For help with accessing this document, email <u>NEI Help@epa.gov</u>.

International Emission Inventory Conference 28th Sept. 2023

Validation study on the reliability of ship air emission estimation algorithm using AIS activity data

Yongchan Lee, Jiye Yoo, Heekwan Lee Department of Environmental Engineering Incheon National University South Korea

- I. INTRODUCTION
- II. METHODOLOGY
- **III. RESULT AND DISCUSSION**
- IV. CONCLUSION

I. INTRODUCTION

1.1 Background

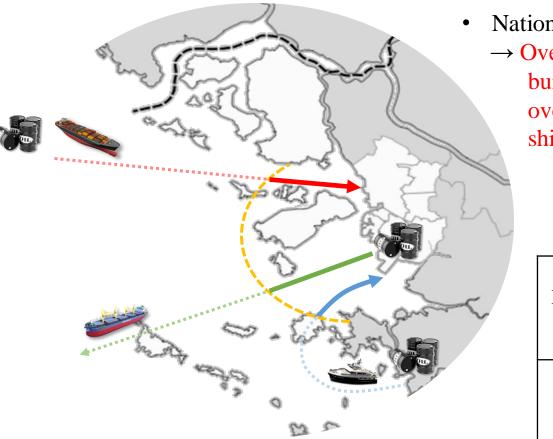
Increased demand for enhanced management of ship air pollutants in port

- Particulate matter is classified as highly hazardous substance by International Agency for Research on Cancer due to the mutagenic and carcinogenic agent
- Portion of air pollution from vessel in the Port-city occupies the largest

• International Maritime Organization (IMO) has addressed beneficial implementation such as sulfur limit of vessel fuel oil, GHGs reduction and determination of emission control area (ECA)

Korea : [©]SPECIAL ACTION THE IMPROVEMENT OF AIR QUALITY IN PORT AREAS₁ after 2020.01.01

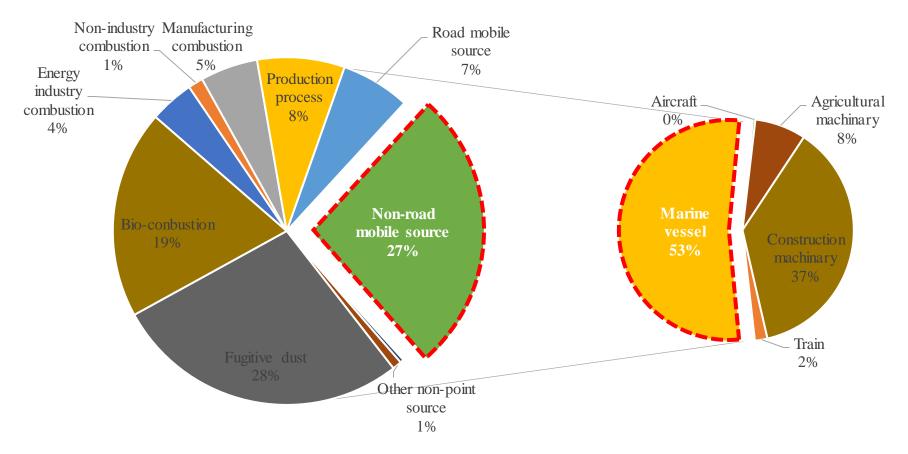
• Special Action The Improvement of Air Quality in Port


<u>Areas</u> entered into force on 1 January 2020 as a part of an ongoing national program to reduce air pollution from shipping and port activities. The act introduces a series of measures, some of which will have direct impact on ships' operational practices, and we advise ship operators and masters

