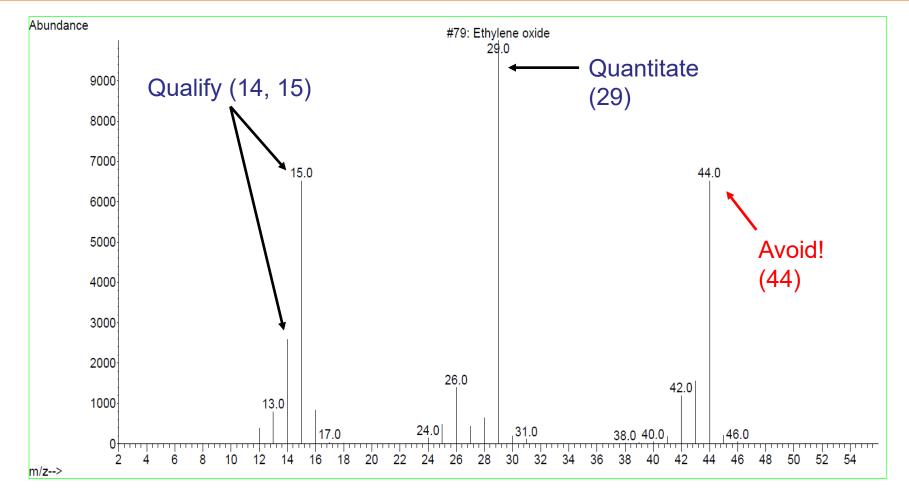
Presented by: Kyle Rasmus Eastern Research Group, Inc.

Collection and Analysis of Ethylene Oxide

- Sources and Health Risk Summary
- Ethylene Oxide Chemical Overview
- Technical Development/Evaluation
- TO-15/TO-15A Results
- Conclusions

Common Sources

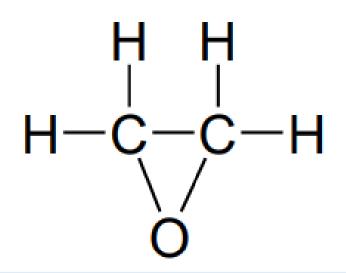
- Chemical Manufacturing
 - Antifreeze, Plastics,
 Detergents, Adhesives
 - Most use as a chemical intermediate
- Medical Sterilization
 - Approximately 50% of medical equipment sterilized using Ethylene Oxide



Health Risk

- Acute exposure:
 - Central nervous system depression
 - Irritation of the eyes and mucous membranes
- Chronic Exposure:
 - Confirmed carcinogen and mutagen
 - Damage to the nervous system
 - Reproductive effects (miscarriage and testicular degradation)

Ethylene Oxide Spectrum



Chemical Properties

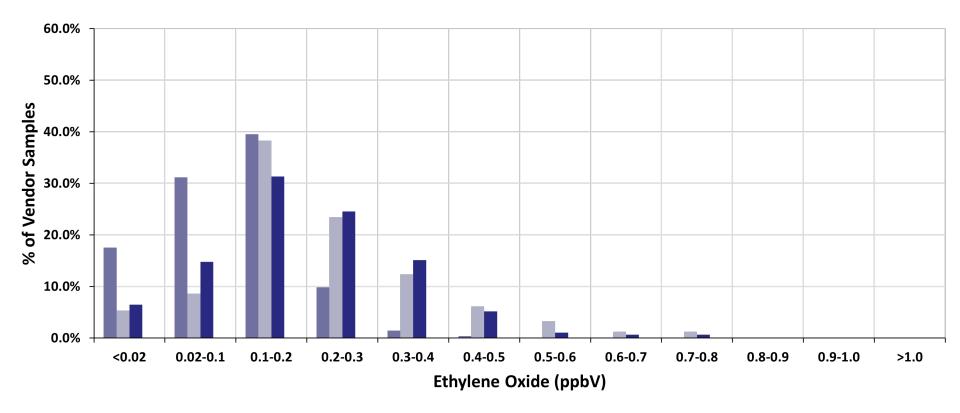
- Overview:
 - Unstable: strained cyclic ether
 - Poor chromatographic response
 - Expected oxidation in atmosphere
 - Estimated 2-5 month half life in atmosphere

