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PREFACE 

In March of 2021, EPA published a version of this Technical Support Document (TSD) titled “Estimating 
PM2.5- and Ozone-Attributable Health Benefits” (U.S. EPA, 2021). That original TSD drew upon evidence 
published in the Integrated Science Assessments (ISA) for PM2.5 and ozone available at that point in time 
(U.S. EPA, 2019b, U.S. EPA, 2020b). EPA recently published a Supplement to the PM ISA (U.S. EPA, 
2022b). This updated version of the TSD evaluates this new evidence and identifies alternative 
epidemiologic studies and risk estimates to support EPA benefits analyses.  

EPA expects to revise this TSD as new health, demographic, and economic evidence becomes available. 
The table below summarizes the: (1) version and publication date of each TSD; (2) reason for updating 
the TSD; (3) key changes as compared to the prior version. Each version of the TSD may be found on the 
EPA website at: www.epa.gov/benmap.  

 

Version Date Update Rationale  Key Changes 

March 2021  

Describe benefits methods 
updated in response to the 
2019 PM ISA and used to 
support the Revised Cross-
State Air Pollution Update RIA  

NA 

September 
2022 

Describe benefits methods 
updated in response to the 
2022 Supplement to the PM 
ISA and used to support the PM 
NAAQS Reconsideration RIA 

• Revised risk estimates used to quantify PM-
related mortality and non-fatal heart attacks 

• Updated school loss day valuation estimate 
• Updated discussion of uncertainty associated 

with PM-related premature mortality 
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1 INTRODUCTION 

1.1 BENEFITS ANALYSIS BACKGROUND 
The EPA’s Guidelines for Preparing Economic Analyses describe the purpose of benefit-cost analysis 
(BCA), related economic analyses, and the best-practices for conducting them (U.S. EPA, 2014). BCA is 
the primary tool used for regulatory analysis and is used to inform the decision of whether the benefits 
of an action are likely to justify the costs (Exec. Order No. 12898, 1994, OMB, 2003). As described in the 
Guidelines, the fundamental objective of a BCA is to determine whether those who experience a net 
gain from a regulatory action can potentially compensate those who experience a net loss and remain 
no worse off. These gains and losses are measured by an individual’s willingness to pay (WTP) for, or 
willingness to accept, changes attributable to the regulatory action. Consistent with economic theory, 
the WTP for reducing an exposure to an environmental hazard, like PM2.5 or O3, depends on the 
expected effect of those reductions on human health.  

Estimating the health benefits of reducing PM2.5 and O3 exposure in a BCA begins with estimating the 
population-level change in exposure and then estimating the population-level change in risk for those 
health outcomes affected by exposure. The benefit of reducing these health risks is estimated using a 
summary measure of the population-level WTP for the risk change.1 The greater the magnitude of the 
risk reduction from a given change in concentration, the greater the WTP, all else equal. The social 
benefit of the change in health risks equals the sum of the individual WTP estimates across all of the 
affected individuals.2 There are various sources of uncertainty inherent in each of these steps, many of 
which are discussed in section 6.  

There are three key information collection and assessment steps for implementing this framework for 
evaluating the health benefits of changes in exposure:  

(1) Identifying health endpoints affected by exposure by assessing the strength of evidence,  

(2) Identifying suitable empirical estimates of the magnitude of the relationship between 
exposure and these health endpoints, and  

(3) Estimating the WTP for reductions in the risk of these health endpoints.   

This document describes all three steps for the purposes of estimating health benefits from changes in 
ambient PM2.5 and O3 exposure.3  

 
1 As described in section 4, cost-of-illness (COI) estimates are used as a proxy for WTP estimates due to data 
limitations.  
2 BCA also often report the change in the sum of the risk, or the change in the total incidence, of a health outcome 
across the population. If WTP per unit of risk is invariant across individuals, the total expected change in the 
incidence of the health outcome across the population can be multiplied by the WTP per unit of risk to estimate 
the social benefit of the total expected change in the incidence of the health outcome. Also, if suitable WTP 
estimates for a health effect are unavailable, this effect will still, when possible, be quantified to provide a full 
picture of the potential benefits of a regulation.  
3 In addition to EPA’s Guidelines for Preparing Economic Analyses, these methods and choices adhere to other 
relevant EPA and OMB guidance documents, EPA regulations, previous scientific advisory reviews, and available 
scientific information (U.S. EPA, 2014). 
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1.2 THE RELATIONSHIP BETWEEN IDENTIFYING HEALTH ENDPOINTS FOR VALUATION AND WTP 
The first step requires collecting and integrating scientific evidence from different types of studies and 
scientific fields (e.g., epidemiologic, controlled human exposure, and animal toxicological studies), as 
well as evaluating the quality of evidence and the consistency in the pattern of effects. Determining the 
strengths, limitations, and uncertainties in the overall evidence are key components, all of which could 
affect WTP, as this information is the basis of the desire to avoid or reduce PM2.5 and O3 exposure.  

While the first and third step are presented as independent, they are related for an individual. All else 
equal, WTP is expected to be higher when there is stronger evidence of a causal relationship between 
exposure to the contaminant and changes in a health outcome (McGartland et al., 2017).4,5 For example, 
in the case where there is no evidence of a potential relationship the WTP would be expected to be zero 
and the effect should be excluded from the analysis. Alternatively, when there is some evidence of a 
relationship between exposure and the health outcome, but that evidence is insufficient to definitively 
conclude that there is a causal relationship, individuals may have a positive WTP for a reduction in 
exposure to that hazard (Honeycutt, 2020, Kivi and Shogren, 2010). Lastly, the WTP for reductions in 
exposure to pollutants with strong evidence of a relationship between exposure and effect are likely 
positive and larger than for endpoints where evidence is weak, all else equal. Unfortunately, the 
economic literature currently lacks a settled approach for accounting for how WTP may vary with 
uncertainty about causal relationships. 

Given these challenges, for step 1 the EPA draws its assessment of the strength of evidence on the 
relationship between exposure to PM2.5 or O3 and potential health endpoints from the Integrated 
Science Assessments (ISAs) that are developed for the NAAQS process. Specifically, in the PM2.5 and O3 
benefits analysis for the final Revised Cross-State Air Pollution Rule (CSAPR) Update RIA, the EPA 
quantifies and monetizes all health effects that the ISA draws conclusions regarding the causal 
relationship between a pollutant and a given effect, noting whether the effect is “causal” or “likely to be 
causal,” following scientific assessment methods described in the ISAs. The focus on categories 
identified as having a “causal” or “likely to be causal” relationship with the pollutant of interest is to 
estimate the pollutant-attributable human health benefits in which we are most confident.6 All else 
equal, this approach may underestimate the benefits of PM2.5 and O3 exposure reductions as individuals 
may be WTP to avoid specific risks where the evidence is insufficient to conclude they are “likely to be 

 
4 It is also case that the third step depends on sources of uncertainty in the second step. That is, even if a causal 
relationship between exposure and a particular health risk were established with certainty, the precise empirical 
relationship between exposure and effect may not be known, and of the resulting uncertainty may influence the 
WTP to avoid this risk. For example, there may be parameter or model uncertainty in the empirical relationship 
between exposure and a health effect that would influence the WTP to avoid exposure (Freeman III et al., 2014). 
Section 5 describes how WTP estimates may be influenced by these sources of uncertainty. 
5 Here we are referring to causality as a general notion of how well established the relationship between a cause 
and possible effect is for the purposes of estimating WTP, and not to the specific approach for evaluating and 
determining causality between health effects and PM2.5 and O3 exposure used in the ISAs. 
6 This decision criterion for selecting health effects to quantify and monetize PM2.5 and O3 is only applicable to 
estimating the benefits of exposure of these two pollutants. This decision criterion may not be applicable or 
suitable for quantifying and monetizing health and ecological effects of other pollutants. 
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caus[ed]” by exposure to these pollutants.7 At the same time, WTP may be lower for those health 
outcomes for which causality has not been definitively established. This approach treats relationships 
with ISA causality determinations of “likely to be causal” as if they are known to be causal, and therefore 
benefits could be overestimated (section 6.5.2). This approach may be revisited in the future with 
scientific advancements and development of a theoretically consistent framework that jointly accounts 
for causal uncertainty and individuals’ WTP for reducing uncertain health impacts. 

1.3 DOCUMENT PURPOSE AND OVERVIEW 
This is a technical support document (TSD) to the Proposed Particulate Matter National Ambient Air 
Quality Standards (hereafter, PM NAAQS). This document is organized according to the three key steps 
we follow to collect information the information needed to quantify and monetize benefits, as 
presented in section 1.1: 

1. Establish criteria for identifying studies and risk estimates most appropriate to inform a PM2.5 
and O3 benefit analysis for an RIA (section 2.1). Study criteria, such as study design, location, 
population characteristics, and other attributes, were used to identify the most suitable 
estimates.8 Establishing these criteria prior to selecting candidate health endpoints helps reduce 
the chance of bias in the process for selecting endpoints.  

2. Identify pollutant-attributable health effects for which the ISA reports strong evidence and that 
may be quantified in a benefits assessment (section 2.2). Each ISA identifies some number of 
clinically significant air pollution-related outcomes (e.g., premature mortality and hospital 
admissions) (U.S. EPA, 2019b, U.S. EPA, 2020b) that may be quantified and possibly also 
monetized. Each selected endpoint and study must meet the criteria specified in section 2.1 
above. 

3. Collect baseline incidence and prevalence estimates (section 3) and demographic information 
(section 4). EPA uses a health impact function to quantify counts of pollutant-attributable 
effects. This function uses population and rates of death and disease. EPA selected either daily 
or annual baseline incidence and prevalence rates at the most geographically- and age-specific 
levels feasible for each health endpoint assessed. Projected population counts are drawn from 
the Woods and Poole, Inc. (Woods & Poole, 2015). The Woods and Poole (WP) database 
contains county-level projections of population by age, sex, and race out to 2050, relative to a 
baseline using the 2010 Census data. 

4. Develop economic unit values (section 5). To compare benefits estimates associated with a 
rulemaking directly with the estimated cost, counts of each air pollution-attributable event must 

 
7 EPA includes an example health endpoint with a causality determination of “suggestive, but not sufficient to 
infer” and associated with a potentially substantial economic value in the quantitative uncertainty characterization 
(section 5.2.3). 
8 If recent ISAs identify more new epidemiologic studies that are better suited than the prior studies for estimating 
risks for endpoints whose causality did not change between the prior ISA and the current ISA (e.g., respiratory 
hospital admissions), we use this new epidemiologic evidence to estimate risks despite the causality conclusion not 
changing between the prior and most recent ISAs.  



 

5 
 

be expressed as an economic value. This step requires us to estimate a single year or multi-year 
stream of discounted values for each unique health endpoint.  

5. Characterize uncertainty associated with quantified benefits estimates (section 6). Building on 
EPA’s current methods for characterizing uncertainty, these approaches include, among others, 
reporting confidence intervals calculated from risk estimates, separate quantification using 
multiple studies and risk estimates for particularly influential endpoints (e.g., mortality risk), and 
approaches for aggregating and representing the results of multiple studies evaluating a 
particular health endpoint.9   

  

 
9 Study quality, inter-study heterogeneity, and redundancy issues will be taken into consideration if epidemiologic 
risk estimates are aggregated. 
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2 APPROACH TO IDENTIFYING STUDIES AND RISK ESTIMATES10  

This section describes the criteria EPA developed when selecting among fine particulate matter (PM2.5) 
and ozone (O3) epidemiologic studies and risk estimates to quantify air pollution-attributable health 
impacts for regulatory purposes, such as Regulatory Impact Analyses (RIAs). We specify the criteria used 
to identify the available body of epidemiologic literature potentially suitable for supporting a benefits 
analysis (section 2.2); apply the identification criteria to the body of available literature (section 2.3); 
and, finally, present the identified health endpoints and risk estimates (section 2.4) that best 
characterize risk to the U.S. population for health impact benefits assessments. The identification 
criteria precede the health endpoint identification because epidemiologic studies must meet certain 
minimum criteria (section 2.1.1). 

2.1 STUDY AND RISK ESTIMATE IDENTIFICATION CRITERIA 
We follow a systematic approach to identify the studies and risk estimates most appropriate to inform a 
PM2.5 and O3 benefit analysis for an RIA.11 Epidemiologic studies report estimated risks of population 
exposure to one or more pollutants across a variety of geographic locations, age groups, population 
attributes, methods for estimating exposure, PM2.5 and O3 concentrations, time periods, study sizes, 
follow-up durations, and other attributes. Clearly specifying criteria for identifying such studies helps 
ensure EPA transparently specifies its scientific judgement. These criteria are similar to those applied in 
previous EPA RIAs (Table 1) with the primary goal of identifying risk estimates that best characterize risk 
from PM2.5 and O3 exposure among the total population located throughout the U.S.12  

 Minimum Criteria 
All studies must meet the following minimum required criteria to be considered for use in PM2.5 and O3 
benefits assessments. These minimum criteria ensure that the subset of studies evaluated include the 
information necessary to justifiably quantify health effects when estimating benefits across the U.S. 

1. The study must be referenced in the latest externally reviewed ISA or equivalent assessment 
(e.g., provisional assessment or supplement) to ensure the literature search and screening 
process were performed in a transparent and systematic manner and only included peer-
reviewed research. 

 
10 What we call risk estimates in this document are results from epidemiologic studies characterizing the 
magnitude of exposure-related risk. This term is synonymous with several others, including concentration-
response functions, effect estimates, health impact functions, risk models, and beta (β) coefficients. 
11 Epidemiological studies estimate the association between exposure to air pollution concentrations and adverse 
health outcomes and generally provide a relative comparison about the strength of the relationship between 
exposure to air pollution and the health outcome, rather than estimating the absolute health impact of an 
exposure (i.e., the number of avoided cases). For example, a 10 µg/m3 decrease in daily PM2.5 levels might be 
associated with a decrease in hospital admissions of 5% or a 5 ppb decrease in 8-hour maximum daily ozone 
concentration might be associated with a decrease in hospital admissions of 3%. A benefits analysis reports 
absolute values with respect to the public health impact of an exposure. 
12 See: https://www3.epa.gov/ttn/ecas/docs/ria/naaqs-pm_ria_final_2012-12.pdf 
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2. The study must have been conducted in either the U.S. or Canada and represent air quality 
conditions, affected populations, and other underlying characteristics of the U.S.13 

3. The study must have been epidemiologic in nature, assess either PM2.5 or O3, and report 
numerical risks/hazards expressed as per a unit change in pollutant concentration (and an 
accompanying estimated standard error) to provide the information needed to quantify mean 
estimates of effects and 95% confidence intervals. 

 Preferred Criteria Categories 
Studies meeting the minimum criteria are then evaluated based on various factors, which we call 
preferred criteria, to identify risk estimates that best characterize air pollution risk across the U.S. These 
preferred criteria define other important study design features or attributes and are considered 
collectively (Table 1). Most criteria described below can be applied to both the studies and risk 
estimates, though criteria applicable only to risk estimates are noted.  

Preferred criteria are developed to ensure study quality and suitability to a benefits analysis and 
established prior to evaluating any individual study or risk estimates. Conversely, EPA does not consider 
factors such as the magnitude or variance of the reported risk estimate; accounting for these factors 
might inadvertently bias our choice of studies or risk estimates.14 

Each preferred criteria (Table 1) is given equal weight when identifying studies and risk estimates best 
for use in benefits assessment. Table 2 identifies specific attributes within each preferred criterion that 
make a particular study more (or less) suitable for a benefits analysis. In practice, no single study or risk 
estimate will possess the ideal attributes for all criteria and thus we consider the collective merits of any 
study or risk estimate. This means that the risk estimates ultimately identified for application in benefits 
assessment may not be the highest ranked in each individual preferred study criterion category, but that 
they rise to the top when all criteria are considered simultaneously.  

Table 1. Criteria for Identifying Studies and Risk Estimates to Use in a Benefits Assessment 

Study 
Attributes1 Key Factors to Consider when Evaluating Study Quality 

Study Period 

Studies examining a relatively longer period of time (and therefore having more temporal 
coverage) are preferred because they have greater statistical power to detect effects (e.g., 
all else being equal, a study over a five-year duration would be preferred over a study 
duration of one year). Studies that are more recent are also preferred because of possible 
changes in pollution mixes, medical care, and lifestyle over time. When identifying risk 
estimates, models with the broadest time coverage and overlapping air quality and health 
data are preferred.  

Exposure 
Estimate 

Studies estimating air quality/exposure using a combination of approaches (e.g., remote 
sensing techniques ground-truthed by monitoring data) are preferred over those that use a 

 
13 While there are differences between the U.S. and Canada, notably with regards to the health care systems, there 
is considerable pollutant transport between Canada and the US, ~90% of Canadians live within ~100 miles of the 
US border, and ambient PM2.5 concentrations are similar in Canada and the US (Canada, 2016, CBC, 2016, U.S. EPA, 
2019a). 
14 Forest plots of the magnitudes of central risk estimates and associated confidence intervals from epidemiologic 
studies evaluated by the ISAs by health endpoint can be found in the respective ISAs (U.S. EPA, 2019b, U.S. EPA, 
2020b). These figures illustrate the heterogeneity in the size of the reported effect among this subset of studies 
and risk estimates. 
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single method (e.g., monitor data), because multiple measurement methods are less prone 
to exposure estimate bias and generate higher-resolution of estimates than exposure data 
from a single source. When available, studies of long-term/chronic exposure are preferred 
over short-term exposure (i.e., hours up to 1 month), considering the limitations of each 
exposure duration, as risk estimates based on long-term exposures may include some short-
term exposure effects and provide a more comprehensive estimates of health impacts. 

Study Type 

Among epidemiologic studies that consider long-term exposure (e.g., one month to years), 
cohort studies are preferred over case-control15 studies when estimating benefits across the 
U.S., as they are more representative of the overall population, and both are preferred over 
cross-sectional16 or ecological17 studies because they control for important individual-level 
confounding. An exception to the preference for cohort studies is for rare disease, when 
case-control studies may have more power and less selection bias. For short-term exposure 
studies, case-crossover and time series studies are preferred over cross-sectional or 
prevalence studies also because they are better able to control for potential confounders.  

Population 
Attributes 

Study populations representative (in terms of age, sex, race/ethnicity, etc.) of the 
population in which health effects are supported are preferred. The most technically 
appropriate measures of benefits would be based on health impact functions that cover the 
entire sensitive population but allow for effect modification by age, sex, race/ethnicity, or 
other relevant demographic factors (e.g., educational status). In the absence of effect 
estimates specific to age, sex, preexisting condition status, or other relevant factors, it may 
be appropriate to identify effect estimates that cover the broadest population to match 
with the desired outcome of the analysis, which for most EPA benefit-cost analyses is total 
national-level health impacts. Where both are available, both age-stratified and overall risk 
estimates should be considered for inclusion.  

Study Location 

U.S. or Canadian studies are used exclusively because studies conducted elsewhere may 
exhibit influences of potential differences in pollution characteristics, exposure patterns, 
medical care system, population behavior, and lifestyle. National estimates are most 
appropriate when benefits are nationally distributed; the impact of regional differences may 
be important when benefits only accrue to a single area. City-specific risk estimates from 
multi-city studies of hospital admissions or emergency department visits for non-fatal 
morbidities may be evaluated for site-specific application to the corresponding city. 
Canadian studies are considered when U.S study options are limited or less informative. Risk 
estimates with the broadest geographic coverage are preferred (e.g., multi-city studies 
preferred to single-city studies) because they provide a more generalizable representation 
of the health impacts. 

Health 
Endpoint 

To comprehensively capture the suite of attributable public health impacts and increase the 
power to detect effects, when estimating hospital admissions and emergency department 
visits, broad health endpoints are preferred over narrower, more specific endpoints. For 
example, more-inclusive respiratory hospital admissions endpoint would be selected over 
combining hospital admissions for various individual respiratory endpoints, such as asthma, 
long-term obstructive pulmonary disease, and respiratory infection. Please note, broad 
endpoint categories do not overlap (e.g., nervous system effects and respiratory effects), so 
there is no potential for double counting impacts. 

Study Size 

Studies examining a relatively large sample are preferred because they generally have more 
power to detect small magnitude effects. A large sample can be obtained in several ways, 
including through a large study population, through repeated observations on a smaller 
population (e.g., through a symptom diary recorded for a panel of asthmatic children) or 

 
15 Retrospective study in which two groups, differing in a health outcome, are identified and compared based on 
some hypothesized causal characteristic or exposure. 
16 Analysis of a cross-section of a population at a single point in time. 
17 Comparison of groups, rather than individuals. 
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through a case crossover study design. Study sizes are subject to diminishing returns when 
the number of subjects become very large (e.g., millions) and thus relatively larger study 
sizes (i.e., not necessarily the largest study sizes) are preferred. 

Pollutant 
Concentrations 

Studies evaluating air pollutant exposures closer to, or below, current conditions are 
preferred, as the risk associated with exposure may change at different pollutant 
concentrations and air pollution concentrations may decrease in the future. 

Hazard/Risk 
Estimate 

Studies evaluating multiple well-established statistical models adjusted for the most 
relevant covariates are preferred. 

Inclusion of 
Other 
Pollutants  

When estimating the effects of O3 and PM (or other pollutant combinations) jointly, it is 
preferable to use properly specified health impact functions that include both pollutants. 
Using single-pollutant estimates in cases where both pollutants are expected to affect a 
health outcome can lead to double-counting of benefits when pollutants are correlated.  

Lag Period 
Lag durations were identified according to the hierarchy described in Table A-1 of the PM 
and O3 ISAs. Briefly, the strongest multi-day/distributed lag periods that are more 
biologically plausible are preferred. 

O3 Season 

Studies and risk estimates of O3 exposure for the full year are preferred over those 
estimating O3 exposures in the summer or warm season only, as O3 concentrations can 
remain relatively high outside of the standard warm season in many parts of the country. As 
such, year-round time coverage can provide a more complete estimate of O3 exposure 
health impacts.  

O3 Metric 

Risk estimates based on changes in the maximum daily 8-hour average (MDA8) O3 
concentration are preferred. As discussed in the 2020 PM Policy Assessment (PA), there is 
considerable support from human chamber and epidemiologic studies, as well as advice 
from EPA’s Clean Air Scientific Advisory Committee (CASAC) to support relationships 
between an 8-hour exposure period and short- and long-term health impacts of O3 (U.S. 
EPA, 2020d). 

1 Although preferred criteria categories are not hierarchical, not all criteria are weighted equally, and expert judgement is involved. 

2.1.2.1 Prioritizing Preferred Identification Criteria 
Where Table 1 provides general information on how we determine which studies and risk estimates best 
characterize U.S. risk, Table 2 describes how the attributes for each of the 13 criteria are prioritized 
within each criteria category. Again, we use the overall study information, and studies ultimately 
identified generally performed better across all categories. Importantly, the order of prioritization 
presented in Table 2 are relative. For example, the most preferred option may be considered only 
slightly more preferable than the other alternative. 

Table 2. Rank-ordered priority  

Study 
Attributes 

Rank-Ordered Criteria to Consider when Evaluating Study Quality 

Study Period 
1. Most recent years with overlapping air quality and health data 
2. Less recent years with partially overlapping air quality and health data 
3. Studies with air quality monitoring conducted prior to 2000 

Exposure 
Estimate 

1. Studies estimating exposure using a combination of approaches (e.g., chemical transport 
modeling, monitoring data, land use regression techniques, and satellite data)  
2. Studies estimating exposure using some, but not all, of the above approaches (prioritized if 
using monitoring data and/or chemical transport modeling) 
3. Studies estimating exposure using monitoring data only (prefer data from federal 
reference [FRM] monitors  
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Study 
Attributes 

Rank-Ordered Criteria to Consider when Evaluating Study Quality 

Study Type 

Long-Term Exposure (i.e., 
one month to years) Studies 
1. Cohort studies2 

2. Case-control studies 

Short-Term Exposure (i.e., hours up to one month) 
Studies 
1. Case-crossover (each subject serves as own 
control)/Time series studies1 
2. Cross-sectional/prevalence (population-level) studies 

 

Population 
Attributes 

Prefer studies that include broad population attributes with diverse race/ethnicities, both 
sexes, and broader age groups (e.g., 0-99 as opposed to only ages 0-17 or only ages 65-99) 

Study Location 

1. Nationwide coverage (most or all states represented), including rural areas 
2. Nationwide coverage, including only urban areas 
3. Multi-city and multi-state coverage 
4. Multi-city or multi-state coverage 
5. Single-city or -state coverage 

Health 
Endpoints 

1. Broad hospital admissions and emergency department visit endpoint categories (e.g., 
hospital admissions and emergency department visits for cardiovascular and respiratory 
effects as opposed to admissions or emergency department visits by individual ICD codes) 
and broad age groups (e.g., 0-99 as opposed to only 0-17 or only 65-99) 
2. Broad hospital admissions and emergency department visit health endpoint categories and 
specific age groups 
3.Specific hospital admissions and emergency department visit health endpoint categories 
and broad age groups 
4. Specific hospital admissions and emergency department visit health endpoints and specific 
age groups 
Note: The first two options are highly preferred over the second two options 

Study Size Larger study size preferred 
Pollutant 
Concentrations Pollutant exposures concentrations closest to current conditions preferred. 

Hazard/Risk 
Estimate 

1. Risk estimates including the most relevant covariates (e.g., age, sex, race, education, 
smoking status, etc.) 
2. Risk estimates including some relevant covariates 
3. Risk estimates that do not include relevant covariates 

Inclusion of 
Other 
Pollutants 

1. Multipollutant risk estimates including other pollutants and not likely to be affected by 
collinearity among pollutant covariates. 
2. Copollutant risk estimates including either PM2.5 or O3.  
3. Single-pollutant risk estimates. 

Lag Period 

1. Distributed lag models 
2. Average of multiple days (e.g., 0-2) 
3. A priori lag days 
4. Individual lag days, using expert judgment to identify the appropriate result to focus on 
considering the time course for physiologic changes for the health effect or outcome being 
evaluated. 

O3 Season 

Annual/full-year exposures are preferred over summer/warm season-only O3 exposures for 
long-term exposure-related health endpoints. Summer/warm season-only exposures are 
preferred over annual/full-year exposures for short-term O3 exposure-related health 
endpoints. 

O3 Metric 

1. 8-hour maximum O3 
2. 1-hour maximum O3 
3. 24-hour average O3 
4. Other metrics 

ICD- International Statistical Classification of Diseases and Related Health Problems 
1If a study presents both case crossover and time series results, case crossover will be identified 
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2An exception to the preference for cohort studies is for rare disease, when case control studies may have more power and less 
selection bias. 

2.2 AVAILABLE EPIDEMIOLOGIC LITERATURE  
We follow a structured and transparent process to identify individual epidemiologic studies from the 
large body of available epidemiologic literature (section 2.1). This process involves the identifying health 
endpoints that are both attributable to exposure (section 2.2.1) and for which we can quantify counts of 
cases (section 2.2.2). This literature is then evaluated using the criteria identified in Table 1 and Table 2.  

 Identification of Exposure-Attributable Health Outcomes 
Our procedure for identifying exposure-attributable health endpoints is informed by the findings of the 
Integrated Scientific Assessment (ISA), which identifies broad endpoint categories causally related to 
pollutant exposure (section 2.2.1.1); these findings are in turn supported by plausible biological 
pathways of disease (section 2.2.1.2).  

Each “candidate” health endpoint must satisfy the below conditions prior to being included in the main 
benefits assessment: 

• The endpoint category (e.g., respiratory effects) is causally related to exposure (section 2.2.1.1) 
• The specific health endpoint (e.g., exacerbated asthma) is a biologically plausible health effect of 

exposure (section 2.2.1.2) 

The review of the National Ambient Air Quality Standards (NAAQS) follows a structured and transparent 
process for evaluating scientific information reported in the ISAs when determining whether a given 
endpoint is causally related to the pollutant. ISAs transparently identify, critically evaluate, and 
synthesize the current scientific literature, including epidemiology studies, making them a suitable 
source of 1) the causal relationships between exposure and health outcomes18 (section 2.2.1.1), and 2) 
available epidemiologic literature from which to identify studies and risk estimates for consideration in 
benefits assessments (section 2.2.3). 

Our use of the ISAs to select among endpoints is consistent with the advice provided by a 2002 National 
Academy of Science review, which found that “the goal of health benefits analysis is to consider all 
relevant health outcomes” and “a comprehensive discussion of causality is not necessary for a benefits 
analysis” if the information is “provided in the scientific documentation for the rule-making, such as the 
criteria document and other related reports, and in guidance provided by EPA’s Science Advisory Board” 
(NRC, 2002). For background, we provide a “brief review of the evidence for causality” from the most 
recent ISAs to “provide justification for inclusion and exclusion of specific health outcomes considered” 
and to acknowledge “uncertaint[ies] associated with this assumption” (section 2.2.1). This section of the 

 
18 While ISAs form causal determinations for broad endpoint categories (e.g., respiratory effects), which are 
generally preferred over specific health endpoints (e.g., hay fever symptoms) for comprehensive benefits 
assessments, they do not make causal determinations for each specific health endpoint. Instead, the ISAs provide 
information on the strength and consistency of the evidence supporting more specific endpoints within each broad 
category. The strength and consistency of evidence supporting relationships with specific health endpoints, 
together with the broad category causality determinations, are used when identifying specific health endpoints for 
inclusion in benefits assessments. 
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TSD also provides background information with regard to potential biological plausibility pathways 
presented in the ISAs (section 2.2.1.2) that support the causality determinations. 

In addition to the causality determinations, ISAs can also serve as a curated source of pollutant-, 
exposure-, and endpoint-specific available epidemiologic literature. Each ISA begins with a broad, 
thoroughly documented literature search, the results of which undergo several screening stages to 
ensure included studies are within the clearly defined scope of each ISA, in order to identify the most 
policy-relevant science (U.S. EPA, 2015a, U.S. EPA, 2019b).19 As such, EPA relies on the systematic and 
Clean Air Scientific Advisory Committee-reviewed ISAs for criteria pollutant health endpoints and began 
the process of identifying epidemiologic risk estimates for PM2.5- and O3-attributable benefits 
assessment with the literature sets identified in the 2019 PM, 2022 PM Supplement, and 2020 O3 ISAs 
(U.S. EPA, 2019b, U.S. EPA, 2020b, U.S. EPA, 2022b). All epidemiologic studies newly considered for use 
in benefits estimation are available in a separate Study Information Table, described in section 2.2.3.  

2.2.1.1 ISA Causality Determinations 
ISAs characterize the strength and consistency of underlying human clinical, animal toxicological, and 
epidemiologic evidence when assessing the causal relationship between each pollutant and health 
outcome. Generally, to estimate the pollutant-attributable human health benefits in which we are most 
confident, we estimate benefits resulting from health effects that we have high confidence are 
attributable to pollutant exposure, so we focus on categories identified as having a “causal” or “likely to 
be causal” relationship with the pollutant of interest in the most recently published ISA.20 These 
causality determinations are applied to broad health endpoint categories (e.g., mortality, cardiovascular 
effects, respiratory effects, nervous system effects, metabolic effects, etc.) using a weight-of evidence 
approach (U.S. EPA, 2015a, U.S. EPA, 2019b), according to the rationale described below:21 

o Causal relationship- Evidence is sufficient to conclude that there is a causal relationship with 
relevant pollutant exposures (e.g., doses or exposures generally within one to two orders of 
magnitude of recent concentrations). That is, the pollutant has been shown to result in health 
effects in studies in which chance, confounding, and other biases could be ruled out with reasonable 
confidence. For example: (1) controlled human exposure studies that demonstrate consistent 
effects, or (2) observational studies that cannot be explained by plausible alternatives or that are 

 
19 Studies identified for the 2019 PM ISA were based on the review’s opening “call for information” (79 FR 71764, 
December 3, 2014), as well as literature searches conducted routinely to identify and evaluate “studies and reports 
that have undergone scientific peer review and were published or accepted for publication between January 1, 
2009 and March 31, 2017. A limited literature update identified some additional studies that were published 
before December 31, 2017” (U.S. EPA, 2009, U.S. EPA, 2019b, Appendix, p. A-3). For the 2020 O3 ISA that date was 
March 30, 2018. Relevant studies published after these dates were provisionally considered by the EPA for the 
final PM and O3 NAAQS 2020 decisions but were not found to materially change any of the broad scientific 
conclusions regarding the health effects of PM and O3exposure made in the 2019 PM ISA and 2020 O3 ISAs. This 
process ensures a thorough and transparent strategy for literature identification.  
20 This is not to imply that there may not be benefits associated with endpoints having a “suggestive of, but not 
sufficient to infer, a causal relationship” but rather that there is greater uncertainty associated with estimating 
these potential benefits (section 1.2). While these benefits are not included in the main assessment, they may be 
included in sensitivity analyses.  
21 See Preamble to Integrated Science Assessments, EPA/600/R-15/067, 
https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=347534 
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supported by other lines of evidence (e.g., animal studies or mode-of-action information). Generally, 
the determination is based on multiple high-quality studies conducted by multiple research groups. 

o Likely to be causal relationship- Evidence is sufficient to conclude that a causal relationship is likely 
to exist with relevant pollutant exposures. That is, the pollutant has been shown to result in health 
effects in studies where results are not explained by chance, confounding, and other biases, but 
uncertainties remain in the evidence overall. For example: (1) observational studies show an 
association, but copollutant exposures are difficult to address and/or other lines of evidence 
(controlled human exposure, animal, or mode of action information) are limited or inconsistent or 
(2) animal toxicological evidence from multiple studies from different laboratories demonstrate 
effects but limited or no human data are available. Generally, the determination is based on 
multiple high-quality studies. 

Conclusions made in the 2019 PM, 2022 supplemental PM and 2020 O3 ISAs regarding the relationships 
between exposure and various broad health endpoints, as well as previous determinations from the 
2009 PM and 2013 O3 ISAs, are provided below, with “causal” and “likely to be causal” judgements 
highlighted (Table 3 and Table 4) (U.S. EPA, 2009, U.S. EPA, 2013, U.S. EPA, 2019b, U.S. EPA, 2020b, U.S. 
EPA, 2022b).22 There were no “causal” or “likely to be causal” relationships for PM10-2.5 or ultrafine 
particles in the 2019 PM ISA or 2022 supplemental PM ISA, so Table 3 focuses on PM2.5 
determinations.23 Table 3 also highlights how the causal determinations in the 2019 PM ISA are similar 
to, or different from, the determinations from the 2009 PM ISA. Table 4 highlights how the new causal 
determinations in the 2020 O3 ISA are similar to, or different from, the determinations from the 2013 O3 
ISA. Sections of the 2019 PM and 2020 O3 ISAs related to “causal” and “likely to be causal” 
determinations were used as the basis for identifying the set of available epidemiologic literature best 
suited for consideration in benefit estimation (U.S. EPA, 2009, U.S. EPA, 2013, U.S. EPA, 2019b, U.S. EPA, 
2020b), as discussed in more detail on section 2.3.  

 Table 3. Causality Determined for PM2.5-Related Health Effects 

Exposure Health Outcome 2009 ISA Determinations 2019 ISA Determinations22 

Long-term 

Mortality1 Causal Causal 
Cardiovascular Effects Causal Causal 

Respiratory Effects Likely to be causal Likely to be causal 
Nervous System Effects None Likely to be causal 

Cancer Suggestive of, but not 
sufficient to infer Likely to be causal 

Metabolic Effects None Suggestive 
of, but not sufficient to infer 

Male and Female 
Reproduction and Fertility 

Suggestive of, but not 
sufficient to infer 

Suggestive of, but not 
sufficient to infer 

Pregnancy and Birth 
Outcomes 

Suggestive of, but not 
sufficient to infer 

Suggestive 
of, but not sufficient to infer 

 
22 Full summaries of causality determinations by exposure duration and health outcome are available in Table ES- 
of both the 2019 PM and 2020 O3 ISAs. The 2022 Supplemental PM ISA did not update causality determinations, 
but instead updated the literature associated with cardiovascular and mortality outcomes (U.S. EPA, 2022b). 
23 Ultrafine particles are generally considered to have an aerodynamic diameter less than or equal to 0.1 μm. 
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Short-
term 

Mortality1 Causal Causal 
Cardiovascular Effects Causal Causal 

Respiratory Effects Likely to be causal Likely to be causal 

Metabolic Effects None Suggestive 
of, but not sufficient to infer 

Nervous System Effects Inadequate to infer Suggestive 
of, but not sufficient to infer 

1Total mortality includes all nonaccidental causes of mortality and is informed by findings for the spectrum of morbidity effects 
(e.g., respiratory, cardiovascular) that can lead to mortality. Many studies contributing to the total mortality determination 
assess all causes of mortality. The proportion of cause-specific deaths differs by analysis. 

Table 4. Causality Determined for O3-Related Health Effects 

Exposure Health Outcome 2013 ISA Conclusion 2020 ISA Conclusion 

Long-term 

Respiratory Effects Likely to be causal Likely to be causal 
Cardiovascular 

Effects 
Suggestive of a causal 

relationship 
Suggestive of, but not sufficient to infer, 

a causal relationship 

Metabolic Effects None Suggestive of, but not sufficient to infer, 
a causal relationship 

Total Mortality1 Suggestive of a causal 
relationship  

Suggestive of, but not sufficient to infer, 
a causal relationship 

Reproductive 
Effects 

Suggestive of a causal 
relationship 

Effects on fertility and reproduction: 
suggestive of, but not sufficient to infer, 

a causal relationship 
Effects on pregnancy and birth 

outcomes: suggestive of, but not 
sufficient to infer, a causal relationship 

Central Nervous 
System Effects 

Suggestive of a causal 
relationship 

Suggestive of, but not sufficient to infer, 
a causal relationship 

Short-
term 

Respiratory Effects Causal Causal 

Total Mortality1 Likely to be causal Suggestive of, but not sufficient to infer, 
a causal relationship 

Cardiovascular 
Effects Likely to be causal Suggestive of, but not sufficient to infer, 

a causal relationship 
Metabolic Effects None Likely to be causal 
Central Nervous 
System Effects 

Suggestive of a causal 
relationship 

Suggestive of, but not sufficient to infer, 
a causal relationship 

1Total mortality includes all nonaccidental causes of mortality and is informed by findings for the spectrum of morbidity effects 
(e.g., respiratory, cardiovascular) that can lead to mortality. Many studies contributing to the total mortality determination 
assess all causes of mortality. The proportion of cause-specific deaths differs by analysis. 

2.2.1.2 Biological Plausibility 
ISAs draw conclusions regarding the causal nature of relationships between PM and health and non-
ecological welfare effects. These conclusions apply to broad health effect categories (e.g., cardiovascular 
effects) and provide information on the strength and consistency of the evidence supporting more 
specific endpoints (e.g., heart failure) within each section. Both types of information are utilized in 
benefits assessments. Broad causality determinations can support the use of more comprehensive 
endpoints found in epidemiologic studies of hospital admissions and emergency department visits, 
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whereas the support of specific endpoints resulting from pollutant exposure may be more relevant to 
incidence endpoints such as cardiac arrest. 

In forming the key science judgments for each of the health effects categories evaluated, the recent ISAs 
draw conclusions about relationships between PM and O3 exposure and health effects by integrating 
information across scientific disciplines and related health outcomes and synthesizing evidence from 
previous and recent studies. An advancement in these most recent ISAs is the inclusion of biological 
plausibility sections that are specific for each exposure duration and broad health outcome category for 
which causality determinations are formed. These discussions outline potential pathways along the 
exposure-to-outcome continuum and provide plausible links between pollutant inhalation and health 
outcomes at the population level. We include unedited diagrams from the biological plausibility sections 
of the 2019 PM and 2020 O3 ISAs here to provide information regarding the plausibility of individual 
health endpoints resulting from PM and/or O3 exposures. 

Biological plausibility can strengthen the basis for causal inference (U.S. EPA, 2015a). In the recent ISAs, 
biological plausibility is part of the weight-of-evidence analysis that considers the totality of the health 
effects evidence, including consistency and coherence of effects described in experimental and 
observational studies. Although there is some overlap in the potential pathways between the ISA health 
effects chapters, each biological plausibility section is tailored to the health outcome category, 
pollutant, and exposure duration being evaluated within the respective section of each ISA health 
effects chapter. Diagrams illustrate possible pathways relating exposure to evidence evaluated in 
current and previous assessments, considering physiology and pathophysiology (Figure 1).24 These 
diagrams portray the available evidence that supports the biological plausibility of exposures leading to 
specific health outcomes, but does not provide information on the weight of evidence supporting each 
biological pathway (section 2.2.1.2). Gaps and limitations in the evidence base, shown by the absence of 
a connecting arrow, correspond to gaps in the figure. 

Each box represents evidence that has been demonstrated in a study or group of studies for a particular 
effect related to exposure. While most of the studies used to develop the figures are experimental 
studies (i.e., animal toxicological and controlled human exposure studies), some observational 
epidemiologic studies also contribute to the pathways. These epidemiologic studies are generally: 1) 
panel studies that measure the same or similar effects as the experimental studies (and thus provide 
supportive evidence) or 2) emergency department and hospital admission studies or studies of 
mortality, which are effects observed at the population level. The boxes are arranged horizontally, with 
boxes on the left side representing initial effects that reflect early biological responses and boxes to the 
right representing potential intermediate (i.e., subclinical or clinical) effects and potential effects at the 
population level. The boxes are color coded according to their position in the exposure-to-outcome 
continuum. 

The arrows that connect the boxes indicate a potential progression of effects resulting from exposure. In 
most cases, arrows are dotted (Figure 1, Arrow 1), denoting a possible relationship between the effects. 
While most arrows point from left to right, some arrows point from right to left, reflecting progression 
of effects in the opposite direction or a feedback loop (Figure 1, Arrow 2). In a few cases, the arrows are 

 
24 Information in the biological plausibility diagrams includes studies identified in previous ISAs and Air Quality 
Criteria Documents (AQCDs). 
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solid (Figure 1, Arrow 2), indicating that progression from the upstream to downstream effect occurs as 
a direct result of exposure. This relationship between the boxes, where the upstream effect is necessary 
for progression to the downstream effect, is termed “essentiality” (OECD, 2016). Evidence supporting 
essentiality is generally provided by experimental studies using pharmacologic agents (i.e., inhibitors) or 
animal models in which the molecular pathway is obstructed. The use of solid lines, as opposed to 
dotted lines, reflects the availability of specific experimental evidence that exposure results in an 
upstream effect which is necessary for progression to a downstream effect, for example, by a genetically 
deficient model or a chemical inhibitor used in an experimental study involving pollutant exposure. 

In the diagrams, upstream effects are sometimes linked to multiple potential downstream effects. Boxes 
represent the effects for which there is experimental or epidemiologic evidence related to air pollutant 
exposure, and the arrows indicate a proposed relationship between those effects. To illustrate the 
proposed relationship using a minimum number of arrows, downstream boxes are grouped together 
within a larger shaded box and a single arrow (Figure 1, Arrow 3) connects the upstream single box to 
the outside of the downstream shaded box containing multiple green boxes. Multiple upstream effects 
may similarly be linked to a single downstream effect using an arrow (Figure 1, Arrow 4) that connects 
the outside of a shaded box which contains multiple boxes, to an individual box. In addition, arrows 
sometimes connect one individual box to another individual box that is contained within a larger shaded 
box (Figure 1, Arrow 2) or two individual boxes both contained within larger shaded boxes (Figure 1, 
Arrow 5). Thus, arrows may connect individual boxes, groupings of boxes, and individual boxes within 
groupings of boxes depending on the proposed relationships between effects represented by the boxes. 
Population level effects generally reflect results of epidemiologic studies. When there are gaps in the 
evidence base, there are complementary gaps in the figure and the accompanying text below.  

 

Note: For additional information, please refer to the original biological plausibility diagrams in the ISAs (U.S. EPA, 2019b, U.S. 
EPA, 2020b).  

Figure 1. Illustrative Diagram of Potential Biological Pathways of Health Effects Following Pollutant 
Exposure. 
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2.2.1.2.1 PM2.5-Attributable Endpoints and Biological Plausibility 
Below are the ISA biological plausibility diagrams for PM2.5 and O3 endpoints judged to have either a 
“causal” and “likely to be causal” relationship with pollutant exposure in the 2019 PM and 2020 O3 ISAs, 
as well as information on which of the endpoints identified in the diagrams have or have not been 
previously included in benefits assessments. These diagrams have been reproduced verbatim from the 
ISAs, for the convenience of the reader, and no new independent judgements are rendered regarding 
biological plausibility in this TSD. Although it is not possible to develop a biological plausibility diagram 
for total mortality, taken together, the individual endpoint-specific biological plausibility diagrams each 
provide potential pathways by which PM2.5 exposures could result in mortality. 

2.2.1.2.1.1 Cardiovascular Effects 
The 2019 PM ISA diagram of biological pathways for cardiovascular effects following short-term PM2.5 
exposure includes emergency department visits and hospital admissions as population level effects, for 
which EPA has historically presented benefits impact estimates (Figure 2). The diagram also includes 
mortality as a key endpoint, which EPA has not included in benefits estimates due to the possibility of 
overlap with all-cause mortality impacts from long-term exposure resulting in double counting. 

 

Figure 2. Potential Biological Pathways for Cardiovascular Effects Following Short-Term PM2.5 Exposure 

The 2019 PM ISA diagram of biological pathways for cardiovascular effects following long-term PM2.5 
exposure includes acute myocardial infarctions (AMI; heart attacks) and mortality, which EPA has 
historically presented benefits impact estimates for, and conductance abnormalities/arrhythmia, heart 
failure, stroke, and thromboembolic disease, which have not been included in previous benefits 
estimates (Figure 3). 
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Figure 3. Potential Biological Pathways for Cardiovascular Effects Following Long-Term PM2.5 Exposure 

2.2.1.2.1.2 Respiratory Effects 
The 2019 PM ISA diagram of biological pathways for respiratory effects following short-term PM2.5 
exposure includes emergency department visits and hospital admissions for asthma 
exacerbation/symptoms, chronic obstructive pulmonary disease (COPD), and respiratory infections as 
key population level health endpoints, for which EPA has historically presented benefits impact 
estimates (Figure 4). 

