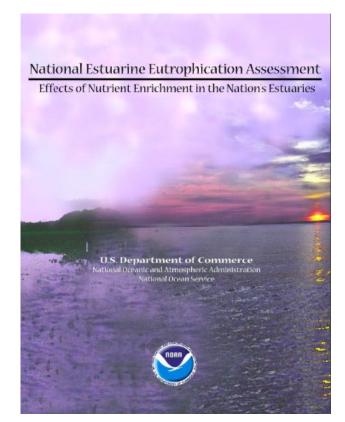


EPA Tools and Resources Webinar: Tracking Nutrient Trends to Emerging Harmful Algal Blooms via the Estuary Data Mapper

Naomi Detenbeck and Steve Rego Tori Wolters (ORISE) US EPA Office of Research and Development

July 19, 2023

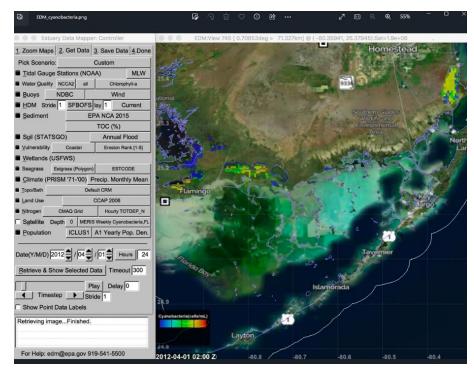
Office of Research and Development


Presentation Outline

- Historic and emerging coastal issues
- Estuary Data Mapper
 - Purpose/scope
 - Demo
 - Types of data included
- Chlorophyll and Harmful Algal Bloom (HAB) mapping
 - Approach
 - Tools for use of Sentinel 2 imagery
- Impact and Conclusions

Problem

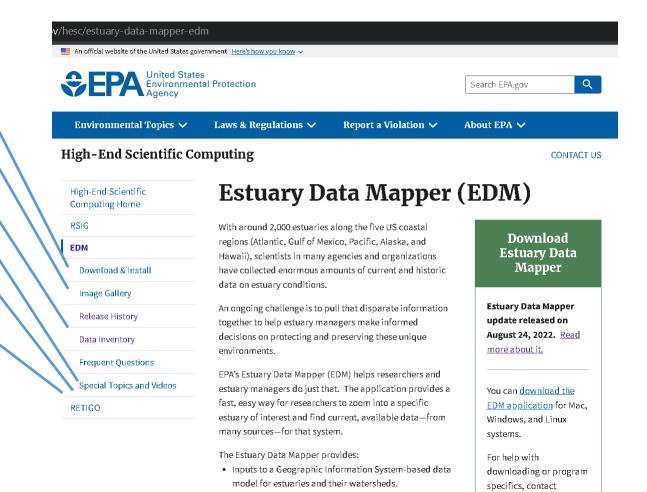
- NOAA's 1999 comprehensive assessment of the scale, scope and characteristics of nutrient enrichment and eutrophic conditions—in 139 US estuaries using best available information and expert opinion— was largely qualitative; more detailed information is needed to establish loading targets
- Excess nutrient loading in estuaries can cause loss of critical habitat for fish and shellfish, phytoplankton, and HABs and hypoxia



• The 2014 Harmful Algal Bloom Hypoxia Recovery and Control Act (HABHRCA) specifies EPA "shall include research on the ecology and impacts of freshwater harmful algal blooms; and forecasting and monitoring of and event response to freshwater harmful algal blooms in lakes, rivers, estuaries (including their tributaries), and reservoirs."

Approach

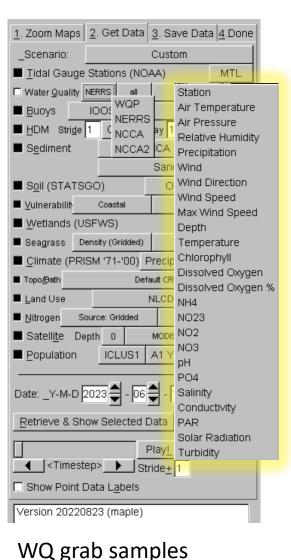
- EPA developed the <u>Estuary Data Mapper (EDM)</u> application, a virtual portal to data and information on coastal watersheds and estuaries, to deliver data needed by scientists, managers and decision-makers
 - Identify -> Visualize -> Download
 - Nutrient sources and loads status and trends
 - Factors affecting sensitivity of estuaries to nutrient loading
 - Nutrient response endpoints
 - Water quality (nutrients, dissolved oxygen (DO), transparency)
 - Sediment Total organic carbon (TOC): grain size indicator of enrichment
 - Chlorophyll a biomass
 - Submerged aquatic vegetation
 - In development: HABs
 - Inputs to decision support tools for nutrient load reductions



Estuary Data Mapper (EDM) Website

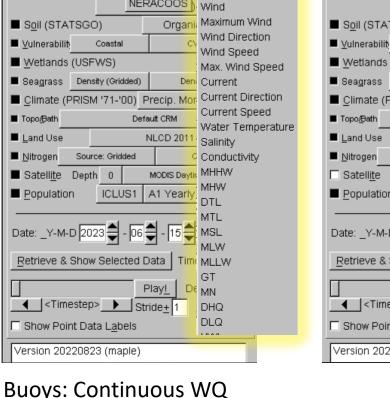
www.epa.gov/edm

- Download stand-alone application
- View example images
- Data inventory
- Special Topics
 - Training webinars
 - Interoperability Generation of queries for use in linked apps
 - 508-compliance features
 - Keyboard shortcuts
 - Alternative color visualization schemes



