

Fluorinated Gases (F-Gas) Overview and Opportunities

October 18, 2022

Call-in Details 1-202-991-0477 ID: 578 920 254#

Today's Host

Kersey Manliclic, Doctor of Philosophy (PhD)

U.S. Environmental Protection Agency Stratospheric Protection Division GreenChill Partnership Phone: (202) 566-9981 Email: <u>manliclic.kersey@epa.gov</u>

Kersey has worked in various sectors before coming to the U.S. Environmental Protection Agency (EPA) where he is the Program Manager for EPA's GreenChill Advanced Refrigeration Partnership. Most recently, he worked for 3.5 years at the California Air Resources Board implementing an incentive program for cleaner agricultural equipment and ensuring that Cap-and-Trade incentive programs benefitted disadvantaged communities. Prior to that, he worked with state agencies to plan hydrogen fueling infrastructure for fuel cell electric vehicles. He holds a Bachelor of Science (BS) in Mechanical Engineering, a BS in Materials Science & Engineering, a Masters of Science (MS), and a PhD in Environmental Engineering, all from the University of California, Irvine.

Questions and Webinar Feedback

Question and Answer Session

- Participants are muted
- Questions will be moderated at the end
- To ask a question, enter your comment into the chat box

Feedback Form

- We value your input!
- The link to a feedback form will appear in the chat window

U.S.ENVIRONMENTAL PROTECTION 4GA

GREENCHILL

Call-in Details 1-202-991-0477 ID: 578 920 254#

Webinar Materials

Recording and Slides

- Webinar is being recorded
- Materials will be posted on the GreenChill website under Events and Webinars: <u>www.epa.gov/greenchill</u>
- To receive notification when materials are posted email: <u>EPA-GreenChill@abtassoc.com</u>

Program Overview

www.epa.gov/greenchill

GreenChill is a voluntary partnership program that works collaboratively with the food retail industry to reduce refrigerant emission and decrease stores' impact on the ozone layer and climate system

GreenChill works to help food retailers:

- Lower refrigerant charge sizes and eliminate leaks
- Transition to environmentally friendlier refrigerants
- Adopt green refrigeration technologies and best environmental practices

Upcoming GreenChill Webinars

 We are planning the remainder of our 2022 and 2023 webinar series. Email <u>GreenChill@epa.gov</u> if you have any ideas for a webinar or would like to present.

 To be added to our webinar invitation list, email <u>EPA-GreenChill@abtassoc.com</u>

Celebrating 15 Years of GreenChill

POLANCED REFRIGERATION PARTNERS

2022 is the 15th anniversary of GreenChill!

- View GreenChill's 15th anniversary report: www.epa.gov/greenchill/greenchill-resources-and-reports
- Explore GreenChill's Partner accomplishment page: www.epa.gov/greenchill/partnership-accomplishments

Partnership Accomplishments

Each year GreenChill Partner companies share data on the amount of refrigerant contained in their systems and the amount of refrigerant leaked from those systems. These data demonstrate that GreenChill Partners generate environmental and economic benefits by transitioning to environmentally friendlier refrigerants, reducing the amount of refrigerant used by stores, eliminating refrigerant leaks, adopting green refrigeration technologies, and implementing environmental best practices.

<u>Refrigerant Types Using Less Refrigerant Reducing Emissions Saving Money</u>

Learn More

www.epa.gov/greenchill

GreenChill@epa.gov

Today's Speaker...

Alan Saban

Alan Saban WAVE Engineering Director Email: <u>alans@wave-refrigeration.com</u>

Alan has worked in the refrigeration industry for 20 years. He is experienced in both independent consulting and contracting across a range of project sizes and solution types. Alan has worked for and been involved with notable projects in the United Kingdom (UK) with regards to F-gas reduction solutions. He brings real-world learnings from these projects into everyday decision making as well as long term business investment strategy.

Sam Cameron

Sam Cameron

Bachelor of Science (BSc) Member of the Institute of Refrigeration Source (MInstR) WAVE Engineering Manager Email: <u>samc@wave-refrigeration.com</u>

Sam comes from a background of sustainability and entered the industry in the UK at a time of rapid change. He has independent consultancy experience in system design, theoretical modelling and metering of energy and performance as well as international tender and contract management. Sam has carried out independent feasibility and performance studies for a range of clients in the UK and Europe, each with their own requirements and challenges. He believes the holistic end goal should be carbon reduction of all emission scopes.