 

Figure 4. Potential Biological Pathways for Respiratory Effects Following Short-Term PM2.5 Exposure 

The 2019 PM ISA diagram of biological pathways for respiratory effects following long-term PM2.5 
exposure includes asthma development/onset and impaired lung function, for which we have not 
previously presented benefits impact estimates (Figure 5). 
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Figure 5. Potential Biological Pathways for Respiratory Effects Following Long-Term PM2.5 Exposure 

2.2.1.2.1.3 Cancer 
The diagram of biological pathways of cancer following long-term PM2.5 exposure is provided (Figure 6)., 
This relationship was  “suggestive” in the 2009 PM ISA and “likely to be causal” in the 2019 ISA (U.S. EPA, 
2009, U.S. EPA, 2019b). 

As cancer is a long-term disease, the 2019 PM ISA did not provide a diagram of biological pathways for 
cancer following short-term PM2.5 exposure. 

 

Figure 6. Potential Biological Pathways for Cancer Effects Following Long-Term PM2.5 Exposure 

2.2.1.2.1.4 Nervous System Effects 
The 2019 PM ISA diagram of biological pathways for nervous system effects following long-term PM2.5 
exposure includes neurodevelopmental disorders, Parkinson’s and Alzheimer’s disease hospital 
admissions and emergency department visits, cognitive decrements/behavioral effects, and cognitive 
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issues (Figure 7). Please note, the weight of evidence supporting each potential is not equivalent and 
additional information can be found in the 2019 PM ISA (U.S. EPA, 2019b). As the previous nervous 
system effect ISA determination did not rise to the “causal” or “likely to be causal” level, EPA has not 
previously included any nervous system endpoints in benefits impact estimates. 

 

 

Figure 7. Potential Biological Pathways for Nervous System Effects Following Long-Term PM2.5 Exposure 

2.2.1.2.2 O3-Attributable Endpoints and Biological Plausibility 

2.2.1.2.2.1 Respiratory Effects 
The 2020 O3 ISA diagram of biological pathways for respiratory effects following short-term O3 exposure 
includes emergency department visits and hospital admissions for asthma exacerbation/symptoms and 
respiratory infections, for which we have historically presented benefits impact estimates, and lung 
function decrements, which EPA has not previously estimated associated benefits (Figure 8). Although 
respiratory mortality is supported as a key clinical effect of short-term ozone exposure in the ISA text 
and should be included in this diagram, it was mistakenly left out due to the expedited timeline of the 
2020 O3 ISA.25 

 
25 This information was obtained through conversations with the authors of the 2020 O3 ISA. 
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Figure 8. Potential Biological Pathways for Respiratory Effects Following Short-Term O3 Exposure 

The 2020 O3 ISA diagram of biological pathways for respiratory effects following long-term O3 exposure 
includes mortality, which EPA has included in prior benefits assessments, and asthma 
development/onset, fibrotic- or emphysema-like disease/COPD, and altered lung development, which 
EPA has not previously included in benefits impact estimates (Figure 9). 
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Figure 9. Potential Biological Pathways for Respiratory Effects Following Long-Term O3 Exposure 

2.2.1.2.2.2 Metabolic Effects 
The 2020 O3 ISA concluded that short-term exposure was likely to cause metabolic effects and long-term 
exposure was suggestive of a causal relationship. Neither short- nor long-term causal determinations 
were made for metabolic effects in the 2013 O3 ISA. The ISA diagram of biological pathways for 
metabolic effects indicates that long-term O3 exposure leads to complications related to diabetes and 
changes or contributors to metabolic syndrome, which EPA has not previously included in benefits 
assessments. 

 

Figure 10. Potential Biological Pathways for Metabolic Effects Following Short-Term O3 Exposure 

 Identifying Quantifiable Health Outcomes26 
Health endpoints referenced in the latest externally reviewed ISA or equivalent assessment include both 
subclinical and clinically relevant endpoints. However, health impacts assessments tend to focus on 
quantifying the number of instances of clinically relevant endpoints (e.g., mortality, hospital admissions, 
and disease onset/development) and not subclinical endpoints (e.g., inflammation, oxidative stress, 
changes in circulation biomarkers, or changes in heart or lung function) for several reasons.  

1. Specific baseline event incidence, or the amount of a particular health endpoint present within 
the population, is required when using epidemiologic risk estimates to project health impacts of 
changes in air quality. Baseline incidence data is more likely to be available for clinically relevant 
health endpoints (e.g., hospital admissions for cardiovascular ICD codes 390-459 or the 

 
26 This approach is consistent with the “effect by effect” approach described in the benefits chapter of the 
Guidelines for Preparing Economic Analyses (U.S. EPA, 2014). Quantification is treated as separable from 
monetization given resource and data limitations (section 1.2).  
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prevalence of asthma in children) then for subclinical endpoints (e.g., forced expiratory volume 
or hypertension). 

2. Quantifying subclinical endpoints involve additional uncertainties when relating upstream 
subclinical effects with clinically relevant downstream health impacts. This does not mean that 
subclinical health impacts of PM2.5 and O3 do not exist. In fact, considerably more instances of 
pollutant-attributable subclinical effects than clinically relevant effects would be expected. 

Although causal determinations are made for broad health endpoint categories (e.g., cardiovascular 
effects), the ISAs do review support for specific endpoints (e.g., acute myocardial infarctions) (section 
2.2.1.2). Evidence associating specific health endpoints falling under broad health endpoints with “likely 
to be causal” or “causal” relationships with air pollution exposures are used to identify comprehensive, 
but not overlapping, health endpoints, when suitable studies for quantification based on the criteria 
identified above are available. 

 Study Information Table 
Extensive and comprehensive study information is provided for transparency regarding study 
comparisons and identification for benefits assessment. Specific study information, corresponding to the 
preferred criteria in section 2.1.2, is available for all endpoint-specific, ISA-derived epidemiologic studies 
newly considered for use in the main and sensitivity benefits estimation in a separate Excel file titled 
Study Information Table for the Estimating PM2.5- and Ozone-Attributable Health Benefits TSD.27,28 
Specific studies are listed once per pollutant health endpoint. 

Descriptions of the specific types of information extracted from the studies and included in the Study 
Information Table are available in Table 5. Studies differed in the type and level of detail of information 
provided. Additionally, sometimes information was not reported (NR) by the study and is therefore not 
available in the Study Information Table. For example, not all studies provided information on the race, 
sex, age range of the study population. Please note, individual studies may be listed multiple times in 
the Study Information Table if they report results for multiple endpoints, but they are listed only once 
per pollutant endpoint. 

Table 5. Study Information Tables 

Column Name Description 
Endpoint Group “Causal” or “likely to be causal” health endpoint included in benefits 

assessment. 
Endpoint Specific health endpoint included in benefits assessment. 
HERO ID Identifier used by the Health and Environmental Research Online (HERO) 

database. This database is a repository for studies and other references 
and is used for various peer-reviewed documents, such as ISAs and 
research projects. 

First Author First study author listed. 
Title Title of the study. 
Abstract Abstract of the study. 

 
27 Study information is kept in a separate Excel file to support ease of use.  
28 Risk estimate information tables are not provided as the identification of suitable risk estimates followed the 
hierarchy described in Table A-1 of the 2019 PM ISA appendix. 
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Publication Year Year the article was published, according to PubMed. 
Pollutant PM2.5 or O3. 
ISA Source Integrated Science Assessment where study was initially referenced, 

beginning with the 2019 PM ISA and 2020 Ozone ISA. 
Study Type Epidemiologic study design (e.g., cohort, case control, case crossover, etc.). 
Meta-Analysis Identifies meta-analyses for use when considering pooling city- or regional-

specific estimates to generate an overall risk estimate.  
Exposure Duration Long-term (one month to years) or short-term (hours to less than one 

month) exposures. 
Study Population Cohort name or description if unnamed. 
Study Size (number of 
participants or events) 

This can take various forms, such as the number of participants, person-
years, number of hospitalizations/admissions/discharges, or number of 
cases and controls. All information provided by the study is included. 

Demographics Demographics of the study participants, such as race/ethnicity, education 
level, income level, and socioeconomic status.  

Ages Ages of study participants, with maximum age of 99 reported when 
maximum participant aged 99 and older. 

Exposure Method Summary of the type of exposure estimate technique. Monitor studies 
denote monitor-based studies, and often include land use regression (LUR) 
techniques. Hybrid studies include photochemical model and/or satellite 
data.  

Country Location of study population (U.S. or Canada). 
Study Location Brief description of the locations included in the study. 
Health Years Years of health data included. 
Air Quality Years Years of air quality data included. Many studies used a specific common 

time frame for entire sample, but some used other criteria, such as 
exposure over the first year of life. 

Pollutant 
Concentrations (author-
reported) 

Typically, the overall mean and/or median concentrations across study 
areas, but sometimes provided information was at a different geographic 
and temporal scales (e.g., by state and over multiple years). 

LRL/Minimum Exposure 
Concentration 

The lowest reported pollutant level/concentration. 

Pollutant Concentration 
Notes 

Author-reported exposure estimation method. If multiple types of 
exposure estimation techniques were used for an individual pollutant, all 
are included. 

Outcome Measure Specific health outcome. Examples include the ICD codes used for hospital 
admission and emergency department visits or the criteria used to identify 
disease onset. 

Lag Periods For short-term studies, the time period of exposure prior to health effect. 
Copollutants Adjustments for copollutants in the risk estimates. 
Covariates/Confounders Author-reported covariates/confounders included in the risk estimate. 
Statistical Technique Analytical methods used to generate the risk estimate. 
Qualitative Limitations Summary comparison of each study to others investigating the same 

pollutant and specific health endpoint. 
Relative Determination Denotes which studies were identified as best characterizing risk as 

compared to other available studies for each pollutant endpoint. 
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 Methods for Presenting Health Benefits Estimates Using Multiple Risk Estimates for a 
Single Endpoint 

2.2.4.1 Pooling 
If more than one study or risk estimate is suitable for characterizing risk across the U.S. for an individual 
health endpoint, we prefer to use multiple risk coefficients to the extent technically feasible. In such 
instances, we combine the risk estimates using pooling29 methods in order to avoid a loss of information 
from multiple suitable studies; this approach is consistent with advice received from the National 
Academies of Sciences (NRC, 2002). Pooling yields a summary mean value estimate and confidence 
intervals reflecting variability across the pooled risk estimates. These pooled estimates account for both 
the within-study variances and the between-study variance when weighting.  

Multiple epidemiology studies might assess a common endpoint using very different input parameters 
and analytical assumptions,30 making it difficult to pool this literature. For example, it would be 
inadvisable to combine results from a long-term exposure study with a short-term exposure study. 
Other types of study heterogeneity that would prevent one from aggregating across studies include 
exposure duration (i.e., short- and long-term), some population attributes (e.g., age or race/ethnicity), 
health endpoint outcome measure (e.g., specific international classification of disease [ICD] codes), and 
study type (e.g., cohort vs case control).  

Recently developed hybrid methods for estimating population exposure allow researchers to 
characterize pollutant concentrations at more detailed temporal and spatial scales than those methods 
using monitoring data alone. As the uncertainties associated with hybrid- and monitor-based exposure 
estimates vary and we consider the quality of the exposure estimate during study and risk estimate 
identification, we expect pooling risk estimates that vary by exposure technique will increase the 
confidence in the overall benefits estimate.  

Conversely, while consistency between studies is generally desirable when pooling, there are some 
instances when it could introduce uncertainty and/or bias. For example, pooling Hazard Ratios reported 
in two or more studies of the same cohort, or Hazard Ratios reported for alternative cohorts, poses 
special challenges; this procedure generally requires individual-level data not readily available for most 
cohorts (Burnett et al., 2018). Hence, we would instead identify the most recent analysis or the analysis 
considering the longest time series of air quality data, so that the study population is not over-
represented when estimating health impacts.31  

 
29 Pooling estimates would be accomplished by performing a meta-analysis, a statistical method of aggregating 
independent risk estimates by weighting each study according to the inverse of the reported variance, generating a 
single estimate. EPA has in the past sought to characterize the magnitude of uncertainty across risk estimates by 
either applying a fixed effect or random effects pooling technique to combine two or more risk estimates. 
30 This is considered a strength when determining whether an outcome is causally linked to a pollutant. 
31 If multiple studies of the same cohort suitably characterize risk, multi-step pooling to avoid over-weighting is an 
option. This would involve first combining analyses of the same cohort and then combining with estimates from 
other cohorts. 
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2.2.4.2 Individual Alternate Risk Estimates  
In situations where multiple risk estimates should not or cannot be pooled32, we instead estimate 
incidence using each individual risk estimate. Where pooling synthesizes the results of multiple risk 
estimates into a single value, presenting multiple estimates from various key epidemiological studies 
identified by the latest ISA or equivalent could provide readers with insight to the plausible range of air 
pollution-attributable impacts. Therefore, if pooling is infeasible due to the issues mentioned above, we 
report individual results from each risk estimate suitable for characterizing risk across the U.S. for an 
individual health endpoint separately. Reporting many individual estimates may characterize the 
heterogeneity associated with risk but may also make the resulting risk estimates more difficult to 
interpret. To keep results manageable, we may report additional estimates as a quantitative sensitivity 
analysis.  

2.3 SYSTEMATICALLY IDENTIFYING EPIDEMIOLOGIC STUDIES AND RISK ESTIMATES FOR BENEFITS 

ASSESSMENT 
This section describes the systematic application of the identification criteria (section 2.1) to the body of 
available epidemiologic studies and risk estimates (section 2.2). Summary information on the number of 
available and included studies and risk estimates is presented in Table 6 and Table 7. Descriptions of 
endpoint-specific ISA support and available epidemiologic literature are available for each pollutant-
attributable and quantifiable health endpoint. 

 PM2.5  
The following sections of the 2019 PM ISA and 2022 PM ISA Supplement correspond to health endpoints 
judged as having a “causal” or “likely to be causal” relationship with PM2.5 exposure, respectively:33  

• 5.1 Short-Term PM2.5 Exposure and Respiratory Effects, 
• 5.2 Long-Term PM2.5 Exposure and Respiratory Effects, 
• 6.1 and 3.1 Short-Term PM2.5 Exposure and Cardiovascular Effects, 
• 6.2 and 3.1 Long-Term PM2.5 Exposure and Cardiovascular Effects, 
• 8.2 Long-Term PM2.5 Exposure and Nervous System Effects, 
• 10.2 [Long-Term] PM2.5 Exposure and Cancer, 
• 11.2 and 3.2 Long-Term PM2.5 Exposure and Total Mortality 

Following the approach to identifying available epidemiologic literature (section 2.2), we began with the 
2,882 studies cited by the 2019 PM ISA or 2022 PM ISA Supplement (U.S. EPA, 2019b, U.S. EPA, 2022b). 
Of these, 559 studies evaluated mortality or morbidity health endpoints that the 2019 PM ISA 
determined as having a “causal” or “likely causal” relationship with PM2.5 exposure and are clinically 

 
32 As an example, we often cannot pool across hazard ratios reported in long-term exposure cohort studies. The 
challenges associated with synthesizing the results of long-term cohort studies have been described elsewhere 
(Burnett et al., 2018). 
33 Due to the cutoff date of the 2022 Supplement to the PM ISA (March 2021) and the recent and the evolving 
nature of the pandemic, we are unable to assess associations between PM2.5 and COVID-19. 
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relevant (sections 2.2.1 and 2.2.2). 34 Of these, 150 studies met the minimum required criteria (section 
2.1.1). 35 

We preferentially selected epidemiologic studies specifying ICD-9 or ICD-10 codes that reflected a broad 
array of adverse effects; the ISA reports that the evidence for these broader effects is stronger than it is 
for specific outcomes, helps avoid double-counting of health benefits across categories and is consistent 
recommendations from the EPA Science Advisory Board.36 The remaining studies were sorted by health 
endpoint and PM2.5 exposure relationship (i.e., short-term or long-term exposure to PM2.5). These 
studies included 16 unique health endpoints (Table 6). In Table 6, the number of available studies refers 
to the number of North American studies meeting the minimum required criteria within each health 
endpoint, and a single study may be relevant to multiple endpoints. The risk estimates from the 
different studies for each endpoint can either be pooled (section 2.2.4.1) or kept as separate estimates 
(section 2.2.4.2), the latter of which is more common for mortality endpoints. The two columns to the 
far left provide the number of available risk estimates from each included study, as well as the number 
of risk estimates to be pooled or kept separate for each endpoint.  

Once the studies were grouped by health endpoint, we applied the preferred criteria to obtain the final 
set of studies to inform each health endpoint. For each of the 16 endpoints, we performed a study 
ranking process based on these criteria that emphasized characteristics in Table 2. When no new 
epidemiologic studies of health endpoints previously supported by the ISAs were available, the risk 
estimates used previously were brought forward (e.g., work loss days). 

 
34 Mortality studies were treated slightly differently. More information is available in section 3.1.1.1. 
35 This number may not equal the sum of available studies in Table 5 as individual studies may present risk 
estimates for multiple health endpoints. 
36 The Health Effects Subcommittee (HES) of the Advisory Council on Clean Air Compliance Analysis (Council) 
provided recommendations on the distinction between specific diagnostic codes and broad health outcome 
categories in 2004 (Ostro, 2004). The HES recommended “health outcome estimates that can be more closely 
linked to the results of epidemiologic studies. However, if in the efforts to achieve a match, the outcome 
specification is too narrow (e.g., “acute bronchitis” instead of “all respiratory conditions”), small numbers will 
seriously reduce the reliability of the analysis. Therefore, careful consideration of the diagnostic codes to use (with 
the related tradeoffs in uncertainty) will be an important step in constructing the baseline data sets.” 
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Table 6. PM2.5 Study and Risk Estimate Identification Diagram* 

PM Endpoint and 
Exposure Duration 

Studies 
Available 

Studies 
Included Ages 

Risk 
Estimates 
Available 

Risk 
Estimates 
Included 

All-Cause Mortality 
(LT) 

2 1 Infants 1 1 

35 3 Adults and older adults 115 1 
Older adults 70 1 

Cardiovascular 
Hospital Admissions 
(ST) 

15 1 Children, adults, and older 
adults 28 7 

Cardiovascular 
Emergency 
Department Visits (ST) 

2 1 Children, adults, and older 
adults 3 1 

Acute Myocardial 
Infarction (ST) 1 1 Adults and older adults 4 1 

Stroke (LT) 4 1 Older adults 1 1 

Cardiac Arrest (ST) 3 3 Adults and older adults 
12 1 
12 1 
7 1 

Respiratory Hospital 
Admissions (ST) 12 2 Children 3 1 

Older adults 4 1 
Respiratory 
Emergency 
Department Visits (ST) 

10 1 Children 16 4 

Asthma Onset (LT) 5 1 Children 7 1 
Asthma Symptoms 
(ST) 8 1 Children 8 1 

Allergic Rhinitis 1 1 Children 5 1 
Minor Restricted 
Activity Days NA 1 Adults and older adults NA 1 

Work Loss Days NA 1 Adults and older adults NA 1 
Lung Cancer (LT) 4 1 Adults and older adults 24 1 
Alzheimer’s Disease 
(LT)   1 1 Older adults 53 1 

Parkinson’s Disease 
(LT) 3 1 Older adults 53 1 

ST- short-term exposure; LT- long-term exposure; NA- not applicable due to the absence of recent available epidemiologic 
studies in the ISA; risk estimates identified in the 2012 PM NAAQS RIA will continue to be utilized. 
*See associated Study Information Table for specific study details. 
 

2.3.1.1 All-Cause Mortality 
The 2022 supplement to the PM ISA re-affirmed that a “causal” relationship exists between both long- 
and short-term PM2.5 exposure and all-cause mortality (U.S. EPA, 2022b). Specifically, the 2022 
supplement to the ISA states that:  
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Recent epidemiologic studies published since the 2019 PM ISA support and extend the 
evidence that contributed to the conclusion of a causal relationship between long-term 
PM2.5 exposure and cardiovascular effects. Numerous U.S. and Canadian cohort studies 
conducted in locations where the long-term PM2.5 concentration are less than 13 μg/m3 

add to the strong evidence base that was characterized in the 2019 PM ISA describing 
the relationship between long-term PM2.5 and cardiovascular mortality, and specifically 
IHD- and stroke-related mortality. Overall, these recent cardiovascular mortality studies 
reported positive associations at varying spatial scales and across different exposure 
assessment and statistical methods. The associations between long-term PM2.5 exposure 
and cardiovascular mortality generally persisted in models that were adjusted for ozone, 
NO2, PM10−2.5, or SO2, and most analyses of the C-R function supported a linear, no-
threshold relationship for cardiovascular mortality, especially at lower ambient 
concentrations of PM2.5  

The biological pathways by which short- and long term PM2.5 exposures are understood to lead to health 
effects are quite similar (section 2.2.1.2.1) and so we assume that effects observed in studies of long-
term exposures may also reflect the influence of short-term exposures. Therefore, only mortality 
impacts from long-term PM2.5 exposure will be quantified, so as not to overestimate impacts. This may 
potentially bias long-term, all-cause PM2.5-attributable mortality impact estimates toward the null in the 
main benefit estimate. 

Additional support for including estimates of all-cause PM2.5 mortality, as opposed to cause-specific, 
comes from the recommendations of advisory boards and review panels. For example, in response to 
suggestions made in a 2002 National Resources Council (NRC) report, expert judgement studies of 
mortality impacts were conducted (NRC, 2002). The report recommended that “the main quantitative 
question should focus on all-cause mortality as the outcome, rather than eliciting separate 
concentration-response functions for specific causes of death” (IEc, 2006). Similarly, a more recent 
Health Effects Subcommittee (HES) of the Advisory Council on Clean Air Compliance Analysis (Council) 
affirmed the inclusion of all-cause long-term PM2.5 estimate with no threshold was “sound” (Hammitt 
and Bailar, 2010). 

2.3.1.1.1 Available Epidemiologic Literature 
Whereas for all other health endpoints we began by identifying North American epidemiologic studies 
from the relevant ISA (U.S. EPA, 2019b, Figures 11-17 and 11-18), available literature for this health 
endpoint had been further reviewed by EPA in the 2022 PM Policy Assessment (PA) (U.S. EPA, 2022a 
sections 3.3 and Figure 3-4). As part of this review, the PA identified multi-city studies and more recent 
reanalysis or extensions of some of the commonly used cohorts. As such, for this health endpoint we 
began with the 35 epidemiologic multi-city cohort studies identified in the 2022 PM PA, which all met 
the minimum criteria and accounts for studies identified in the supplement to the PM ISA (U.S. EPA, 
2022b, section 2.1.1).  

We separately evaluated the more limited literature available regarding PM2.5-attibutable infant 
mortality (ages 0-12 months) cited in the 2009 ISA, as no more recent studies of PM2.5-attributable all-
cause infant mortality were available in either the 2019 ISA or the 2022 supplement to the PM ISA. Full 
study information can be found in the Study Information Table (section 2.2.3).  



 

30 
 

2.3.1.1.2 Identifying Suitable Studies for Use in Benefits Assessments 
The systematic identification criteria (section 0) was applied to the 35 studies of PM2.5-attributable long-
term all-cause mortality in adults, which prioritized particularly germane attributes including geographic 
coverage, population representativeness, and method of exposure estimation. As it is not relevant to 
study identification, we did not consider the risk effect magnitude as a criterion for study identification.  

The 35 studies varied considerably with regards to all criteria considered. For example, study sizes 
ranged from the thousands to the tens of millions. Ultimately, all preferred criteria relevant to PM2.5 
factored into the identification of the studies best characterizing risk across the country, although 
geographic diversity, exposure estimation technique, population attributes, PM2.5 concentrations, and 
inclusion of the copollutant O3 were particularly germane. Specific information can be found in the 
corresponding Study Information Table. 

2.3.1.1.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
We select multiple cohort risk estimates to estimate counts of PM-related premature death, following 
an approach employed in previous RIAs (e.g., U.S. EPA, 2011b, U.S. EPA, 2011c, U.S. EPA, 2011d, U.S. 
EPA, 2012a, U.S. EPA, 2012b, U.S. EPA, 2015b, U.S. EPA, 2019c). Quantifying effects using risk estimates 
reported in alternative cohorts helps account for uncertainty in the estimated number of PM-related 
premature deaths.  

The systematic approach led us to identify three studies best characterizing risk across the U.S. (Pope III 
et al., 2019, Turner et al., 2016, Wu et al., 2020).37,38 These three studies used data from three cohorts, 
an analysis of Medicare beneficiaries (Medicare), the American Cancer Society (ACS) and the National 
Health Interview Survey (NHIS). The supplement to the PM ISA concluded that the NHIS Medicare 
cohorts provide strong evidence of the association between long-term PM2.5 exposure and mortality 
with support from several additional cohort studies (U.S. EPA, 2019b, U.S. EPA, 2022b). We discuss 
uncertainty and sensitivity considerations related to the identified mortality risk estimates in sections 
6.1.2 and 6.5.39 

2.3.1.1.3.1 Adult Mortality 

2.3.1.1.3.1.1 NHIS 
Pope III et al., 2019 constructed a cohort using a survey of 1,599,329 U.S. adults (aged 18-84 years) who 
were interviewed in the National Health Interview Surveys (NHIS) between 1986 and 2014 and linked to 
the National Death Index (NDI) through 2015. The authors then performed survival modeling in this 
cohort to examine the relationship between long-term PM2.5 exposure and all-cause mortality. The 

 
37 The 2020 and 2022 PM PAs cited a number of relative advantages of these studies related to the extended 
period of observation, the rigorous examination of model forms and effect estimates, the coverage for ecological 
variables, and the large dataset with regards to both population and area (U.S. EPA, 2019b, U.S. EPA, 2022a). 
38 The Harvard Six Cities Study, which had been identified for use in estimating mortality impacts in the 2012 PM 
NAAQS RIA, was not identified using this approach due to geographic limitations (U.S. EPA, 2012b). 
39 There are several other assumptions implicit in the calculation of PM2.5-related mortality impacts. Briefly, these 
include 1) an assumption of “cessation” lag in time between the reduction in PM exposure and the full reduction in 
mortality risk that affects the timing (and thus discounted monetary valuation) of the resulting deaths, 2) following 
conclusions of U.S. EPA, 2019b, we assume that all fine particles are equally potent in causing mortality, and 3) 
following conclusions of the U.S. EPA, 2019b, we assume that the health impact function for fine particles is linear 
within the range of ambient concentrations affected by these standards. 



 

31 
 

authors also constructed a subcohort of 635,539 adults from the full cohort for whom body mass index 
(BMI) and smoking status data were available. The authors employed a hybrid modeling technique to 
estimate annual-average PM2.5 concentrations derived from regulatory monitoring data and constructed 
in a universal kriging framework using geographic variables including land use, population, and satellite 
estimates. Pope III et al., 2019 assigned annual-average PM2.5 exposure from 1999-2015 to each 
individual by census tract and utilized complex (accounting for NHIS’s sample design) and simple Cox 
proportional hazards models for the full cohort and the subcohort. We select the Hazard Ratio 
calculated using the complex model for the subcohort, which controls for individual-level covariates 
including age, sex, race-ethnicity, inflation-adjusted income, education level, marital status, rural versus 
urban, region, survey year, BMI, and smoking status. In a single-pollutant model, the coefficient and 
standard error for PM2.5 are estimated from the hazard ratio (1.12) and 95% confidence interval (1.08-
1.15) associated with a change in annual mean PM2.5 exposure of 10 ug/m3 (Pope et al. 2019, Table 2, 
Subcohort). 

2.3.1.1.3.1.2 Medicare 
Wu et al., 2020 evaluated the relationship between long-term PM2.5 exposure and all-cause mortality in 
more than 68.5 million Medicare enrollees (over the age of 64), using Medicare claims data from 2000-
2016 representing over 573 million person-years of follow-up and over 27 million deaths. This cohort 
included over 20% of the U.S. population and was, at the time of publishing, the largest air pollution 
study cohort to date. The authors modeled PM2.5 exposure at a 1-km2 grid resolution using a hybrid 
ensemble-based prediction model that combined three machine learning models and relied on satellite 
data, land-use information, weather variables, chemical transport model simulation outputs, and 
monitor data. Wu et al., 2020 fit five different statistical models: a Cox proportional hazards model, a 
Poisson regression model, and three causal inference approaches (GPS estimation, GPS matching, and 
GPS weighting). All five statistical approaches provided consistent results; we report the results of the 
Cox proportional hazards model here. The authors adjusted for numerous individual-level and 
community-level confounders, and sensitivity analyses suggest that the results are robust to 
unmeasured confounding bias. In a single-pollutant model, the coefficient and standard error for PM2.5 
are estimated from the hazard ratio (1.066) and 95% confidence interval (1.058-1.074) associated with a 
change in annual mean PM2.5 exposure of 10.0 ug/m3 (Wu et al., 2020, Table S3, Main analysis, 2000-
2016 Cohort, Cox PH). 

2.3.1.1.3.1.3 American Cancer Society 
Two independent studies evaluated the same years of data from the large, nationwide ACS CSP-II cohort 
of those > 29 years old (Pope III et al., 2019, Turner et al., 2016). These studies extended the follow-up 
period of the ACS CSP-II to 22 years (1982-2004), evaluating 669,046 participants over 12,662,562 
person-years of follow up and 237,201 observed deaths. These two studies applied a more advanced 
exposure estimation approach than had previously been used when analyzing the ACS cohort, 
combining the geostatistical Bayesian Maximum Entropy framework with national-level land use 
regression models. 

In addition to adjusting for individual-level and ecological covariates, Turner et al., 2016 also controlled 
for occupational PM2.5 exposure and adjusted for the potential copollutants O3 and nitrogen dioxide. 
Although the copollutant adjustment did not significantly change the hazard ratio, similar to the risk 
assessment performed as part of the PM PA (U.S. EPA, 2022a), we identified it as the most suitable 
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hazard ratio when estimating health benefit impacts.  Thus, the total mortality risk estimate is based on 
the random-effects Cox proportional hazard model that incorporates multiple individual and ecological 
covariates (relative risk =1.06, 95% confidence intervals 1.04–1.08 per 10µg/m3 increase in PM2.5). The 
relative risk estimate is identical to a risk estimate drawn from earlier ACS analysis of all-cause long-term 
exposure PM2.5-attributable mortality (Krewski et al., 2009). Of note, the ACS cohort participants were 
recruited by approximately 77,000 ACS volunteers and may not precisely represent the overall U.S. 
population demographics. 

2.3.1.1.3.1.4 Summary 
Based on the 2019 PM ISA, EPA has used two estimates of mortality: one from the American Cancer 
Society cohort and one from the Medicare cohort (Turner et al., 2016 and Di et al., 2017b, respectively). 
We use a risk estimate from Pope III et al., 2019 study in place of the risk estimate from the (Turner et 
al., 2016 analysis, as it: (1) includes a longer follow-up period that includes more recent (and lower) 
PM2.5 concentrations; (2) the NHIS cohort is more representative of the U.S. population than is the ACS 
cohort with respect to the distribution of individuals by race, ethnicity, income and education. 

Based on the 2020 Supplement to the PM ISA, EPA substituted a risk estimate from Wu et al., 2020 in 
place of a risk estimate from Di et al., 2017b. These two epidemiologic studies share many attributes, 
including the cohort and model used to characterize population exposure to PM2.5. As compared to Di et 
al., 2017b, Wu et al., 2020 includes a longer follow-up period and reflects more recent PM2.5 
concentrations.   

2.3.1.1.3.2 Infant Mortality 
In addition to the adult mortality studies described above, several studies show an association between 
PM exposure and mortality in children under 5 years of age (U.S. EPA, 2009).40  The 2019 PM ISA 
concluded that evidence exists for a stronger effect at the post neonatal period and for respiratory-
related mortality, although this trend is not consistent across all studies. The supplement to the PM ISA 
did not identify any new studies characterizing PM exposure and mortality among children (U.S. EPA, 
2022b).  

Although the ISA evidence supports a relationship between PM2.5 exposure and death in children, only 
studies of infant mortality met the minimum criteria (section 2.1.1). Previously, EPA has included 
estimates of post neonatal infant mortality from Woodruff et al., 1997 (U.S. EPA, 2012a, U.S. EPA, 
2019c). As such, compared to avoided deaths estimated for adult mortality, avoided deaths for infants 
are significantly smaller due to the size of the population and the smaller risk estimates associated with 
exposure to PM from epidemiology studies on infant mortality.  

In a more recent study including a larger and more nationally-representative study size by the same 
group, authors examined the relationship between long-term exposure to fine PM2.5 air pollution and 
post neonatal infant mortality in 3,583,495 births from 96 counties containing >249,999 residents across 
the U.S. between 1999-2002 using data from the National Center for Health Statistics (Woodruff et al., 
2008). They linked average PM2.5 monitoring data over the first two months of life with 6,639 post 
neonatal deaths, using logistic regression that incorporated generalized estimating equations (GEE) to 
estimate the odds ratios for all-cause and cause-specific post neonatal mortality by exposure to air 

 
40 For the purposes of this analysis, we only calculate benefits for infants aged 0–12 months, not all children under 
5 years old.   
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pollution.41 The study population experienced a median PM2.5 concentration of 14.8 µg/m3, with 25% of 
the population experiencing concentrations below 12 µg/m3 and above 18.8 µg/m3. The study included 
an evaluation of the appropriateness of a linear form from analysis based on quartiles of exposure and 
determined the linear form as a reasonable assumption. Study results included a single risk estimate of 
PM2.5-attributable all-cause mortality, 1.04 (0.98-1.11) per 7 µg/m3 (interquartile range) increase in 
PM2.5. 

2.3.1.2 Cardiovascular Hospital Admissions  
The ISA found “generally consistent, positive associations observed in numerous epidemiologic studies 
of emergency department visits and hospital admissions for ischemic heart disease, heart failure, and 
combined cardiovascular-related endpoints” (U.S. EPA, 2019b, section 6.1.16). Also, the ISA calls out 
cardiovascular hospital admissions as a population level health endpoint related to short-term PM2.5 
exposure (section 2.2.1.2.1.1).  

2.3.1.2.1 Available Epidemiologic Literature 
Fifteen North American epidemiologic studies of cardiovascular hospital admissions42 were identified in 
section 6.1 of the PM ISA (U.S. EPA, 2019b) and in the Supplement to the PM ISA (U.S. EPA, 2019b, U.S. 
EPA, 2022b). Relevant information related to the identification criteria, including study location, 
population attributes, and study period, were extracted from the studies and is available in the 
associated Study Information Table. The hospital admissions endpoint reports the number of events, as 
opposed to the number of individuals who experienced the event. 

2.3.1.2.2 Identifying Suitable Studies for Use in Benefits Assessments 
Relevant study information was used to identify the most nationally representative study or studies 
available. Study details can be found in the associated Study Information Table. The available 
cardiovascular hospital admissions studies predominantly included locations across the contiguous U.S. 
and evaluated the Medicare cohort, although two studies evaluated all ages. Few studies included 
health or air quality data post-2006, used hybrid exposure estimation techniques, or included O3 as a 
copollutant in the risk estimates. Importantly, while all studies assessed a broad range of cardiovascular 
effects, the specific ICD codes included varied widely. Of the available studies, Bell et al., 2015 evaluated 
the most recent study period and included the most nationally representative study locations. 

2.3.1.2.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Bell et al., 2015 investigated the effects of short-term fine particulate matter (PM2.5) exposure on 
cardiovascular health (ICD-9 410, omitting 410.x2; 410-414; 426-427; 428; 429; 430-438; and 440-448). 
Authors acquired data for 213 U.S. counties (1999-2010) from the Medicare Claims Inpatient Files for 
U.S. residents >65 years of age. Authors chose variables including sex, age, county of residence, and 
cause of hospital admission, as determined by ICD-9 codes. Authors collected PM2.5 exposure data from 
county population-based ambient monitors from the US EPA Air Quality System and averaged for county 
and day. Data were present for 56.5% of study days. Bell et al., 2015 utilized Bayesian hierarchal 
modeling to examine the links between PM2.5 and hospital admissions, running separate models to 
generate risk models for time lags (0-2 days) and season for any estimated variation in health effects. 

 
41 Odds ratios are a subtype of risk estimates. 
42 Of the ~35 million annual hospital discharges, ~20% are related to cardiovascular effects, ~10% to respiratory 
effects, and ~2% to nervous system effects (https://www.cdc.gov/nchs/data/nhsr/nhsr029.pdf).  
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The percent increase in risk of 0.65% (95% CI: 0.48-0.83) for an increase of 10 µg/m3 in same-day daily 
mean PM2.5 concentrations came from a single pollutant model. 

2.3.1.3 Cardiovascular Emergency Department Visits 
The ISA found that “generally consistent, positive associations observed in numerous epidemiologic 
studies of emergency department visits and hospital admissions for ischemic heart disease, heart failure, 
and combined cardiovascular-related endpoints” (U.S. EPA, 2019b section 6.1.16). The ISA also calls out 
cardiovascular emergency department visits as a population level health endpoint related to short-term 
PM2.5 exposure (section 2.2.1.2.1.1).  

2.3.1.3.1 Available Epidemiologic Literature 
Although there were several studies of both emergency department visits and hospital admissions, 
there was only one short-term exposure epidemiologic study specific to cardiovascular emergency 
department visits available in the 2019 PM ISA (U.S. EPA, 2019b). 

2.3.1.3.2 Study and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Ostro et al., 2016 investigated the association between short-term, source-specific (vehicular emissions, 
biomass burning, soil, and secondary NO¬

3 and SO4 sources) PM2.5 concentrations and emergency 
department visits for respiratory and cardiovascular diseases in eight cities in California from 2005 to 
2008. Authors obtained medical and demographic data from the Office of Statewide Health Planning 
and Development in California, and diagnosis was defined with ICD-9 codes: all cardiovascular (390-459), 
ischemic heart disease (410–414), AMI (410), cardiac dysrhythmia (427), and heart failure (428). Ostro et 
al., 2016 conducted a case cross-over analysis, stratified by year and month, controlling for weather and 
day of the week covariates. Authors used a county-level logistic regression and random-effects meta-
analysis to examine the association between source-specific PM2.5 and emergency department visits for 
respiratory and cardiovascular diseases. Results indicate a positive association between vehicle PM2.5 
emissions and emergency department visits for all cardiovascular diseases. The identified excess risk 
estimate of 0.7% (95% CI: -0.2-1.7) per 11.4 µg/m3 (interquartile range) daily mean PM2.5 concentration 
increase came from a single pollutant model lagged by 2 days. 

2.3.1.4 Cardiac Arrest (Out-of-Hospital) 
The 2019 PM ISA stated that “in contrast to the studies from the previous review, recent studies have 
reported generally positive associations between short-term PM2.5 exposure and out-of-hospital cardiac 
arrest” (U.S. EPA, 2019b, section 6.1). The ISA also called out conductance abnormalities as a key clinical 
effect associated with both short-and long-term PM2.5 exposures (section 2.2.1.2.1.1).  

This endpoint, like several others (e.g., lung cancer incidence, section 2.3.1.14) has a very high rate of 
fatality. As mortality due to any cause is captured separately (section 2.3.1.1), we focus on impacts 
following cardiac arrest, in the population that survive the initial event when considering this health 
endpoint.43  

 
43 Similarly, as any emergency department visits or hospital admissions resulting from cardiac arrest would be 
included in other endpoints (sections 3.1.2 and 3.1.3), monetized benefits of this health endpoint would not 
include and emergency department visits or hospital admissions costs. 
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2.3.1.4.1 Available Epidemiologic Literature 
The 2019 PM ISA included three epidemiologic studies of out-of-hospital cardiac arrest that met our 
minimum identification criteria (U.S. EPA, 2019b, section 2.1.1). 

2.3.1.4.2 Identifying Suitable Studies for Use in Benefits Assessments 
All three studies each evaluated separate locations and were similar with regards to study aspects such 
as age range (Ensor et al., 2013, Rosenthal et al., 2008, Silverman et al., 2010). Due to differences only in 
the study period and locations, the three studies are pooled using the random or fixed effects pooling 
method for benefits assessment purposes.44 

2.3.1.4.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Ensor et al., 2013 studied the association between short-term ambient air pollution (PM2.5 and O3) 
exposure and out-of-hospital cardiac arrest. Ensor et al., 2013 gathered medical and demographic data 
from an Emergency Medical Services database in Houston, Texas between 2004 and 2011. Authors 
assessed the medical data and defined out-of-hospital cardiac arrest as emergency medical services 
performing chest compressions. Authors collected ambient air pollution and weather data from Texas 
Commission of Environmental Quality monitors and calculated hourly and daily averages for PM2.5 and 
O3. The authors used a time-stratified case crossover analysis and conditional logistic regression to 
interpret the data and found that with a daily increase of 6 µg/m3 in PM2.5, averaged from a 0- and 1-day 
lag, there was an increased risk of out-of-hospital cardiac arrest of 3.9% (95% CI: 0.5-7.4). 

Silverman et al., 2010 investigated the link between short-term ambient air pollution exposure (PM2.5, 
NO2, SO2, O3, and CO) and out-of-hospital cardiac arrest in New York City between 2002 and 2006. 
Authors obtained medical data from the Emergency Medical Services of the New York City Fire 
Department for 8,216 subjects aged 0 to 99, average age 65.6 with slightly more men than women. 
Authors collected air pollution and weather data from the US EPA’s Air Quality System monitors within a 
20-mile radius of New York City and averaged over 24-hour periods. Authors conducted time series and 
case crossover analyses with 0- and 1-day lagged air pollution levels and by season. Silverman et al., 
2010 found that in a single-pollutant case crossover model, each 10 µg/m3 increase in ambient PM2.5 
resulted in a relative risk of 1.04 (95% CI: 0.99-1.08) in out-of-hospital cardiac arrest incidences 0- and 1-
day prior to onset.  

Rosenthal et al., 2008 examined the effects of short-term PM2.5 exposure on out-of-hospital cardiac 
arrest incidence and whether these effects were connected to demographic data or presence of heart 
rhythm. Additionally, Rosenthal et al., 2008 compared exposure time and measurement method on the 
effects of short-term PM2.5 exposure and out-of-hospital cardiac arrest incidence. Authors obtained 
medical data from the Wishard Ambulance Service, a local emergency medical service in Indianapolis, 
Indiana, from July 2, 2002 to July 7, 2006. The study defined out-of-hospital cardiac arrest using the 
same criteria as Ensor et al., 2013 and Silverman et al., 2010. Authors collected daily and hourly PM2.5 

 
44 Random or fixed effects pooling is a method to combine two or more distributions into a single new distribution, 
allowing for the possibilities that either 1) a single true underlying relationship exists between the component 
distributions, and that differences among estimated parameters are the result of sampling error, or 2) the 
estimated parameter from different studies may in fact be estimates of different parameters, rather than just 
different estimates of a single underlying parameter, and weights for the pooling are generated via inverse 
variance weighting, thus giving more weight to the studies that exhibit lower variance and less weight to the input 
distributions with higher variance. 
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concentrations from two City of Indianapolis monitoring sites and using two separate methods: the 
Federal Reference Method (FRM) for 24-hour filter samples, and a Federal Equivalence Method (FEM). 
The authors used a case crossover analysis with conditional logistic regressions in order to study the 
effects of short-term PM2.5 exposure on out-of-hospital cardiac arrest incidence. Rosenthal et al., 2008 
found a positive but statistically insignificant association between non-dead on arrival (non-DOA) out-of-
hospital cardiac arrest cases and ambient PM2.5 concentrations. Although they also noted a statistically 
significant positive association when restricted to witnessed, non-DOA out-of-hospital cardiac arrest 
cases, that subgroup is less applicable to the available baseline incidence rate of non-DOA out-of-
hospital cardiac arrest cases. The identified risk estimate of 1.02 (95% CI: 0.92-1.12) for each 10 µg/m3 
increase in daily mean PM2.5 concentrations lagged by 0-1 days, came from a single-pollutant model of 
all non-DOA out-of-hospital cardiac arrest cases. 

2.3.1.5 Acute Myocardial Infarctions (AMI) 
The 2019 PM ISA found that “evidence from the current review strengthens the epidemiologic results 
reported in the 2009 PM ISA” with respect to AMI (U.S. EPA, 2019b). In addition, the 2022 Supplement 
to the 2019 PM ISA stated: 

Studies examining short-term PM2.5 exposure report consistent positive associations for 
cardiovascular-related emergency department (ED) visits and hospital admissions, specifically 
for…myocardial infarction (MI). … The epidemiologic studies reviewed in the 2019 PM ISA 
strengthened the evidence characterized in the previous ISA (U.S. EPA, 2009). Most of the 
evidence for IHD and MI in the 2009 PM ISA was from multicity epidemiologic studies of ED visits 
and hospital admissions [i.e., the U.S. Medicare Cohort Air Pollution Study (MCAPS) (Dominici et 
al., 2006), a four-city study in Australia (Barnett et al., 2006), and a study among older adults in 
several French cities (Host et al., 2008)]. The positive associations reported in these studies were 
an important line of evidence in the 2009 PM ISA concluding a causal relationship between short-
term PM2.5 exposure and cardiovascular effects. Uncertainties noted in the 2009 PM ISA with 
respect to exposure measurement error for those not living near a PM2.5 monitor were reduced in 
the 2019 PM ISA with the consideration of studies that applied hybrid exposure assessment 
techniques that combine land use regression data with satellite aerosol optical depth (AOD) 
measurements and PM2.5 concentrations measured at fixed-site monitors to estimate PM2.5 
concentrations. Further, compared with the 2009 PM ISA, the evidence in the 2019 PM ISA was 
expanded to include studies examining the association of short-term PM2.5 exposure ST segment 
depression in addition to ED visits and hospital admissions for MI. … Overall, recent studies 
support and extend the findings of the 2019 PM ISA with additional studies reporting positive 
associations between short-term PM2.5 exposure and…MI hospital admissions and ED visits (U.S. 
EPA, 2022b). 

