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How do we compute emissions?

Bottom Up

Average emission -> X

Total units-> N

Emission budget from industries: “Nx
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How do we compute emissions?

Top Down

Measurement (y)

Emission (x)

Inverse Model

Forward Model

Trace back the emissions based on given measurements



Estimating emissions using top-down approach

f} Emissions

Observations <——— y = HX + & — Error

I H is the relationship between observations and emissions I

Atmospheric Transport

X H y
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Estimating emissions using top-down approach

f} Emissions

Observations <——— y = HX + & — Error

I H is the relationship between observations and emissions I

Cost Function  J(x) = %(y-Hx)TR'l(y-Hx) + %(x-xa)TB'1 (X-X,)

Posterior Solution X = X_+ (HB)"(HBH" + R)}(y - Hx,)

X,: Prior estimate
R: Observational covariance matrix
B: Prior covariance matrix



High-resolution data is required to study point sources and
methane plumes



Greenhouse Gas Observing Systems
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Increase (ppb)

CH4 Annual

Greenhouse Gas Observing Systems
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Computational and storage complexities with footprints
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V=HX+ E

For every measurement, we need a footprint

* These footprints look spatially similar

Atmospheric transport models become computationally expensive as the number of measurements increases




Computational and storage complexities with footprints

Surface sensitivity of observations
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Computational and storage complexities with footprints

Running WRF-STILT is computationally expensive.
The outputs of these simulations are storage

expensive as well.




Goal of this work

> Developing an efficient method to compute source-receptor
relationship using machine learning emulator (FootNet)

> Estimating GHG emission fluxes by emulating atmospheric
transport using FootNet



Can machine learning help?

Tai-long He, postdoc at Turner’s group
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Can machine learning help?
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U-Net Model Architecture
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Convolution and Pooling
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Convolution and Pooling
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Input variables and output
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Input variables and output
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2 Case studies

SF Bay Area Barnett Shale, TX
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Results

> Let’s start with an easy area for model comparison



Results

A. Truth
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Results

A. Truth B. Prediction
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Results

A. Truth B. Prediction
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Results

> Now a difficult area for model comparison
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How does the machine learning model
solve the computational bottlenecks?
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Computational cost
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Computational cost
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Computational cost

Total time to constructa footprint is 0.6s with GPU and 1.3s with CPU



Computational cost

Total time to constructa footprint is 0.6s with GPU and 1.3s with CPU

The total time to constructa footprint is around 1 - 2 hours for our use cases using STILT
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Computational cost analysis

Footprint (STILT)
1 footprint simulation ~2 hours

Footprints for observations of a single day
(~700 observations)

= Sequentially ~ 1400 hours (58 days)

= Parallel on 32 cores machine ~44 hours (2 days)

= Parallelon 10 nodes ~4 hours

Footprints for observations (Feb - April 2020)
= Parallelon 10 nodes (32 cores machines) ~16 days
= Storage cost ~400GB

Footprint (machine learning emulator)
1 footprint simulation ~0.6 seconds

Footprints for observations of a single day
(~700 observations)

» Predictionsover GPU ~5 minutes (4.5 mins for loading
the data and rest 30 seconds for model predictions)

» Predictionsover CPU ~20 minutes (4.5 mins for loading
the data and rest 15.5 minutes for model prediction)

Footprints for observations (Feb - April 2020)
= Predictionsover GPU ~7.5 hours
= If we optimize the data loading ~15 minutes
= Can be computedon fly
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Computational cost analysis

Footprint (STILT)
1 footprint simulation ~2 hours

Footprints for observations of a single day
(~700 observations)

= Sequentially ~ 1400 hours (58 days)

= Parallel on 32 cores machine ~44 hours (2 days)

= Parallelon 10 nodes ~4 hours

Footprints for observations (Feb - April 2020)
= Parallelon 10 nodes (32 cores machines) ~16 days
= Storage cost ~400GB

Requirements

* 10 nodes for simulations
e 32 cores processor on each node

Footprint (machine learning emulator)
1 footprint simulation ~0.6 seconds

Footprints for observations of a single day
(~700 observations)

» Predictionsover GPU ~5 minutes (4.5 mins for loading
the data and rest 30 seconds for model predictions)

