

# Summary of Quarterly Operations (October through December) with 2020 Annual Summary

### EPA Contract No. EP-W-16-015

#### Introduction

This quarterly report summarizes results from the Clean Air Status and Trends Network (CASTNET) quality assurance/quality control (QA/QC) program for data collected during fourth quarter 2020. It also provides an annual summary that includes data from the three previous quarters. The various QA/QC criteria and policies are documented in the CASTNET Quality Assurance Project Plan (QAPP; Wood, 2020). The QAPP is comprehensive and includes standards and policies for all components of project operation from site selection through final data reporting. It is reviewed annually and updated as warranted.

### **Significant Events for 2020**

Wood recommended that Anne Glubis replace Ann Bernhardt as the CASTNET Quality Assurance Supervisor after Ann Bernhardt was promoted within the Wood corporate structure. EPA approved Wood's request for a change in Key Personnel, and Anne Glubis formally assumed the role of the CASTNET Quality Assurance Supervisor on January 8, 2020.

The annual management review presentation in support of the International Organization for Standardization (ISO)/International Electrotechnical Commission (IEC) 17025:2017 accreditation by the American Association for Laboratory Accreditation (A2LA) was completed and distributed to the management team. The meeting on the 2019 management review presentation, as required to maintain Wood's ISO/IEC accreditation by A2LA, was held May 14, 2020. Wood upper management continues to support CASTNET. In response to the meeting, the CASTNET Laboratory Operations Manager (LOM) is looking into options for Wood to purchase a new ammonia analyzer.

Documentation for the 2020 renewal of the ISO/IEC 17025:2017 accreditation by the A2LA was completed and submitted to A2LA. A2LA accepted Wood's annual submittal. Wood's 17025:2017 ISO/IEC accreditation is current through May 2021.

Routine review of records led to identification of a subset of site operators needing official training records. The site operators were contacted, and training materials were provided by Wood. Training materials included both technical and quality management system materials. Site operators also received training questionnaires for discussion with and approval by CASTNET field personnel.

Wood implemented a new procedure designed to identify site operators needing training. When site operator contact information is added or updated, a "ticket" is now generated to alert field personnel of a potential need for training. The ticket remains open and active until field personnel verify the site

operator is up-to-date with training. The CASTNET QA Manager developed a team-accessible matrix that includes site operator technical training and quality management system training.

The new ozone flagging codes were used beginning with the January 2020 ozone data submitted to AQS. The flags and AQS definitions are as follows:

| OZONE_F | AQS FLAG | AQS DEFINITION                 |
|---------|----------|--------------------------------|
| В       | BA       | Maintenance/routine repairs    |
| С       | BC       | Multi-point calibration        |
| F       | AV       | Power failure                  |
| Н       | AN       | Machine malfunction            |
| Ι       | DA       | Aberrant data                  |
| J       | AS       | Poor quality assurance results |
| М       | BG       | Missing data                   |
| Т       | AZ       | QC audit                       |
| Y       | AY       | QC control points (zero/span)  |

Wood's analytical laboratory uses a simulated rainwater standard reference material (SRM) designed for CASTNET target analytes as part of its QC checks. High Purity Standards supplies the SRM. Wood noted that its results did not match the SRM certificate of analysis while solutions provided by AccuStandard matched their provided certificates. The CASTNET LOM contacted the laboratories associated with ECCC and NADP and learned those laboratories were also having problems with the High Purity Standards SRM. The LOM contacted High Purity Standards who agreed to send a reformulation of the SRM.

MTL Corp ran out of nylon filters from Lot 709 and did not notify Wood of the impending change to Lot 710. Wood learned of the change from ECCC and ordered additional filters from Lot 710 to begin acceptance tests. The filters passed laboratory acceptance tests. The filters from Lot 710 were deployed at the MCK231, KY co-located site for comparison with Lot 709 filters. Field testing ran from March 3, 2020 through April 7, 2020. Results from the 5-week co-located field comparison of the MTL nylon filters from Lot 710 nylon filters. The precision of nylon sulfate measurements is historically low. Since measured concentrations were very low, Wood decided to extend the co-located comparison study for an additional four months, which began on June 2, 2020, and ran through the sampling week that began on September 29, 2020. Results from the longer study showed the two lots are comparable. Wood will begin using filters from Lot 710 for March 2021 sampling activities. Wood maintains approximately a one-year supply of filters in reserve to allow for acceptance testing and verification of comparability when changes occur.

The CASTNET QAPP Revision 9.3 was approved by EPA during March 2020.

Providing a safe working environment is one of Wood's goals. During March, Wood responded to the COVID-19 crisis by providing equipment and IT support for Wood personnel to work from home. Laboratory and field personnel began staggering hours in the respective laboratories to promote

social distancing. Additional cleaning is being done for frequently touched surfaces. CASTNET field operations adapted to the ongoing problems caused by the COVID-19 pandemic. Wood prepared COVID-19 safety guidelines for calibration and repair trips to CASTNET sites. The guidelines include personal protective equipment requirements and safety procedures. During 2020, calibrations were rescheduled as needed to adhere to stay-at-home safety precautions and state-level quarantine restrictions. Audits of sites by non-CASTNET personnel adhered to COVID-19 health and safety recommendations including social distancing.

The EEMS first quarter report indicated a siting criteria violation at the SUM156, FL site, which was observed using an EEMS remote controlled drone. Wood checked the site for trees and other obstacles and took photographs, which were provided to EPA. Wood coordinated with the U. S. Forest Service for removal of the trees that were in or near violation.

Wood implemented programming changes to the iCASTNET data management system. This application is used by field, data, and quality assurance personnel to manage field activities and data collection and validation. During June, ozone and trace gas data review and validation activities were done in duplicate using the normal procedure and iCASTNET to verify the accuracy of iCASTNET. As accuracy was verified, activities were transferred to iCASTNET. Additionally, electronic data review, validation summary, and data submittal forms were tested for utility and ease of use prior to being incorporated into the review process.

Wood field, data, and QA personnel discussed the handling of flagging for zero/span/precision (zsp) QC checks invalidated or not invalidated due to moisture. The majority of the zsp checks are stabilizing after a sufficient zero air purge. Comments included in iCASTNET problem tickets will clearly indicate which ones are stabilizing versus failed checks that indicate problems with ambient concentrations.

EPA CAMD contacted Wood for information on Wood's experience with Nafion dryers at CASTNET ozone sites. Wood provided EPA with information on both field and QA aspects of the dryers for EPA's Office of Research and Development.

The VPI120, VA site was relocated during July 2020. The new site location is within 10 kilometers of the old location, so the site retained its CASTNET and NADP site identification numbers. However, the new location is at a different elevation with different terrain, which required the site to change its AQS ID number.

Review and updating of the CASTNET QAPP continued during third quarter. One of the updates included changing the P-flag criterion from 100 ppb to 130 ppb for nine western sites based on a 5-year average of the daily maximum 8-hour average ozone concentration. A list of the sites was included in the draft of the CASTNET QAPP Revision 9.4, which was submitted to EPA on November 1, 2020.

### **Quarterly/Annual Summary**

Table 1 lists the quarters of data that were validated to Level 3 during 2020 by site calibration group. Table 2 lists the sites in each calibration group along with the usual semiannual, and in some cases, quarterly calibration schedule for each site. Due to the travel restrictions that resulted from the COVID-19 pandemic, sites were calibrated when travel was permitted, and calibration personnel were available. The EGB181, ON site, which is located in Canada, was subject to more extensive travel restrictions and went 13 months between calibrations. The sites in calibration group Eastern 2 (E-2), in the northeastern United States, were also located in areas with significant travel restrictions. The sixmonth calibration schedule for these sites was extended to about nine months.

Table 3 presents the measurement criteria for continuous field measurements. These criteria apply to the instrument challenges performed during site calibrations. Table 4 presents the measurement criteria for laboratory filter pack measurements. These criteria apply to the QC samples listed in the following section of this report. Table 5 presents the critical criteria for ozone monitoring. Table 6 presents the critical criteria for trace-level gas monitoring.

### Laboratory Intercomparison Results Summary

Wood's CASTNET laboratory regularly participates in the ECCC Proficiency Testing (PT) Program for Inorganic Environmental Substances. The results reported by the participating laboratories are evaluated for systematic bias and precision. Systematic bias is assessed using the Youden (1969) nonparametric analysis, while precision is calculated using algorithm A from the ISO standard 13528 (ISO, 2005). Laboratory results are considered systematically biased when individual parameters are ranked by the Youden analysis to be consistently and significantly higher or lower than the assigned value without regard to flagged results. The CASTNET laboratory's proficiency testing plan requires action for individual test results that are greater than three standard deviations from the assigned value, bias 5 percent or higher for a single parameter, three or more biased results of any magnitude in a single study, or a consecutive study result indicating bias of any magnitude for a given parameter.

