PFAS TSCA Workshop: Overview of the National PFAS Testing Strategy

> February 13th, 2024 Dr. Kellie Fay

Outline

Toxic Substances Control Act

Overview of the National PFAS Testing Strategy

Chemical curation

Chemical grouping

Data gathering

Candidate selection

Issued Test Orders

Toxic Substances Control Act (TSCA)

The federal statute that provides EPA with the authority to require testing, reporting of data, and record-keeping and mandates EPA's review of chemicals and imposing of restrictions relating to chemical substances and/or mixtures, as appropriate.

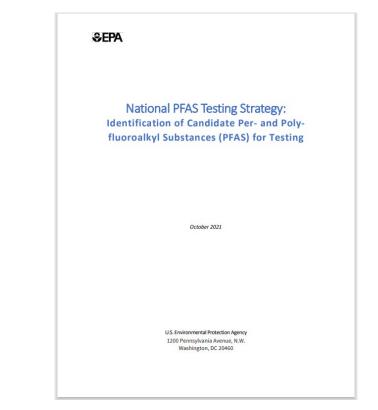
- TSCA section 4 Test Rules and Orders to require development of new information
- TSCA section 5 New Chemicals
- TSCA section 6 Existing Chemicals
- TSCA section 8 Data Reporting of extant information such as uses, production volumes, processes, etc.

TSCA Section 4

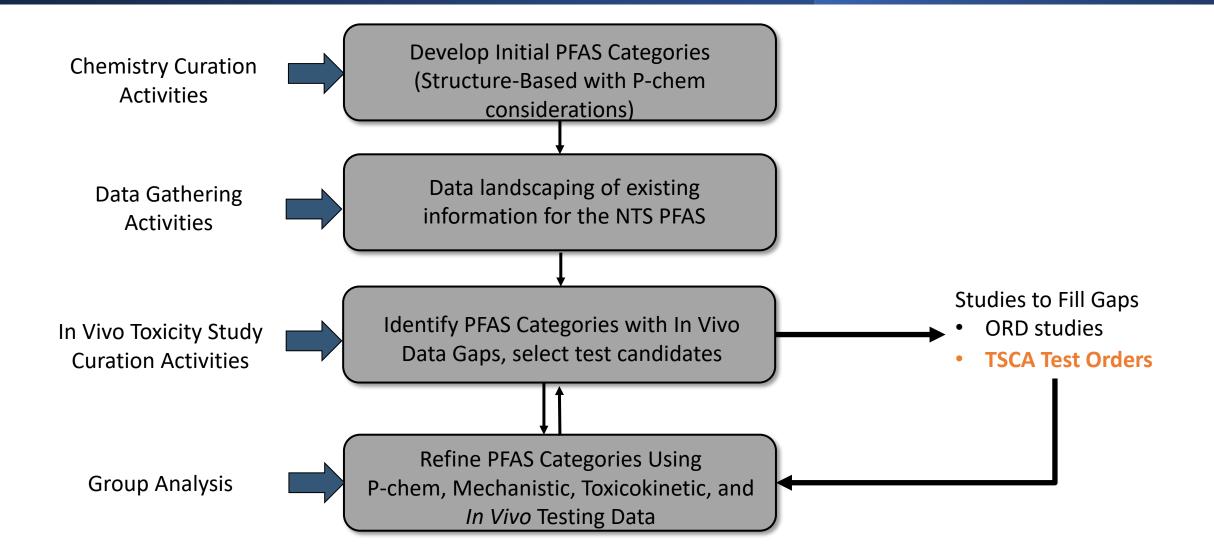
- Authorizes EPA to require chemical manufacturers (including importers) and processors to develop new information on chemicals and submit such information to EPA via Test Order, Rule, or Enforceable Consent Agreement
- Per TSCA section 4(a)(1) the following findings must be made:
 - Insufficient information exists, testing is necessary to get that information, and
 - The chemical substance may present unreasonable risk, or
 - The chemical substance is produced in substantial quantities and may cause substantial or significant exposures to the environment or humans.
- **PFAS Test Orders have been using section 4(a)(1)** as the basis for the actions
- TSCA section 4(a)(2) has other provisions for which EPA can issue a Test Order
 - For example, to inform TSCA section 5 or 6 activities
- Other considerations required in section 4 actions include:
 - Using a tiered testing approach
 - Reducing testing on vertebrates

Overview of National PFAS Testing Strategy (NTS)

The Problem: Per- and polyfluoroalkyl substances (PFAS) are an extremely large, diverse class of chemicals with large data gaps, making these substances challenging to regulate.