» Predictionsover CPU ~20 minutes (4.5 mins for loading
the data and rest 15.5 minutes for model prediction)

Footprints for observations (Feb - April 2020)
= Predictionsover GPU ~7.5 hours
= If we optimize the data loading ~15 minutes
= Can be computedon fly

Requirements

* 1 node for predictions
* 1GPU card (16GB)
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Computational cost analysis

Footprint (STILT)
1 footprint simulation ~2 hours

Footprints for observations of a single day
(~700 observations)

= Sequentially ~ 1400 hours (58 days)

= Parallel on 32 cores machine ~44 hours (2 days)

= Parallelon 10 nodes ~4 hours

Footprints for observations (Feb - April 2020)
= Parallelon 10 nodes (32 cores machines) ~16 days
= Storage cost ~400GB

Footprint (machine learning emulator)
1 footprint simulation ~0.6 seconds

Footprints for observations of a single day
(~700 observations)

» Predictionsover GPU ~5 minutes (4.5 mins for loading
the data and rest 30 seconds for model predictions)

» Predictionsover CPU ~20 minutes (4.5 mins for loading
the data and rest 15.5 minutes for model prediction)

Footprints for observations (Feb - April 2020)
= Predictionsover GPU ~7.5 hours
= If we optimize the data loading ~15 minutes
= Can be computedon fly

Construction of footprints is currently 50 times faster
with emulator than STILT model.




Goal of this work

> Estimating GHG emission fluxes by emulating atmospheric
transport using FootNet



Case Study: Impacts of COVID-19 on urban CO, emissions (Turner et. al., 2020)
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Case Study: Impacts of COVID-19 on urban CO, emissions (Turner et. al., 2020)
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Figure 3. Spatial patterns of CO, fluxes in the San Francisco Bay Area. Panel (a) shows the average CO, fluxes for 6 weeks before shelter-in-place (2 February
2020 through 14 March 2020). Panel (b) shows the average over 6 weeks during shelter-in-place (22 March 2020 through 2 May 2020). Panel (c) is the difference.
Black contour in all panels encompasses the top 40% of the total network influence (BEACO,N Domain). Cross hatching indicates regions with low sensitivity
to the BEACO,N nodes.
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Case Study: Impacts of COVID-19 on urban CO, emissions (Turner et. al., 2020)
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Figure 3. Spatial patterns of CO, fluxes in the San Francisco Bay Area. Panel (a) shows the average CO, fluxes for 6 weeks before shelter-in-place (2 February
2020 through 14 March 2020). Panel (b) shows the average over 6 weeks during shelter-in-place (22 March 2020 through 2 May 2020). Panel (c) is the difference.
Black contour in all panels encompasses the top 40% of the total network influence (BEACO,N Domain). Cross hatching indicates regions with low sensitivity
to the BEACO,N nodes.

We are aiming to recompute CO, emission fluxes using
emulator for both before and during covid periods.




Case Study: Impacts of COVID-19 on urban CO, emissions (Turner et. al., 2020)

i ki > Hourly atmospheric CO, measurements

> Footprints computedwith WRF-STILT

> Prior fluxes are taken from bottom-up inventories
(adapted from McDonald et al., 2014; Turner et al., 2016;
Turner et al. 2019)




Bayesian Inference (GHG emission estimation)
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We need to compute footprints (H) to solve for posterior fluxes (x) ‘




Posterior Emission Fluxes (replicating Turner et. al., 2020)

Average Posterior CO2 Flux for BEACO2N Network (Integrated Decayed)
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Posterior Emission Fluxes (replicating Turner et. al., 2020)

Average Posterior CO2 Flux for BEACO2N Network (Integrated Decayed)
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Posterior Emission Fluxes (replicating Turner et. al., 2020)

STILT Footprints

Emulator Footprints

Prediction (logH)

Average Posterior CO2 Flux for BEACO2N Network (Integrated Decayed)

Y
)
|

15

1
”
-~
”~
//
-
~
”
-~
-~
”~
-~
-~
//,, vl
-
A
b
~,
-~
//
,/ - —_— ecn
& LSRN TR ST RSN T e e ———
”~ — ——
Z L I R g
—————— ..:::::ﬁ
T g . T ¢ T
-15 -10 -5
Truth (logH)