I. INTRODUCTION

1.1 Background

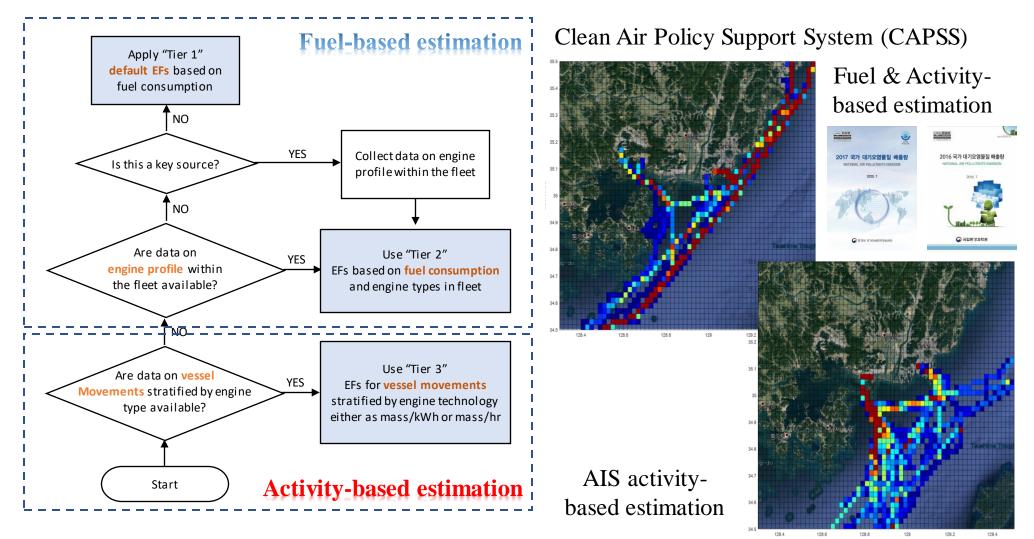
- National guideline Fuel based (Tier 2) Estimation
 - → Overseas-bunkered foreign vessels / other-portbunkered domestic vessels (sailing overseas/other ports) are excluded to estimate ship emissions


	Inner harbor limit	Outer harbor limit
Domestic vessel	Counted !!	
Foreign vessel		Unknown !!

II. METHODOLOGY

2.1 Characteristics of study area

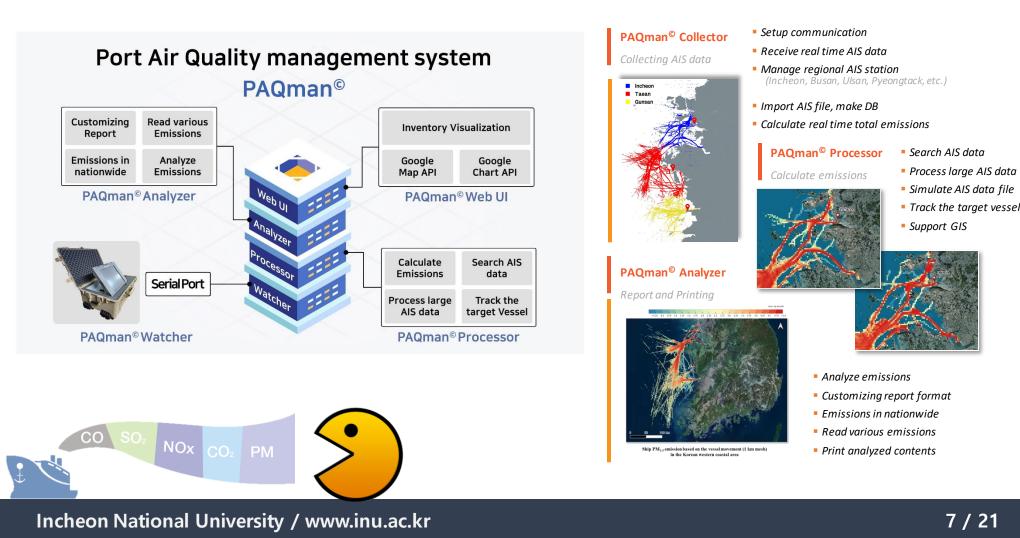
(Unit: kg/year)



2020 PM_{2.5} Emission Inventory from Clean Air Policy Support System (CAPSS), Republic of Korea

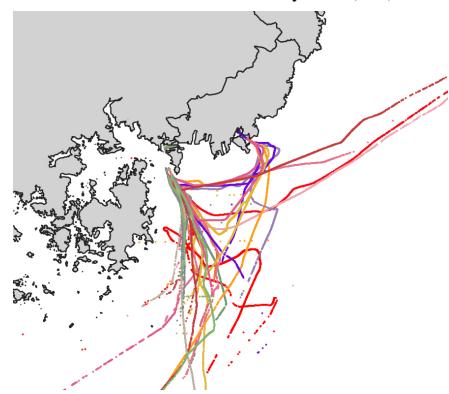
II. METHODOLOGY

2.2 Ship Emission Estimation Methodology


(Ref: EMEP/EEA air pollutant emission inventory guidebook 2019)