2.3.1.5.1 Available Epidemiologic Literature 
The 2019 PM ISA identified epidemiologic studies associating AMIs with short-term PM2.5 exposures, 
though the studies passing the initial screening stage were not more suitable than those currently used 
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to estimate benefits (U.S. EPA, 2019b). The Supplement to the ISA identified a single suitable short-term 
exposure study that passed the screening stage (U.S. EPA, 2022b).45  

2.3.1.5.2 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
The supplement to the PM ISA identified a single new epidemiologic study examining the relationship 
between short-term PM exposure and AMI (U.S. EPA, 2022b). Wei et al., 2019 evaluated the relationship 
between short-term PM2.5 exposure and hospital admissions for 214 mutually exclusive disease groups, 
including acute myocardial infarction, in a time-stratified, case-crossover analysis of over 95 million 
Medicare inpatient hospital claims from 2000-2012. The authors estimated daily PM2.5 levels at a 1-km2 
grid cell level using a satellite based, neural network model that was calibrated using monitor data and 
assigned 0-1 day lagged PM2.5 exposure to each participant by zip code of residence. For each disease 
group, Wei et al., 2019 created a case crossover dataset that controlled for individual level and zip code 
level variables, day of the week, seasonality, and long-term time trends. The authors used conditional 
logistic regression models to estimate associations between PM2.5 exposure and risk of hospital 
admission and found positive associations for numerous rarely studied and numerous well-studied 
disease groups. In a single-pollutant model, the coefficient and standard error are estimated from a 
reported relative increase in risk (0.11%) and 95% confidence interval (0.07%-0.16%) associated with a 1 
ug/m3 increase in 0-1 day lagged PM2.5 exposure (Wei et al., 2019, Figure 3, CCS 100 AMI). We thus 
based our estimates of AMI incidence on this study, assuming that all AMI were associated with a 
hospital admission. 

2.3.1.6 Stroke 

2.3.1.6.1 Available Epidemiologic Literature 
The 2019 PM ISA included three epidemiologic studies of stroke that met the minimum identification 
criteria (U.S. EPA, 2019b, section 2.1.1).  

2.3.1.6.2 Identifying Suitable Studies for Use in Benefits Assessments 
One of the available epidemiologic studies was more recent, included a larger population, evaluated 
long-term exposure effects, and was more representative of the U.S. with regards to both geography 
and population attributes than the other two studies (Kloog et al., 2012). 

2.3.1.6.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Kloog et al., 2012 analyzed the effects of long- and short-term PM2.5 exposure on hospital admissions 
due to strokes with a new PM2.5 exposure model in New England (Connecticut, Maine, Massachusetts, 
New Hampshire, Rhode Island, and Vermont) from 2000 to 2006. We use this endpoint as a surrogate 
for PM2.5-attributable stroke incidence. Authors collected medical data from 67,678 adults aged 65 to 99 
in the U.S. Medicare program database from 2000 to 2006. They defined all respiratory, cardiovascular 
disease, stroke, and diabetes based on emergency department visits and primary discharge diagnosis 
records. Authors used a hybrid exposure technique comprised of daily PM2.5 concentration data from 

 
45 Five long-term exposure studies evaluated associations between PM2.5 and AMI, however the Supplement to the 
PM ISA stated that “evidence informing the relationship between long-term exposure to PM2.5 and IHD, including 
the recent studies of MI, … do not all report positive associations; however, the strongest evidence of a 
relationship continues to be for those with preexisting diseases or patient populations that are followed after a 
cardiac event or procedure such as catheterization.” Due to the strength of the evidence, AMI associated with 
long-term PM2.5 exposures was not included as a health endpoint.  
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aerosol optical depth (AOD) measurements and ambient air monitors from the U.S. EPA and Interagency 
Monitoring of Protected Visual Improvements (IMPROVE). Authors also obtained land use regressions, 
meteorological data (National Climatic Data Center), and socioeconomic data (U.S. Census Bureau) 
matched to zip codes. Utilizing land use Poisson regression single-pollutant models, the authors found 
an 3.49% (95% CI: 0.09-5.18) increase in stroke incidence for a 10 µg/m3 increase in the 7-year mean 
PM2.5 concentrations. 

2.3.1.7 Respiratory Hospital Admissions 
After considering the relationships between specific and broad respiratory hospital admissions 
endpoints, the 2019 PM ISA stated that “recent studies further expand analyses with older adults, with 
multicity studies conducted in the U.S. providing evidence of consistent, positive associations between 
short-term PM2.5 exposure and respiratory-related diseases” (U.S. EPA, 2019b, section 5.1.6). 

The ISA noted that “it is often difficult to determine whether the associations observed indicate that 
PM2.5 may affect the spectrum of respiratory diseases or reflects the evidence supporting associations 
with specific respiratory diseases, such as asthma.” Taking this into consideration, hospital admissions 
for asthma exacerbation/symptoms, COPD, and respiratory infections were specifically called out in the 
short-term PM2.5 exposure biological plausibility diagram (section 2.2.1.2.1.2). 

2.3.1.7.1 Available Epidemiologic Literature 
Like the cardiovascular hospital admission/emergency department visit endpoints, several respiratory 
studies identified by the ISA combined the hospital admissions and emergency department endpoints. 
There was also a subset of studies that only considered emergency hospital admission, defined as 
hospital admissions that originated in the emergency department. As using either studies of emergency 
hospital admissions or combined emergency department and hospital admission studies would result in 
increased uncertainty around the economic estimate and/or with the baseline incidence data, we 
limited our pool of available studies to those specifically evaluating unplanned respiratory hospital 
admissions, of which there were 12 available studies. 

2.3.1.7.2 Identifying Suitable Studies for Use in Benefits Assessments 
Studies for this endpoint tended to focus on specific age groups, with approximately half focusing on 
older adults (>64) and none specifying ages 19-64. Importantly, studies varied widely by ICD codes, 
making pooling of two or more studies difficult. Considering the preferred criteria, two studies were 
identified, one of children and one of older adults, primarily due to the inclusion of diverse and large 
study locations. The single study of older adults is more informative than pooling it with other studies of 
the same population as it is more recent and includes exposure to lower PM2.5 concentration levels. 

2.3.1.7.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Bell et al., 2015 investigated the effects of short-term fine particulate matter (PM2.5) exposure on 
respiratory health (ICD-9 464-466, 480-487, 490-492, 493) in older adults (>64 years). Authors acquired 
data for 213 U.S. counties (1999-2010) from the Medicare Claims Inpatient Files for U.S. residents >65 
years of age. Authors chose variables including sex, age, county of residence, and cause of hospital 
admission, as determined by ICD-9 codes. Authors collected PM2.5 exposure data from county 
population-based ambient monitors from the US EPA Air Quality System and averaged for county and 
day. Data were present for 56.5% of study days due to the sampling schedule of the monitors. Bell et al., 
2015 utilized Bayesian hierarchal modeling to examine the links between PM2.5 and hospital admissions. 
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They ran separate models for time lags (0-2 days) and season to determine if there were any estimated 
variation in health effects. The identified percent increase in risk of 0.25% (95% CI: 0.01-0.48) for an 
increase of 10 µg/m3 in same-day daily mean PM2.5 concentrations came from a single-pollutant model.  

Ostro et al., 2009 estimated the association between ambient PM2.5, EC, organic carbon (OC), NO3, and 
SO4 on hospital admissions for respiratory diseases in children ages 5 to 19. The study used the 
California Office of Statewide Health Planning and Development, Healthcare Quality and Analysis 
Division hospitalization data from six California counties for the 2000 to 2003 study period. Ostro et al., 
2009 classified hospital admissions into: all respiratory disease (ICD-9 codes 460-519), asthma (ICD-9 
code 493), acute bronchitis (ICD-9 code 466), and pneumonia (ICD-9 codes 480-486). They aggregated 
the hospital admission data to the county level to create a daily time series of admissions for each 
county. Authors took air quality measurements from the California Air Resources Board, which captured 
speciated 24-hour average pollutant measurements using a filter-based Met One Speciation Air 
Sampling System. Meteorological measurements for average daily temperature and relative humidity 
came from the California Air Resources Board or the California Irrigation Management Information 
System. Authors analyzed data using a Poisson regression with time, day of the week, temperature, 
relative humidity, and pollutant as explanatory variables. Ostro et al., 2009 controlled for seasonality 
and time dependent effects by including a natural spline smoother for the daily time trend and 
meteorology. The identified percent increase in risk of excess risk of 4.1% (95% CI: 1.8-6.4) for a 14.6 
µg/m3 increase in daily mean PM2.5 concentrations, lagged by 3 days, came from a single-pollutant 
model.  

2.3.1.8 Respiratory Emergency Department Visits 
After considering the relationships between specific and broad respiratory emergency department visit 
endpoints, the 2019 PM ISA stated that “recent studies further expand analyses with older adults, with 
multicity studies conducted in the U.S. providing evidence of consistent, positive associations between 
short-term PM2.5 exposure and respiratory-related diseases” (U.S. EPA, 2019b, section 5.1.6). 

The ISA noted that “it is often difficult to determine whether the associations observed indicate that 
PM2.5 may affect the spectrum of respiratory diseases or reflects the evidence supporting associations 
with specific respiratory diseases, such as asthma.” Emergency department visits for asthma 
exacerbation/symptoms, COPD, and respiratory infections were specifically called out in the short-term 
PM2.5 exposure biological plausibility diagram (section 2.2.1.2.1.2). 

2.3.1.8.1 Available Epidemiologic Literature 
Like the cardiovascular hospital admission/emergency department visit endpoints, several respiratory 
studies identified by the ISA combined the hospital admissions and emergency department endpoints. 
As using the combined study endpoint would result in increased uncertainty around the economic 
estimate, we limited our pool of available studies to those specifically looking at respiratory emergency 
department visits for the main benefits assessment, of which there were 10 studies. 

2.3.1.8.2 Identifying Suitable Studies for Use in Benefits Assessments 
One study out of the 10 was more recent, provided greater geographic representation, and included all 
ages. 
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2.3.1.8.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Krall et al., 2013 investigated the associations between short-term, source-specific (traffic and coal 
combustion) ambient PM2.5 exposure and emergency department visits for respiratory diseases in U.S. 
cities (Atlanta, GA, Birmingham, AL, St. Louis, MO, and Dallas, TX). Authors obtained medical data from 
hospital electronic billings for emergency department visits due to respiratory disease, identified using 
ICD-9 codes (460-465, 466, 477, 480-486, 491, 492, 493, 496, 786.07). Authors collected PM2.5 
concentrations from one ambient air monitor in each of the four cities and gathered meteorological 
data from the National Climactic Data Center. Krall et al., 2013 estimated source specific PM2.5 using 
apportionment models, which separate PM2.5 sources based on chemical composition. This model also 
included data on gaseous pollutant concentrations from the Community Multiscale Air Quality (CMAQ) 
with Tracers model. Krall et al., 2013 used Poisson time series regression models to analyze associations 
between short-term PM2.5 exposure and emergency department visits for respiratory diseases. They 
then compared source specific PM2.5 exposures across cities to estimate associations with the 
emergency department visit data. To limit confounders, the authors adjusted models for indicator 
variables, meteorological variables, and long-term trends in emergency department visits. The identified 
relative risk estimates of 1.005 (95% CI: 1.000-1.010) for Atlanta, GA; 1.009 (95% CI: 1.003-1.015) for 
Birmingham, AL; 1.008 (95% CI: 1.002-1.014) for St. Louis, MO; and 1.012 (95% CI: 1.002-1.023) for 
Dallas, TX were calculated from a single-pollutant model for a 9.16 µg/m3 increase in daily mean PM2.5 
concentrations, lagged by 0 days. 

2.3.1.9 Asthma Onset 
The 2019 PM ISA stated that “longitudinal studies provide evidence of associations with asthma 
incidence in children” and found “evidence for a relationship between PM2.5 exposure and asthma 
prevalence in children and childhood wheeze” (U.S. EPA, 2019b). Additionally, asthma onset was called 
out as a key clinically relevant health endpoint in the biological plausibility pathways included in the ISA 
(section 2.2.1.2.1.2) (U.S. EPA, 2019b). 

2.3.1.9.1 Available Epidemiologic Literature 
The final 2019 PM ISA found that “recent studies of asthma in children supplement the limited number 
of studies reviewed in the 2009 PM ISA and provide evidence of an association between long-term PM2.5 
exposure and asthma development in children” (U.S. EPA, 2019b). There was also evidence of PM2.5-
attributable asthma onset in adults, but results were inconsistent across studies. As a result, asthma 
onset in adults is not included in our main benefits assessment. 

Five North American epidemiologic studies of asthma onset in children were identified in section 5.2 of 
the 2019 PM ISA (U.S. EPA, 2019b). Relevant information related to the identification criteria, including 
study location, population attributes, and study period, were extracted from the studies and is available 
in the corresponding Excel file. 

2.3.1.9.2 Identifying Suitable Studies for Use in Benefits Assessments 
Although the available asthma onset studies vary widely in all criteria considered, relevant study 
information was again used to identify the most nationally representative study or studies (see Excel 
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file). Interestingly, three of the five studies were conducted in Canada.46 One study conducted in Canada 
evaluated a recent and extensive time series of air quality and health data; assigned exposures to 
populations using a combination of monitor and remote sensing data; validated the outcome measure; 
observed effects with relatively low (~10 µg/m3) PM2.5 concentrations and included over 30-fold the 
number of participants as any other study. Other available literature was also more limited with regards 
to population demographic and geographic diversity.  

2.3.1.9.3 Study Identified as Most Suitable for Use in Benefits Assessments 
Tetreault et al., 2016 investigated the relationship between childhood asthma onset and long-term 
pollution exposure (PM2.5, NO2, O3) in Quebec, Canada. The authors obtained data from four medical-
administrative databases collectively known as Quebec Integrated Chronic Disease Surveillance System 
(QICDSS) between April 1, 1996 and March 31, 2011. The study defined the onset of asthma as a 
hospital discharged diagnosis of asthma or two reports of asthma from two separate physicians within a 
two-year period. The authors used Cox proportional hazard models to estimate the association between 
asthma onset and pollution exposure, controlling for demographics and socioeconomic status. Time-
varying exposure models assessed time-varying exposures to the three pollutants in question. Tetreault 
et al., 2016 showed that childhood asthma onset may be associated with exposure to PM2.5, NO2, and 
O3.  

The identified study presented 24 hazard ratios using various adjustment methods and included multiple 
sensitivity analyses, evaluating the effects by sex, urbanicity, and those who moved during the study 
period. More-adjusted risk estimates using a time-varying estimate of PM2.5 exposure and including the 
full cohort were identified over less-adjusted or stratified estimates using exposure estimates at birth.  
The study identified as best characterizing risk across the U.S. was Tetreault et al., 2016, although the 
two older and demographic-limited U.S. studies were also identified as potentially informative.  

The risk estimate identified from Tetreault et al., 2016 for use in the main benefits estimates was a 
single-pollutant time-varying hazard ratio model of 1.33 (95% CI: 1.31-1.34) for a 6.53 µg/m3 
(interquartile range) increase in annual PM2.5 concentration at the residential address. 

As the physiology and etiology of lung development in children is similar in children 6-17, we apply the 
4-12 year age-stratified effect estimate from Tetreault et al., 2016 to children ages 4-17 (Baena-Cagnani 
et al., 2007, Guerra et al., 2004, Ochs et al., 2004, Sparrow et al., 1991, Trivedi and Denton, 2019).  

2.3.1.10 Asthma Symptoms/Exacerbation 
The 2019 PM ISA stated that “evidence for effects on asthma exacerbation are generally more 
consistent than associations for other respiratory outcomes.” The ISA went on to note that “recent 

 
46 Although several key studies identified in the 2019 PM ISA come from Europe, we excluded studies outside of 
North America. Studies taking place in Canada were retained, as there is considerable PM2.5 transport between 
Canada and the US (https://www.epa.gov/airmarkets/canada-united-states-transboundary-particulate-matter-
science-assessment-2013), ~90% of Canadians live within ~100 miles of the US border 
(https://www.cbc.ca/news/canada/by-the-numbers-1.801937), and ambient PM2.5 concentrations are similar in 
Canada and the US. Additionally, this endpoint is more related to health physiology then healthcare systems and 
Canada and the US have similar prevalence rates of asthma (https://ourworldindata.org/grapher/asthma-
prevalence). 



 

42 
 

studies strengthen the relationship between asthma exacerbation in children and short-term PM2.5 
exposure, while, in adults, the relationship continues to be inconsistent” (U.S. EPA, 2019b). 

2.3.1.10.1 Available Epidemiologic Literature 
Based on evidence provided by the 2019 PM ISA, available studies of asthma symptoms were limited to 
children, of which there were eight. 

2.3.1.10.2 Identifying Suitable Studies for Use in Benefits Assessments 
Due to the specificity required when evaluating this health endpoint, Individual studies of asthma 
exacerbation/symptoms tended to focus on relatively small cohorts of children of discrete ages in 
distinct locations, making pooling difficult. One study evaluated a directly monetizable outcome of 
albuterol inhaler use. Albuterol inhalers are separated from long-term asthma control medications and 
is considered a “rescue medication” by the Mayo Clinic, making it an informative endpoint when 
considering asthma symptoms.47 

2.3.1.10.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Rabinovitch et al., 2006 analyzed the relationship between short-term PM2.5 exposure and asthma 
exacerbation in children. The study followed children, ages 6 to 13 attending the Kunsberg School at the 
National Jewish Medical Research Center with diagnosed asthma for two consecutive winters from 
2001-2003. Authors gave an electronic bronchodilator (albuterol) to the children to capture the 
frequency of use within a 24-hour period. The children also responded to three questions to determine 
if they may have an upper respiratory infection (URI), and urine samples were taken to measure urinary 
leukotriene E4 levels on select days. The authors collected hourly ambient PM2.5 levels from the Colorado 
Department of Health Air Pollution Control Division’s Tapered Element Oscillating Microbalance (TEOM) 
monitor, located 2.7 miles west of the school. Additionally, a Federal Reference Monitor (FRM) located 
next to the TEOM measured 24-hour PM2.5 levels. The authors obtained meteorological data from the 
Colorado Department of Health Air Pollution Control Division and the National Climatic Data Center. A 
Poisson regression modeled albuterol use as a function of the morning (12:00am to 11:00 am) maximum 
hourly PM2.5 level or the morning mean hourly PM2.5 level. The model used both the TEOM and FRM 
data, individually, incorporated four lag periods (0 to 2 days and 0- to 2-day average), and included 
several covariates: temperature, pressure, humidity, time trend, Friday indicator, and URI indicator. 
Rabinovitch et al., 2006 found that, although the PM2.5 pollution levels were well below the National 
Ambient Air Quality Standards, there is a consistent association between peak ambient PM2.5 levels and 
increased albuterol use in asthmatic children. The identified percent of use increase estimate of 1.2% 
(95% CI: -0.6-2.9) for a 6 µg/m3 increase in averaged daily mean PM2.5 concentration lagged by 0-, 1-, 
and 2-days came from a single-pollutant model. As the physiology and etiology of lung development in 
children is similar in children 6-17, we apply the 6-13-year age-stratified effect estimate to children ages 
6 to 17 (Baena-Cagnani et al., 2007, Guerra et al., 2004, Ochs et al., 2004, Sparrow et al., 1991, Trivedi 
and Denton, 2019).  

2.3.1.11 Allergic Rhinitis (Hay Fever/Respiratory Allergies) 
The 2019 PM ISA stated that “recent studies evaluated associations between long-term exposure to 
PM2.5 and various allergic outcomes in a mix of large representative cohort and cross-sectional survey 
studies” finding “generally consistent evidence of an association between long-term PM2.5 exposure and 

 
47 https://www.mayoclinic.org/diseases-conditions/asthma/in-depth/asthma-medications/art-20045557 
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allergic sensitization in single pollutant models” (U.S. EPA, 2019b, section 5.2.4). Additionally, the ISA 
called out “allergic responses” in the biological plausibility diagram for long-term PM2.5-attributable 
respiratory effects (U.S. EPA, 2019b, section 2.2.1.2.1.2). Although cross sectional analyses do not 
establish a temporal sequence, they can be used to estimate benefits associated with changes in air 
quality.  

2.3.1.11.1 Available Epidemiologic Literature 
The 2019 PM ISA identified one epidemiologic study of long-term 2019 PM2.5 exposure and allergic 
rhinitis (U.S. EPA, 2019b). 

2.3.1.11.2 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Parker et al., 2009 investigated the associations between long-term PM2.5 exposure and respiratory 
allergies in an unrestricted population of children (aged 3-17 years) sampled from the United States 
National Health Interview Survey. Authors obtained symptom data from participant parents, who 
reported respiratory allergies on annual surveys. Parker et al., 2009 placed all study participants 
reporting symptoms of respiratory allergies or hay fever into a combined rhinitis group. Parker et al., 
2009 then linked annual averages of SO2, NO2, PM2.5, and PM2.5-10 and warm season (May to September) 
O3 averages to participant’s addresses through ambient air pollution and meteorological data (O3, SO2, 
NO2, PM2.5, and PM10-2.5) collected from US EPA Air Quality System monitors. The authors adjusted 
models for survey year, poverty-level, race/ethnicity, age, family structure, insurance coverage, usual 
source of care, education of adult, urban-rural status, region, and median county-level income. Through 
multi-pollutant, logistic regression models, an odds ratio of 1.29 (95% CI: 1.07-1.56) for a 10 µg/m3 
increase in PM2.5 concentrations and respiratory allergies was identified. 

2.3.1.12 Minor Restricted Activity Days 
No new epidemiologic studies of minor restricted activity days (MRADs) were identified in the 2019 PM 
ISA (U.S. EPA, 2019b). 

2.3.1.12.1 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Ostro and Rothschild, 1989 estimated the impact of PM2.5 and O3 on the incidence of minor restricted 
activity days (MRADs) and respiratory-related restricted activity days (RRADs) in a national sample of the 
adult working population, ages 18 to 65, living in metropolitan areas. The study population is based on 
the Health Interview Survey (HIS), conducted by the National Center for Health Statistics. In publications 
from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64. From the 
study, it is not clear if the age range stops at or includes those aged 65. We apply the risk estimate 
function to individuals ages 18-64 for consistency with other studies estimating impacts to non-elderly 
adult populations. The annual national survey results used in this analysis were conducted in the period 
1976-1981, controlling for PM2.5, two-week average O3. 

2.3.1.13 Work Loss Days 
No new studies of work loss days (WLDs) were identified in the 2019 PM ISA (U.S. EPA, 2019b).  

2.3.1.13.1 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Ostro, 1987 estimated the impact of PM2.5 on the incidence of work-loss days (WLDs), restricted activity 
days (RADs), and respiratory-related RADs (RRADs) in a national sample of the adult working population, 
ages 18 to 65, living in metropolitan areas. The study population is based on the Health Interview Survey 



 

44 
 

(HIS), conducted by the National Center for Health Statistics. The annual national survey results used in 
this analysis were conducted in 1976-1981. Ostro, 1987 reported that two-week average PM2.5 levels 
were significantly linked to work-loss days, RADs, and RRADs, however there was some year-to-year 
variability in the results. Separate coefficients were developed for each year in the analysis (1976-1981); 
these coefficients were pooled. The coefficient used in the concentration-response function presented 
here is a weighted average of the coefficients in Ostro, 1987, Table III, using the inverse of the variance 
as the weight. 

2.3.1.14 Lung Cancer  
The 2019 PM ISA determined that a “likely to be causal” relationship exists between long-term PM2.5 
exposure and cancer (U.S. EPA, 2019b), a change in the causality determination from the 2009 ISA (U.S. 
EPA, 2009). Specifically, the ISA found evidence of generally consistent positive associations between 
long-term PM2.5 exposure and lung cancer incidence.48 Additional details regarding potential pathways 
of disease development are summarized in the biological plausibility diagram provided by the ISA 
(section 2.2.1.2.1.3).  

For an outcome such as lung cancer, there is an expected time lag between changes in pollutant 
exposure in a given year and the reduction in lung cancer incidence, known as the latency period. The 
time between exposure and diagnosis can be quite long, on the order of years to decades. We discuss 
methods used to account for the latency period and other economic considerations relevant to this 
health endpoint in section 5.3.6. Importantly, we include this health endpoint to assess impacts of living 
with a lung cancer diagnosis, prior to disease resolution or death. 

2.3.1.14.1 Available Epidemiologic Literature 
We limited our pool of available studies to those of lung cancer incidence, excluding those assessing 
lung cancer mortality as that endpoint is included in the long-term exposure-attributable all-cause 
mortality endpoint (section 2.3.1.1.3.1). This resulted in four study options. 

2.3.1.14.2 Identifying Suitable Studies for Use in Benefits Assessments 
The four available studies varied in terms of population demographics included and country. Two of the 
four studies took place entirely in Canada. Of the two U.S.-based studies, one included all ages, sexes, 
and demographics and was restricted to non- and never-smokers, although it included some participants 
living in Canada. The identified study was most suitable as it took place in the U.S., included both males 
and females, and was restricted to non- and never-smokers (Gharibvand et al., 2017). 

2.3.1.14.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Gharibvand et al., 2017 evaluated whether positive associations exist between PM2.5 exposure and 
incidence of lung cancer in non-smokers among the Adventist Health and Smog Study-2 (AHSMOG-2), a 
group of health-conscious individuals of which 81% are never smokers. Authors collected ambient air 
pollution data (PM2.5 and O3) from the US EPA Air Quality system over two years (January 2000-
December 2001). Three a priori factors were added to the models as covariates: time spent outdoors, 
residence length, and moving distance during follow-up. Authors modeled the association between 

 
48 The ISA also found generally consistent positive associations between long-term PM2.5 exposure and lung cancer 
mortality, but as mortality impacts are included elsewhere (section 3.1.1), this endpoint focuses on non-fatal lung 
cancer incidence. 
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PM2.5 exposure and incidence of lung cancer using a Cox proportional hazards regression, with attained 
age as the time variable. The authors conducted both a single and a two-pollutant (PM2.5 and O3) 
analyses. The study concluded that each 10 µg/m3 increase in ambient PM2.5 concentrations was 
positively associated with increased lung cancer risks within the single-pollutant and two-pollutant 
multivariable models with O3. The identified hazard ratio of 1.46 (95% CI: 1.13-1.89) for each 10 µg/m3 
increase in mean monthly ambient PM2.5 concentrations came from a two-pollutant multivariable model 
with O3 (including a priori covariates). 

2.3.1.15 Alzheimer’s Disease 
Evidence connecting long-term PM2.5 exposure to nervous system effects led to the 2019 PM ISA 
concluding a “likely to be causal” relationship exists (U.S. EPA, 2019b) and various clinically relevant 
nervous system endpoints were called out in the biological plausibility section, including Alzheimer’s 
disease, Parkinson’s disease, autism spectrum disorder, cognitive decline, and dementia (section 
2.2.1.2.1.3). Regarding biological plausibility, the ISA stated that “neuroinflammation and 
neurodegeneration provide biological plausibility for epidemiologic results of increased hospital 
admissions or emergency department visits for Alzheimer’s and Parkinson’s disease.” 

There were over a dozen epidemiologic studies in the 2019 PM ISA evaluating cognitive-related 
outcomes (U.S. EPA, 2019b, sections 8.2.5-8.2.7). However, due to the nature of the endpoint, many of 
the outcomes were defined using scales and scores from cognitive tests. As we are currently unable to 
transfer that type of result into a clinically relevant population level outcome, we focused on the more 
clearly defined outcomes of Alzheimer’s disease and Parkinson’s Disease. These endpoints were also 
specifically called out in the ISA, as “epidemiologic studies also provide evidence of cognitive 
impairment and Alzheimer’s and Parkinson’s disease in association with exposure to PM2.5“ (U.S. EPA, 
2019b, section 8.2.6). 

2.3.1.15.1 Available Epidemiologic Literature 
One epidemiologic study of Alzheimer’s disease met our minimum required identification criteria 
(section 2.1.1). 

2.3.1.15.2 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Kioumourtzoglou et al., 2016 evaluated the potential impact of long-term PM2.5 exposure on first 
hospital admission for dementia, Alzheimer’s, or Parkinson’s diseases among Medicare beneficiaries (>= 
65 years old) in 50 cities in the northeastern U.S. (Connecticut, Delaware, Maine, Maryland, 
Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and 
Washington, D.C.). Authors retrieved medical data from the Center for Medicaid and Medicare from the 
years 1999-2010. The study followed enrollees as a cohort, which included annual follow-up records 
identifying the first hospital admissions for dementia (ICD-9 290), Alzheimer’s (ICD-9 331.0), Parkinson’s 
(ICD-9 332), and other cardiovascular comorbidities. With respect to Alzheimer’s disease, the study 
evaluated 9,817,806 Medicare enrollees and included 266,725 cause-specific hospital admissions 
indicating disease onset. Annual average PM2.5 concentrations were estimated for each city using data 
from the U.S. EPA Air Quality System database. Kioumourtzoglou et al., 2016 fit a time-varying Cox 
proportional hazards model for each city, using the city-wide annual PM2.5 concentrations as the time-
varying exposure of interest and a linear term for the calendar year. This eliminated the impact of PM2.5 
variation by city and any PM2.5 trends within cities. The model adjusted for cardiovascular comorbidities, 
and incorporated a counting process extension which created an observation for each year of follow-up 
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per person. The results were then pooled across individuals and cities. A single-pollutant model was 
used to develop the identified hazard ratio of 1.15 (95% CI: 1.11-1.19) for a 1 µg/m3 increase in the 
average annual PM2.5 concentrations.  

2.3.1.16 Parkinson’s Disease 
Evidence connecting long-term PM2.5 exposure to nervous system effects led to the 2019 ISA concluding 
a “likely to be causal” relation exists (U.S. EPA, 2019b) and various clinically relevant nervous system 
endpoints were called out in the biological plausibility section, including Alzheimer’s disease, Parkinson’s 
disease, autism spectral disorder, cognitive decline, and dementia (section 2.2.1.2.1.3). Regarding 
biological plausibility, the ISA stated that “neuroinflammation and neurodegeneration provide biological 
plausibility for epidemiologic results of increased hospital admissions or emergency department visits 
for Alzheimer’s and Parkinson’s disease.” 

There were over a dozen epidemiologic studies in the 2019 PM ISA evaluating cognitive-related 
outcomes (U.S. EPA, 2019b, sections 8.2.5-8.2.7). However, due to the nature of the endpoint, many of 
the outcomes were defined using scales and scores from cognitive tests. As we are currently unable to 
transfer that type of result into a clinically relevant disease incidence, we focused on the more clearly 
defined outcomes of Alzheimer’s disease and Parkinson’s Disease. These endpoints were also specifically 
called out in the ISA, as “epidemiologic studies also provide evidence of cognitive impairment and 
Alzheimer’s and Parkinson’s disease in association with exposure to PM2.5“ (U.S. EPA, 2019b, section 
8.2.6). 

2.3.1.16.1 Available Epidemiologic Literature 
Three epidemiologic studies of Parkinson’s disease were identified in the 2019 PM ISA. All evaluated 
relatively low PM2.5 concentrations and included participants from multiple states, however there were 
differences with respect to the ages and sexes evaluated, number of overall participants, and exposure 
estimation technique. 

2.3.1.16.2 Identifying Suitable Studies for Use in Benefits Assessments 
The prospective study with the lowest mean PM2.5 concentrations and most recent timespan included 
over 14 times the number of participants as the other two studies combined. It was also the only study 
to include participants over the age of 71, which is relevant as Parkinson’s disease prevalence rises with 
age (Pringsheim et al., 2014). 

2.3.1.16.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Kioumourtzoglou et al., 2016 evaluated the potential impact of long-term PM2.5 exposure on first 
hospital admission for dementia, Alzheimer’s, or Parkinson’s diseases among Medicare beneficiaries (>= 
65 years old) in 50 cities in the northeastern U.S. (Connecticut, Delaware, Maine, Maryland, 
Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and 
Washington, D.C.). Authors retrieved medical data from the Center for Medicaid and Medicare from the 
years 1999-2010. The study followed enrollees as a cohort, which included annual follow-up records 
identifying the first hospital admissions for dementia (ICD-9 290), Alzheimer’s (ICD-9 331.0), Parkinson’s 
(ICD-9 332), and other cardiovascular comorbidities. With respect to Parkinson’s disease, the study 
evaluated 9,817,806 Medicare enrollees and included 119,425 cause-specific hospital admissions 
indicating disease onset. Annual average PM2.5 concentrations were estimated for each city using data 
from the US EPA Air Quality System database. Kioumourtzoglou et al., 2016 fit a time-varying Cox 
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proportional hazards model for each city, using the city-wide annual PM2.5 concentrations as the time-
varying exposure of interest and a linear term for the calendar year. This eliminated the impact of PM2.5 
variation by city and any PM2.5 trends within cities. The model adjusted for cardiovascular comorbidities, 
and incorporated a counting process extension which created an observation for each year of follow-up 
per person. The results were then pooled across individuals and cities. A single-pollutant model was 
used to develop the identified hazard ratio of 1.08 (1.04 – 1.12) for a 1 µg/m3 increase in the average 
annual PM2.5 concentrations. 

 O3  
The following sections of the 2020 O3 ISA correspond to health endpoints judged as having a “causal” or 
“likely causal” relationship with O3 exposure: 

• Appendix 3: Health Effects – Respiratory, 3.1 Short-Term Ozone Exposure;  
• Appendix 3: Health Effects – Respiratory, 3.2 Long-Term Ozone Exposure; 
• Appendix 5: Health Effects – Metabolic Effects, 5.1 Short-Term Ozone Exposure; 
• Appendix 6: Health Effects – Mortality, 6.1 Short-Term Ozone Exposure and Mortality; and 
• Appendix 6: Health Effects – Mortality, 6.2 Long-Term Ozone Exposure and Mortality.  

Following the approach to identifying available epidemiologic literature (section 2.2), we began with the 
1,678 studies cited by the 2020 O3 ISA (U.S. EPA, 2020b). Of these, 130 morbidity studies evaluate health 
endpoints the 2020 O3 ISA determined as having a “causal” or “likely causal” relationship with O3 
exposure (sections 2.2.1 and 2.2.2). 77 studies remained after the required minimum criteria were 
applied, and that number decreased to 27 when broad hospital admissions and emergency department 
endpoints were identified.49 No studies of short-term O3 exposure metabolic effects meeting the 
minimum required criteria (section 2.1.1) were identified in the ISA. 

Table 7. O3 Study and Risk Estimate Identification Diagram 

O3 Endpoint and 
Exposure Duration 

Studies 
Available 

Studies 
Included Ages 

Risk 
Estimates 
Available 

Risk 
Estimates 
Included 

Respiratory Mortality 
(LT)  4 1 Adults and older adults 2 1 

Respiratory Mortality 
(ST) 6 2 Children, adults, and 

older adults 
16 1 

120 1 
Respiratory Hospital 
Admissions (ST) 3 1 Older adults 7 1 

Respiratory Emergency 
Department Visits (ST) 7 1 Children, adults, and 

older adults 45 5 

Asthma Onset (LT)   4 1 Children 8 1 
Asthma Symptoms (ST) 4 1 Children 160 1 
Minor Restricted 
Activity Days NA 1 Adults NA 1 

Allergic Rhinitis 1 1 Children 5 1 

 
49 This number may not be equal to the sum of available studies in Table 7 as individual studies may present risk 
estimates for multiple health endpoints. 
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School Loss Days NA 2 Children NA 1 
NA 1 

NA- not applicable due to the absence of additional ISA evidence. Risk estimates identified in the 2015 Ozone NAAQS RIA will 
continue to be utilized. 

2.3.2.1 Respiratory Mortality 
We separate respiratory mortality impacts resulting from short- and long-term exposures for several 
reasons. Firstly, the biological pathways of short- and long-term O3-attributable health effects may differ 
in ways that affect the manner in which this endpoint is quantified (section 2.2.1.2.2.1). For example, 
some impacts of long-term exposure to O3 may be incremental to impacts attributable to short-term 
exposure. Conversely, some impacts associated with long-term exposure to O3 may include impacts 
attributable to short-term exposure. However, we lack the evidence to determine the extent to which 
these risks are mutually exclusive or overlapping. Secondly, the level of support for respiratory mortality 
effects of short- and long-term O3 exposures may differ. Therefore, we continue to include risk 
estimates of respiratory mortality from both short- and long-term exposures to present a range of 
health impact estimates.  

2.3.2.1.1 Respiratory Mortality Attributable to Short-Term Exposures 
The 2020 O3 ISA determined that there exists a “causal” relationship between short-term O3 exposure 
and respiratory outcomes (U.S. EPA, 2020b). The short-term exposure causality determination “was 
made on the basis of a strong body of evidence integrated across controlled human exposure, animal 
toxicological, and epidemiologic studies, in addition to established findings from previous [Air Quality 
Criteria Documents], demonstrating respiratory effects due to short-term exposure to ozone.” While the 
ISA found that “recent epidemiological evidence for respiratory mortality is limited, but there remains 
evidence of consistent, positive associations, specifically in the summer months” and “when recent 
evidence is considered in the context of the larger number of studies evaluated in the 2013 Ozone ISA, 
there remains consistent evidence of an association between short-term ozone exposure and 
respiratory mortality.” Due to the strength of the ISA evidence relating short-term exposures to 
respiratory mortality, estimates of respiratory mortality impacts are included in the main benefits 
assessment of O3-attributable health impacts. 

Separately, 2020 ISA determined that the relationship between short-term O3 exposure and total 
mortality is “suggestive of, but not sufficient to infer, a causal relationship” (U.S. EPA, 2020b). By 
comparison, the 2013 ISA identified this endpoint as “likely to be causal” (U.S. EPA, 2013). Evidence 
supporting a relationship between short-term O3 exposure and total mortality included consistent 
epidemiologic evidence from multiple high-quality studies at relevant ozone concentrations, some 
support for an independent O3 association, and biological plausibility from studies of respiratory 
morbidity. In contrast, uncertainties remain regarding geographic heterogeneity in O3 mortality 
associations and there is limited biological plausibility from studies of cardiovascular morbidity. 
Regarding the biological plausibility of cardiovascular effects, while animal toxicological studies provide 
evidence of cardiovascular effects, recent controlled human exposure studies do not provide evidence 
to support potential biological pathways. Additionally, there is a lack of coherence with epidemiologic 
studies of cardiovascular morbidity, specifically, cardiovascular-related emergency department visits and 
hospital admissions, to support cardiovascular mortality. Due to limitations in ISA evidence relating 
short-term exposures to total mortality, estimates of all-cause mortality impacts will not be calculated 
when estimating benefits attributable to changes in O3 exposure.  
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2.3.2.1.1.1 Available Epidemiologic Literature 
There were six North American studies of short-term O3-attributable respiratory mortality identified in 
the 2020 O3 ISA, one of which was new to this review but took place entirely in (U.S. EPA, 2020b). Of the 
U.S.-based studies, two were single-city. The other three studies were fairly equally geographically and 
demographically representative, although one was a meta-analysis. 

2.3.2.1.1.2 Identifying Suitable Studies for Use in Benefits Assessments 
Of the six studies of short-term O3-attributable respiratory mortality, all but one study period ended 
during or before the year 2000 and the individual study that extended into the 2000s was geographically 
limited to a single city. This list also included a meta-analysis and a study that took place entirely in 
Canada. Two U.S.-based, nationally representative studies were identified as best characterizing risk 
across the U.S. for this endpoint. 

2.3.2.1.1.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
As Zanobetti and Schwartz, 2008 investigated the effects of short-term O3 exposure on mortality (all-
cause, cardiovascular, stroke, and respiratory) in an unrestricted population of children, adults, and 
older adults (aged 0-99 years), it remained a superior analysis of short-term O3-attributable respiratory 
mortality. Between 1998 and 2000, the authors collected mortality data from the National Center for 
Health Statistic in 48 cities across the United States. Along with eight-hour ozone concentrations and 
meteorological data obtained from US EPA’s Air Quality System Technology Transfer Network, the 
authors utilized a generalized linear model with quasi-Poisson link functions to estimate the effects of 
short-term ozone on respiratory mortality. The model adjusted for season, day of the week, and 
temperature. Since ozone concentrations vary between seasons, the authors decided to restrict their 
analysis to ozone warm season (June - August). The identified single-pollutant, warm season excess risk 
estimate of 0.83% (95% CI: 0.38-1.28%) for an increase of 10 ppb in DA8 O3 concentrations over a 
summed lag structure of zero to three days.  

Katsouyanni et al., 2009 also used time series methods to examine the relationship between short-term 
O3 exposures and mortality across the U.S for all ages. The study utilized mortality data from the 
National Center for Health Statistics (www.cdc.gov/nchs) for years 1987 through 1996, excluding 
accidental deaths (i.e., International Classification of Diseases (ICD]-9 800). 90 U.S. cities with population 
sizes varying from about 250,000 to above 9 million with the largest populations were included. Daily 
number of deaths ranged from 5 to 198. All 90 cities had daily summer O3 measurements. Investigators 
conducted extensive simulation studies to test 1) the choice of the smoothing method and basic 
functions used to estimate the smooth function of time in the city-specific models, and 2) the number of 
degrees of freedom to be used in the smooth function of time. The investigators also evaluated whether 
each city should be assigned the same model specification or whether each city-specific model should 
depend on city-specific characteristics. For the former, the same degrees of freedom (ranging from 1 to 
20 df/year of data) were assigned to the smooth function of time for every city. The range was 
determined by choosing the minimum possible degrees of freedom per year up to a maximum degrees 
of freedom per year that essentially removed all variation in the data beyond time scales of one week. 
Also, the collective experience of the investigators indicated that using more than 20 df/year does not 
substantially affect the risk estimates. For the latter approach, the degrees of freedom for the smooth 
function of time were chosen separately for each city using a fit criterion, such as the Akaike Information 
Criterion (AIC), or by minimizing the partial autocorrelation function (PACF) of the residuals. 
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Nonparametric methods underestimated the standard error of the air pollution regression coefficient, 
penalized splines gave relatively small bias, and PACF in combination with penalized splines performed 
relatively well in terms of bias. Therefore, the identified risk estimate was a summer-only penalized 
spline estimate of respiratory mortality of 0.73 (-0.39, 1.85) per 10 µg/m3 increase in O3 from distributed 
lag days was identified. 

The two risk estimates identified are not directly comparable to previous estimates of short-term 
exposure-related mortality as previous estimates were of nonaccidental mortality and current estimates 
are of respiratory mortality. 

2.3.2.1.2 Respiratory Mortality Attributable to Long-Term Exposures 
The 2020 O3 ISA determined that there exists a “likely to be causal” relationship between long-term O3 
exposure and respiratory outcomes (U.S. EPA, 2020b). The overall “likely to be causal” determination for 
long-term exposures “was based on epidemiologic evidence of associations between long-term ozone 
exposure and asthma development, respiratory symptoms in children with asthma, and respiratory 
mortality.” More specifically, the ISA found that “there is strong coherence between animal toxicological 
studies of changes in lung morphology and epidemiologic studies reporting positive associations 
between long-term ozone exposure and new onset asthma, respiratory symptoms in children with 
asthma, and respiratory mortality” and the “several multicity studies and a multi-continent study 
reported associations between short-term increases in ozone concentrations and increases in 
respiratory mortality.” Overall, the 2020 O3 ISA concluded there was “some evidence that long-term 
ozone exposure is associated with respiratory mortality, but the evidence is not consistent across 
studies.” Due to the strength of the ISA evidence relating long-term exposures to respiratory mortality, 
estimates of respiratory mortality impacts are included when estimating benefits attributable to 
changes in O3 exposure. 

2.3.2.1.2.1 Available Epidemiologic Literature 
There were four North American studies of long-term O3-attributable respiratory mortality identified in 
the 2020 O3 ISA, three of which were new to this review (U.S. EPA, 2020b).50 All four studies evaluated 
either the ACS CSP-II or the Canadian Census Health and Environment Cohort (CanCHEC) prospective 
cohorts, differing in study size, timespan, exposure estimation technique, and specific risk models 
analyzed.  

2.3.2.1.2.2 Identifying Suitable Studies for Use in Benefits Assessments 
Three of the four studies evaluating long-term O3-attributable respiratory mortality assessed the ACS 
CSP-II prospective cohort and the fourth evaluated the Canadian Census Health and Environment Cohort 
(CanCHEC) prospective cohort. Two of the three ACS CSP-II analyses were nationwide, with the third 
focusing on California. One of the two nationwide ACS CSP-II analyses included a longer and more recent 
study period, utilized hybrid exposure estimates, and included a larger number of participants. 

 
50The 2020 O3 ISA identified five North American studies of long-term O3-attributable respiratory mortality, but as 
Weichenthal et al., 2016 examined the combined oxidant capacity of O3 and NO2, and not direct effects of O3 
alone, it did not meet required minimum criteria for consideration for inclusion in benefits assessments (section 
1.1.1). 
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2.3.2.1.2.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Turner et al., 2016 examined the relationship between long-term O3 exposure (1982-2004) and mortality 
(all-cause, cause-specific) in American Cancer Society Cancer Prevention Study-II participants (aged 30-
99 years). A hierarchal Bayesian space-time model based on National Air Monitoring Stations, State and 
Local Air Monitoring Stations, and Community Multi-Scale Air Quality model data estimated daily eight-
hour maximum ozone concentrations at the participant’s address. The models considered 
meteorological data and levels of other ambient pollutants (PM2.5, both regional and near-source, and 
NO2). Turner et al., 2016 utilized Cox proportional hazard models adjusted a priori for individual, socio-
demographic, and ecological variables. The hazard ratio of 1.12 (1.08 – 1.16) from a multi-pollutant, all-
year model of respiratory mortality for a 10-ppb increase in the annual average of daily 8-hour 
maximum ozone concentrations was likely the most comprehensive risk estimate. This study also 
provided a warm-season specific hazard ratio of 1.08 (1.06-1.11) per 10 ppb increase in seasonal 
average of daily 8-hour maximum O3 concentrations, which will be used when air quality surfaces are 
only available for the summer season. Notably, the study compared annual mortality with warm-season 
O3 exposures, so full-year baseline incidence rates will be used with risk estimates from this study. 

The identified risk estimate of long-term exposure associated mortality is larger than the risk estimate 
used in previous benefits assessments (Jerrett et al., 2009), but differs in many aspects including study 
size, included study locations, and exposure estimation technique. 

2.3.2.2 Respiratory Hospital Admissions  
After considering the relationships between specific and broad respiratory hospital admission endpoints, 
the 2020 O3 ISA stated that “studies conducted in diverse locations with a variety of exposure 
assignment techniques continue to provide evidence of an association between ozone and both hospital 
admissions and emergency department visits for combined respiratory diseases” (U.S. EPA, 2020b, 
section 3.1.8). 

2.3.2.2.1 Available Epidemiologic Literature 
Three epidemiologic studies of respiratory hospital admission were identified in the 2020 O3 ISA, which 
varied considerably with respect to the timespans evaluated and study population locations (U.S. EPA, 
2020b).  

