Emulating Atmospheric Transport to estimate GHG emissions using machine learning model

- Nikhil Dadheech, Tai-long He, Alexander J. Turner

Nikhil Dadheech Third Year PhD student Advisor: Dr. Alexander Turner University of Washington nd349@uw.edu

UNIVERSITY of WASHINGTON

This work is funded by NASA FINESST Award #80NSSC22K1557, NASA ECF Grant #80NSSC21K1808 Environmental Defense Fund Integral Environmental Big Data Fund (UW)

Bottom Up

Bottom Up

Average emission -> x

Bottom Up

Average emission -> x

Total units-> N

Bottom Up

Average emission -> x

Total units-> N

Emission budget from industries: ~Nx

Bottom Up

Top Down

Measurement (y)

Emission (x)

Average emission -> x

Total units-> N

Emission budget from industries: ~Nx

Bottom Up

Average emission -> x

Total units-> N

Emission budget from industries: ~Nx

Trace back the emissions based on given measurements

Estimating emissions using top-down approach

H is the relationship between observations and emissions

Estimating emissions using top-down approach

H is the relationship between observations and emissions

Estimating emissions using top-down approach

$$Observations \iff \mathbf{y} = \mathbf{H}\mathbf{x} + \in \implies \mathsf{Error}$$

H is the relationship between observations and emissions

Cost Function
$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{y} - \mathbf{H}\mathbf{x})^{\mathsf{T}} \mathbf{R}^{-1} (\mathbf{y} - \mathbf{H}\mathbf{x}) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_{a})^{\mathsf{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{a})$$

Posterior Solution $\hat{\boldsymbol{\chi}} = \boldsymbol{x}_a + (\boldsymbol{H}\boldsymbol{B})^T(\boldsymbol{H}\boldsymbol{B}\boldsymbol{H}^T + \boldsymbol{R})^{-1}(\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}_a)$

x_a: Prior estimate
R: Observational covariance matrix
B: Prior covariance matrix

High-resolution data is required to study point sources and methane plumes

Greenhouse Gas Observing Systems

Greenhouse Gas Observing Systems

Greenhouse Gas Observing Systems

Computational and storage complexities with footprints

Atmospheric transport models become computationally expensive as the number of measurements increases

Computational and storage complexities with footprints

Assuming a computational time of 2 hours for each STILT simulation and 6.5 MB of storage space

Computational and storage complexities with footprints

> Developing an efficient method to compute source-receptor relationship using machine learning emulator (FootNet)

> Estimating GHG emission fluxes by emulating atmospheric transport using FootNet

Can machine learning help?

Tai-long He, postdoc at Turner's group

Can machine learning help?

Output

Can machine learning help?

U-Net Model Architecture

Convolution and Pooling

Input variables and output

Log(H)

Input variables and output

Input variables and output

- Meteorological variables are from the NOAA HRRR ٠ data product.
- We use footprints simulated by the STILT model as ٠ the "truth" to train the U-net.
- All the input and output fields are at 1 km resolution. ٠

2 Case studies

SF Bay Area

Model Training

Results

> Let's start with an easy area for model comparison

Results

caseB

> Now a difficult area for model comparison

caseA

How does the machine learning model solve the computational bottlenecks?

Footprint (STILT)

> 1 footprint simulation ~2 hours

Footprint (machine learning emulator)

> 1 footprint simulation ~0.6 seconds

Footprint (STILT)

- > 1 footprint simulation ~2 hours
- Footprints for observations of a single day (~700 observations)
 - Sequentially ~ 1400 hours (58 days)
 - Parallel on 32 cores machine ~44 hours (2 days)
 - Parallel on 10 nodes ~4 hours

Footprint (machine learning emulator)

- > 1 footprint simulation ~0.6 seconds
- Footprints for observations of a single day (~700 observations)
 - Predictions over GPU ~5 minutes (4.5 mins for loading the data and rest 30 seconds for model predictions)
 - Predictions over CPU ~20 minutes (4.5 mins for loading the data and rest 15.5 minutes for model prediction)

