

# Summary of Quarterly Operations EPA Contract No. EP-W-15-003

### Introduction

This quarterly report summarizes results from the Clean Air Status and Trends Network (CASTNET) quality assurance/quality control (QA/QC) program for data collected during third quarter 2015. The various QA/QC criteria and policies are documented in the CASTNET Quality Assurance Project Plan (QAPP; Amec Foster Wheeler, 2014). The QAPP is comprehensive and includes standards and policies for all components of project operation from site selection through final data reporting. It is reviewed annually and updated as warranted.

### **Quarterly Summary**

On July 30, 2015, AMEC Environment and Infrastructure, Inc. (AMEC) received Modification 0006 to Contract EP-W-15-003 in which EPA accepted AMEC's name change to Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler).

The CASTNET QA Manager worked with EPA during the quarter to revise the CASTNET QAPP siting criteria to include siting criteria from Section 40 Code of Federal Regulations (CFR), Part 58 that specifically addresses ozone monitoring for Air Quality System (AQS)-submitting sites. Modifications to the QAPP siting criteria will include specific sets of criteria for the different types of sites: small-footprint, filter pack-only sites; AQS-submitting (i.e., 40 CFR Part 58-compliant) ozone sites; and classic sites.

Amec Foster Wheeler received final results from sample analyses for proficiency test (PT) study 106 for Rain and Soft Waters from the National Laboratory of Environmental Testing (NLET), a branch of the National Water Research Institute (NWRI) with Environment Canada that provides QA services. Amec Foster Wheeler was rated "very good" for analyses for PT study 106. Amec Foster Wheeler's 5-year average remained "very good," the highest rating available.

During second quarter, Amec Foster Wheeler determined that ozone concentration data from the ROM206, CO site showed concentrations have been 2 to 3 parts per billion (ppb) higher than those measured by the collocated ROM406 site since installation of the reactive oxides of

nitrogen  $(NO_y)$  analyzer at ROM206. During third quarter, Amec Foster Wheeler took steps to eliminate possible bias by placing all of the ozone analyzers at the trace-level gas monitoring sites on the standard zero air generation system used at CASTNET sites that do not measure trace-level gases.

EPA's Office of Air Quality Planning and Standards (OAQPS) requested that only ozone 1-point QC checks that are associated with valid data be submitted to AQS. EPA's Clean Air Markets Division (CAMD) and Amec Foster Wheeler began working on a plan to systematically exclude those 1-point QC checks that are associated with data that have been invalidated. The change in protocol for submitting 1-point QC checks will begin with the January 2015 ozone data.

Road construction is planned during the warm season over the next two years near the PND165, WY site. Road construction activities began during third quarter and are anticipated to affect monitoring activities at the site. Amec Foster Wheeler is working with EPA, the National Park Service, and the Bureau of Land Management to develop a flagging protocol for data collected during active road construction periods.

The CASTNET QA Manager is working with RTI International, Inc. to coordinate the required 3-year technical systems audit (TSA) of the Amec Foster Wheeler ozone facility and one field site (PED108,VA). The TSA will take place during fourth quarter 2015.

Table 1 lists the quarters of data that were validated to Level 3 during third quarter 2015 by site calibration group. Table 2 lists the sites in each calibration group along with the calibration schedule. Table 3 presents the measurement criteria for laboratory filter pack measurements. These criteria apply to the QC samples listed in the following section of this report. Table 4 presents the critical criteria for ozone monitoring. Table 5 presents the critical criteria for trace-level gas monitoring.

### **Quality Control Analysis Count**

The QC sample statistics presented in this report are for reference standards (RF) and continuing calibration verification spikes (CCV) used to assess accuracy and for replicate sample analyses (RP) used to assess "in-run" precision. In addition, laboratory method blanks (MB) containing reagents without a filter; laboratory blanks (LB) containing reagents and a new, unexposed filter; and field blanks (FB) containing reagents and an unexposed filter that was loaded into a filter pack assembly and shipped to and from the monitoring site while remaining in sealed packaging are also included. Table 6 presents the number of analyses in each category that were performed during third quarter 2015.