Usually, Wood participates in two ECCC PT studies each year. Due to the COVID-19 pandemic and associated restrictions, ECCC only offered one PT study during 2020. During March 2020, Wood received results for sample analyses submitted for PT study 0115 for Rain and Soft Waters to the National Laboratory of Environmental Testing, a branch of the National Water Research Institute with ECCC that provides QA services. All results passed with no flags. Analyses of all parameters were rated as "good" for PT study 0115 (ECCC, 2020).

### **Quality Control Analysis Count**

The QC sample statistics presented in this report are for reference standards (RF) and continuing calibration verification spikes (CCV) used to assess accuracy and for replicate sample analyses (RP) used to assess "in-run" precision. In addition, laboratory method blanks (MB) containing reagents without a filter; laboratory blanks (LB) containing reagents and a new, unexposed filter; and field blanks (FB) containing reagents and an unexposed filter that was loaded into a filter pack assembly and shipped to and from the monitoring site while remaining in sealed packaging are also included. Tables 7 through 10 present the number of analyses in each category that were performed during each quarter of 2020.

#### Sample Receipt Statistics

Ninety-five percent of field samples from EPA-sponsored sites should be received by the CASTNET laboratory in Gainesville, FL no later than 14 days after removal from the sampling tower. Table 11 presents the relevant sample receipt statistics for each of the four quarters of 2020 together with an annual summary for each category. Due to issues arising from the pandemic and U.S. Postal Service policy decisions, mail delivery service was often delayed resulting in a 91 percent average for 2020. The annual average number of days to receipt for 2019 was 6.0 days. The annual average number of days.

### Data Quality Indicator (DQI) Results

Figures 1 through 3 present the results of RF, CCV, and RP QC sample analyses for fourth quarter 2020. All results were within the criteria listed in Table 4. Table 12 presents the percent recoveries and standard deviations for RF, CCV, and RP QC sample analyses for 2020. Quarterly averages are all within criteria.

Table 13 presents quarterly co-located filter pack precision results for data validated to Level 3 during the year. During fourth quarter 2019, The MARPD values exceeded the 20 percent criterion at ROM406/206 for NO<sub>3</sub>. Unlike the MCK131/231 site, which is sponsored entirely by EPA, the ROM406 site is sponsored by NPS and the ROM206 site is sponsored by EPA. Different site operators are used for each of the co-located Rocky Mountain sites. The sampling on/off times at these sites differ by many hours due to differing site operator schedules. These samples showed on/off time differences varying from 5 to 10 hours. Sampling times for the samples with largest percent difference varied two hours for one site and four hours the other. Statistical comparisons of the Rocky Mountain sites were compounded by low sample concentrations. The fourth quarter 2019 average NO<sub>3</sub> concentration for ROM406/206 was approximately three times the reporting limit. Results for MCK131/231, KY were within the criterion for all of the 11 parameters reported.

Figure 4 presents completeness statistics for continuous measurements validated to Level 3 during the year. Only five sites report the meteorological parameters included in Figure 4. Two of the five meteorological sites experienced significant damage during 2020. The BVL130, IL site was vandalized in early June 2020. The repairs were finalized in mid-June. The CHE185, OK site suffered a lightning strike in mid-April. Repairs were not finalized until early June because of shutdowns and restrictions in place due to the COVID-19 pandemic. As a result, sigma theta, wind direction, wind speed, and relative humidity averaged less than 90 percent completeness for 2020.

Table 14 presents summary statistics of critical criteria measurements at ozone sites collected during fourth quarter 2020. The statistics presented contain data validated at Level 2 and Level 3. All data associated with QC checks that fail to meet the criteria listed in Table 5 were or will be invalidated unless the cause of failure has no effect on ambient data collection, and passing results still meet frequency criteria. Results in shaded cells either exceed documented criteria or are otherwise notable. Table 15 presents observations associated with the shaded cell results in Table 14.

Table 16 presents summary statistics of critical criteria measurements at trace-level gas monitoring sites collected during fourth quarter 2020. The statistics presented contain data validated at Level 2

and Level 3. All data associated with QC checks that fail to meet the criteria listed in Table 6 were or will be invalidated unless the cause of failure has no effect on ambient data collection, and passing results still meet frequency criteria. Results in shaded cells either exceed documented criteria or are otherwise notable. Table 17 presents observations associated with the shaded cell results in Table 16.

# Laboratory Control Sample Analysis

The laboratory control sample (LCS) is a reagent blank spiked with the target analytes from the established analytical methods and carried through the same extraction process that field samples must undergo. The LCS is not required by the CASTNET QA/QC program. LCS analyses are performed by the laboratory to monitor for potential sample handling artifacts and provide a means to identify possible analyte loss from extraction to extraction. Figure 5 presents LCS analysis results for fourth quarter 2020. All recovery values were between 92.9 percent and 106.5 percent.

# **Blank Results**

Figures 6 through 8 present the results of MB, LB, and FB QC sample analyses for fourth quarter 2020. All fourth quarter results were within criteria (two times the reporting limit) listed in Table 4 with the exception of four potassium FB results. All of the FB exceeding the criterion were in the batch shipped for the May 26, 2020 sampling week. None of the associated field samples exhibited unusual measurements. Table 18 summarizes the record of filter blanks for 2020. All other blank QC checks in their respective batches were within criteria.

# Suspect/Invalid Filter Pack Samples

Filter pack samples that were flagged as suspect or invalid during each of the four quarters of 2020 are listed in Table 19. This table also includes associated site identification and a brief description of the reason the sample was flagged. During fourth quarter, 13 filter pack samples were invalidated.

# **Field Problem Count**

Table 20 presents counts of field problems affecting continuous data collection for more than one day for each quarter during 2020. The problem counts are sorted by a 30-, 60-, or 90-day period to resolution. A category for unresolved problems is also included. Time to resolution indicates the period taken to implement corrective action.

### **Field Calibration Results**

A summary of field calibration failures by parameter for each quarter of 2020 is listed in Table 21. Calibrations were performed at 15 sites during fourth quarter 2020. During 2020, all sites and parameters were within the criteria listed in Table 3 with the exception of the parameters at the eight sites that are listed in Table 21.

Table 22 presents field accuracy results for 2020 based on instrument challenges performed using independent reference standards during site calibration visits. Each parameter was within its criterion with at least 90 percent frequency except delta temperature (ambient) at 87.5 percent and solar radiation at 85.7 percent frequency. Per CASTNET project protocols, data are flagged but still considered valid if the calibration criterion is not exceeded by more than its magnitude (i.e., if within

two times the criterion). All calibration failures reported in 2020 for the indicated parameters were within two times the criterion.

#### References

- American Society for Testing and Materials (ASTM). 2008. ASTM E29-08, "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications." ASTM International, West Conshohocken, PA, DOI:10.1520/E0029-08. www.astm.org.
- Environment and Climate Change Canada (ECCC) Water Science and Technology Directorate. 2020. Rain and Soft Waters PT Study 0115 Report. Proficiency Testing Program, Burlington, Ontario, Canada. Prepared for Wood Environment and Infrastructure, Inc., Newberry, FL, USA.
- International Organization for Standardization (ISO). 2005. Statistical Methods for the Use in Proficiency Testing by Interlaboratory Comparisons, Annex C, Robust Analysis, Section C.1: Algorithm A. Standard 13528. ISO 13528:2005(E).
- U.S. Environmental Protection Agency (EPA). 2017. Title 40 *Code of Federal Regulations* Part 58, "Appendix A to Part 58 – Quality Assurance Requirements for Monitors used in Evaluations of National Ambient Air Quality Standards."
- Wood Environment & Infrastructure Solutions, Inc. (Wood) 2020. Clean Air Status and Trends Network (CASTNET) Quality Assurance Project Plan (QAPP) Revision 9.3. Prepared for U.S. Environmental Protection Agency (EPA), Office of Air and Radiation, Clean Air Markets Division, Washington, DC. Contract No. EP-W-16-015. Gainesville, FL. https://java.epa.gov/castnet/documents.do.
- Youden, W.J. (Ku, H.H., ed). 1969. *Precision Measurement and Calibration*. NBS Special Publication 300-Volume 1. U.S. Government Printing Office, Washington, DC.

| Calibration<br>Group*  | Months<br>Available              | Number of<br>Months | Complete<br>Quarters               | Number of<br>Quarters |
|------------------------|----------------------------------|---------------------|------------------------------------|-----------------------|
| SE-4/MW-6 <sup>+</sup> | July 2019 –<br>June 2020         | 12                  | Quarter 3 2019 –<br>Quarter 2 2020 | 4                     |
| E-1/SE-5               | August 2019 –<br>July 2020       | 12                  | Quarter 4 2019 –<br>Quarter 2 2020 | 3                     |
| MW-7/W-9               | September 2019 –<br>August 2020  | 12                  | Quarter 4 2019 –<br>Quarter 2 2020 | 3                     |
| E-2/MW-8               | October 2019 –<br>September 2020 | 12                  | Quarter 4 2019 –<br>Quarter 3 2020 | 4                     |
| E-3/W-10 <sup>‡</sup>  | May 2019 –<br>April 2020         | 12                  | Quarter 3 2019 –<br>Quarter 1 2020 | 3                     |