II. METHODOLOGY

2.3 Port-city Air Quality management system; PAQman[©]

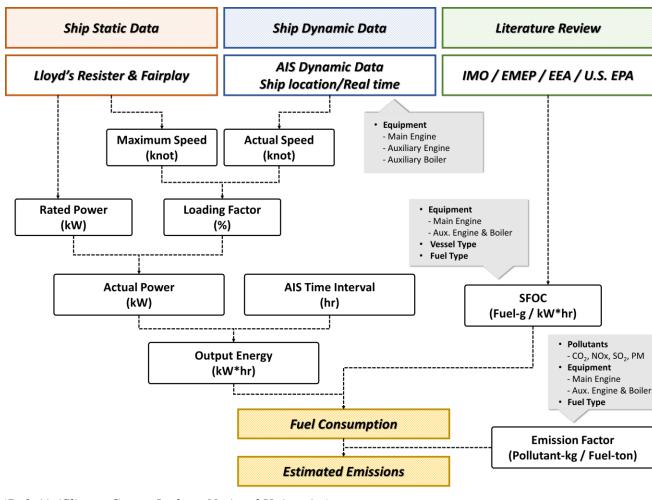

Port-city Air Quality management (PAQman[©]) system

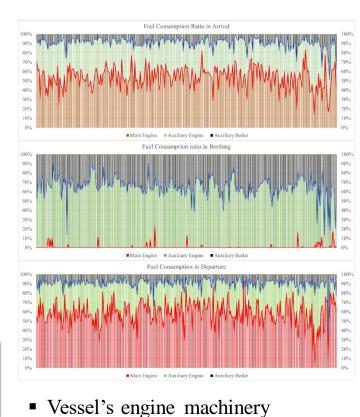
II. METHODOLOGY 2.4 AIS activity-based ship emission estimation methodology

Vessel real-time movement data Automatic Identification System (AIS)

2020.06 ~ 2020.07 Container ship's AIS data in Busan

Container	Container ship 'XXXX' AIS & Specification variables		
Variable	Sample data_n	Sample data_n+1	
MMSI	212348000	212348000	
SOG (unit: knot)	13.4	13.1	
Latitude	34.25618	34.317167	
Longitude	128.869983	128.913233	
Time	2020-06-10 5:57	2020-06-10 6:16	
Vessel	Specification Variable	Example	
Ship Name		212348000	
Ship Type		Container ship	
Gross Tonnage (unit: ton)		74,651	
Main Engine Power (unit: kW)		68,520	
Auxiliary Engine Power (unit: kW)		12,540	


Container ship 'XXXXX' AIS & Specification variables

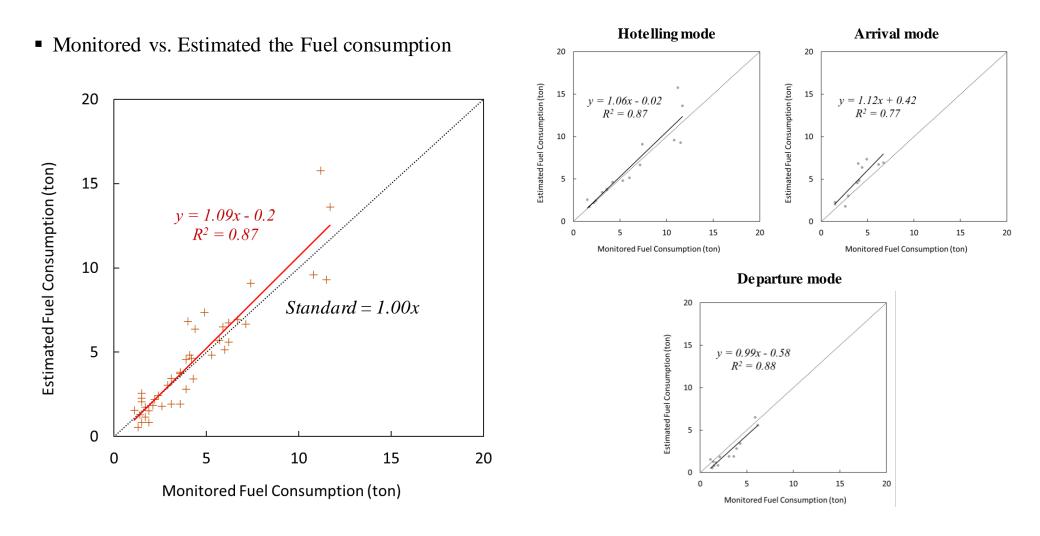

9 / 21

(Ref: Air/Climate Group, Incheon National University)

