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How do we compute emissions?

Bottom Up

Average emission -> x

Total units-> N

Emission budget from industries: ~Nx

Top Down

Measurement (y)

Emission (x)

Trace back the emissions based on given measurements

Forward Model

Inverse Model
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Estimating emissions using top-down approach

Observations Errory = Hx + ∈
Emissions

H is the relationship between observations and emissions

J(x) = 
1

2
(y-Hx)TR-1(y-Hx) + 

1

2
(x-xa)

TB-1 (x-xa)Cost Function

Posterior Solution

xa: Prior estimate
R: Observational covariance matrix
B: Prior covariance matrix

ෝ𝒙 = xa + (HB)T(HBHT + R)-1(y - Hxa)



High-resolution data is required to study point sources and 
methane plumes
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Computational and storage complexities with footprints 

y = Hx + ∈

• For every measurement, we need a footprint

• These footprints look spatially similar

Atmospheric transport models become computationally expensive as the number of measurements increases

Footprint in Bay Area (generated with WRF-STILT)



Computational and storage complexities with footprints 

Assuming a computational time of 2 hours for 
each STILT simulation and 6.5 MB of storage space

Surface sensitivity of observations



Computational and storage complexities with footprints 

Surface sensitivity of observations

Running WRF-STILT is computationally expensive. 
The outputs of these simulations are storage 

expensive as well.



> Developing an efficient method to compute source-receptor 
relationship using machine learning emulator (FootNet)

> Estimating GHG emission fluxes by emulating atmospheric 
transport using FootNet

Goal of this work



Can machine learning help?

Tai-long He, postdoc at Turner’s group



Can machine learning help?

...



Can machine learning help?

...

Compress the information f(information) Build the output



U-Net Model Architecture



Convolution and Pooling

ReLU activation function



Convolution and Pooling

ReLU activation function
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Input variables and output

• Meteorological variables are from the NOAA HRRR 
data product.

• We use footprints simulated by the STILT model as 
the “truth” to train the U-net.

• All the input and output fields are at 1 km resolution.

Gaussian Plume U10m V10m

PBLH Psurf Air Density 850hPA

Target



2 Case studies

SF Bay Area Barnett Shale, TX

BEACO2N network Simulated receptors



Model Training



> Let’s start with an easy area for model comparison
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> Now a difficult area for model comparison
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How does the machine learning model 
solve the computational bottlenecks?
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Computational cost

1. HRRR-lite over CONUS

2. I/O and zoom in 3. Regrid to 1km resolution

4. Predict footprint

U10M V10M P surf PBLH

Pre-trained ML 
model

Footprint prediction

0.001 s

0.5 s

CPU: 0.8 s
GPU: 0.08 s

The total time to construct a footprint is around 1 - 2 hours for our use cases using STILT

Total time to construct a footprint is 0.6s with GPU and 1.3s with CPU
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• 10 nodes for simulations
• 32 cores processor on each node

• 1 node for predictions
• 1 GPU card (16GB)

Requirements Requirements
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the data and rest 30 seconds for model predictions)

▪ Predictions over CPU ~20 minutes (4.5 mins for loading 
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> Footprints for observations (Feb – April 2020)
▪ Predictions over GPU ~7.5 hours

▪ If we optimize the data loading ~15 minutes

▪ Can be computed on fly

Footprint (STILT) Footprint (machine learning emulator)

Construction of footprints is currently 50 times faster 
with emulator than STILT model. 



> Developing an efficient method to compute source-receptor 
relationship using machine learning emulator (FootNet)

> Estimating GHG emission fluxes by emulating atmospheric 
transport using FootNet

Goal of this work



Case Study: Impacts of COVID-19 on urban CO2 emissions (Turner et. al., 2020)



Case Study: Impacts of COVID-19 on urban CO2 emissions (Turner et. al., 2020)

2 Feb – 14 Mar 2020 
(Pre covid)

22 Mar – 2 May 2020
(During covid)



Case Study: Impacts of COVID-19 on urban CO2 emissions (Turner et. al., 2020)

We are aiming to recompute CO2 emission fluxes using 
emulator for both before and during covid periods.



> Hourly atmospheric CO2 measurements

> Footprints computed with WRF-STILT

> Prior fluxes are taken from bottom-up inventories 
(adapted from McDonald et al., 2014; Turner et al., 2016; 
Turner et al. 2019)

Case Study: Impacts of COVID-19 on urban CO2 emissions (Turner et. al., 2020)

BEACO2N Surface Network



Bayesian Inference (GHG emission estimation)

Observations Errory = Hx + ∈
Emissions

BEACO2N Surface Network

We need to compute footprints (H) to solve for posterior fluxes (x) 
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Posterior Emission Fluxes (replicating Turner et. al., 2020)

Landsat true color image (March 18, 2019)
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▪ Time ~16 days 6 hours

▪ Storage ~403 GB

Total Time Total Time
> Computing emission fluxes (Feb – April 2020)

▪ Time ~13.5 hours (can be optimized to 6 hours 15 minutes)

▪ Storage ~3 GB

Computing emission fluxes using STILT footprints is 134 times storage expensive

• Construction of footprints is 50 times faster with emulator than STILT model
• The parallel computation of HB matrix is ~13.5 times faster than sequential approach
• The total time taken for the end-to-end simulation is currently ~37 times faster with 

emulator



> Generalized training for emulator

Current and Future Work

Footprints at 200m resolution
(Funded by EDF)

Extend the machine learning model to footprints for satellites observations
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> Emissions from point sources dominate the total emission budget

> Next-generation observing systems provide dense coverage of the GHGs

> Computational bottlenecks limit our understanding of point sources 

> We propose a deep learning-based model which can efficiently 
construct footprints in near-real-time

> Footprints from emulator can be used to estimate GHG emissions

Summary
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> Computing emission fluxes for 1 day

▪ Sequential HB matrix multiplication ~135 minutes

▪ Parallel HB matrix multiplication ~10 minutes

> Computing emission fluxes for 1 day
▪ Sequential HB matrix multiplication ~135 minutes

▪ Parallel HB matrix multiplication ~10 minutes

The parallel HB matrix multiplication is 13.5 times 
faster than sequential HB matrix multiplication

ෝ𝒙 = xa + (HB)T(HBHT + R)-1(y - Hxa)
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