EDM DEMO

- Locating data
- Visualizing data
- Downloading data
- Special applications



Assessments: Finding raw data on water and sediment quality

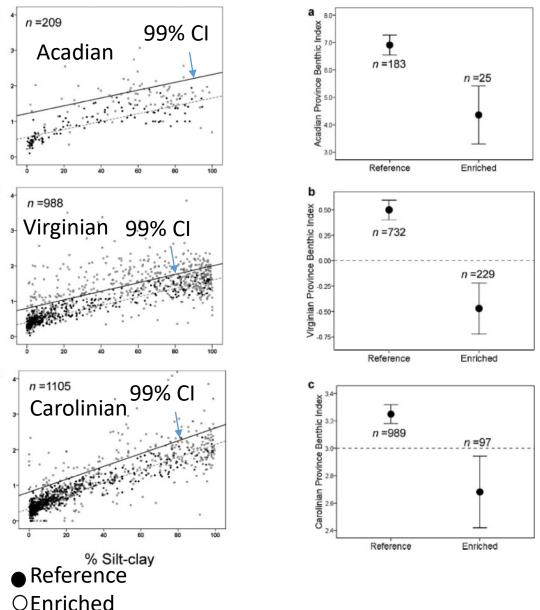
Scenario: Custom Tidal Gauge Stations (NOAA) MTL Water Quality NERRS al Tur Station Air Temperature E Buoys **IOOS** IOOS Air Pressure CBC GTSPP HDM Stride 1 Relative Humidity Sediment I NDBC Precipitation NERACOOS Wind Maximum Wind Soil (STATSGO) Organ Wind Direction Vulnerabilit Coastal Wind Speed Wetlands (USFWS) Seagrass Density (Gridded) Den: Current Climate (PRISM '71-'00) Precip. Mo Current Speed Topo/Bath Default CRM Land Use NLCD 201 Salinity Nitrogen Source: Gridded Conductivity MHHW Depth MODIS Davtir Satellite 0 MHW Population ICLUS1 A1 Year DTL MTL Date: Y-M-D 2023 MSL MLW Retrieve & Show Selected Data Time MLLW GT Play! DE MN DHQ DLQ Show Point Data Labels 1.15.6.21 Version 20220823 (maple)

1. Zoom Maps 2. Get Data 3. Save Data 4.Done

1. Zoom Maps	2. Get Data	<u>3</u> . Sav	e Data	a <u> 4</u> .Done	2
_Scenario:	_Scenario: Custom				1
<u>T</u> idal Gauge Stations (NOAA) MTL				1	
Water Quality N	Water Quality NERRS all Turbidity				1
□ <u>B</u> uoys	ioos	5	Galinity	1	1
■ HDM Stride 1	CBOFS	lay 1	C	urrent	
Sediment	EPA	NCA 19	90-20	006	1
		Sand	(%)		
Soil (STATSG	;0)	Org	janic (%wt)	1
■ <u>V</u> ulnerabilit	Coastal		CVI (-	•)	1
■ Wetlands (US	FWS)				1
■ Sea <u>q</u> rass De	Seagrass Density (Gridded) Density (-)			1	
Climate (PRIS	M '71-'00)	Precip.	Month	ly Mean	
■ Topo <u>/</u> Bath	De	fault CRM			
Land Use	Id Use NLCD 2011				
<u>Nitrogen</u> Source: Gridded Crops					
🗆 Satell <u>it</u> e Dep		MODIS D			
Population	ICLUS	luarius (Marius)			
Aquarius Weekly Salinity Aquarius Monthly Salinity					
Date: _Y-M-D 2023 🚔 - Aquarius Annual Salinity					
MERIS Weekly Cyanobacteria,CT					
Retrieve & Show Select: MERIS Weekly Cyanobacteria,DE					
MERIS Weekly Cyanobacteria,GA					
Timestep> MERIS Weekly Cyanobacteria,MA					
Show Point Data Labe MERIS Weekly Cyanobacteria,MD					
MERIS Weekly Cyanobacteria,ME					
			-	Cyanobac Cyanobac	

. Zoom Maps 2. Get Data 3. Save Data 4.Done Scenario: Custom Tidal Gauge Stations (NOAA) MTL Water Quality NERRS Turbidity E Buoys IOOS Salinity HDM Stride 1 CBOFS lav Current Sediment EPA NCA 1990-2006 EPA NCA 1990-2006 and (%) EPA NCA 2015 Organic (%wt) USGS SEABED Calculated Station USGS SEABED Extracted USGS SEABED Parsed Date TNC Kriged Longitude (deg) GSM Gridded Dimate (PRISM '71-'00) Precip. Latitude (deg) Topo/Bath Default CRM TOC (%) Land Use NLCD 2 Clay (%) Source: Gridded Nitroaen SiltClay (%) Satellite Depth 0 MODIS [Silt (%) Population ICLUS1 A1 Yea Sand (%) Moisture (%) Date: _Y-M-D 2023 🖨 - 06 🖨 - 1 25th% Phi (phi) Retrieve & Show Selected Data 50th% Phi (phi) 75th% Phi (phi) Play! Deviation (-) Skewness (-) Show Point Data Labels Agency Version 20220823 (maple)