Table 4-2. Physical and Chemical Properties of Ethylene Oxide

Property	Information	Reference
Molecular weight	44.05 g/mol	WHO 2003
Color	Colorless	WHO 2003
Physical state	Gas	NIOSH 2007
Melting point	-111.7°C	HSDB 2010
Boiling point	51°F (10.6°C)	NIOSH 2016
Density at 10°C	0.8824	HSDB 2010; Weast 1985
Odor	Sweet, olefinic; ether-like	NIOSH 2007; Verschueren 1983
Odor threshold:		
Water	140 mg/L	Amoore and Hautala 1983
Air	787 mg/m3 (432.85 ppm)	Amoore and Hautala 1983

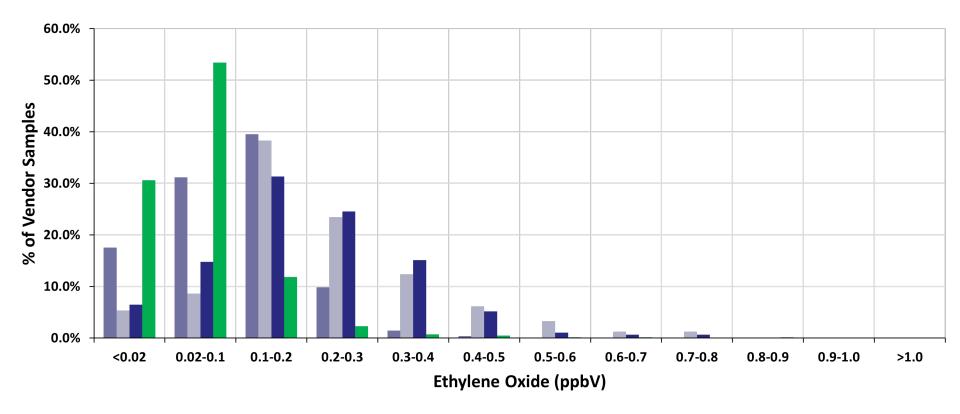
Instrumentation

- Types of media
 - Summa and treated canister
- Instrumentation
 - Agilent 5977B MS-SIM/ 8890
 GC
 - Entech 7200A Preconcentrator
- Analytical method
 - EPA Method TO-15
 - EPA Method TO-15A
- Standards material
- Pressurized gas cylinder


Technical Evaluation

- 1. Long Term Data Collection monitor ambient levels over time
- 2. Known Addition ambient samples spiked and then held
- 3. Continuing certifications of canisters passing 3x MDL criteria on EVERY canister