- Depending upon the definition, PFAS class can include 10,000+ substances
- Manufactured and used since the 1940s for a variety of uses
- Many PFAS are extremely persistent in the environment and can bioaccumulate
- A few have been well-studied (e.g., perfluorooctanoic acid [PFOA] and perfluorooctanesulfonic acid [PFOS]), and these provide evidence that exposure to these substances can lead to acute and chronic health outcomes
- The majority of substances lack toxicity data
- Limited monitoring data contributes to uncertainty in the understanding of exposure

Overview of NTS


Purpose of the National PFAS Testing Strategy (NTS)

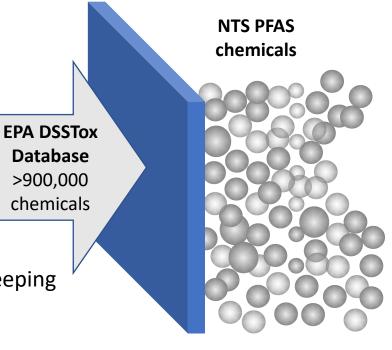
- Group similar PFAS into categories
- Identify representative substances within those categories
- Compile available information on all PFAS
- Use EPA's authority under Section 4 of TSCA to require testing on representative substances of the data-poor categories

The information will be used to inform the Agency's future research, monitoring and regulatory efforts and support the use of read-across to other substances within a category, where appropriate.

Overview of the NTS Process

Chemistry curation – PFAS included in the NTS

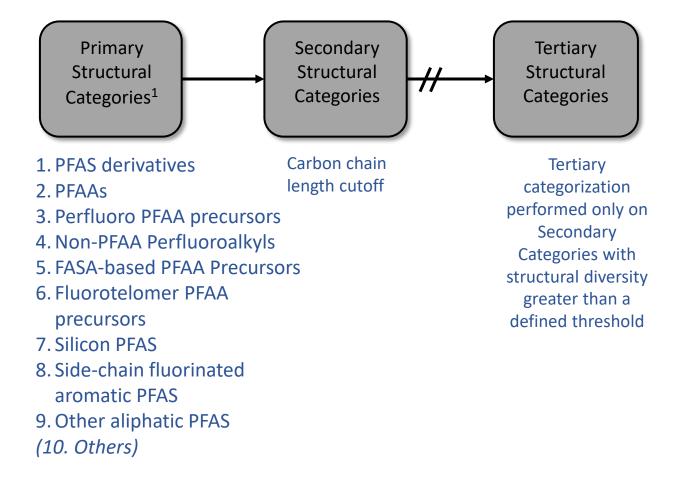
• Initial NTS PFAS ~6,500


- A structure that contains the unit R-CF₂-CF(R')(R''), where R, R', and R'' do not equal "H" and the carbon-carbon bond is saturated
- Chemicals with at least two adjacent carbon atoms, where one carbon is fully fluorinated and the other is at least partially fluorinated

• Updated TSCA / NTS PFAS ~12,500 + ~3,000 predicted degradants

• Substances that meet any of the following criteria:

(i) $R-(CF_2)-CF(R')R''$, where both the CF_2 and CF moieties are saturated carbons (ii) $R-CF_2OCF_2-R'$, where R and R' can either be F, O, or saturated carbons (iii) $CF_3C(CF_3)R'R''$, where R' and R'' can either be F or saturated carbons


- Consistent with the recent definition proposed in a Significant New Use Rule on inactive TSCA inventory PFAS (88 FR 4937) and the TSCA Reporting and Recordkeeping Requirements for PFAS rule (88 FR 70516)
- Filtering for NTS
 - Did not include substances with undefined structures
 - Eliminated substances where toxicity was likely not due to the fluorination

PFAS Structural Filters

Chemical Grouping– development of the PFAS categories

- Detailed presentation by Dr. Grace Patlewicz on Day 2
- EPA used computer software developed by Su and Rajan¹ to assign the starting list of PFAS into nine primary categories based on their structure
- PFAS that did not meet the conditions of membership for one of the primary categories were placed into an "Others" category
- Additional structural filters further grouped similar compounds
- Result was 90 terminal categories
- Numbers of PFAS in each terminal category ranges

¹Su, A., Rajan, K. A database framework for rapid screening of structure-function relationships in PFAS chemistry. Sci Data 8:14, 2021