Footprint (STILT)

- > 1 footprint simulation ~2 hours
- Footprints for observations of a single day (~700 observations)
 - Sequentially ~ 1400 hours (58 days)
 - Parallel on 32 cores machine ~44 hours (2 days)
 - Parallel on 10 nodes ~4 hours
- > Footprints for observations (Feb April 2020)
 - Parallel on 10 nodes (32 cores machines) ~16 days
 - Storage cost ~400GB

Footprint (machine learning emulator)

- > 1 footprint simulation ~0.6 seconds
- Footprints for observations of a single day (~700 observations)
 - Predictions over GPU ~5 minutes (4.5 mins for loading the data and rest 30 seconds for model predictions)
 - Predictions over CPU ~20 minutes (4.5 mins for loading the data and rest 15.5 minutes for model prediction)
- > Footprints for observations (Feb April 2020)
 - Predictions over GPU ~7.5 hours
 - If we optimize the data loading ~15 minutes
 - Can be computed on fly

Footprint (STILT)

- > 1 footprint simulation ~2 hours
- Footprints for observations of a single day (~700 observations)
 - Sequentially ~ 1400 hours (58 days)
 - Parallel on 32 cores machine ~44 hours (2 days)
 - Parallel on 10 nodes ~4 hours
- > Footprints for observations (Feb April 2020)
 - Parallel on 10 nodes (32 cores machines) ~16 days
 - Storage cost ~400GB

Requirements

- 10 nodes for simulations
- 32 cores processor on each node

Footprint (machine learning emulator)

- > 1 footprint simulation ~0.6 seconds
- Footprints for observations of a single day (~700 observations)
 - Predictions over GPU ~5 minutes (4.5 mins for loading the data and rest 30 seconds for model predictions)
 - Predictions over CPU ~20 minutes (4.5 mins for loading the data and rest 15.5 minutes for model prediction)
- > Footprints for observations (Feb April 2020)
 - Predictions over GPU ~7.5 hours
 - If we optimize the data loading ~15 minutes
 - Can be computed on fly

Requirements

- 1 node for predictions
- 1 GPU card (16GB)

Footprint (STILT)

- > 1 footprint simulation ~2 hours
- Footprints for observations of a single day (~700 observations)
 - Sequentially ~ 1400 hours (58 days)
 - Parallel on 32 cores machine ~44 hours (2 days)
 - Parallel on 10 nodes ~4 hours
- > Footprints for observations (Feb April 2020)
 - Parallel on 10 nodes (32 cores machines) ~16 days
 - Storage cost ~400GB

Footprint (machine learning emulator)

- > 1 footprint simulation ~0.6 seconds
- Footprints for observations of a single day (~700 observations)
 - Predictions over GPU ~5 minutes (4.5 mins for loading the data and rest 30 seconds for model predictions)
 - Predictions over CPU ~20 minutes (4.5 mins for loading the data and rest 15.5 minutes for model prediction)
- > Footprints for observations (Feb April 2020)
 - Predictions over GPU ~7.5 hours
 - If we optimize the data loading ~15 minutes
 - Can be computed on fly

Construction of footprints is currently 50 times faster with emulator than STILT model.

Goal of this work

> Developing an efficient method to compute source-receptor relationship using machine learning emulator (FootNet)

> Estimating GHG emission fluxes by emulating atmospheric transport using FootNet

Observed Impacts of COVID-19 on Urban CO₂ Emissions

Alexander J. Turner^{1,2,3,4}, Jinsol Kim¹, Helen Fitzmaurice¹, Catherine Newman², Kevin Worthington², Katherine Chan², Paul J. Wooldridge², Philipp Köehler⁵, Christian Frankenberg^{3,5}, and Ronald C. Cohen^{1,2}

¹Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA, ²College of Chemistry, University of California, Berkeley, CA, USA, ³Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, ⁴Now at Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA, ⁵Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA

Figure 3. Spatial patterns of CO_2 fluxes in the San Francisco Bay Area. Panel (a) shows the average CO_2 fluxes for 6 weeks before shelter-in-place (2 February 2020 through 14 March 2020). Panel (b) shows the average over 6 weeks during shelter-in-place (22 March 2020 through 2 May 2020). Panel (c) is the difference. Black contour in all panels encompasses the top 40% of the total network influence (BEACO₂N Domain). Cross hatching indicates regions with low sensitivity to the BEACO₂N nodes.