Difference

e e |
-04 -03 -02 -01 0.0 01 0.2 03 04

CO2 Flux (tC/km2/hr)




Posterior Emission Fluxes (replicating Turner et. al., 2020)

STILT Footprints

Emulator Footprints

Average Posterior CO2 Flux for BEACO2N Network (Integrated Decayed)

After shelter-in-place

Before shelter-in-place
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Computational cost analysis

Construction of footprints is 50 times faster with emulator than STILT model
The parallel computation of HB matrix is ~¥13.5 times faster than sequential approach

The total time taken for the end-to-end simulation is currently ~37 times faster with
emulator




Computational cost analysis

Construction of footprints is 50 times faster with emulator than STILT model
The parallel computation of HB matrix is ~¥13.5 times faster than sequential approach

The total time taken for the end-to-end simulation is currently ~37 times faster with
emulator

Computing emission fluxes using STILT footprints is 134 times storage expensive




Current and Future Work

> Generalized training for emulator

30 24 18 12 6 80°W 54 48

Methane

SAT
oy GHGSAT 6%

Footprints at 200m resolution
(Funded by EDF)

Extend the machine learning model to footprints for satellites observations
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> Emissions from point sources dominate the total emission budget
> Next-generation observing systems provide dense coverage of the GHGs
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Summary

> Emissions from point sources dominate the total emission budget
> Next-generation observing systems provide dense coverage of the GHGs
> Computational bottlenecks limit our understanding of point sources

> We propose a deep learning-based model which can efficiently
construct footprints in near-real-time
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Summary

> Emissions from point sources dominate the total emission budget
> Next-generation observing systems provide dense coverage of the GHGs
> Computational bottlenecks limit our understanding of point sources

> We propose a deep learning-based model which can efficiently
construct footprints in near-real-time

> Footprints from emulator can be used to estimate GHG emissions

Before shelter-in-place After shelter-in-place
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How will this be useful?

y=Hx+ €

* Computing H through U-Net model will be near-real-time ﬂ

* We do not need to store footprints anymore
We will be computing H through a

* We can quantify latent biases in the meteorological data deep learning-based model
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How will this be useful?

* Computing H through U-Net model will be near-real-time

* We do not need to store footprints anymore

* We can quantify latent biases in the meteorological data
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(iterative methods such as MCMC methods can be used)
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How will this be useful?

* Computing H through U-Net model will be near-real-time

* We do not need to store footprints anymore

* We can quantify latent biases in the meteorological data

* |Inverting for emissions can become more accurate

(iterative methods such as MCMC methods can be used)

y=Hx+ €

!

We will be computing H through a

deep learning-based model

Iterative methods for

inversion
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Computational cost analysis

Footprint (STILT) Footprint (machine learning emulator)
1 footprint simulation ~2 hours > 1 footprint simulation ~0.6 seconds
- - - > Footprints for observations of a single day
Footprints for observations of a single day (~7ogobservations)

(~700 observations) e _ , ,
. = Predictionsover GPU ~5 minutes (4.5 mins for loading
" Sequentially ~ 1400 hours (58 days) the data and rest 30 seconds for model predictions)

= Parallelon 32 cores machine ~44 hours (2 days) = Predictionsover CPU ~20 minutes (4.5 mins for loading
= Parallel on 10 nodes ~4 hours the data and rest 15.5 minutes for model prediction)

> Footprints for observations (Feb - April 2020)
= Predictionsover GPU ~7.5 hours

= If we optimize the data loading ~15 minutes
= Can be computedon fly

Footprints for observations (Feb - April 2020)
= Parallelon 10 nodes (32 cores machines) ~16 days
= Storage cost ~400GB

_ Bayesian Inference ) Bayesian Inference
Computing emission fluxes for 1 day > Computing emission fluxes for 1 day

= Sequential HB matrix multiplication~135 minutes = Sequential HB matrix multiplication~135 minutes
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Footprint (STILT)
1 footprint simulation ~2 hours

Footprints for observations of a single day
(~700 observations)

= Sequentially ~ 1400 hours (58 days)