2

### **Sample Receipt Statistics**

Ninety-five percent of field samples from EPA-sponsored sites must be received by the CASTNET laboratory in Gainesville, FL no later than 14 days after removal from the sampling tower. Table 7 presents the relevant sample receipt statistics for third quarter 2015.

### Data Quality Indicator (DQI) Results

Figures 1 through 3 present the results of RF, CCV, and RP QC sample analyses for third quarter 2015. All results were within the criteria listed in Table 3.

Table 8 presents summary statistics of critical criteria measurements at ozone sites collected during third quarter 2015. The statistics presented contain data validated at Level 2 and Level 3. All data associated with QC checks that fail to meet the criteria listed in Table 4 were or will be invalidated unless the cause of failure has no affect on ambient data collection, and passing results still meet frequency criteria. Results in shaded cells either exceed documented criteria or are otherwise notable. Table 9 presents observations associated with the shaded cell results in Table 8.

Table 10 presents summary statistics of critical criteria measurements at trace-level gas monitoring sites collected during third quarter 2015. The statistics presented contain data validated at Level 2 and Level 3. All data associated with QC checks that fail to meet the criteria listed in Table 5 were or will be invalidated unless the cause of failure has no affect on ambient data collection, and passing results still meet frequency criteria. Results in shaded cells either exceed documented criteria or are otherwise notable. Table 11 presents observations associated with the shaded cell results in Table 10.

### Laboratory Control Sample Analysis

The laboratory control sample (LCS) is a reagent blank spiked with the target analytes from the established analytical methods and carried through the same extraction process that field samples must undergo. The LCS is not required by the CASTNET QA/QC program. LCS analyses are performed by the laboratory to monitor for potential sample handling artifacts and provide a means to identify possible analyte loss from extraction to extraction. Figure 4 presents LCS analysis results for third quarter 2015. All recovery values were between 90 percent and 105 percent.

### **Blank Results**

Figures 5 through 7 present the results of MB, LB, and FB QC sample analyses for third quarter 2015. All third quarter results were within criteria (two times the reporting limit) listed in Table 3 with the exception of a single potassium FB. All other QC data associated with this FB were within criteria including the laboratory MB samples. Investigation has not revealed the

cause for this result. Preventive action has been initiated to eliminate possible routes of contamination including purchase and installation of an enclosure for the inductively coupled plasma-optical emission spectrometer autosampler.

#### Suspect/Invalid Filter Pack Samples

Filter pack samples that were flagged as suspect or invalid during third quarter 2015 are listed in Table 12. This table also includes associated site identification and a brief description of the reason the sample was flagged. During third quarter, nine filter pack samples were invalidated. Data for several of these samples are at Level 2 validation and may be recovered during Level 3 validation.

#### **Field Problem Count**

Table 13 presents counts of field problems affecting continuous data collection for more than one day for third quarter 2015. The problem counts are sorted by a 30-, 60-, or 90-day time period to resolution. A category for unresolved problems is also included. Time to resolution indicates the period taken to implement corrective action.

#### References

- Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler). 2014. Clean Air Status and Trends Network (CASTNET) Quality Assurance Project Plan (QAPP) Revision 8.2. Prepared for U.S. Environmental Protection Agency (EPA), Office of Air and Radiation, Clean Air Markets Division, Washington, DC. Contract No. EP-W-15-003. Gainesville, FL. http://java.epa.gov/castnet/documents.do.
- American Society for Testing and Materials (ASTM). 2008. ASTM E29-08, Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications. ASTM International, West Conshohocken, PA, DOI:10.1520/E0029-08. www.astm.org.
- U.S. Environmental Protection Agency (EPA). 2015. Appendix A to Part 58 Quality Assurance Requirements for State and Local Air Monitoring Stations (SLAMS), Special Purpose Monitors (SPMs), and Prevention of Significant Deterioration (PSD) Air Monitoring. 40 *CFR* Part 58.

