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Once data are collected by the 
ESP32 modules, they will be 
stored and then collected using a 
WiFi enabled computer to capture 
the data locally. The data will then 
be uploaded into a database and 
the data will be analyzed  for 
overall trends as well as their 
correlation with data such as 
phosphate, free chlorine, 
temperature, pH, conductivity, and flow. 

Machine learning techniques have shown promise in analyzing time series data. To 
improve the quality of the data, such techniques use feature extraction and 
preprocessing. Variable classification and concentration prediction can be made 
practicable by supervised learning techniques like neural networks and support vector 
machines. Unsupervised learning techniques, including clustering and anomaly 
detection, aid in pattern discovery and abnormality detection. Deep learning models, like 
recurrent neural networks, capture temporal dependencies for lead concentration 
forecasting and event prediction. Challenges include handling missing data, imbalanced 
datasets, and ensuring model interpretability. Future research should focus on 
developing interpretable models and addressing uncertainty in predictions. Applying 
machine learning in lead sensing can improve monitoring systems, enhance 
understanding of lead pollution, and contribute to public health and environmental 
sustainability. 

 

Figure 12 Website created by Michael Brzostek for 
displaying time series data 
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Lead is a known cause of 
neurological and developmental 
maladies, particularly in infants and 
small children (Triantafyllidou and 
Edwards 2012). The presence of 
lead in lead service lines (LSLs) 
and premise plumbing continues to 
be an important exposure pathway. 
As a result, the Environmental 
Protection Agency (EPA) has set the 
maximum contaminant level (MCL) 
to be zero and the action level of 
lead to be 15 ppb. The Lead and 
Copper Rule Revisions were 
finalized in 2021 and set an 
additional trigger level of 10 ppb that will require municipalities to reevaluate their 
corrosion control and lead service line replacement strategies (EPA 2021). 

In New Jersey, lead levels in Newark drew attention to the severity of this issue and 
culminated in the full replacement of LSLs in Newark. Other NJ cities, such as Trenton 

and Camden, where lead service lines 
were widely utilized, face comparable 
difficulties and are further behind in their 
LSL replacement efforts. In 2021, 
Governor Phil Murphy of NJ signed into 
law P.L.2021, Ch.183, which requires all 
community water systems to complete an 
LSL inventory by January 2022 and to 
replace all LSLs by 2031 (NJDEP 2023). 
In the meantime, it is difficult to identify 
when and where lead is being released in 
plumbing. The highest frequency require 
by law is every 6 months measured by 

inductively coupled mass spectrometry (ICP-MS), atomic absorption (AA), or anodic 
stripping voltammetry (ASV) (EPA 2010). Although non-laboratory endpoint monitoring 
techniques have been developed, potentialmetric methods generally have short 
lifetimes, and colorimetric methods are often only single-use (Lin, Li, and Burns 2017). 
These all suffer from requiring an in-person sampling. 

 

Figure 1 Map of New Jersey (a) Households with lead 
service line (Brune, 2019) (b) Population density (US 
Census Bureau, 2022) 

a) b) 

Figure 2 Inductively Coupled Plasma - Mass 
Spectrometer 

To allow for long-term monitoring at multiple end-use 
points, researchers at the University of Michigan developed 
a low-cost platinum electrode sensor (Lin, Li, and Burns 
2017). The sensor itself is about the size of a rice grain and 
costs less than 10 cents to produce at scale. Moreover, 
operation of this sensor requires only simple circuits and 
two AAA batteries. The small size and low-cost makes it 
ideal for end-use at multiple points. The inert material 
comprising the sensors allow for long-term use without 
degradation.  

The mechanism behind the electrode sensor is to reduce 
and selectively precipitate metal cations from solution by 
applying a voltage through the electrodes, causing 
oxidation on one electrode (anode) and reduction 
on the other (cathode). These precipitates affect 
the conductivity between electrodes, allowing for 
detection of metal ions. The tendency is for lead 
ions to oxidize to PbO2 and precipitate on the 
anodes, and for the other common metal ions to 
reduce and precipitate on the cathode. Because 
PbO2 is the only oxidized compound precipitated 
on the anode that conducts electricity well, the 
resulting change in voltage may be used to detect 
the presence of lead in tap water (Nelson et al. 

al. 2022) 

Figure 4 Operation of lead sensor (Lin, Li, and Burns, 2017) 2022). 

 
Figure 5 Precipitation of PbO2 on sensor electrodes  
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F ure 6 Table of resistivity of common precipitates produced 
the sensor, with PbO2 being by far the most conductive. 