#### Table 1 Data Validated to Level 3 through Fourth Quarter 2020

**Notes:** \* The sites contained in each calibration group are listed in Table 2.

+ Contains MCK131/231 co-located pair

<sup>+</sup> Contains ROM206 of the ROM406/ROM206 co-located pair

#### Table 2 Field Calibration Schedule for 2020

| Calibration | Months          | Sites                   |                  |                         |            |            |  |
|-------------|-----------------|-------------------------|------------------|-------------------------|------------|------------|--|
| Group       | Calibrated      |                         | Calibrated       |                         |            |            |  |
|             |                 | Ea                      | stern Sites (22  | Total)                  |            |            |  |
| E-1         | February/August | BEL116, MD              | WSP144, NJ       | ARE 128, PA             | PED108, VA |            |  |
| (8 Sites)   |                 | BWR139, MD              | CTH110, NY       | PSU106, PA              | VPI120, VA |            |  |
| E-2         | April/October   | ABT147, CT              | WST109, NH       | HWF187, NY <sup>1</sup> | WFM105, NY |            |  |
| (9 Sites)   |                 | ASH135, ME              | CAT175, NY       | NIC001, NY              | EGB181, ON | UND002, VT |  |
| E-3         | May/November    | KEF112, PA              | LRL117, PA       | CDR119, WV              |            |            |  |
| (5 Sites)   |                 | MKG113, PA              | PAR107, WV       |                         |            |            |  |
|             |                 | South                   | neastern Sites ( | 11 Total)               |            |            |  |
| SE-4        | January/July    | SND152, AL              | BFT142, NC       | COW137, NC              |            |            |  |
| (6 Sites)   |                 | GAS153, GA              | CND125, NC       | SPD111, TN              |            |            |  |
| SE-5        | February/August | CAD150, AR              | SUM156, FL       | DUK008, NC <sup>2</sup> |            |            |  |
| (5 Sites)   |                 | IRL141, FL              | CVL151, MS       |                         |            |            |  |
|             |                 | Midv                    | western Sites (1 | .9 Total)               |            |            |  |
| MW-6        | January/July    | CDZ171, KY              | MCK131, KY       | PNF126, NC <sup>1</sup> |            |            |  |
| (6 Sites)   |                 | СКТ136, КҮ              | MCK231, KY       | ESP127, TN              |            |            |  |
| MW-7        | March/September | ALH157, IL              | STK138, IL       | RED004, MN              | OXF122, OH | PRK134, WI |  |
| (9 Sites)   |                 | BVL130, IL <sup>3</sup> | VIN140, IN       | DCP114, OH              | QAK172, OH |            |  |
| MW-8        | April/October   | SAL133, IN              | ANA115, MI       |                         |            |            |  |
| (4 Sites)   |                 | HOX148, MI              | UVL124, MI       |                         |            |            |  |
|             |                 | We                      | estern Sites (11 | Total)                  |            |            |  |
| W-9         | March/September | KNZ184, KS              | CHE185, OK       | ALC188, TX              |            |            |  |
| (5 Sites)   |                 | KIC003, KS              | SAN189, NE       |                         |            |            |  |
| W-10        | May/November    | GTH161, CO              | NPT006, ID       | PND165, WY <sup>2</sup> |            |            |  |
| (6 Sites)   |                 | ROM206, CO <sup>2</sup> | CNT169, WY       | PAL190, TX              |            |            |  |

**Notes:** <sup>1</sup> Trace-level gas calibrations are performed quarterly in January, April, July, and October.

<sup>2</sup> Trace-level gas calibrations are performed quarterly in February, May, August, and November.

<sup>3</sup> Trace-level gas calibrations are performed quarterly in March, June, September, and December.

| Measu                  | rement                       | Crite                                                                                     | eria <sup>1</sup>                                                                       |  |
|------------------------|------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| Parameter <sup>2</sup> | Method                       | Precision                                                                                 | Accuracy                                                                                |  |
| Filter pack flow       | Mass flow controller         | ± 10%                                                                                     | ± 5%                                                                                    |  |
| Ozone <sup>3</sup>     | UV absorbance                | All points within ± 2% of full scale of best fit<br>straight line<br>Linearity error < 5% |                                                                                         |  |
| Wind speed             | Anemometer                   | ± 0.5 m/s                                                                                 | The greater of $\pm$ 0.5 m/s<br>for winds < 5 m/s or<br>$\pm$ 5% for winds $\geq$ 5 m/s |  |
| Wind direction         | Wind vane                    | ± 5°                                                                                      | ± 5°                                                                                    |  |
| Sigma theta            | Wind vane                    | Undefined                                                                                 | Undefined                                                                               |  |
| Ambient temperature    | Platinum RTD                 | ± 1.0°C                                                                                   | ± 0.5°C                                                                                 |  |
| Delta temperature      | Platinum RTD                 | ± 0.5°C                                                                                   | ± 0.5°C                                                                                 |  |
| Relative humidity      | Thin film capacitor          | ± 10% (of full scale)                                                                     | ± 10%                                                                                   |  |
| Precipitation          | Tipping bucket rain<br>gauge | ± 10% (of reading)                                                                        | ± 0.05 inch <sup>4</sup>                                                                |  |
| Solar radiation        | Pyranometer                  | ± 10% (of reading taken<br>at local noon)                                                 | ± 10%                                                                                   |  |
| Surface wetness        | Conductivity bridge          | Undefined                                                                                 | Undefined                                                                               |  |

| Table 3 Data Quality | / Indicators for CASTNET | <b>Continuous Measurements</b> |
|----------------------|--------------------------|--------------------------------|
|----------------------|--------------------------|--------------------------------|

**Notes:** °C = degrees Celsius

m/s = meters per second

RTD = resistance-temperature device

UV = ultraviolet

<sup>1</sup>Precision criteria apply to co-located instruments, and accuracy criteria apply to calibration of instruments. Co-located precision criteria do not apply to CASTNET sites that are configured and operated in accordance with Part 58 of Title 40 of the *Code of Federal Regulations* (EPA, 2017)

<sup>2</sup>Meteorological parameters are only measured at five of the EPA-sponsored CASTNET sites: IRL141, FL: BVL130, IL; BEL116, MD; CHE185, OK; and PND165, WY.

<sup>3</sup>Ozone is not measured at eight EPA-sponsored CASTNET sites: KIC003, KS; KNZ184, KS; RED004, MN; EGB181, ON; CAT175, NY; NIC001, NY; WFM105, NY; and UND002, VT.

<sup>4</sup>For target value of 0.50 inch

|                                          |         | Precision <sup>1</sup> | Accuracy <sup>2</sup> | Nomina<br>Reporting I | al<br>Limits |
|------------------------------------------|---------|------------------------|-----------------------|-----------------------|--------------|
| Analyte                                  | Method  | (MARPD)                | (%)                   | mg/L                  | μg/Filter    |
| Ammonium (NH <sup>+</sup> <sub>4</sub> ) | AC      | 20                     | 90–110                | 0.020*                | 0.5          |
| Sodium (Na <sup>+</sup> )                | ICP-OES | 20                     | 95–105                | 0.005                 | 0.125        |
| Potassium ( $K^{*}$ )                    | ICP-OES | 20                     | 95–105                | 0.006                 | 0.15         |
| Magnesium (Mg <sup>2+</sup> )            | ICP-OES | 20                     | 95–105                | 0.003                 | 0.075        |
| Calcium (Ca <sup>2+</sup> )              | ICP-OES | 20                     | 95–105                | 0.006                 | 0.15         |
| Chloride (Cl <sup>-</sup> )              | IC      | 20                     | 95–105                | 0.020                 | 0.5          |
| Nitrate (NO <sub>3</sub> )               | IC      | 20                     | 95–105                | 0.008*                | 0.2          |
| Sulfate (SO <sub>4</sub> <sup>2-</sup> ) | IC      | 20                     | 95–105                | 0.040                 | 1.0          |

#### **Table 4** Data Quality Indicators for CASTNET Laboratory Measurements

Notes: <sup>1</sup> This column lists precision goals for both network precision calculated from co-located filter samples and laboratory precision based on replicate samples for samples > five times the reporting limit. The criterion is ± the reporting limit if the sample is ≤ five times the reporting limit.

<sup>2</sup> This column lists laboratory accuracy goals based on reference standards and continuing calibration verification spikes. The criterion is 90–110 percent for ICP-OES reference standards.

- AC = automated colorimetry
- IC = ion chromatography
- ICP-OES = inductively coupled plasma-optical emission spectrometry
- MARPD = mean absolute relative percent difference
- mg/L = milligrams per liter
- µg/Filter = micrograms per filter
  - = as nitrogen

Values are rounded according to American Society for Testing and Materials (ASTM) E29-08, "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" (ASTM, 2008).