Christopher Parker

Christopher Parker

Masters of Engineering (Meng), Associate Member of the Institution of Mechanical Engineers (AMIMechE), Foundation Charted Manager (fCMgr), Chartered Manager of Engineering (MCMI), Associate Member of the Institute of Refrigeration (AMInstR) WAVE Technical Consultant Email: <u>Chris@wave-refrigeration.com</u>

Chris graduated from Liverpool John Moores University with a first-class MEng degree. During his career he has applied the knowledge developed from his studies at university to create detailed procedures and programmes. These have enabled users and clients to make informed decisions of which refrigeration systems can best meet their unique requirements. He has co-authored three international technical papers since the start of his career.

F-Gas Overview & Opportunities

A presentation of findings from technology implementation across the pond

By Alan Saban, Engineering Director

October 2022

Who are we?

6

Sainsbury's

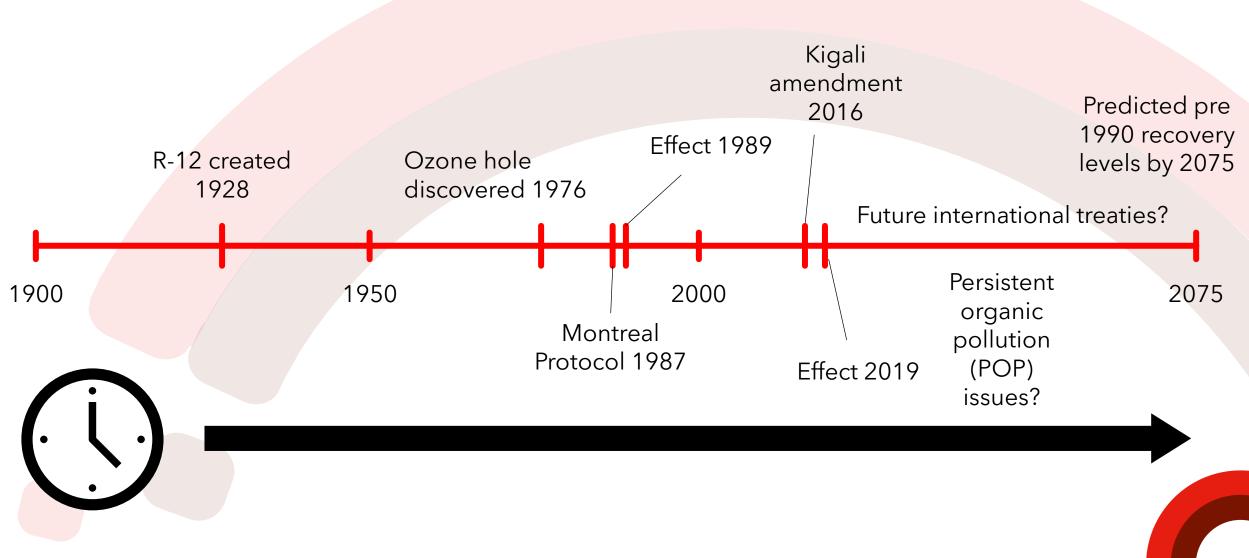
Chemours[™]

///A ALDI

an employee owned company

Introduction

Refrigerant Regulations


Retailers' Approach Based on Size

Importance of Proactive Maintenance

Integrated Heat Reclaim

Refrigerant Regulations

Global Regulations

F-Gas Regulations - the UK and European Union (EU) approach

Refrigerant	GWP
HFC 507	3,985
HFC 404A	3,922
HFC 227ae	3,220
HFC 407C	1,774
HFC 134a	1,430
HFC 245fa	1,030
HFC 32	675
HFO 1234yf	4
Propane	3
CO ₂	1
Ammonia	0

- What is the EU F-gas regulation?
- How has this affected retailers and their capital expenditure?

- Were retailers and manufacturers quick to respond?
- How does this fit into 'Net Zero' approaches?

Refrigerant Ban Based on Global Warming Potential (GWP)

Market Sector	Product Description	Scope of banned F-Gases	Start Date ¹
	Non-confined direct evaporation systems	All HFCs and PFCs	2007
	Domestic refrigerators and freezers ²	HFCs with GWP > 150	2015
	Refrigerators and freezers for commercial use	HFCs with GWP > 2,500	2020
Refrigeration	(hermetically sealed) ³	HFCs with GWP > 150	2022
	All stationary refrigeration equipment ⁴	HFCs with GWP > 2,500	2020
	Multipack central systems for commercial use with a cooling capacity above 40kW ⁵	F-Gases with GWP > 150	2022
Air-	Moveable, hermetically sealed air-conditioning	HFCs with GWP > 150	2020
conditioning	Single split systems containing 3 kg or less	F-Gases with GWP >750	2025
	One component foam aerosols	F-Gases with GWP > 150	2008
Insulating foam ⁶	Extruded Polystyrene foam (XPS)	HFCs with GWP > 150	2020
	Other foams (including polyurethane)	HFCs with GWP > 150	2023
Fire protection	Systems using PFCs	All PFCs	2007
Fire protection	Systems using HFC 23	HFC 23	2016
Aerosols	Novelty aerosols ⁷ and signal horns	HFCs with GWP > 150	2009
Aerosois	Technical aerosols ⁸	HFCs with GWP > 150	2018
	Non-refillable containers for bulk product	All F-Gases	2007
	Windows for domestic use	All F-Gases	2007
Other applications	All other windows	All F-Gases	2008
	Footwear	All F-Gases	2006
	Tyres	All F-Gases	2007

