2023 International Emissions Inventory Conference

Improvement of landfill methane generation estimation by having meteorological influences

Sujong Jeong, Dong Yeong Chang, Jaewon Shin Seoul National University

2

- Methane(CH_4) is the second most significant greenhouse gas, with a short-lived lifetime and a more potent greenhouse effect compared to CO₂, so reducing methane emission is beneficial for both climate mitigation and air quality, as the Global Methane Pledge was adopted.
- In Korea, the solid waste disposal sector is the largest source of anthropogenic methane emissions. ٠
- Well-managing and monitoring of methane emission from landfills can significantly contribute to methane reduction and climate change mitigation.

1. Introduction

- Landfill methane is affected by meteorological factors such as temperature and precipitation.
- However, the existing landfill methane generation models have limitations.
 - Not reflecting the meteorological conditions.
 - Calculating annually that impossible to identify seasonal characteristics.

Models	IPCC Model	LandGEM (Landfill gas Emissions Estimation Model)
Factors	Mass of waste, Waste composition	Mass of waste
Equation	$Q_{CH_4} = \sum_{i=1}^n M_i L_0 e^{-k}$	$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0.1}^{1} k \frac{M_i}{10} L_0 e^{-kt_{ij}}$
Time resolution	Yearly	Yearly

- Most commonly used
- No temperature and precipitation factors
- Using national default and the IPCC emission factors
- Yearly methane emissions

 Q_{CH4} = methane recovered from landfills(m³/year) n = (year of the calculation)-(initial year of waste acceptance)

k = methane generation rate (year⁻¹) M_{ij} = mass of waste accepted in the ith year (Mg)

 L_0 = potential methane generation capacity (m³/Mg) t_{ij} = age of the jth section of waste mass Mi accepted in the ith year

1. Introduction

- Landfill methane is affected by meteorological factors such as temperature and precipitation.
- However, the existing landfill methane generation models have limitations.
 - Not reflecting the meteorological conditions.
 - Calculating annually that impossible to identify seasonal characteristics.

Models	CLEEN (Capturing Landfill Emissions for Energy Needs)
Factors	Mass of waste, Waste composition, Temperature, Precipitation
Equation	$Q_{CH_4} = \sum_{i=0}^{n} \sum_{j=0}^{12} k \frac{M_i}{12} L_0 e^{-kt_{ij}}$
Time resolution	Seasonally

- Karanjekar et al.(2015)
- Using temperature and precipitation factors
- Seasonal methane emissions
- However, not suitable for South Korea or other countries due to calibration on select landfills in the USA and Israel.

 Q_{CH4} = methane recovered from landfills(m³/year) n = (year of the calculation)-(initial year of waste acceptance)

k = methane generation rate (year⁻¹) $M_{ij} =$ mass of waste accepted in the ith year (Mg)

 L_0 = potential methane generation capacity (m³/Mg) t_{ij} = age of the jth section of waste mass Mi accepted in the ith year

Karanjekar, R. V., Bhatt, A., Altouqui, S., Jangikhatoonabad, N., Durai, V., Sattler, M. L., ... & Chen, V. (2015). Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model. Waste Management, 46, 389-398.

Objective

- Reducing the uncertainty in estimating landfill methane emissions by improving the methodology from tier 2 to tier 3.
- Estimating of landfill methane generation by having meteorological conditions.
 (Temperature & Precipitation)
- Improving the time resolution of the model from yearly to seasonally.
- Using machine learning to estimate the past and the future methane generations.

• The Sudokwon Landfill Site (SLS)

- The largest landfill in Korea located in Incheon.
- It receives waste from 64 regions within the metropolitan area.
- The population is about 5.3 million people.
- It's No. 1 in the world for landfill waste per day (20,000 ton/day) and No. 6 for landfill area (2.51 km²).
- The 1st Landfill Site (1st SLS)
 - Period : Feb 1992 ~ Oct 2000
 - Area : 4.09 km²
 - Waste : 6,425 Mt.
- The 2nd Landfill Site (2nd SLS)
 - Period : Oct 2000~ Oct 2018
 - Area : 3.78 km²
 - Waste : 8,018 Mt.

• CLEEN_k

 Landfill methane generation calculating model based on CLEEN model, optimized in Korea SLS field measurement data.