2 Feb – 14 Mar 2020 (Pre covid) 22 Mar – 2 May 2020 (During covid)

Figure 3. Spatial patterns of CO_2 fluxes in the San Francisco Bay Area. Panel (a) shows the average CO_2 fluxes for 6 weeks before shelter-in-place (2 February 2020 through 14 March 2020). Panel (b) shows the average over 6 weeks during shelter-in-place (22 March 2020 through 2 May 2020). Panel (c) is the difference. Black contour in all panels encompasses the top 40% of the total network influence (BEACO₂N Domain). Cross hatching indicates regions with low sensitivity to the BEACO₂N nodes.

We are aiming to recompute CO₂ emission fluxes using emulator for both before and during covid periods.

BEACO₂N Surface Network

- > Hourly atmospheric CO₂ measurements
- > Footprints computed with WRF-STILT
- Prior fluxes are taken from bottom-up inventories (adapted from McDonald et al., 2014; Turner et al., 2016; Turner et al. 2019)

Bayesian Inference (GHG emission estimation)

BEACO₂N Surface Network

We need to compute footprints (**H**) to solve for posterior fluxes (**x**)

Average Posterior CO2 Flux for BEACO2N Network (Integrated Decayed)

Average Posterior CO2 Flux for BEACO2N Network (Integrated Decayed)

Footprint (STILT)

- **1** footprint simulation ~2 hours
- Footprints for observations of a single day (~700 observations)

Footprint (machine learning emulator)

- **1** footprint simulation ~0.6 seconds
- Footprints for observations of a single day (~700 observations)
- Construction of footprints is 50 times faster with emulator than STILT model
- The parallel computation of HB matrix is ~13.5 times faster than sequential approach
- The total time taken for the end-to-end simulation is currently ~37 times faster with emulator

- Bayesian Inference Computing emission fluxes for 1 day

Total Time

Can be computed on fly

Bayesian Inference

- **Computing emission fluxes for 1 day**

Total Time

Footprint (STILT)

- **1** footprint simulation ~2 hours
- Footprints for observations of a single day (~700 observations)

Footprint (machine learning emulator)

- **1 footprint simulation ~0.6 seconds**
- Footprints for observations of a single day (~700 observations)
- Construction of footprints is 50 times faster with emulator than STILT model
- The parallel computation of HB matrix is ~13.5 times faster than sequential approach
- The total time taken for the end-to-end simulation is currently ~37 times faster with emulator

- Bayesian Inference Computing emission fluxes for 1 day

Can be computed on fly

Bayesian Inference

- **Computing emission fluxes for 1 day**

Computing emission fluxes using STILT footprints is 134 times storage expensive

Current and Future Work

> Generalized training for emulator

Footprints at 200m resolution (Funded by EDF)

Extend the machine learning model to footprints for satellites observations

Summary

- > Emissions from point sources dominate the total emission budget
- > Next-generation observing systems provide dense coverage of the GHGs

Summary

- > Emissions from point sources dominate the total emission budget
- > Next-generation observing systems provide dense coverage of the GHGs
- > Computational bottlenecks limit our understanding of point sources
- > We propose a deep learning-based model which can efficiently construct footprints in near-real-time

Summary

- > Emissions from point sources dominate the total emission budget
- > Next-generation observing systems provide dense coverage of the GHGs
- > Computational bottlenecks limit our understanding of point sources
- > We propose a deep learning-based model which can efficiently construct footprints in near-real-time
- > Footprints from emulator can be used to estimate GHG emissions

Average Posterior CO2 Flux for BEACO2N Network (Integrated Decayed)

Supplementary Slides

How will this be useful?