For more information on analytical methods and associated precision and accuracy criteria, see the CASTNET QAPP, (Wood, 2020).

| Type of Check   | Analyzer Response                                                        |
|-----------------|--------------------------------------------------------------------------|
| Zero            | Less than $\pm$ 3.1 parts per billion (ppb)                              |
| Span            | Less than $\pm$ 7.1 percent between supplied and observed concentrations |
| Single Point QC | Less than $\pm$ 7.1 percent between supplied and observed concentrations |

#### Table 5 Ozone Critical Criteria<sup>\*</sup>

**Notes:** \* Applies to CASTNET sites that are configured and operated in accordance with Part 58 of Title 40 of the *Code of Federal Regulations* (EPA, 2017). The minimum frequency for these checks is once every two weeks.

Values are rounded according to ASTM E29-08, "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" (ASTM, 2008).

| Table 6 | Trace-level | Gas N | Aonitorina    | Critical | Criteria <sup>*</sup> |
|---------|-------------|-------|---------------|----------|-----------------------|
| Table 0 | Trace level | Uas r | viornitorning | Cintical | Cintenia              |

|                 | Analyzer Response        |                                                                       |  |  |  |  |
|-----------------|--------------------------|-----------------------------------------------------------------------|--|--|--|--|
| Parameter       | Zero Check               | Span Check / Single Point QC Check                                    |  |  |  |  |
| SO <sub>2</sub> | Less than $\pm$ 1.51 ppb |                                                                       |  |  |  |  |
| NOy             | Less than $\pm$ 1.51 ppb | Less than ± 10.1 percent between supplied and observed concentrations |  |  |  |  |
| СО              | Less than $\pm$ 30.1 ppb |                                                                       |  |  |  |  |

**Notes:** \*Applies to CASTNET sites that are configured and operated in accordance with Part 58 of Title 40 of the *Code of Federal Regulations* (EPA, 2017). The minimum frequency for these checks is once every two weeks.

Values are rounded according to ASTM E29-08, "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" (ASTM, 2008).

- SO<sub>2</sub> = sulfur dioxide
- $NO_y$  = total reactive oxides of nitrogen
- CO = carbon monoxide
- ppb = parts per billion

### Table 7 QC Analysis Count for First Quarter 2020

| Filtor    |                               | RF    | CCV<br>Samplo | RP<br>Samplo | MB    | LB<br>Samplo | FB    |
|-----------|-------------------------------|-------|---------------|--------------|-------|--------------|-------|
| Туре      | Parameter                     | Count | Count         | Count        | Count | Count        | Count |
| Teflon    | SO <sub>4</sub> <sup>2-</sup> | 75    | 211           | 89           | 18    | 28           | 93    |
|           | NO <sub>3</sub>               | 75    | 211           | 89           | 18    | 28           | 93    |
|           | $NH_4^+$                      | 36    | 184           | 86           | 18    | 26           | 93    |
|           | Cl <sup>-</sup>               | 75    | 211           | 89           | 18    | 28           | 93    |
|           | Ca <sup>2+</sup>              | 36    | 185           | 86           | 18    | 26           | 93    |
|           | Mg <sup>2+</sup>              | 36    | 185           | 86           | 18    | 26           | 93    |
|           | Na⁺                           | 36    | 185           | 86           | 18    | 26           | 93    |
|           | K⁺                            | 36    | 185           | 86           | 18    | 26           | 93    |
| Nylon     | SO <sub>4</sub> <sup>2-</sup> | 60    | 214           | 90           | 18    | 28           | 93    |
|           | NO <sub>3</sub>               | 60    | 214           | 90           | 18    | 28           | 93    |
| Cellulose | SO <sub>4</sub> <sup>2-</sup> | 51    | 184           | 84           | 17    | 26           | 93    |

| Filter<br>Type | Parameter                     | RF<br>Sample<br>Count | CCV<br>Sample<br>Count | RP<br>Sample<br>Count | MB<br>Sample<br>Count | LB<br>Sample<br>Count | FB<br>Sample<br>Count |
|----------------|-------------------------------|-----------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Teflon         | SO <sub>4</sub> <sup>2-</sup> | 67                    | 192                    | 81                    | 17                    | 26                    | 92                    |
|                | NO <sub>3</sub>               | 67                    | 192                    | 81                    | 17                    | 26                    | 92                    |
|                | $NH_4^+$                      | 34                    | 176                    | 81                    | 17                    | 26                    | 92                    |
|                | Cl⁻                           | 67                    | 192                    | 81                    | 17                    | 26                    | 92                    |
|                | Ca <sup>2+</sup>              | 34                    | 177                    | 81                    | 17                    | 26                    | 92                    |
|                | Mg <sup>2+</sup>              | 34                    | 177                    | 81                    | 17                    | 26                    | 92                    |
|                | Na <sup>+</sup>               | 34                    | 177                    | 81                    | 17                    | 26                    | 92                    |
|                | K <sup>+</sup>                | 34                    | 177                    | 81                    | 17                    | 26                    | 92                    |
| Nylon          | SO <sub>4</sub> <sup>2-</sup> | 46                    | 183                    | 78                    | 16                    | 24                    | 92                    |
|                | NO <sub>3</sub>               | 46                    | 183                    | 78                    | 16                    | 24                    | 92                    |
| Cellulose      | SO <sub>4</sub> <sup>2-</sup> | 47                    | 171                    | 78                    | 16                    | 26                    | 92                    |

**Table 8** QC Analysis Count for Second Quarter 2020

### **Table 9** QC Analysis Count for Third Quarter 2020

|           |                               | RF     | CCV    | RP     | MB     | LB     | FB     |
|-----------|-------------------------------|--------|--------|--------|--------|--------|--------|
| Filter    |                               | Sample | Sample | Sample | Sample | Sample | Sample |
| Туре      | Parameter                     | Count  | Count  | Count  | Count  | Count  | Count  |
| Teflon    | SO <sub>4</sub> <sup>2-</sup> | 68     | 197    | 81     | 18     | 26     | 92     |
|           | NO <sub>3</sub>               | 68     | 197    | 81     | 18     | 26     | 92     |
|           | $NH_4^+$                      | 34     | 179    | 81     | 17     | 26     | 92     |
|           | Cl⁻                           | 68     | 197    | 81     | 18     | 26     | 92     |
|           | Ca <sup>2+</sup>              | 34     | 180    | 81     | 17     | 26     | 92     |
|           | Mg <sup>2+</sup>              | 34     | 180    | 81     | 17     | 26     | 92     |
|           | Na⁺                           | 34     | 180    | 81     | 17     | 26     | 92     |
|           | K⁺                            | 34     | 180    | 81     | 17     | 26     | 92     |
| Nylon     | SO <sub>4</sub> <sup>2-</sup> | 49     | 188    | 78     | 16     | 26     | 92     |
|           | NO <sub>3</sub>               | 49     | 188    | 78     | 16     | 26     | 92     |
| Cellulose | SO <sub>4</sub> <sup>2-</sup> | 47     | 172    | 79     | 16     | 26     | 92     |

|           |                               | RF     | CCV    | RP     | MB     | LB     | FB     |
|-----------|-------------------------------|--------|--------|--------|--------|--------|--------|
| Filter    |                               | Sample | Sample | Sample | Sample | Sample | Sample |
| Туре      | Parameter                     | Count  | Count  | Count  | Count  | Count  | Count  |
| Teflon    | SO <sub>4</sub> <sup>2-</sup> | 67     | 180    | 75     | 17     | 22     | 77     |
|           | NO <sub>3</sub>               | 67     | 180    | 75     | 17     | 22     | 77     |
|           | $NH_4^+$                      | 32     | 161    | 74     | 16     | 22     | 77     |
|           | Cl⁻                           | 67     | 180    | 75     | 17     | 22     | 77     |
|           | Ca <sup>2+</sup>              | 32     | 165    | 74     | 16     | 22     | 77     |
|           | Mg <sup>2+</sup>              | 32     | 165    | 74     | 16     | 22     | 77     |
|           | Na⁺                           | 32     | 165    | 74     | 16     | 22     | 77     |
|           | K <sup>+</sup>                | 32     | 165    | 74     | 16     | 22     | 77     |
| Nylon     | SO <sub>4</sub> <sup>2-</sup> | 48     | 184    | 77     | 17     | 22     | 77     |
|           | NO <sub>3</sub>               | 48     | 184    | 77     | 17     | 22     | 77     |
| Cellulose | SO <sub>4</sub> <sup>2-</sup> | 44     | 154    | 69     | 16     | 22     | 77     |

**Table 10** QC Analysis Count for Fourth Quarter 2020

### Table 11 Filter Pack Receipt Summary for 2020

| Description                                          | First Quarter | Second<br>Quarter | Third Quarter | Fourth<br>Quarter | Annual<br>Summary |
|------------------------------------------------------|---------------|-------------------|---------------|-------------------|-------------------|
| Count of samples received<br>more than 14 days after | 17            | 22                | 00            | 101               | 250               |
| removal from tower:                                  | 1/            | 33                | 88            | 121               | 259               |
| Count of all samples received:                       | 820           | 662               | 730           | 673               | 2885              |
| Fraction of samples received within 14 days:         | 0.979         | 0.950             | 0.879         | 0.820             | 0.910             |
| Average interval in days:                            | 6.937         | 7.285             | 9.359         | 10.247            | 8.457*            |
| First receipt date:                                  | 01-03-2020    | 04-01-2020        | 07-01-2020    | 10-01-2020        | 01-03-2020        |
| Last receipt date:                                   | 03-31-2020    | 06-16-2020        | 09-18-2020    | 12-28-2020        | 12-28-2020        |

Note: Sample shipments for the Egbert, Ontario site (EGB181) are in groups of four. Samples associated with EGB181 are excluded from this statistic.