What is GWP?

	2006 Regulation		2014 Regulation	
Requirement	kg threshold	tonnes CO ₂ threshold	kg equivalent for HFC 404A	kg equivalent for HFC 134a
Thresholds for equ	ipment size: mandato	ory leak tests, record k	eeping and service	ban
Annual leak test*	3 kg	5 tonnes CO ₂	1.3 kg	3.5 kg
6 monthly leak test	30 kg	50 tonnes CO ₂	12.7 kg	35 kg
Automatic leak detection	300 kg	500 tonnes CO ₂	127 kg	350 kg
Record keeping*	3 kg	5 tonnes CO ₂	1.3 kg	3.5 kg
Service ban	n/a	40 tonnes CO2	10.2 kg	28 kg
	Thresholds for rep	porting of bulk produc	t	
Production, import, export	1,000 kg	100 tonnes CO ₂	25 kg	70 kg
Destruction, feedstock	n/a	1,000 tonnes CO ₂	250 kg	700 kg
Products	n/a	500 tonnes CO ₂	125 kg	350 kg
Independent audit	n/a	10,000 tonnes CO2	2 500 kg	7,000 kg

* The lowest thresholds for mandatory leak testing and record keeping are doubled for hermetically sealed equipment, from 5 tonnes CO₂ to 10 tonnes CO₂

CO₂: Carbon dioxide HFC: Hydrofluorocarbons PFC: Perfluorocarbon kg: Kilogram n/a: Not applicable

Phase Down Quota

2009–2012 av	erage	2015	2016-17	2018-20	2021-23	2024-26	2027-29	2030
Baseline (100	%)	100%	93%	63%	45%	31%	24%	21%
able 6. Glob	al warming og	stential of som	e HFC nases					
able 6: Glob	al warming po	otential of som	e HFC gases					
				P4104	P422D	D427A D4	294 0507	P744 (CO
	R134a 1	R404A R4	e HFC gases	<u>R410A</u>			38A <u>R507</u> 65 3985	<u>R744 (CO</u>

Table 9: Article 4: Leak check frequency

F-gas system contents	Leak check frequency	Leak check frequency
	(No leak detection system installed)	(Leak detection system installed)
500 tonnes CO2e or more	At least once every 3 months	At least once every 6 months
50 to 499.99 tonnes CO ₂ e	At least once every 6 months	At least once every 12 months
5 to 49.99 tonnes CO₂e	At least once every 12 months	At least once every 24 months

What is the quota for the EU and how does it work?

Rules for maintenance of existing equipment

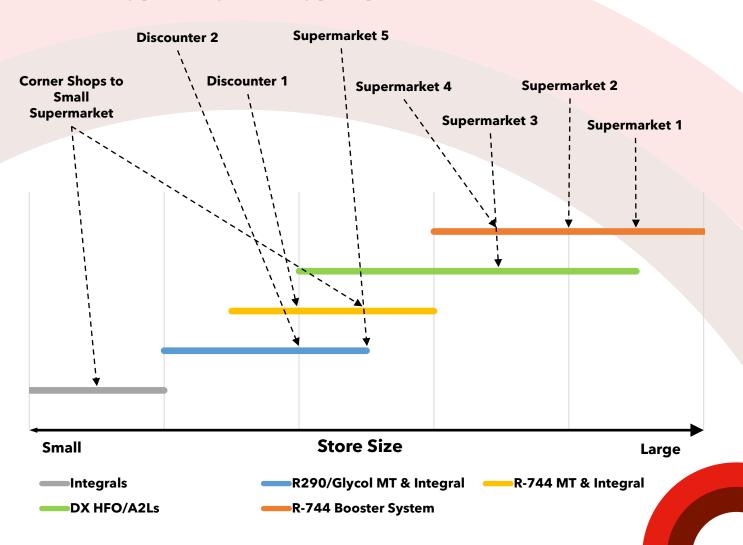
Rules for installing new equipment?