Satellite-derived WO


Sediment quality

Application: TOC-grain size eutrophication indicator

(sqrt) % TOC

- Evaluated relationship between sediment grain size and organic carbon in reference vs enriched systems
- Sediment TOC above 99% confidence interval of predicted value provides evidence of enrichment
- Sediment enrichment indicator was validated by water quality (lower dissolved oxygen, elevated chlorophyll a and nutrients) and benthic condition (poorer index at enriched sites)
- Raw data for application of TOC-grain size indicator available in EDM

Pelletier, M.C., D.E. Campbell, K.T. Ho, R.M. Burgess, C.T. Audette, and N.E. Detenbeck. 2011. <u>Can sediment total organic carbon and</u> <u>grain size be used to diagnose organic enrichment in estuaries?</u> Env. Toxicol. Chem. 30(3):538-47.

Assessing Sources and Trends in Nutrient Loading

		1	1		
<u>1</u> . Zoom Maps 2.	1. Zoom Maps 2. Get Data 3. Save Data 4.Done				
_Scenario:		Custom			
<u>T</u> idal Gauge St	ations (N	DAA)	MTL		
Vvater Quality NER	RS all	Turi	oidity		
■ <u>B</u> uoys IO	IOS	Salin	ity		
■ <u>H</u> DM Stri <u>d</u> e 1	CBOFS	lay 1	Current		
Sediment	EPA	A NCA 1990-	2006		
		Sand (%)			
Soil (STATSGC))	Organio	: (%wt)		
■ <u>V</u> ulnerability	Coastal	cv	1(-)		
■ <u>W</u> etlands (USF)	WS)				
■ Sea <u>g</u> rass Dens	ity (Gridded)	Dens	ity (-)		
Climate (PRISM	l '71-'00)	Precip. Mon	thly Mean		
■ Topo <u>/</u> Bath	De	efault CRM			
■ <u>L</u> and Use		NLCD 2011			
□ <u>N</u> itrogen Source	e: Gridded	Cro	ps 🛄		
Satellite Depth	0	MODIS E Ma	nure		
Population ICLUS1 A1 Yes Fertilizer en.					
Date: _Y-M-D 2023 - 06 - 15 - Hours 24					
Retrieve & Show Selected Data Timeout 300					
Play! Delay 0 <timestep> Stride±</timestep>					
Show Point Data Labels					
Version 2022082	3 (maple)	1			

Land-based N loads

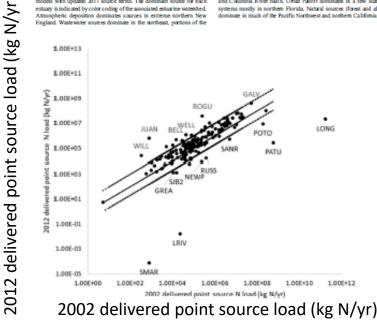
1. Zoom Maps 2	Data <u>4</u> .Done					
_Scenario: Custom						
Tidal Gauge Stations (NOAA)			MTL			
Water Quality NEF	RRS all	Tu	urbidity			
Buoys IC	os	Sal	inity			
■ <u>H</u> DM Stri <u>d</u> e 1	CBOFS	lay 1	Current			
Sediment	EPA	NCA 1990	0-2006			
		Sand (%)			
Soil (STATSGO))	Organ	iic (%wt)			
■ <u>V</u> ulnerabilit	Coastal	0	:VI (-)			
Vetlands (USF	WS)					
■ Sea <u>g</u> rass Dens	ity (Gridded)	Dei	Density (-)			
■ Climate (PRISM	1 '71-'00)	Precip. Ma	onthly Mean			
■ Topo <u>/</u> Bath	Det	ault CRM				
■ Land Use	NLCD 2011					
□ <u>N</u> itrogen NADP	Nitrogen NADP+CMAQ Grid , Annual Drv. NH3					
Satellite Dept	Annual Dry NH3					
	Annual Dry NH4					
Population ICLUS1		Annual Dry NO3				
	Annual Dry TotN					
Date: _Y-M-D 2023 🖨 - 06						
		- Annual (Annual Dry TotUN			
Retrieve & Show						
	Annual Dry Net NH3					
	Annual Dry Ox. TotN					
Timestep						
Show Point Data Labels			Dry Rd. TotN			
	Annual Dry Rd. TotN %					
Version 2022082	Annual \	Annual Wet NH4				
	Annual V	Annual Wet NO3				

