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Context

More than half of new U.S. electric-generating capacity

n 2023 will be solar

U.S. planned utility-scale electric-generating capacity additions (2023)
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Gas Turbine Operational Profiles

 The U.S. power system is

experiencing significant
changes.

2022: Electricity generated
from renewables surpassed
coal in the U.S.
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Motivation: Challenges

* Fossil fuels plants experience more and more ramping and do not behave like
baseload units.

* Greatchallenge in estimating the future NOx emissions for air quality planning
purposes.

e Continuous Emission Monitoring Systems (CEMS) provide a rich dataset of hourly
emissions (NOx, SO, and CO,) and associated characteristics for EGUs larger than
25 MW,

 However, previous efforts to predict EGU emissions from CEMS data using simple
regression methods (linear, piecewise linear, etc.) showed mixed results.



Potential Benefits and Strategies

* There are many benefits from accurately predicting EGU emissions using public
datasets

* Air quality planning
* Electronically audit CEMS data, identify data anomalies, and enhance data quality.
* Electric production cost modeling

* Predicting EGU emissions using data in the public domain is particularly
valuable because it makes broader stakeholder engagement possible by
avoiding proprietary data internal to power system operators.

* Strategies
* Employ other public datasets in addition to CEMS data

* Apply non-linear models (e.g., machine learning techniques) as alternatives to
linear models
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Full Model vs Reduced Model
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Modeling Method

Studied EGUs: All thermal units in New York State (2015-2019)

Unit Type Number of = Number of Mean Standard  Percentile

Units Data Points Deviation 25th 50th  75th 99th 100th
Combined Cycle 56 214,580 19.8 20.3 7.7 12.5 23.9 89.1 621.8
Combustion Turbine 29 30,099 13.0 19.2 3.6 4.1 26.1 43.9 302.0
Tangentially-Fired 21 46,895 129.3 188.1 33.2 81.5 151.6 1116.5 2153.7
Dry Bottom Wall-Fired Boiler 6 3,125 139.0 274.0 18.1 21.8 75.1 1296.3 2350.6
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Model Evaluations
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Overall performance for NOx emission rates

Table 2 The LR, XGBoost, and NN predictive performance in terms of R2, RMSE (pounds/hour), and nRMSE of full models on NO, emission rates
(trained on the previous year's data and tested on the following year's data, year-by-year from 2015 to 2019).

Training Test Full Model
Year Year _LR XGBoost NN

R? RMSE nRMSE R? RMSE nRMSE R? RMSE nRMSE
2015 2016 0.91 26.2  0.011 096 17.7 0.007 096 185  0.008
2016 2017 0.89 263 0.012 096 16.0 0.007 096 16.3  0.007
2017 2018 0.90 294 0.012 095 21.0 0.009 095 19.6  0.008
2018 2019 0.82 239 0.011 096 11.0 0.005 096 11.8  0.005

Table 3 The LR, XGBoost and NN predictive performance in terms of R2, RMSE (pounds/hour), and nRMSE of reduced models on NO, emission
rates (trained on the previous-year data and tested on the following-year data, year-by-year from 2015 to 2019).

Training  Test Reduced Model
Year Year LR XGBoost NN

R? RMSE nRMSE| R? RMSE nRMSE R? RMSE nRMSE
2015 2016 | 0.54 59.7 0.025 | 093 229 0.010 090 274  0.011

2016 2017 | 0.39 62.9 0.028 093 21.8 0.010 090 25.2 0.011
2017 2018 | 0.38 72.7 0.031 0.86 34.2 0.015 0.86 34.2 0.015
2018 2019 | 0.29 47.5 0.021 091 16.4 0.007 090 17.8 0.008
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Full XGBoost Model (Training Year: 2017; Test Year: 2018)
294,699 Data Points
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Results on Heat Input, SO,, and CO,
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Data anomaly

Name: Astoria Generating Station; Facility ID (ORISPL): 8906; Unit ID: 51RH;
Unit Type: Tangentially-Fired; Primary Fuel Type: Pipeline Natural Gas
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e TitleV permit from NYSDEC shows that this unitis a twin-furnace boiler that exhausts emissions
through two stacks, counted as two units (Unit 51RH and Unit 52SH).

* Dividing the gross load for the full boiler by the heat input for each individual furnace would result
in unrealistically low heat rates.

e |Implication: Stricter enforcement of the EGU data reporting procedure

1500
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Remarks

Non-linear models such as XGBoost and NN were shown to outperformthe Linear
Regression (LR) model consistently and significantly

* Especially in reduced models with a limited number of features available.

We found the EPA Field Audit Checklist Tool (FACT) to be very useful to supplement
CEMS data.

We recommend:

* Stricter enforcement of the EGU data reporting procedure, providing emission
control operational information,

e Obtaining EGU-related data from multiple sourcesin the public domain

Overall, using multiple public datasets and machine learning techniques can reliably
predict EGU emissions.
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