\*annual average

|             |                               | Sample | Reference<br>e <sup>1</sup> Recover | ſy (%R)            | Contin<br>Verificat | Continuing Calibration<br>Verification Samples (%R) |                    |      | In-Run Replicate <sup>2</sup><br>(RPD) |                    |  |
|-------------|-------------------------------|--------|-------------------------------------|--------------------|---------------------|-----------------------------------------------------|--------------------|------|----------------------------------------|--------------------|--|
| Filter Type | Parameter                     | Mean   | Std. Dev.                           | Count <sup>3</sup> | Mean                | Std. Dev.                                           | Count <sup>3</sup> | Mean | Std. Dev.                              | Count <sup>3</sup> |  |
| Teflon      | SO <sub>4</sub> <sup>2-</sup> | 100.68 | 1.72                                | 277                | 101.16              | 0.99                                                | 780                | 1.25 | 1.22                                   | 326                |  |
|             | NO <sup>-</sup> <sub>3</sub>  | 101.80 | 1.24                                | 277                | 99.16               | 0.95                                                | 780                | 1.83 | 1.83                                   | 326                |  |
|             | $NH_4^+$                      | 100.01 | 1.49                                | 136                | 100.24              | 1.42                                                | 700                | 0.63 | 0.75                                   | 322                |  |
|             | Ca <sup>2+</sup>              | 99.78  | 2.14                                | 136                | 100.58              | 1.02                                                | 707                | 1.58 | 2.79                                   | 322                |  |
|             | $Mg^{2+}$                     | 99.59  | 1.31                                | 136                | 99.93               | 0.81                                                | 707                | 1.83 | 2.18                                   | 322                |  |
|             | $Na^+$                        | 96.95  | 1.28                                | 136                | 99.91               | 0.94                                                | 707                | 1.31 | 1.86                                   | 322                |  |
|             | $K^{+}$                       | 97.56  | 2.55                                | 136                | 99.88               | 0.76                                                | 707                | 1.92 | 2.03                                   | 322                |  |
|             | Cl                            | 100.56 | 1.51                                | 277                | 102.77              | 0.88                                                | 780                | 2.07 | 1.82                                   | 326                |  |
| Nylon       | SO <sub>4</sub> <sup>2-</sup> | 101.92 | 1.28                                | 203                | 101.00              | 1.39                                                | 769                | 4.69 | 3.74                                   | 323                |  |
|             | NO <sub>3</sub>               | 101.66 | 1.43                                | 203                | 98.81               | 1.58                                                | 769                | 1.89 | 2.28                                   | 323                |  |
| Cellulose   | SO <sub>4</sub> <sup>2-</sup> | 102.15 | 0.89                                | 189                | 101.43              | 0.73                                                | 681                | 1.75 | 1.93                                   | 310                |  |

#### Table 12 Filter Pack QC Summary for 2020

**Notes:** % R = percent recovery

RPD = relative percent difference

<sup>1</sup>Results of reference sample analyses provide accuracy estimates <sup>2</sup>Results of replicate analyses provide precision estimates <sup>3</sup>Number of QC Samples

······

| Quarter | SO <sub>4</sub> <sup>2-</sup> | NO <sub>3</sub> | $NH_4^+$ | Ca <sup>2+</sup> | Mg <sup>2+</sup> | Na⁺   | K <sup>+</sup> | Cl⁻   | HNO <sub>3</sub> | SO <sub>2</sub> | Total<br>NO <sub>3</sub> |
|---------|-------------------------------|-----------------|----------|------------------|------------------|-------|----------------|-------|------------------|-----------------|--------------------------|
| MCK131/ | MCK131/231, KY                |                 |          |                  |                  |       |                |       |                  |                 |                          |
| 2019 Q3 | 1.96                          | 6.84            | 1.84     | 2.89             | 4.01             | 2.38  | 3.01           | 0.95  | 3.48             | 7.29            | 3.71                     |
| 2019 Q4 | 2.87                          | 3.53            | 2.21     | 4.47             | 5.24             | 5.11  | 8.04           | 4.37  | 4.08             | 2.84            | 1.79                     |
| 2020 Q1 | 2.90                          | 3.53            | 3.24     | 4.98             | 6.11             | 2.61  | 2.87           | 4.30  | 4.44             | 4.82            | 2.70                     |
| 2020 Q2 | 2.75                          | 6.86            | 2.06     | 5.87             | 5.16             | 5.09  | 6.01           | 1.06  | 4.36             | 5.71            | 2.54                     |
| Average | 2.62                          | 5.19            | 2.34     | 4.55             | 5.13             | 3.80  | 4.98           | 2.67  | 4.09             | 5.17            | 2.69                     |
| ROM406/ | 206, CO                       |                 |          |                  |                  |       |                |       |                  |                 |                          |
| 2019 Q3 | 4.07                          | 10.80           | 6.04     | 3.93             | 4.66             | 5.88  | 7.18           | 2.79  | 4.20             | 9.36            | 4.11                     |
| 2019 Q4 | 3.50                          | 27.98           | 9.03     | 11.29            | 9.97             | 9.61  | 12.29          | 7.32  | 10.22            | 9.57            | 11.08                    |
| 2020 Q1 | 4.66                          | 17.60           | 7.51     | 6.27             | 11.62            | 15.96 | 12.11          | 16.85 | 12.53            | 11.35           | 3.12                     |
| 2020 Q2 | 4.02                          | 11.23           | 5.66     | 5.95             | 9.15             | 10.90 | 10.83          | 10.00 | 8.42             | 9.57            | 5.66                     |
| Average | 4.06                          | 16.90           | 7.06     | 6.86             | 8.85             | 10.59 | 10.60          | 9.24  | 8.84             | 9.96            | 5.99                     |

Table 13 Precision Results for Third Quarter 2016 through Second Quarter 2020

# Table 14 Ozone QC Summary for Fourth Quarter 2020 (1 of 2)

| Site ID    | % Span<br>Pass <sup>1</sup> | Span  %D  <sup>2</sup> | % Single<br>Point QC<br>Pass <sup>1</sup> | Single<br>Point QC<br> %D  <sup>2</sup> | % Zero<br>Pass <sup>1</sup> | Zero<br>Average<br>(ppb) <sup>2</sup> |
|------------|-----------------------------|------------------------|-------------------------------------------|-----------------------------------------|-----------------------------|---------------------------------------|
| ABT147, CT | 100.00                      | 1.43                   | 100.00                                    | 1.44                                    | 100.00                      | 0.19                                  |
| ALC188, TX | 97.85                       | 3.34                   | 98.91                                     | 2.74                                    | 100.00                      | 0.33                                  |
| ALH157, IL | 95.74                       | 4.36                   | 95.74                                     | 3.93                                    | 95.74                       | 0.82                                  |
| ANA115, MI | 100.00                      | 0.74                   | 100.00                                    | 1.48                                    | 100.00                      | 0.12                                  |
| ARE128, PA | 100.00                      | 1.04                   | 100.00                                    | 1.08                                    | 100.00                      | 0.09                                  |
| ASH135, ME | 98.92                       | 1.59                   | 100.00                                    | 0.58                                    | 100.00                      | 0.22                                  |
| BEL116, MD | 100.00                      | 0.61                   | 100.00                                    | 0.92                                    | 100.00                      | 0.41                                  |
| BFT142, NC | 100.00                      | 1.54                   | 100.00                                    | 1.31                                    | 98.94                       | 0.59                                  |
| BVL130, IL | 100.00                      | 0.90                   | 100.00                                    | 0.75                                    | 100.00                      | 0.12                                  |
| BWR139, MD | 100.00                      | 1.23                   | 100.00                                    | 1.25                                    | 100.00                      | 0.74                                  |
| CAD150, AR | 100.00                      | 0.97                   | 100.00                                    | 1.53                                    | 100.00                      | 0.37                                  |
| CDR119, WV | 100.00                      | 1.43                   | 100.00                                    | 1.29                                    | 100.00                      | 0.21                                  |
| CDZ171, KY | 100.00                      | 1.14                   | 100.00                                    | 1.40                                    | 100.00                      | 0.23                                  |
| CKT136, KY | 100.00                      | 0.95                   | 100.00                                    | 1.02                                    | 100.00                      | 0.13                                  |
| CND125, NC | 100.00                      | 1.69                   | 100.00                                    | 1.09                                    | 100.00                      | 0.79                                  |
| CNT169, WY | 100.00                      | 0.68                   | 100.00                                    | 0.69                                    | 100.00                      | 0.21                                  |
| COW137, NC | 100.00                      | 0.66                   | 100.00                                    | 1.28                                    | 100.00                      | 0.46                                  |
| CTH110, NY | 100.00                      | 3.52                   | 100.00                                    | 3.80                                    | 100.00                      | 0.14                                  |
| CVL151, MS | 100.00                      | 0.74                   | 100.00                                    | 0.82                                    | 100.00                      | 0.37                                  |
| DCP114, OH | 76.09                       | 18.27                  | 75.00                                     | 17.22                                   | 83.33                       | 1.44                                  |
| ESP127, TN | 99.01                       | 1.11                   | 99.01                                     | 0.74                                    | 100.00                      | 0.30                                  |