Atmospheric N deposition

_Scenari		N	-SPEC	Т	
■ <u>T</u> idal Gauge Sta	ations (N	NOA	A)		MTL
Vvater Quality NER	RS al			Turbid	ity
Buoys IO	os		Salinity		
■ <u>H</u> DM Stri <u>d</u> e 1	CBOF	s I	lay 1 Current		
■ S <u>e</u> diment	EF	PA N	ICA 19	90-20)06
			Sand (%)	
□ S <u>o</u> il (STATSGO)		Org	anic (%wt)
■ <u>V</u> ulnerabilit <u></u>	Coastal			CVI (-)
Wetlands (USF)	NS)				
Seagrass Densi	ty (Gridde	d)	I	Density	(-)
Climate (PRISM	'71-'00]) PI	recip. N	Month	ly Mean
□ Topo <u>/</u> Bath	[Defa	ult CRM		
Land Use		С	CAP 20	06	
NA NA	DP Grid		Ar	nual W	'et TotN
Satellite Depth 0 MODIS Daytime SST					
Population ICLUS1 A1 Yearly Pop. Den.					
 Date: _Y-M-D 202	3 🖨 - 🖸	16	- 15		Hours 24
Retrieve & Show				_	
Remeve & Show	Selecte	u D		ineo	ur 300
		_	lay <u>!</u>	Dela	y O
Timestep>		Stri	de <u>+</u> 1		
Show Point Dat	a L <u>a</u> bels	6			


Inputs for NOAA <u>Nonpoint-Source</u> <u>Pollution and Erosion Comparison</u> <u>Tool</u>

Application: Nationwide Comparison of Exposure


- Regional Spatially Referenced Regressions on watershed models
 - Used to update 2002 delivered nitrogen (N) loads to estuaries of the contiguous US for 2011, supplemented by direct estuarine atmospheric deposition from the Community Multiscale Air Quality Model
- Median 2011 watershed N yields were greatest for the Puget Trough, Virginian, and OR/WA/Vancouver coast marine ecoregions
- Delivered N loads from atmospheric deposition have significantly decreased (p < 0.05) for most estuaries on the Atlantic and Gulf coasts for 2002-2012
- Estimated point source delivered N loads for 2002-2012 increased for most estuaries with upstream treatment plants, with estimated loads to only 7 estuaries decreasing by more than 50%
- Loads and source data available in EDM

Detenbeck, N.E., M. You, and D. Torrre. 2019. Recent changes in nitrogen sources and load components to estuaries of the contiguous United States. Estuaries and Coasts Vol. 42(8): 2096-2113.

ig. 4 Delivered loads to each estuary (kg N/ha estuary/year) in the uous US with order of magnitude differences indicated by the size tircle and its color, based on application of regional SPARROW nodels with updated 2011 source terms. The dominant source for each estuary is indicated by color coding of the associated estuarine watershed. cospheric deposition dominates sources in extreme northern New

mid-Atlantic, most Texas estuaries, southern California, and Puse Sound, Agricultural sources dominate through much of the mid to south em Afantic, eastern Gulf of Mexico, north central and central Cali fomia and Columbia River basin. Urban runoff dominates in a few scattere systems mostly in northern Florida. Natural sources (forest and alders)

<u>1</u> . Zoom Maps	<u>2</u> . Get Data	<u>3</u> . Sa	ve Data 4.Done
_Scenario:	_Scenario: Nutrient Sensitivity		
□ <u>N</u> utrient Sen (Variables B	<u> </u>		PRE (days) ING, Time∀arying)
🗆 Stream Discl	harge_Yearly [Dischar	ge USGS Gauges
	ESTCODE:	all	Discharge
□ <u>T</u> ide Point:	Year	'ly Tide	NOAA Gauges
	ESTCODE:	all	ESTCODE
Tide Current	t: Monti	hly Tide	NOAA Gauges
	ESTCODE:	all	ESTCODE
Longshore Cu	rrent: ESTCODI	E: all	ESTCODE
Estuary <u>F</u> lus			
	ESTCODE:	all	MeanFlushingTime
□ Salinity <u>P</u> oin	t: ESTCODE:	all	ESTCODE
Date: _Y-M-D	2023 🗲 - 06	- 1	
Retrieve & Sh	ow Selected	Data	TI SAL_DIFF
Contract of the second seco	ep>S	Play <u>!</u> tride <u>+</u>	FRESH FRAC
Version 20220	823 (maple)		STRATIFY_P

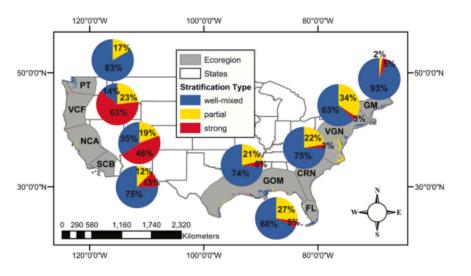
Stratification potential

1. Zoom Maps	<u>2</u> . Get Data <u>3</u> . Sa	ave Data 4.D	one			
_Scenario:	Nutrient Sensiti∨ity					
	Nutrient Sensitivity: PRE (days) (Variables below: NON_TIME_VARYING, TimeVarying)					
🗖 Stream Discl	harge Yearly Dischar ESTCODE: all	ge USGS Gau Discharq				
□ <u>T</u> ide Point:		NOAA Gauges				
	ESTCODE: all	ESTCODE				
Tide Current		NOAA Gauge				
	ESTCODE: all					
Longshore Cu	rrent: ESTCODE: all	ESTCOD	E			
Estuary <u>F</u> lus		hing Time FFN				
□ Salinity <u>P</u> oint	t: ESTCO	Flushing	Time TPM			
Date: _Y-M-D	2023 -	/ Stratifica	time TPN ation Froud			
		Delay 0	-			
└┘ _◀_ <timest< td=""><td></td><td></td><td></td></timest<>						
Show Point D	Show Point Data Labels					
Version 20220823 (maple)						