CLEEN_k Equation

$$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=1}^{4} k M_{ij} L_0 e^{-kt_{ij}}$$

 Q_{CH4} = methane recovered from landfills (m³/year) n = (year of the calculation)-(initial year of waste acceptance) k = methane generation rate (year⁻¹)

 M_{ij} = mass of waste accepted in the ith year (Mg)

 L_0 = potential methane generation capacity (m³/Mg)

 t_{ij} = age of the jth section of waste mass Mi accepted in the ith year (ex, 3year 1st quarter)

• Input

- Mass of waste, Waste composition, Seasonal temperature and precipitation

L₀ (Methane Generation Potential, m³CH₄/Mg)

- Based on BMP(Biochemical Methane Potential) test
- The 1st landfill: 40.2 m³CH₄/Mg (Median of 33.7~46.7 m³CH₄/Mg) (Park et al., 2020)
- The 2nd landfill: 47.5 m³CH₄/Mg (Median of 37~58 m³CH₄/Mg) (Jeon et al., 2007)

Park, J. K., Chong, Y. G., Tameda, K., & Lee, N. H. (2020). Applying methane and carbon flow balances for determination of first-order landfill gas model parameters. Environmental Engineering Research, 25(3), 374-383.

Jeon, E. J., Bae, S. J., Lee, D. H., Seo, D. C., Chun, S. K., Lee, N. H., & Kim, J. Y. (2007, October). Methane generation potential and biodegradability of MSW components. In Sardinia 2007 eleventh international waste management and landfill symposium.

- k (First order decay constant, year⁻¹)
 - k_{lab} : k from the waste decomposition experiment
 - k_{actual} : k from the field measurement
 - k_{adj}: k used to calculate the final methane generation

Karanjekar, R. V., Bhatt, A., Altouqui, S., Jangikhatoonabad, N., Durai, V., Sattler, M. L., ... & Chen, V. (2015). Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model. Waste Management, 46, 389-398.

$log_{10}k_{lab} = -3.02658 - 0.0067282R^{2} + 0.069313R$ $+0.00172807(R \times F) + 0.01046T$ -0.01152T + 0.00418TX + 0.00598Y

 k_{lab} = lab-scale first order decay constant (year⁻¹) R = average annual rainfall (mm/year) T = ambient temperature (K) TX = % textile in landfill waste (%) Y % yard in landfilled waste(%) Y = % food in landfilled waste(%)

(Karanjekar et al., 2015)

- Calculate the k_{lab} based on waste composition, temperature and precipitation under the laboratory condition.
- MLR model for results adjusted R² of 0.754.
- It's a result of controlled environment and microbial access.

→ Needs to be calibrate to actual landfill characteristics

Field Measurements

- Site : The sudokwon landfill site (1st and 2nd SLS)
- Period : 2005 Spring ~ 2019 Winter (60)
- Data : Seasonal averaged
- Source : The SLC.(Sudokwon Landfill Cooperation)
- Field Methane Generation(Q_{CH₄})
- = Gas collection + Surface emission + Gas flaring

• First Order Decay

 Q_{CH4} = methane from field measurement(m3/season) k = first order decay constant(/year) Mi = mass of wasate deposited in the season 'I' within the landfill(Mg) L0 = ultimate methane generation potential(m3/Mg)

→ Calculation of k_{actual} that best simulates field measurements

 k_{actual} can only be calculated when the field measurement data existing.

• Calculate $F_{SU,k}$ to calibrate k_{lab} to estimate k_{adj} , which can be used as a proxy for k_{actual} for periods when field measurements are absent.

F_{SU,k} is calculated from a regression with k_{actual} as the dependent variable and temperature and precipitation as the independent variables.

•

- Comparing Regression methods
 - Random Forest Regression (CLEEN_k_RF)
 - Multi Linear Regression (CLEEN_k_MLR)

- k_{adj} : k used to calculate the final methane generation
- F_{SU,k} : Calibration factor based on field measurement
- k_{lab} : k based on laboratory condition

 Calibrate k_{lab} from laboratory conditions to F_{SU,k} to reflect the on-site characteristics of the 1st SLS.