| Calibration<br>Group <sup>*</sup> | Months<br>Available           | Number of<br>Months | Complete<br>Quarters               | Number of<br>Quarters |
|-----------------------------------|-------------------------------|---------------------|------------------------------------|-----------------------|
| E-3/W-10 <sup>†</sup>             | November 2014 –<br>April 2015 | 6                   | Quarter 1 2015                     | 1                     |
| SE-4/MW-6 <sup>‡</sup>            | January 2015 –<br>June 2015   | 6                   | Quarter 1 2015 –<br>Quarter 2 2015 | 2                     |

| Table 1 Data Validated to Level 3 during Th | ird Quarter 2015 |
|---------------------------------------------|------------------|
|---------------------------------------------|------------------|

Notes:\* The sites contained in each calibration group are listed in Table 2. † Contains ROM206 of the ROM406/ROM206 collocated pair

Contains ROM206 of the ROM406/ROM206 colloc
 Contains MCK131/231 collocated pair

#### Table 2 Field Calibration Schedule for 2015

| Calibration<br>Group          | Months<br>Calibrated     | Sites<br>Calibrated |               |             |            |  |  |  |
|-------------------------------|--------------------------|---------------------|---------------|-------------|------------|--|--|--|
|                               |                          | Eastern Sites (2    | 4 Total)      |             |            |  |  |  |
| E-1                           | February/August          | BEL116, MD          | WSP144, NJ    | ARE 128, PA | PED108, VA |  |  |  |
| (8 Sites)                     |                          | BWR139, MD          | CTH110, NY    | PSU106, PA  | VPI120, VA |  |  |  |
| E-2                           | April/October            | ABT147, CT          | WST109, NH    | NIC001, NY  | EGB181, ON |  |  |  |
| (11 Sites)                    |                          | ASH135, ME          | CAT175, NY    | WFM007, NY  | UND002, VT |  |  |  |
|                               |                          | HOW191, ME          | HWF187, NY    | WFM105, NY  |            |  |  |  |
| E-3                           | May/November             | KEF112, PA          | LRL117, PA    | CDR119, WV  |            |  |  |  |
| (5 Sites)                     |                          | MKG113, PA          | PAR107, WV    |             |            |  |  |  |
| Southeastern Sites (11 Total) |                          |                     |               |             |            |  |  |  |
| SE-4                          | January/July             | SND152, AL          | BFT142, NC    | COW005, NC  | SPD111, TN |  |  |  |
| (7 Sites)                     |                          | GAS153, GA          | CND125, NC    | COW137, NC  |            |  |  |  |
| SE-5                          | February/August          | CAD150, AR          | IRL141, FL    |             |            |  |  |  |
| (4 Sites)                     |                          | CVL151, MS          | SUM156, FL    |             |            |  |  |  |
|                               | -                        | Midwestern Sit      | es (19 Total) |             |            |  |  |  |
| MW-6                          | January/July             | CDZ171, KY          | MCK131, KY    | PNF126, NC  |            |  |  |  |
| (6 Sites)                     |                          | CKT136, KY          | MCK231, KY    | ESP127, TN  |            |  |  |  |
| MW-7                          | March/September          | ALH157, IL          | VIN140, IN    | OXF122, OH  |            |  |  |  |
| (9 Sites)                     |                          | BVL130, IL          | RED004, MN    | QAK172, OH  |            |  |  |  |
|                               |                          | STK138, IL          | DCP114, OH    | PRK134, WI  |            |  |  |  |
| MW-8                          | April/October            | SAL133, IN          | ANA115, MI    |             |            |  |  |  |
| (4 Sites)                     |                          | HOX148, MI          | UVL124, MI    |             |            |  |  |  |
|                               | Western Sites (10 Total) |                     |               |             |            |  |  |  |
| W-9                           | March/September          | KNZ184, KS          | CHE185, OK    | ALC188, TX  |            |  |  |  |
| (5 Sites)                     |                          | KIC003, KS          | SAN189, NE    |             |            |  |  |  |
| W-10                          | May/November             | GTH161, CO          | CNT169, WY    | PAL190, TX  |            |  |  |  |
| (5 Sites)                     |                          | ROM206, CO          | PND165, WY    |             |            |  |  |  |