Incheon National University / www.inu.ac.kr

• Ship Emission Estimation Methodologies using real-time vessel movement data by AIS

Main Engine


Auxiliary Engine

Auxiliary Boiler

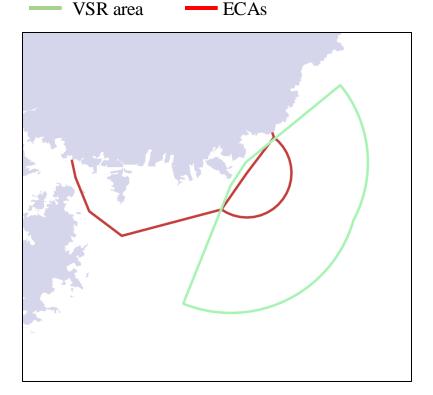
III. RESULT AND DISCUSSION

3.1 Validation study of AIS-based estimation methodology

III. RESULT AND DISCUSSION 3.2 PM_{2.5} emissions of Container ships in Busan port area

> 15.0 14.25 13.5 12.75 12.0 11.25 10.5 35 : 9.75 Latitude (Decimal degrees) 9.0 PM_{2.5} emissions (kg) 8.25 7.5 6.75 6.0 5.25 4.5 34.8 3.75 3.0 34.7 2.25 1.5 34.6 < 0.75 34.5 128.4 128.6 128.8 129 129.2 129.4 Longitude (Decimal degrees)

(b) Ship PM_{2.5} emission based on the vessel movement (1 km mesh)

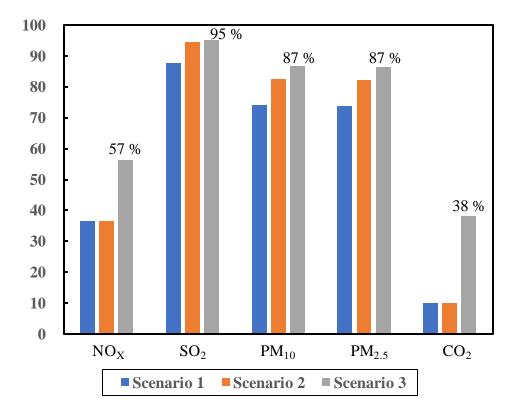

(a) General operation modes in Busan port area

III. RESULT AND DISCUSSION

3.4 Reduction potential of ship emission regulation

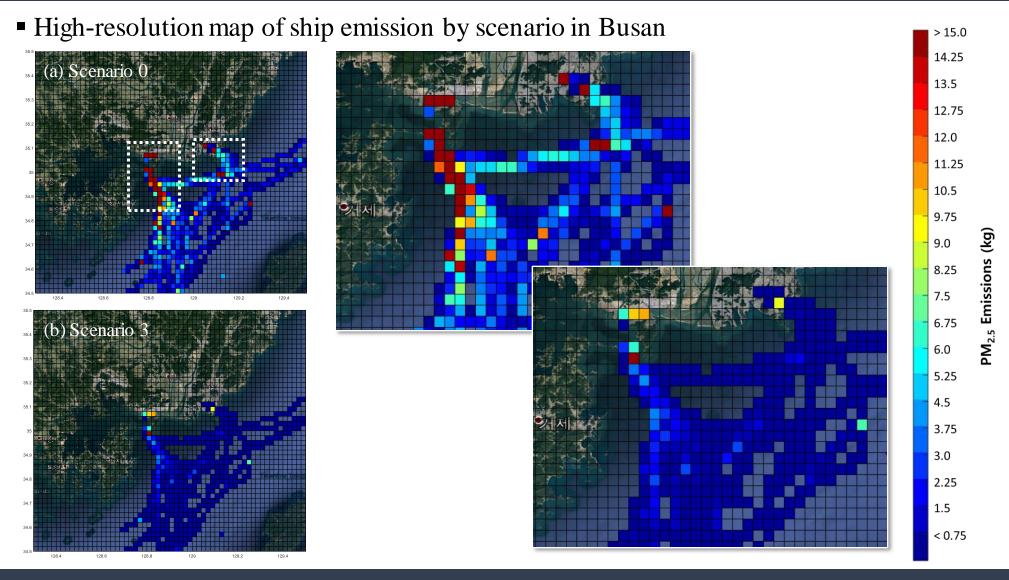
Scenario for reduction policies of ship emissions