Wood Environment & Infrastructure Solutions, Inc. - Project No. 6064204003

|            | Q/ Crook                    |                        | % Single                      | Single                        | 0/ 7                        | Zero                          |
|------------|-----------------------------|------------------------|-------------------------------|-------------------------------|-----------------------------|-------------------------------|
| Site ID    | % Span<br>Pass <sup>1</sup> | Span l%Dl <sup>2</sup> | Point QC<br>Pass <sup>1</sup> | Point QC<br>I%DI <sup>2</sup> | % Zero<br>Pass <sup>1</sup> | Average<br>(ppb) <sup>2</sup> |
| GAS153, GA | 93.00                       | 2.56                   | 100.00                        | 1.85                          | 100.00                      | 0.50                          |
| GTH161, CO | 100.00                      | 1.16                   | 100.00                        | 1.29                          | 100.00                      | 0.17                          |
| HOX148, MI | 97.70                       | 1.47                   | 98.84                         | 1.26                          | 97.59                       | 0.40                          |
| HWF187, NY | 100.00                      | 2.48                   | 98.92                         | 2.32                          | 98.92                       | 0.26                          |
| IRL141, FL | 100.00                      | 0.50                   | 94.05                         | 2.82                          | 92.86                       | 2.12                          |
| KEF112, PA | 100.00                      | 0.79                   | 100.00                        | 0.80                          | 100.00                      | 0.14                          |
| LRL117, PA | 100.00                      | 0.49                   | 100.00                        | 0.67                          | 100.00                      | 0.25                          |
| MCK131, KY | 100.00                      | 0.62                   | 100.00                        | 0.69                          | 100.00                      | 0.18                          |
| MCK231, KY | 100.00                      | 0.46                   | 100.00                        | 0.60                          | 100.00                      | 0.17                          |
| MKG113, KY | 100.00                      | 2.80                   | 100.00                        | 2.33                          | 100.00                      | 0.24                          |
| NPT006, ID | 100.00                      | 1.83                   | 100.00                        | 2.38                          | 100.00                      | 0.20                          |
| OXF122, OH | 100.00                      | 1.06                   | 100.00                        | 1.21                          | 100.00                      | 0.23                          |
| PAL190, TX | 100.00                      | 1.25                   | 100.00                        | 0.66                          | 100.00                      | 0.32                          |
| PAR107, WV | 100.00                      | 0.60                   | 100.00                        | 0.78                          | 100.00                      | 0.29                          |
| PED108, VA | 100.00                      | 1.85                   | 100.00                        | 1.85                          | 100.00                      | 0.37                          |
| PND165, WY | 100.00                      | 0.92                   | 100.00                        | 1.38                          | 100.00                      | 0.17                          |
| PNF126, NC | 100.00                      | 0.34                   | 100.00                        | 0.84                          | 100.00                      | 0.27                          |
| PRK134, WI | 100.00                      | 0.71                   | 100.00                        | 0.62                          | 100.00                      | 0.12                          |
| PSU106, PA | 100.00                      | 0.32                   | 100.00                        | 0.68                          | 100.00                      | 0.19                          |
| QAK172, OH | 100.00                      | 1.33                   | 100.00                        | 1.82                          | 100.00                      | 0.39                          |
| ROM206, CO | 100.00                      | 2.78                   | 100.00                        | 2.82                          | 100.00                      | 0.22                          |
| SAL133, IN | 100.00                      | 0.65                   | 100.00                        | 0.66                          | 100.00                      | 0.21                          |
| SAN189, NE | 100.00                      | 0.84                   | 100.00                        | 1.22                          | 100.00                      | 0.30                          |
| SND152, AL | 96.04                       | 4.14                   | 96.04                         | 3.53                          | 96.00                       | 1.39                          |
| SPD111, TN | 100.00                      | 0.70                   | 100.00                        | 0.98                          | 100.00                      | 0.19                          |
| STK138, IL | 100.00                      | 0.45                   | 100.00                        | 0.50                          | 100.00                      | 0.22                          |
| SUM156, FL | 100.00                      | 3.32                   | 100.00                        | 2.58                          | 100.00                      | 0.20                          |
| UMA009, WA | 100.00                      | 1.71                   | 100.00                        | 1.45                          | 100.00                      | 0.53                          |
| UVL124, MI | 100.00                      | 0.69                   | 100.00                        | 1.18                          | 100.00                      | 0.15                          |
| VIN140, IN | 100.00                      | 0.55                   | 100.00                        | 0.63                          | 100.00                      | 0.16                          |
| VPI120, VA | 98.90                       | 2.73                   | 100.00                        | 1.67                          | 100.00                      | 0.16                          |
| WSP144, NJ | 100.00                      | 0.93                   | 100.00                        | 0.93                          | 100.00                      | 0.20                          |
| WST109, NH | 100.00                      | 0.41                   | 100.00                        | 0.83                          | 98.95                       | 0.40                          |

| Table 14 Ozone | OC Summary | / for Fourth C | Juarter 2020 | (2  of  2) |
|----------------|------------|----------------|--------------|------------|
|                | QC Summar  |                |              | (2012)     |

Notes: <sup>1</sup>Percentage of comparisons that pass the criteria listed in Table 5. Values falling below 90 percent are addressed in Table 15.

<sup>2</sup>Absolute value of the average percent differences between the on-site transfer standard and the site monitor. Values exceeding the criteria listed in Table 5 are addressed in Table 15.

%D = percent difference

ppb = parts per billion

| Site ID    | QC Criterion                                                                              | Comments                                              |
|------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------|
| DCP114, OH | % Span Pass<br>Span  %D <br>% Single Point QC Pass<br>Single Point QC  %D <br>% Zero Pass | There was a leak in the sample line in November 2020. |

#### Table 15 Ozone QC Observations for Fourth Quarter 2020

**Note:** %D = percent difference

#### **Table 16** Trace-level Gas QC Summary for Fourth Quarter 2020

| Parameter       | % Span<br>Pass <sup>1</sup> | Span  %D ² | % Single<br>Point QC<br>Pass <sup>1</sup> | Single Point<br>QC  %D  <sup>2</sup> | % Zero<br>Pass <sup>1</sup> | Zero<br>Average<br>(ppb) <sup>2</sup> |  |  |  |
|-----------------|-----------------------------|------------|-------------------------------------------|--------------------------------------|-----------------------------|---------------------------------------|--|--|--|
|                 |                             |            | BVL130, IL                                |                                      |                             |                                       |  |  |  |
| SO <sub>2</sub> | 100.00                      | 2.38       | 100.00                                    | 2.82                                 | 100.00                      | 0.32                                  |  |  |  |
| NOy             | 100.00                      | 1.57       | 100.00                                    | 1.26                                 | 100.00                      | 0.50                                  |  |  |  |
| CO              | 94.29                       | 3.41       | 80.00                                     | 17.52                                | 77.14                       | 49.11                                 |  |  |  |
| DUK008, NC      |                             |            |                                           |                                      |                             |                                       |  |  |  |
| NOy             | 95.35                       | 7.91       | 95.35                                     | 7.88                                 | 100.00                      | 0.14                                  |  |  |  |
|                 |                             | ł          | HWF187, NY                                |                                      |                             |                                       |  |  |  |
| NOy             | 100.00                      | 3.31       | 100.00                                    | 4.89                                 | 97.62                       | 0.28                                  |  |  |  |
|                 |                             | F          | PND165, WY                                |                                      |                             |                                       |  |  |  |
| NOy             | 97.92                       | 3.74       | 95.83                                     | 5.25                                 | 100.00                      | 0.34                                  |  |  |  |
|                 |                             |            | PNF126, NC                                |                                      |                             |                                       |  |  |  |
| NOy             | 96.00                       | 3.07       | 100.00                                    | 4.60                                 | 100.00                      | 0.28                                  |  |  |  |
|                 | ROM206, CO                  |            |                                           |                                      |                             |                                       |  |  |  |
| NOy             | 95.56                       | 5.77       | 93.33                                     | 7.39                                 | 100.00                      | 0.32                                  |  |  |  |

**Notes:** <sup>1</sup>Percentage of comparisons that pass the criteria listed in Table 6. Values falling below 90 percent are addressed in Table 17. <sup>2</sup>Absolute value of the average percent differences between the supplied and observed concentrations. Values exceeding the criteria listed in Table 6 are addressed in Table 17.