|                                          |         | Precision <sup>1</sup> | Accuracy <sup>2</sup> | Nominal<br>Reporting Limits |           |
|------------------------------------------|---------|------------------------|-----------------------|-----------------------------|-----------|
| Analyte                                  | Method  | (MARPD)                | (%)                   | mg/L                        | µg/Filter |
| Ammonium (NH <sup>+</sup> <sub>4</sub> ) | AC      | 20                     | 90 - 110              | $0.020^{*}$                 | 0.5       |
| Sodium (Na $^+$ )                        | ICP-OES | 20                     | 95 - 105              | 0.005                       | 0.125     |
| Potassium ( $K^+$ )                      | ICP-OES | 20                     | 95 - 105              | 0.006                       | 0.15      |
| Magnesium (Mg <sup>2+</sup> )            | ICP-OES | 20                     | 95 - 105              | 0.003                       | 0.075     |
| Calcium (Ca <sup>2+</sup> )              | ICP-OES | 20                     | 95 - 105              | 0.006                       | 0.15      |
| Chloride (Cl <sup>-</sup> )              | IC      | 20                     | 95 - 105              | 0.020                       | 0.5       |
| Nitrate (NO <sub>3</sub> )               | IC      | 20                     | 95 - 105              | $0.008^{*}$                 | 0.2       |
| Sulfate $(SO_4^{2-})$                    | IC      | 20                     | 95 - 105              | 0.040                       | 1.0       |

#### Table 3 Data Quality Indicators for CASTNET Laboratory Measurements

Notes: <sup>1</sup> This column lists precision goals for both network precision calculated from collocated filter samples and laboratory precision based on

replicate samples.<sup>2</sup> This column lists laboratory accuracy goals based on reference standards and continuing calibration verification spikes. The criterion is 90-110 percent for ICP-OES reference standards.

AC = automated colorimetry

IC = ion chromatography

ICP-OES = inductively coupled plasma-optical emission spectrometry

MARPD = mean absolute relative percent difference

mg/L = milligrams per liter

 $\mu g/Filter = micrograms per filter$ 

= as nitrogen

Values are rounded according to American Society for Testing and Materials (ASTM) E29-08, Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications (ASTM, 2008).

For more information on analytical methods and associated precision and accuracy criteria, see the CASTNET QAPP, (Amec Foster Wheeler, 2014).

#### Table 4 Ozone Critical Criteria<sup>\*</sup>

| Type of Check   | Analyzer Response                                                                  |
|-----------------|------------------------------------------------------------------------------------|
| Zero            | Less than $\pm$ 3 parts per billion (ppb)                                          |
| Span            | Less than or equal to $\pm$ 7 percent between supplied and observed concentrations |
| Single Point QC | Less than or equal to $\pm$ 7 percent between supplied and observed concentrations |

Notes: \* Applies to CASTNET sites that are configured and operated in accordance with Part 58 of Title 40 of the Code of Federal Regulations (EPA, 2015). The minimum frequency for these checks is once every two weeks.

Values are rounded according to ASTM E29-08, Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications (ASTM, 2008).

|          |             |                | *                 |
|----------|-------------|----------------|-------------------|
| Table 5  | Trace-level | Gas Monitoring | Critical Criteria |
| I HOIC C | 11400 10101 | Ous monitoring | Citticul Citteriu |

|           | Analyzer Response      |                                                                                     |  |  |  |  |
|-----------|------------------------|-------------------------------------------------------------------------------------|--|--|--|--|
| Parameter | Zero Check             | Span Check / Single Point QC Check                                                  |  |  |  |  |
| $SO_2$    | Less than $\pm 3$ ppb  |                                                                                     |  |  |  |  |
| NOy       | Less than $\pm$ 3 ppb  | Less than or equal to $\pm$ 10 percent between supplied and observed concentrations |  |  |  |  |
| СО        | Less than $\pm 40$ ppb |                                                                                     |  |  |  |  |

Notes: \*Applies to CASTNET sites that are configured and operated in accordance with Part 58 of Title 40 of the Code of Federal Regulations (EPA, 2015). The minimum frequency for these checks is once every two weeks.