- Scenario 0
 - Before 2020 / No Regulation
- Scenario 1
 - $2020.01.01 \sim 2020.08.30$
 - IMO 2020 \rightarrow sulfur content of marine fuel oil (3.5% \rightarrow 0.5% m/m)
 - Vessel Speed Reduction (VSR) program \rightarrow container ship max speed limit 12 knots
- Scenario 2
 - 2020.09.01~
 - Emission Control Areas (ECAs) in Busan -> sulfur content $(0.5\% \rightarrow 0.1\% \text{ m/m})$
 - Vessel Speed Reduction (VSR) program
- Scenario 3
 - 2030.01.01~
 - Emission Control Areas (ECAs) in Busan
 - Vessel Speed Reduction (VSR) program
 - Alternative Maritime Power supply (AMP)


Ship air emission estimation area in this study

3.4 Reduction potential of ship emission regulation

Reduction potential of ship emission regulation by scenario



Scenario		Ship o	emissions	(ton)	
	NOx	SO ₂	PM ₁₀	PM _{2.5}	CO ₂
Scenario 0	34.3	30.3	2.68	2.42	1,347
Scenario 1	21.8	3.7	0.69	0.63	1,214
Scenario 2	21.8	1.63	0.46	0.43	1,214
Scenario 3	14.9	1.44	0.35	0.32	831

III. RESULT AND DISCUSSION

3.4 Reduction potential of ship emission regulation

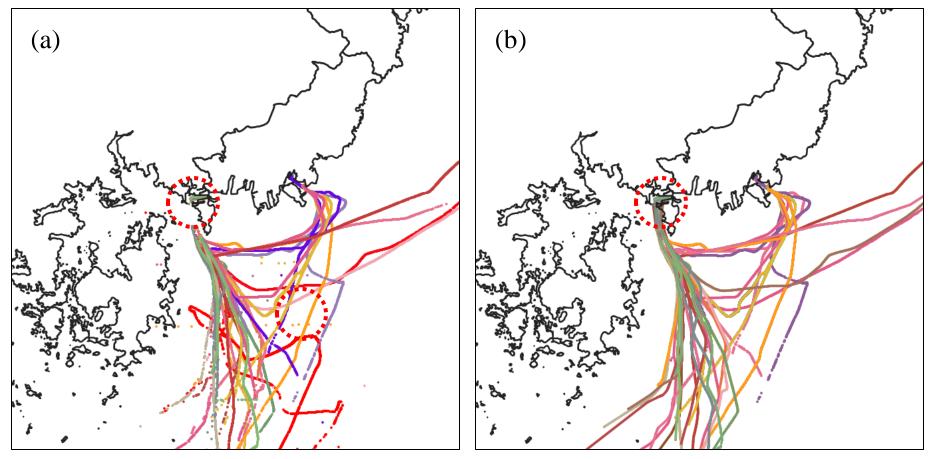
IV. CONCLUSION

Objectives	 To estimate qualitative ship air emissions inventory applying AIS activity-based approach in Busan port area To validate ship emission inventory methodology with monitored data for reliable city-level ship emission inventory
Results	 As a result of AIS-based estimation, the result was about 1.1 times higher than monitored data As a result of ship emission estimation by CAPSS, the result was about 2.5 ~ 2.9 times higher than monitored data As a result of reduction potential, the most of air pollutant was reduced through the policies for reducing ship emission in Busan port.
Conclusion	 General outcome of this study provides better ship air emission inventory methodology for beneficial management of port-city air quality Also, we can analyze precisely political effects for reducing ship emissions based on the AIS-based ship emission inventory. Finally, a mechanism of ship air emission inventory methodology need to shift from based-on statistics to AIS-based real time ship emission estimation methodology