2.3.2.2.2 Identifying Suitable Studies for Use in Benefits Assessments 
The two older studies either included only Canadian participants or included U.S., Canadian, and some 
European participants. Therefore, we identified the most recent and only entirely U.S.-based study as 
best characterizing risk across the U.S. 

2.3.2.2.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Katsouyanni et al., 2009 used time series methods to examine the relationship between daily O3 
concentrations and hospital admissions in North America. For U.S. benefits estimation purposes, we 
focus on analyses performed using the U.S hospital admission datasets. These datasets included 14 cities 
with populations between 291,000 and 5,377,000 between 1987-1996 with city-wide MDA1 O3 
concentrations ranging from ~34-60 µg/m3. The authors used a first stage analysis protocol that used 
generalized linear models with either penalized or natural splines to adjust for seasonality, with varying 
degrees of freedom. The number of degrees of freedom were also chosen by minimizing the partial 
autocorrelation function of the model’s residuals. Model specification approach accounted for seasonal 
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patterns, weekend and vacation effects, and epistemics of respiratory disease. Data were also analyzed 
to detect potential thresholds in the concentration-response relationships. The second stage analysis 
used pooling approaches and assessed potential effect modification by sociodemographic characteristic 
and indicators of the pollution mixture across study regions. The identified percent change in respiratory 
disease admission for those aged >64 was from a copollutant model including PM10 is 0.28 (-0.07, 0.62) 
per 10 µg/m3 increase in O3. 

2.3.2.3 Respiratory Emergency Department Visits 
After considering the relationships between specific and broad respiratory emergency department visit 
endpoints, the 2020 O3 ISA stated that “studies conducted in diverse locations with a variety of exposure 
assignment techniques continue to provide evidence of an association between ozone and both hospital 
admissions and emergency department visits for combined respiratory diseases” and “there is some 
evidence, previously characterized in the 2013 O3 ISA, that daily 8 hour max, 1 hour max, and daytime 
average O3 concentrations may be most strongly associated with respiratory emergency department 
visits” (U.S. EPA, 2020b, section 3.1.8). 

2.3.2.3.1 Available Epidemiologic Literature 
Seven U.S.-based studies of respiratory emergency department visits were identified in the 2020 O3 ISA 
(U.S. EPA, 2020b). As is common with hospital admission and emergency department health endpoints, 
the specific ICD codes varied across all studies, making pooling difficult. Most studies evaluated only a 
single city or state and took place in a similar time period, including the early 2000s.  

2.3.2.3.2 Identifying Suitable Studies for Use in Benefits Assessments 
Available studies varied most widely by geographic area, exposure estimation method, population age 
range, and O3 season. While most studies focused on a specific city, state or region, one study included 
five different multi-county areas. In addition, it included a recent time period, all ages, current O3 
concentrations, and was one of only two studies based on hybrid exposure techniques.  

2.3.2.3.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Barry et al., 2019 investigated the effects of short-term ozone exposure on emergency department visits 
for respiratory disease (ICD-9 493, 786.07, 460-466, 477, 491, 492, 496, 480–486, 466.1, 466.11, 466.19) 
in an unrestricted population of children, adults, and older adults (aged zero-99 years) within five cities 
(Atlanta, GA, Birmingham, AL, Dallas, TX, Pittsburgh, PA, and St. Louis, MO-IL) across the United States. 
Authors obtained individual-level health data from hospitals and hospital associations in each of the five 
cities. Models fusing air quality monitor data with Community Multi-Scale Air Quality modeled data at 
12 x 12-km grids were used to estimate ozone exposure. Barry et al., 2019 assessed associations with 
short-term ozone exposure with daily eight-hour maximum ozone concentrations. The authors 
implemented Poisson log-linear models to estimate risk values with three day moving averages. They 
identified single-pollutant rate ratios of 1.03 (95% CI: 1.01-1.05) in Atlanta, GA, 1.03 (95% CI: 1.00-1.06) 
in Birmingham, AL, 1.05 (95% CI: 1.02-1.07) in Dallas TX, 1.03 (95% CI: 1.01-1.05) in Pittsburgh, PA, and 
1.02 (95% CI: 1.01-1.04) in St. Louis, MO-IL for an increase of 25 ppb in full-year MDA8 O3 concentrations 
(three day moving average). Results from individual cities are pooled.  

2.3.2.4 Asthma Onset 
The 2020 O3 ISA concluded that “recent epidemiologic studies provide generally consistent evidence for 
associations of long-term ozone exposure with the development of asthma in children” (U.S. EPA, 
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2020b, section IS.4.3). The ISA also found that “recent animal toxicological studies demonstrate effects 
on airway development in rodents…and build on and expand the evidence for long-term ozone 
exposure-induced effects that may lead to asthma development” and asthma onset was called out as a 
key population level clinically relevant health endpoint in the biological plausibility pathways (section 
2.2.1.2.2.1, Figure 9). More specifically, the O3 ISA stated that a “limited number of recent epidemiologic 
studies provide generally consistent evidence that long-term ozone exposure is associated with the 
development of asthma in children” (U.S. EPA, 2020b, section 3.2.6). 

2.3.2.4.1 Available Epidemiologic Literature 
The 2020 O3 ISA identified children as the population in which this health effect was observed, so we 
began with the four ISA-identified studies of people <21 (U.S. EPA, 2020b).  

2.3.2.4.2 Identifying Suitable Studies for Use in Benefits Assessments 
Three studies evaluated prospective cohorts, two of which included more recent timespans and likely 
lower O3 concentrations. One of those studies took place entirely in Canada but included a substantially 
larger study size (>200 times larger) than the other. As the asthma onset endpoint is consistent between 
studies, pooling may be appropriate. 

2.3.2.4.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Tetreault et al., 2016 investigated the effects of long-term O3 exposure on asthma onset in children 
(aged zero-12 years) from Québec, Canada. The study followed participants from the Québec Integrated 
Chronic Disease Surveillance System open birth cohort between 1999 and 2011. The authors defined 
new cases of asthma based on hospital discharge reports and physician diagnoses (two diagnoses within 
a two-year span). Monitor data (Canadian National Air Pollution Surveillance network) and land-use 
mixed effect models estimated warm season (June to August) O3 exposures. Authors assessed 
associations with asthma onset with both time of birth and time-varying exposure models and adjusted 
for year of birth, sex, and indices of social and material deprivation. Tetreault et al., 2016 used Cox 
proportional hazard models to observe associations between long-term O3 exposure and asthma onset 
in children. The identified single-pollutant, warm-season hazard ratio was 1.07 (95% CI: 1.06-1.08) for a 
3.26 ppb (interquartile range) increase in annual O3 concentrations.  

As the physiology and etiology of lung development in children is similar in children 6-17 (Baena-Cagnani 
et al., 2007, Guerra et al., 2004, Ochs et al., 2004, Sparrow et al., 1991, Trivedi and Denton, 2019), we 
apply the 4-12 year age-stratified effect estimate from Tetreault et al., 2016 to children ages 4-17.  

2.3.2.5 Asthma Symptoms 
Asthma symptoms/exacerbation is identified as a health effect of short-term O3 exposure (section 
2.2.1.2.2.1). Overall, the ISA found that “evidence from recent epidemiologic and experimental studies 
continues to support an association between ozone and asthma exacerbation” with 
“associations…observed across a range of ozone concentrations, and…consistent in models with 
measured or modeled concentrations” (U.S. EPA, 2020b, section 3.1.5.7). 

2.3.2.5.1 Available Epidemiologic Literature 
Four epidemiologic studies of asthma symptoms meeting our minimum criteria (section 2.1.1) were 
identified in the 2020 O3 ISA (U.S. EPA, 2020b). Most studies took place in the late nineties and very 
early 2000s, and although no study included >1000 participants, there was appreciable geographic 
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representation. There were also differences regarding the ozone season. Only the oldest study 
specifically evaluated a warm season, although a more recent study did skew slightly toward warmer 
seasons, evaluating eight seasons over a four-year timespan (two Summers, three Springs, two Falls, and 
one Winter). 

2.3.2.5.2 Identifying Suitable Studies for Use in Benefits Assessments 
Two of the studies evaluated much higher O3 concentrations (~50 ppb vs 30 ppb). Of the two studies 
evaluating lower pollutant concentrations, one employed a prospective study design and clearly defined 
the specific asthma symptoms evaluated (e.g., wheeze).  

2.3.2.5.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Lewis et al., 2013 studied the effects of short-term O3 exposure on frequency of asthma symptoms in an 
asthmatic population of primarily lower-income, African American and Latino children (aged five-12 
years) in East and Southwest Detroit, MI. Authors obtained health and demographic data through 
questionnaires filled out by parents or guardians for 14 consecutive days in each studied season. 
Questionnaires highlighted participant’s asthma symptoms (cough, wheeze, shortness of breath, chest 
tightness), demographic information, medication use, and presence of second-hand smoke. The authors 
acquired maximum one-hour and maximum 8-hour O3 concentrations and meteorological data from two 
community-level monitors placed on East and Southwest Detroit, MI school rooftops. Lewis et al., 2013 
implemented a combination of generalized estimating equations and alternative logistic regression 
models to estimate the associations between short-term O3 exposure and rate of asthma symptoms. 
Models adjusted for age, sex, location (Eastside or Southwest), race, household income, smoker in the 
home, season, and variables for companion home intervention study (control or intervention), time 
(pre- or post-intervention), and the interaction between intervention group status and time. Lewis et al., 
2013 observed positive associations between short-term O3 exposure and asthma symptoms, including 
the identified single-pollutant, all year odds ratios of 1.12 (95% CI: 0.99-1.25) for cough, 1.13 (95% CI: 
0.99-1.28) for wheeze, 1.20 (95% CI: 1.02-1.40) for chest tightness, and 1.07 (95% CI: 0.95-1.21) for 
shortness of breath, all for a 16 ppb (interquartile range) increase in 8-hour maximum O3 concentrations 
(five-day average lag).51 

2.3.2.6 Minor Restricted Activity Days 
No new epidemiologic studies of minor restricted activity days (MRADs) were identified in the 2020 O3 
ISA (U.S. EPA, 2020b). 

2.3.2.6.1 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Ostro and Rothschild, 1989 estimated the impact of PM2.5 and O3 on the incidence of minor restricted 
activity days (MRADs) and respiratory-related restricted activity days (RRADs) in a national sample of the 
adult working population, ages 18 to 65, living in metropolitan areas. The study population is based on 
the Health Interview Survey (HIS), conducted by the National Center for Health Statistics. In publications 
from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64. From the 
study, it is not clear if the age range stops at or includes those aged 65. We apply the risk estimate 
function to individuals ages 18-64 for consistency with other studies estimating impacts to non-elderly 

 
51 Estimates were obtained from figures. Authors did not respond to requests for exact results. 
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adult populations. The annual national survey results used in this analysis were conducted in the period 
1976-1981, controlling for PM2.5, two-week average O3. 

2.3.2.7 Allergic Rhinitis (Hay Fever/Respiratory Allergies) 
The 2020 O3 ISA stated that “cross-sectional epidemiologic studies provide generally consistent evidence 
that ozone concentrations are associated with hay fever/rhinitis” and included “allergic responses” in 
the biological plausibility diagram for long-term O3-attributal respiratory effects (U.S. EPA, 2020b, 
section 2.2.1.2.2.1). Although cross sectional analyses do not establish a temporal sequence, they can be 
used to estimate benefits associated with changes in air quality.  

2.3.2.7.1 Available Epidemiologic Literature 
The 2020 O3 ISA identified one epidemiologic study of long-term O3 exposure and allergic rhinitis. 

2.3.2.7.2 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Parker et al., 2009 investigated the associations between long-term O3 exposure and respiratory 
allergies in an unrestricted population of children (aged 3-17 years) sampled from the United States 
National Health Interview Survey. Authors obtained symptom data from participant parents, who 
reported respiratory allergies on annual surveys. Parker et al., 2009 placed all study participants 
reporting symptoms of respiratory allergies or hay fever into a combined rhinitis group. Parker et al., 
2009 linked annual averages of SO2, NO2, PM2.5, and PM2.5-10 and warm season (May to September) O3 
averages to participant’s addresses through ambient air pollution and meteorological data collected 
from US EPA Air Quality System monitors. The authors adjusted models for survey year, poverty-level, 
race/ethnicity, age, family structure, insurance coverage, usual source of care, education of adult, 
urban-rural status, region, and median county-level income. Through multi-pollutant, logistic regression 
models, the odds ratio of 1.18 (95% CI: 1.09-1.27) for a 10-ppb increase in 24-hour mean, warm season 
O3 and respiratory allergies was identified. 

2.3.2.8 School Loss Days 
No new studies of work loss days (WLDs) were identified in the 2020 O3 ISA (U.S. EPA, 2020b). 

2.3.2.8.1 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Gilliland et al., 2001 examined the association between air pollution and school absenteeism among 
fourth grade school children (aged nine to 10) in 12 southern Californian communities. The study was 
conducted from January through June 1996. The authors used school records to collect daily absence 
data and parental telephone interviews to identify causes. They defined illness- related absences as 
respiratory or non-respiratory. A respiratory illness was defined as an illness that included at least one of 
the following: runny nose/sneezing, sore throat, cough, earache, wheezing, or asthma attack. The 
authors used 15- and 30-day distributed lag models to quantify the association between O3 and incident 
school absences. O3 levels were positively associated with all school absence measures and significantly 
associated with all illness-related school absences (non-respiratory illness, respiratory illness, URI and 
LRI). The health impact function for ozone is based on the results of the single pollutant model.  

Gilliland et al., 2001 defines an incident absence as an absence that followed attendance on the 
previous day and the incidence rate as the number of incident absences on a given day over the 
population at risk for an absence on a given day (i.e., those children who were not absent on the 
previous day). Since school absences due to air pollution may last longer than one day, an estimate of 
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the average duration of school absences could be used to calculate the total avoided school loss days 
from an estimate of avoided new absences. A simple ratio of the total absence rate divided by the new 
absence rate would provide an estimate of the average duration of school absences, which could be 
applied to the estimate of avoided new absences as follows:  

 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

 

 

∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  −�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × �𝑒𝑒−𝛽𝛽×𝑂𝑂3 − 1�� × 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑝𝑝𝑝𝑝𝑝𝑝 

 

Since the function is log-linear, the baseline incidence rate (in this case, the rate of new absences) is 
multiplied by duration, which reduces to the total school absence rate. Therefore, the same result would 
be obtained by using a single estimate of the total school absence rate in the risk estimate. Using this 
approach, we assume that the same relationship observed between pollutant and new school absences 
in the study would be observed for total absences on a given day. As a result, the total school absence 
rate is used in the function below. The derivation of this rate is described in the section on baseline 
incidence rate estimation.  

For all absences, the coefficient and standard error are based on a percent increase of 16.3 percent 
(95% CI -2.6 percent, 38.9 percent) associated with a 20-ppb increase in eight-hour average ozone 
concentration (2001, Table 6, p. 52).  

A scaling factor is used to adjust for the number of school days in the ozone season. In the modeling 
program, the function is applied to every day in the ozone season (May 1 - September 30), however, in 
reality, school absences will be avoided only on school days. We assume that children are in school 
during weekdays for all of May, two weeks in June, one week in August, and all of September. This 
corresponds to approximately 2.75 months out of the five-month season, resulting in an estimate of 
39.3% of days (2.75/5*5/7). 

In addition, not all children are at-risk for a new school absence, as defined by the study. On average, 
5.5% of school children are absent from school on a given day (NCES, 1996, Table 42-1). Only those who 
are in school on the previous day are at risk for a new absence (1-0.055 = 94.5%). As a result, a factor of 
94.5% is used in the function to estimate the population of school children at-risk for a new absence.  

2.4 IDENTIFIED STUDY AND RISK ESTIMATES FOR BENEFITS ASSESSMENTS 
While we begin with studies identified in ISAs, the goals of an ISA differ greatly from those of benefits 
assessments. ISAs evaluate the overall state of the science and develop overarching conclusions relating 
exposure to health effects. This includes analyses of specific subgroups, such as people with pre-existing 
conditions, that may not be transferrable to the entire U.S. population. 

In an effort to make our study and risk estimate identification process as transparent and reproducible 
as possible, we have explicitly stated the criteria used in our approach (section 0) as well as the available 
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epidemiologic studies evaluated (section 2.2). However, even with such detailed information, expert 
judgment can be required if multiple estimates meet the required criteria, satisfy a similar number of 
preferred criteria, and are unable to be statistically aggregated into a single risk estimate (i.e., pooling).  

The two tables in this section provide information on the health endpoints and risk estimates identified 
for use in PM2.5 and O3 benefits estimation (Table 10 and Table 11) using the systematic approach 
described above (sections 2.1 and 2.2). 
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 Health Endpoints 
These summary tables provided an overview of the PM2.5 and O3 health endpoints included in the main 
benefits analysis. They are the outcome of the systematic approach described above, which involved 
consideration of recent ISA conclusions along with the availability of clinically relevant epidemiologic risk 
estimates (Table 8 and Table 9).  

2.4.1.1 PM2.5 
Table 8. Set of Health Endpoints for Main PM2.5 Benefits Assessments  

Endpoint Group Endpoint Type Endpoint Exposure Ages 

Mortality Mortality All cause LT Adults and older adults 
(18-99 and 65-99 years) 

ST Infants (1-12 months) 
Cardiovascular 
Effects 

Hospital 
Admissions 

Cardiovascular 
Outcomes ST Older adults (65-99 

years) 
Emergency 
Department Visits 

Cardiovascular 
Outcomes ST Children, adults, and 

older adults (0-99 years) 
Incidence Acute Myocardial 

Infarction ST Older adults (65-99 
years) 

Strokea LT Older adults (65-99 
years) 

Cardiac Arresta ST Children, adults and 
older adults (0-99 years) 

Respiratory 
Effects 

Hospital 
Admissions 

Respiratory 
Outcomes ST Children and older 

adults (65-99 years) 
Emergency 
Department Visits 

Respiratory 
Outcomes ST Children, adults, and 

older adults (0-99 years) 
Incidence Asthma Onseta LT Children (0-17 years) 

Asthma Symptoms ST Children (6-17 years) 
Allergic Rhinitisa LT Children (3-17 years) 
Minor Restricted 
Activity Days NA Adults and older adults 

(18-64 years) 

Work Loss Days NA Adults and older adults 
(18-64 years) 

Cancer Incidence Lung Cancera LT Adults and older adults 
(30-99 years) 

Nervous System 
Effects Hospital 

Admissions 

Alzheimer’s Diseasea LT Older adults (65-99 
years) 

Parkinson’s Diseasea LT Older adults (65-99 
years) 

aNew health endpoint. 
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2.4.1.2 O3 
Table 9. Set of Health Endpoints for Main O3 Benefits Assessments  

Endpoint 
Group Endpoint Type Specific Endpoint Exposure Ages 

Mortality Mortality Respiratorya 
ST Children, adults, and older 

adults (0-99 years) 

LT Adults and older adults 
(30-99 years) 

Respiratory 
Effects 

Hospital Admissions Respiratory 
Outcomes ST Older adults (65-99 years) 

Emergency 
Department Visits 

Respiratory 
Outcomes ST Children, adults, and older 

adults (0-99 years) 

Incidence 

Asthma Onseta LT Children (0-17 years) 
Asthma Symptoms ST Children (5-17 years) 
Allergic Rhinitisa LT Children (3-17 years) 
Minor Restricted 
Activity Days ST Adults and older adults 

(18-64 years) 

School Loss Days ST Children (5-12 years) 
ST Children (9-10 years) 

aNew or updated health endpoint. 

 Risk Estimates 
This section presents the risk estimates identified for the main PM2.5 (section 2.4.2.1) and O3 (section 
2.4.2.2) benefits assessments. These lists reflect the application of the available epidemiologic literature 
(section 2.2) to the identification criteria (section 2.1).  

2.4.2.1 PM2.5 
Table 10. Set of Risk Estimates for Main PM2.5 Benefits Assessments  

Endpoint Study Information Ages Exposure 
Duration  

Beta Coefficient 
(SE)1 

Mortality 

Wu et al., 2020 Older adults 
(65-99 years) LT β = 0.0064 (0.0003) 

Pope III et al., 2019 Adults (18-99 
years) LT β = 0.0113 (0.0016) 

Turner et al., 2016 Adults (30-99 
years) LT β = 0.0058 (0.0010) 

Woodruff et al., 2008 Infants (1-12 
months) LT β = 0.0056 (0.00454) 

Hospital 
Admissions, 
Cardiovascular 

Bell et al., 2015 —ICD 
410, omitting 410.x2; 
410-414; 426-427; 
428; 429; 430-438; 
and 440-448 

Older adults 
(65-99 years) ST β = 0.00065 (0.00009) 

Emergency 
Department 

Ostro et al., 2016—
ICD 390-459 

Children, 
adults, and ST β = 0.00061 (0.00042) 
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Endpoint Study Information Ages Exposure 
Duration  

Beta Coefficient 
(SE)1 

Visits, 
Cardiovascular 

older adults 
(0-99 years) 

Acute 
Myocardial 
Infarction 

Wei et al., 2019 
Adults and 
older adults 
(18-99 years) 

ST β = 0.02412 (0.00928) 

Cardiac Arrest 
Ensor et al., 2013 
Rosenthal et al., 2008 
Silverman et al., 2010 

Adults and 
older adults 
(0-99 years) 

ST 
β = 0.00638 (0.00282)  
β = 0.00198 (0.00502) 
β = 0.00392 (0.00222) 

Stroke Kloog et al., 2012—
ICD 430-436 

Older adults 
(65-99 years) LT β = 0.00343 (0.00127) 

Hospital 
Admissions, 
Respiratory 

Bell et al., 2015—ICD 
490-492, 464-466, 
480-487, 493 

Older adults 
(65-99 years) ST β = 0.00025 (0.00012) 

Ostro et al., 2009—
ICD 460-519 

Children (0-18 
years) ST β = 0.00275 (0.00077) 

Emergency 
Department 
Visits, 
Respiratory 

Krall et al., 2013—
ICD 480-486, 491, 
492, 496, 460-465, 
466, 477, 493, 786.07 

Children, 
adults, and 
older adults 
(0-99 years) 

ST 

β = 0.00055 (0.00027) (GA) 
β = 0.00097 (0.00035) (AL) 
β = 0.00083 (0.00033) (MO) 
β = 0.00135 (0.00059) (TX) 

Asthma Onset Tetreault et al., 2016 Children (0-17 
years) LT β = 0.04367 (0.00088) 

Allergic Rhinitis Parker et al., 2009 Children (3-
17) LT β = 0.02546 (0.00962) 

Lung Cancer Gharibvand et al., 
2017 

Adults and 
older adults 
(>29 years) 

LT β = 0.03784 (0.01312) 

Alzheimer’s 
Disease 

Kioumourtzoglou et 
al., 2016—ICD 331.0 

Older adults 
(>64 years) LT β = 0.13976 (0.01775) 

Parkinson’s 
Disease 

Kioumourtzoglou et 
al., 2016—ICD 332 

Older adults 
(>64 years) LT β = 0.07696 (0.01891) 

Asthma 
Symptoms 

Rabinovitch et al., 
2006 

Children (6-17 
years) ST β = 0.00200 (0.00148) 

Minor 
Restricted 
Activity Days 

Ostro and Rothschild, 
1989 

Adults and 
older adults 
(18-64 years) 

N/A β = 0.00741 (0.0007) 

Work Loss Days Ostro, 1987 
Adults and 
older adults 
(18-64 years) 

N/A β = 0.0046 (0.00036) 

ST- short-term; LT- long-term, β- beta risk estimate; ICD- International Statistical Classification of Diseases 
Notes: Horizontal lines separating studies within an endpoint indicates that the studies are not intended to be pooled.  
1 Risk estimates have been mathematically converted to beta coefficients, which include the increment of pollutant change and 
allow for more direct comparisons of risk estimates within health endpoints. 
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2.4.2.2 O3 
Table 11. Set of Risk Estimates for Main O3 Benefits Assessments  

Endpoint Study 
Information Ages Exposure (Duration; 

Season; Metric) 
Beta Coefficient 
(SE)1 

Respiratory 
Mortality 

Zanobetti and 
Schwartz, 2008 

Children, 
adults, and 
older adults 
(0-99 years) 

ST; June-August; 
DA8 

β = 0.00083 (0.00023) 
(warm season) 

Katsouyanni et 
al., 2009 

Children, 
adults, and 
older adults 
(0-99 years) 

ST; April-September; 
MDA1 

β = 0.00073 (0.00057) 
(warm season) 

Turner et al., 
2016—ICD 460-
519  

Adults and 
older adults 
(30-99 years) 

LT; April-September; 
MDA8 

β = 0.007696 (0.00118) 
(warm season) 

Hospital 
Admissions, 
Respiratory 

Katsouyanni et 
al., 2009—ICD 
460–519 

Older adults 
(65-99 years) 

ST; April-September; 
MDA1 

 
β = 0.00028 (0.00018) 
(warm season) 

Emergency 
Department 
Visits, 
Respiratory 

Barry et al., 
2019—ICD 493, 
786.07, 460-
466, 477, 491, 
492, 496, 480–
486, 466.1, 
466.11, 466.19 

Children, 
adults, and 
older adults 
(0-99 years) 

ST; January-
December; MDA8 

β = 0.00118 (0.00040) 
(Atlanta, GA) 
β = 0.00118 (0.00059) 
(Birmingham, AL) 
β = 0.00195 (0.00049) 
(Dallas, TX) 
β = 0.00118 (0.00040) 
(Pittsburgh, PA)  
β = 0.00079 (0.00030) 
(St. Louis, MO-IL) 

Asthma Onset 
Tetreault et al., 
2016  
 

Children (0-
17 years) 

LT; June-August; 
MDA8 

β = 0.02075 (0.00146) 
(warm season) 

Asthma 
Symptoms 

Lewis et al., 
2013 

Children (5-
17 years) 

ST; January-
December; MDA8 

β = 0.00708 (0.00372) 
(Cough) 
β = 0.00764 (0.00410) 
(Wheeze) 
β = 0.01140 (0.00505) 
(Chest tightness) 
β = 0.00423 (0.00386) 
(Shortness of breath) 

Allergic Rhinitis Parker et al., 
2009 

Children (3-
17 years) 

LT; May-September; 
DA24 

β = 0.01655 (0.00390) 
(warm season) 

Minor Restricted 
Activity Days 

Ostro and 
Rothschild, 1989 
(MRADs) 

Adults and 
older adults 
(18-64 years) 

ST; April-September; 
MDA1 β = 0.0022 (0.000658) 

School Loss Days Gilliland et al., 
2001 

Children (5-
17 years) 

ST; January-June; 
DA8 β = 0.0078 (0.0044) 
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ST- short-term; LT- long-term, β- risk estimate (beta); ICD- International Statistical Classification of Diseases; DA8- daily 8-hour 
average; MDA8- maximum daily 8-hour average; MDA1- maximum daily 1-hour average; DA24- daily 24-hour average 
Notes: Horizontal lines separating studies within an endpoint indicates that the studies are not intended to be pooled 
1 Risk estimates have been mathematically converted to beta coefficients, which include the increment of pollutant change and 
allow for more direct comparisons risk estimates within health endpoints. 
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3 BASELINE INCIDENCE AND PREVALENCE ESTIMATES  

A baseline incidence rate is an estimate of the number of new cases in the assessment location over a 
specific timespan, typically one year. For example, in 2018 the mortality rate was 868 deaths per 
100,000 people in the U.S.52 The baseline incidence of the health effect is necessary to convert the 
relative risk of a health effect provided by epidemiologic studies into an estimated number of cases. To 
derive the total baseline incidence per year, this rate must be multiplied by the corresponding 
population. Continuing with the above example, there were 327 million people in the U.S. in 2018, 
leading to a total baseline incidence of 2.8 million deaths in that year. 

Prevalence rates are the proportion of the population experiencing a health endpoint at a point in time. 
This rate is important when estimating impacts of chronic illnesses, such as asthma, in order to exclude 
those already diagnosed from the population at risk. For example, if the prevalence of asthmatic 
children is 8%, only the remaining 92% are at risk of developing asthma. 

EPA develops either daily or annual baseline incidence and prevalence rates at the most geographically- 
and age-specific levels feasible for each health endpoint assessed. For many locations within the U.S., 
these data are available resolved at the county- or state-level, providing a better characterization of the 
geographic distribution of hospital and emergency department visits than the national rates. For this 
update, we focused on developing baseline incidence rates for new health endpoints. Detailed 
information on baseline incidence data developed previously can be found in Appendix D of the 
BenMAP-CE User Manual (U.S. EPA, 2018). Importantly, when applying either the daily or annual 
baseline incidence rates to a health impact estimate, the temporal scale over which the health endpoint 
was assessed within each study is taken into account. For example, if a long-term O3 exposure study 
associated annual deaths with warm-season exposures, full-year baseline incidence rates will be used 
when estimating benefits.53 

Table 12 summarizes the sources of baseline incidence rates and provides national average (where 
used) incidence rates for the endpoints included in the analysis. For both baseline incidence and 
prevalence data, we used age-stratified rates where available. We applied risk estimates to individual 
age groups and then sum them over the relevant age range to estimate total population benefits. In 
some cases, we used a single national incidence rate, due to a lack of more spatially disaggregated data, 
time, or resources. In these cases, whenever possible we used national average rates, because these 
data are most applicable to a national assessment of benefits. For some studies, however, the only 
available incidence information comes from the studies themselves; in these cases, incidence in the 
study population is assumed to represent typical incidence at the national level.  

 
52 CDC WONDER mortality data; https://www.cdc.gov/nchs/fastats/deaths.htm. 
53 Turner et al., 2016 and Tetreault et al., 2016 risk estimates of long-term O3-attributable health impacts use full-
year baseline incidence rates, even though the exposure period is restricted to the warm season. As such, our 
baseline incidence rate estimates also reflect the full year for those health endpoints. 
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Table 12. Baseline Incidence Rates for Use in Impact Functions 

Endpoint Parameter Rates 
Value Source 

Mortality1 Daily or annual projected 
incidence to 2060 in 5-
year increments (0--99) 

Age-, cause-, race-, and 
county-stratified rates 

CDC WONDER (2012–
2014) 
U.S. Census Bureau, 
2012 

Hospitalizations2 Daily incidence rates for 
all ages 

Age-, 
region/state/county-, and 
cause- stratified rates 

2011-2014 HCUP data 
files and data 
requested from and 
supplied by individual 
states 

Emergency 
Department Visits2 

Daily emergency 
department visit incidence 
rates for all ages 

Age-, region-, state-, 
county-, and cause- 
stratified rates 

2011-2014 HCUP data 
files and data 
requested from and 
supplied by individual 
states 

Nonfatal Acute 
Myocardial 
Infarction 

Daily nonfatal AMI 
incidence rate per person 
aged 18-99 

Age-, region-, state-, and 
county- stratified rates 

AHRQ, 2016  

Asthma Symptoms Daily incidence among 
asthmatic children 
 
Wheeze (ages 5-12) 
Cough (ages 5-12) 
Shortness of breath (ages 
5-12) 
Albuterol use (ages 6-13) 

 
 
 
 
Age- and race- stratified 
rates 
 
 
2.2 puffs per day 

 
 
 
 
Ostro et al., 2001 
 
 
 
Rabinovitch et al., 
2006 

Asthma Onset Annual incidence  
0 - 4 
5 - 11 
12 - 17 

 
0.0234 
0.0111 
0.0044 

Winer et al., 2012 

Alzheimer’s 
Disease 

Daily incidence rates for 
all ages 

Age-, region-, state-, and 
county- stratified rates 
 

2011-2014 HCUP data 
files 

Parkinson’s Disease Annual incidence  
18 - 44 
45 - 64 
65 - 84 
85 - 99 

 
0.0000011 
0.0000366 
0.0002001 
0.0002483 

HCUPnet 

Allergic Rhinitis Respondents aged 3-17 
experiencing allergic 
rhinitis/hay fever 
symptoms within the year 
prior to the survey 

0.192 Parker et al., 2009 
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Endpoint Parameter Rates 
Value Source 

Cardiac Arrest Daily nonfatal incidence 
rates 
0 - 17 
18 - 39 
40 - 64 
65 - 99 

 
 
0.00000002 
0.00000009 
0.00000056 
0.00000133 

Ensor et al., 2013, 
Rosenthal et al., 2008, 
Silverman et al., 2010 

Lung Cancer Annual nonfatal incidence 
25 - 34 
35 - 44 
45 - 54 
55 - 64 
65 - 74 
75 - 84 
95 - 99 

 
0.000001746 
0.000014919 
0.000067463 
0.000208053 
0.000052370 
0.000576950 
0.000557130 

SEER, 2015 and 
Gharibvand et al., 
2017 

Stroke Annual nonfatal incidence 
in ages 65-99 

0.00446 Kloog et al., 2012 

Work Loss Days Daily incidence rate per 
person (18–64) 
Aged 18–24 
Aged 25–44 
Aged 45–64 

 
 
0.00540 
0.00678 
0.00492 

Adams et al., 1999, 
Table 41; U.S. Census 
Bureau, 2000 

School Loss Days Rate per person per year, 
assuming 180 school days 
per year 

9.9 Adams et al., 1999, 
Table 47 

Minor Restricted-
Activity Days 

Daily MRAD incidence rate 
per person (18-64) 

0.02137 Ostro and Rothschild, 
1989, p. 243 

CDC-Centers for Disease Control; NHS-National Health Interview Survey 
1Mortality rates are only available in 5-year increments. The Healthcare Cost and Utilization Program (HCUP) database contains 
individual level, state and regional-level hospital and emergency department discharges for a variety of International 
Classification of Diseases (ICD) codes (AHRQ, 2016).  
2Baseline incidence rates now include corrections from the states of Indiana and Montana. 

3.1 MORTALITY 
Baseline incidence rate estimates for mortality remain the same as they were for previous benefits 
assessments (U.S. EPA, 2018). However, information is provided below for reference. Notably, the 
Turner et al., 2016 analysis of long-term O3-attributable health impacts compares warm-season 
exposures to full-year baseline incidence rates. As such our baseline incidence rate estimates also reflect 
the full year. 

 Mortality Data for 2012-2014   
We obtained county-level mortality and population data from 2012-2014 for 11 causes for the 
contiguous United States by downloading the data from the Centers for Disease Control (CDC) WONDER 
database.54  

 
54 http://wonder.cdc.gov 
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Since the detailed mortality data obtained from CDC do not include population, we combined them with 
U.S. Census Bureau population estimates exported from BenMAP. We then generated age-, cause-, and 
county-specific mortality rates using the following formula:   

𝑅𝑅𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝐷𝐷𝑖𝑖,𝑗𝑗,𝑘𝑘(2012)+𝐷𝐷𝑖𝑖,𝑗𝑗,𝑘𝑘(2013)+𝐷𝐷𝑖𝑖,𝑗𝑗,𝑘𝑘(2014)
𝑃𝑃𝑖𝑖,𝑘𝑘(2012)+𝑃𝑃𝑖𝑖,𝑘𝑘(2013)+𝑃𝑃𝑖𝑖,𝑘𝑘(2014)  

where Ri,j,k is the mortality rate for age group i, cause j, and county k; D is the death count; and P is the 
population. Additional details about the translation of the CDC WONDER data to age-, cause-, and 
county-specific mortality rates are provided in the BenMAP-CE User’s Manual (U.S. EPA, 2018). 
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Table 13.  National Mortality Rates (per 100 people per year) by Health Endpoint and Age Group, 2012-2014 

Mortality Category ICD-10 Codes Infant* 1-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 
Mortality, All 
Cause 

All 0.59396 0.01951 0.07804 0.10665 0.17264 0.40542 0.86162 1.79670 4.62837 13.58034 

Mortality, Non-
Accidental 

A00-R99 0.55495 0.00949 0.01874 0.04112 0.10876 0.33084 0.79395 1.73208 4.49595 13.20867 

Mortality, 
Respiratory 

J00-J98 0.01297 0.00102 0.00127 0.00253 0.00570 0.02013 0.06560 0.20585 0.57827 1.42362 

Mortality, Chronic 
Lung 

J40-J47, J67 0.00053 0.00032 0.00040 0.00074 0.00186 0.01033 0.04045 0.13873 0.36008 0.68593 

Mortality, Lung 
Cancer 

C34 0.00002 0.00001 0.00007 0.00033 0.00282 0.02378 0.07992 0.19701 0.32952 0.31820 

Mortality, Ischemic 
Heart Disease 

I20-I25 0.00033 0.00004 0.00039 0.00234 0.01242 0.04854 0.12174 0.25698 0.68000 2.27271 

Mortality, Cardio-
Pulmonary 

I00-I78, J10-J18, J40-J47, 
J67 

0.00539 0.00069 0.00099 0.00214 0.00502 0.01794 0.05877 0.18453 0.51055 1.26213 

Mortality, NCD + 
LRI 

** 0.18459 0.00618 0.01168 0.02751 0.08129 0.26214 0.63767 1.37694 3.44731 9.47467 

Mortality, Lower 
Respiratory 
Infection 

A48.1, A70, B97.4-B97.6, 
J09-J15.8, J16, J20-J21, 
P23.0-P23.4, U04 

0.00269 0.00618 0.01168 0.00030 0.00062 0.00112 0.00196 0.00300 0.00758 0.02693 

Mortality, Cerebro-
vascular 

G45-G46.8, I60-I63.9, 
I65-I66.9, I67.0-I67.3, 
I67.5-I67.6, I68.1-I68.2, 
I69.0-I69.3 

0.00116 0.00012 0.00034 0.00096 0.00314 0.00809 0.01455 0.02892 0.08553 0.20863 

Mortality, COPD J40-J44, J47 0.00048 0.00005 0.00004 0.00015 0.00102 0.00904 0.03888 0.13689 0.35661 0.67457 
*We estimate post-neonatal mortality (deaths after the first month) for infants because the health impact function (see Appendix E) estimates post-neonatal mortality.  
**For a full list of codes for non-communicable diseases (NCD) and lower respiratory infections (LRI), see the IHME GBD Code mapping: http://ghdx.healthdata.org/record/ihme-
data/gbd-2017-cause-icd-code-mappings.  
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 Mortality Rate Projections 2015-2060 
To estimate age- and county-specific mortality rates in years 2015 through 2060, we calculated annual 
adjustment factors, based on a series of Census Bureau projected national mortality rates (for all- cause 
mortality), to adjust the age-, county-, and cause-specific mortality rates calculated using 2012-2014 
data as described above. 55 We used the following procedure:   

For each age group, we obtained the series of projected national mortality rates from 2013 to 2050 (see 
the 2013 rate in Table 14) based on Census Bureau projected life tables.   

We then calculated, separately for each age group, the ratio of Census Bureau national mortality rate in 
year Y (Y = 2014, 2015, ..., 2060) to the 2013 rate, which is assumed to be representative of the 2012-
2014 data and used for the base “year.” These ratios are shown for selected years in Table 15.   

Finally, to estimate mortality rates in year Y (Y = 2015, 2020, ..., 2060) that are both age-group-specific 
and county-specific, we multiplied the county- and age-group-specific mortality rates for 2012-2014 by 
the appropriate ratio calculated in the previous step. For example, to estimate the projected mortality 
rate in 2015 among ages 18-24 in Wayne County, MI, we multiplied the mortality rate for ages 18-24 in 
Wayne County in 2012-2014 by the ratio of Census Bureau projected national mortality rate in 2015 for 
ages 18-24 to Census Bureau national mortality rate in 2013 for ages 18-24.  

Table 14. All-Cause Mortality Rate (per 100 people per year), by Source, Year, and Age Group 

Source and Year Infant 1-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 
Calculated CDC 2012-2014 0.5941 0.020 0.078 0.107 0.173 0.405 0.862 1.797 4.628 13.580 
Census Bureau 20132 0.654 0.029 0.088 0.102 0.183 0.387 0.930 2.292 5.409 13.091 

1The Census Bureau estimate is for all deaths in the first year of life. EPA benefits assessments uses post-neonatal mortality 
(deaths after the first month, i.e., 0.23 per 100 people) because the health impact function (see Appendix E) estimates post- 
neonatal mortality. For comparison purpose, we also calculated the rate for all deaths in the first year, which is 0.684 per 100 
people.   
2For a detailed description of the model, the assumptions, and the data used to create Census Bureau projections, see the 
working paper, “Methodology and Assumptions for the 2012 National Projections,” which is available on 
http://www.census.gov/population/projections/files/methodology/methodstatement12.pdf  

 
55 All-cause mortality projections are applied to each cause-specific mortality rate. 
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Table 15. Ratio of Future Year All-Cause Mortality Rate to 2013 Estimated All-Cause Mortality Rate, by 
Age Group 

Year Infant 1-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 
2015 0.93 0.93 0.96 1.02 0.96 0.96 1.01 1.02 1.03 1.00 
2020 0.94 0.94 0.98 1.04 0.97 0.98 1.02 1.03 1.03 1.00 
2025 0.85 0.81 0.74 0.80 0.75 0.77 0.85 0.91 0.93 0.97 
2030 0.81 0.75 0.66 0.70 0.67 0.69 0.78 0.86 0.89 0.92 
2035 0.76 0.70 0.58 0.62 0.60 0.62 0.71 0.81 0.87 0.87 
2040 0.73 0.65 0.51 0.53 0.53 0.56 0.64 0.76 0.84 0.86 
2045 0.70 0.60 0.45 0.46 0.46 0.50 0.58 0.71 0.80 0.86 
2050 0.67 0.56 0.39 0.40 0.40 0.44 0.53 0.66 0.77 0.87 
2055 0.64 0.52 0.34 0.35 0.35 0.39 0.48 0.62 0.73 0.88 
2060 0.61 0.48 0.30 0.30 0.31 0.34 0.43 0.58 0.70 0.87 

 Race- and Ethnicity-Stratified Incidence Rates 
To estimate race-stratified and age-stratified all-cause and respiratory mortality incidence rates at the 
county level, data from 2007 to 2016 was downloaded from the CDC WONDER mortality database with 
and without the ‘Hispanic Origin’ disaggregation for two age groups: >25 and <25.56 The average race 
rates were calculated for the 10-year timespan before the death/incidence rate for race combinations 
were back calculated. Correction ratios were calculated for the Hispanic and non-Hispanic rates of each 
region/race (e.g., (Black - Hispanic) / (Black - All) = Hispanic correction factor and (Black - non-Hispanic) / 
(Black - All) = non-Hispanic correction factor). The age-group Hispanic and Non-Hispanic correction 
factors were then applied to the existing, county-level race-stratified baseline incidence rates for all-
cause mortality in BenMAP-CE. 

3.1.3.1 Race-Stratified Incidence Rates 
To estimate race-stratified and age-stratified all-cause and respiratory mortality incidence rates at the 
county level, we downloaded data from 2007 to 2016 from the CDC WONDER mortality database.57 
Race-stratified incidence rates were calculated for the following age groups: < 1 year, 1- 4 years, 5-14 
years, 15-24 years, 25-34 years, 35-44 years, 45-54 years, 55-64 years, 65-74 years, 75-84 years, and 85+ 
years. To address the frequent county-level data suppression for race-specific death counts, we 
stratified the county-level data into two broad race categories, White and Non-White populations. In a 
later step, we stratified the non-White incidence rates by race (Black, Asian, American Indian) using the 
relative magnitudes of incidence values by race at the regional level, described in more detail below.  

We followed the methods outlined in Section D.1.1 of the BenMAP User Manual with one notable 
difference in methodology; we included an intermediate spatial scale between county and state for 
imputation purposes (U.S. EPA, 2018). We designated urban and rural counties within each state using 
CDC WONDER and, where possible, imputed missing data using the state-urban and state-rural 

 
56 http://wonder.cdc.gov 
57 http://wonder.cdc.gov 
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classifications before relying on broader statewide data. We followed methods for dealing with 
suppressed and unreliable data at each spatial scale as described in Section D.1.1. 

A pooled non-White incidence rate masks important differences in mortality risks by race. To estimate 
county-level mortality rates by individual race (Black, Asian, American Indian), we applied regional race-
specific incidence relationships to the county-level pooled non-White incidence rates. We calculated a 
weighted average of race-specific incidence rates using regional incidence rates for each 
region/age/race group normalized to one reference population (the Asian race group) and county 
population proportions based on race-specific county populations from CDC WONDER where available. 
In cases of population suppression across two or more races per county, we replaced all three race-
specific population proportions derived from CDC WONDER with population proportions derived from 
2010 Census data in BenMAP-CE (e.g., 50 percent Black, 30 percent Asian, 20 percent American Indian). 

3.1.3.2 Ethnicity-Stratified Incidence Rates 
To estimate ethnicity-stratified and age-stratified all-cause and respiratory mortality incidence rates at 
the county level, we downloaded data from 2007 to 2016 from the CDC WONDER mortality database.58 
Ethnicity-stratified incidence rates were calculated for the following age groups: < 1 year, 1–4 years, 5–
14 years, 15–24 years, 25–34 years, 35–44 years, 45–54 years, 55–64 years, 65–74 years, 75–84 years, 
and 85+ years. We stratified county-level data by Hispanic origin (Hispanic and non-Hispanic). We 
followed the methods outlined in Section D.1.1 to deal with suppressed and unreliable data (U.S. EPA, 
2018). We also included an intermediate spatial scale between county and state designating urban and 
rural counties for imputation purposes, described in detail in Section D.1.3 of the BenMAP User Manual. 

3.2 HOSPITALIZATIONS 
The approach for estimating hospitalization baseline incidence rates for new health endpoints is based 
on HCUP data, developed to match the granularity and timeframe of other hospitalization endpoints 
used in benefits assessments. New hospitalization endpoints are comprised of new sets of ICD-9 codes 
that correspond to newer studies evaluating air pollution-attributable hospitalizations. Detailed 
information is provided below and available in the BenMAP-CE User Manual (U.S. EPA, 2018). 

Hospitalization rates were calculated using data from the Healthcare Cost and Utilization Project (HCUP). 
HCUP is a family of health care databases developed through a Federal-State-Industry partnership and 
sponsored by the Agency for Healthcare Research and Quality (AHRQ). HCUP products include the State 
Inpatient Databases (SID), the State Emergency Department Databases (SEDD), the Nationwide Inpatient 
Sample (NIS), and the Nationwide Emergency Department Sample (NEDS).  