Rules for leak checking and keeping track of F-gas usage?

Retailers' Approach Based on Size

Influence of Design Considerations

Relevant design considerations to different retailers.

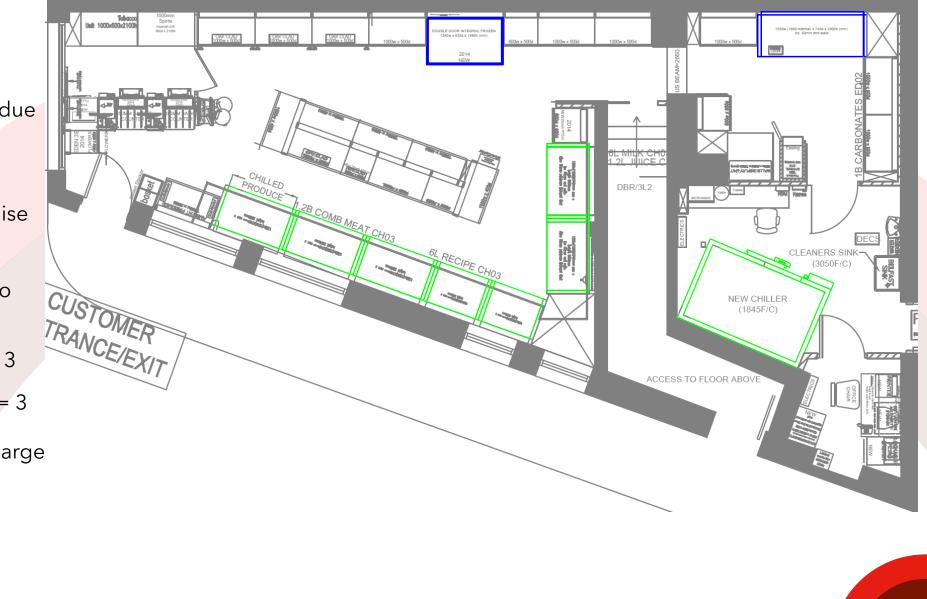

- Current Legislation
- Capital Cost
- Medium Temperature (MT)/Low Temperature (LT) Split
- Heat Reclaim
- Store Size/Load and External Space
- Risk Adversity
- Complexity for Install and Maintenance
- Longevity
- Emissions
- Energy Consumption

The following slides provide an introduction to the common refrigerant and system types used by retailers within the EU and UK.

Current Retailers' Approach

Retailer	Define wation Equipment Description
Description	Refrigeration Equipment Description
Corner Shops to	a) Range of store sizes from corner to small supermarket models.
Small	b) Convenience models represent the majority of the estate.
Supermarkets	c) Refrigeration systems vary in architecture depending on the building
Jupermarkets	restrictions.
	d) $R-744$ (CO ₂) centralised and $R-290$ integral cabinets are the
	a) Standard one store model size.
Discounter 1	
	, , , , , , , , , , , , , , , , , , , ,
	 c) R-290 integral LT refrigeration cabinets. d) All cabinets feature doors.
Discounter 2	a) Standard one store model size.
Discounter 2	 b) Adopting water-cooled integral refrigeration technology in IT
	applications
	c) Air-cooled in freezer display cases – using Hydrocarbons and R-744
	(CO_2) refrigeration technologies.
	d) Installing doors.
Supermarket 5	a) Majority supermarket estate but does include convenience models.
•	b) Adopting water-cooled hydrocarbon integrals throughout the store
	c) The heat from water (glycol) circuit is removed via a blend of dry
	coolers and chiller sets.
	d) Introduced and rolled out Wirth Research Eco-blade technology.
Supermarket 4	a) Majority supermarket estate but does include convenience models.
	b) Transition to R-744 (CO_2) refrigerant.
	 c) Fridge doors or shelf-edge technology fitted to open front cabinets. d) Trim heat boxes installed on frozen display cabinets to reduce heat
	demand for glass doors.
Supermarket 3	a) Supermarket estate
Supermarker S	b) Adopting de-centralised low GWP refrigerants.
	c) Modular refrigeration systems
Supermarket 2	a) Majority supermarket estate but does include convenience models.
	b) Installed aerofoil technology across 1,400 stores and are
	transitioning to trans-critical $R-744$ (CO ₂).
Supermarket 1	a) Majority supermarket estate but does include convenience models
	b) Are transitioning to trans-critical R-744 (CO_2).