Contact: Yongchan Lee Department of Environmental Engineering Incheon National University Jehun1108_m@inu.ac.kr

HAME TON

Incheon National University / www.inu.ac.kr

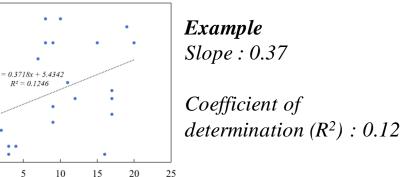

17 / 21

APPENDIX

2.4 AIS activity-based ship emission estimation methodology

Preprocess of Automatic Identification System (AIS)

- Remove the error of location coordinate from GPS
- Interpolate linearly missing data


Incheon National University / www.inu.ac.kr

APPENDIX 2.4 Validation analysis of AIS-based estimation methodology

Vessel's operation mode

- Validation study of AIS-based estimation
 - Standard : Monitored fuel consumption
 - Comparison : AIS-based fuel consumption

- Monitored Fuel Consumption (ton)
- Operation mode

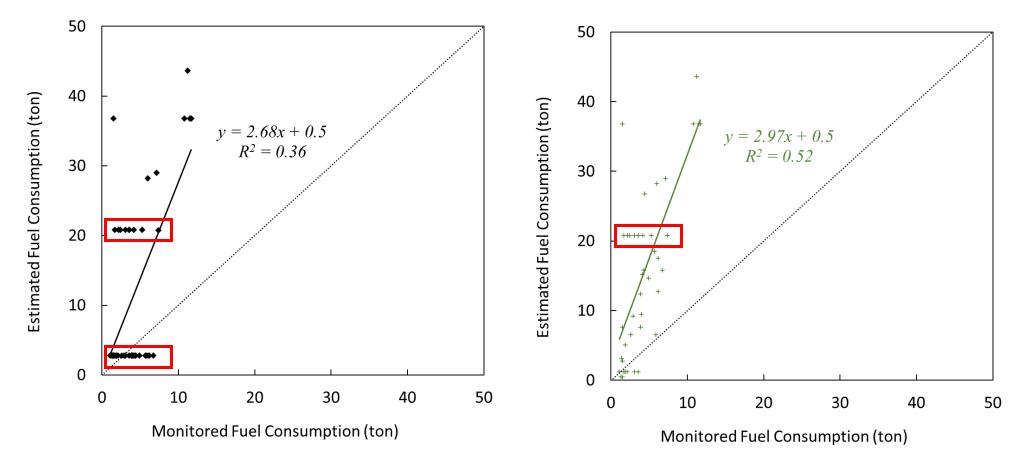
5

20 18

16

14 12

10


8

- Hotelling mode
- Maneuvering-arrival mode (Maneuvering + Cruising)
- Maneuvering-departure mode (Maneuvering + Cruising)

APPENDIX 3.3 Validation study of <u>ship emission estimation method in CAPSS</u>

• Ship emission estimation for central government by Clean Air Policy Support System (CAPSS)

Incheon National University / www.inu.ac.kr

(Ref: National Air Pollutants Emission Service)

APPENDIX

3.3 Validation study of ship emission estimation method in CAPSS

• Ship Emission Estimation Methodologies using Arrival/Departure statistics by PORT-MIS (PORT-MIS; PORT Management Information System, *Ministry of Oceans and Fisheries, MOF*)