%D = percent difference

ppb = parts per billion

#### **Table 17** Trace-level Gas QC Observations for Fourth Quarter 2020

| Site ID    | Parameter | QC Criterion                                                                  | Comments                                                                            |
|------------|-----------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| BVL130, IL | СО        | % Single Point QC Pass<br>Single Point QC  %D <br>% Zero Pass<br>Zero Average | The analyzer malfunctioned in December. The CO source was replaced in January 2021. |

**Notes:** %D = percent difference

|                                           | Detection         | Tatal            | Number >  | A                   | Average   | Maria               |  |  |
|-------------------------------------------|-------------------|------------------|-----------|---------------------|-----------|---------------------|--|--|
| Parameter Name                            | Limit<br>Total ug | l Otal<br>Number | Detection | Average<br>Total ug | Absolute  | Maximum<br>Total ug |  |  |
|                                           | τοται μο          | ETELL            |           | Τσται μις           | Deviation | τοται μο            |  |  |
| Toflon-NH <sup>+</sup> -N                 | 0.500             | 220              | 0 DEANKS  | 0.500               | 0.000     | 0 5 0 0             |  |  |
|                                           | 0.300             | 520              | 0         | 0.500               | 0.000     | 0.500               |  |  |
| Teflon $SO^{2-}$                          | 1,000             | 320              | 0         | 1.000               | 0.000     | 1.000               |  |  |
|                                           | 0.500             | 220              | 0         | 1.000               | 0.000     | 1.000               |  |  |
| Cr<br>Ca <sup>2+</sup>                    | 0.500             | 320              | 0         | 0.500               | 0.000     | 0.500               |  |  |
|                                           | 0.130             | 320              | 0         | 0.150               | 0.000     | 0.150               |  |  |
|                                           | 0.075             | 320              | 0         | 0.075               | 0.000     | 0.075               |  |  |
| Na                                        | 0.125             | 320              | 0         | 0.125               | 0.000     | 0.125               |  |  |
| K                                         | 0.150             | 320              | 11        | 0.158               | 0.015     | 1.382               |  |  |
| Nylon- NO <sub>3</sub> -N                 | 0.200             | 320              | 3         | 0.200               | 0.001     | 0.248               |  |  |
| Nylon - SO <sub>4</sub>                   | 1.000             | 320              | 0         | 1.000               | 0.000     | 1.000               |  |  |
| Cellulose - SO <sub>4</sub> <sup>2-</sup> | 2.000             | 320              | 14        | 2.027               | 0.051     | 3.340               |  |  |
| LABORATORY BLANKS                         |                   |                  |           |                     |           |                     |  |  |
| Teflon-NH <sup>+</sup> <sub>4</sub> -N    | 0.500             | 94               | 0         | 0.500               | 0.000     | 0.500               |  |  |
| Teflon- NO <sub>3</sub> <sup>-</sup> N    | 0.200             | 96               | 0         | 0.200               | 0.000     | 0.200               |  |  |
| Teflon- SO <sub>4</sub>                   | 1.000             | 96               | 0         | 1.000               | 0.000     | 1.000               |  |  |
| Cl                                        | 0.500             | 96               | 0         | 0.500               | 0.000     | 0.500               |  |  |
| Ca <sup>2+</sup>                          | 0.150             | 94               | 0         | 0.150               | 0.000     | 0.150               |  |  |
| Mg <sup>2+</sup>                          | 0.075             | 94               | 0         | 0.075               | 0.000     | 0.075               |  |  |
| Na⁺                                       | 0.125             | 94               | 1         | 0.125               | 0.001     | 0.150               |  |  |
| K                                         | 0.150             | 94               | 1         | 0.151               | 0.001     | 0.215               |  |  |
| Nylon- NO <sub>3</sub> -N                 | 0.200             | 96               | 4         | 0.201               | 0.002     | 0.255               |  |  |
| Nylon -SO <sub>4</sub>                    | 1.000             | 96               | 0         | 1.000               | 0.000     | 1.000               |  |  |
| Cellulose -SO <sub>4</sub>                | 2.000             | 94               | 0         | 2.000               | 0.000     | 2.000               |  |  |
|                                           |                   | METH             | OD BLANKS |                     | I         |                     |  |  |
| Teflon-NH <sup>+</sup> <sub>4</sub> -N    | 0.500             | 62               | 0         | 0.500               | 0.000     | 0.500               |  |  |
| Teflon- NO <sub>3</sub> -N                | 0.200             | 63               | 0         | 0.200               | 0.000     | 0.200               |  |  |
| Teflon- SO <sup>2-</sup>                  | 1.000             | 63               | 0         | 1.000               | 0.000     | 1.000               |  |  |
|                                           | 0.500             | 63               | 0         | 0.500               | 0.000     | 0.500               |  |  |
| Ca <sup>2+</sup>                          | 0.150             | 62               | 0         | 0.150               | 0.000     | 0.150               |  |  |
| Mg <sup>2+</sup>                          | 0.075             | 62               | 0         | 0.075               | 0.000     | 0.075               |  |  |
| Na <sup>↑</sup>                           | 0.125             | 62               | 0         | 0.125               | 0.000     | 0.125               |  |  |
| K <sup>+</sup>                            | 0.150             | 62               | 0         | 0.150               | 0.000     | 0.150               |  |  |
| Nylon- NO <sub>3</sub> -N                 | 0.200             | 61               | 0         | 0.200               | 0.000     | 0.200               |  |  |
| Nylon -SO <sub>4</sub>                    | 1.000             | 61               | 0         | 1.000               | 0.000     | 1.000               |  |  |
| Cellulose -SO <sub>4</sub> <sup>2-</sup>  | 2.000             | 60               | 0         | 2.000               | 0.000     | 2.000               |  |  |

# Table 18 Summary of Filter Blanks for 2020 (1 of 2)

|                                          | Detection                           |        | Number >  |          | Average   |          |  |  |  |
|------------------------------------------|-------------------------------------|--------|-----------|----------|-----------|----------|--|--|--|
|                                          | Limit                               | Total  | Detection | Average  | Absolute  | Maximum  |  |  |  |
| Parameter Name                           | Total μg                            | Number | Limit     | Total μg | Deviation | Total μg |  |  |  |
|                                          | ACCEPTANCE TEST VALUES <sup>1</sup> |        |           |          |           |          |  |  |  |
| $Teflon-NH_4^+-N$                        | 0.500                               | 216    | 0         | 0.500    | 0.000     | 0.500    |  |  |  |
| Teflon- NO <sub>3</sub> -N               | 0.200                               | 216    | 0         | 0.200    | 0.000     | 0.200    |  |  |  |
| Teflon- SO <sub>4</sub> <sup>2-</sup>    | 1.000                               | 216    | 0         | 1.000    | 0.000     | 1.000    |  |  |  |
| Cl                                       | 0.500                               | 216    | 0         | 0.500    | 0.000     | 0.500    |  |  |  |
| Ca <sup>2+</sup>                         | 0.150                               | 216    | 0         | 0.150    | 0.000     | 0.150    |  |  |  |
| Mg <sup>2+</sup>                         | 0.075                               | 216    | 0         | 0.075    | 0.000     | 0.075    |  |  |  |
| Na⁺                                      | 0.125                               | 216    | 0         | 0.125    | 0.000     | 0.125    |  |  |  |
| K⁺                                       | 0.150                               | 216    | 0         | 0.150    | 0.000     | 0.150    |  |  |  |
| Nylon- NO₃-N                             | 0.200                               | 300    | 0         | 0.200    | 0.000     | 0.200    |  |  |  |
| Nylon -SO <sub>4</sub> <sup>2-</sup>     | 1.000                               | 300    | 0         | 1.000    | 0.000     | 1.000    |  |  |  |
| Cellulose -SO <sub>4</sub> <sup>2-</sup> | 2.000                               | 216    | 0         | 2.000    | 0.000     | 2.000    |  |  |  |

| Table 18 | Summar  | of Filter | Blanks  | for 2020 | (2 of | 2) |
|----------|---------|-----------|---------|----------|-------|----|
| 10010 20 | Sammany | OFFICE    | Diaring | 101 2020 | (20)  | /  |