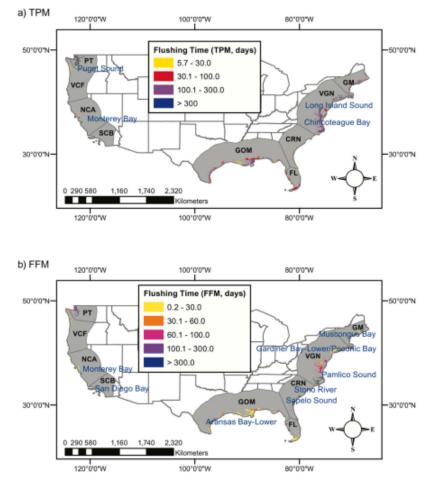
Flushing time statistics and time series

<u>1</u> . Zoom марз	2. Get Data 3. S	ave Data <u> 4</u> .Done		
_Scenario:	Nutrient S			
□ <u>N</u> utrient Sen	sitivity:	PRE (days)		
(Variables I	below: NON_TIME_VAR	Estuary code	e (-)	
Stream Discl	harge Yearly Discha	Estuary Area	a (km2)	
	ESTCODE: all	Mixed Area ((km2)	
		Sea Area (ki	m2)	
Tide Point	Yearly Tide	Freshwater /	Area (km2)	
	ESTCODE: all	Mean river fl	low (m3/day)	
Tide Current	t: Monthly Tid	Max. river flo	w (m3/day)	
	ESTCODE: all	Estuary volu	me (10^9m3)	
Longshore Cu	irrent: ESTCODE: a	Tidal prism (10^9m3)		
0		Tide height i	(m)	
Estuary <u>F</u> lus		Bottom salinity (ppt)		
	ESTCODE: all	Surface salir	nity (ppt)	
Salinity Point	t: ESTCODE: all	Depth (m)		
		DCP (mg/L)		
Date: _Y-M-D	2023 🖨 - 06 🖨 -	PRE (days)		
l	ow Selected Data	Timeout 300		
	Play!			
<pre><timestep> Stride± 1</timestep></pre>				
Show Point Data Labels				
Version 20220	823 (maple)			

Agency



Application: Comparative Analysis

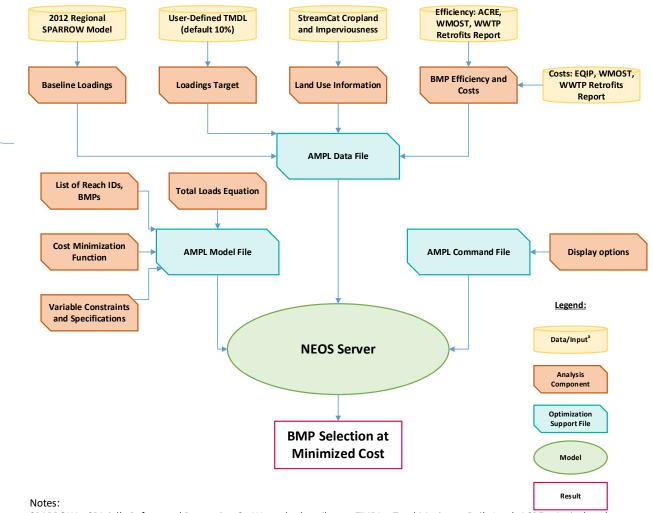

• Estuarine sensitivity to nutrient loads varies with flushing time and stratification status

• Methods for estimating estuarine stratification and flushing time were applied to estuaries across the US and over a long-term period (1950-2015)

• Most estuaries along East and Gulf coasts well-mixed with stratification more frequent for West coast systems, but varying seasonally consistent w rain patterns

Shen, X., N. Detenbeck, and M. You. 2022. <u>Spatial and temporal variations in</u> <u>estuarine stratification and flushing time across the continental U.S.</u> Estuarine, Coastal and Shelf Science

- Flushing times varied by over two orders of magnitude across estuaries
- •Well-mixed and partially-stratified estuaries generally had longer flushing times in the dry seasons than in the wet seasons.

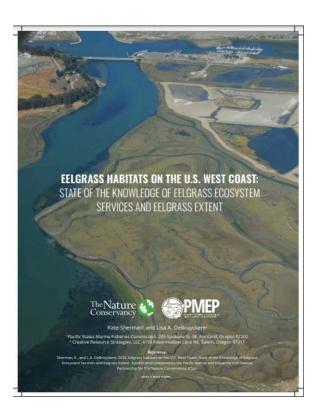


Decision Support for Nutrient Load Management

Input datasets available via EDM for sub-watersheds of interest

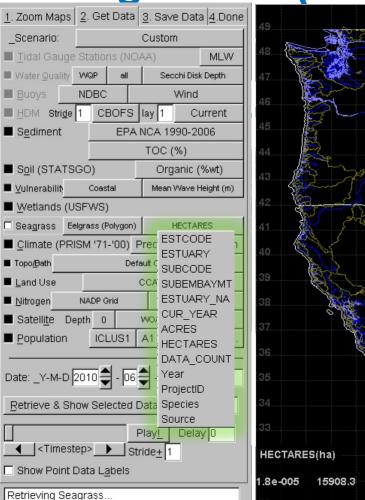
Chamberlin, C., M. TenBrink, K. Munson, A. Le, and N. Detenbeck. 2021. <u>River Basin Export Reduction</u> <u>Optimization Support Tool: A tool to screen options</u> <u>for reducing nutrient loads while minimizing cost</u>. JAWRA59(1): 178-196.