Values are rounded according to ASTM E29-08, Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications E29 (ASTM, 2008).

 $SO_2 = sulfur dioxide$ 

 $NO_y = total reactive oxides of nitrogen$ 

CO = carbon monoxide

ppb = parts per billion

### Table 6 QC Analysis Count for Third Quarter 2015

| Filter<br>Type | Parameter                              | RF<br>Sample<br>Count | CCV<br>Sample<br>Count | RP<br>Sample<br>Count | MB<br>Sample<br>Count | LB<br>Sample<br>Count | FB<br>Sample<br>Count |
|----------------|----------------------------------------|-----------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Teflon         | $SO_4^{2-}$                            | 51                    | 196                    | 82                    | 18                    | 26                    | 94                    |
|                | $NO_3^-$                               | 51                    | 196                    | 82                    | 18                    | 26                    | 94                    |
|                | $\mathbf{NH}_4^{\scriptscriptstyle +}$ | 36                    | 179                    | 81                    | 18                    | 26                    | 94                    |
|                | Cl <sup>-</sup>                        | 51                    | 196                    | 82                    | 18                    | 26                    | 94                    |
|                | Ca <sup>2+</sup>                       | 36                    | 181                    | 82                    | 18                    | 26                    | 94                    |
|                | Mg <sup>2+</sup>                       | 36                    | 181                    | 82                    | 18                    | 26                    | 94                    |
|                | Na⁺                                    | 36                    | 181                    | 82                    | 18                    | 26                    | 94                    |
|                | $\mathbf{K}^{\scriptscriptstyle +}$    | 36                    | 181                    | 82                    | 18                    | 26                    | 94                    |
| Nylon          | $SO_{4}^{2-}$                          | 41                    | 182                    | 80                    | 20                    | 26                    | 94                    |
|                | $NO_3^-$                               | 53                    | 194                    | 86                    | 26                    | 26                    | 100                   |
| Cellulose      | $SO_{4}^{2-}$                          | 37                    | 182                    | 82                    | 18                    | 26                    | 94                    |

| Count of samples received more than 14 days  |            |
|----------------------------------------------|------------|
| after removal from tower:                    | 11         |
|                                              | 000        |
| Count of all samples received:               | 832        |
| Fraction of samples received within 14 days: | 0.987      |
| Average interval in days:                    | 4.993      |
|                                              |            |
| First receipt date:                          | 07/01/2015 |
| Last receipt date:                           | 09/30/2015 |