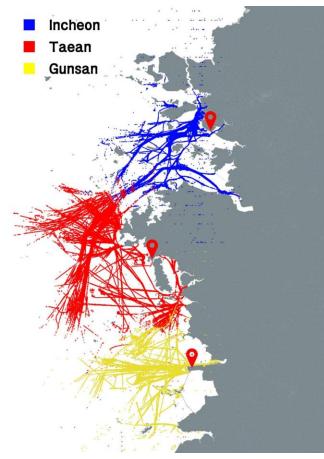
Operation	Low resolution PORT-MIS DB	High resolution PORT-MIS DB
Phase	Method A	Method B
Berth	Fuel Consumption(ton) = N × SFC * N : Number of Ship calling in the Port * SFOC : Specific Fuel Oil Consumption in Maximum Power a (Ref: EEA(1999), EMEP/CORINAIR Emission Inventory Guidebook-1999) * <u>0.79 : Average number of Berthing day (day/N)</u> (Ref: Result of sample research of 560 vessels arrival Ulsan port in January * <u>0.2 : Assume 20% output at berth relative to maximum pov</u> (Ref: EEA(1999), EMEP/CORINAIR Emission Inventory Guidebook-1999)	according to Gross Tonnage (ton/day) y and December 2001)
Maneuvering	Fuel Consumption(kL) = N × Cruise Distance(km) ÷ Fuel Economy(km/kL)	Fuel Consumption(kL) = N × Pilotage Distance(km) ÷ Fuel Economy(km/kL) * Pilotage Distance : pilotage distance by port * Fuel Economic : Fuel economy data by Gross tonnage (Ref: Korea Energy Economics Institute)
Cruising	 N : Number of Ship calling in the Port <u>Cruise Distance : 35km of sea breeze impact in batch</u> Fuel Economic : Fuel economy data by Gross tonnage (Ref: Korea Energy Economics Institute) 	Fuel Consumption(ton) = Engine Power(kW) × SFOC (g/kWh) × 0.8 × HRS(h) × 10 ⁻⁶ * SFOC : Specific Fuel Oil Consumption by engine power (Ref: EMEP/CORINAIR Emission Inventory Guidebook-2009) * 0.8 : Assume 80% output at berth relative to rated power (Ref: EMEP/CORINAIR Emission Inventory Guidebook-2009) * HRS : Record of Arrival/Departure in PORT-MIS

APPENDIX PAQman-watcher

✤ PAQman-Watcher system

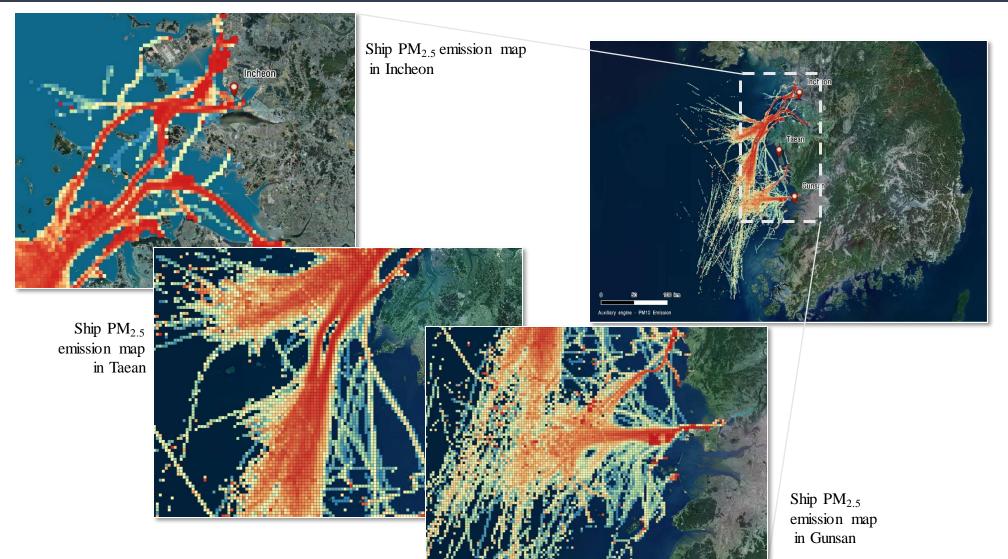
Stationary PAQman-Watcher (Rack mount)

Mobile PAQman-Watcher (Pelican case) Portable PAQman-Watcher (Pelican case)



APPENDIX AIS ship activity data

Vessel real-time movement data Automatic Identification System (AIS)


Vessel 'XXXXX' AIS & Specification variables

Variable	Sample data_n	Sample data_n+1
MMSI	XXXXXX	xxxxxx
SOG (unit: knot)	17.1	17.2
Latitude	36.24382	36.24814
Longitude	125.8553	125.8578
Time	2021-11-15 21:36:30	2021-11-15 21:37:30
Vessel	Specification Variable	Example
Vessel	Specification Variable Ship Name	Example
Vessel	-	
	Ship Name	XXXXXX
	Ship Name Ship Type Gross Tonnage	xxxxx Container ship

APPENDIX

Ship air emission inventory using PAQman