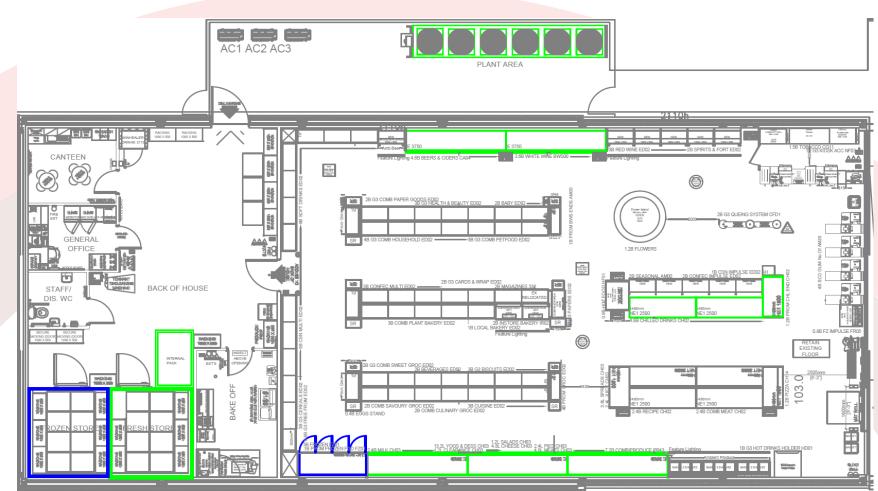
Typical System Types per Store Size in the UK

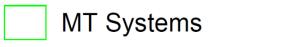


Corner Shop

- Generally use integrals due to ease and capital cost
- R-290 or R-600a are generally used to optimise efficiency for integrals
- Hydrocarbons (HCs) also
 have low GWP
 - R-290 (HC) GWP = 3
 - R-600a (HC) GWP = 3

MT Systems

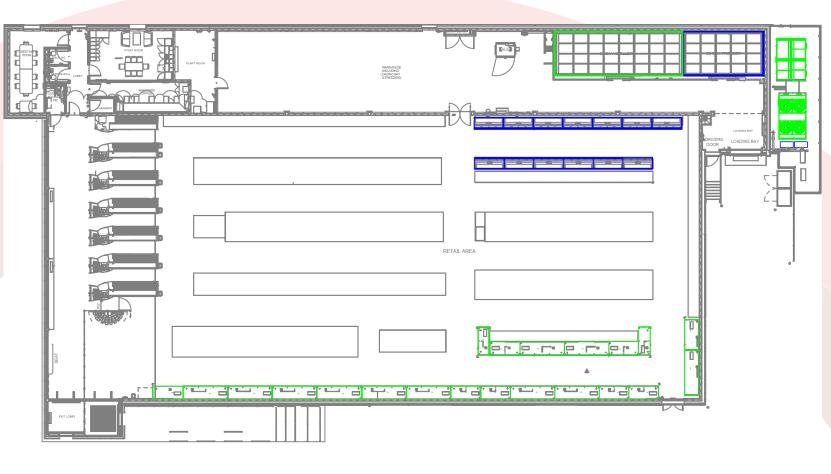

 HCs cannot be used in large systems



LT Systems

Convenience

- Start to see 'standard' layouts for stores
- More capital available and efficiency is considered
- Purely integrals not favoured as lower efficiency is exaggerated and longevity is considered
- Hydrocarbon (HC), Hydrofluoroolefin (HFO) and Natural refrigerants can be seen at this level
 - R-290 (HC) GWP = 3
 - R-454C (HFO) GWP = 148
 - R-744 (Natural) GWP = 1



Discounter

- Larger than convenience stores, usually standard layouts
- Size lends itself to multiple solutions
- LT integral R-290 cabinets
- MT remote R-744 cabinets
- Secondary systems and HFOs also an option
 - R-290 (HC) GWP = 3
 - R-744 (Natural) GWP = 1
 - R-454C (HFO) GWP = 148
- Complex transcritical R-744 systems are sometimes utilised, but do not always make financial sense at this size

MT SYSTEM

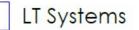
LT SYSTEM

Supermarket

- Can range from slightly larger than a discounter up to superstore size
- Capital expenditure
 higher
- Transcritical booster CO₂, centralised HFOs, secondary systems
- This example shows the way HFOs can be used on a larger level
 - R-454C (HFO) GWP = 148

Supermarket (Continued)

- This example shows a ٠ store layout using transcritical R-744
 - R-744 (Natural) ٠ GWP = 1
- Truly centralised system ٠
- Heat reclaim opportunities
- Complex systems ٠


MT Systems

Refrigerated Distribu Centres (RDC)

- Example shows smaller RDC using CO₂
- Ammonia & CO₂
 - R-744 (Natural) GWP = 1
 - R-717 GWP = 0
- Ammonia
 - Expensive to install
 - Toxic and flammable
 - Significant maintenance schedules and risk assessment
 - Energy efficient
- CO₂
 - Less expensive install at smaller scale
 - Non-flammable, non-toxic
 - Less maintenance
 - Comparable efficiency at smaller scale

Proactive Maintenance

Importance of Proactive Maintenance

Refrigeration systems are complex, dynamic and subject to wear and tear.