Figure 3 Diagram of interdigitated sensor (Nelson et 

In order to collect data with the sensor, a 
module for controlling the voltage, recording 
data, and transmitting it for further 
processing is necessary. Michael has 
proposed using Arduino on the ESP32 
microcontroller as a low-cost, WiFi enabled 
board that can be used for development of 
the module. We have been working on how 
to power the sensor and record data and use 
WiFi/Bluetooth to broadcast it to a computer, 

as well as how to monitor battery charge to ensure 
the voltage applied across the electrode is 
adequate. Michael developed code to flash the 
ESP32 to work with Arduino. 

At the same 
time, 
Michael, who 
volunteers 
as a robotics 
coach at Bloomfield High School (BHS) reached 
out to his former high school teacher, Michael 
Warholak, to mentor a team of high school 
students to develop a low-cost housing for the 
sensor module. Important features are that it will 
need to be water-tight to keep electronics from 
getting wet due to water leaks or humidity and 
that it needs to be relatively easy to install at a 
number of end-points. The current plan is to 
make a threaded connection in the housing so 

that it can connect between a faucet and the pipe 
connection to be as close to an end-point as 
possible.  

Figure 8 An ESP32 microcontroller 

Figure 9 Module layout developed by Mr. 
Warholak’s class at Bloomfield High 
School 

Figure 7 Sensor chips produced by the Burns Lab 

The sensor has reached technology readiness level (TRL) 4 in that it has been tested 
and optimized against laboratory simulated water. The goal of this study is to increase 
the TRL to 6 by conducting studies in real systems with varying degrees of control. First, 
the system will be implemented on the pipe loop hosted at NJIT and using Newark’s 
Pequannock water distribution system. Data such as phosphate, pH, chlorine, and Pb, 
Cu, and Fe concentration via ICP-MS 
will be routinely taken, making it a more 
controlled and well-characterized 
scenario. Options to include the sensor 
on pipe loops run by utilities, including 
the Passaic Valley Water Commission 
(PVWC) are ongoing, as these will 
provide a greater diversity of well-
studied environments. 

Figure 10 Pipe loop at NJIT using harvested lead-
lined galvanized pipes. 

 
Figure 11 Map of PVWC Network Corrosion 
Control Locations 

In parallel, we are working with industry contacts to establish a collaboration to place 
the sensors on locations in water distribution systems where data are routinely collected 
and that are at or near endpoints. Our original partner was Newark Department of Water 
and Sewer Utilities, but they had finished their lead service line replacement by the time 
of the grant and were no longer interested in gathering data on lead in water. We were 
preparing to start a collaboration with PVWC, but they became short-staffed and were 
no longer able to pursue extracurricular research projects at the same level. We are 
exploring partnerships with American Water and Veolia. 
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Description automatically generated]Once data are collected by the ESP32 modules, they will be stored and then collected using a WiFi enabled computer to capture the data locally. The data will then be uploaded into a database and the data will be analyzed  for overall trends as well as their correlation with data such as phosphate, free chlorine, temperature, pH, conductivity, and flow.Figure 12 Website created by Michael Brzostek for displaying time series data



Machine learning techniques have shown promise in analyzing time series data. To improve the quality of the data, such techniques use feature extraction and preprocessing. Variable classification and concentration prediction can be made practicable by supervised learning techniques like neural networks and support vector machines. Unsupervised learning techniques, including clustering and anomaly detection, aid in pattern discovery and abnormality detection. Deep learning models, like recurrent neural networks, capture temporal dependencies for lead concentration forecasting and event prediction. Challenges include handling missing data, imbalanced datasets, and ensuring model interpretability. Future research should focus on developing interpretable models and addressing uncertainty in predictions. Applying machine learning in lead sensing can improve monitoring systems, enhance understanding of lead pollution, and contribute to public health and environmental sustainability.
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Lead is a known cause of neurological and developmental maladies, particularly in infants and small children (Triantafyllidou and Edwards 2012). The presence of lead in lead service lines (LSLs) and premise plumbing continues to be an important exposure pathway. As a result, the Environmental Protection Agency (EPA) has set the maximum contaminant level (MCL) to be zero and the action level of lead to be 15 ppb. The Lead and Copper Rule Revisions were finalized in 2021 and set an additional trigger level of 10 ppb that will require municipalities to reevaluate their corrosion control and lead service line replacement strategies (EPA 2021).b)

a)