### **Table 7** Filter Pack Receipt Summary for Third Quarter 2015

| Site ID    | % Span<br>Pass <sup>1</sup> | <b>Span</b><br> % <b>D</b>   <sup>2</sup> | % Single<br>Point QC<br>Pass <sup>1</sup> | Single Point<br>QC  %D  <sup>2</sup> | Single<br>Point<br>QC CL <sup>3</sup> | % Zero<br>Pass <sup>1</sup> | Zero<br>Average<br>(ppb) <sup>2</sup> |
|------------|-----------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------|-----------------------------|---------------------------------------|
| ABT147, CT | 100.00                      | 1.85                                      | 98.95                                     | 1.81                                 | 0.22                                  | 100.00                      | 0.24                                  |
| ALC188, TX | 96.59                       | 3.08                                      | 93.18                                     | 2.46                                 | 0.74                                  | 97.73                       | 1.47                                  |
| ALH157, IL | 96.84                       | 3.66                                      | 97.89                                     | 2.70                                 | 1.14                                  | 98.91                       | 0.49                                  |
| ANA115, MI | 100.00                      | 1.22                                      | 98.95                                     | 0.92                                 | 0.19                                  | 100.00                      | 0.16                                  |
| ARE128, PA | 100.00                      | 1.33                                      | 100.00                                    | 1.22                                 | 0.20                                  | 100.00                      | 0.28                                  |
| ASH135, ME | 100.00                      | 1.86                                      | 100.00                                    | 1.66                                 | 0.10                                  | 100.00                      | 0.21                                  |
| BEL116, MD | 96.63                       | 2.83                                      | 92.13                                     | 4.17                                 | 0.50                                  | 100.00                      | 1.27                                  |
| BFT142, NC | 97.96                       | 1.59                                      | 95.92                                     | 1.62                                 | 0.42                                  | 100.00                      | 0.42                                  |
| BVL130, IL | 97.80                       | 3.85                                      | 97.73                                     | 5.16                                 | 2.05                                  | 97.75                       | 1.91                                  |
| BWR139, MD | 100.00                      | 2.18                                      | 100.00                                    | 2.83                                 | 0.20                                  | 100.00                      | 0.22                                  |
| CAD150, AR | 100.00                      | 1.50                                      | 100.00                                    | 1.08                                 | 0.25                                  | 100.00                      | 0.43                                  |
| CDR119, WV | 94.19                       | 3.93                                      | 90.59                                     | 3.91                                 | 0.32                                  | 100.00                      | 0.49                                  |
| CDZ171, KY | 100.00                      | 0.78                                      | 100.00                                    | 0.68                                 | 0.07                                  | 100.00                      | 0.14                                  |
| CKT136, KY | 100.00                      | 0.69                                      | 100.00                                    | 1.05                                 | 0.10                                  | 100.00                      | 0.12                                  |
| CND125, NC | 98.94                       | 1.82                                      | 100.00                                    | 1.13                                 | 0.15                                  | 100.00                      | 0.15                                  |
| CNT169, WY | 100.00                      | 1.92                                      | 100.00                                    | 2.10                                 | 0.23                                  | 100.00                      | 0.56                                  |
| COW137, NC | 84.47                       | 13.85                                     | 84.47                                     | 14.76                                | 5.40                                  | 100.00                      | 0.52                                  |
| CTH110, NY | 100.00                      | 2.23                                      | 100.00                                    | 2.67                                 | 0.34                                  | 100.00                      | 0.41                                  |
| CVL151, MS | 100.00                      | 1.03                                      | 100.00                                    | 0.87                                 | 0.25                                  | 100.00                      | 0.27                                  |
| DCP114, OH | 100.00                      | 1.99                                      | 98.84                                     | 1.99                                 | 0.28                                  | 100.00                      | 0.41                                  |
| ESP127, TN | 100.00                      | 1.40                                      | 100.00                                    | 1.33                                 | 0.13                                  | 100.00                      | 0.12                                  |
| GAS153, GA | 100.00                      | 0.47                                      | 100.00                                    | 0.51                                 | 0.09                                  | 100.00                      | 0.43                                  |
| GTH161, CO | 100.00                      | 1.28                                      | 100.00                                    | 1.08                                 | 0.16                                  | 100.00                      | 0.26                                  |

