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Satellite and other measurement techniques that measure methane column
concentrations are increasingly being used to estimate methane emissions,
particularly for large emission events (e.g. ‘Super-Emitters’ defined by the EPA
as a release with an emission rate > 100 kg/hr)
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Most of these analysis rely on an inversion of data based on some a priori

emission inventory with limited spatial and temporal variabilities.
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Our approach is forward calculation: start with inventory with site-level resolution
and time-varying sources, use chemical transport model (CTM) to calculate
methane ground and column concentrations.

The goal is to better understand how large an emission event needs to be in order
to cause a significant perturbation in column concentration and how that is
dependent on the spatial resolution of the emission inventory and CTM modeling.
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CAMx simulation scenarios (with finest resolution at both 4km
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and 1.33km):

+ Two emission rates (100 kg/hr and 1000 kg/hr) added in each of three different locations;
« Simulations with emission events near the primary emission events
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Simulated CH, column concentration from routine constant emissions exhibits
large temporal and spatial variations due to changing meteorology.
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Add emission events of 100 and 1000 kg/hr to the routine emissions
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Results for 1000 kg/hr emission events at low background concentration location
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* At 4 km resolution, ER only exceeds 2 in 6.9% of the simulation hours and
exceeds 3 in 0.7% of the simulation hours;

« At 1.33km resolution, ER exceeds 2 in 54.7% of the simulation hours and
exceeds 3 in 24.3% of the simulation hours;

« At 1-2 pm, the ER exceeds 2 in 47.0% of 1300-1400 simulation hours with a
1.33 km resolution.
Summary of ER statistics at location ¢ under different scenarios

Location ¢ ™ Y

(low routine emissions)

100 kg/hr 1000 kg/hr 100 kg/hr 1000 kg/hr

1.04+/-0.04 1.42+/-0.36 1.16+/-0.14 2.56+/-1.4
1.28 3.82 2.19 12.9
ER > 2 (all hours 0.0% 6.9% 0.1% 54.7%

ER > 2 (6AM-6PM 0.0% 4.7% 0.0% 49.9%
ER>2 (1PM-2PM 0.0% 2.8% 0.0% 47.0%
ER> 3 (all hours 0.0% 0.7% 0.0% 24.3%

Finding: Emissioninventories and modeling at ~1 km resolution will be necessary to reliably
distinguish 1000 kg/hr events from routine background emissions using column loadings.
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Enhancement ratio due to nearby emission events (ERearby):
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Enhancement ratio due to nearby emission events (ERearby):

At 4 km resolution, nearby emission events only increase local column concentrations at
location ¢ by 9%; this value goes up to 11% at 1.33 km resolution;

ER\carby is €ven lower when the time period for analysis is restricted to daylight hours;

Interference from nearby emissions events is not a dominant contributor to overall
background levels.

Summary of ER, .., statistics at different locations under different scenarios

I P T I

4km 1.33km 4km 1.33km 4km 1.33km
avg.+ std 1.03 £ 0.03 1.03 £ 0.08 1.06 £ 0.08 1.06 £+ 0.14 1.09  0.12 1.11 0.23
m 1.18 1.91 1.59 2.33 1.96 33
0.0% 0.0% 0.0% 0.3% 0.0% 1.4%

ER >2 (6AM-6PM 0.0% 0.0% 0.0% 0.4% 0.0% 0.8%
ER> 2 (1PM-2PM 0.0% 0.0% 0.0% 0.2% 0.0% 0.7%
ER> 3 (all hours 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%



Major findings

« Measurements and modeling at a spatial resolution less than 1.33 km would be
needed to distinguish large emission events (100~1000 kg/hr) from routine

emissions.

« Currently baseline methane column concentration datasets at fine spatial and
temporal resolution are limited.

» Coupling fine resolution methane emission inventories with fine resolution chemical
transport modeling could lead to significant improvements in emission event
detection capabilities.

« Future work is to develop an expanded dataset with more emission events.
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