The level of hospitalization data available differs by state. While many states provide granular discharge-
level data, others may only provide county- or state level-data. Also, 14 states, mostly in the southeast, 
do not provide data to HCUP. For these states, regional statistics from HCUPnet59 were used to estimate 
baseline hospitalization rates. 

 
58 https://wonder.cdc.gov/ 
59 HCUPnet is a free, on-line query system based on data from HCUP. It provides access to summary statistics at the 
state, regional and national levels. 
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HCUP categorizes hospital admissions in various ways. Hospitalization admission types used when 
reporting data to HCUP include emergency (admitted from the emergency department), urgent 
(admitted from another hospital), elective (admitted from another health facility, including long-term 
care), newborn (admitted for delivery), trauma (not used by all states), and other/missing/invalid. As 
PM2.5 and O3 exposure predominantly leads to cardiovascular and respiratory health effects, we provide 
some information on the proportion of these types of hospitalizations, based on an analysis of 
hospitalizations from the state of Florida in 2014. Florida was selected for this analysis as it was the most 
populated state providing details regarding hospital admission type.  

• Emergency hospital admissions comprise approximately 80% of cardiovascular and 85% of 
respiratory admissions 

• Urgent hospital admissions comprise approximately 10% of cardiovascular and 8% of respiratory 
admissions 

• Elective hospital admissions comprise approximately 10% of cardiovascular and 7% of 
respiratory admissions 

• Newborn hospital admissions comprise no cardiovascular and respiratory admissions 
• Trauma hospital admissions comprise approximately 0.1% of cardiovascular and respiratory 

admissions 
• Other/missing/invalid hospital admissions comprise no cardiovascular or respiratory admissions 

All hospital admission baseline incidence data used in this analysis (and input into BenMAP-CE) reflects 
total hospital admissions, due to time constraints limiting the ability to separate types (e.g., emergency, 
urgent, elective, etc) within HCUP data by various states and regions. However, the breakdown of 
hospital admission types generally reflects the types of health endpoints associated with air pollution 
exposures, with the majority of effects falling into the emergency and urgent types (e.g., heart or 
asthma attack) with a small subset potentially leading to elective hospital admissions (e.g., exacerbation 
of heart failure). 

Health endpoints in hospitalization studies are defined using different combinations of ICD codes 
corresponding to specific diagnoses. Some span large categories of diagnoses, such as all cardiovascular 
or all respiratory admissions, while others reflect specific conditions, including Alzheimer’s disease and 
Parkinson’s disease.60 For each ICD code combination, unique baseline incidence rates are developed. 

In this TSD update, adjustments were made to three existing hospital admission sensitivity endpoints: 

Myocardial Infarction (ICD Codes 410.X0 and 410.X1) 

 
60 Parkinson’s disease incidence rates were developed in a slightly different manner, due to time and resource 
limitations. We develop regional and age-specific incidence rates for Parkinson’s disease hospital admissions using 
the HCUPnet SID, which provides the total number of hospital visits in the U.S. by age group and region, 
separately. We first calculate the distribution of annual hospital visits across HCUPnet’s 6 age groups: less than 1, 1 
to 17, 18 to 44, 45 to 64, 65 to 84, and above 85 years old. Since Parkinson’s disease typically affects older adults, 
hospitalization counts are unavailable for the age groups below 18 years old. We apply the national age 
distribution to the regional hospitalization totals to estimate the annual number of hospital visits by region and 
age. We then divide the regional and age-specific counts by the regional and age-specific population and by 365 to 
calculate the daily incidence rates. To generate county level incidence rates, we assume that each county has the 
same incidence rate as the region it falls within. 
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Using data from the Healthcare Cost and Utilization Project (HCUPnet), Hospital Inpatient 
National Statistics, we downloaded the 2014 national estimates of discharge rates per 100,000 
people for the set of ICD-9 codes associated with myocardial infarction in BenMAP (410) and the 
set of ICD-9 codes associated with myocardial infarction in Danesh Yazdi et al., 2021 (410.X0, 
410.X1). We applied the ratio of (national discharge ratesICD-9 = 410.X0, 410.X1 : national discharge 
ratesICD-9 = 410), 0.995, to the existing, county-level baseline incidence rates for Acute Myocardial 
Infarction, Nonfatal in BenMAP. 

Ischemic Stroke (ICD Codes 433.X1, 434.X1, and 436) 

Using data from the Healthcare Cost and Utilization Project (HCUPnet), Hospital Inpatient 
National Statistics, we downloaded the 2014 national estimates of discharge rates per 100,000 
people for the set of ICD-9 codes associated with stroke in BenMAP (431-437) and the set of 
ICD-9 codes associated with ischemic stroke in Danesh Yazdi et al., 2021 (433.X1, 434.X1, 436). 
We applied the ratio of (national discharge ratesICD-9 = 433.X1, 434.X1, 436 : national discharge ratesICD-9 = 

431-437), 0.564, to the existing, county-level baseline incidence rates for HA, Stroke in BenMAP. 

Atrial Fibrillation and Flutter (ICD Codes 427.3) 

Using data from the Healthcare Cost and Utilization Project (HCUPnet), Hospital Inpatient 
National Statistics, we downloaded the 2014 national estimates of discharge rates per 100,000 
people for the set of ICD-9 codes associated with dysrhythmia in BenMAP (427) and the set of 
ICD-9 codes associated with atrial fibrillation and flutter in Danesh Yazdi et al., 2021 (427.3). We 
applied the ratio of (national discharge ratesICD-9 = 427.3 : national discharge ratesICD-9 = 427), 0.666, to 
the existing, county-level baseline incidence rates for HA, Dysrhythmia in BenMAP. 

3.3 EMERGENCY DEPARTMENT VISITS 
As new studies evaluating air pollution-attributable emergency department utilizing new sets of ICD-9 
codes were identified for use in benefits assessment here, we developed corresponding new emergency 
department baseline incidence rates. Similar to hospitalization baseline incidence rates, the approach 
for estimating emergency department visit baseline incidence rates also utilizes HCUP data and remains 
the same as in previous benefits assessments, details for which can be found in the BenMAP-CE User 
Manual (U.S. EPA, 2018). Information is provided below for reference. 

Similar to hospitalization rates, the data source for emergency department/room visits is also HCUP, 
(i.e., SID, SEDD, and NEDS), states vary by level of data provided (i.e., discharge-, county-, state, and 
regional-level), and unique baseline incidence rates are generated for each health endpoint ICD code 
combination. 

3.4 HEALTH ENDPOINT ONSET/OCCURRENCE  
Baseline incidence estimates for health endpoint onset or occurrences are described below, listed in 
alphabetical order. Onset indicates the development of a health endpoint (e.g., asthma diagnosis), 
whereas occurrence refers to an instance of that health endpoint (e.g., asthma attack). 
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 Acute Myocardial Infarctions (AMIs) 
Baseline incidence rate estimates for AMIs remain the same as they were for previous benefits 
assessments. However, detailed information is provided below for reference. 

The relationship between short-term particulate matter exposure and heart attacks was originally 
quantified in a case-crossover analysis by Peters et al., 2001 and supplemented with evidence found in 
more recent single and multi-city studies (Pope III et al., 2006, Sullivan et al., 2005). The population in 
the original study was identified from heart attack survivors in a medical clinic. Therefore, the applicable 
population to apply to the risk estimate is all individuals surviving a heart attack in a given year. Several 
data sources are available to estimate the number of heart attacks per year. For example, several cohort 
studies have reported estimates of heart attack incidence rates in the specific populations under study. 
However, these rates depend on the specific characteristics of the populations under study and may not 
be the best data to extrapolate nationally. The American Heart Association reports approximately 
785,000 new heart attacks per year (Roger et al., 2012). Exclusion of heart attack deaths reported by 
CDC Wonder yields approximately 575,000 nonfatal cases per year.   

An alternative approach to the estimation of heart attack rates is to use data from the Healthcare Cost 
and Utilization Project (HCUP), assuming that all heart attacks that are not instantly fatal will result in a 
hospitalization. Details about HCUP data are described in Section D.2 of the BenMAP-CE User Manual 
(U.S. EPA, 2018).  According to the 2014 HCUP data there were approximately 608,795 hospitalizations 
due to heart attacks (acute myocardial infarction: ICD-9 410, primary diagnosis). We estimated baseline 
rates based on HCUP data rather than extrapolating from cohort studies because HCUP is a national 
database with a larger sample size intended to provide reliable national estimates. The incidence rate 
calculation is also described in Section D.2 of the BenMAP-CE User Manual and the incidence rates for 
AMI hospitalization are presented in Table D-5. An alternative approach to the estimation of AMI rates is 
to use data from HCUP and assume that all AMIs that are not instantly fatal will result in a 
hospitalization. 

It is important to note that when calculating the incidence of nonfatal AMIs, the fraction of fatal heart 
attacks is subtracted to ensure that there is no double-counting with mortality estimates. Specifically, 
we apply an adjustment factor in the risk estimate to reflect the probability of surviving a heart attack. 
The adjustment factor comes from Rosamond et al., 1999, which reported that approximately 6% of 
male and 8% of female hospitalized AMI patients die within 28 days (either in or outside of the hospital). 
Therefore, we applied a factor of 0.93 to the estimated number of PM-related AMIs to exclude the 
number of cases that result in death within the first month. Note that we did not adjust for fatal AMIs in 
the incidence rate estimation, due to the way that the epidemiological studies are designed. Those 
studies consider total admissions for AMIs, which includes individuals living at the time the studies were 
conducted. We use the definition of AMI that matches the definition in the epidemiological studies. Age-
specific baseline incidence rates are  based on data from the Agency for Healthcare Research and 
Quality’s HCUP NIS database (AHRQ, 2016). We identified death rates for adults hospitalized with AMI 
stratified by age (e.g., 1.852% for ages 18-44, 2.8188% for ages 45-64, and 7.4339% for ages 65+). These 
rates show a clear downward trend over time between 1994 and 2009 for the average adult and thus 
replace the 93% survival rate previously applied across all age groups from Rosamond et al., 1999. 
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 Asthma Onset and Symptoms 

3.4.2.1 Asthma Onset 
Baseline incidence rates for new asthma onset are estimated from Winer et al., 2012. Winer et al., 2012 
identify newly diagnosed asthma from the 2006-2008 Asthma Call-Back Survey (ACBS) and Behavioral 
Risk Factor Surveillance System (BRFSS) as individuals diagnosed by a doctor, or other health 
professional, within the 12 months prior to the surveys. Table 12 details the breakdown, by age, of the 
annual national incidence rates for asthma onset.  

For the set of endpoints affecting the asthmatic population, in addition to baseline incidence rates, 
prevalence rates of asthma in the population are needed to define the applicable population. We derive 
asthma prevalence data from the National Health Interview Survey (NHIS).61 For functions with age 
ranges that do not align with the ranges reported in the NHIS data table, we develop a weighted-
average prevalence rate for the age range, where the weights are the number of years that overlap with 
each NHIS age group. Table 16 provides the breakdown of the 2018 NHIS rates used to calculate the 
weighted averages. Table 17 details the resulting weighted averages by study and age group. Note that 
these reflect recent asthma prevalence and assume no change in prevalence rates in future years. 

Table 16. Asthma Prevalence Rates 

NHIS Age Group Asthma Prevalence Rate 
0 - 4 0.038 

5 - 11 0.081 
5 - 14 0.086 

12 - 17 0.099 
15 - 19 0.110 
20 - 24 0.081 
0 - 17 0.075 

 

Table 17. Weighted Average Asthma Prevalence by Study 

Endpoint Ages Author1 Pollutant Weighted 
Prevalence 

Asthma Onset 
0 – 4 Tetreault et al., 2016 PM2.5 0.0380 
5 - 17 Tetreault et al., 2016 PM2.5 0.0893 
0 - 17 Tetreault et al., 2016 O3 0.0750 

Asthma symptoms, albuterol use 6 - 13 Rabinovitch et al., 2006 PM2.5 0.0860 
1Prevalence rate derived for albuterol use must be loaded into BenMAP-CE as part of a separate incidence or 
prevalence dataset, unlike the remainder of the rates, which are embedded within the health impact functions. 

 

 
61 https://www.cdc.gov/asthma/nhis/2018/data.htm and 
https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm 
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3.4.2.2 Albuterol Use 
We develop incidence rates for albuterol use from the rates presented in Rabinovitch et al., 2006, the 
same study from which the risk estimate was developed. As described in the ‘Recommended Set of 
Health Endpoints and Health Impact Functions’ section, Rabinovitch et al., 2006 analyzed the 
relationship between short-term PM2.5 exposure and asthma exacerbation in children ages 6 to 13 years 
old. The authors use an electronic inhaler to record the number of actuations (‘puffs’) for each 24-hour 
period and calculate an average albuterol use rate of 2.2 ‘puffs’ per child per day. 

As described in section 3.4.2.1, in addition to the baseline incidence rates, we apply a weighted-average 
asthma prevalence rate of 0.086, based on the 5-14 age group, using the NHIS prevalence data to 
identify the applicable population. 

3.4.2.3 Asthma Symptoms 
We develop incidence rates for asthma symptoms using the estimates presented in Lewis et al., 2013, 
the same study from which the concentration-response function was developed. As described in the 
‘Recommended Set of Health Endpoints and Health Impact Functions’ section, Lewis et al., 2013 studied 
the effects of short-term O3 exposure on frequency of asthma symptoms in an asthmatic population of 
children ages 5 to 12 years old. The authors estimate the incidence of each asthma symptom using the 
number of person-days where children reported experiencing the symptom divided by the total number 
of person-days monitored for that symptom. The percent of days monitored during which children 
experienced each symptom are calculated as 30.1% for cough, 19.4% for wheeze, 18.5% for shortness of 
breath, and 12.7% for chest tightness. Therefore, the national incidence rates of asthma symptoms are 
0.301 for cough, 0.194 for wheeze, 0.185 for shortness of breath, and 0.127 for chest tightness. 
‘Prevalence rates for asthma symptoms remains the same as in previous benefits assessments 
(previously referred to as asthma exacerbation) (Table 16). 

 Allergic Rhinitis 
We develop prevalence rates for hay fever/rhinitis using the estimates presented in Parker et al., 2009, 
the same study from which the concentration-response function was developed. As described in the 
‘Recommended set of Health Endpoints and Health Impact Functions’ section, Parker et al., 2009 
investigates the associations between long-term ozone exposure and respiratory allergies in children 
ages 3 to 17 years old. The authors use prevalence data from the NHIS household interview survey and 
define allergic rhinitis as children with reported hay fever, respiratory allergy, or both within the 12 
months prior to the survey. Of the eligible population (72,279), 19.2% of respondents experience allergic 
rhinitis symptoms within the year prior to the survey, therefore, the national prevalence rate of hay 
allergic rhinitis is 0.192. 

 Lung Cancer 
We use the existent baseline incidence rate for lung cancer mortality in combination with the five-year 
lung cancer survival rate from SEER, 2015 to develop baseline incidence rates for non-fatal lung cancer. 
We first use the five-year lung cancer survival rate to calculate the total incidence of lung cancer (both 
fatal and non-fatal) from the baseline mortality rate using the following formula: baseline mortality rate 
/ (1 – five-year survival rate). We then calculate the incidence of non-fatal lung cancer as the difference 
between total lung cancer incidence and fatal lung cancer incidence (SEER, 2015). Table 18 presents the 
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baseline incidence of lung cancer mortality, the SEER five-year survival rate, the estimated total lung 
cancer incidence, and the estimated non-fatal lung cancer incidence rate by age group. 

Table 18. Lung Cancer Incidence Rates 

Age Group Annual Lung 
Cancer Mortality 

Incidence 
[A] 

Five-Year 
Survival Rate 

[B] 

Total Lung Cancer 
Incidence 

[C] =  
[A] / (1 - [B]) 

Non-fatal Lung 
Cancer Incidence 

[D] = 
[C] – [A] 

25-34 0.0000033 34.6% 0.0000050 0.00000175 
35-44 0.0000282 34.6% 0.0000431 0.00001492 
45-54 0.0002378 22.1% 0.0003053 0.00006746 
55-64 0.0007922 20.8% 0.0010003 0.00020805 
65-74 0.00019701 21.0% 0.0002494 0.00005237 
75-84 0.0032952 14.9% 0.0038722 0.00057695 
85+ 0.0031820 14.9% 0.0037391 0.00055713 

 

 Minor Restricted Activity Days (MRAD)   
The incidence estimate for this health endpoint remains the same as in previous benefits assessments. 
Ostro and Rothschild, 1989 (p. 243) provide an estimate of the annual incidence rate of MRADs per 
person of 7.8.   

 School Loss Days 
Baseline incidence rate estimates for school loss days remain the same as they were for previous 
benefits assessments. However, detailed information is provided below for reference. 

We have two sources of information to use when estimating the baseline incidence rates of missed 
school days: the National Center for Education Statistics (NCES), which provided an estimate of all-cause 
school loss days, and the National Health Interview Survey (NHIS) (Adams et al., 1999, NCES, 1996, Table 
47), which has data on different categories of acute school loss days. Table 19 presents the estimated 
school loss day rates. Further detail is provided below on these rates.  

Table 19. School Loss Day Rates (per student per year) 

Type Northeast Midwest South West 
Respiratory illness-related absences 1.3 1.7 1.1 2.2 
Illness-related absences 2.4 2.6 2.6 3.7 
All-cause 9.9 9.9 9.9 9.9 

*Illness-related school loss day rates were based on data from the 1996 NHIS and an estimate of 180 school days per year, 
excluding school loss days due to injuries. All-cause school loss day rates were based on data from the NCES.  

3.4.6.1 All-Cause School Loss Day Rate   
Based on data from the U.S. Department of Education (1996, Table 42-1), the National Center for 
Education Statistics estimates that for the 1993-1994 school year, 5.5% of students are absent from 
school on a given day. This estimate is comparable to study-specific estimates from Chen et al., 2000 
and Ransom and Pope, 1992, which ranged from 4.5% to 5.1%.   
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3.4.6.2 Illness-Related School Loss Day Rate   
The National Health Interview Survey (NHIS) has regional estimates of school loss days due to a variety 
of acute conditions (Adams et al., 1999). NHIS is a nationwide sample-based survey of the health of the 
noninstitutionalized, civilian population, conducted by NCHS. The survey collects data on acute 
conditions, prevalence of chronic conditions, episodes of injury, activity limitations, and self-reported 
health status. However, it does not provide an estimate of all-cause school loss days.   

In estimating illness-related school loss days, we started with school loss days due to acute problems 
(Adams et al., 1999, Table 47) and subtracted lost days due to injuries, in order to match the definition 
of the study used in the risk estimate to estimate illness-related school absences (Gilliland et al., 2001). 
We then divided by 180 school days per to estimate illness-related school absence rates per school day. 
Similarly, when estimating respiratory illness-related school loss days, we use data from Adams et al., 
1999, Table 47. Note that we estimated 180 school days in a year to calculate respiratory illness-related 
school absence rates per year.   

 Work Loss Days   
The incidence estimate for this health endpoint remains the same as in previous benefits assessments. 
The yearly work-loss-day incidence rate per 100 people is based on estimates from the 1996 National 
Health Interview Survey (Adams et al., 1999, Table 41). They reported total annual work loss days of 352 
million for individuals ages 18 to 65. The total population of individuals of this age group in 1996 (162 
million) was obtained from (U.S. Census Bureau, 1998). The average annual rate of work loss days per 
individual is 2.17. Using a similar approach, we calculated work-loss-day rates for ages 18-24, 25-44, and 
45-64, respectively.   

 Hypertension 
The state-level baseline incidence rates for hypertension among women ages 50-99 were calculated 
using the following relationship between incidence and prevalence: 

Prevalence
1 −Prevalence

= Incidence ∗ Average Duration of Disease. 

This relationship assumes that hypertension prevalence is at a steady state in the population of interest. 
Data from the National Health and Nutrition Examination Survey supports this assumption, finding no 
significant change in age-adjusted hypertension prevalence among U.S. women from 1999-2000 to 
2017-2018.  
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Figure 11. Age-Adjusted Trend in Hypertension Prevalence Among Adults Aged 18 and Over by Sex in the 
U.S. Between 1999-2018 

We calculated state-level hypertension prevalence rates using data from the Behavioral Risk Factor 
Surveillance System (BRFSS), a system of health-related telephone surveys administered by the CDC that 
collects data from all fifty states. We calculated national-level duration of disease using data from the 
CDC, the Canadian Chronic Disease Surveillance System (CCDSS), and Loukine et al. (2010). In this 
calculation, we assumed that hypertension, once diagnosed, lasts until death (even if controlled by 
medication or diet). The definition of hypertension employed by BRFSS (see below) supports this 
assumption. 

The procedure for calculating state-level hypertension prevalence rates is summarized as follows: 

• We obtained individual-level records from the 2019 BRFSS Data file for all states except New 
Jersey, which was not included in the 2019 data file.  

• For consistency with the relevant C-R function, we filtered the individual-level 2019 BRFSS 
dataset to include responses from female participants aged 50 and older.  
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• We aggregated the resulting sample by state, using raking-derived weights62 assigned to each 
respondent by BRFSS. State-level prevalence was calculated as the sum of weights associated 
with respondents who responded “Yes” to the question, “Have you ever been told by a doctor, 
nurse, or other health professional that you have high blood pressure?” divided by the sum of 
weights of all respondents in the state. 

• For New Jersey, we repeated the above steps using the 2017 BRFSS Data File, the most recent 
year available for the state. 

The procedure for calculating the national-level duration of disease is summarized as follows:  

• For each five-year age group (50-54 years, 55-59 years, 60-64 years, 65-69 years, 70-74 years, 
75-79 years, and 80+ years), we estimated duration of disease using the following equation:  

Duration of disease = LE All U.S. females – (LE All Canadian females – LE Canadian females with hypertension) 

• We obtained the life expectancy (LE) values from the following sources: 

o We obtained LE All U.S. females from CDC Vital Statistics Rapid Release and applied the life 
expectancy of the lower bound of each age group (i.e., we applied the life expectancy at 
age 50 to the 50-54 years age group). 

o We calculated the LE All Canadian females by taking the weighted average of LE Canadian females with 

hypertension and LE Canadian females without hypertension from Loukine et al. (2010).  

 Weights were derived from hypertension prevalence estimates among Canadian 
females (aged 50-64, 65-79, and 80+) from CCDSS.  

 We are not aware of any U.S. studies that estimate the change in life expectancy 
associated with hypertension at 5-year intervals. 

o We obtained LE Canadian females with hypertension from Loukine et al. (2010). 

o In all three instances, LE for the 80+ age group was calculated as the average of LE for 
the 80-84 and 85+ age groups for consistency with age groups provided by BRFSS. 

• We calculated the overall duration of disease for females ages 50-99 by taking the weighted 
average of the duration of disease values for the five-year age groups. 

o Weights were calculated from the raking-derived weights provided by BRFSS as the 
fraction of the female hypertensive population aged 50-99 that falls within the given age 
class. 

  

 
62 “Raking,” or iterative proportional fitting, is the process that BRFSS uses to adjust for demographic differences 
between the sample surveyed and the U.S. population. Through this process, BRFSS assigns a final, “raking-derived 
weight” to each respondent that can be used to generate a nationally-representative dataset. 
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4 DEMOGRAPHIC INFORMATION 

Quantified and monetized human health impacts are calculated using information regarding the 
demographic characteristics of the population exposed to air pollution; these data include the age, sex, 
race/ethnicity, and location of the population. We use population projections based on economic 
forecasting models developed by Woods and Poole, Inc. (Woods & Poole, 2015). The Woods and Poole 
(WP) database contains county-level projections of population by age, sex, and race out to 2050, relative 
to a baseline using the 2010 Census data. Projections in each county are determined simultaneously 
with every other county in the U.S to take into account patterns of economic growth and migration.  

The sum of growth in county-level populations is constrained to equal a previously determined national 
population growth, based on Bureau of Census estimates (Hollmann et al., 2000). According to WP, 
linking county-level growth projections together and constraining to a national-level total growth avoids 
potential errors introduced by forecasting each county independently. County- and tract-level 
projections are developed in a four-stage process: 

1. National-level variables such as income, employment, and populations are forecasted. 
2. Employment projections are made for 179 economic areas defined by the Bureau of Economic 

Analysis (U.S. BEA, 2004), using an “export-base” approach, which relies on linking industrial-
sector production of non-locally consumed production items, such as outputs from mining, 
agriculture, and manufacturing with the national economy. The export-based approach requires 
estimation of demand equations or calculation of historical growth rates for output and 
employment by sector. 

3. Population is projected for each economic area based on net migration rates derived from 
employment opportunities and following a cohort-component method based on fertility and 
mortality in each area. 

4. Employment and population projections are repeated for counties, using the economic region 
totals as bounds. The age, sex, and race distributions for each region or county are determined 
by aging the population by single year of age by sex and race for each year through 2050 based 
on historical rates of mortality, fertility, and migration. 

Population projections stratified by race/ethnicity, age, and sex are based on economic forecasting 
models developed by Woods and Poole (Woods & Poole, 2015). The Woods and Poole database 
contains county-level projections of population by age, sex, and race out to 2050, relative to a baseline 
using the 2010 Census data. Population projections for each county are determined simultaneously with 
every other county in the U.S to consider patterns of economic growth and migration. County-level 
estimates of population percentages within the poverty status and educational attainment groups were 
derived from 2015-2019 5-year average ACS estimates. Additional information can be found in Appendix 
J of the BenMAP-CE User’s Manual (https://www.epa.gov/benmap/benmap-ce-manual-and-
appendices).  
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5 HEALTH ENDPOINT VALUATION  

To directly compare benefits estimates associated with a rulemaking to cost estimates, the number of 
instances of each air pollution-attributable health impact must be converted to a monetary value. This 
requires a valuation estimate for each unique health endpoint, and potentially also discounting if the 
benefits are expected to accrue over more than a single year, as recommended by the U.S. EPA, 2014.  

As reductions in ambient concentrations of air pollution generally lower the risk of future adverse health 
effects by a small amount for a large population, the most appropriate economic measure is the ex-ante 
(before the effect has occurred) willingness-to-pay (WTP) for changes in risk. WTP values are calculated 
by dividing the monetary value an individual is willing to pay for a specific risk reduction by that change 
in risk.63 Using this approach, the size of the affected population is automatically taken into account by 
the number of incidences predicted by epidemiological studies applied to the relevant population.  
There are three primary components of the value to society of an individual’s avoidance of a non-fatal 
illness: 1) medical costs, 2) lost productivity, and 3) impacts on quality of life (i.e., “pain and suffering”). 
Estimates of individual WTP are conventionally thought to reflect all three of these components and are 
the preferred welfare valuation measure.64  However, WTP values are available for a very limited subset 
of health endpoints, such as mortality.65 

For health endpoints where WTP estimates are not available, such as hospital admissions, we instead 
use the cost of treating or mitigating the effect to estimate the economic value. Cost-of-illness (COI) 
estimates are generally considered to be a lower bound estimate of the true value of reducing the risk of 
a health effect because they reflect the direct expenditures related to treatment and in some cases 
costs such as associated productivity losses, but not the value of avoided pain and suffering (Berger et 
al., 1987, Harrington and Portney, 1987, U.S. EPA, 2014). Additionally, COI estimates require additional 
parsing of individual health endpoints. For example, a stroke may initially involve an emergency 
department visit and hospitalization, but will also likely include additional follow-up medical costs, such 
as doctor visits and medications. 

To prevent double counting of health impacts, when estimating monetary valuations, health endpoints 
are separated into the following non-overlapping categories: mortality (section 5.1), hospital 
admissions, emergency department visits (section 5.2), and health endpoint onset/occurrence (section 
5.3). 

EPA develops valuation estimates at the most age-refined level feasible for each health endpoint 
assessed. While we focused on identifying valuation estimates from peer-reviewed and published 
literature for new health endpoints, we were also able to update several valuation estimates for 
endpoints evaluated in previous benefits analyses, such as stroke, cardiac arrest, and AMIs. New 
hospitalizations and emergency department visits health endpoint valuations reflect specific ICD-9 codes 

 
63 For example, suppose a measure is able to reduce the risk of mortality from 2 in 10,000 to 1 in 10,000 (a 
reduction of 1 in 10,000). If individual WTP for this risk reduction is $100, then the WTP for an avoided statistical 
mortality amounts to $1 million ($100/0.0001 change in risk). 
64 WTP estimates may not fully account for medical costs or lost productivity if individuals assume some related 
costs would be borne by others (e.g., health insurance providers and employers). 
65 Economic theory also argues that WTP for most goods (such as environmental protection) will increase if real 
income increases. 
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evaluated by the epidemiologic study. New onset or follow-up/management health endpoints reflect 
WTP or COI valuation estimates that exclude death and initial emergency department and 
hospitalization costs.  

These COI measures represent an update to EPA’s previous method to producing COI estimates in three 
important respects (U.S. EPA, 2018):   

• Estimates are of the costs of medical treatment, rather than charges by medical providers. 
• Sampling parameters are used in survey data to express statistical uncertainty in mean cost 

estimates.  
• More recent data is being used to reflect current treatment and healthcare costs. 

When multiple valuation studies are available, the strengths and limitations of each study are 
considered, in a manner similar to that described for epidemiologic studies (section 2.1). The criteria for 
evaluation of these studies are listed in Table 20. In some cases, judgment is required to identify studies 
for valuation estimates when a similar number of preferred attributes are satisfied by multiple studies. 

Table 20. Cost of Illness Economic Study Identification Consideration Factors 

Criteriaa Prioritization Detail (In order of most to least preferred) 

Peer-Reviewed 
Research 

Peer-reviewed and published literature only 

Endpoint Definition 1. ICD codes align with the epidemiological study 
2. ICD codes overlap with the epidemiological study 

Population 
Attributes 

Prefer studies that match epidemiological study’s population (specifically by 
age) 

Study Period More recent data are preferred 
Measure of Costsb 1. Total payments 

2. Allowable charges 
3. Cost-adjusted charges 
4. Unadjusted charges 

Study Location 1. Nationwide coverage 
2. Multi-city and/or multi-state coverage 
3. Local study population 

Coverage of cost 
elements 

Studies that account for more cost elements (e.g., treatment settings) and 
longer time horizons are preferred 

Study Size Larger study size preferred 
a This table focuses on COI because WTP measures are not currently available for the health endpoints of interest. Had WTP 
estimates been available, additional criteria would be relevant. It also excludes valuation estimates of hospitalizations and 
emergency department visits, which are developed by EPA and described in the appendices to U.S. EPA, 2018. 
bOnukwugha et al., 2016 provides more information on these methods. 
 
We provide unit values for health endpoints (along with information on the distribution of the unit 
value) in Table 21. All values are in constant year 2015$, adjusted for growth in real income for WTP 
estimates out to 2024 using projections provided by Standard and Poor’s, which is discussed in further 
detail below.  Additional detail regarding the development of each health endpoint valuation is also 
provided below. 
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Table 21. Unit Values for Economic Valuation of Health Endpoints (2015$)1 

Health Endpoint Type Central 
Estimate of 
Value Per 
Statistical 
Incidence 
(2015$) 

Source 

Mortality Value of 
Statistical Life 
(VSL) 

3%: 
$7,800,000 
7%: 
$7,100,000 

Weibull distribution fitted to 26 published 
VSL estimates (5 contingent valuation and 
21 labor market studies). Underlying 
studies, distribution parameters, and other 
information are available in Appendix B of 
the EPA’s Guidelines for Preparing 
Economic Analyses (U.S. EPA, 2014). 
Adjusted for income growth appropriate to 
the year of analysis. 

Hospitalizations Medical costs 
and 
opportunity 
cost of time 

Varies by ICD 
codes, ranging 
between 
$7,700 and 
$16,000 

HCUP data (details available in section 3.2) 

Emergency 
Department Visits 

Medical costs Varies by ICD 
codes, ranging 
between $600 
and $1,200 

HCUP data (details available in section 3.3) 

Nonfatal Myocardial 
Infarction (AMI)a 

3-year medical 
costsb 

3%: $49,000 
7%: $48,000 

O'Sullivan et al., 2011 

Asthma Symptom- 
Albuterol Usec 

Medical costs $0.35 per 
albuterol 
inhaler puff 

Average prescription costs derived from 
Epocrates.com and Goodrx.com accessed 
March 19, 2020  

Asthma Symptom- 
Chest Tightness, 
Cough, Shortness of 
Breath, or Wheeze 

WTP for 1 
symptom day 

$219 Dickie and Messman, 2004 

Asthma Onsetc Lifetime 
medical costs 
and lost 
productivity  

3%: $17,000 
7%: $10,000 

Belova et al., 2020 

Allergic Rhinitisc 1-year medical 
costs 

$600 Soni, 2008 

Cardiac Arrestc 3-year medical 
costs 

3%: $36,000 
7%: $35,000 

O'Sullivan et al., 2011 

Lung Cancerc 5-year medical 
costs 

3%: $34,000 
7%: $33,000 

Kaye et al., 2018 

Strokec 1-year medical 
costsa 

$34,000 Mu et al., 2017 
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Work Loss Days Median daily 
wage 

U.S. median: 
$150 

IEc, 1993 

School Loss Days Lost 
productivity of 
parent 

3%: $1000 
7%: $610 

Liu et al., 2021, US Bureau of Labor 
Statistics, 2021b, US Bureau of Labor 
Statistics, 2021a, Chetty et al., 2014, U.S. 
Census Bureau, 2010, U.S. EPA, 2020a, U.S. 
Census Bureau, 2021 

Minor Restricted-
Activity Days 

Median WTP $70 IEc, 1993 

3%- three percent real discount rate; 7%- seven percent real discount rate (OMB, 2003); All estimates rounded to two 
significant figures. 
aValuation estimate has been updated to reflect recent literature. 
bExcludes initial emergency department and hospitalization costs, which are captured separately. 
cValuation estimate is for a new health endpoint. 

5.1 MORTALITY 
Following the advice of the SAB’s Environmental Economics Advisory Committee (SAB-EEAC), the EPA 
currently uses the value of statistical life (VSL) approach in calculating the core estimate of mortality 
benefits, because we believe this calculation provides the most reasonable single estimate of an 
individual’s willingness to trade money for reductions in mortality risk (Stavins, 2000). The VSL approach 
is a summary measure for the value of small changes in mortality risk experienced by a large number of 
people. 

 Value of a Statistical Life (VSL) 
The current undiscounted VSL used by EPA is $8.7 million (2015$), or $7.8 million (2015$) using a 3% 
discount rate and $7.1 million (2015$) using a 7% discount rate (U.S. EPA, 2014). This estimate is the 
mean of a distribution fitted to 26 VSL estimates that appear in the economics literature and that have 
been identified in the Section 812 Reports to Congress as “applicable to policy analysis” (U.S. EPA, 
2011a). It is a value EPA uses in RIAs as well as in the Section 812 Retrospective and Prospective 
Analyses of the Clean Air Act (U.S. EPA, 2011a).  

The VSL approach mirrors that of Viscusi, 1992 and uses the same criteria as in his review of value of 
statistical life studies. The $8.7 million estimate is consistent with the conclusions of Viscusi, 1992 
(updated to 2015$) that “most of the reasonable estimates of the value of life are clustered in the $5.2 
to $12.3 million range.” Five of the 26 studies are contingent valuation studies, which directly solicit 
WTP information from subjects; the rest are wage-risk studies, which base WTP estimates on estimates 
of the additional compensation demanded in the labor market for riskier jobs. Because this VSL-based 
unit value does not distinguish among people based on the age at their death or the quality of their 
lives, it can be applied to all deaths. Table 22 presents the central unit value from the 26 value of 
statistical life studies and their underlying distribution. 



 

85 
 

Table 22. Central Unit Value for VSL based on 26-value-of-life studies  

Basis for Estimate  
Age Range at 

Death Unit Value 
(VSL) (2015$) 

Distribution of 
Unit Value 

Parameters of 
Distribution 

Min Max P1 P2 
VSL, based on 26 
value of statistical life 
studies 

0 99 8,705,114 Weibull 9,648,168 1.509588 

5.2 HOSPITALIZATIONS AND EMERGENCY DEPARTMENT VISITS 
To value hospitalizations, emergency room visits we develop primary COI estimates using data from the 
Healthcare Cost and Utilization Project (HCUP). The 2016 National Inpatient Sample (NIS) and 
Nationwide Emergency Department Sample (NEDS) provide recent, nationally representative 
information on medical treatment in hospitals and emergency departments. In the case of hospital 
admissions, valuation estimates are calculated as a combination of medical costs and the opportunity 
cost of time spent at the hospital, measured by lost wages during the hospital stay. In the case of 
emergency department visits, valuation estimates include only the medical costs. These cost 
components are summarized in Table 23. 

Table 23. Hospitalization and Emergency Department Cost Elements by Endpoint 

Endpoint Medical Costs 
(Emergency Room) 

Medical Costs 
(Hospital) Lost Productivity 

Hospitalizations    
Emergency department visits    
Emergency hospitalizations    

 

The NIS and NEDS datasets include discharge-level observations. That is, each data point represents one 
individual being discharged from the hospital (NIS) or emergency department (NEDS). Because 
individuals are treated in these settings for a variety of reasons, we use medical billing codes to extract 
observations related to each health endpoint. The epidemiological studies described above provide ICD-
9 codes for each illness; however, recent HCUP datasets (including NIS and NEDS) use ICD-10 codes. 
Thus, we first crosswalk the relevant ICD-9 codes to associated ICD-10 codes using a mapping provided 
by the U.S. Centers for Disease Control.66 We then identify all discharges in the HCUP datasets with ICD-
10 codes that match to a study’s ICD-9 code(s).67 Because HCUP datasets often include multiple ICD-10 
codes for each discharge, we focus on the principal diagnosis (i.e., the first-listed ICD-10 code). Other 
key variables used from HCUP include total charges, cost-to-charge ratio (NIS), and length of stay (NIS).  

In the NIS dataset, we convert total charges (i.e., the amount billed to patients, employers, or insurance 
providers) into estimates of total costs (i.e., the final reimbursements for medical treatment). 
Unadjusted charges are not suitable for use in regulatory analysis because posted prices generally do 

 
66 General Equivalence Mapping Files, FY 2016 release of ICD-10-CM. https://www.cdc.gov/nchs/icd/icd10cm.htm. 
67 For emergency hospitalizations, we further restrict the sample to (1) hospitalizations designated as “emergency” 
and (2) emergency department visits that result in hospitalization. 
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not reflect actual medical costs due, in part, to negotiation between medical providers and payers (e.g., 
insurance companies). We assume that adjusted charges reflect the actual revenue the hospital receives 
and thus the actual cost of providing care. This conversion is completed using hospital-specific cost-to-
charge (CCR) ratios provided with NIS. Because CCRs are not available for NEDS, we apply average CCRs 
for each endpoint in NIS to the same set of ICD-10 codes in NEDS. 

For each health endpoint, mean estimates are calculated using estimation commands for survey data to 
account for the sampling design and sample discharge weights of the HCUP data. This results in 
estimates of mean costs and a 95% confidence interval, which represents uncertainty in our valuation 
estimates of medical costs. The resulting estimates are presented in Table 24. Confidence intervals for 
length of stay cannot be accounted for in the valuation methodology because the EPA’s current tool is 
only capable of reflecting uncertainty in one parameter.  

Table 24. Medical Costs and Hospital Stay Data 

Endpoint Studies ICD Codes 
Age Range Mean 

Hospital 
Charge 
(2015$) 

Mean 
Length 
of Stay 
(days) 

Total Cost 
of Illness 

(Unit Value 
in 2015$)* Start End 

HA, All Cardiac 
Outcomes 

Talbott et al., 
2014 

390-459 0 99 $16,045 5.05 $16,918 

HA, All 
Respiratory 

Ostro et al., 2009 460-519 0 18 $9,075 3.49 $9,678 

HA, Alzheimer’s 
Disease 

Kioumourtzoglou 
et al., 2016 

331.0** 65 99 $10,696 7.95 $12,070 

HA, Cardio-, 
Cerebro- and 
Peripheral 
Vascular 
Disease 

Bell et al., 2015 410- 414, 
429, 426- 
427, 428, 
430-438, 
440-449 

65 99 $14,665 4.82 $15,498 

HA, 
Respiratory-1 

Jones et al., 2015 491, 492, 
493, 496 

0 99 $7,676 3.86 $8,343 

HA, 
Respiratory-2 

Bell et al., 2015 464-466, 
480-487, 
490-492, 

493 

65 99 $9,003 4.66 $9,808 

HA, Ischemic 
Stroke (ICD9 
433.X1, 434.X1, 
436) 

Danesh Yazdi et 
al., 2021 

433.X1, 
434.X1, 
436** 

65 99 $12,212 4.29 $12,954 

HA, Atrial 
Fibrillation and 
Flutter (ICD9 
427.3) 

Danesh Yazdi et 
al., 2021 

427.3** 65 99 $10,656 3.66 $11,288 

HA, Parkinson’s 
Disease 

Kioumourtzoglou 
et al., 2016 

332 18 99 $12,190 3.83 $12,852 
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* The opportunity cost of a day spent in the hospital was estimated, for the above exhibit, at the median daily 
wage of all workers, regardless of age. The median daily wage was calculated by dividing the median weekly 
wage ($864 in 2015$) by 5. The median weekly wages for 2015 were obtained from the U.S. Census Bureau’s 
2015 American Community Survey, “Selected Economic Characteristics: 2015 American Community Survey 1-
Year Estimates.” 
**Although the health impact function and incidence data were developed using the 331.0 ICD-9 code for 
Alzheimer’s Disease, the COI was derived using the three-digit ICD-9 code of 331. Therefore, the COI is 
representative of all health endpoints captured by the 331 ICD-9 code. 

 

5.3 HEALTH ENDPOINT ONSET/OCCURRENCE  
Monetary valuation estimates for health endpoint onset or occurrences are described below, listed in 
alphabetical order. Onset indicates the development of a health endpoint (e.g., asthma diagnosis), 
whereas occurrence refers to an instance of that health endpoint (e.g., asthma attack). 

 Acute Myocardial Infarctions (AMIs) 
Economic values for acute myocardial infarctions (AMIs, also known as heart attacks) have been 
updated to be derived from O'Sullivan et al., 2011, which estimate three-year medical costs associated 
with cardiovascular disease events among adults ages 35 and older in the U.S. The authors rely on 
administrative claims data from a large U.S. health plan and develop econometric models to estimate 
medical costs for 15 different cardiovascular events, including AMIs. The dataset includes over 20 million 
commercial and Medical Advantage members between 2002 and 2006. AMIs are identified using the 
ICD-9 code 410. The authors use propensity score matching to develop a control group with which to 
compare costs versus individuals that suffered AMIs. We exclude medical costs within the month of the 
event in an attempt avoid double counting hospitalization costs, which are captured separately in the 
hospitalization valuation endpoints. Over three years, the total medical costs, excluding hospitalization, 
are $49,758 (undiscounted, inflated to 2015$), or $48,796 using a 3% discount rate and $47,623 for a 7% 
discount rate (Table 25). Although this study analyzed costs associated with individuals ages 35 and 
older, we apply the total medical costs to all ages from zero to 99 since only a small portion (<10%) of 
annual AMI incidence occurs in the age range below 35. 

Table 25. Medical Costs for AMIs (2015$) 

Costs Cumulative Costs 
Annual Costs 

Undiscounted 3% Discount Rate1 7% Discount Rate1 

Month of Event* $43,523 $43,523 $43,523 $43,523 
Year 1 $70,629 $27,106 $27,106 $27,106 
Year 2 $82,591 $11,962 $11,614 $11,180 
Year 3 $93,281 $10,690 $10,076 $9,337 
Years 1-3 $93,281 $49,758 $48,796 $47,623 

1Uses end-of-year discounting. 

We supplement AMI medical costs with estimates of lost earnings using age-specific estimates from 
Cropper and Krupnick, 1990. Using a 3% discount rate, we estimated the following present discounted 
values in lost earnings over 5 years due to a heart attack: 0.219 times annual earnings for someone 
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between the ages of 25 and 44, 3.534 times annual earnings for someone between the ages of 45 and 
54, and 1.245 times annual earnings for someone between the ages of 55 and 65. The corresponding 
age-specific estimates of lost earnings using a 7% discount rate are 0.203, 3.287, and 1.158 times annual 
earnings, respectively. Cropper and Krupnick, 1990 does not provide lost earnings estimates for 
populations under 25 or over 65. As such we do not include lost earnings in the cost estimates for these 
age groups. These costs, along with the total valuation estimates for AMIs, are presented in Table 26. 

Table 26. Total Valuation Estimates for AMIs (2015$) 

Discount Rate 
Age Range 

Medical Cost Lost Earnings Multiplier Total Cost Min Max 

3% 

0 24 $48,796 0 $48,796 
25 44 $48,796 0.219 $48,796 + 0.219*earnings 
45 54 $48,796 3.534 $48,796+ 3.534*earnings 
55 65 $48,796 1.245 $48,796+ 1.245*earnings 
66 99 $48,796 0 $48,796 

7% 

0 24 $47,623 0 $47,623 
25 44 $47,623 0.203 $47,623+ 0.203*earnings 
45 54 $47,623 3.287 $47,623+ 3.287*earnings 
55 65 $47,623 1.158 $47,623+ 1.158*earnings 
66 99 $47,623 0 $47,623 

 

 Allergic Rhinitis (Hay Fever) 
Two potential valuation sources for allergic rhinitis were reviewed: Soni, 2008 and Bhattacharyya, 2011. 
Both studies utilize data from the Medical Expenditure Panel Survey (MEPS) and identify allergic rhinitis 
(also referred to as hay fever) using ICD-9 code 477. Each study analyzes medical expenditures for 
differing years, Soni, 2008 for the years 2000 and 2005, and Bhattacharyya, 2011 for the year 2007. Soni, 
2008 calculates the cost-of-illness for allergic rhinitis as the mean expenditures for ambulatory care, in-
patient services, and prescription medications per person. Bhattacharyya, 2011 calculates the 
incremental difference in annual healthcare expenditures for individuals with and without allergic 
rhinitis. Although Bhattacharyya, 2011 uses more recent data, the estimates are not specific to children. 
Therefore, we derived our COI estimates from the 2005 data presented by Soni, 2008, which are 
stratified by age group. The resulting COI for allergic rhinitis is $600 for ages zero to seventeen (2015$; 
Table 21). These COI estimates represent mean annual medical costs for patients with hay fever. Given 
that the health impact function for this endpoint relates to allergic rhinitis prevalence, these estimates 
are more applicable than values representing only first-year costs. 