**Note:** <sup>1</sup>Only filter batches passing QC requirements are used for sampling and analysis.

### Table 19 Filter Packs Flagged as Suspect or Invalid (1 of 2)

| Site ID            | Sample              | Reason                                                                 |  |  |
|--------------------|---------------------|------------------------------------------------------------------------|--|--|
| First Quarter 2020 |                     |                                                                        |  |  |
| BEL116, MD         | 2007001-06          | Insufficient flow volume was due to a power failure.                   |  |  |
| BVL130, IL         | 2005001-08          | Calibration flags were left in place. Data may be recovered.           |  |  |
| CAT175, NY         | 2002001-11          | Insufficient flow volume was due to a power failure.                   |  |  |
| ESP127, TN         | 2007001-23          | Insufficient flow volume was due to a power failure.                   |  |  |
| FOR605, WY         | 2005005-03          | Possible polling issue: flow data were null.                           |  |  |
| JOT403, CA         | 2005003-12          | Possible polling issue: flow data were null.                           |  |  |
| NEC602, WY         | 2004005-04          | The mass flow controller malfunctioned resulting in invalid flow rates |  |  |
|                    | 2005005-04          | for these samples.                                                     |  |  |
| NPT006, ID         | 2004004-04          | Insufficient flow volume was due to a power failure.                   |  |  |
|                    | Second Quarter 2020 |                                                                        |  |  |
| ACA416, ME         | 2015003-01          | The power failed affected one week of sampling.                        |  |  |
| CVL151, MS         | 2015001-19          | A power failure affected two weeks of sampling.                        |  |  |
|                    | 2023001-19          | A power failure affected one week of sampling.                         |  |  |
| FOR605, WY         | 2018005-03          | A polling issue caused missing data. Data may be recovered during      |  |  |
|                    |                     | review and validation.                                                 |  |  |
| JOT403, CA         | 2018003-12          | A polling issue caused missing data. Data may be recovered during      |  |  |
|                    |                     | review and validation.                                                 |  |  |

| Table 1  | 10 | Ciltor. | Decke | <b>Flagge</b> |        | coact ar | Invalid | (2 - f - 2) |   |
|----------|----|---------|-------|---------------|--------|----------|---------|-------------|---|
| i able . | LJ | гшег    | FACKS | riagged       | as su: | spect of | Invaliu |             | ) |

| Site ID             | Sample     | Reason                                                           |  |
|---------------------|------------|------------------------------------------------------------------|--|
| Third Quarter 2020  |            |                                                                  |  |
| ABT147, CT          | 2032001-01 | The site experienced an extended power outage.                   |  |
| BWR139, MD          | 2030001-09 | The Teflon filter was perforated.                                |  |
| CDR119, WV          | 2029001-12 | The mass flow controller (MFC) malfunctioned and was replaced.   |  |
| CHE185, OK          | 2034004-02 | The MFC malfunctioned and was replaced.                          |  |
| CTH110, NY          | 2030001-18 | The cause of the problem is under investigation.                 |  |
| FOR605, WY          | 2031005-03 | Flow data are missing.                                           |  |
| JOT403, CA          | 2031003-12 | Flow data are missing.                                           |  |
| PSU106, PA          | 2031001-43 | The sample was invalidated for suspect data.                     |  |
| SHE604, WY          | 2035005-05 | Flow data are missing.                                           |  |
| SPD111, TN          | 2036001-48 | The site experienced a power outage.                             |  |
| UND002, VT          | 2033001-51 | The site experienced an extended power outage.                   |  |
|                     | 2034001-51 |                                                                  |  |
| Fourth Quarter 2020 |            |                                                                  |  |
| BEL116, MD          | 2044001-06 | The site experienced an extended power outage.                   |  |
|                     | 2045001-06 |                                                                  |  |
| BFT142, NC          | 2043001-07 | The potassium value was invalidated as suspect.                  |  |
| BUF603, WY          | 2041005-02 | The site experienced a power outage.                             |  |
| CDR119, WV          | 2042001-12 | There were communication issues.                                 |  |
| CNT169, WY          | 2043001-16 | The data logger program froze and required reinstallation.       |  |
|                     | 2044001-16 |                                                                  |  |
| FOR605, WY          | 2044005-03 | The site had a data transfer issue. Data are likely recoverable. |  |
| IRL141, FL          | 2042001-28 | The mass flow controller failed and was replaced.                |  |
| JOT403, CA          | 2044003-12 | The site had a data transfer issue that is likely recoverable.   |  |
| LAV410, CA          | 2042003-13 | Power was off from 10/15/2020 to 10/27/2020.                     |  |
|                     | 2043003-13 |                                                                  |  |
| QAK172, OH          | 2042001-44 | Data were invalidated as suspect.                                |  |

| Days to Resolution                | Problem Count      |  |  |  |  |  |
|-----------------------------------|--------------------|--|--|--|--|--|
| First Quarter 2020                |                    |  |  |  |  |  |
| 30                                | 308                |  |  |  |  |  |
| 60                                | 13                 |  |  |  |  |  |
| 90                                | 0                  |  |  |  |  |  |
| Unresolved by End of Quarter      | 15                 |  |  |  |  |  |
| Second Qu                         | Jarter 2020        |  |  |  |  |  |
| 30                                | 167                |  |  |  |  |  |
| 60                                | 0                  |  |  |  |  |  |
| 90                                | 0                  |  |  |  |  |  |
| Unresolved by End of Quarter      | 28                 |  |  |  |  |  |
| Third Qua                         | Third Quarter 2020 |  |  |  |  |  |
| 30                                | 481                |  |  |  |  |  |
| 60                                | 14                 |  |  |  |  |  |
| 90                                | 3                  |  |  |  |  |  |
| Unresolved by End of Quarter      | 2                  |  |  |  |  |  |
| Fourth Quarter 2020               |                    |  |  |  |  |  |
| 30                                | 336                |  |  |  |  |  |
| 60                                | 10                 |  |  |  |  |  |
| 90                                | 0                  |  |  |  |  |  |
| Unresolved by Date of Publication | 19                 |  |  |  |  |  |

# Table 20 Field Problems Affecting Data Collection

| Site ID             | Parameter(s)                   |  |  |  |
|---------------------|--------------------------------|--|--|--|
| First Quarter 2020  |                                |  |  |  |
| WSP144, NJ          | IJ Flow Rate                   |  |  |  |
| Second Quarter 2020 |                                |  |  |  |
|                     | none                           |  |  |  |
| Third Quarter 2020  |                                |  |  |  |
| ABT147, CT          | Flow rate                      |  |  |  |
| BEL116, MD          | Delta temperature              |  |  |  |
| CHE185, OK          | Flow rate                      |  |  |  |
| CVL151, MS          | Temperature                    |  |  |  |
| IRL141, FL          | Temperature, delta temperature |  |  |  |
| KIC003, KS          | Temperature                    |  |  |  |
| Fourth Quarter 2020 |                                |  |  |  |
| CDR119, WV          | Flow rate                      |  |  |  |

#### **Table 21** Field Calibration Failures by Parameter for 2020

**Note:** Per CASTNET project protocols, data for all parameters except flow are flagged as "suspect" (S) but still considered valid if the calibration criterion is not exceeded by more that its magnitude (i.e., if within two times the criterion). If flow calibrations fall within two times the criterion, these data are adjusted per approved protocol described in the CASTNET QAPP, (Wood, 2020). Please refer to Table 15 for documentation of the QC failures affecting the validity of ozone data.

#### Table 22 Accuracy Results for 2020 Field Measurements

| Parameter                   | Percent Within Criterion |
|-----------------------------|--------------------------|
| Flow Rate                   | 96.6                     |
| Wind Speed < 5 m/s          | 100.0                    |
| Wind Speed $\geq$ 5 m/s     | 100.0                    |
| Wind Direction North        | 100.0                    |
| Wind Direction South        | 100.0                    |
| Temperature (0°C)           | 97.4                     |
| Temperature (ambient)       | 97.4                     |
| Delta Temperature (0°C)     | 87.5*                    |
| Delta Temperature (ambient) | 87.5*                    |
| Relative Humidity           | 100.0                    |
| Precipitation               | 100.0                    |
| Solar Radiation             | 100.0                    |
| Wetness (w/in 0.5 volts)    | 100.0                    |

**Notes:** °C = degrees Celsius

m/s = meters per second

Per CASTNET project protocols, data are flagged as "suspect" (S) but still considered valid if the calibration criterion is not exceeded by more than its magnitude (i.e., if within two times the criterion). All calibration failures reported in 2020 for the indicated parameters were within two times the criterion.



### Figure 1 Reference Standard Results for Fourth Quarter 2020 (percent recovery)



#### Figure 2 Continuing Calibration Spike Results for Fourth Quarter 2020 (percent recovery)



#### Figure 3 Replicate Sample Analysis Results for Fourth Quarter 2020 (percent difference)



#### Figure 4 Percent Completeness of Measurements for Second Quarter 2019 through Third Quarter 2020\*

Note: \*Presents Level 3 data available during the fourth quarter of 2020







#### Figure 6 Method Blank Analysis Results for Fourth Quarter 2020 (total micrograms)



#### Figure 7 Laboratory Blank Analysis Results for Fourth Quarter 2020 (total micrograms)



### Figure 8 Field Blank Analysis Results for Fourth Quarter 2020 (total micrograms)