Figure 1 Map of New Jersey (a) Households with lead service line (Brune, 2019) (b) Population density (US Census Bureau, 2022)
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Description automatically generated]In New Jersey, lead levels in Newark drew attention to the severity of this issue and culminated in the full replacement of LSLs in Newark. Other NJ cities, such as Trenton and Camden, where lead service lines were widely utilized, face comparable difficulties and are further behind in their LSL replacement efforts. In 2021, Governor Phil Murphy of NJ signed into law P.L.2021, Ch.183, which requires all community water systems to complete an LSL inventory by January 2022 and to replace all LSLs by 2031 (NJDEP 2023). In the meantime, it is difficult to identify when and where lead is being released in plumbing. The highest frequency require by law is every 6 months measured by inductively coupled mass spectrometry (ICP-MS), atomic absorption (AA), or anodic stripping voltammetry (ASV) (EPA 2010). Although non-laboratory endpoint monitoring techniques have been developed, potentialmetric methods generally have short lifetimes, and colorimetric methods are often only single-use (Lin, Li, and Burns 2017). These all suffer from requiring an in-person sampling.Figure 2 Inductively Coupled Plasma - Mass Spectrometer
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Description automatically generated]To allow for long-term monitoring at multiple end-use points, researchers at the University of Michigan developed a low-cost platinum electrode sensor (Lin, Li, and Burns 2017). The sensor itself is about the size of a rice grain and costs less than 10 cents to produce at scale. Moreover, operation of this sensor requires only simple circuits and two AAA batteries. The small size and low-cost makes it ideal for end-use at multiple points. The inert material comprising the sensors allow for long-term use without degradation. Figure 3 Diagram of interdigitated sensor (Nelson et al. 2022)
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Description automatically generated]The mechanism behind the electrode sensor is to reduce and selectively precipitate metal cations from solution by applying a voltage through the electrodes, causing oxidation on one electrode (anode) and reduction on the other (cathode). These precipitates affect the conductivity between electrodes, allowing for detection of metal ions. The tendency is for lead ions to oxidize to PbO2 and precipitate on the anodes, and for the other common metal ions to reduce and precipitate on the cathode. Because PbO2 is the only oxidized compound precipitated on the anode that conducts electricity well, the resulting change in voltage may be used to detect the presence of lead in tap water (Nelson et al. 2022).Figure 5 Precipitation of PbO2 on sensor electrodes 

Figure 6 Table of resistivity of common precipitates produced on the sensor, with PbO2 being by far the most conductive.

Figure 4 Operation of lead sensor (Lin, Li, and Burns, 2017)
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Description automatically generated]In order to collect data with the sensor, a module for controlling the voltage, recording data, and transmitting it for further processing is necessary. Michael has proposed using Arduino on the ESP32 microcontroller as a low-cost, WiFi enabled board that can be used for development of the module. We have been working on how to power the sensor and record data and use WiFi/Bluetooth to broadcast it to a computer, as well as how to monitor battery charge to ensure the voltage applied across the electrode is adequate. Michael developed code to flash the ESP32 to work with Arduino.Figure 7 Sensor chips produced by the Burns Lab



At the same time, Michael, who volunteers as a robotics coach at Bloomfield High School (BHS) reached out to his former high school teacher, Michael Warholak, to mentor a team of high school students to develop a low-cost housing for the sensor module. Important features are that it will need to be water-tight to keep electronics from getting wet due to water leaks or humidity and that it needs to be relatively easy to install at a number of end-points. The current plan is to make a threaded connection in the housing so that it can connect between a faucet and the pipe connection to be as close to an end-point as possible. Figure 8 An ESP32 microcontroller

Figure 9 Module layout developed by Mr. Warholak’s class at Bloomfield High School
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Description automatically generated]The sensor has reached technology readiness level (TRL) 4 in that it has been tested and optimized against laboratory simulated water. The goal of this study is to increase the TRL to 6 by conducting studies in real systems with varying degrees of control. First, the system will be implemented on the pipe loop hosted at NJIT and using Newark’s Pequannock water distribution system. Data such as phosphate, pH, chlorine, and Pb, Cu, and Fe concentration via ICP-MS will be routinely taken, making it a more controlled and well-characterized scenario. Options to include the sensor on pipe loops run by utilities, including the Passaic Valley Water Commission (PVWC) are ongoing, as these will provide a greater diversity of well-studied environments.



 Figure 11 Map of PVWC Network Corrosion Control LocationsFigure 10 Pipe loop at NJIT using harvested lead-lined galvanized pipes.



In parallel, we are working with industry contacts to establish a collaboration to place the sensors on locations in water distribution systems where data are routinely collected and that are at or near endpoints. Our original partner was Newark Department of Water and Sewer Utilities, but they had finished their lead service line replacement by the time of the grant and were no longer interested in gathering data on lead in water. We were preparing to start a collaboration with PVWC, but they became short-staffed and were no longer able to pursue extracurricular research projects at the same level. We are exploring partnerships with American Water and Veolia.
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