- Computing **H** through U-Net model will be near-real-time
- We do not need to store footprints anymore
- We can quantify latent biases in the meteorological data

y = Hx + ∈

We will be computing **H** through a deep learning-based model
- Computing **H** through U-Net model will be near-real-time
- We do not need to store footprints anymore
- We can quantify latent biases in the meteorological data

We will be computing **H** through a deep learning-based model

- Computing **H** through U-Net model will be near-real-time
- We do not need to store footprints anymore
- We can quantify latent biases in the meteorological data

We will be computing **H** through a deep learning-based model

- Computing **H** through U-Net model will be near-real-time
- We do not need to store footprints anymore
- We can quantify latent biases in the meteorological data
- Inverting for emissions can become more accurate (iterative methods such as MCMC methods can be used)

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{E}$

We will be computing **H** through a

deep learning-based model

- Computing **H** through U-Net model will be near-real-time
- We do not need to store footprints anymore
- We can quantify latent biases in the meteorological data

We will be computing **H** through a deep learning-based model

$$\widehat{\boldsymbol{x}} = \mathbf{x}_{a} + (\mathbf{H}\mathbf{B})^{\mathsf{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathsf{T}} + \mathbf{R})^{-1}(\mathbf{y} - \mathbf{H}\mathbf{x}_{a})$$

Footprint (STILT)

- **1** footprint simulation ~2 hours >
- Footprints for observations of a single day > (~700 observations)
 - Sequentially ~ 1400 hours (58 days)
 - Parallel on 32 cores machine ~44 hours (2 days)
 - Parallel on 10 nodes ~4 hours
- **Footprints for observations (Feb April 2020)** >
 - Parallel on 10 nodes (32 cores machines) ~16 days
 - Storage cost ~400GB

- Bayesian Inference Computing emission fluxes for 1 day >
 - Sequential HB matrix multiplication ~135 minutes

Footprint (machine learning emulator)

- **1** footprint simulation ~0.6 seconds >
- Footprints for observations of a single day > (~700 observations)
 - Predictions over GPU ~5 minutes (4.5 mins for loading the data and rest 30 seconds for model predictions)
 - Predictions over CPU ~20 minutes (4.5 mins for loading the data and rest 15.5 minutes for model prediction)
- Footprints for observations (Feb April 2020) >
 - Predictions over GPU ~7.5 hours
 - If we optimize the data loading ~15 minutes
 - Can be computed on fly

- Bayesian Inference Computing emission fluxes for 1 day >
 - Sequential HB matrix multiplication ~135 minutes

$$\widehat{\boldsymbol{x}} = \mathbf{x}_{a} + (\mathbf{H}\mathbf{B})^{\mathsf{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathsf{T}} + \mathbf{R})^{-1}(\mathbf{y} - \mathbf{H}\mathbf{x}_{a})$$

Footprint (STILT)

- **1** footprint simulation ~2 hours >
- Footprints for observations of a single day > (~700 observations)
 - Sequentially ~ 1400 hours (58 days)
 - Parallel on 32 cores machine ~44 hours (2 days)
 - Parallel on 10 nodes ~4 hours
- **Footprints for observations (Feb April 2020)** >
 - Parallel on 10 nodes (32 cores machines) ~16 days
 - Storage cost ~400GB

- Bayesian Inference Computing emission fluxes for 1 day >
 - Sequential HB matrix multiplication ~135 minutes
 - Parallel HB matrix multiplication ~10 minutes

Footprint (machine learning emulator)

