An interlaboratory comparison of elemental loadings on PM_{2.5} samples via energy-dispersive XRF and single quadrupole ICP-MS

Colleen Marciel F. Rosales¹, Frank Weber², Tracy L. Dombek², Keith Levine², Nicholas J. Spada¹, Nicole P. Hyslop^{1*}

¹Air Quality Research Center, University of California, Davis, California, USA 95616 ²RTI International, Research Triangle Park, North Carolina, USA 27709 **cfrosales@ucdavis.edu**

Outline

- Motivation
- XRF vs ICPMS
- Methodology
- Inter-instrumental comparison
- Internal checks: Intra-instrumental
 - Inter-elemental comparison
 - Precision: collocated
- Summary + Future steps

Motivation

Pollutant concentrations since inception of CSN have decreased

→ now many are at/below the lower limits of current analytical techniques

MDLs

- 4 elements measured by XRF cannot be measured using the applied ICPMS protocol (Si, S, CI, Br)
- All elements regularly measured below MDL by XRF can be measured via ICPMS

Note: MDLs are calculated differently for XRF and ICPMS

XRF & ICPMS

Image from Thermo Fisher

	XRF	ICPMS
Sample Preparation	None	Acid digestion
Sample run time (multi-element)	~1 hour	10-15 minutes
Calibration Standards	Single or multi-element	Multi-elemental standard
Frequency of calibration	Yearly	Before every run
Sample Preservation	Nondestructive	Destructive

Sample Selection + Analyses

Archived CSN samples in UCD (analyzed via XRF): January 2019 – August 2020

- Batch 1 (N=209): 33 elements (10th, 50th, and 90th percentile sample for each element)
- Batch 2 (N=146): Collocated samples from 3 sites
 - 18 from Rutgers, NJ; 38 from Dudley Square (Boston, MA); 20 from Rubidoux (Riverside, CA)
- Batch 3 (N=194) : Higher total elemental concentrations based on UCD XRF

Inter-instrumental comparison XRF vs ICPMS

Inter-instrumental comparison

Inter-instrumental comparison

Checks for internal consistency

- 1. Inter-elemental plots
- 2. Collocated samples

Inter-elemental correlation

— MDLs

Collocated samples

Routine vs Collocated sampler comparisons provide benchmark for inter-instrument comparisons

Summary

- CSN Samples are too lightly loaded for XRF, most elements are below detection limits of XRF
- Inter-elemental correlations are better with ICPMS, suggesting that ICPMS is more precise than XRF
- Not all elements measured by XRF can be measured by selected ICPMS protocol
 - S, Si, Cl, Br cannot be measured via ICPMS but are well-measured via XRF

Future steps + Outstanding questions

- Statistical analysis (correlative analysis)
 - Batch 3 results recently obtained
- Reference materials to evaluate the extraction efficiency and accuracy of the measurements
 - XRF and ICPMS have no common reference materials and biases between measurements are common
- Ongoing project to concentrate CSN samples using smaller diameter filters would improve XRF detection rates

This work was supported by EPA CESU grant no. P21AC11294-00

Colleen Marciel F. Rosales, Ph.D. cfrosales@ucdavis.edu