

Harvard John A. Paulson School of Engineering and Applied Sciences

For help accessing this document, email <u>NEI_Help@epa.gov</u>.

Developing a high-resolution emission inventory of aviation sector using real-world flight trajectory data

Jingran Zhang Harvard University September 27, 2023

Aviation and its environmental impact

Economic growth has led to a surge in civil aviation transportation demand in the past twenty years.

6%

Anthropogenic CO₂ emissions

2.8%

3.5%-5% Anthropogenic radiative forcing

 Origin-destination passengers
 Annual growth rate (2018-2038)

 40 Million
 0% - 1.5%

 80 Million
 1.5% - 3%

 120 Million
 3% - 4.5%

 160 Million
 6% - 8%

 8% - 11%

Airbus GMF 2019, Staples, M.D., et al., 2018, Lee, D.S., et al., 2021, Yim, S.H.L., et al., 2015, Steven R. H. Barrett., et al., 2010

Attributed deaths due to PM_{2.5} exposure

Annual growth rate

Aviation and its environmental impact

Compared with other transportation modes, research on the environmental impacts from aviation sector has developed relatively late.

Aviation and its environmental impact

Characterization of aviation emissions of CO₂ and air pollutants

Emission inventory of the aviation industry developed relatively late, poor resolution and accuracy, weaken environmental impact analysis

Emission Inventory of Airports

- Based on Landing takeoff times
- Do not distinguish aircraft type, incomplete coverage

Stettler M E J et al. UK. 2011 Xu H et al. Shanghai Hongqiao. 2020

Emission Inventory of flights

- Based on Flight information (aircraft and flight distance)
- No spatial resolution

H. Liu et al. 2019 European Environment Agency. 2020 **3D Emission Inventory**

- Based on Great Circle method
- Gap between the Ideal model and real-world flight performance

Eyers C J et al. AERO2K. 2002 Wilkerson J T et al. AEDT. 2004/2006

The great-circle distance: shortest distance between two points on the surface of a sphere

Developing a high-resolution emission inventory of aviation sector using real-world flight trajectory data

Open source data : Automatic Dependent Surveillance–Broadcast (ADS-B)

Real-time position and speed

Latitude + Longitude + Altitude + Speed

Landing and takeoff (LTO) includes Taxi + Take off + Climb up + Approach

Climb Cruise Descent (CCD) includes Climb + Cruise + Descent

Method: Emission calculation of each flight record

Improve the resolution and accuracy of emission inventory

Total emissions of CO_2 and air pollutants from short-distance domestic flights would be significantly underestimated by the conventional great-circle-based approach due to underrepresented calculation parameters (flight distance, duration, and cruise altitude).

Not for further distribution without permission

Improve the resolution and accuracy of emission inventory

When : Real time 1 min resolution

U Where :

High resolution latitude + longitude at any resolution

How much :

The real flight performance and corresponding meteorological data to correct the emission factor

Results compared to previous studies

This study noted a significant underestimation of aviation emissions for short-distance flights based on the conventional great-circle-based approach compared with the results using real-world trajectory profiles.

	Model Year	Fuel Consumption	CO ₂	NO _X	HC	CO	BC Mass	OC	РМ	BC Number
		Mt	Mt	kt	kt	kt	kt	kt	kt	#
This Study	2019	290.60	915.4	4982	78	636	8.0	2.1	21.9	1.35×10 ²⁶
IATA	2019		914							
ICCT	2019	290.16	914							
AEDT	2006	205.68		2987	98	529	6.8	3	12.1	
AEIC	2005	180.6		2689	201	749				
Aero2k	2002	156		2060	63	507			3.9	4.03×10 ²⁵

Compared with the statistical data of The International Air Transport Association, the difference in estimation fuel consumption is less than 0.2%

IATA, 2020; ICCT, 2020; Wilkerson JT et al., Atmospheric Chemistry and Physics, 2010; Simone NW et al., Transportation Research Part D, 2013; Eyers CJ, et al. 2004

Not for further distribution without permission

The spatial distribution-Global scale

The total emissions of the global aviation sector were estimated to be 915 Mt of CO_2 , 4981.8 kt of NO_X , 635.7 kt of CO, 77.8 kt of HC and 21.9 kt of PM, and 1.35×10^{26} of BC particle number in 2019.

Three active regions (Asia Pacific, North America and Europe) represented the majority of total aviation emissions, and a few regional hubs also were emission hotspots.

Not for further distribution without permission

Today: Aviation attributed air pollution and health impact

Significant contribution of high-altitude cruising emissions

- Although the CCD (Climb Cruise Descent) emissions were mainly at altitudes higher than 1 km, their contribution to the ground-level pollution was comparable to that of LTO (Landing and takeoff).
- PM_{2.5}: CCD emissions resulted in a significant increase of the aviation-attributed ground-level PM_{2.5} in eastern China, from 0.45 μg·m⁻³ to 0.87 μg·m⁻³ (2% to 3%).

Not for further distribution without permission

Tomorrow: Rising impact from 'hard-to-abate' aviation sector

Battery- electric

Hydrogen

Sustainable aviation fuel

PROS

- No environmental impact in flight
- Reduced Costs
- Noise Reduction
- Limited range
- Low mass density
- Change to aircraft and infrastructure

- No environmental impact in flight
- Reduced Costs
- Noise Reduction
- Limited range
- Low volume density
- Change to aircraft and infrastructure

- No limitation of range
- No change to aircraft or infrastructure
- Contributed to 65% of carbon mitigation target in 2050
- Limited non-CO₂ effects
- No significant NO_X reduction
- PM reduction limited to
 aromatics content requirement

Boeing, Airbus, Honeywell

CONS

Harvard John A. Paulson School of Engineering and Applied Sciences

2023 International Emissions Inventory Conference

Thank you !

Jingran Zhang Harvard University September 27, 2023