 Asthma Onset 
Belova et al., 2020 estimated the lifetime cost of asthma using data from the 2002 to 2010 Medical 
Expenditure Panel Survey (MEPS). The authors identify all individuals with current asthma (9,409 out of 
158,867 respondents) using the ICD-9 code 493 in the MEPS Medical Conditions Files. Additionally, they 
identify the date of asthma onset for these individuals. Using the MEPS Medical Events files, which 
capture most types of medical expenditures (e.g., hospitalizations, emergency room visits, outpatient 
visits, prescriptions), Belova et al., 2020 estimated annual expenditures by asthma duration and age at 
onset. The annual healthcare costs for asthma—as measured by healthcare expenditures by all paying 
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parties—vary from $700 to $1,800 for children and $800 to $2,200 for adults (2010$). They extrapolate 
these values to a lifetime cost stream for an incident chronic asthma case to generate present value 
estimates by onset age using discount rates of 3% and 7%. Additionally, the authors consider 
productivity impacts that capture 1) the probability of not being able to work due to health reasons, 2) 
the impact of asthma on occupational choice, and 3) impact of asthma on weekly earnings. 

We adapt the Belova et al., 2020 estimates to align with the age groups 0 to 17, 4 to 21, and 35 to 99.68 
This calculation entails weighting the Belova et al., 2020 age groups by their relative prevalence and 
propagating the standard errors to derive new uncertainty bounds. The results are summarized in Table 
27. Confidence intervals are not provided for productivity losses to mirror the valuation functions in 
BenMAP-CE, which at present are only capable of reflecting uncertainty in one parameter (in this case, 
medical costs) (Table 21). 

Table 27. Age-adjusted Belova et al., 2020 Estimates of Lifetime Asthma Costs 

Age of asthma onset Discount rate Healthcare costs (2015$) Productivity Loss (2015$) 

0 – 17 3% $17,232 
($16,366, $18,097) $27,426 

0 – 17 7% $10,187 
($9,643, $10,730) $17,502 

 

 Asthma Symptoms/Exacerbation 

5.3.4.1 Albuterol Use 
As albuterol use is a new measure of PM2.5-attributable asthma symptoms, we developed a method for 
valuing this health endpoint. We estimate the economic value for albuterol use associated with asthma 
symptoms using prescription prices for albuterol inhalers. Epocrates and GoodRx provide cost and 
actuation information for four common types of albuterol inhalers in 2020 dollars.69,70 Both online 
resources utilize published price lists, purchases, claim records, and pharmaceutical data to provide 
clinical statistics. Epocrates and the FDA provide cost and actuation information for one additional, less 
common, albuterol inhaler.71 We divide the cost of inhalers by the actuations per inhaler to calculate an 
average cost per actuation across all inhaler types. We then adjust the values to 2015$ using the 
Consumer Price Index (CPI) for medical care. Since medical cost index data were unavailable for 2020 at 
the time of these calculations, we used the most recently available index (2019). The resulting value for 
asthma symptoms, albuterol use is $0.35 per actuation (2015$) (Table 21). 

5.3.4.2 Cough, Wheeze, Chest Tightness, and Shortness of Breath 
While the risk estimates for both PM₂ꓸ₅- and O3-attributable asthma symptoms were updated, the 
valuation estimates for cough, wheeze, chest tightness, and shortness of breath are still based on the 
previous method, using the Dickie and Messman, 2004 analysis of parents’ WTP to relieve asthma 

 
68 These age groups were selected based on the ages pertaining to the PM2.5-related health impact functions. 
These do not currently align directly with the ozone health impact functions for new onset asthma, but the 
valuation functions nonetheless cover the age ranges needed to value the ozone health impact functions. 
69 https://online.epocrates.com/drugs searched March 19th, 2020. 
70 https://www.goodrx.com/albuterol searched March 19th, 2020. 
71 https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/205636s006lbl.pdf 
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symptoms in children and adults. The authors derive the WTP estimates from an attribute-based, 
stated-choice question assessing preferences to avoid acute illness as part of a survey performed in 
Hattiesburg, Mississippi in 2000. Survey respondents are asked to identify whether they or their child 
have experienced the following asthma symptoms in the past year: cough with phlegm, shortness of 
breath with wheezing, chest pain on deep inspiration, and fever with muscle pain and fatigue. 
Respondents were then assigned one of sixteen illness profiles varying by symptom, symptom duration, 
in days, as well as discomfort level. Dickie and Messman, 2004 calculate the WTP for children ages zero 
to seventeen as $219, for one avoided mild symptom-day (2015$). The authors also provide WTP 
estimates by symptom, however, they represent six avoided symptom-days. Therefore, we apply the 
same WTP value, for one avoided mild symptom-day, to each asthma symptom endpoint (Table 21). 

 Cardiac Arrest 
The COI for cardiac arrests occurring outside of the hospital is derived from O'Sullivan et al., 2011, who 
estimate three-year medical costs associated with cardiovascular disease events among adults ages 35 
and older in the U.S. The authors rely on administrative claims data from a large U.S. health plan and 
develop econometric models to predict medical costs for 15 different cardiovascular events, including 
cardiac arrest, referred to as resuscitated cardiac arrest. The dataset includes over 20 million 
commercial and Medical Advantage members between 2002 and 2006. Cardiac arrests are identified 
using the ICD-9 code 427.5. The authors use propensity score matching to develop a control group with 
which to compare costs versus individuals that suffered cardiac arrest. Medical costs occurring within 
the month of the event were excluded to avoid double counting hospitalization costs, which are 
separately captured by the hospitalization valuation functions. Over three years, the total medical costs, 
excluding hospitalization, are $36,142 (undiscounted, inflated to 2015$), or $35,753 using a 3% discount 
rate and $35,282 for a 7% discount rate (Table 28 and Table 21). 

Table 28. Valuation Estimate for Cardiac Arrests (2015$) 

Costs Cumulative Costs 
Annual Costs 

Undiscounted 3% Discount Rate 7% Discount Rate 
Month of Event* $43,904 $43,904 $43,904 $43,904 
Year 1 $71,901 $27,997 $27,997 $27,997 
Year 2 $74,701 $2,800 $2,718 $2,617 
Year 3 $80,046 $5,345 $5,038 $4,668 
Years 1-3 $80,046 $36,142 $35,753 $35,282 

 

 Lung Cancer 
The unit value for non-fatal lung cancer incidence is derived from the direct medical costs of lung cancer 
treatment estimated by Kaye et al., 2018. This COI value incorporates only direct medical costs and not 
lost earnings associated with lung cancer incidence because the average age of lung cancer diagnosis is 
approximately 70 and it is assumed that those aged 65 and older are retired and thus have exited the 
labor market. Lung cancer treatment costs depend to a large extent on the phase of care, with costs in 
the initial year of treatment (e.g., $17,422 for males) far exceeding the continuing costs of treatment in 
subsequent years (e.g., $3,269 for males). We calculate costs over a five-year span, beginning with the 
initial onset which is occurs with a delay after exposure. The specific lag periods between exposure and 
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onset are discussed in Section 6.4.2. The initial year’s treatment cost is summed with four years of 
continuing annual costs discounted by 3% and 7%.   

Furthermore, Kaye et al., 2018 provides separate treatment cost estimates for men and women. The 
distribution of new lung cancer cases by sex in the United States from Siegel et al., 2019 is 
approximately 51% male and 49% female. This distribution of new lung cancer cases was used to weight 
the sex-specific cost estimates from Kaye et al., 2018 to obtain a combined five-year cost estimate for 
both sexes. In order to adjust the cost estimate to 2015$ using a medical cost index, we assume that 
costs presented by Kaye et al., 2018 are in 2010$ as an approximate midpoint of the data years 2007-
2012. Altogether, the cost of non-fatal lung cancer incidence over a five-year period is estimated to be 
$33,809 using a 3% discount rate or $32,548 using a 7% discount rate (Table 21).  

For an outcome such as lung cancer, there is an expected time lag between changes in pollutant 
exposure in a given year and the total realization of health effect benefits, commonly referred to in 
regulatory analyses as the “cessation lag.” The time between exposure and diagnosis can be quite long, 
on the order of years to decades, to realize the full benefits of the air quality improvements. This latency 
period is important in order to properly discount the economic value of these health benefits.  

To estimate the latency period, we performed a literature search using the keywords “non-fatal lung 
cancer,” “lung cancer,” “PM2.5,” “latency,” and “incidence.” Five papers that estimate the risk of lung 
cancer incidence from PM2.5 exposure using a latency period were identified. The latency period length 
and country of the identified papers are summarized in Table 29. Based on estimates of lung cancer 
latency from the literature, 10 years was the most common latency period estimate found in the 
literature (i.e., the mode).   

Table 29. Latency Periods Used in Lung Cancer Risk Assessment Papers 

Study Latency Period (years) Location 
Gogna et al., 2019 5 Canada 
Bai et al., 2020 4; 10 Canada 
Kulhanova et al., 2018 10 France 
Coleman et al., 2020 10; 15 US 
Harrison et al., 2004 20 US 

 

To account for the latency period between air pollution reductions and avoided lung cancer diagnoses in 
our economic valuation estimates, we developed an age-at-diagnosis cessation lag distribution method 
based on an approach previously used to estimate avoided cases of kidney cancer in analyses of water 
quality rules (U.S. EPA, 2017). The method uses lung and bronchus cancer diagnosis age-distribution 
from the Surveillance, Epidemiology, and End Results Program (SEER). For this model, we assumed that 
the case reduction distribution would follow the age-pattern of cancer diagnosis between the age at 
which the exposure change occurs and 99 years. Table 30 shows an example case reduction distribution 
calculation for an exposure change experienced at 55. SEER estimates 92.2% of lung and bronchus 
cancer cases occur in individuals 55 years and older. Dividing the percentages in the remaining age bins 
by 92.2% (the percent of lung and bronchus cancer diagnoses between the age of exposure change and 
end of lifetime), we find that there is a 24% chance that the risk reductions for a 55-year-old occur 
between ages 55 and 64, a 37% chance that the case reductions occur between ages 65 and 74, etc. For 
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distributing avoided cases within an age bin, we assume an equal incidence distribution across years 
within each bin. 

 

Table 30. Percent Lung and Bronchus Cancer Incidence by Age and Distribution of Risk Reduction by Age 
for an Exposure Change at 55 

Age 
Group 

Percent New Cases per Year by 
Age* 

Percent of New Cases Occurring at or After Age 
551 

0-20 0 NA 
20-34 0.2 NA 
35-44 0.9 NA 
45-54 6.6 NA 
55-64 21.8 24 
65-74 34.1 37 
75-84 26.6 29 
85-99 9.7 11 
55-99 92.2 100 

*May not sum to 100% due to rounding 
1Calulcated as the percentage in column 2 divided by 92.2%, where 92.2% is the percentage of lung and bronchus 
incidence between age 55 and 99. 

This and other potential cessation lag distribution models for lung cancer onset are described and 
compared in section 6.4.2.  

 Minor Restricted Activity Days (MRADs)  
Due to their definition, for the purposes of benefits estimation minor respiratory-restricted activity days 
(MRRAD) are assumed to constitute all MRADs (Ostro and Rothschild, 1989). While no peer-reviewed 
studies estimating WTP to avoid a MRRAD are available, a central estimate and upper and lower bounds 
of WTP to avoid a MRRAD were developed by IEc (IEc, 1993).72 When estimating benefits associated 
with an MRAD, we use a triangular distribution centered at the estimate.    

Any estimate of mean WTP to avoid a MRRAD (or any other type of restricted activity day other than 
Work Loss Day (WLD) will be somewhat arbitrary because the endpoint itself is not precisely defined. 
Many different combinations of symptoms could presumably result in some minor or less minor 
restriction in activity. Krupnick and Cropper, 1992 argued that mild symptoms will not be sufficient to 
result in a MRRAD, so that WTP to avoid a MRRAD should exceed WTP to avoid any single mild 
symptom. A single severe symptom or a combination of symptoms could, however, be sufficient to 
restrict activity. Therefore, WTP to avoid a MRRAD should, these authors argue, not necessarily exceed 
WTP to avoid a single severe symptom or a combination of symptoms. The “severity” of a symptom, 
however, is similarly not precisely defined; moreover, one level of severity of a symptom could induce 

 
72 IEc, 1993 derived this estimate of WTP to avoid a MRRAD using WTP estimates from Tolley et al., 1986 
for avoiding a three-symptom combination of coughing, throat congestion, and sinusitis. This estimate 
of WTP to avoid a MRRAD, so defined, is $69.58 in 2015$. 
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restriction of activity for one individual while not doing so for another. The same is true for any 
combination of symptoms.  

Given that there is inherently a substantial degree of arbitrariness in any point estimate of WTP to avoid 
a MRRAD (or other kinds of restricted activity days), the reasonable bounds on such an estimate must be 
considered. By definition, a MRRAD does not result in loss of work. WTP to avoid a MRRAD should 
therefore be less than WTP to avoid a WLD. At the other extreme, WTP to avoid a MRRAD should exceed 
WTP to avoid a single mild symptom. The highest IEc midrange estimate of WTP to avoid a single 
symptom is $28.51 (2015$), for eye irritation. The point estimate of WTP to avoid a WLD in the benefit 
analysis is $110.62 (2015$). If all the single symptoms evaluated by the studies are not severe, then the 
estimate of WTP to avoid a MRRAD should be somewhere between $28.51 and $110.62. Because the IEc 
estimate of $69.58 (2015$) falls within this range (and acknowledging the degree of arbitrariness 
associated with any estimate within this range), we use the IEc estimate of $69.58 (2015$) (Table 21). 

 School Loss Days  
We include two costs of school loss days: caregiver costs and loss of learning. We calculate each 
separately and then sum them. Caregiver costs are valued at their employers’ average cost for employed 
caregivers. For unemployed caregivers, the opportunity cost of their time is calculated as the average 
take-home pay. The loss of learning is calculated based on the impact of absences on learning multiplied 
by the impact of school learning on adult earnings. The loss of learning estimate is currently only 
available for middle and high school students. The two costs are summed.  

The caregiver costs assumes that an adult caregiver stays home with the child and loses any wage 
income they would have earned that day. For working caregivers, we follow EPA guidance and value 
their time at the average wage including fringe benefits and overhead costs (U.S. EPA, 2020a). The 
average daily wage in 2021 was $195 (2015$, assumed to be the average weekly wage divided by 5, US 
Bureau of Labor Statistics, 2021a), which yields an average daily labor cost of $340 for employed parents 
applying average multiplier of 1.46 for fringe benefits and 1.2 for overhead. For nonworking caregivers, 
we assume that the opportunity cost of time is the average after tax earnings. We estimate the income 
tax rate for a median household to be 7%, yielding net earnings of $195*0.93 or $181 ($2015). The 
income tax rate of 7% is the percentage difference in median post-tax income and median income from 
(U.S. Census Bureau, 2021). 

The probability that a parent is working is measured with the employment population ratio among 
people with their own children under 18 and is 77.2% (US Bureau of Labor Statistics, 2021b). Combining 
the cost of working and nonworking caregivers yields a caregiver cost of $305 per school loss day. 

To measure the loss of learning, we update the Liu et al., 2021 estimate. Liu et al., 2021 estimated the 
impact of a school absence on learnings as measured by an end-of-course test score.  We multiply by an 
estimate of the impact of learning as measured by end-of-course test scores on adult income from 
Chetty et al., 2014. This approach yields an estimated learning loss of $2,230 per school absence 
(discounted at 3%) or $975 per school absence (discounted at 7%).   

We updated the Chetty et al., 2014 estimate to use 2010 income and to estimate lifetime incomes 
discounted at 3% and 7%.  Liu et al., 2021 provide an estimate that a school absence leads to a $1,200 
reduction in lifetime earnings, based on the Chetty et al., 2014 estimate that lifetime earnings are 
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$522,000 (2010$).  We use 2010 ACS data from IPUMS to calculate expected lifetime earnings of 
$892,579 (discounting at 3%) and $390,393 (discounting at 7%).   We then multiply the Liu et al., 2021 
estimate of $1200 by (892,579/522,000) and (390,393/522,000) and convert from 2010 dollars to 2015 
dollars based on the Consumer Price Index for All Urban Consumers. 

We use caregiver costs for preschool and elementary school children and the sum of caregiver costs and 
loss of learning for middle school and high school students. We calculate that 31% of children under 18 
are middle school and high school ages 13-18, assuming each bin distributed equally), so the combined 
average effect is ($305 + $2,230*0.31) or $1000 with 3% discounting, or ($305 + $975*0.31) or $610 
with 7% discounting (U.S. Census Bureau, 2010). 

A unit value based on the approach described above is likely to understate the value of a school loss day 
in at least four ways:  

1) It omits WTP to avoid the symptoms/illness which resulted in the school absence 
2) It omits the opportunity cost of time for non-working caregivers’ day 
3) The approach omits other aspects of school attendance such as social and emotional 

development or meals 
4) It does not account for deleterious effects on student learning in other subjects.   

 Stroke 
Mu et al., 2017 estimates COI of non-fatal stroke incidence using direct medical costs incurred during 
initial hospitalization and the 360 days following hospital discharge. The study identifies individuals 
experiencing a first-time stroke using ICD-9 codes 434 and 436. The authors analyze medical claims from 
January 2006 to March 2015 utilizing the retrospective IMS LifeLink PharMetrics Plus database for 
individuals ages 18 to 65, and Medicare Advantage and Medicare Supplemental Claims for individuals 
above the age of 65. The authors present acute care and long-term care costs stratified by three 
discharge classifications: dead at discharge, discharged with disability, and discharged without disability. 
We estimate the average costs for non-fatal cases by weighting the costs for individuals discharged with 
disability and without disability by their prevalence (23 and 77 percent, respectively). The resulting COI 
for non-fatal stroke incidence is $33,962 (2015$) (Table 21). This value reflects one-year medical costs 
following stroke and does not include hospitalization costs, as these costs are separately captured by 
hospitalization valuation functions. We reviewed several studies that estimate longer-term medical 
costs (Goodwin et al., 2011, Lee et al., 2007, Luengo-Fernandez et al., 2012, Nicholson et al., 2016) and 
concluded that roughly three quarters of costs are incurred in first year after stroke occurrence.73 

 Work Loss Days (WLDs)  
Work loss days are valued at a day’s wage. BenMAP calculates county-specific median daily wages from 
county-specific annual wages by dividing by (52*5), on the theory that a worker’s vacation days are 
valued at the same daily rate as workdays. This estimate does not include benefits rate for lost work 
time. The resulting COI for work loss days varies by county but has a median value of $150 (2015$) (IEc, 
1993) (Table 21). 

 
73 We did not include the additional 25% of medical costs incurred after the first-year post-stroke due to the lack of 
information on the timing of those additional costs. Without information on when they would be incurred, we 
cannot appropriately discount the estimated medical costs. 
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5.4 DEVELOPING INCOME GROWTH ADJUSTMENT FACTORS FOR HEALTH ENDPOINT 

ONSET/OCCURRENCE 
Chapter 4 of the BenMAP-CE User Manual provides instructions for formatting and adding income 
growth data (U.S. EPA, 2018). These values are used to adjust WTP estimates for growth in real income. 
As discussed in that chapter, evidence and theory suggest that WTP should increase as real income 
increases. When reviewing the economic literature to develop income growth adjustment factors, it is 
important to have an economist assist. For an overview of valuation, see Chapter 7 of the BenMAP-CE 
User Manual, “Aggregating, Pooling, and Valuing”.  

Adjusting WTP to reflect growth in real income requires three steps:  

1. Identify relevant income elasticity estimates from the peer-reviewed literature. 
2. Calculate changes in future income. 
3. Calculate adjustments to WTP based on changes in future income and income elasticity 

estimates. 

1. Identifying income elasticity estimates  

Income elasticity estimates relate changes in demand for goods to changes in income. Positive income 
elasticity suggests that as income rises, demand for the good also rises. Negative income elasticity 
suggests that as income rises, demand for the good falls. We do not adjust COI estimates according to 
changes in income elasticity due to the fact that COI estimates the direct cost of a health outcome; 
instead, we adjust this metric using inflation factors described above. We include income elasticity 
estimates specific to the type of health endpoint associated with the WTP estimate for three types of 
health effects: minor, severe and mortality. Minor health effects are those of short duration. Severe, or 
chronic, health effects are of longer duration. Consistent with economic theory, the peer reviewed 
literature indicates that income elasticity varies according to the severity of the health effect. A review 
of the literature revealed a range of income elasticity estimates that varied across the studies and 
according to the severity of health effect. Table 31 summarizes the income elasticity estimates for minor 
health effect, severe health effect and mortality. Here we have provided a lower, upper, and central 
elasticity estimate for each type of health endpoint.  

Table 31. Income Elasticity Estimates for Minor Health Effects, Severe Health Effects, and Mortality 

Health Endpoint Lower Bound Central Estimate Upper Bound 

Minor Health Effect 0.04 0.15 0.30 

Severe and Chronic Health Effects 0.25 0.45 0.60 

Mortality 0.08 0.40 1.00 

 

2. Calculating changes in future income  
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The next input to the WTP adjustment is annual changes in future income. The Congressional Budget 
Office’s ten-year projections of US Gross Domestic Product (GDP) are used to estimate changes in future 
income (CBO, 2016). Historical GDP data came from the U.S. Bureau of Commerce’s Bureau of Economic 
Analysis. GDP values were adjusted for inflation as needed using the Implicit Price Deflator annual index, 
published by the Economic Research Division of the Federal Reserve Bank of St. Louis. We divided the 
projected change in GDP by the Woods & Poole, 2015 projected change in total US population to 
produce an estimate of the future GDP per capita.  

3. Calculating changes in WTP  

The income elasticity estimates from Table 31 and the estimated changes in future income may then be 
used to estimate changes in future WTP for each health endpoint. The adjustment formula follows four 
steps:  

1) 
ε=
∆𝑊𝑊𝑊𝑊𝑊𝑊
𝑊𝑊𝑊𝑊𝑊𝑊
∆𝐼𝐼
𝐼𝐼

=
(𝑊𝑊𝑊𝑊𝑊𝑊2 −𝑊𝑊𝑊𝑊𝑊𝑊1) × (𝐼𝐼2 + 𝐼𝐼1)
(𝐼𝐼2 − 𝐼𝐼1) × (𝑊𝑊𝑊𝑊𝑊𝑊2 +𝑊𝑊𝑊𝑊𝑊𝑊1)

 

 

2) ε𝐼𝐼2𝑊𝑊𝑊𝑊𝑊𝑊2 +  ε𝐼𝐼2𝑊𝑊𝑊𝑊𝑊𝑊1 −  ε𝐼𝐼1𝑊𝑊𝑊𝑊𝑊𝑊2 − ε𝐼𝐼1𝑊𝑊𝑊𝑊𝑊𝑊1 = 𝐼𝐼2𝑊𝑊𝑊𝑊𝑊𝑊2 + 𝐼𝐼1𝑊𝑊𝑊𝑊𝑊𝑊2 −  𝐼𝐼2𝑊𝑊𝑊𝑊𝑊𝑊1 − 𝐼𝐼1𝑊𝑊𝑊𝑊𝑊𝑊1 

 

3) 𝑊𝑊𝑊𝑊𝑊𝑊2 × ( ε𝐼𝐼2 −  ε𝐼𝐼1 −  𝐼𝐼2 −  𝐼𝐼1) = 𝑊𝑊𝑊𝑊𝑊𝑊1 × ( ε𝐼𝐼1 −  ε𝐼𝐼2 −  𝐼𝐼1 −  𝐼𝐼2) 

 

4) 𝑊𝑊𝑊𝑊𝑊𝑊2 = 𝑊𝑊𝑊𝑊𝑊𝑊1 ×
 ε𝐼𝐼1 −  ε𝐼𝐼2 −  𝐼𝐼1 −  𝐼𝐼2
 ε𝐼𝐼2 −  ε𝐼𝐼1 −  𝐼𝐼2 −  𝐼𝐼1

 

 

 

Table 32 summarizes the income-based WTP adjustments used within BenMAP-CE for minor health 
endpoints, severe health endpoints, and premature mortality. BenMAP-CE applies the “mid” income 
growth adjustment to the WTP for each corresponding health endpoint. The “low” and “upper” are 
provided for bounding the “mid” estimate. More information on the uncertainties associated with the 
choice of income elasticity is provided in section 6.4.3. 
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Table 32. Income-Based WTP Adjustments by Health Effect and Year 
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6 CHARACTERIZING UNCERTAINTY AND EVALUATING SENSITIVITY TO ALTERNATE 

ASSUMPTIONS 

Complex analyses such as the one presented in the final RIA for the Revised CSAPR Update rule use 
many estimated parameters and inputs. The approach for estimating PM2.5 and O3 benefits includes 
health effect risk estimates from epidemiologic studies, population data, population growth estimates, 
economic data for monetizing benefits, and assumptions regarding the future state of the world (i.e., 
on-the-books regulations). When the uncertainties from each stage of the analysis are compounded, 
even small uncertainties can have large effects on the total quantified benefits.  

After reviewing the EPA’s approach to quantifying benefits, the National Research Council (National 
Resources Council, 2004) highlighted the need to conduct rigorous quantitative analyses of uncertainty 
and to present benefits estimates to decision makers in ways that foster an appropriate appreciation of 
their inherent uncertainty. Since the publication of these reports, the EPA has continued improving its 
techniques for characterizing uncertainty in the estimated air pollution-attributable benefits.  

In light of these recommendations, we incorporate new quantitative and qualitative characterizations of 
uncertainty. Where possible, we quantitatively assess uncertainty in each input parameter (for example, 
we characterize statistical uncertainty by performing Monte Carlo simulations). We invest the time and 
resources in performing the most comprehensive uncertainty analyses for those input parameters that 
most greatly influence on the size of the estimated health impacts.74  

In some cases, this type of quantitative analysis is not possible due to lack of data, so we instead 
characterize the sensitivity of the results to alternative plausible input parameters. And, for some inputs 
into the benefits analysis, such as the air quality data, we lack the data to perform either a quantitative 
uncertainty analysis or sensitivity analysis.  

Sections 6.1 and 6.2 quantitatively describe the uncertainty associated with estimated PM2.5 and O3-
attributable incidence. Section 6.3 provides information on the sensitivity to more granular baseline 
incidence rates. Section 6.4 quantitatively discusses the influence of uncertainty in the economic 
valuation functions. Lastly, section 6.5 qualitatively discusses the various potential sources of 
uncertainty, sometimes including sources of uncertainty touched upon quantitatively. 

6.1 QUANTITATIVE CHARACTERIZATION OF PM2.5 UNCERTAINTY AND EVALUATING SENSITIVITY TO 

ALTERNATE PM2.5 ASSUMPTIONS 
Below we describe our approach for characterizing uncertainty in the estimated PM2.5-related effects. 
We start first with the role of Monte Carlo assessment in generating a quantitative distribution of 
results. We next describe how alternative risk estimates75 can be useful for assessing the sensitivity of 

 
74 Uncertainties that we expect will have the greatest influence on health impacts are 1) those associated with 
mortality impacts given the severity of the outcome and the associated economic valuation and 2) quantitative 
and qualitative uncertainty characteristics likely to impact the magnitude of bias most strongly. 
75 Alternate risk estimates are a means to quantitatively understand uncertainties around the main risk estimate. 
Alternate risk estimates are based on a different set of input parameters, which may come from the same study or 
different studies. Alternate risk estimates can be used to assess the sensitivity of the risk estimate to alternative 
assumptions and input parameters, such as modeling choices, populations, or statistical techniques. 
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the estimated PM2.5-related mortality and morbidity to plausible alternative input parameters; this gives 
insight to the influence of the functional form of the model or alternative epidemiologic approaches. 
Quantitative sensitivity analyses using alternative or additional risk estimates are included for the 
following PM2.5-attributable health endpoints: mortality in adults (section 6.1.1), asthma onset in 
children (section 6.1.3), cardiovascular hospital admissions (section 6.1.4), and respiratory hospital 
admissions (section 0).  

 Statistical Uncertainty Around the Risk Estimate (Monte-Carlo Assessment) 
For all endpoints analyzed, we use a Monte Carlo simulation in which we sample from the standard 
error associated with each risk estimate and present the resulting 2.5th and 97.5th percentile values from 
this distribution as a 95th percentile confidence interval around the estimated health impact and 
monetized health benefits. Monte Carlo methods are a well-established means of characterizing random 
sampling error associated with the risk estimates from epidemiological studies. This approach randomly 
samples from a distribution of incidence and valuation estimates to characterize the effects of 
uncertainty in those inputs on output variables. The reported standard errors in the epidemiological 
studies determined the distributions for individual effect estimates for endpoints estimated using a 
single study. The confidence intervals around the monetized benefits incorporate the epidemiology 
standard errors as well as the distribution of the valuation function. These confidence intervals do not 
reflect other sources of uncertainty inherent within the estimates, such as baseline incidence rates, 
populations exposed, and transferability of the effect estimate to diverse locations. As a result, the 
reported confidence intervals and range of estimates give an incomplete picture about the overall 
uncertainty in the benefits estimates. 

 Adult All-Cause Mortality76 
Three studies of all-cause, long-term PM2.5 exposure and mortality were identified as best characterizing 
U.S. risk in adults, Pope III et al., 2019, Turner et al., 2016, Wu et al., 2020. Additional information 
regarding the cohort concentration exposure distributions (section 6.1.2.1) and additional risk estimates 
potentially providing insight into the effect of various potential sources of uncertainty, such as different 
exposure estimation techniques (section 6.1.2.2), confounding by O3 (section 6.1.2.3), statistical 
regression techniques and methods to control for confounders (section 6.1.2.4), and effect modification 
by individual risk factors (section 6.1.6).  

6.1.2.1 Low Concentration Exposures 
Each epidemiological risk estimate is based on a distribution of air quality concentrations experienced by 
the original cohort population. As such, it is important to consider the relationship between the 
concentrations from which the mortality estimates are derived and the concentrations at which the 
estimates are subsequently applied in future policy scenarios in which concentrations are likely to be 
lower due to decreasing air pollution trends. When estimating health impacts, we are most confident in 
results estimated using projected air quality concentrations that closely align with those observed in the 
epidemiological study from which the risk estimate was obtained (i.e., we are less confident applying 
risk estimates to pollutant concentrations that do not match the original cohort due to changes in air 
pollutant concentrations over time). To address the potential mismatch between projected air quality 

 
76 As estimates of infant mortality incidence are relatively small, we do not perform quantitative uncertainty 
analyses for that health endpoint. 
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levels and those in the epidemiologic study, we include air quality information from the original 
epidemiologic studies where feasible.  

Additional information was requested from mortality study authors regarding the ambient 
concentrations used to estimate exposure of the original cohort.77 Study authors provided cohort 
specific PM2.5 concentration data at varying levels of detail. PM2.5 concentrations for the three long-term 
exposure epidemiologic cohort studies examining mortality, ACS CSP-II and Medicare are presented in 
Figure 12 (Di et al., 2017b, Turner et al., 2016, Wu et al., 2020); the distribution of PM exposure 
incorporated in the Pope III et al., 2019 study is reflected in the histogram reported below (Figure 13). 
We also included the distribution of PM2.5 concentrations from a recent analysis of the CanCHEC cohort 
in order to compare to some of the lowest reported concentrations in North America (Crouse et al., 
2015). Points reflect cohort specific PM2.5 concentration data, with connecting lines estimating missing 
data.  

 

Figure 12. Cumulative Percentile of PM2.5 Cohort Exposure from the ACS CSP-II, Medicare, and CanCHEC 
Cohorts 

 
77 For morbidity studies, author-reported air quality information such as the average or mean, standard deviation, 
and maximum and minimum concentrations were collected and is available in the corresponding Study 
Information Table. 
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As air pollution concentrations continue to decline an increasing fraction of the population will be 
exposed to PM2.5 concentrations at the lower end of the air quality distribution experienced by the study 
cohort. The distribution of PM2.5 concentrations for each of three large, long-term exposure cohorts are 
provided in Table 33. For comparison, the lowest reported PM2.5 concentrations from previous studies 
(Krewski et al., 2009, Lepeule et al., 2012) in which risk estimates were used to estimate all-cause 
mortality attributed to long-term PM2.5 exposure were 5.8 and 8.0 µg/m3, whereas the recent studies 
identified as best characterizing long-term PM2.5 exposure and the risk of all-cause mortality include 
PM2.5 concentrations below 3 µg/m3 (Di et al., 2017b, Pope III et al., 2019, Turner et al., 2016, Wu et al., 
2020). Pope and co-authors separately reported the exposure distribution (Higbee et al., 2020); we 
report the histogram from this manuscript below.  

Table 33. Low Concentration PM2.5 Exposures from the ACS CSP-II, Medicare, and CanCHEC Cohorts 

Cohort 
Percentile of Cohort Exposure (µg/m3) 

0.0% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 10.0% 
ACS CSP-II 2.8 5.8 

 
6.3 6.5 6.6 

 
7.0 

 
7.4 

 

Medicare 0.0A 3.2 3.5 3.8 4.1 4.3 4.5 4.7 4.9 5.0 6.1 
CanCHEC  0.0 3.2 

 
3.5 3.6 

    
4.0 4.7 

A Lowest modeled value is 0.0078 µg/m3 
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Figure 13. Modeled PM2.5 Exposure Distribution for NHIS Study Population, with Select Fitted Probability 
Density Functions (from Higbee et al., 2020, publisher permission pending) 

 

PM2.5 concentrations reported in cohort studies are not equivalent to NAAQS design values (DVs). 
Information relating PM2.5 concentrations from cohort studies discussed within this section to PM2.5 DVs 
can be found in section 3.2 of the 2022 PM PA (U.S. EPA, 2022a). 

6.1.2.2 Estimating and Assigning Exposures in Epidemiology Studies 
New developments in exposure assessment, including hybrid spatiotemporal models that incorporate 
satellite observations of AOD, land use variables, surface monitoring data from monitors, and chemical 
transport models, have led to improvements in the spatial resolution and extent of pollutant 
concentration surfaces. After reviewing the current state of exposure science, the 2019 PM ISA stated 
that “a number of studies demonstrate that the positive associations observed between long-term PM2.5 
exposure and mortality are robust to different methods of assigning exposure” and the 2020 O3 ISA 
articulated that “hybrid methods have produced lower error predictions of ozone concentration 
compared with spatiotemporal models using land use and other geospatial data alone but may be 
subject to overfitting given the many different sources of data incorporated into the hybrid framework” 
(U.S. EPA, 2019b). 

Although these advancements may reduce bias and uncertainty in risk estimates, the accuracy of hybrid 
exposure estimates can be difficult to confirm in areas lacking monitors. On the other hand, studies 
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using monitor data as the only exposure information have increasing exposure uncertainty the farther 
people live from the monitor site. 

Turner et al., 2016 and Pope et al., 2015 analyzed the same ACS CSP-II population over the same time 
period but used different hybrid exposure estimation techniques. Turner et al., 2016 used the 
hierarchical Bayesian space–time model (HBM) approach, which combines ambient measurement data 
with gridded estimates from the CMAQ photochemical model. Pope et al., 2015 used a land use 
regression model with Bayesian Maximum Entropy kriging of residuals (LURBME). Sensitivity of the risk 
estimate to the exposure estimation technique is available in Table 34, including the estimate identified 
for the main benefits assessment in italics. 

Table 34. PM2.5-Attributable ACS CSP-II Mortality Risk Estimates per 10 µg/m3 from Different Exposure 
Estimation Techniques  

Exposure Technique Risk Estimate 
HBM 1.06 (1.04-1.08) 
LURBME 1.07 (1.06–1.09) 

 

6.1.2.3 Confounding by O3 
When considering the relationship between pollutant exposure and health effects, it can be informative 
to consider whether risk estimates are subjected to confounding when including other pollutants in 
copollutant models, especially when health impacts of more than two highly correlated pollutants are 
being estimated concurrently.78 Regarding long-term exposures, the 2019 PM ISA concluded that 
“positive associations observed between long-term PM2.5 exposure and total mortality remain relatively 
unchanged after adjustment for O3, NO2, and PM10−2.5” (U.S. EPA, 2019b). 

Both Turner et al., 2016 and Di et al., 2017a provided single-pollutant and two-pollutant (including O3 as 
a copollutant) PM2.5-attributable mortality risk estimates. Although the 2019 PM ISA found that, in 
general, PM2.5 risk estimates were relatively unchanged to the inclusion of O3 in copollutant models, a 
comparison of risk estimates that either do or do not include O3 as a copollutant is included to clarify 
this potential sensitivity with respect to all-cause PM2.5-attributable mortality (U.S. EPA, 2019b). 
Differences in the magnitude of risk estimates including or excluding O3 as a copollutant are provided in 
Table 35. Italicized risk estimates were identified for use in the main benefits assessment. 

Table 35. Single- and Two-Pollutant (Including O3 as a Copollutant) PM2.5-Attributable Mortality Risk 
Estimates per 10 µg/m3 

 Turner et al., 2016 Di et al., 2017a 
Two-Pollutant 1.06 (1.04-1.08) 1.073 (1.071, 1.075) 
Single-Pollutant 1.06 (1.04-1.08) 1.084 (1.081, 1.086) 

6.1.2.4 Statistical Technique 
Wu, 2020 reported hazard ratios estimated using causal inference approaches, wherein the authors 
“design the study creating a pseudo-population which mimics a randomized experiment…” Wu and co-
authors applied three variants of the Generalized Propensity Score (GPS) technique: (1) matching by 

 
78 Modeling more than two correlated pollutants can be problematic due to collinearity issues. 
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GPS; (2) weighting by GPS; and (3) adjustment by GPS. Each of the three techniques provide similar 
Hazard Ratios, providing evidence that the results were robust to confounding (Table 36) 

Table 36. Hazard Ratios per 10 µg/m3 Estimated Using Three Causal Inference Approaches in Wu et al., 
2020 

Causal Inference Technique 
Hazard Ratio 

and 95% Confidence Interval 
Weighting 1.076 (1.065—1.088) 
Matching 1.068 (1.054—1.083) 
Adjustment 1.072 (1.061—1.082) 

 

Pope III et al., 2019 also generated Cox proportional hazard estimates using both complex and basic 
models, of which the basic model did not account for complex survey design (using PHREG procedure in 
SAS version 9.3). The two estimates for all-cause mortality from long-term PM2.5 exposures were nearly 
identical (Table 37). 

Table 37. Complex and Basic Cox Proportional Hazard Model Estimates of PM2.5-Attributable Mortality 
per 10 µg/m3 

 Pope III et al., 2019 
Complex 1.13 (1.11-1.16) 
Basic 1.13 (1.11-1.15) 

 

 Asthma Onset in Children 
For a number of health endpoints, we identified plausible alternative risk estimates to characterize the 
sensitivity of the main risk estimate to alternative assumptions and/or input parameters. Below we 
detail: 1) the endpoints for which we considered alternative risk estimates; and 2) the studies from 
which we drew the alternative risk estimates. This type of sensitivity assessment is also performed for 
other PM2.5 and O3 health endpoints in sections 6.1.4, 0, and 6.2.4. 

The study identified as best characterizing risk for this health endpoint took place in Canada (Tetreault 
et al., 2016). Even though comparatively Tetreault et al., 2016 was preferred in all identification criteria 
to other available studies (e.g., study size, exposure estimation technique, study period, etc.) other than 
location, we thought it useful to include the available U.S.-based risk estimates as uncertainty analyses. 
An overall comparison of the main risk estimate and 95% confidence interval from Tetreault et al., 2016 
and the alternative risk estimates and confidence intervals from McConnell et al., 2010 and Nishimura et 
al., 2013 can be found in Table 38. Details about the two studies providing alternate risk estimates is 
below. 



 

105 
 

Table 38. Potential Sensitivity of Estimated Instances of Asthma Onset  

 

Two of the five ISA-identified studies of asthma onset took place in the U.S. (McConnell et al., 2010, 
Nishimura et al., 2013). McConnell et al., 2010 examined the association between long-term traffic-
related air pollution (PM2.5, PM10, O3, and NO2) exposure and incident asthma in children. The authors 
collected data for three years from a cohort of 2,497 kindergarten and first-grade children aged 4-9 who 
entered the Southern California Children’s Health Study without asthma or wheeze. McConnell et al., 
2010 defined new-onset asthma as physician-diagnosed asthma reported by parents on a yearly 
questionnaire. While the primary focus of the study was traffic-related air pollution from local vehicle 
emissions, the authors also utilized ambient air pollution exposure data from central site monitors in 
each of the 13 communities in the Southern California Children’s Health Study. The authors used a 
multilevel Cox proportional hazards model to estimate the association between ambient air pollution 
exposure and new-onset asthma, controlling for race/ethnicity, secondhand smoke exposure, and pets 
in the home. The identified hazard ratio of 1.66 (95% CI: 0.91-3.05) for a 17.4 µg/m3 (range of exposure 
in the 13 communities) increase in annual average PM2.5 exposure came from a single pollutant model. 

The other study, Nishimura et al., 2013, investigated the relationship between long-term early-life 
pollution exposure (PM2.5, PM10, O3, NO2 , and SO2) and asthma onset in 3,343 Latino and African 
American children in five urban areas (Chicago, IL; Bronx, NY; Houston, TX; San Francisco, CA; Puerto 
Rico). The authors obtained data from the Genes–environments and Admixture in Latino Americans 
(GALA II) Study and the Study of African Americans, Asthma, Genes and Environments (SAGE II). GALA II 
and SAGE II are case-control studies that enrolled children with and without asthma. The studies defined 
case subjects as children with physician-diagnosed asthma plus two or more symptoms of coughing, 
wheezing, or shortness of breath in the two years before study enrollment while control subjects were 
children with no reported history of asthma, lung disease, or chronic illness, and no reported symptoms 
of coughing, wheezing, or shortness of breath in the two years before study enrollment. The authors 
estimated annual average pollution exposures during the first year of life as well as the first three years 
of life from self-reported residential histories by calculating inverse distance-squared weighted averages 

Potential Source of 
Uncertainty Potential Insights Gained from Quantitative Uncertainty Analyzes2 

Application of Risk Estimates 
to Other Locations and 
Populations 

Tetreault et al., 2016 included only Canadians whereas Nishimura et 
al., 2013 included five U.S. urban areas and McConnell et al., 2010 was 
restricted to southern CA 

Study Size 
Tetreault et al., 2016 included the largest study size, approximately 
twenty-five times the size of either Nishimura et al., 2013 or 
McConnell et al., 2010 

Study Period 
Tetreault et al., 2016 evaluated the most recent health study period 
(1996-2011) compared to 2002-2006 for McConnell et al., 2010 and 
1986-2005 for Nishimura et al., 2013 

Exposure Estimate 
Tetreault et al., 2016 used hybrid exposure estimates whereas sever 
states, whereas Nishimura et al., 2013 and McConnell et al., 2010 used 
monitor-based estimates 

Statistical Technique 
Tetreault et al., 2016 and McConnell et al., 2010 use time-varying and 
multilevel Cox proportional hazard models, respectively, whereas 
Nishimura et al., 2013 uses logistical regression models 
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from the four closest U.S. EPA Air Quality System monitoring stations within 50 km. The authors first 
used regional- and study-specific logistic regression models to estimate the association between asthma 
diagnosis and pollution exposure, controlling for demographics and socioeconomic status and 
subsequently combined the regression coefficients into a multi-region estimate using a random-effects 
meta-analysis. The identified odds ratio of 1.03 (95% CI: 0.90-1.18) for a 1 µg/m3 increase in average 
annual PM2.5 levels at the residential address during the first year of life came from a single pollutant 
model. Beta effect coefficients from the main (italicized) and sensitivity analyses are available in Table 
39.  

Table 39. Beta Coefficients and Standard Errors (SE) from Studies of Examining Long-term PM2.5 
Exposure and New Onset Asthma in Children  

Study Age Range Beta Coefficient (SE) 
Tetreault et al., 2016 0-17 0.044 (0.0009) 
McConnell et al., 2010 4-17 0.029 (0.017) 
Nishimura et al., 2013 7-21 0.030 (0.069) 

 

 Cardiovascular Hospital Admissions 
Bell et al., 2015 was identified as best characterizing risk across the U.S. for benefits assessment 
purposes as it included the largest study size, most recent time period, and a nationally representative 
geographic area. However, it was restricted to ages >64 and based exposure estimates solely on 
monitoring data. There was also another large study of PM2.5-attributable cardiovascular hospital 
admission impacts that included all ages and incorporated hybrid exposure estimation techniques 
(Talbott et al., 2014). Differences in the age ranges and ICD-9 codes prevented pooling of the two 
estimates but comparing the two estimates could provide insights into uncertainties associated with 
epidemiologic estimates of this health endpoint (Table 40). Therefore, we include a risk estimate of 
cardiovascular hospital admission impacts from long-term PM2.5 exposure from Talbott et al., 2014 as a 
sensitivity analysis of this health endpoint (Table 41). Please note that Talbott et al., 2014 provides 
individual risk estimates for each state, which will be pooled into a single estimate to compare with Bell 
et al., 2015. 

