A comparison of a PTR-ToF-MS against four other VOC measurement methods and standardized techniques during fence-line monitoring in four states

Antonios Tasoglou¹, Justin G. Coughlin², Katherine Haile², Leslie P. Silva³, Rafael Acosta³

Fenceline monitoring

- A method to measure air quality surrounding VOC-emitting facilities in efforts to assess neighboring community exposures.
- Traditional VOC testing methods include the collection of an air sample using a media, and its subsequent analysis in the lab
 - Such methods are TO-15 (summa canister) and TO-11/TO-17 (sorbent tubes)
- Instrumentation that can provide online real-time VOC measurements is one of the most effective ways for high temporal resolution
 - PTR-ToF-MS
 - SIFT-MS
 - UV-DOAS
 - Auto-GC
- The use of such equipment in mobile platforms can also provide high spatial resolution

Field campaign

- Fenceline monitoring was completed around facilities across six states (PA, WV, OH, MI, IN, IL)
 - Chemical plants
 - Coke plants
 - Metals recycler/auto shredder
 - Paint and coating plants
 - Hazardous waste incinerator
 - Wastewater treatment plants
- Stationary comparisons were also conducted at a Missouri DNR PAMS site – Blair St. Site

Objectives

• Conduct fenceline monitoring around VOC-emitting facilities

- Comparison of PTR-ToF-MS with an EPA approved method (TO-15)
- Comparison of the PTR-ToF-MS with other instrumentation
 - UV-DOAS
 - SIFT-MS
 - Auto-GC-FID

Mobile measurements

- 11 days of measurements during August 2021
- Measurements were conducted in 6 states and around 50 facilities
- Intercomparison measurements were conducted around 11 facilities in 4 states

The study was focused on the measurement of 18 compounds

Acetaldehyde	Toluene
Acrylonitrile	Styrene
1,3-Butadiene	Benzaldehyde
Acrolein	Xylene
Acetone	Trimethylpentane
2-Butanone (MEK)	Trimethylbenzene
Benzene	Napthalene
Ethyl acetate	Trichloroethylene
МТВЕ	1,4-Dichlorobenzene

Instrumentation

Three mobile platforms were used during the fenceline measurements

- A) US EPA Geospatial Measurement of Air Pollution (GMAP)
- 1. DUVAS Technologies Ultra-Violet Differential Optical Absorption Spectrometer (UV-DOAS)
- 2. GPS-Weather Station
- 3. Summa cannisters (method EPA TO-15)

B) RJ Lee Group Mobile laboratory

- 1. Ionicon PTR-TOF-MS 4000
- 2. GPS-Weather Station
- 3. Summa cannisters

C) Syft Technologies Mobile Laboratory

- 1. SIFT-MS (Voice200ultra)
- 2. GPS-Weather Station

PAMS Monitoring Site (MDNR) Auto-GC-FID (Chromatec)

VOICE200

Measurement Setup

PTR-MS in fenceline monitoring

Average stationary VOC concentration per facility

(PTR-MS measurements)

- During the campaign, the highest concentrations were observed at a chemical plant and petrochemical tank farm
- 1,3-butadiene, toluene, and xylenes were observed at many of the facilities
- More unique compounds (e.g., naphthalene) were only observed at a handful of facilities

Fenceline measurement timeseries

- All the intercomparison samples were collected during stationary measurements
- 21 summa canister samples were collected in total
 - The summa canister sample collection ranged from 15-30 seconds
- Generally, the signal observed on the UV-DOAS mirrored that of the PTR-ToF-MS measurements

Comparison of PTR-ToF-MS with TO-15 (stationary measurements)

TVOCs $[TO-15] = 1.13 [PTR-MS] + 1.6 (R^2 = 0.92)$

- A good agreement with the TO-15 method
 - BTEX (R²= 0.95, 0.99, 0.93)

Trimethylbenzene (N=3)

- Naphthalene (R²=0.84)
- TVOCs (R²= 0.92)

Comparison of PTR-ToF-MS with UV-DOAS (stationary measurements)

Location 📩 Auto Shredder 📩 Chemical Plant 🕂 Coke Plant 📥 Paint and Coating Plant

- In the Chemical Plant and the Coke Plant, the UV DOAS BTEX measurements were not accurate
 - High concentration of naphthalene can create interferences at overlapping wavelengths

Better agreements in benzene and toluene were found during measurements at the Auto Shredder and the Paint and Coating Plant

Comparison of PTR-ToF-MS and SIFT-MS (mobile measurements)

Stationary comparison against Auto-GC-FID

Parameter • Styrene • Toluene • Xylenes + Ethylbenzene

- The PTR-ToF-MS was compared with an Auto-GC-FID
- 5 hours of intercomparison measurements took place (1-hour averages)
- Not a good agreement in the measurements of aromatics.

Conclusions

- A VOC measurement study took place during a fenceline monitoring campaign over 11 days
- The highest concentrations were measured at
 - Chemical Plant
 - Auto Shredder
 - Coke Plant
 - Paint and Coating plant
 - Petrochemical tank farm
- 18 compounds were monitored during the fenceline campaign. The compounds that had the highest concentrations were
 - 1,3 Butadiene
 - BTEX
 - Styrene
 - Naphthalene

Conclusions

- The PTR-ToF-MS showed a good agreement with the TO-15 method (slope=1.13; R²=0.92)
 - Toluene and naphthalene measurements by the two methods were similar within 3%
 - The measurements of xylene were similar within 19%
 - The PTR-ToF-MS measured higher concentrations of benzene and styrene by 43% and 58%, respectively
 - Measurements of trimethylbenzene, dichlorobenzene and MTBE were overestimated by the PTR-ToF-MS

Conclusions

- Stationary PTR-ToF-MS measurements were compared against a UV-DOAS and an Auto-GC-FID.
 - High concentrations of naphthalene created interferences for BTEX measurements by the UV-DOAS
 - For some matrices, the UV-DOAS compared well for benzene and toluene, albeit slight biases in both directions
 - 45% of the Auto-GC-FID measurements were similar to the PTR-ToF-MS measurements.
 Additional intercomparison measurements are suggested.
- Sift-MS was compared with the PTR-ToF-MS during mobile measurements.
 - The measurement of BTEX were similar
 - Discrepancies in the measurements of acrolein and acetaldehyde were found

Acknowledgements

- US EPA Region 5, Scott Hamilton, Robin Katz
- RJ Lee Group, Aikaterini Liangou
- Syft Technologies, Roadshow crew
- MDNR, Doug Thompson

Backup slides

The proton transfer reaction mass spectrometer (PTR-ToF-MS)

• The PTR-MS was developed in 1995

[Yuan et al. 2016]

- Several studies have compared the PTR-MS with traditional techniques measuring VOCs
- De Gouw et al. (2006) found an agreement between the PTRMS and the GC measurements of aromatics within 3%-15%
- Ambrose et al. (2010) showed that the PTRMS has a small (13%) bias in the toluene measurements
- Yuan et al. (2017) using data from 58 publication concluded that accuracy of most published PTR-MS measurements is better than 20-27%

Comparison with standardized methods-controlled tests

- Six controlled tests in a large testing chamber
- Data were collected during 9 periods
- Sorbent tubes were used to collect VOCs for 10-15 minutes
- PTRMS measurements were compared with
 - HPLC-MS (ISO 16000-3)
 - TD/GC-MS (ISO 16000-6)

PTR-MS in fenceline monitoring