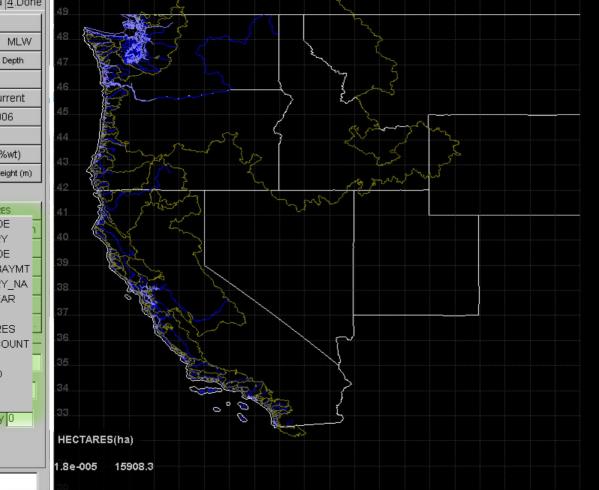
Tool and user guide download: https://github.com/USEPA/RBEROST



SPARROW = SPAtially Referenced Regression On Watershed attributes; TMDL = Total Maximum Daily Load; ACRE = Agricultural Conservation Reduction Estimator; WMOST = Watershed Management Optimization Support Tool; WWTP = Wastewater Treatment Plant; BMP = Best Management Practice; EQIP = Environmental Quality Incentives Program; AMPL = A Mathematical Programming Language; NEOS = Network-Enabled Optimization System.

^aThe data/inputs represented in this diagram are specific to the case study described in Section 3.




Nutrient Response Endpoints: Submerged Aquatic Vegetation (SAV)

Pacific Marine & Estuarine Fish Habitat Partnership Eelgrass Datasets

- Max observed extent
- Time series of extent
- Summaries by estuary

Updates in progress to add comparable data for Gulf and Atlantic coasts

Presentation Outline

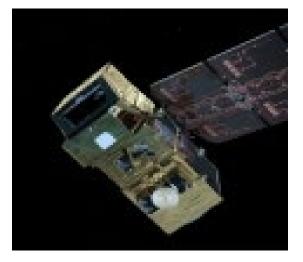
- Historic and emerging coastal issues
- Estuary Data Mapper
 - Purpose/scope
 - Demo
 - Types of data included

• Chlorophyll and Harmful Algal Bloom (HAB) mapping

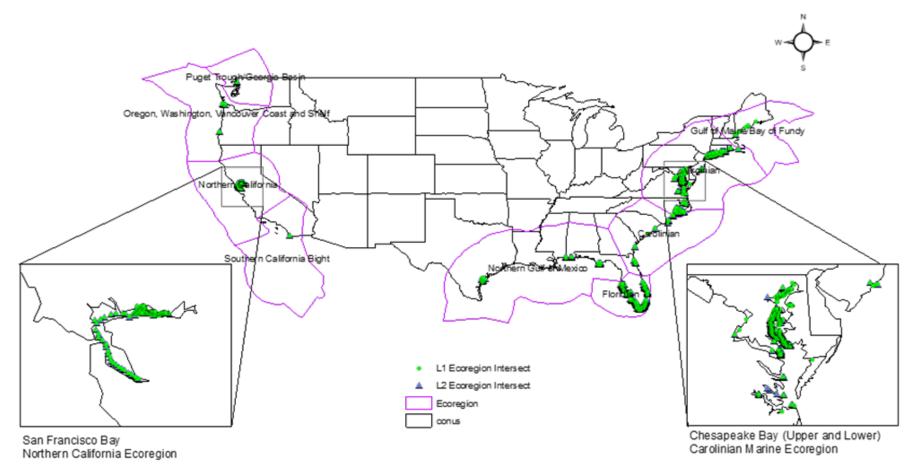
- Approach
- Tools for use of Sentinel 2 imagery
- Impact and Conclusions

Problem

- Cyanobacteria blooms are an emerging issue in coastal systems
- We lack consistent and comprehensive chlorophyll monitoring in coastal systems
- Estuaries and tidal freshwater rivers have unique challenges for interpreting remote sensing imagery
- Only 45% of Pacific coast estuaries are large enough to use Sentinel 3 remote sensing (30m pixels)
- Machine learning can be used to interpret Sentinel 2 imagery, but the data and method have technical challenges