Talbott et al., 2014 assessed daily PM2.5 concentrations and hospitalizations for cardiovascular disease in 
Florida, Massachusetts, New Hampshire, New Jersey, New Mexico, New York, and Washington from 
2001 to 2008. The authors gathered hospital discharge data from each state’s respective data stewards. 
Talbott et al., 2014 conducted a time-stratified case crossover study using hospitalization data for all 
cardiovascular diseases (ICD-9 390-459) and for several specific cardiovascular diseases within the ICD-9 
390-459 range. Authors used a downscaling Bayesian space-time modeling approach to combine air 
monitoring data and air gridded numerical outputs from CMAQ to predict daily PM2.5 concentrations. 
The authors gathered meteorological data from the Centers for Disease Control (CDC) Wonder North 
America Land Data Assimilation System Daily Air Temperatures and Heat Index. Risk estimates were 
presented for a 10 µg/m3 increase in PM2.5 for each state and season across three single-day lags (0, 1, 
and 2) and a three-day lag average (0-2) by diagnosis. All-year risk estimates were identified over 
season-specific estimates and estimates of multiday average lag period were identified over single-day 
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lag estimates.79 The seven state-specific risk estimates identified as sensitivity analyses were pooled 
using the random or fixed effects algorithm in BenMAP-CE.80 The seven risk estimates reflect a mix of 
positive and negative values. State-specific risk estimates identified from Talbott et al., 2014 come from 
a two-pollutant multivariable model including O3 of ICD-9 codes 390-459: 1.005 (95% CI: 0.998-1.012) 
for Massachusetts; 1.011 (95% CI: 1.007-1.016) for New Jersey; 1.011 (95% CI: 0.973-1.050) for New 
Mexico; and 1.011 (95% CI: 1.008-1.014) for New York. Each odds ratio is for a 10 µg/m3 increase in the 
averaged daily mean PM2.5 concentration 0-, 1-, and 2-day lags (Talbott et al., 2014, Table 3). Beta effect 
coefficients from the main (italicized) and sensitivity analyses are available in Table 41. 

Table 40. Potential Sensitivity of Estimated Cardiovascular Hospital Admissions  

 

Table 41. PM2.5-Attributable Cardiovascular Hospital Admissions Beta Estimates 

Study Beta Coefficient (SE) 
Bell et al., 
2015 

0.00065 (0.00009) 

Talbott et al., 
2014, MA 

MA: 0.00050 (0.00035), NJ: 0.00109 (0.0002), NM: 0.00109 (0.0019), NY: 0.00109 
(0.00015), FL: -0.00040 (0.0003), NH: -0.00121 (0.0012), WA: -0.00090 (0.0005) 

 

A study from the 2020 PM ISA Supplement also evaluated cardiovascular hospital admissions. Danesh 
Yazdi et al., 2021 examined the relationship between long-term ambient air pollution (NO2, O3, PM2.5) 
exposure and hospital admissions for four cardiovascular and respiratory outcomes among 63,006,793 
Medicare beneficiaries over the age of 64 in the contiguous U.S. The authors retrieved data from the 
Medicare denominator file and the Medicare Provider Analysis and review file, including all hospital 
admissions from 2000 through 2016 with primary discharge codes for myocardial infarction, ischemic 
stroke, atrial fibrillation and flutter, and pneumonia. They modeled PM2.5 exposure at a 1-km2 scale 
using high-resolution spatiotemporal models that combined three machine learning algorithms using 

 
79 Lag period preference identification criteria is more fully described in 2019 PM ISA Appendix Table A-1. 
80 Random or fixed effects pooling is a method to combine two or more distributions into a single new distribution, 
allowing for the possibilities that either 1) a single true underlying relationship exists between the component 
distributions, and that differences among estimated parameters are the result of sampling error, or 2) the 
estimated parameter from different studies may in fact be estimates of different parameters, rather than just 
different estimates of a single underlying parameter, and weights for the pooling are generated via inverse 
variance weighting, thus giving more weight to the studies that exhibit lower variance and less weight to the input 
distributions with higher variance.  

Potential Source of Uncertainty Potential Insights Gained from Quantitative Uncertainty 
Analyzes 

Application of Risk Estimates to 
Other Locations and Populations 

Talbott et al., 2014 included all ages whereas Bell et al., 2015 
was restricted to ages >64 

Confounding by Individual Risk 
Factors (Location) 

Talbott et al., 2014 was restricted to seven states, Bell et al., 
2015 included all states 

Confounding by Other Pollutants Talbott et al., 2014 included the copollutant O3 

Exposure Estimate Talbott et al., 2014 used hybrid exposure estimates whereas 
sever states, Bell et al., 2015 used monitor-based estimates 
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land use terms, chemical transport model predictors, meteorologic variables, and satellite 
measurements and validating against monitor data. Danesh Yazdi et al., 2021 employed doubly robust 
additive models (DRAM), which account for confounding through inverse probability weights of 
exposure and adjustment in the outcome regression model. They examined the relationship between 
hospital admissions for myocardial infarction, ischemic stroke, atrial fibrillation and flutter, or 
pneumonia and each of three ambient air pollutants, adjusting each model for individual, 
socioeconomic, and behavioral covariates as well as the other two pollutants. Because we were unable 
to obtain validated Hazard Ratios from this study, we elected not to include it in our primary analysis.  

Similar to cardiovascular hospital admissions, there was an estimate of PM2.5-attributable respiratory 
hospital admissions that included all ages and utilized a hybrid exposure estimation approach, but was 
geographically limited, in this case to a single state. However, we thought it useful to include this 
estimate as a sensitivity analysis due to the contrasts between it and the italicized main benefits 
estimates (Table 42 and Table 43). As compared to PM2.5-attributable mortality and cardiovascular 
hospital admission impact estimates, there may be greater uncertainty associated with estimates of 
PM2.5-attributable respiratory hospital admissions (Table 43). 

Jones et al., 2015 encompassed all ages, races, and ethnicities with a case-crossover analysis in New 
York state, using 24-hour average PM2.5 concentrations from CMAQ and meteorological data from the 
National Climactic Data Center. The authors assessed hospital discharge data from the New York State 
Department of Health State Planning and Research Cooperative System through principle diagnosis 
categorized by ICD-9 code (chronic bronchitis (ICD-9 491), emphysema (ICD-9 492), asthma (ICD-9 493), 
and chronic airway obstruction (ICD-9 496). Authors used a single pollutant conditional logistic 
regression model to analyze the respiratory hospital admission and PM2.5 chemical constituent data over 
time and by season. The authors calculated hazard ratios using SAS (version 9.2) with 95% confidence 
intervals from the regression models. The estimate best characterizing U.S. risk comes from the 4-day 
lag all-year PM2.5 estimate in Figure 2a: 1.006 (1.004-1.009). Please note, this risk estimate was derived 
from the figure, as the exact numbers were not provided in the paper and the authors did not respond 
to our request. 

Table 42. Potential Respiratory Hospital Admission Sensitivity Insights 

 

Potential Source of Uncertainty Potential Insights Gained from Quantitative Uncertainty 
Analyzes2 

Application of Risk Estimates to Other 
Locations and Populations 

Jones et al., 2015 included all ages whereas Bell et al., 2015 
was restricted to ages >64 

Confounding by Individual Risk Factors 
(Location) 

Jones et al., 2015 was restricted to a single state, Bell et al., 
2015 included all states 

Exposure Estimate Jones et al., 2015 used hybrid exposure estimates, whereas 
Bell et al., 2015 used monitor-based estimates 
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Table 43. PM2.5-Attributable Respiratory Hospital Admissions Beta Risk Estimates 

Study Age Range Beta Coefficient (SE) 
Bell et al., 2015 65-99 0.00025 (0.0001) 
Ostro et al., 2016 0-18 0.00275 (0.0008) 
Jones et al., 2015 0-99 0.00080 (0.0002) 

 

One study analyzed the effects of long-term PM2.5 exposure on cardiovascular hospital admissions with 
PM2.5 exposures. Kloog et al., 2012 collected medical data from 67,678 adults aged 65 to 99 in the U.S. 
Medicare program database from 2000 to 2006. They defined all respiratory, cardiovascular disease, 
stroke, and diabetes based on emergency department visits and primary discharge diagnosis records. 
Authors used a hybrid exposure technique comprised of daily PM2.5 concentration data from aerosol 
optical depth (AOD) measurements and ambient air monitors from the U.S. EPA and Interagency 
Monitoring of Protected Visual Improvements (IMPROVE). Authors also obtained land use regressions, 
meteorological data (National Climatic Data Center), and socioeconomic data (U.S. Census Bureau) 
matched to zip codes. Utilizing land use Poisson regression single-pollutant models, the authors found 
an 3.49% (95% CI: 0.09-5.18) increase in stroke incidence for a 10 µg/m3 increase in the 7-year mean 
PM2.5 concentrations. However, as the study area was restricted to New England (Connecticut, Maine, 
Massachusetts, New Hampshire, Rhode Island, and Vermont) from 2000 to 2006, this study serves only 
as an exposure duration sensitivity analysis for the main benefits assessment endpoints. 

 

6.1.4.1 Emergency Hospital Admissions (EHAs) 
Interestingly, a substantial subset of the ISA-identified recent epidemiologic literature evaluating 
respiratory hospitalizations restricted analyses to emergency hospital admissions (EHAs), defined as 
hospitalizations admitted from the emergency department (section 3.2). Due to time and resource 
requirements, we were unable to develop county-level baseline incidence data for EHAs, in addition to 
total hospital admissions. However, as we were interested in how estimates of EHAs compared to total, 
we include a risk estimate of respiratory EHAs from Zanobetti et al., 2009 using national baseline 
incidence data. Though the EHA estimate came from a smaller and older study then the main analysis 
respiratory hospital admission study, the EHA estimate is nearly an order of magnitude larger than the 
risk estimate included in the main estimate (italicized). 

Table 44. Comparison of the PM2.5-Attributable Respiratory Hospital Admissions Beta Risk Estimate to 
the EHA Respiratory Estimate 

Study Beta Coefficient (SE) 
Bell et al., 2015 0.00025 (0.0001) 
Zanobetti et al., 2009 0.00204 (0.0004) 

 Hypertension 
The 2022 PM ISA Supplement states that “[r]ecent studies add to the evidence providing support for 
positive associations among post-menopausal women and referenced four epidemiologic studies 
meeting the minimum criteria (section 2.1.1) of PM2.5-attributable hypertension (U.S. EPA, 2022b). 
Additionally, we identified a recent publication estimating the lifetime COI for incidence hypertension 
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(section 6.1.5.2). However, we include hypertension only as a sensitivity analysis here due to the limited 
evidence available in the 2019 PM ISA and 2022 Supplement to the ISA (U.S. EPA, 2019b, U.S. EPA, 
2022b). Specifically: 

The literature assessed in the 2019 PM ISA provided evidence of associations between long-term 
PM2.5 exposure and hypertension. Recent studies are generally consistent with this assessment, 
reporting positive associations among post-menopausal women enrolled in the WHI study and in 
cardiac catheterization patients. However, no association between long-term PM2.5 exposure and 
hypertension was observed among Black women enrolled in the JHS. 

6.1.5.1 Identification of Epidemiologic Studies and Risk Estimates 

6.1.5.1.1 Available Epidemiologic Literature 
The 2022 supplement to the PM ISA identified three epidemiologic studies of hypertension that met the 
minimum identified criteria above (U.S. EPA, 2022b, section 2.1.1). 

6.1.5.1.2 Identifying Suitable Studies for Use in Benefits Assessments 
Of the three available studies, one was more representative of the U.S. with respect to the population 
observed and the geographic scope (Honda et al., 2017).  

6.1.5.1.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 
Honda et al., 2017 studied the association between long-term PM2.5 exposure and incident hypertension 
in a cohort of 44,255 post-menopausal (aged 50-79 years at baseline) women enrolled in the Women’s 
Health Initiative (WHI) clinical trials nationwide who were free of hypertension at baseline. Authors 
defined incident hypertension as systolic blood pressure > 140 mmHg, diastolic blood pressure > 90 
mmHg, or self-reported anti-hypertensive medication use, and participants were followed from 
enrollment until 2010 for a total of 298,383 person-years of follow-up. Honda et al., 2017 employed a 
hybrid modeling technique using daily PM2.5 measurements and geographic covariates to calculate 
annual moving average estimates of PM2.5, PM10, and PM10-2.5 exposure for each participant. They 
modeled the association between hypertension incidence and particulate matter exposure using single-
pollutant and two-pollutant (PM2.5 and PM10-2.5) Cox proportional hazards models that adjusted for 
numerous individual-level covariates, clinical trial treatment arm, and WHI study clinical site. 

6.1.5.2 Identification of Valuation Estimates 
The lifetime cost-of-illness (COI) for incidence hypertension is derived from Kirkland et al., 2018, who 
estimate the annual out-of-pocket expenditures associated with high blood pressure among adults ages 
45 and older in the United States. The authors utilize data from the Medical Expenditures Panel Survey 
(MEPS) from 2003-2014 and identify patients with hypertension using the ICD-9 code 401.xx. Cost 
elements include inpatient, outpatient, and emergency room services as well as prescription medicine 
expenses. The authors adjust annual expenses such that they reflect the incremental expenditures for 
individuals with hypertension versus without hypertension. They calculate an annual cost of $1,850 
($2015) associated with hypertension. To calculate the lifetime costs of hypertension we calculate the 
costs incurred over 20 years, reflective of the rounded age-weighted life-expectancy of women 
diagnosed with hypertension in Canada (Loukine et al., 2011). The continuing annual costs are 
discounted by three or seven percent. Over 20 years, the total medical costs are calculated as $28,348 
using a 3 percent discount rate and $20,970 using a 7 percent discount rate. 
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 Effect Modification of Health Effects in At-Risk Populations81 
ISAs typically include an assessment of the weight of evidence demonstrating that certain 
subpopulations experience increased mortality or morbidity risks from air pollutant exposure compared 
to other groups. This is also known as effect modification and occurs when the measure of an effect 
changes across levels of a variable other than PM2.5 exposure. The 2019 PM ISA examined toxicological, 
controlled human exposures, and epidemiologic literature considering whether certain populations and 
lifestages might be at increased risk of air pollutant-related health effects (U.S. EPA, 2019b). 

The ISAs categorize relationships between exposure and effect modification for various population and 
lifestages into the following four groups: 

• Adequate evidence: There is substantial, consistent evidence within a discipline to conclude that 
a factor results in a population or lifestage being at increased risk of air pollutant-related health 
effect(s) relative to some reference population or lifestage. Where applicable, this evidence 
includes coherence across disciplines. Evidence includes multiple high-quality studies. 

• Suggestive evidence: The collective evidence suggests that a factor results in a population or 
lifestage being at increased risk of air pollutant-related health effect(s) relative to some 
reference population or lifestage, but the evidence is limited due to some inconsistency within a 
discipline or, where applicable, a lack of coherence across disciplines. 

• Inadequate evidence: The collective evidence is inadequate to conclude whether a factor results 
in a population or lifestage being at increased risk of air pollutant-related health effect(s) 
relative to some reference population or lifestage. The available studies are of insufficient 
quantity, quality, consistency, and/or statistical power to permit a conclusion to be drawn. 

• Evidence of no effect: There is substantial, consistent evidence within a discipline to conclude 
that a factor does not result in a population or lifestage being at increased risk of air pollutant-
related health effect(s) relative to some reference population or lifestage. Where applicable, the 
evidence includes coherence across disciplines. Evidence includes multiple high-quality studies. 

Presenting PM2.5-attributable benefit estimates stratified by the value of another covariate can provide 
insight into risk within various population subgroups. To accomplish this, we reviewed relevant chapters 
from the 2019 PM ISA in order to compile and assess studies cited in support of the Agency’s 
determinations, focusing on studies referenced in Table 12-3 for population characteristics with either 
“adequate evidence” (i.e., substantial, consistent evidence) or “suggestive evidence” (i.e., limited 
evidence due to inconsistency or a lack of coherence in research) of increased risk (sections 6.1.6.1 and 
6.1.6.2) (U.S. EPA, 2019b). The factors with “adequate evidence” for PM2.5 are lifestage (children) and 
race (nonwhite populations), while the factors with “suggestive evidence” are pre-existing disease 
(cardiovascular disease, respiratory disease, and obesity), genetic factors (variant genotypes), low 
socioeconomic status, and smoking. 

 
81 Analyses of effect modification will not be included in the main analyses, so as to avoid the possibility of double-
counting impacts. This potential uncertainty could also be described as the effect modification of individual risk 
factors. 
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6.1.6.1 Study and Risk Estimate Identification Criteria for Populations At-Risk for PM2.5 Exposures 
We identified all studies in the related section of PM ISA Chapter 12 for each at-risk factor listed above, 
resulting in a set of 123 studies for at-risk populations (U.S. EPA, 2019b). This collection includes the 
following number of studies, with some studies duplicated for multiple endpoints. 

• 8 studies for lifestage (children),  
• 25 studies for race (nonwhite populations),  
• 67 studies for pre-existing disease across disease types,  
• 18 studies for genetic factors,  
• 25 studies for socioeconomic status, and  
• 14 studies for smoking.  

We then focused our review on the risk factors with “adequate evidence”, due to stronger supporting 
evidence as well as because they could be evaluated using currently available data. We extracted study 
information from all studies with “adequate evidence” and applied initial screening criteria to identify 
peer-reviewed, epidemiological studies focused on PM2.5 conducted in the US or Canada. We also 
documented the mortality and/or morbidity health endpoints included in each study, focusing on all-
cause mortality and respiratory morbidity endpoints. We then evaluated the group of remaining studies 
based on additional identification criteria built off the criteria for the primary analysis, described in 
Table 45.  

Table 45. PM2.5 At-Risk Study Identification Criteria 

Criteria Description 
Peer-Review Peer-reviewed research exclusively 
Study design Epidemiological study 
PM2.5 Study PM2.5 exposure rather than other PM10 or other sizes 
Study Location US or Canada 
Study Duration Long-term studies preferred 

Population Attributes Presents risk estimates for clearly defined at-risk groups for which data 
currently exist in BenMAP-CE 

Causal or Likely Causal 
Health Effects Adequate evidence for at-risk groups in ISA 

Economically Valuable 
Health Effects 

Health endpoints for which economic values have been or could 
reasonably be developed 

Baseline Incidence Data Must be able to identify baseline incidence data for subpopulations 
 

6.1.6.2 All-Cause Mortality 
For the mortality endpoint, seven all-cause mortality studies for the nonwhite population met our 
criteria. No mortality studies for the child at-risk group met the initial screening criteria. Of the seven 
studies of nonwhite populations, three were short-term exposure studies relating daily PM2.5 exposure 
and daily deaths and four were long-term exposure studies relating annual PM2.5 exposure and annual 
mortality. Consistent with the main benefits assessment, we focused on the following four long-term 
studies as long-term exposure studies may include some effects of short-term exposures (section 
2.3.1.1): Di et al., 2017b, Kioumourtzoglou et al., 2016, Parker et al., 2018, and Wang et al., 2017.  
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We evaluated specific details of risk estimates provided by each study to determine if sufficient 
information exists for use in a quantitative sensitivity analysis. Of the studies, only Di et al., 2017b 
provided sufficient information to apply risk models quantifying increased risks to nonwhite groups, 
including non-Hispanic white, Black, Asian, American Indian, and Hispanic-white populations. Additional 
detail on the study can be found in section 2.3.1.1.3.1.2 or in the associated Study Information Table.  

We applied similar criteria to morbidity endpoints for the child and nonwhite at-risk groups. No studies 
cited for the child subgroup met our criteria for inclusion, and one endpoint, emergency room visits for 
asthma, was chosen for quantification for the nonwhite populations at-risk factor group. The study we 
chose to evaluate was Alhanti et al., 2016, which presents risk information for white and pooled 
nonwhite populations disaggregated into five age groups.  

We developed BenMAP-ready Health Impact Functions for each at-risk group described by Di et al., 
2017b and Alhanti et al., 2016, summarized in Table 46.  

Table 46. Identified PM2.5 At-Risk Beta Coefficients and Standard Errors 

At-Risk Factor Endpoint Study Population Demographic Beta Coefficient (SE) 

Race, nonwhite 
populations 

Morality, 
All Cause Di et al., 2017b 

White 0.0061 (0.0001) 

Hispanic 0.0110 (0.0008) 

Black 0.0189 (0.0004) 

Asian 0.0092 (0.0010) 

American Indian 0.0095 (0.0019) 

Race, nonwhite 
populations 

Morality, 
All Cause 

Pope III et al., 
2019 

Non-Hispanic White 0.001806 (0.00184) 

Hispanic 0.004084 (0.00403) 

Non-Hispanic Black 0.005064 (0.00485) 

Other/unknown 0.007732 (0.00788) 

Race, nonwhite 
populations 

Emergency 
Room 
Visits, 
Asthma 

Alhanti et al., 
2016 

White, age 0-4 0.0025 (0.0019) 

Nonwhite, age 0-4 0.0037 (0.0012) 

White, age 5-18 0.0025 (0.0016) 

Nonwhite, age 5-18 0.0049 (0.0012) 
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6.2 QUANTITATIVE CHARACTERIZATION OF O3 UNCERTAINTIES AND EVALUATING SENSITIVITY TO 

ALTERNATE O3 ASSUMPTIONS 

 Statistical Uncertainty Around the Risk Estimate (Monte-Carlo Assessment) 
For all endpoints analyzed, we use a Monte Carlo simulation in which we sample from the standard 
error associated with each risk estimate and present the resulting 2.5th and 97.5th percentile values from 
this distribution as a 95th percentile confidence interval around the estimated health impact and 
monetized health benefits. Monte Carlo methods are a well-established means of characterizing random 
sampling error associated with the risk estimates from epidemiologic studies. This approach randomly 
samples from a distribution of incidence and valuation estimates to characterize the effects of 
uncertainty on output variables. The reported standard errors in the epidemiologic studies determined 
the distributions for individual effect estimates for endpoints estimated using a single study. For 
endpoints estimated using a pooled estimate of multiple studies, the confidence intervals reflect both 
the standard errors and the variance across studies. The confidence intervals around the monetized 
benefits incorporate the standard errors from the epidemiologic risk estimate as well as the distribution 
of the valuation function. These confidence intervals do not reflect other sources of uncertainty 
inherent within the estimates, such as baseline incidence rates, populations exposed, and transferability 
of the effect estimate to diverse locations. As a result, the reported confidence intervals and range of 
estimates give an incomplete picture about the overall uncertainty in the benefits estimates. 

 Respiratory Mortality 

6.2.2.1 Confounding by PM2.5 
When considering the relationship between pollutant exposure and health impacts, it can be 
informative to consider whether risk estimates are changed when other pollutants are included in 
copollutant models, especially when health impacts of multiple pollutants are being estimated 
concurrently. While no conclusions were formed regarding the impact of copollutant confounding on 
long-term exposure-related respiratory mortality, the 2020 O3 ISA found that “positive associations 
observed between long term O3 exposure and total mortality remain relatively unchanged after 
adjustment for PM2.5 and NO2” (U.S. EPA, 2020b). 

Turner et al., 2016 provided single- and multipollutant (including PM2.5 as a copollutant) O3-attributable 
respiratory mortality risk estimates. A comparison of risk estimates that either do or do not include 
PM2.5 as a copollutant is included to clarify this potential sensitivity with respect to O3-attributable 
respiratory mortality. Differences in the magnitude of risk estimates including or excluding PM2.5 as a 
copollutant are provided in Table 47. 

Table 47. Single- and Two-Pollutant (Including PM2.5 as a Copollutant) Long-Term O3-Attributable 
Respiratory Mortality Risk Estimates per 10 ppb 

Study Single-Pollutant  Multipollutant 
Turner et al., 2016 1.14 (1.10-1.18) 1.12 (1.08-1.16) 
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6.2.2.2 Short-Term O3 Exposures 

6.2.2.2.1 Potential Threshold Analysis 
The 2020 final O3 ISA evaluated a number of studies examining the shape of the concentration-response 
relationship for short-term O3 exposure and total/nonaccidental mortality, which we use to inform the 
long-term O3-attributable respiratory mortality relationship (U.S. EPA, 2020b). The O3 ISA found that 
“studies that used different statistical approaches and ozone averaging times (i.e., 24 hour avg and 8 
hour max) provide evidence of a linear concentration-response relationship, with less certainty in the 
shape of the curve at lower concentrations [i.e., …30 ppb for 8 hour max], [although] an examination of 
whether a threshold exists in the ozone mortality concentration-response relationship provided no 
evidence of a concentration below which mortality effects do not occur when examining 5 μg/m3 (~2.55 
ppb) increments across the range of 1 hour max concentrations reported in the U.S. and Canadian cities 
included in [a large cohort].” As the Zanobetti and Schwartz, 2008 risk estimate uses the MDA8 metric, it 
can be used to quantitatively assess the effect of an O3 threshold at 30 ppb would have on benefits 
estimates. For context, approximately 3.7% of the contiguous U.S. population is projected to reside in 
areas where MDA8 O3 concentrations are annually below 30 ppb in 2024 (U.S. EPA, 2020c). Clinical 
evidence provides little indication that adverse effects occur at extremely low levels in most individuals. 
Epidemiologic evidence is qualitatively discussed further in section 6.5.15.2. 

6.2.2.2.2 Confounding by PM 
Regarding short-term exposures, the 2020 O3 ISA found that “the few recent multicity studies that 
examined potential copollutant confounding provide evidence supporting that O3 mortality risk 
estimates are relatively unchanged or slightly attenuated, but remain positive, in copollutant models 
with PM2.5, PM10, and NO2.”  

Katsouyanni et al., 2009 provided single- and two-pollutant (including PM10 as a copollutant) short-term 
O3-attributable respiratory mortality risk estimates for a subset of 15 of the 86 cities analyzed. A 
comparison of risk estimates that either do or do not include PM10 as a copollutant is included to clarify 
this potential sensitivity with respect to O3-attributable respiratory mortality. Differences in the 
magnitude of risk estimates including or excluding PM2.5 as a copollutant are provided in Table 48. 
Please note, as distributed lag risk estimates were not provided for the two-pollutant analyses, in 
additional to the inclusion of PM2.5 as a copollutant and the number of cities analyzed, there is a 
difference in the lag duration between the estimates in Table 48. 

Table 48. Single- and Two-Pollutant (Including PM1o as a Copollutant) Short-Term O3 Exposure O3-
Attributable Excess Premature Respiratory Mortality Risk Estimates per 10 ppb 

Study Single-Pollutant  Two-Pollutant 
Katsouyanni et al., 2009 0.77% (0.17%, 1.37%) 0.99% (-0.33%, 2.31%) 

 

 All-Cause Mortality 
When estimating air pollutant-attributable health impacts, EPA focuses on endpoints for which the 
underlying scientific evidence is strongest. That is, when evaluating evidence across scientific disciplines 
(i.e., clinical, animal toxicological, and epidemiologic) there is often consistency of effects within a 
discipline, coherence of effects across disciplines, and evidence of biological plausibility. Such an 
approach gives us greater confidence in the relationship between exposure and health outcome. For 
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criteria pollutants, EPA typically relies upon the causality determinations in the latest ISA or equivalent, 
which are made using a weight-of evidence approach. Generally, to estimate the pollutant-attributable 
human health benefits in which we are most confident, we at least assess health effects identified as 
having a ‘causal’ or ‘likely to be causal’ relationship with the pollutant of interest in the most recently 
published ISA. This is not to imply there may not be benefits associated with endpoints having a 
“suggestive of, but not sufficient to infer, a causal relationship,” but rather that there is greater 
uncertainty in these potential benefits. 

Because of the significance of the endpoint, we include a limited quantitative sensitivity analysis of total 
mortality associated with long-term O3 exposure. While the 2020 O3 ISA concluded that evidence was 
“suggestive of, but not sufficient to infer,” a causal relationship between long-term exposures and total 
mortality, the reduction of this risk is likely still valuable to society (U.S. EPA, 2020b). As such, for this 
sensitivity discussion, we include risk estimates of long-term, all-cause O3-attributable total mortality 
from the two studies used to estimate PM2.5-attributable mortality risk (Table 49). Please note these 
long-term, all-cause risk estimates include respiratory mortality estimates and should not be added to 
the respiratory mortality estimates. 

Table 49. Long-Term O3-Attributable Total Mortality Risk Estimates per 10 ppb 

Study Risk Estimate (per 10 
ppb increase in O3) 

Risk Estimate Details 

Turner et al., 2016 1.02 (1.01-1.03)  Fully adjusted HBM multipollutant estimate from Table 
E9, ages 35-99 

Di et al., 2017b 1.011 (1.010, 1.012) GEE two-pollutant main analysis estimate from Table 2, 
ages 65-99 

 

 Asthma Onset in Children 
The study identified as best characterizing risk for asthma onset in children was conducted in Canada 
(Tetreault et al., 2016). Even though comparatively Tetreault et al., 2016 was preferred in identification 
criteria to other available studies (e.g., study size, exposure estimation technique, etc.) other than 
location and study period, we thought it useful to include the largest and most recent U.S.-based risk 
estimates as a sensitivity analysis. An overall comparison of the main risk estimate from Tetreault et al., 
2016 and the alternative risk estimates from Garcia et al., 2019 can be found in Table 50. Details about 
the study providing an alternate risk estimate is below. 
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Table 50. Potential Sensitivity of Estimated Instances of Asthma Onset  

 

Three of the four ISA-identified studies of long-term O3-attributable asthma onset took place in the U.S., 
although only one included a study period more recent than 2005 (Garcia et al., 2019). Garcia et al., 
2019 examined the associations between long-term ozone exposure and asthma onset in children (aged 
nine-18 years) with no history of asthma in Southern California. The authors followed three waves of 
participants from the Children's Health Study for eight years between 1993 and 2014. Garcia et al., 2019 
obtained health and demographic data from parents, guardians, or participants, who completed 
questionnaires annually. In order to calculate annual mean, community-level ozone exposure, the 
authors acquired daily eight-hour mean O3 concentrations through ambient air pollution monitors. 
Multi-level Poisson regression models with one-year lag showed no statistically significant associations 
between long-term O3 exposure and asthma onset in children. Models adjusted for demographic 
variables as well as factors pertaining to family medical history, environmental factors, and near-
roadway pollution. 

The magnitudes of main and alternate risk estimates of long-term O3 exposure and asthma onset in 
children provided in Table 51. 

Table 51. Long-Term O3-Attributable Asthma Beta Coefficients 

Study Beta Coefficient Age Range 
Tetreault et al., 2016 0.020754 0-17 
Garcia et al., 2019 0.01695 9-18 

 

Potential Source of Uncertainty Potential Insights Gained from Quantitative Uncertainty 
Analyses2 

Application of Risk Estimates to 
Other Locations and Populations 

Tetreault et al., 2016 included only Canadians whereas Garcia et 
al., 2019 was restricted to southern CA 

Study Size Tetreault et al., 2016 included the largest study size, 
approximately twenty-five times the size of Garcia et al., 2019 

Study Period 
Garcia et al., 2019 evaluated a more recent and longer health 
study period (1993-2014) compared to 2002-2011 for Tetreault et 
al., 2016 

Exposure Estimate 
Tetreault et al., 2016 used hybrid exposure estimates whereas 
sever states, whereas Garcia et al., 2019 used monitor-based 
estimates 

Statistical Technique 
Tetreault et al., 2016 used time-varying Cox proportional hazard 
models, whereas Garcia et al., 2019 uses Poisson log-linear 
regression models 
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 Effect Modification of Health Effects in At-Risk Populations82 
Effect modification was also investigated with regard to O3 exposures. We reviewed relevant chapters 
from 2020 O3 ISA and used a similar method to that described for PM2.5 to compile and assess studies 
cited in support of the Agency’s determinations (U.S. EPA, 2020b, section 6.1.6). As the 2020 O3 ISA only 
presents an evaluation of at-risk groups in summary form and extensively references the findings from 
the 2013 O3 ISA, we focused on the detailed chapter from that previous document in identifying the at-
risk factors and studies to review (U.S. EPA, 2013). Factors with “adequate evidence” are genetic factors, 
asthma, children, older adults, diet, and outdoor workers. Factors with “suggestive evidence” are sex, 
SES, and obesity. Considering feasibility and our review criteria, we focused on studies addressing 
increased risks based on age in the adequate evidence group and note that some health functions 
already applied in the primary analysis focus on asthmatic subpopulations. We also elected to include 
illustrative calculations for some risk factors with “suggestive evidence”, specifically those for sex. 

6.2.5.1 Study and Risk Estimate Identification Criteria for Populations At-Risk for O3 Exposures 
We compiled epidemiologic studies from the related section of Chapter 8 of the 2013 O3 ISA for the 
following at-risk factors, excluding all other study types (e.g., toxicological studies), for a total of 28 
studies (U.S. EPA, 2020b). This collection includes the following number of studies, with some studies 
duplicated for multiple endpoints. 

• 9 studies for children,  
• 10 studies for older adults, and  
• 18 studies for sex 

We excluded the genetic factors population from our analysis, as we do not currently have the capability 
to estimate health impacts among variant genotypes. We excluded diet, outdoor workers, and obesity 
for similar reasons, as we have no representative dataset for use in analysis with these risk factors. 
Effects on asthmatics were not included in this analysis because we currently lack highly resolved spatial 
data on asthma prevalence, in part because effects on asthmatic populations are included in the main 
analysis.83 We also excluded the SES group as the studies associated with the SES group for O3 were 
associated with other methodological challenges. We coded the identified studies into a spreadsheet 
and applied the initial screening criteria described previously. We collected information on mortality 
and/or morbidity endpoints assessed in each study and focused on all-cause mortality and respiratory 
morbidity endpoints. The remaining studies were evaluated based on the additional identification 
criteria described in Table 52.  

 
82 Analyses of effect modification will not be included in the main analyses, so as to avoid the possibility of double-
counting impacts. This potential uncertainty could also be described as the effect modification of individual risk 
factors. 
83 Effects on asthmatics using national level prevalence estimates are estimated in the main analysis. 
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Table 52. O3 At-Risk Study Identification Criteria 

Criteria Description 
Peer-Review Peer-reviewed research exclusively 
Study Design Epidemiologic study 
Ozone Study Research on ozone exposure is used 
Study Location U.S. or Canada 

Population Attributes Presents risk estimates for clearly defined at-risk groups for which data 
currently exist in BenMAP-CE 

Exposure Duration Both short- and long-term exposure studies  
Causal or Likely Causal 
Health Effects Adequate or suggestive evidence for at-risk groups in ISA 

Economically Valuable 
Health Effects 

Health endpoints for which economic values have been or could 
reasonably be developed 

Baseline Incidence Data Must be able to identify baseline incidence data for subpopulations 
Season All year exposure or warm season exposure 
Ozone Exposure Metrics MDA8, or able to be converted to MDA8 

Lag Structure Choose model that most clearly represents the relationship between 
ozone exposure and the physiologic changes for the health endpoint 

 

6.2.5.2 Total Mortality 
Regarding the health endpoint of mortality, three studies for older adults met our criteria: Medina-
Ramon and Schwartz, 2008, Zanobetti and Schwartz, 2008, and Katsouyanni et al., 2009. All three 
studies provided sufficient details to apply risk model information for short-term all-cause mortality 
among adult age groups.84  There were no mortality studies for the child at-risk group in either the 2013 
or 2020 O3 ISAs (U.S. EPA, 2013, U.S. EPA, 2020b). For the at-risk population stratified by sex, two 
studies met our initial criteria: Medina-Ramon and Schwartz, 2008, which evaluated short-term O3 
exposure and all-cause mortality, and Jerrett et al., 2009, which evaluated long-term O3 exposure and 
respiratory mortality. Both studies provided sufficient data to apply risk model information to male and 
female subpopulations. We developed health impact functions for these studies. 

The O3-mortality risk estimates for at-risk subpopulations reported in Medina-Ramon and Schwartz, 
2008 required additional modification in order to use those results to develop health impact functions.  
The authors presented excess risk estimates for each subpopulation as the additional percent change in 
mortality for persons who have the condition, compared to persons without the condition. For our 
populations of interest, these subgroups were persons aged 65 or older compared to those younger 
than 65, and females relative to males. However, they did not report the risk estimate for these 
comparison groups, so in order to estimate the total excess risk for each exposed at-risk group, we 
needed to first back-calculate the excess risk for the comparison group without the factor of interest. 
We accomplished this by assuming that the authors’ overall reported excess risk for the full sample of 
0.65% (95% confidence interval = 0.38% to 0.93%) could be expressed as a weighted average of the 
unreported excess risk (“x”) and the full excess risk for the at-risk group, which would be expressed as 

 
84 Calculations required to apply risk model information from Medina-Ramon and Schwartz, 2008 are described in 
the following paragraph. 
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the sum of x and the reported excess risk from Medina-Ramon and Schwartz, 2008 Table 2, where the 
weights are calculated using the total and at-risk group sample sizes in Table 1 of that paper. For 
example, to calculate the total excess risks for the females in the sample, we used the following 
equation: 

 

ERTotal =  
ERMale(PopMale) + ER𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(PopFemale)

PopTotal
  

where ERTotal is the full sample excess risk of 0.65%; ERFemale is the excess risk of ozone exposures for 
females; ERMale is the excess risk of ozone exposures for males; PopTotal is the total sample population; 
and PopFemale and PopMale are the size of the female and male subsets of the sample population, 
respectively. We also know from Table 2 of that paper that: 

ERFemale =  ERMale + 0.58 % 

Substituting and using the available information from Medina-Ramon and Schwartz, 2008 Tables 1 and 
2, we can solve for ERMale and then ERFemale:  

 

0.65% =  
ERMale(1,365,937) + (0.58% + ERMale)(1,363,703)

2,729,640
 

 

ERMale = 0.36 % 

and 

ERFemale =  0.36% + 0.58% = 0.94% 

 

We then used the full excess risk value for the female subpopulation to derive a health impact function 
for ozone-related mortality for females. 

6.2.5.3 Respiratory Morbidity  
We applied the same identification criteria described in section 6.2.5.1 to respiratory morbidity 
endpoints for the child and sex at-risk groups. Three studies for children met our criteria for inclusion: 
Mar and Koenig, 2009, Paulu and Smith, 2008, and Villeneuve et al., 2007. Each study evaluated 
emergency room visits for asthma and provided sufficient risk model information stratified by age. No 
studies cited for the older adult population met our criteria for inclusion. Three studies for sex met our 
identification criteria: Paulu and Smith, 2008, Cakmak et al., 2006, and Lin et al., 2005. These studies 
evaluated emergency room visits for asthma, all respiratory hospital admissions, and hospital 
admissions for lower respiratory infection, respectively. Each study provided sufficient risk model 
information for male and female subpopulations. We developed health impact functions for all studies 
identified above. All the at-risk studies we identified are summarized in Table 53. 
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Table 53. Identified O3 At-Risk Beta Coefficients and Standard Errors 

At-Risk 
Factor Endpoint Study Subgroup 

Beta 
Coefficient 
(SE)1 

Lifestage, 
older adults Mortality, All Cause 

Medina-Ramon and Schwartz, 
2008 and Zanobetti and 
Schwartz, 2008 

Age 0-64 -0.0001 
(0.0001) 

Age 65+ 0.0010 
(0.0002) 

Lifestage, 
older adults Mortality, All Cause Katsouyanni et al., 2009 

Age 0-74 0.0008 
(0.0002) 

Age 75+ 0.0007 
(0.0003) 

Lifestage, 
older adults Mortality, All Cause Zanobetti and Schwartz, 2008 

Age 0-20 0.0001 
(0.0003) 

Age 21-
30 

0.0001 
(0.0004) 

Age 31-
40 

0.0001 
(0.0002) 

Age 41-
50 

0.0001 
(0.0002) 

Age 51-
60 

0.0005 
(0.0002) 

Age 61-
70 

0.0004 
(0.0001) 

Age 71-
80 

0.0005 
(0.0001) 

Age 81+ 0.0003 
(0.0001) 

Sex Mortality, All Cause 
Medina-Ramon and Schwartz, 
2008 and Zanobetti and 
Schwartz, 2008 

Female 0.0009 
(0.0002) 

Male 0.0004 
(0.00004) 

Sex Mortality, Respiratory Jerrett et al., 2009 
Female 0.0044 

(0.0011) 

Male 0.0011 
(0.0014) 

Lifestage, 
children 

Emergency Room 
Visits, Asthma Mar and Koenig, 2009 

Age 0-17 0.0104 
(0.0044) 

Age 18+ 0.0039 
(0.0027) 

Lifestage, 
children 

Emergency Room 
Visits, Asthma Paulu and Smith, 2008 

Age 2-14 0.0104 
(0.0050) 

Age 15-
34 

0.0148 
(0.0035) 

Lifestage, 
children 

Emergency Room 
Visits, Asthma Villeneuve et al., 2007 Age 2-4 0.0032 

(0.0033) 
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Age 5-14 0.0073 
(0.0024) 

Age 15-
44 

0.0058 
(0.0018) 

Age 45-
64 

0.0063 
(0.0033) 

Age 65-
74 

0.0073 
(0.0055) 

Age 75+ -0.0006 
(0.0067) 

Sex Emergency Room 
Visits, Asthma Paulu and Smith, 2008 

Female 0.0113 
(0.0027) 

Male 0.0104 
(0.0032) 

Sex Hospital Admissions, All 
Respiratory Cakmak et al., 2006 

Female 0.0013 
(0.0004) 

Male 0.0017 
(0.0003) 

Sex 
Hospital Admissions, 
Lower Respiratory 
Infection 

Lin et al., 2005 
Female 0.0087 

(0.0060) 

Male 0.0040 
(0.0052) 

1 Beta coefficients and SEs in this table have been converted to MDA8 for comparability 

6.3 QUANTITATIVE CHARACTERIZATION OF BASELINE INCIDENCE RATE UNCERTAINTIES 
When available from HCUP, we incorporate county-level hospital admissions and emergency 
department visit baseline incidence data. Comparisons of the county-level data (box and whisker plot) to 
the national-level data (red circles) are available in Figure 14.  

Figure 14. Example County-Level (Distribution) and National-Level (Red Dot) Emergency Department 
Visit and Hospital Admission Baseline Incidence Data 

 

We performed several quality assurance checks to ensure the incidence rates accurately reflect 
observed health outcomes in the underlying counties. These checks included: 

• Examining data inputs to ensure the endpoints reflect the specified set of ICD codes from the 
epidemiological studies; 

• Reviewing data processing scripts to ensure all calculations implement the intended procedures, as 
documented in the BenMAP-CE User Manual (U.S. EPA, 2018); 

• Re-processing existing incidence rates in BenMAP-CE's “Other Incidence (2014)” to confirm that 
changes to data processing to incorporate new endpoints have no or minimal impact on incidence 
rate data for existing endpoints from BenMAP-CE's 2017 data update; 
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• Comparing the relative magnitude of related endpoints to ensure that incidence rates for broader 
endpoints (e.g., HA, All Respiratory) are greater than incidence rates for endpoints with a narrower 
set of ICD codes (e.g., HA, Asthma); 

• Comparing national baseline incidence counts when using county-level incidence rates and nation-
level incidence rates to ensure that, in aggregate, the two datasets produce similar results;85 and 

• Examining the geographic distribution of incidence rates to ensure no counties, states, or regions, 
are characterized by anomalously low or high incidence. 

We identified no systematic errors or bias in the raw data or data processing steps. The main source of 
uncertainty in these data is related to imputation of rates where county data for specific endpoints were 
suppressed due to statistical reliability or privacy concerns. The state or regional rates used to substitute 
for these suppressed values may under- or over-estimate individual county rates.     

6.4 QUANTITATIVE CHARACTERIZATION OF ECONOMIC VALUATION ESTIMATE UNCERTAINTIES  

 Mortality Cessation Lag 
Following advice from the Health Effects Subcommittee of EPA’s independent Science Advisory Board 
(SAB-HES), the agency typically assumes that some amount of time lapses between when air pollution is 
reduced and when PM-attributable mortality is reduced fully. Within the context of benefits analyses, 
this term is often referred to as “cessation lag.” The duration of this lag affects how changes in PM-
attributable mortality associated with long-term (i.e., years-long) exposure are valued. Economic theory 
suggests that the value of these future impacts should be discounted. The primary analysis included in 
recent RIAs assumes that this lag is distributed over a 20-year period, with 30% of deaths reduced in 
year 0, 50% occur in years 1-5, and the remaining 20% occur in years 6-20. This approach is generally 
support by SAB recommendations (Cameron, 2001, Cameron, 2004, Hammitt and Bailar, 2010). 

Based on SAB requests and recommendations, we previously performed several quantitative 
uncertainty analyses with the goal of better understanding potential impacts of different cessation lag 
distribution assumptions (U.S. EPA, 2012b). Although it was determined that certain extreme lag 
structure assumptions may substantially impact monetized benefits, potentially increasing or decreasing 
monetized impacts by up to 25%, for most reasonable distributed lag model structures, differences in 
the specific shape of the lag function had relatively small impacts on overall PM2.5 benefits estimates.  

Newer evidence suggests the lag between exposure and the change in the risk of PM-attributable 
mortality may be shorter than the 20 years EPA now assumes. A long-term exposure cohort study 
performed by Crouse and colleagues of the CanCHEC evaluated the estimated hazard of non-accidental 
mortality according to three temporal moving averages (1, 3 and 8 years) (Crouse et al., 2020). The 
authors found that “…longer moving averages resulted in stronger associations between PM2.5 and 
mortality.” An analysis of the Harvard Six Cities cohort observed that PM2.5 concentrations observed in 
the year prior to mortality “…were the best fit exposure window for all-cause mortality” (Lepeule et al., 
2012). 

 
85 Aggregated county-level baseline incidence counts for all hospitalization and emergency department visit 
endpoints included in the main benefits estimates were within 10% of the national baseline incidence counts. 
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We do not know how long-term O3 exposure-related respiratory deaths are distributed over time. 
Hence, when discounting the value of O3-attributable deaths we use two lag structures originally 
developed for PM2.5 (the 20-year segmented lag used for PM2.5 and an assumption of zero lag) as 
sensitivity analyses. 

 Lung Cancer Cessation Lag 
For a given health effect attributable to air pollution exposure, EPA reports the number of avoided cases 
associated with the estimated pollutant reduction in a specified year. However, for some health effects, 
there is an expected time lag between changes in pollutant exposure in a given year and the total 
realization of health effect benefits, commonly referred to in regulatory analyses as the “cessation lag” 
(section 6.4.1). For an outcome such as lung cancer, where the time between exposure and diagnosis 
can be quite long, it may take decades to realize the full benefits of the air quality improvements. 
Properly estimating the time course over which lung cancer health benefits are realized is critical for 
proper discounting of the economic value of these health benefits.  

Following guidance from EPA’s Science Advisory Board (Ostro, 2004), EPA RIAs have applied a 20-year 
distributed cessation lag model to estimate the temporal distribution of reductions in mortality risks, 
including fatal lung cancer cases. In the 20-year distributed lag model, 30 percent of the total mortality 
risk reductions occur in the first year following the exposure reduction, 50 percent are distributed 
evenly among years two through five, and the remaining 20 percent are distributed evenly among years 
six through 20. This structure reflects mortality risks from a variety of causes, with the mortality risk 
reductions occurring later representing mortality risks from lung cancer. 