= Parallel on 32 cores machine ~44 hours (2 days)

= Parallelon 10 nodes ~4 hours

Footprints for observations (Feb - April 2020)
= Parallelon 10 nodes (32 cores machines) ~16 days
= Storage cost ~400GB

_ Bayesian Inference
Computing emission fluxes for 1 day

= Sequential HB matrix multiplication ~135 minutes
= Parallel HB matrix multiplication~10 minutes
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Footprint (machine learning emulator)
1 footprint simulation ~0.6 seconds

Footgrints for observations of a single day
(~700 observations)

= Predictionsover GPU ~5 minutes (4.5 mins for loading
the data and rest 30 seconds for model predictions)

* Predictionsover CPU ~20 minutes (4.5 mins for loading
the data and rest 15.5 minutes for model prediction)
Footprints for observations (Feb - April 2020)
= Predictionsover GPU ~7.5 hours
= If we optimize the data loading ~15 minutes
= Can be computedon fly

) Bayesian Inference
Computing emission fluxes for 1 day

= Sequential HB matrix multiplication ~135 minutes
= Parallel HB matrix multiplication ~10 minutes
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Footprint (STILT)
1 footprint simulation ~2 hours

Footprints for observations of a single day
(~700 observations)

= Sequentially ~ 1400 hours (58 days)

= Parallel on 32 cores machine ~44 hours (2 days)

= Parallelon 10 nodes ~4 hours

Footprints for observations (Feb - April 2020)
= Parallelon 10 nodes (32 cores machines) ~16 days
= Storage cost ~400GB

_ Bayesian Inference
Computing emission fluxes for 1 day

= Sequential HB matrix multiplication ~135 minutes
= Parallel HB matrix multiplication~10 minutes
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Footprint (machine learning emulator)
1 footprint simulation ~0.6 seconds

Footgrints for observations of a single day
(~700 observations)

= Predictionsover GPU ~5 minutes (4.5 mins for loading
the data and rest 30 seconds for model predictions)

* Predictionsover CPU ~20 minutes (4.5 mins for loading
the data and rest 15.5 minutes for model prediction)
Footprints for observations (Feb - April 2020)
= Predictionsover GPU ~7.5 hours

= If we optimize the data loading ~15 minutes
= Can be computedon fly

) Bayesian Inference
Computing emission fluxes for 1 day

= Sequential HB matrix multiplication ~135 minutes
= Parallel HB matrix multiplication ~10 minutes

The parallel HB matrix multiplication is 13.5 times
faster than sequential HB matrix multiplication




Computational cost analysis

Footprint (STILT)
1 footprint simulation ~2 hours

Footprints for observations of a single day
(~700 observations)

= Sequentially ~ 1400 hours (58 days)

= Parallel on 32 cores machine ~44 hours (2 days)

= Parallelon 10 nodes ~4 hours

Footprints for observations (Feb - April 2020)
= Parallelon 10 nodes (32 cores machines) ~16 days
= Storage cost ~400GB

_ Bayesian Inference
Computing emission fluxes for 1 day

= Sequential HB matrix multiplication ~135 minutes
= Parallel HB matrix multiplication~10 minutes

. Total Time ]
Computing emission fluxes (Feb -April 2020)

= Time~16days 3 hours
= Storage ~403 GB

Footprint (machine learning emulator)
1 footprint simulation ~0.6 seconds

Footgrints for observations of a single day
(~700 observations)

= Predictionsover GPU ~5 minutes (4.5 mins for loading
the data and rest 30 seconds for model predictions)

* Predictionsover CPU ~20 minutes (4.5 mins for loading
the data and rest 15.5 minutes for model prediction)
Footprints for observations (Feb - April 2020)
= Predictionsover GPU ~7.5 hours

» If we optimize the data loading ~15 minutes
= Can be computedon fly

) Bayesian Inference
Computing emission fluxes for 1 day

= Sequential HB matrix multiplication ~135 minutes
= Parallel HB matrix multiplication ~10 minutes

Total Time
Computing emission fluxes (Feb - April 2020)

= Time ~10.5hours (can be optimized to 3 hours 15 minutes)
= Storage ~3 GB (storage for inversion results)
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