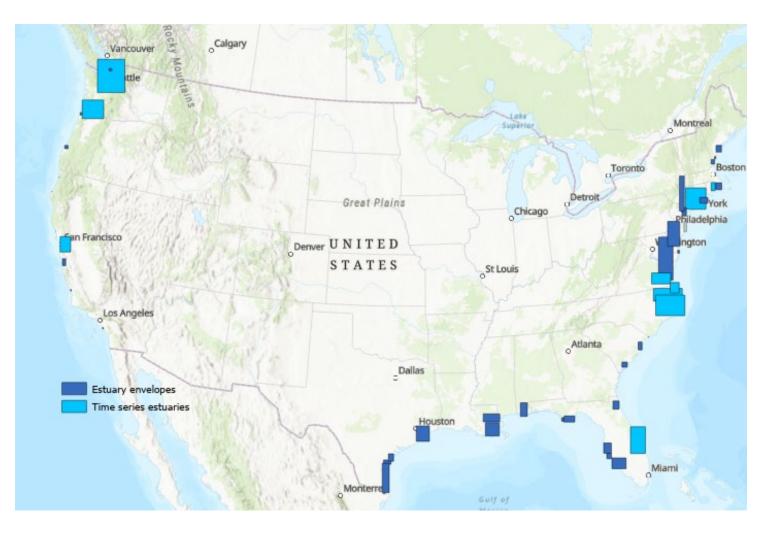


Accumulations of cyanobacterial at the surface of the water and sandy beach within the lagoon of the Santa Clara River estuary. Credit: Avery Tatters, UCLA, now USEPA.


Approach for chlorophyll predictions

- Develop comprehensive database of chlorophyll + ancillary water quality variables for estuaries and tidal freshwater rivers
- Match subset of estuarine chlorophyll observations with Sentinel 2 imagery via Google Earth Engine analysis
- Identify subset of paired Sentinel 2-Water Quality dataset along gradient of chlorophyll, turbidity, and salinity for algorithm testing/development
- Test alternative atmospheric correction algorithms
 - Acolite, Polymer, SIAC
 - Aeronet reference sites
 - Comparison of observed vs predicted chlorophyll
- Compare accuracy of existing chlorophyll algorithms with existing and refined machine learning approach

Nutrient Response Endpoints: Chlorophyll


Two chlorophyll (plus ancillary variables) water quality databases compiled:

- 1) Comprehensive: ~300,000 observations, 1980's 2022
- 2) Paired chlorophyll observations with Sentinel 2 remote sensing imagery to use for refining
- chlorophyll algorithms to enable mapping and prediction of HABs (n = ~95,000)

Estuaries for chlorophyll algorithm refinement and chl/HABs* time series analysis

- Time series
 - Narragansett Bay
 - Long Island Sound
 - James River*
 - Albemarle/Pamlico/ Currituck Sound*
 - Indian River*
 - San Francisco Bay
 - Columbia River*
 - Puget Sound*

Sentinel 2 processing guidance under development

- Automated matching of Sentinel 2 images with chlorophyll observations via Google Earth Engine (GEE) with R and Python scripts
- Bulk download methods
 - USGS Earth Explorer (now obsolete) => Copernicus
- GEE retrieval of improved "cloudless" indicator for cloud and cloud shadow masks
- Correction of NetCDF output files from Acolite and Polymer
 - Not CF-compliant => Not read in properly to GIS software
 - Not properly geo-referenced
 - Variables not all recognized
 - Acolite extracts area of interest to minimize file size, but Polymer does not
 - Scripts set up for batch processing on supercomputer
- ArcGIS Pro model builder workflow for import of corrected NetCDF files and extraction of values around buffered observation points

USGS Bulk Download Application Google Earth Engine (GEE) (BDA) Download scripts Level 1 Sentinel 2 images (SAFE format) Sentinel 2 S2Cloudless Acolite Atmospheric and **Polymer Atmospheric** geotiffs (improved pixel-**Sunglint Corrections** Corrections scale cloud probabilities) Atmospherically Corrected Level 2 Sentinel 2 images (NetCDF **FMASK** format, non CF-compliant) **Post-processing** Cloud and cloud shadow masks Atmospherically Corrected Level 2 Sentinel 2 images (NetCDF format, CF-compliant) **ArcGIS Pro extraction/processing QC** filtering (Bailey and Werdell 2006) Comparison with **Refined machine-AERONET** water-**Existing chlorophyll** learning algorithms leaving reflectances algorithms (Pahelvan et al. 2020)