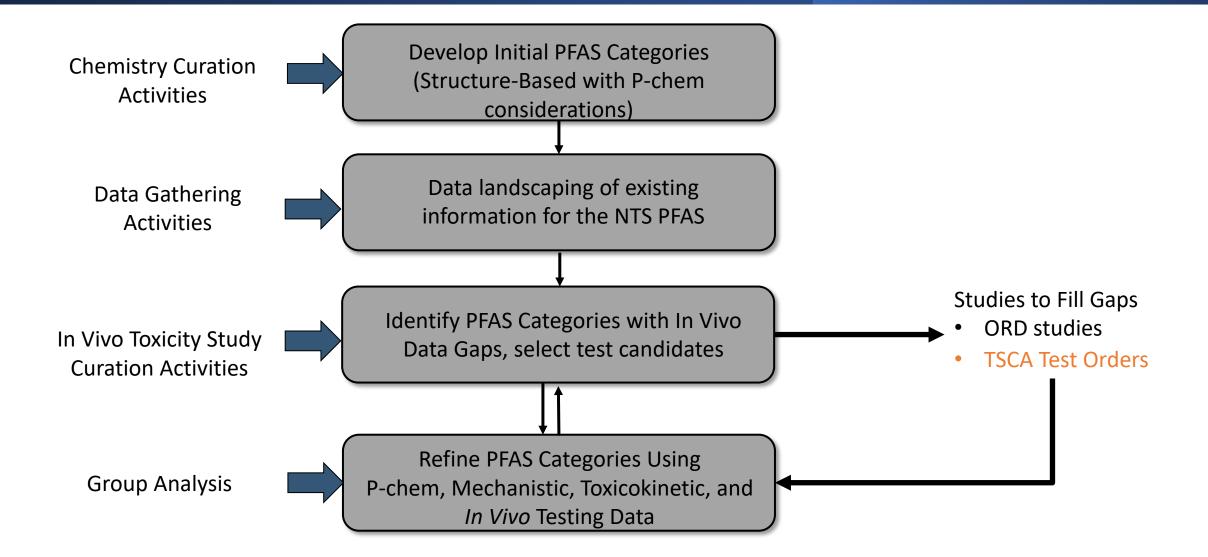
Data Gathering Activities– data landscaping of existing information

- For all discrete substances identified for the NTS grouping effort, two primary sources were searched to compile available information relevant to human health hazard
- Additional effort to compile physical-chemical property information- experimental and predicted by OPERA²

Data sources

- a. ToxVaIDB³ public
- b. TSCA Chemical Information System

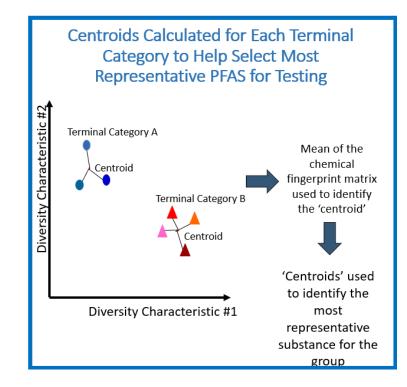
Human Health-relevant study categories


- a. Acute
- b. Subchronic
- c. Chronic including Cancer Bioassays
- d. Developmental
- e. Reproductive
- f. Immunotoxicity
- g. Neurotoxicity
- h. Toxicokinetics
- i. Genotox/Mutagenicity
- j. Sensitization/Irritation
- k. (biomonitoring)

Physical Chemical property information

- a. Boiling point
- b. Melting point
- c. Vapor Pressure
- d. pKa
- e. Water solubility
- f. Kow
- g. Hydrolysis

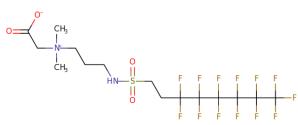
² Mansouri K, Grulke CM, Judson RS, Williams AJ. OPERA models for predicting physicochemical properties and environmental fate endpoints. J Cheminform. 2018 Mar 8;10(1):10 ³ Data is accessible from EPA's CompTox Chemicals Dashboard www.epa.gov/comptox-tools/comptox-chemicals-dashboard


Overview of the NTS Process

Candidate Selection

Factors considered in selecting PFAS for Testing (TSCA Section 4 Test Orders)

- Inventory status / availability of a recipient
- Data poorness of terminal category
 - First phase of NTS is focused on human health-related toxicity concerns
 - Looked at availability of in vivo rodent study information
- Known or suspected exposure concerns
 - Chemical Data Reporting (CDR)
 - Monitoring information
- Representativeness of members of its structural category
 - To be described in detail in later presentation by Dr. Patlewicz
- Other EPA program data needs
- Predicted or known physical state

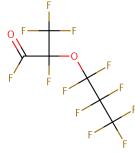


Test Orders

EPA has issued 3 PFAS Test Orders (and another is imminent):

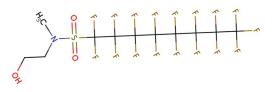
6:2 Fluorotelomer sulfonamide betaine (6:2 FTSB)

- CASRN 34455-29-3
- Surface-active agent
- Used in fire-fighting foams
- Yearly production > 25,000 lbs



Trifluoro(trifluoromethyl)oxirane (HFPO)

- CASRN 428-59-1
- Epoxide gas
- Reaction intermediate
- Yearly production > 1M lbs


2,3,3,3-tetrafluoro-2-heptafluoropropoxy) propanoyl fluoride (HFPO-DAF)

- CASRN 2062-98-8
- Precursor for GenX
- Yearly production > 1M lbs

1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Heptadecafluoro-N-(2hydroxyethyl)-N-methyloctane-1-sulfonamide (NMeFOSE)

- CASRN 24448-09-7
- Found in biosolids, environmental media, indoor dust

Testing details for these test order PFAS be discussed in the next presentation by Dr. Martin Phillips