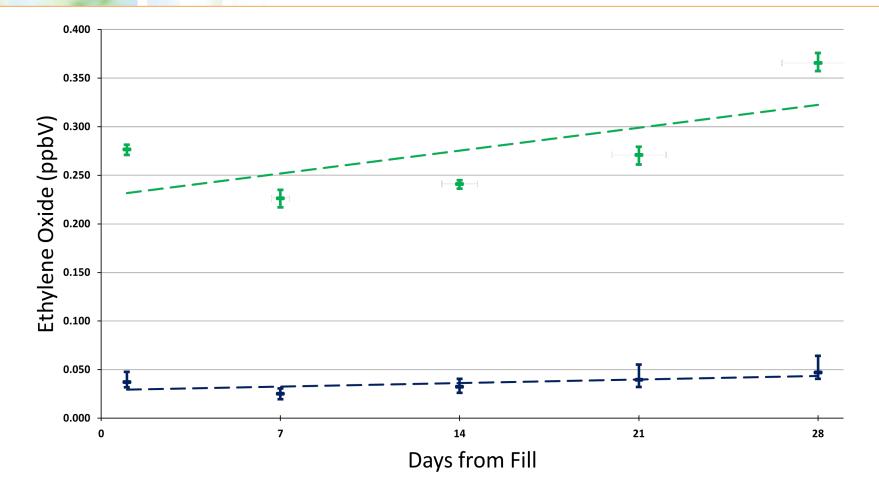
Traditional Technology



Vendor B Vendor C Vendor D

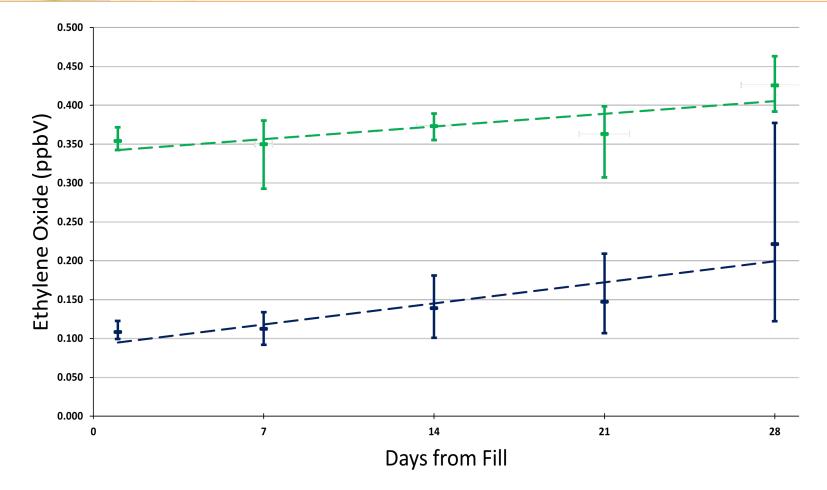
New Technology

Vendor B Vendor C Vendor D Vendor A



Technical Evaluation

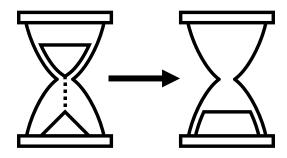
- 1. Long Term Data Collection monitor ambient levels over time
- 2. Known Addition ambient samples spiked and then held
- 3. Continuing certifications of canisters passing 3x MDL criteria on EVERY canister



Known Addition - Winter

Known Addition - Summer

Technical Evaluation


- 1. Long Term Data Collection monitor ambient levels over time
- 2. Known Addition ambient samples spiked and then held
- 3. Continuing certifications of canisters passing 3x MDL criteria on EVERY canister

Canister Certification

- Leak Test 7 Days
- Fill UHP N₂
- Hold 10 Days
- GC/MS Analysis

- TO-15 Analytes <3x MDL or 0.200ppbV</p>
- Total Hydrocarbon <20 ppbC

>3 Weeks for <u>EVERY</u> Canister!

Total Cans	Passed Leak Test	TO-15 Certified	EtOx Certified	Hydrocarb on Certified
1118	1038	796	818	707

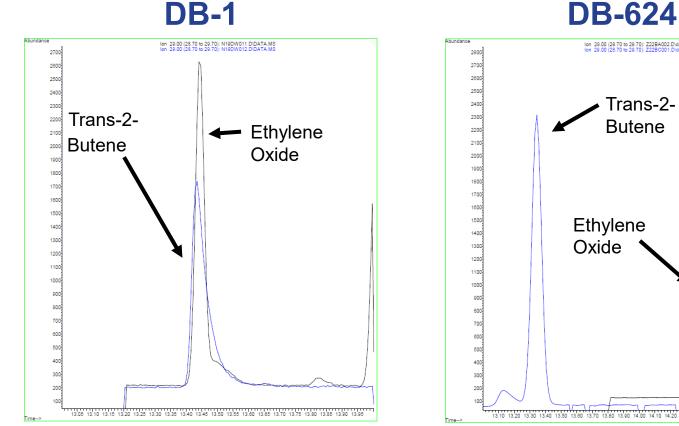
Method Detection Limit

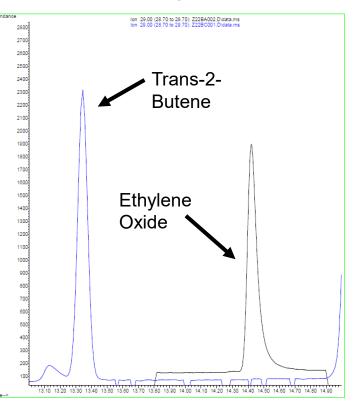
MDL Data 2018-2022 (pptV)					
	MS-1	MS-4	MS-6	MS-8	
2018	45.3				
2019	61.4	48.5	25.0		
2020	85.7	23.2	28.5		
2021	21.9	22.0	26.1	20.9	
2022	48.0	-	3.7	42.8	