- Designed and Modelled
- Installed
- Maintained

Leak Reduction

Leak Checking

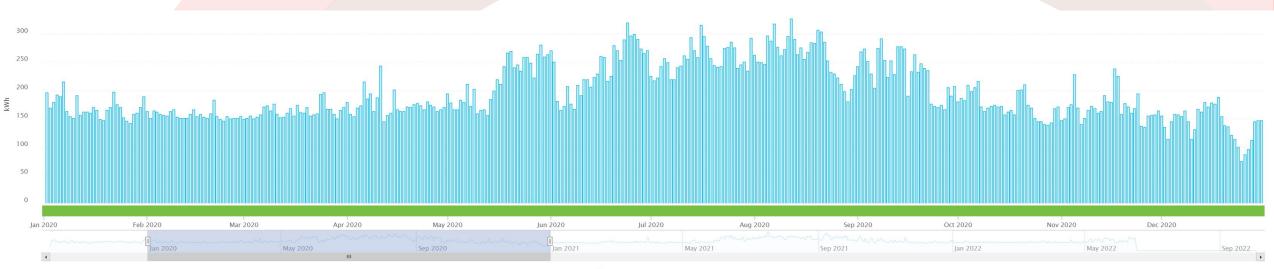
- Visual
- Electronic Handheld Leak Detector
- Monitoring of Refrigerant Levels
- Frequency

Component Replacement

Replacement of components before failure should be targeted but the frequency will vary per system.

Most component manufacturers will offer a limited warranty on what they supply. Complicated assemblies should be supplied with recommended service requirements and/or an expected useful working life.

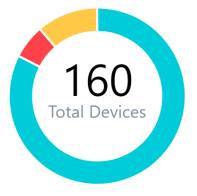
- Maintenance inspections
- Asset condition reports
- Cost of unplanned down time