14

$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=1}^{4} k_{adj} M_{ij} L_0 e^{-k_{adj} t_{ij}}$

 Q_{CH4} = methane recovered from landfills (m³/year) n = (year of the calculation)-(initial year of waste acceptance) k = = methane generation rate (year¹) M_{ij} = mass of waste accepted in the ith year (Mg) L_0 = potential methane generation capacity (m³/Mg)

 t_{ij} = age of the jth section of waste mass Mi accepted in the ith year (ex, 3year 1st guarter)

- Use a calibrated k_{adj} based on the field measurements.
- Estimate the seasonal methane generation.

1

The 1st Sudokwon Landfill Site

Comparison of the models by year

Model's emission factors

- CLEEN_k_RF : Fitted to the landfill's field conditions with random forest
- CLEEN_k_MLR : Fitted to the landfill's field conditions with multi linear regression
- CLEEN : Fitted to another landfill's field conditions
- IPCC model : Country specific + Default
- LandGEM : Optimized with BMP Test (Park et al., 2020)

The 1st Sudokwon Landfill Site

Comparison of the models by year

- IPCC Model is overestimated than other models.
- CLEEN_k, CLEEN_k_MLR, CLEEN, LandGEM, optimized for the Sudokwon landfill, are better simulate the observation data.

→ To estimate accurate landfill methane generation, it is necessary to use the landfill optimized emission factors

2

The 1st Sudokwon Landfill Site

Methane Generation by season

- Methane Generations at the 1st SLS
- The uncertainty is the min/max of each activity data
 - T: Temperature uncertainty (±0.3°C)
 - P: Precipitation uncertainty (±3%)
 - W_a: Waste uncertainty (±30%)
 - W_c : Waste composition uncertainty (±10%)

During the field measurement period(2005~2019)

 The correlation coefficient(r) of the field measurements and model results is significant.
 RF: 0.985 / MLR: 0.897 / CLEEN: 0.632

3

The R^2 between the field measurements and

model results.

25000

The 1st Sudokwon Landfill Site

Comparison of the model performance

• The RMSE (Root Mean Squared Error) between the field measurements and model results.

The CLEEN_k with random forest regression model appears to best simulate the field data.

4

The 1st Sudokwon Landfill Site Seasonal methane generation

- The comparison of total methane emissions by season from 2005 to 2019 Summer > Spring > Fall > Winter
- The most methane was simulated in summer when temperatures and precipitation were highest, and the least in winter when temperatures were lower, hindering microbial waste degradation.

6

The 1st Sudokwon Landfill Site The future methane generation

- Predict the future methane generation with RCP 8.5 scenario meteorological data.
 - Using the HadGEM3-RA forecast model. (Korea Meteorological Administration, 2018)
- Methane is keep generated after the landfill is closed in 2000 over 50 years.
- From 2023 to 2100,
 - The 1st landfill : 6 CH₄ Mm³
 - = 41,417 cattle's CH₄/year

5

The 2nd Sudokwon Landfill Site

- Model application to the 2nd SLS
- Applied the CLEEN_k model trained on the 1st SLS to the 2nd SLS.
- The model fitted to the 1st SLS has more error than the model fitted to the 2nd SLS.
- The model needs to be trained for each landfill site.

6

The 2nd Sudokwon Landfill Site

The future methane generation

- Predict the future methane generation with RCP 8.5 scenario meteorological data.
 - Using the HadGEM3-RA forecast model. (Korea Meteorological Administration, 2018)
- Methane is keep generated after the landfill is closed over 80 years.
- From 2023 to 2100,
 - The 2nd landfill : 1,349 CH₄ Mm³

= 9,022,410 cattle's CH_4 /year

- By enhancing the methodology from tier 2 to tier 3, reduced the uncertainty of the estimate methane from landfills, a major anthropogenic methane source.
- The CLEEN_k model is optimized for the Sudokwon landfill by reflecting the characteristics of the landfill field measurement.
- The CLEEN_k model can be detailed in time by season and reflect weather conditions to effectively estimate for changes in methane generation in response to climate change.
- Understanding current methane emissions is crucial for accurately estimating methane inventory, which can be effectively utilized in formulating methane reduction strategies.

Thank you for listening

he4148@snu.ac.kr