- **1** footprint simulation ~0.6 seconds >
- Footprints for observations of a single day > (~700 observations)
 - Predictions over GPU ~5 minutes (4.5 mins for loading the data and rest 30 seconds for model predictions)
 - Predictions over CPU ~20 minutes (4.5 mins for loading the data and rest 15.5 minutes for model prediction)
- Footprints for observations (Feb April 2020) >
 - Predictions over GPU ~7.5 hours
 - If we optimize the data loading ~15 minutes
 - Can be computed on fly

- Bayesian Inference Computing emission fluxes for 1 day >
 - Sequential HB matrix multiplication ~135 minutes
 - Parallel HB matrix multiplication ~10 minutes

$$\widehat{\boldsymbol{x}} = \mathbf{x}_{a} + (\mathbf{H}\mathbf{B})^{\mathsf{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathsf{T}} + \mathbf{R})^{-1}(\mathbf{y} - \mathbf{H}\mathbf{x}_{a})$$

Footprint (STILT)

- **1** footprint simulation ~2 hours >
- Footprints for observations of a single day > (~700 observations)
 - Sequentially ~ 1400 hours (58 days)
 - Parallel on 32 cores machine ~44 hours (2 days)
 - Parallel on 10 nodes ~4 hours
- **Footprints for observations (Feb April 2020)** >
 - Parallel on 10 nodes (32 cores machines) ~16 days
 - Storage cost ~400GB

- Bayesian Inference Computing emission fluxes for 1 day >
 - Sequential HB matrix multiplication ~135 minutes
 - Parallel HB matrix multiplication ~10 minutes

Footprint (machine learning emulator)

- **1** footprint simulation ~0.6 seconds >
- Footprints for observations of a single day > (~700 observations)
 - Predictions over GPU ~5 minutes (4.5 mins for loading the data and rest 30 seconds for model predictions)
 - Predictions over CPU ~20 minutes (4.5 mins for loading the data and rest 15.5 minutes for model prediction)
- Footprints for observations (Feb April 2020) >
 - Predictions over GPU ~7.5 hours
 - If we optimize the data loading ~15 minutes
 - Can be computed on fly

- Bayesian Inference Computing emission fluxes for 1 day
 - Sequential HB matrix multiplication ~135 minutes
 - Parallel HB matrix multiplication ~10 minutes

The parallel HB matrix multiplication is 13.5 times faster than sequential HB matrix multiplication

Footprint (STILT)

- **1** footprint simulation ~2 hours >
- Footprints for observations of a single day > (~700 observations)
 - Sequentially ~ 1400 hours (58 days)
 - Parallel on 32 cores machine ~44 hours (2 days)
 - Parallel on 10 nodes ~4 hours
- **Footprints for observations (Feb April 2020)** >
 - Parallel on 10 nodes (32 cores machines) ~16 days
 - Storage cost ~400GB

- Bayesian Inference Computing emission fluxes for 1 day >
 - Sequential HB matrix multiplication ~135 minutes
 - Parallel HB matrix multiplication ~10 minutes

Total Time

- **Computing emission fluxes (Feb April 2020)** >
 - Time ~16 days 3 hours
 - Storage ~403 GB

Footprint (machine learning emulator)

- **1** footprint simulation ~0.6 seconds >
- Footprints for observations of a single day > (~700 observations)
 - Predictions over GPU ~5 minutes (4.5 mins for loading the data and rest 30 seconds for model predictions)
 - Predictions over CPU ~20 minutes (4.5 mins for loading the data and rest 15.5 minutes for model prediction)
- Footprints for observations (Feb April 2020) >
 - Predictions over GPU ~7.5 hours
 - If we optimize the data loading ~15 minutes
 - Can be computed on fly

Bayesian Inference

- **Computing emission fluxes for 1 day** >
 - Sequential HB matrix multiplication ~135 minutes
 - Parallel HB matrix multiplication ~10 minutes

Total Time

- **Computing emission fluxes (Feb April 2020)** >
 - Time ~10.5 hours (can be optimized to 3 hours 15 minutes)
 - Storage ~3 GB (storage for inversion results)