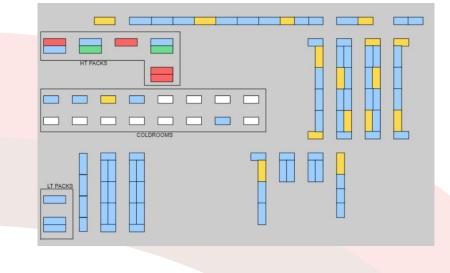


Energy Consumption

Modelling - expectations

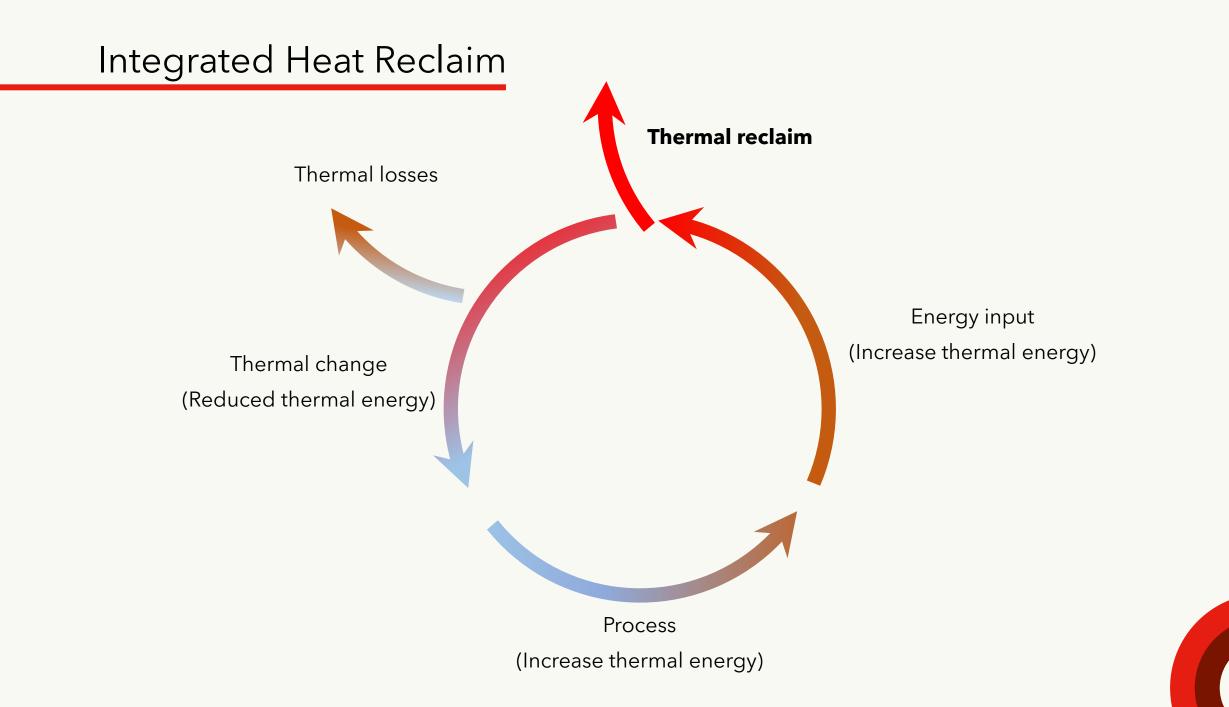
Metering - deviations

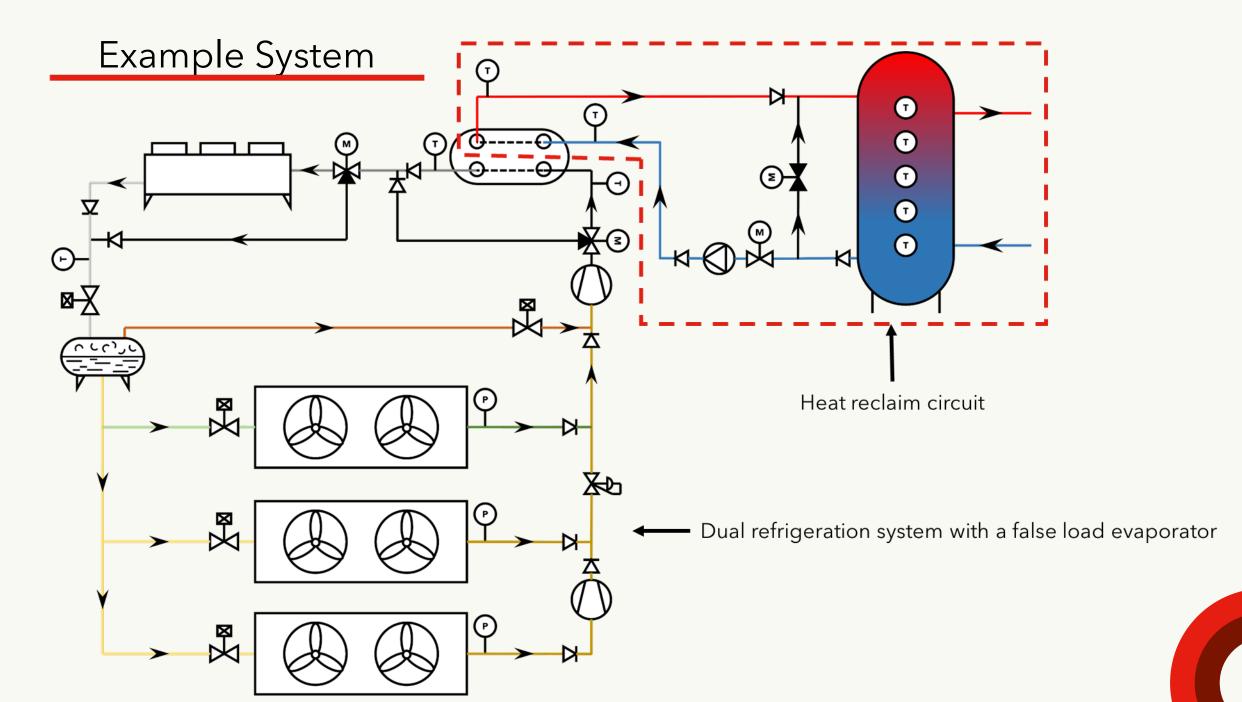


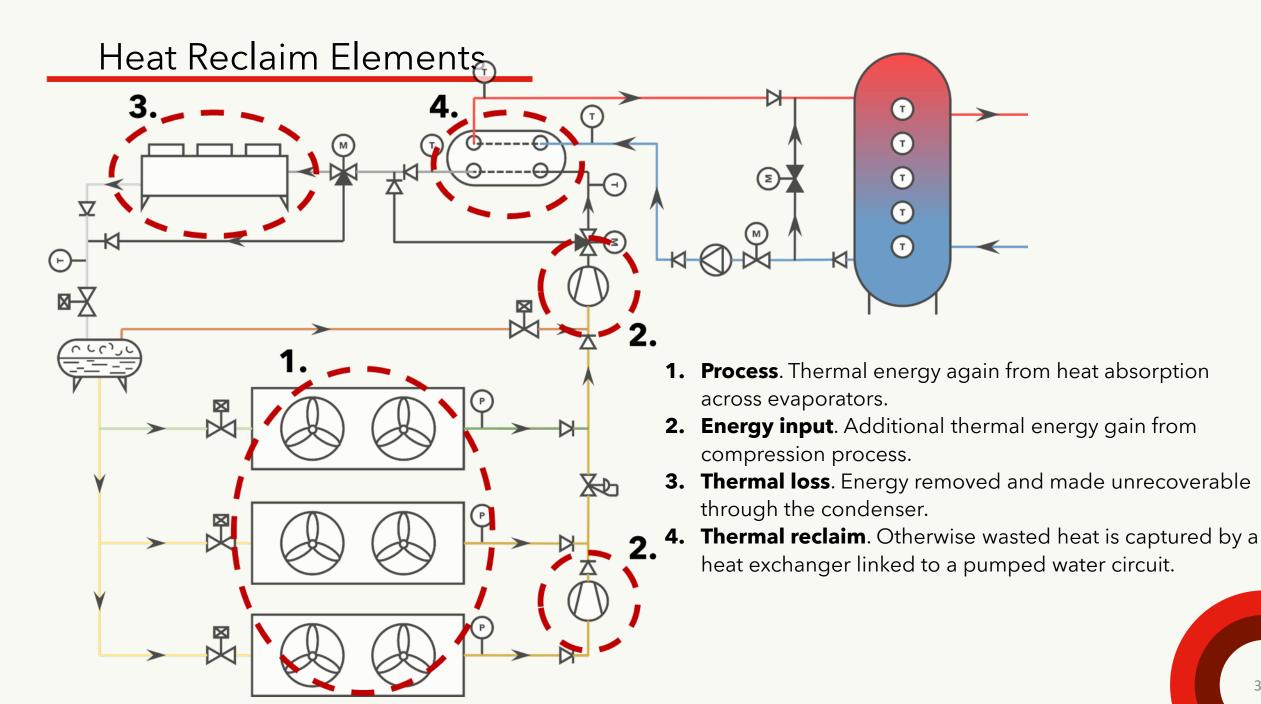

Remote Monitoring

Remotely Accessible Real Time Remote Triage Trusted Users Estate Oversight Optimisation

Device Status




132 Normal
10 Alarm
18 Defrost



Integrated Heat Reclaim

Operational Cost

Example scenario:

A retailer with a dual R-744 refrigeration system:

- Intermediate temperature: 120 kilowatt (kW) (409 457 British Thermal Unit/Hour (BTU/h)
- Low temperature: 24 kW (81 891 BTU/h)
- Heat requirement: 145 kW(494 761 BTU/h)

At 15°C external ambient temperature:

- a) Regular refrigeration operation with no heat reclaim = 29.30 kW & 4.91 COP
- b) Regular refrigeration operation with heat reclaim = 34.39 kW & 8.40 COP

An increased energy input of **5.09 kW** enables **145 kW** of heat to be recovered.

A gas boiler of 80% efficiency would need 182 kW (621 010 BTU/h) natural gas input to produce the same heat.

Cost to produce 145 kW heat per hour Heat reclaim = \$4.65 Gas boiler = \$5.64

Unit cost Electricity = 13.53 ¢/ kilowatt-hour (kWh) Natural gas = 11.27 \$/square feet (ft³)

Advantages & Disadvantages

Advantages Disadvantages

Increased magnitude of 'useable' energy in a refrigeration cycle

Tangible decarbonisation of heating (carbon factor dependent)

Design can account for seasonal demand

Reduces the use of other energy sources used for heating

Increased system complexity cannot be avoided

Cultural change in heating supply x must be overcome

X

X

Is not suitable for all buildings as additional assets must be installed

Design must account for seasonal demand and operational change

Contacts

Presenter Contacts

- Alan Saban, WAVE <u>alans@wave-refrigeration.com</u>
- Sam Cameron, WAVE <u>samc@wave-refrigeration.com</u>
- Christopher Parker, WAVE <u>Chris@wave-refrigeration.com</u>

Join our webinar invitation list or request today's slides: <u>EPA-GreenChill@abtassoc.com</u> Access past webinar slides: <u>www.epa.gov/greenchill/events-and-webinars</u>

GreenChill Contacts

 Kersey Manliclic, U.S. EPA <u>Manliclic.Kersey@epa.gov</u>