For non-fatal cancer incidence, we considered a similar cessation lag approach based on estimates of 
the lung cancer “latency period,” or the time that passes between exposure and diagnosis, when 
diseases processes may be occurring undetected and not yet resulting in observable symptoms. Based 
on findings in the 2019 PM ISA, EPA has recently developed a health impact function based on 
Gharibvand et al., 2017 for non-fatal lung cancer incidence (U.S. EPA, 2019b). To support the new non-
fatal lung cancer risk estimate, we applied an age-at-diagnosis cessation lag distribution for the main 
analysis as it accounts for age-specific latency period, instead of assuming a single latency duration. 
However, other potentially applicable distribution models are available that also take into account the 
latency between exposure and lung cancer diagnosis, such as the adapted 20-year distribution (section 
6.4.2.1) and the latency-based triangular distribution (section 6.4.2.2). All potential lag cessation 
distributions, including the traditional 20-year lag distribution, are compared in section 6.4.2.3. 

6.4.2.1 Adapted 20-Year Distribution 
We adapted the 20-year distributed lag model applied to VSL estimates in previous EPA RIAs using the 
estimated 10-year latency period. Following the latency period, the adapted 20-year model has zero 
cancer case reductions in years one through five and an even distribution of case reductions in years six 
through 20, resulting in scaling factors of 0.71 for a 3% discount rate or 0.46 for a 7% discount rate. 

6.4.2.2 Latency-Based Triangular Distribution 
A continuous probability distribution shaped like a triangle may better assess lung cancer lag cessation. 
Triangular distribution based on a search of lung cancer latency periods from the peer-reviewed 
literature. Using the most common latency period of 10-years observed in the literature (Table 29), we 
estimated a triangular distribution that spans from five to 20 years, with the peak of the distribution at 
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ten years, the most common latency period estimate found in the literature (i.e., the mode).  We 
identified a triangular distribution to reflect the uncertainty of latency period duration found in the 
literature, given the limited amount of information available to establish the shape and form of an 
uncertainty distribution. We used the cumulative probability function for this distribution to estimate 
the incremental annual number of cases likely to be diagnosed year to year by subtracting the 
cumulative probability from the previous year from the cumulative probability of the current year. We 
then used the resulting percentages to create a cessation lag model, allocating cases avoided in the 
years following an exposure change according to the corresponding yearly percentages. 

6.4.2.3 Comparison of Lung Cancer Lag Cessation Distribution Models 
The effect of each potential cessation lag distribution model was converted into scaling factors (Table 
54). The scaling factors of the adjusted 20-year lag distribution estimate falls between that of the 
traditional cessation lag and the triangular distribution lag estimates. Also, the adjusted cessation lag 
distribution underestimates as compared to the age-at-diagnosis distribution. 

Table 54. Scaling Factors for Various Lung Cancer Lag Cessation Distribution Models 

Discount Rate Age Range Scaling Factor Lag Cessation Distribution Model 
3% 65-99 0.668980939 Traditional VSL cessation lag, 3% DR 
7% 65-99 0.398456232 Traditional VSL cessation lag, 7% DR 
3% 30-99 0.70711338 Adjusted 20-Year Distributed Lag Adjustment Factor 
7% 30-99 0.463225599 Adjusted 20-Year Distributed Lag Adjustment Factor 
3% 30-99 0.72192703 Triangular Adjustment Factor 
7% 30-99 0.480176715 Triangular Adjustment Factor 
3% 30-34 0.350285148 SEER Age-Distribution Adjustment Factor 
3% 35-44 0.427591186 SEER Age-Distribution Adjustment Factor 
3% 45-54 0.553445022 SEER Age-Distribution Adjustment Factor 
3% 55-64 0.675599356 SEER Age-Distribution Adjustment Factor 
3% 65-74 0.775053763 SEER Age-Distribution Adjustment Factor 
3% 75-84 0.843760064 SEER Age-Distribution Adjustment Factor 
3% 85-99 0.916741635 SEER Age-Distribution Adjustment Factor 
7% 30-34 0.108397669 SEER Age-Distribution Adjustment Factor 
7% 35-44 0.168901798 SEER Age-Distribution Adjustment Factor 
7% 45-54 0.294643444 SEER Age-Distribution Adjustment Factor 
7% 55-64 0.445786107 SEER Age-Distribution Adjustment Factor 
7% 65-74 0.590393871 SEER Age-Distribution Adjustment Factor 
7% 75-84 0.702750875 SEER Age-Distribution Adjustment Factor 
7% 85-99 0.82379138 SEER Age-Distribution Adjustment Factor 

 

Using the lung cancer incidence risk estimates and a hypothetical scenario, we compared the three 
potential lung cancer cessation lag models. The annual reduction in cancer cases was estimated from 
zero to 100 years after the exposure change. For the triangular and adjusted 20-year distributed lag, all 
annual reductions occur within 20 years after exposure change and for the age of diagnosis distribution, 
all annual reductions fall within 67 years after exposure change (Figure 15) with 90% occurring by year 
26.  
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Figure 15. Lung Cancer Cases Cessation Lag Distribution by Model 

 
 

A potential limitation of the triangular distribution and adjusted 20-year distributed lag is that the same 
latency period is used for all ages. For an exposure change experienced at 30, both the triangular 
distribution and adjusted 20-year distributed lag estimate that reductions occur between ages 35 and 
50. However, SEER data indicates that less than 5% of lung and bronchus cancer diagnoses occur during 
this period. Conversely, for an exposure change experienced at 90, the reductions are realized from ages 
95 to 110 (greater than life expectancy).  

A limitation of the age-of-diagnosis distribution methods is that the highest reductions occur in the first 
five years for the age-of-diagnosis distribution and not all ages display latency periods (Figure 15). The 
factor used in this method estimates the time pattern of benefits based on the percentage of cancer 
incidence remaining in the life and results in older age bins without latency periods (Figure 16). While an 
age-dependent latency period may more accurately reflect the diagnosis data, the age-of-diagnosis 
distribution method may overestimate case reductions in earlier years by assuming all reduced cases for 
a change in exposure at later ages are realized by the end of life (age 99). At the same time, some cases 
are delayed by two to five decades, beyond latency values reported in the literature for lung cancer.  
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Figure 16. Lung Cancer Cases Reduction Distribution 
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 Income Elasticity of Willingness to Pay 
The degree to which one’s WTP to reduce the risk of adverse effects changes in proportion to future 
changes in income is uncertain. We previously evaluated the potential impact of this factor on the 
monetized benefits in a sensitivity analysis (U.S. EPA, 2012b). Results are available below. 

Our estimates of monetized benefits account for growth in real gross domestic product per capita by 
adjusting the WTP for individual endpoints based on the central estimate of the adjustment factor for 
each of the categories (minor health effects, severe and chronic health effects, mortality, and visibility). 
We previously examined how sensitive the estimate of total benefits is to alternative estimates of the 
income elasticities. Table 55 lists the ranges of elasticity values used to calculate the income adjustment 
factors, while Table 56 lists the ranges of corresponding adjustment factors. The results of this 
sensitivity analysis, giving the monetized benefit subtotals for the four benefit categories, are presented 
in Table 57. 

Table 55. Ranges of Elasticity Values Used to Account for Projected Real Income Growtha 

Benefit Category Lower Sensitivity Bound Upper Sensitivity Bound 
Minor Health Effect 0.04 0.30 
Mortality 0.08 1.00 

aDerivation of these ranges can be found in Kleckner and Neumann, 1999. COI estimates are assigned an 
adjustment factor of 1.0.  

Table 56. Ranges of Adjustment Factors Used to Account for Projected Real Income Growtha 

Benefit Category Lower Sensitivity Bound Upper Sensitivity Bound 
Minor Health Effect 1.018 1.147 
Mortality 1.037 1.591 

aBased on elasticity values reported in Table 55, U.S. Census population projections, and projections of real GDP 
per capita. 

Table 57. Sensitivity of Monetized Benefits to Alternative Income Elasticitiesa 

Benefit Category 
Benefits Incremental to Baseline (Millions of 2006$) 
Lower Sensitivity Bound Upper Sensitivity Bound 

Minor Health Effect $30 $31  
Mortalityb  $3,600  $3,800  

aAll estimates rounded to two significant digits. 

bUsing mortality effect estimate from Krewski et al., 2000 and 3% discount rate. Results using Laden et 
al., 2006 or a 7% discount rate would show the same proportional range. 

Consistent with the impact of mortality on total benefits, the adjustment factor for mortality has the 
largest impact on total benefits. The value of mortality in 2020 ranges from 96% to 108% of the main 
estimate based on the lower and upper sensitivity bounds on the income adjustment factor. The effect 
on the value of minor health effects is much less pronounced, ranging from 86% to 133% of the main 
estimate for minor effects. 
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 Statistical Estimates of VSL 
EPA relies on published peer-reviewed studies to provide statistical estimates of the value of avoided 
statistical mortality risk (VSL).  These studies provide a range of differ estimates due to varying study 
design and different statistical samples.  EPA uses a distribution of values fit to the studies’ estimates as 
described in Section 5.1.1 and Table 22.  

 Alzheimer’s Disease and Parkinson’s Disease Onset Lifetime Costs 
The epidemiologic study from with the risk estimates for Alzheimer’s and Parkinson’s disease were 
identified used time to first hospital admission as the health endpoint readout. As the authors note that 
this is not necessarily indicative of disease onset, we only include valuation estimates of associated 
hospital admissions costs in the main benefits assessment. However, we include information here 
regarding how the benefits estimates would increase if the first hospital admission were used as a 
surrogate for disease onset.86 

6.4.5.1 Alzheimer’s Disease 
Potential valuation sources of Alzheimer’s disease lifetime medical costs were available from the 
Alzheimer's, 2020 report and Jutkowitz et al., 2017. Using Alzheimer's, 2020, we first developed an 
estimate of incremental annual medical expenses for Medicare beneficiaries living with Alzheimer’s 
Disease (Table 58). Then, using the estimated life expectancy duration of 5 year from Jutkowitz et al., 
2017, 3% and 7% discounted costs were extrapolated (Table 59). We note that the average/median age 
of Alzheimer’s disease diagnosis/onset is after the age of 65, at which we assume retirement, so any 
potential lost wages are not included in this valuation estimate. Lifetime medical costs, excluding 
hospitalization, are estimated at $156,920 using a 3% discount rate or $145,946 using a 7% discount rate 
in 2015$ Alzheimer's, 2020.  

Table 58. Annual Alzheimer’s Disease Valuation Estimate Calculation 

Service Beneficiaries with Alzheimer’s 
Disease or Other Dementia 

Beneficiaries without 
Alzheimer’s Disease or Other 
Dementia 

Inpatient hospital $11,465 $3,703 
Medical provider $5,762 $3,589 
Skilled nursing facility $7,213 $493 
Nursing home $16,523 $800 
Hospice $2,126 $161 
Home health care $2,661 $386 
Prescription Medications $3,481 $2,986 
Annual Medical Expenses ($2019) $49,231 $12,118 
Annual Medical Expenses ($2015) $44,128 $10,862 
Incremental Annual Medical 
Expenses for Medicare 
beneficiaries with AD ($2015) 

$33,266  

 

 
86 Baseline incidence and prevalence data would need to be updated to estimate impacts of disease onset.  
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Table 59. Lifetime Alzheimer’s Disease Valuation Estimate Calculation (2015$) 

Year 3% Discount Rate 7% Discount Rate 
0 $33,266 $33,266 
1 $32,297 $31,090 
2 $31,357 $29,056 
3 $30,443 $27,155 
4 $29,557 $25,379 
Total Lifetime Costs $156,920 $145,946 

Jutkowitz et al., 2017 provided information needed to separately develop a lifetime Alzheimer’s Disease 
cost estimate with a 3% discount rate, but not with a 7% discount rate (Table 60. Additional Lifetime 
Alzheimer’s Disease Valuation Estimate Calculation with a 3% Discount Rate (2015$)). As the 3% 
discount rate estimate of $156,920 from Alzheimer's, 2020 is fairly similar to the lifetime 3% discount 
rate estimate of $184,500 from Jutkowitz et al., 2017, we have additional confidence in the validity of 
the Alzheimer's, 2020 estimates (Table 21). 

Table 60. Additional Lifetime Alzheimer’s Disease Valuation Estimate Calculation with a 3% Discount 
Rate (2015$) 

Service Base-Case (83-year-old 
incident dementia case) 

Counterfactual 
Dementia Free 

Incremental Increase 
in Lifetime Costs 

Value of informal caregiving $135,300  $2,460  $132,840  
Out-of-pocket expenditures $89,840  $64,720  $25,120  
Medicaid expenditures $44,090  $37,450  $6,640  
Medicare expenditures $52,540  $32,650  $19,890  
Total value $321,780  $137,280  $184,500  

 

6.4.5.2 Parkinson’s Disease 
Yang et al., 2020 provided estimates of lifetime costs, including direct, indirect, and non-medical costs. 
Using Yang et al., 2020, we first developed an annual estimate of excess costs associated with living with 
Parkinson’s Disease for one year (Table 61). Then, using the estimated life expectancy duration of 14.6 
years from De Pablo-Fernandez et al., 2017, the 3% and 7% discounted costs were extrapolated (Table 
62). Lifetime medical costs are estimated at $567,285 using a 3% discount rate or $445,792 using a 7% 
discount rate in 2015$ (Table 21). 



 

131 
 

Table 61. Annual Parkinson’s Disease Valuation Estimate Calculation 

Service Excess Cost per 
Person with 
Parkinson’s Disease 

Description  

Direct Medical Costs  
 Non-acute institutional care $6,888 Quantify excess healthcare cost of 

each person with Parkinson’s 
Disease compared with 10 matched 
individuals without Parkinson’s 
Disease 

 Hospital inpatient $6,932 
 Outpatient $5,308 
 Physician office $1,182 
 Durable medical equipment $140 
 Prescription medication $3,988 
Direct Medical Costs Subtotal $24,438 
Indirect Medical Costs 
    Paid daily non-medical care $3,709 Home caretakes/long-term care 

facilities 
    Home modification $2,151 

 

    Motor vehicle modification $897 
 

    Other expenses $508 
 

Indirect Medical Costs Subtotal $7,265 
 

    Non-Medical Costs 
    Reduced employment $2,579 Reduced labor market participation 

due to early retirement 
    Absenteeism $4,869 Lost work days 
    Presenteeism $2,841 Lost work productivity at work 
    Social productivity loss in volunteer  
    work 

$997 

    Supplemental security income (SSI) $541 SS disability supplemental income 
    Social security disability insurance  
    (SSDI) 

$1,617 

    Other disability income $2,431 Includes other disability income 
sources such as VA disability, gov't 
employee disability, & state 
disability insurance or personal 
disability insurance payments  

Non-Medical Costs Subtotal $18,293 
 

Annual Medical Expenses ($2017) $47,578 
 

Annual Medical Expenses ($2015) $44,718 
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Table 62. Lifetime Parkinson’s Disease Valuation Estimate Calculation 

Year 3% Discount Rate 7% Discount Rate 
0 $44,718 $44,718 
1 $43,416 $41,793 
2 $42,151 $39,059 
3 $40,924 $36,503 
4 $39,732 $34,115 
5 $38,574 $31,883 
6 $37,451 $29,798 
7 $36,360 $27,848 
8 $35,301 $26,026 
9 $34,273 $24,324 
10 $33,275 $22,732 
11 $32,305 $21,245 
12 $31,364 $19,855 
13 $30,451 $18,556 
14 $29,564 $17,343 
14.6 $17,427 $9,992 
Total Lifetime Costs (14.6 yr survival) $567,285 $445,792 

6.5 QUALITATIVE CHARACTERIZATION OF UNCERTAINTIES 
There are several uncertainties we are unable to fully or partially quantitatively assess, but qualitatively 
discuss below, in alphabetical order.  

 Applying Risk Estimates to Locations and Populations not Specified in the Epidemiologic 
Study 

EPA regulatory actions often affect portions of the country and populations that differ from those 
considered in the epidemiologic studies providing the risk estimates. EPA commonly transfers risk 
estimates from one location or population to another, following a procedure called benefits transfer, a 
potential source of uncertainty. When available, risk estimates based on nationwide studies reflecting 
the overall population demographics of U.S. residents will be used when estimating health benefits. 
Epidemiologic studies exploring the relationship between air pollution and the risk of mortality often 
consider populations whose characteristics are broadly representative of the U.S. (e.g., Medicare-based 
estimates will be applied to those >64). By contrast, epidemiologic studies examining morbidity 
outcomes may focus on population subsets, such as those residing in specific geographic regions, a 
single sex, or selected races/ethnicities. In this context, two or more epidemiologic studies may report 
risk estimates that, when pooled, can better characterize risks experienced by U.S. populations. 
However, in some cases it may be scientifically inappropriate to pool risk estimates—for example, a 
nationwide analysis of populations ages 65-99 and a less-geographically diverse analysis of populations 
ages 0-99. In a situation such as this, the estimate best characterizing risk in the U.S. will be included in 
the main benefits assessment and the others will be included in quantitative sensitivity analyses 
(sections 6.1 and 6.1.6). 
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 Causality Determination 
When estimating air pollutant-attributable health impacts, EPA focuses on endpoints for which the 
underlying scientific evidence is strongest. This approach is based on evaluating evidence across 
scientific disciplines (i.e., clinical, animal toxicological, and epidemiologic) with regard to consistency of 
effects within a discipline, coherence of effects across disciplines, and evidence of biological plausibility. 
Such an approach gives us greater confidence in the relationship between exposure and health 
outcome. For criteria pollutants, EPA typically relies upon the causality determinations in the latest ISA 
or equivalent, which are made using a weight-of evidence approach. These causality determinations are, 
however, made for categories of health effects and not for specific endpoints. Thus, the extent to which 
the relationship exists for the specific endpoint and the exposure circumstances of interest in a benefits 
assessment is a source of uncertainty.  

An expert elicitation sponsored by EPA to characterize the uncertainty in the relationship between PM2.5 
and mortality, including causal uncertainty, was released in 2006 and reviewed by the Advisory Council 
on Clean Air Compliance (Hammitt, 2008, IEc, 2006). Although the 12 expert-defined concentration-
response functions provide useful information on the sensitivity of the health benefits estimates, 
additional epidemiology literature which addresses some of the weaknesses identified by the expert 
elicitation has since become available, such as improved exposure estimation techniques and the use of 
cohorts more representative of the U.S population. For these reasons we do not include the expert-
derived results as a sensitivity analysis here but consider it as qualitative support for the relationship 
between long-term PM2.5 exposures and all-cause mortality impacts. 

Causal inference is another method of establishing a causal connection that evaluates associations 
under changing conditions. The 2019 PM ISA stated that “overall, the results of these causal inference 
studies contribute to the body of epidemiologic evidence that informs the causal relationship between 
long-term (one month to years) PM2.5 exposure and total mortality (U.S. EPA, 2019b). Observing 
consistent results for this relationship across studies using different analytic techniques (i.e., difference-
in-difference approach) increases our confidence in the relationship.” 

 Estimating and Assigning Exposures in Epidemiology Studies 
New developments in exposure assessment, including hybrid spatiotemporal models that incorporate 
satellite observations of aerial optical density, land use variables, surface monitoring data from 
monitors, and chemical transport models, have led to improvements in pollutant concentration 
estimates. After reviewing the current state of exposure science, the 2019 PM ISA stated that “a number 
of studies demonstrate that the positive associations observed between long-term PM2.5 exposure and 
mortality are robust to different methods of assigning exposure” and the 2020 O3 ISA articulated that 
“hybrid methods have produced lower error predictions of ozone concentration compared with 
spatiotemporal models using land use and other geospatial data alone but may be subject to overfitting 
given the many different sources of data incorporated into the hybrid framework” (U.S. EPA, 2013, U.S. 
EPA, 2019b). 

Although these advancements may reduce bias and uncertainty in risk estimates, the accuracy of hybrid 
exposure estimates is difficult to confirm in areas lacking monitors. On the other hand, studies using 
monitor data as the only exposure information have increasing exposure uncertainty the farther people 
live from the monitor site. 
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Uncertainties related to PM2.5 and O3 exposure estimation vary. For example, the PM2.5 HBM method 
had Pearson R’s ranging from 0.91 to 0.94 when applied across the U.S. at a 36-km resolution, 
depending on the geoimputation approach of the CMAQ data (U.S. EPA, 2019b). Evaluation of the O3 
HBM method has been relatively limited. However, overall conclusions regarding long-term O3 exposure 
estimates that include fixed-site monitor measurements are that “the true effect of long-term exposure 
to ambient ozone may be underestimated or overestimated by the model” and that it “is much more 
common for the effect estimate to be underestimated, and the bias is typically small in magnitude” (U.S. 
EPA, 2020b). 

 Modeling the Influence of Air Pollution on the Risk of Mortality Over Time 
Air pollution benefits assessments commonly use a “pulse” approach, wherein counts of premature 
deaths and illnesses are attributed to air quality changes in a single year. To the extent that simulated 
changes in air quality persist over time—that is, concentrations are reduced over a multi-year period—
then the pulse method may under-estimate the cumulative impact of air pollution on health (Roman et 
al., 2022). Partly for this reason, researchers have employed a “dynamic” approach to estimating multi-
year changes in air pollution risk using a life table Miller and Hurley, 2003. A life table estimates the air 
pollution-attributable risk for each individual in a specified cohort on a year-to-year basis. When 
estimating the risk of premature death, the probability of dying in each year is conditional upon having 
lived to that year. Noting the advantages of this approach compared to the pulse method, the U.S. EPA 
Science Advisory Board noted that life tables “…provide the most realistic available modeling how, over 
time, changes in population risk led to changes in the size and age distribution of the population, with 
consequent implications for estimated mortality impacts” (Hammitt and Bailar, 2010).  

EPA’s PopSim tool, which builds upon the World Health Organization (WHO) LIFET tool, estimates 
changes in life expectancy at birth, life years and counts of attributable deaths (Miller and Hurley, 2003). 
In contrast with the BenMAP-CE tool, PopSim quantifies these effects at a national scale and thus (in its 
current form) is unable to estimate spatially resolved effects; it is also not designed to quantify 
morbidity effects and does not yet include baseline death rates stratified by race or ethnicity. Hence, the 
tool is a complement, rather than a substitute, for BenMAP-CE.  

 Differential Toxicity of PM2.5 According to Chemical Composition  
PM2.5 is a heterogenous mixture of solid and liquid particles suspended in air and can vary with regards 
to size, composition, and source. The 2019 PM ISA found that “across exposure durations and health 
effects categories…many PM2.5 components and sources are associated with many health effects, and 
the evidence does not indicate that any one source or component is consistently more strongly related 
to health effects than PM2.5 mass;” although, it was also noted that “most studies that examine PM 
sources and components focused on PM2.5” (U.S. EPA, 2019b). 

Since the 2019 PM ISA concluded that “recent studies continue to demonstrate that no individual PM2.5 
component or source is a better predictor of mortality than PM2.5 mass” and “many PM2.5 components 
and sources are associated with many health effects and that the evidence does not indicate that any 
one source or component is consistently more strongly related with health effects than PM2.5 mass” we 
continue to assume that all fine particles, regardless of their chemical composition, are equally potent in 
causing mortality and do not quantitatively assess uncertainties related to potential differences in PM2.5 
toxicity or composition. A qualitative discussion of this uncertainty as it relates to respiratory effects, 
cardiovascular effects, and mortality can be found in section 1.5.4 of the 2019 PM ISA (U.S. EPA, 2019b). 
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 Different Long-Term Exposure Windows 
The delay between changes in exposure and changes in health is an empirical challenge in estimating 
potential health effects associated with air pollution exposure. For example, if health impacts of high 
pollutant exposures have a long latency, risk estimates attributing to lower pollutant concentrations 
experienced more recently may be biased away from the null. However, the 2019 PM ISA states that 
“new evidence from recent studies continues to support the previous conclusion that health benefits 
from reducing air pollution could be expected with a few years of intervention” (U.S. EPA, 2019b). This 
issue is likely less relevant to O3 exposure-attributable mortality, as those studies often have very 
similar, if not overlapping, health and air quality data. 

 Discounting Future Benefit Estimates 
Discounting reflects that people prefer benefits presently more than in the future. When appropriately 
applied, discounting can allow for the direct comparison of future benefits to costs. However, there are 
potential uncertainties associated with discounting future benefit estimates. EPA bounds discounted 
benefits and costs using an estimate of the consumption rate of interest and a rate of return on private 
capital given that the share of capital that is displaced by a regulation is unknown. OMB currently 
recommends, and EPA uses, a real consumption rate of discount of 3% and a real rate of 7% for the 
opportunity cost of private capital based on prior empirical estimates (OMB, 2003). These values are 
estimates and therefore introduce uncertainty. Additional detail on discounting can be found in the EPA 
Guidelines for Preparing Economic Analyses (U.S. EPA, 2014). 

 Statistical Estimates of WTP  
EPA relies on published peer-reviewed studies to provide statistical estimates of the value of avoided 
pain and suffering (WTP). While most of these studies provide estimates of the uncertainty due to 
statistical sampling, there are other important sources of error. First, the statistical models used to 
produce these estimates may be incorrect, termed modeling error. Second, the statistical samples used 
to produce these estimates may be selectively chosen and unlike the population of interest, leading to 
selection error. Third, WTP values are unavailable for many health endpoints of interest. Assigning a 
value of zero is clearly incorrect, but the EPA has no basis on which to assign other values.  

 Confounding by Individual Risk Factors 
Interindividual variability in both physiological responses and exposures to ambient air pollution can 
affect the size of reported risk estimates in epidemiologic studies. Well-designed epidemiology studies 
account for individual risk factors as covariates in their models87, and so all else being equal we identify 
risk estimates adjusted to control for the most covariates that could reasonably impact the risk 
estimate. However, confounding by individual risk factors remains a potential source of uncertainty as 
additional relevant covariates may exist that are not included as covariates in epidemiological risk 
estimates used for health benefits assessment. Unfortunately, we are currently unable to quantitively 
assess this area of uncertainty but will include qualitative discussions when possible. 

 
87 Common covariates include education level, marital status, body mass index, cigarette smoking, diet, 
occupational exposures, income, percentage of minority, unemployment, and poverty. 
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 Confounding by Other Pollutants 
When considering the relationship between pollutant exposure and health impacts, it can be 
informative to consider whether risk estimates are changed when other pollutants are included in 
copollutant models, especially when health impacts of multiple pollutants are being estimated 
concurrently. Regarding long-term exposures, the 2019 PM ISA concluded that “positive associations 
observed between long-term PM2.5 exposure and total mortality remain relatively unchanged after 
adjustment for…NO2 and PM10−2.5” and the 2020 O3 ISA found that “positive associations observed 
between long term O3 exposure and total mortality remain relatively unchanged after adjustment 
for…NO2.” However, confounding due to the effects of copollutants other than O3 and PM2.5 are a 
potential source of uncertainty. 

 Risk Attributable to Long-Term and Short-Term Exposures 
Long- and short-term exposures may follow similar or divergent biological pathways. When pathways 
are similar, estimates of impacts from long-term exposures may include short-term impacts and vice-
versa. However, if pathways diverge, long- and short-term impacts may be the sum, or even greater 
than the sum, of the two exposure durations. As there is little research directly comparing long- and 
short-term effects, we are currently unable to quantitatively assess this area of uncertainty for either 
PM2.5- or O3-attributable health effects. 

 Heterogeneity of Risk Estimates 
Epidemiologic studies often differ according to study design, geographic locations, age groups, 
population attributes, study size, methods for estimating exposure, range of pollutant concentrations, 
time periods, study sizes, and follow-up durations. These differences in turn influence the magnitude 
and standard error of study-reported risk estimates. The diversity of identified risk estimates could 
reflect either the variability across the populations studied or uncertainty around the risk estimates. 
Importantly, heterogeneous risk estimates are not necessarily indicative of bias, but could also result 
from variability of the underlying input parameters.  

 O3 Metrics88 
O3 exposure metrics used to develop risk estimates can take many forms, though the most widely used 
metrics are the maximum daily 8-hour average (MDA8), daily average 24-hour (DA24), daily average 8-hr 
from 10AM to 6PM (DA8), and maximum daily 1-hour average (MDA1) metrics.  

Historically, if epidemiologic studies developed risk estimates based on O3 metrics other than MDA8, 
EPA would adapt the risk estimates based on average conversion ratios to be appropriate for use with 
air quality surfaces projected in the MDA8 metric (Anderson and Bell, 2010). This approach brings with it 
uncertainties associated with the simplifying assumptions used to develop the conversion ratios. In most 
cases, the day-to-day variation in different metrics (e.g., DA24 vs MDA8) is highly correlated. As such, 
the relationships between health impacts and different ozone metrics will also be highly correlated. 
However, when we apply risk estimates derived from time series results to evaluate the impacts of a 
specific policy scenario, we focus most on the shift in the overall distribution of O3 concentrations over 
an entire season, instead of on the day-to-day variation in O3 levels. Because specific policy scenarios 

 
88 PM2.5 exposure metrics are not discussed here as the vast majority are based on daily 24-hour average 
concentrations and annual exposures are often estimated using daily 24-hour average concentrations. Importantly, 
this potential source of uncertainty is not likely to have a large effect on overall PM2.5 benefits estimates results. 
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might result in different temporal distributions of ozone concentrations than was observed in the 
monitored ozone data used in the studies, it is important to choose an O3 metric that is best suited to 
capturing changes in O3 that are likely to occur during hours where populations are likely to be exposed. 

6.5.13.1 Converting O3 Risk Estimate Exposure Metrics 
When epidemiologic risk estimates are developed using non-MDA8 O3 exposure metrics, EPA has 
typically converted the beta risk estimates into MDA8 metrics, which brings in a potential source of 
uncertainty (Anderson and Bell, 2010). We discuss uncertainties associated with converting various 
common O3 exposure metrics into the MDA8 metric below. 

6.5.13.1.1 DA24 to MDA8 
Currently, air quality projections using the DA24 metric are unavailable, so a conversion factor from 
Anderson and Bell, 2010 is used in order to apply these risk estimates to MDA8 air quality surface 
projections. We multiply the beta risk estimate by the inverse of the median summer ratio of MDA8 to 
DA24 mean O3 concentrations (i.e., 1 / 1.53 = 0.6536) for studies assessing summer O3 exposure or by 
the inverse of the fixed effects average ratio of MDA8 to DA24 mean O3 concentrations (i.e., 1 / 1.53 = 
0.6536) for studies assessing all-year O3 exposure. We note that Anderson and Bell, 2010 included a 
range of ratios from 1.23-1.83. 

6.5.13.1.2 DA8 to MDA8 
A comparison of the MDA8 and DA8 metrics using 20 years of O3 monitoring data (2000-2019) for the 
entire contiguous U.S. resulted in a very high rate of correlation (Figure 17). The correlation was based 
on a simple linear regression with zero intercept, meaning that if the MDA8 is 0, then the DA8 mean 
must also be zero. The green line denotes the regression line and the light gray line represents a 1:1 
relationship. Please note, the MDA8 cannot exceed the DA8 and the high density of the ~7 million points 
shown in the graph cluster near the 1:1 line. In fact, the MDA8 and DA8 metrics are identical 
approximately 30% of the time and differ by 2 ppb or less about 80% of the time. Based on this 
comparison, the conversion factor from DA8 to MDA8 is 0.97.  
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Figure 17. Correlation of MDA8 and DA8 O3 Exposures Between 2000-2019 (R=0.986) 

 

 

6.5.13.1.3 MDA1 to MDA8 
Due to time and resource limitations, air quality projections using the MDA1 metric are also unavailable 
for the Revised CSAPR Update final rulemaking, so a conversion factor from Anderson and Bell, 2010 is 
used in order to apply these risk estimates to MDA8 air quality surface projections. We multiply the beta 
risk estimate by the median summer ratio of MDA1 to MDA8 O3 concentrations (i.e., 1.13) for studies 
assessing summer O3 exposure or by the fixed effects average ratio of MDA1 to MDA8 O3 concentrations 
(i.e., 1.14) for studies assessing all-year O3 exposure. We note that Anderson and Bell, 2010 included a 
range of ratios from 1.08-1.26. 

 O3 Season 
Studies of O3 vary with regards to O3 season, limiting analyses to various definitions of summer (e.g., 
April-September, May-September or June-August) and exposures over the full calendar year. These 
differences can reflect state-specific, EPA-defined O3 seasons or another seasonal definition chosen by 
the study author.  O3 exposure estimates are arguably more accurate during the summer when 
concentrations are typically higher and more monitors are operational. In addition, respiratory effects 
associated with short-term exposures are commonly limited to the warm season and therefore reflect 
the incidence that occurs during the 5- or 6-month O3 season (U.S. EPA, 2020e). Recently, there are an 
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increased number of long-term analyses of O3-attributable health impacts over the full calendar year 
using hybrid modeling techniques and where O3 monitoring data is collected for the entire year. These 
studies likely represent a more complete estimate of O3-attributable health impacts. 

While epidemiologic studies assessing all-year O3 exposures would likely present more comprehensive 
estimates of health impacts, hybrid O3 surface projections for baseline and policy rulemaking scenarios 
are not currently available.89 As such, we identified epidemiologic studies and associated risk estimates 
that evaluated associations between exposures and warm season effects when available. There was 
some variability amongst the warm season definitions within the list of studies identified in this update 
(e.g., April-September and June-August), although only the respiratory emergency department and 
asthma symptom risk estimate was based on full year O3 exposures (Barry et al., 2019, Lewis et al., 
2013). It should be noted that the exposures for asthma symptoms among the identified studies were 
not evenly distributed across all the seasons (i.e., three in Spring, two in Summer, two in Fall, and one in 
Winter).90 

There is some variability regarding the definition of the warm season amongst epidemiologic studies 
included in the ISAs and the main risk estimates identified here for O3 benefits estimates. When there is 
a substantial difference, such as the June-August warm season assessed by Zanobetti and Schwartz, 
2008, we develop season-specific air quality projections, when feasible. However, many studies begin 
the 5-7 month warm season in either April or May and conclude the season in September or October. 
Since projected full year hybrid O3 surfaces are currently not available, epidemiologic risk estimates will 
be applied to the air quality projection most closely matching the exposure season in the study (e.g., 
April-September exposures will be applied to May-September air quality projections). We expect this 
seasonal mismatch will only have a limited effect on the magnitude of related health incidence.  

 Shape of the Concentration-Response Relationship 

6.5.15.1 PM2.5 
An important consideration when characterizing uncertainty is whether the concentration-response 
relationship is linear across the full concentration range that is encountered, or if there are 
concentration ranges where there are departures from linearity. Overall, evidence from the 2019 PM 
ISA continues to “support a linear, no-threshold concentration-response relationship for long-term 
exposure to PM2.5 and total (nonaccidental) mortality, especially at lower ambient PM2.5 concentrations, 
with confidence in some studies in the range of 5−8 μg/m3” and “there is less certainty in the shape of 
the concentration-response curve at mean annual PM2.5 concentrations generally below 8 μg/m3, 
although some studies characterize the concentration-response relationship with certainty down to 4 
μg/m3” (U.S. EPA, 2019b).  

 
89 The paucity of O3 monitoring data in winter months potentially complicates the development of full year 
projected O3 surfaces, which would need to be subject to comprehensive evaluation prior to use in EPA RIAs.  
90 When risk estimates based on full-year, long-term O3 exposures are applied to warm season air quality 
projections, the resulting benefits assessment may underestimate impacts, due to a shorter timespan for impacts 
to accrue. When risk estimates based on full-year, short-term O3 exposures are applied to warm season air quality 
projections, the resulting benefits assessment may also underestimate impacts, as short-term O3 exposure effects 
are typically larger during the warm season (U.S. EPA, 2020b). 
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Although ten large cohort studies of long-term PM2.5-attributable mortality observed linear, no-
threshold concentration-response relationships, three Canadian studies presented evidence of 
deviations from linearity down to the lowest concentration evaluated. Two studies found evidence of a 
supralinear relationship at lower concentrations, although only one was statistically significant. And a 
single study found that the best fit for the long-term PM2.5 mortality relationship was in a threshold 
model with a threshold at 11 μg/m3. 

There are several potential explanations for these results, one of which is that studies may be unable to 
adequately evaluate the relationship at low levels without sufficient population exposure at those levels. 
Consistent with that hypothesis, the single statistically significant study finding evidence of 
supralinearity did have one of the lowest mean PM2.5 concentrations, at 6.3 μg/m3. Another possible 
explanation with support from the 2019 ISA is that the shape of the concentration-response relationship 
could differ by health outcome.  

Although there were no evaluations of the shape of the long-term PM2.5-attributable respiratory 
mortality relationship in the 2019 PM ISA, there were several studies of the relationship between long-
term PM2.5exposure and cardiovascular disease. When considering long-term PM2.5-attributable 
cardiovascular mortality, again most results “continue to support a linear, no-threshold 
relationship…especially at lower ambient concentrations of PM2.5…[with] a number of the 
concentration-response analyses include concentration ranges ≤12 μg/m3.” As with total mortality, a 
few studies found that risk was greater at lower concentrations, although the deviation from linearity 
was not statistically significant. The only evidence of nonlinearity in the long-term PM2.5-attributable 
cardiovascular mortality relationship came from two studies by the same group, which included 
exposure from cigarette smoking. They observed that the concentration-response relationship was 
much steeper at lower PM2.5 concentrations, such as those due to ambient air pollution, than at the 
higher concentrations associated with cigarette smoking. 

There were a small number of studies of the relationship between long-term PM2.5 exposure and 
cardiovascular morbidity endpoints in the 2019 PM ISA. A study of hypertension and another of ischemic 
heart disease incidence found no deviations from linearity. Two studies of coronary artery calcification 
found evidence of deviations from linearity, but the direction of the results was inconsistent. One study 
found evidence of sublinearity at higher concentrations while the other found evidence of supralinearity 
at both high and low concentrations. 

The shape of the relationships between PM2.5 exposure and health effects may also include a threshold, 
or PM2.5 exposure concentration below which human health is not adversely impacted. Although 
evidence does not currently support the existence of a measurable PM2.5 exposure population-level 
threshold, prior higher concentration exposures with longer latency periods could make thresholds 
difficult to detect. However, the 2019 PM ISA states that “new evidence from recent studies continues 
to support the previous conclusion that health benefits from reducing air pollution could be expected 
with a few years of intervention,” reducing the likelihood of this potential source of uncertainty. 

Based on the evidence and lack of nonlinear relationships between long-term PM2.5 exposure and health 
impacts, we continue to assume a linear, no-threshold relationship and do not quantitatively assess 
uncertainties related to the shape of the concentration-response relationships 
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6.5.15.2 O3 
The 2020 final O3 ISA evaluated a number of studies examining the shape of the concentration-response 
relationship for long term O3 exposure and mortality using various different statistical techniques, 
including linear models and restricted cubic splines, which we use to inform the long-term O3-
attributable respiratory mortality relationship (U.S. EPA, 2020b). The ISA concluded that: 

Generally linear, no-threshold relationships exist down to 35−40 ppb, although the results were 
not entirely consistent. Some studies observed a sublinear relationship, indicating larger changes 
in risk for higher O3 concentrations compared with lower O3 concentrations. Several studies also 
included threshold analyses and support the possibility of a threshold near 35 to 40 ppb. (U.S. 
EPA, 2020b, section 6.2.7) 

The ozone ISA also found that: 

Recent multicity studies continue to support a linear [concentration-response] relationship with 
no evidence of a threshold between short term ozone exposure and mortality over the range of 
ozone concentrations typically observed in the U.S. Studies that used different statistical 
approaches and ozone averaging times (i.e., 24 hour avg and 8 hour max) provide evidence of a 
linear concentration-response relationship, with less certainty in the shape of the curve at lower 
concentrations [i.e., 40 ppb for 24 hour avg and 30 ppb for 8 hour max]. An examination of 
whether a threshold exists in the ozone mortality concentration-response relationship provided 
no evidence of a concentration below which mortality effects do not occur when examining 5 
μg/m3 (~2.55 ppb) increments across the range of 1 hour max concentrations reported in the U.S. 
and Canadian cities included in [a large cohort]. (U.S. EPA, 2020b, section 6.1.8) 

Collectively, these results continue to support the conclusion of the 2006 Ozone Air Quality Criteria 
Document that “if a population threshold level exists in ozone health effects, it is likely near the lower 
limit of ambient ozone concentrations in the U.S.” and this we assume linear, no-threshold relationships 
exist between ozone and health impacts in the main benefits estimate. 

In addition, the studies identified as best characterizing respiratory mortality exposures did not provide 
threshold models or find evidence supporting a threshold associated with warm-season effects. Turner 
et al., 2016 did find “some evidence that a threshold model improved model fit for respiratory mortality 
at 35 ppb (P = 0.002) compared with a linear model using year-round but not summertime O3 (HR per 10 
ppb using threshold O3 indicator at 35 ppb for respiratory mortality, 1.17; 95% CI, 1.11–1.22).” However, 
as we are currently unable to obtain all year air quality projections, we are unable to quantitatively 
assess this year-round-specific uncertainty associated with long-term O3 exposures. 

 Short-Term Lag Structure91 
Epidemiologic analyses of short-term exposures often present results as health outcomes occurring a 
certain time period, or lag days, after exposure. Although there are means of aggregating outcomes that 
do not occur simultaneously, such as distributed or multi-day lags, there is a possibility that the full 
impact may not be captured by discrete lag periods in short-term study results. Although uncertainty 
remains as to whether short-term health impacts are fully captured by discrete lag durations, potentially 

 
91 The 2019 PM ISAs includes Table A-1 in its appendix, which describes the lag hierarchy preferences followed 
when identifying risk estimates for benefits assessment. 
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biasing results toward the null, we are currently unable perform quantitative uncertainty analyses 
regarding this source of uncertainty. 

6.5.16.1 PM2.5 
The 2019 final PM ISA states that “a number of recent studies conducted systematic evaluations of the 
lag structure of associations for the [short-term] PM2.5 [exposure]-mortality relationship by examining 
either multiday lags or a series of single-day lags, and these studies continue to support an immediate 
effect (i.e., lag 0-1 days) of short-term PM2.5 exposures on mortality” (U.S. EPA, 2019b). With respect to 
morbidity effects, the ISA found that “while recent studies provided evidence of associations in the 
range of 0-5 days for respiratory effects, there was evidence of an immediate effect for cardiovascular 
effects and mortality (i.e., 0-1 days) with some initial evidence of associations occurring over longer 
exposure durations (e.g., 0-4 days).” 

6.5.16.2 O3 
The 2020 final O3 ISA found that “for respiratory health effects, when examining more overt effects, 
such as respiratory related hospital admissions and ED visits (i.e., asthma, COPD, and all respiratory 
outcomes), epidemiologic studies reported strongest associations occurring within the 1st few days of 
exposure (i.e., in the range of 0 to 3 days)” (U.S. EPA, 2020b). 

 Statistical Technique/Model Used to Quantify Risks in Epidemiologic Study 
Multiple statistical techniques are used in epidemiological analyses, including the Cox proportional 
hazards model and the Poisson survival analysis.  

6.5.17.1 PM2.5 
The 2019 PM ISA compared the use of various statistical techniques, spatial random effects, and fixed92 
effect models (U.S. EPA, 2019b). The ISA found that “results from well-studied, highly regarded cohorts 
help to reduce uncertainties that the observed associations between long-term PM2.5 exposure and 
mortality could be due to the statistical techniques employed or model specification.”   

6.5.17.2 O3 
The 2020 O3 ISA found that “studies used a number of different statistical techniques to evaluate the 
shape of the [long-term exposure] concentration-response function, including linear models and 
restricted cubic splines, and generally observed linear, no-threshold relationships down to 35−40 ppb, 
although the results are not entirely consistent” (U.S. EPA, 2020b). 

 Temperature and Weather 
Temperature and weather may impact observed associations between air pollution exposure and health 
effects in epidemiologic studies, especially in short-term exposure studies. Although a few studies 
attempt to disentangle the influence of temperature and/or weather, there is insufficient information 
available to perform quantitative assessments of uncertainty. 

 
92 Assumes that there is a single true concentration-response relationship and therefore a single true value for the 
risk estimate parameter that applies everywhere. 
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6.5.18.1 PM2.5 
The PM ISA included a number of studies that assessed whether statistical models adequately account 
for temporal trends and weather covariates (U.S. EPA, 2019b). The ISA found that: 

Across studies that evaluated model specification, [short-term] PM2.5-mortality, associations 
remained positive, although in some cases were attenuated, when using different approaches to 
account for temporal trends or weather covariates. Seasonal analyses continue to provide 
evidence that associations are larger in magnitude during warmer months, but it remains 
unclear whether copollutants confound the associations observed. In addition to seasonal 
analyses, some studies also examined whether temperature modifies the [short-term] PM2.5-
mortality relationship. Initial evidence indicates that the PM2.5-mortality association may be 
larger in magnitude at lower and higher temperatures, but this observation has not been 
substantiated by studies conducted in the U.S. (U.S. EPA, 2019b, section 11.1.12)  

6.5.18.2 O3 
Temperature and weather can also impact epidemiologic results, especially in short-term exposure 
analyses. While there is limited evidence of differential O3 mortality associations by season, the 2020 O3 
ISA determined that the most extensive analyses conducted by recent studies examined whether 
temperature (i.e., long-term average temperatures or the distribution of mean daily temperatures) 
modifies the O3 mortality association (U.S. EPA, 2020b). Analyses focusing on temperature indicate that 
locations with lower long-term average temperature have higher O3 mortality risk estimates, which is 
also reflected by the observed difference in risk estimates between northern and southern U.S. cities in 
a single study. However, as long-term average temperature may be a surrogate for air conditioning 
prevalence and studies that examined either the joint or stratified effects of O3 and temperature on 
mortality provided evidence of O3 mortality associations that are larger in magnitude at temperature 
extremes, we do not plan on including quantitative uncertainty analyses for the effect of temperature 
on ozone effects. 

 Unquantified Impacts 
As with all estimates of benefits, due to the lack of complete data, not all human health impacts 
attributable PM2.5 and O3 can be identified and quantified. EPA acknowledges the existence of 
unquantified impacts, such as subclinical health endpoints (e.g., hypertension, inflammation, changes in 
lung/heart function, etc.) or pollutant-attributable clinical endpoints not evaluated in epidemiologic 
studies. 
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