Red: Switch to 624 column

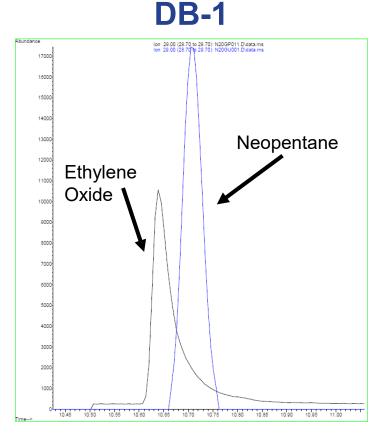
Coelution – Column Choice

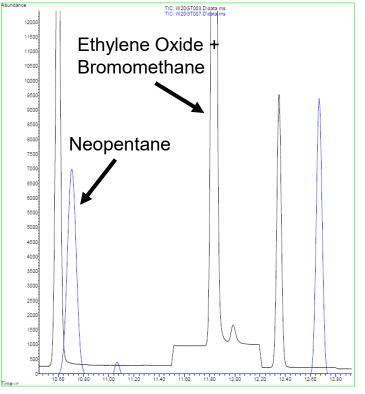
DB-1 (Nonpolar) type analytical column


- 100% Dimethylpolysiloxane
- Coelution issues with ethylene oxide


DB-624 (Mid-polar) type analytical column

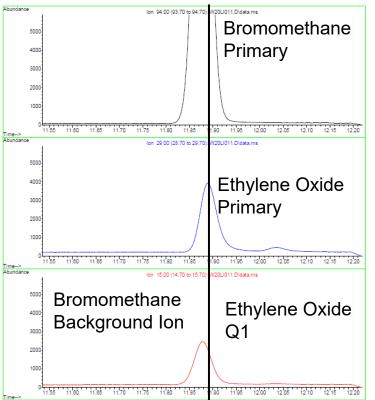
- 6% cyanopropyl/phenyl, 94% Dimethylpolysiloxane
- Resolves coelution issues with ethylene oxide

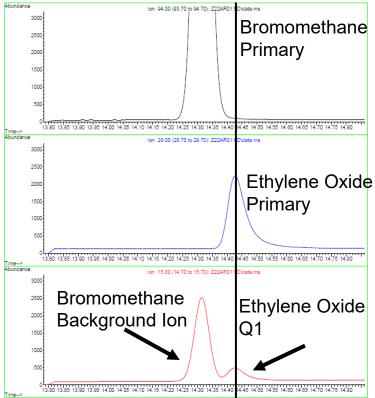

Trans-2-Butene [lon 29]



FRG

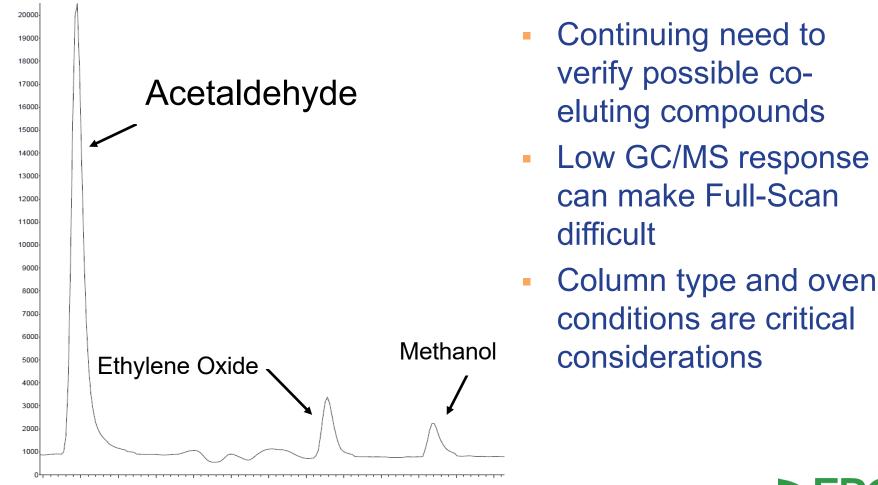
Neopentane [Full Scan]





