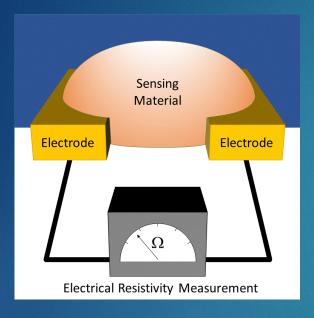
NanoAffix Science, LLC

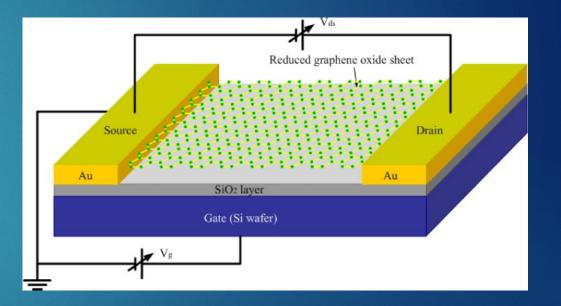
Milwaukee, Wisconsin


Dr. Yale Wang Research Scientist

A low-cost handheld sulfur dioxide tester with a hybrid nanomaterials-based sensor chip

Accurate Affordable Analysis

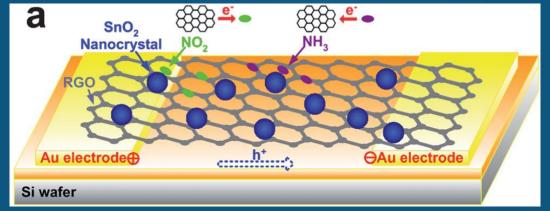
Chemiresistive Gas Sensors


Technology	Metal oxide semiconductor	Electrochemical	Infrared	eNose (sensor arrays)
Sensitivity / LOD	Sub-ppm	100 ppb-ppm	ppm (LED based), ppb (laser based)	Sub-ppm
Selectivity	Not good	Better than MOS	Good	Better than EC and MOS
Price	< \$5	\$5-20	\$20-150	N/A
Miniaturisation	MEMS	Printed technology	On process	MEMS
Suitability for multiple gas detection	No	Only for gases without overlapping	Need to change spectrum (array)	Yes
Dimensions (W x L x H mm)	2 x 3 x 1	20 x 20 x 4	26 x 21 x 7	Depending on different technologies
Power consumption	< 1 mW	10-50 μW	~ 10 mW	Depending on different technologies
Excellent Acceptable Bad			IDTec	hEx Research

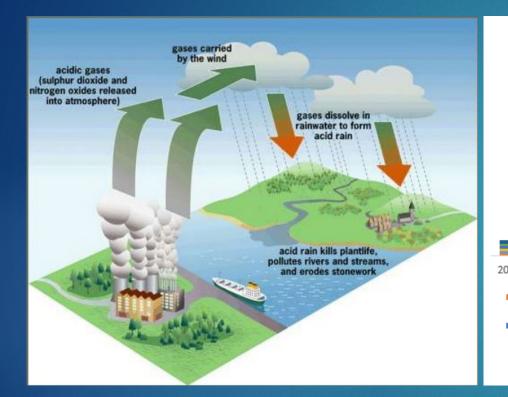
- Chemiresistive sensors provide the advantages of ease in fabrication, simplicity of operation, and advances in miniaturization.
- Traditional chemiresistive sensors (Metal oxide-based) suffer from poor selectivity and high operating temperature.

RGO-based Chemiresistive Sensors

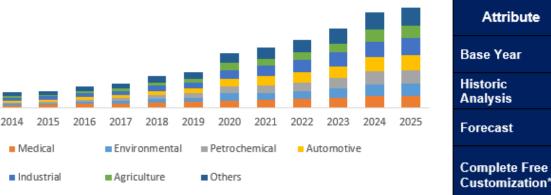
Graphene


- Atomic 2D-layer structure, high specific surface area
- > Extremely high carrier mobility, low electrical noise
- Reduced graphene oxide (RGO)
 - Graphene derivatives with similar 2D-layer structure
 - The presence of surface groups enhances the gas adsorption
- RGO-based chemiresistive sensors
 - Advantages: low cost, fast response, low operating temperature
 - Challenges: poor selectivity, low sensitivity

RGO-based Heterostructures for Gas Sensing


RGO-based heterostructures

- Surface groups enable further functionalization
- An effective method to enhance the sensing properties
- Metal Oxide Semiconductor (MOS) decorated rGO-based heterostructures
 - Combination of high electronic conductivity and high sensitivity
 - Reduced operating temperature
 - Open for further functionalization (noble metal etc.)



4

Need for Sulfur Dioxide Monitoring

Global Gas Sensor Market by End-Use, 2014-2025 (in Million USD)

- One of the most common air pollutants
- The market for gas analyzers is estimated to reach \$4.7 billion by 2025 and expected to continue to grow at a rate of 3.8%

https://pmgbiology.com/tag/sulphur-dioxide/, https://www.govinfo.gov/content/pkg/FR-2019-03-18/pdf/2019-03855.pdf

Details

2017

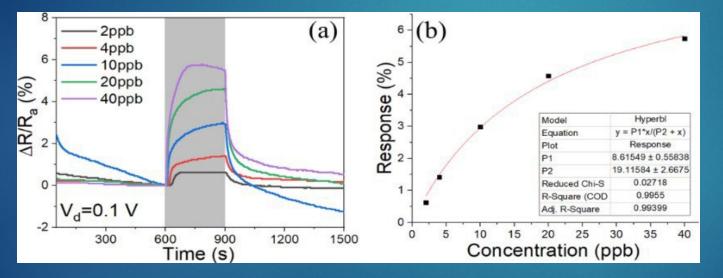
2014-

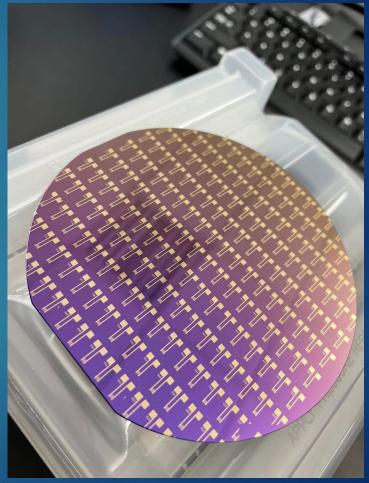
2016

2025

2018 to

Equivale


nt to 50


analyst hours

Competitive Advantage

Faster, Better, and Less Expensive Analysis

- > Portable and Onsite results in minutes
- Improved Limit of Detection (LOD)
- Cost savings

Product Specifications

Sensitivity

- Down to 1 ppb SO₂
- > EPA standard is 75ppb
- Response time
 - Test requires less than 2 minutes

Power consumption

Lithium-ion battery

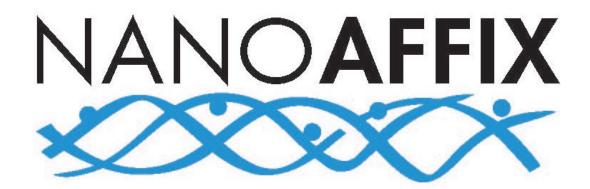
Accurate Affordable Analysis

Acknowledgement

EPA SBIR Phase I March 2020 – August 2020

EPA SBIR Phase II April 2021 – March 2022

Thank you! info@nanoaffix.com


Yale Wang ywang@nanoaffix.com

2022 National Ambient Air Monitoring Conference

Yale Wang