Compare to evaluate different atmospheric corrections and algorithms

EstuarySAT

Coastal WQ

Database

Extracted Sentinel 2

data paired with WQ

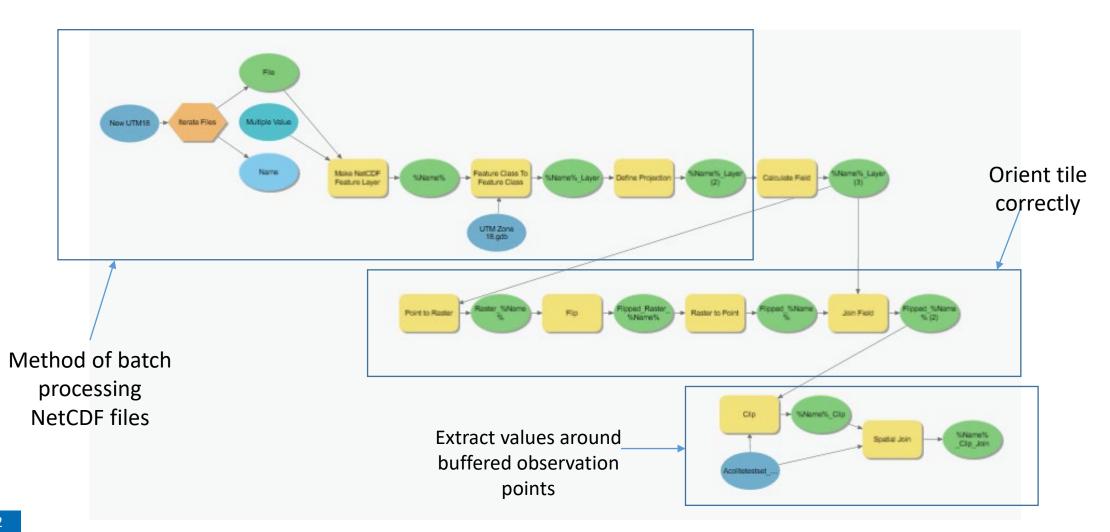
observations in space

preliminary cloud and

cloud shadow masks

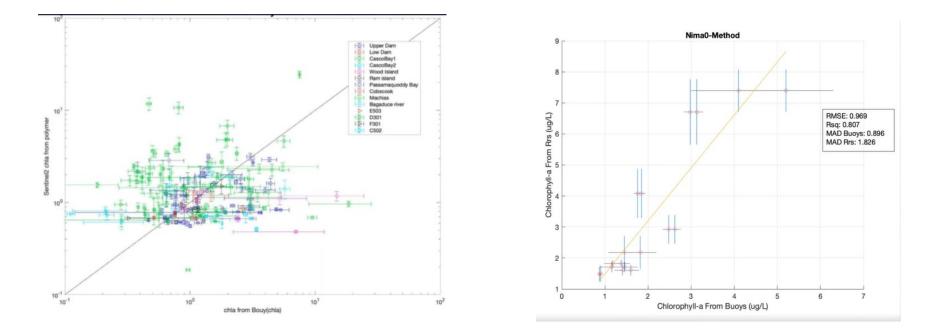
Test set selected along

gradient of chlorophyll,


turbidity and salinity

and time with

applied



ArcGIS Pro Model Builder NetCDF Processing

Example: Results from Mixture Density Network (MDN) approach

Initial validation of chlorophyll a data from a) Landsat 8 and b) Sentinel 2 using chlorophyll data from buoys in the Gulf of Maine (<u>Brady and Boss 2021</u>).

Machine learning (MDN) approach of Pahlevan et al (2020) has been successfully applied in the Gulf of Maine to map chlorophyll, with better success using Sentinel 2 vs Landsat 8 imagery

Approach for HABs Predictions

- Develop logistic models predicting presence/absence of cyanobacteria blooms in estuaries and freshwater tidal systems
 - Database of cyanobacteria endpoints:
 - Potential predictors
 - Chlorophyll
 - Discharge
 - Retention time
 - Temperature
 - Nutrient loading
 - Salinity
 - Stratification
- Initial predictive models may need to be system-specific as endpoints measured differ across systems and in situ measurements of relative fluorescence units (RFUs) with sensors are not comparable across systems

Impact

- EDM provides data for quantitative assessments of trends in eutrophication in estuaries across broad regions of the US
 - Nutrient concentrations
 - Exposure/loading from different sources
 - Diagnostic indicators of enrichment
 - Intra- and interannual variability in factors affecting sensitivity to nutrient loads
 - Nutrient endpoints: chlorophyll, DO, SAV
- EDM provides input data for River Basin Export Reduction Optimization Support Tool (RBEROST), a decision support tool to find the most cost-effective nutrient load reduction management strategies
 - Upper CT River pilot with stakeholders completed, now being expanded to full Long Island Sound (support from LIS NPO)
 - Puget Sound pilot underway with Upper Mississippi (Illinois River Basin) pilot started soon
- Improvements in algorithms for chlorophyll using Sentinel 2 imagery will assist in assessing spatio-temporal patterns in blooms for both large and small estuaries, supplementing limited monitoring data, and ultimately paving the way for near real-time monitoring of blooms
- Development of predictive models for HABs in coastal systems will help to prioritize timely on the-ground monitoring of hotspots

Take Home Messages

- <u>EPA's Estuary Data Mapper</u> provides a one-stop-shop for assessing, diagnosing, and managing trophic status and trends in estuaries—with access to raw water quality data, sediment enrichment data, nutrient sources and loads, factors affecting estuarine sensitivity to nutrient loads, effect endpoints, and inputs to decision support systems
- Cyanobacteria blooms are an emerging issue in coastal systems. Remote sensing is needed for improved monitoring and prioritization of potential threats to human health and aquatic resources

Naomi Detenbeck, PhD

Ecologist US EPA Office of Research and Development <u>detenbeck.naomi@epa.gov</u> 401-207-0880

Steven Rego Biologist, co-PI Chlorophyll/HAB studies US EPA Office of Research and Development <u>rego.steven@epa.gov</u> 401-782-3177

Tori Wolters

ORISE participant (Chlorophyll/HAB studies) US EPA Office of Research and Development wolters.tori@epa.gov 401-782-3172

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the US EPA. Any mention of trade names, products, or services does not imply an endorsement by the US Government or EPA. EPA does not endorse any commercial products, services, or enterprises.