Toward a framework to quantify risks & benefits of pesticide resistance & resistance management

What to measure?

- Costs & risks from resistance
 - Losses to producers & consumers from reduced efficacy
 - Shifts to substitute compounds with greater environmental or human health risks
- Costs & risks of resistance management practices
- Critical timing questions: when does resistance occur
 Without resistance management?
 With resistance management?

How to measure? Costs of resistance

- Benefits of resistance management are avoided costs & risks from resistance
- Cost of resistance are similar to (and can be estimated in similar ways) as the costs of pesticide cancellation
- Long-established methods for estimating costs of pesticide cancellation
 - Producers must shift to different compounds or control methods
 - With higher costs
 - That provide less yield protection (affecting output)
 - That provide less quality protection (affecting price)
 - That have potentially greater environmental or human health risks

Steps in quantifying resistance costs

- 1. Identify substitute compounds or control methods & quantify their production performance / attributes via
 - Expert opinion surveys
 - Historical market shares
 - Single, best substitute
 - Analytical models
 - Field trial and demonstration farm data
- 2. Obtain Environmental & human health risk profile from pre-existing risk assessments
- 3. Use changes in production attributes as inputs in regional or national commodity supply and demand models
 - Yield and cost changes shift supply curve
 - Quality shifts shift demand curve
 - Past research suggests significant variation across crops and regions

Steps in quantifying <u>resistance</u> <u>management</u> costs

- 1. Identify alternative treatment regimes, their costs, yield & quality performance via
 - Field trial / demonstration farm data
 - Extension recommendations / expert opinion
 - Biological models
 - Examples
 - Rotating herbicides
 - Diversifying modes of action
 - PIPs: costs of refuges are foregone gains on refuge acres
- 2. Obtain Environmental & human health risk profile from pre-existing risk assessments
- 3. Use changes in production attributes as inputs in regional or national commodity supply and demand models

Possible (in principle) to conduct benefit-cost analysis of resistance management

- With resistance management practices
 - Short-run returns lower
 - Long-run returns greater
 - Small negative short-run supply shifts to avoid larger long-run negative supply shifts
- Could do standard multi-year BC analysis
 - Estimate the Net Present Value of resistance management
 - Following EPA principles & guidelines

Now the hard part: Everything hinges on 2 questions

- When would resistance occur absent resistance management?
- How long does resistance management delay onset of resistance?
- Options for measurement
 - Biological / genetic modeling
 - (arbitrarily) choosing years & conducting sensitivity analysis
- Priorities for measurement
 - Breadth widely use compounds
 - Depth
 - Some compounds not widely used, but critical for specialty crops / specific contexts
 - Resistance costs could be large **in percentage terms** for systems without good substitutes

Considerations

- How do registration / cancellation decisions affect availability of effective MOAs?
 - How might cancellation of compound X affect resistance management for compound Y?
 - At minimum, this could be described and characterized
- Results above could be used in representative farm models & decision support tools (for extension & education)
 - Palmer Amaranth Management (PAM)
 - Ryegrass Integrated weed Management model RIM (Australia)
- Results could inform cost-share programs
 - Private rebate programs
 - USDA programs (EQIP, CSP)
 - Challenges in achieving "additionality"