

Optimizing Biochar Adsorbent Production through Semi-Gasification

Brynna Bone, Evan Bates, and Kyle Shimabuku PhD, P.E. Gonzaga University School of Engineering and Applied Science

Contact Dr. Kyle Shimabuku shimabuku@gonzaga.edu I (509) 313-3552

How is Biochar vs Granular Activated Carbon (GAC) Created?

Biochar Production

Heated between 500 and 900 °C (Biochar production generates heat)

Media stock refined

and manufactured

GAC

Biochar

GAC Production

Mined Coal

Energy intensive activation is used to increase surface area at high temperature and super critical steam

Comparing biochar and GAC filtration

Rapid small-scale column tests determine PFAS removal performance by GAC and biochar.

Results

PFOA and PFOS broke through the GAC filter prior to the 48-hour 800-degree kiln biochar. Chlorine broke through later, but likely reduced PFAS adsorption

Conclusion

The long duration high temperature **biochar** has a **similar if not better efficiency** compared to the industry standard filter GAC.

TLUD and Furnace Biochar vs GAC Performance in Batch

Biochar created using the furnace performed better than biochar created using the TLUD and GAC.

Conceptual Implementation Process

Producing moderate performing blochar in a TLUD could provide the heat to produce high performing blochar in a kiln. Both blochars could be marketed for different applications (e.g., stormwater or drinking water treatment).