Bromomethane [SIM]

Ramp 1



Ramp 2

Other Possible Co-elution

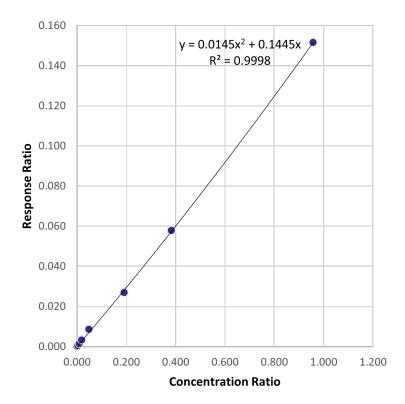
NATTS Performance

- ERG is required to analyze a PT twice a year
- Results are compared to the average of all laboratories in the network

ERG's NATTS Proficiency Testing Results (Ethylene Oxide)					
	Q1, 2020	Q3, 2020	Q1, 2021	Q2, 2021	Q3, 2021
%Dif from Mean of Participating NATTS Labs:	- 10.2%	-3.0%	-19.2%	-21.4%	-23.4%
Spike Level (ppbV):	0.450	0.470	0.193	0.374	0.120

TO-15A Feasibility - Calibration

Considerations:


- Low Pollutant Levels
- Background effects
- Curve Fit Type
 - Linear/Quadratic/RF

EtOx Response Factor Calibration				
Level	Nominal (ppbV)	Recovered (ppbV)	d Nominal Difference	
1	0.0000	N.D.	N/A	
2	0.0193	0.0166	-14.2%	
3	0.0484	0.0494	2.1%	
4	0.0967	0.1044	8.0%	
5	0.2418	0.2777	14.9%	
6	0.9670	0.8735	-9.7%	
7	1.9340	1.8794	-2.8%	
8	4.8350	4.9173	1.7%	

TO-15A Feasibility - Calibration

Quadratic (Force-Zero) EtOx Calibration				
Level	Nominal (ppbV)	Recovered (ppbV)	Nominal Difference	
1	0.0000	N.D.	N/A	
2	0.0193	0.0179	-7.6%	
3	0.0484	0.0532	9.9%	
4	0.0967	0.1123	16.1%	
5	0.2418	0.2975	23.0%	
6	0.9670	0.9243	-4.4%	
7	1.9340	1.9497	0.8%	
8	4.8350	4.8341	0.0%	

- Canister types Careful scrutiny of canister inventory is <u>REQUIRED</u>!
- Column choice Coelution effects and oven ramp make all the difference!
- Instrumentation Advances in sensitivity will continue to help decrease MDLs and increase data reliability!
- TO-15/TO-15A Low levels are possible, but difficult to achieve!

Kyle Rasmus: Kyle.Rasmus@erg.co Mitchell Howell: mitch.howell@erg.co Julie Swift: julie.swift@erg.com

Donna Tedder: donna.tedder@erg.com

- https://www.atsdr.cdc.gov/toxprofiles/tp137.pdf
- https://www.epa.gov/hazardous-air-pollutants-ethylene-oxide/frequentquestions-about-ethylene-oxide-eto
- https://www.epa.gov/sites/default/files/2016-09/documents/ethyleneoxide.pdf
- <u>https://www.entechinst.com/store/lab-instrumentation-gc-accessories/sample-preconcentrators/7200-sample-preconcentrators/product-preconcentrators/instrumentation-7200-sample-preconcentrators/product-971/</u>
- <u>https://www.agilent.com/en/product/gas-chromatography/gc-systems/8890-gc-system?gclid=EAIaIQobChMI576TjKOy-QIVwT2tBh0C6AeNEAAYASAAEgLU4PD_BwE&gclsrc=aw.ds#zoomELIBR ARY_681317</u>