**Table 8** Ozone QC Summary for Third Quarter 2015 (1 of 2)

| Site ID    | % Span<br>Pass <sup>1</sup> | <b>Span</b><br> % <b>D</b>   <sup>2</sup> | % Single<br>Point QC<br>Pass <sup>1</sup> | Single Point<br>QC  %D  <sup>2</sup> | Single<br>Point<br>QC CL <sup>3</sup> | % Zero<br>Pass <sup>1</sup> | Zero<br>Average<br>(ppb) <sup>2</sup> |
|------------|-----------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------|-----------------------------|---------------------------------------|
| HOX148, MI | 100.00                      | 1.20                                      | 100.00                                    | 0.70                                 | 0.13                                  | 100.00                      | 0.63                                  |
| HWF187, NY | 100.00                      | 0.43                                      | 100.00                                    | 0.61                                 | 0.12                                  | 100.00                      | 0.32                                  |
| IRL141, FL | 100.00                      | 2.19                                      | 98.95                                     | 1.82                                 | 0.29                                  | 100.00                      | 1.02                                  |
| KEF112, PA | 100.00                      | 0.71                                      | 100.00                                    | 0.93                                 | 0.18                                  | 100.00                      | 0.44                                  |
| LRL117, PA | 100.00                      | 1.21                                      | 100.00                                    | 0.73                                 | 0.17                                  | 100.00                      | 0.28                                  |
| MCK131, KY | 98.91                       | 2.85                                      | 98.91                                     | 2.99                                 | 0.26                                  | 100.00                      | 0.66                                  |
| MCK231, KY | 97.98                       | 2.20                                      | 95.96                                     | 3.03                                 | 0.28                                  | 100.00                      | 0.76                                  |
| MKG113, PA | 100.00                      | 0.95                                      | 97.92                                     | 1.21                                 | 0.28                                  | 100.00                      | 0.44                                  |
| OXF122, OH | 100.00                      | 3.25                                      | 95.65                                     | 4.21                                 | 0.55                                  | 100.00                      | 0.80                                  |
| PAL190, TX | 100.00                      | 2.73                                      | 100.00                                    | 3.44                                 | 0.14                                  | 100.00                      | 0.49                                  |
| PAR107, WV | 98.00                       | 2.38                                      | 99.00                                     | 2.15                                 | 0.22                                  | 98.00                       | 1.15                                  |
| PED108, VA | 100.00                      | 2.49                                      | 98.96                                     | 2.76                                 | 0.21                                  | 100.00                      | 0.42                                  |
| PND165, WY | 100.00                      | 0.76                                      | 100.00                                    | 2.57                                 | 0.18                                  | 100.00                      | 1.48                                  |
| PNF126, NC | 100.00                      | 1.17                                      | 100.00                                    | 1.56                                 | 0.24                                  | 100.00                      | 0.56                                  |
| PRK134, WI | 100.00                      | 2.51                                      | 98.96                                     | 2.05                                 | 0.28                                  | 100.00                      | 0.33                                  |
| PSU106, PA | 100.00                      | 1.26                                      | 100.00                                    | 1.49                                 | 0.21                                  | 100.00                      | 0.15                                  |
| QAK172, OH | 98.98                       | 2.40                                      | 98.97                                     | 1.58                                 | 0.35                                  | 100.00                      | 0.40                                  |
| ROM206, CO | 100.00                      | 1.26                                      | 100.00                                    | 1.69                                 | 0.14                                  | 100.00                      | 0.19                                  |
| SAL133, IN | 100.00                      | 1.38                                      | 97.89                                     | 1.45                                 | 0.29                                  | 100.00                      | 0.28                                  |
| SAN189, NE | 100.00                      | 1.31                                      | 100.00                                    | 1.04                                 | 0.07                                  | 100.00                      | 0.11                                  |
| SND152, AL | 100.00                      | 1.81                                      | 98.92                                     | 2.22                                 | 0.22                                  | 100.00                      | 0.31                                  |
| SPD111, TN | 100.00                      | 1.79                                      | 98.96                                     | 2.01                                 | 0.22                                  | 100.00                      | 0.51                                  |
| STK138, IL | 100.00                      | 1.37                                      | 100.00                                    | 1.07                                 | 0.23                                  | 100.00                      | 0.47                                  |
| SUM156, FL | 98.92                       | 1.80                                      | 100.00                                    | 1.43                                 | 0.12                                  | 100.00                      | 0.39                                  |
| UVL124, MI | 100.00                      | 0.59                                      | 100.00                                    | 0.76                                 | 0.13                                  | 100.00                      | 0.15                                  |
| VIN140, IN | 100.00                      | 1.58                                      | 100.00                                    | 1.45                                 | 0.21                                  | 100.00                      | 0.35                                  |
| VPI120, VA | 100.00                      | 0.85                                      | 100.00                                    | 0.93                                 | 0.10                                  | 100.00                      | 0.35                                  |
| WSP144, NJ | 98.95                       | 1.76                                      | 100.00                                    | 1.76                                 | 0.21                                  | 100.00                      | 0.69                                  |
| WST109, NH | 100.00                      | 1.57                                      | 98.91                                     | 1.72                                 | 0.29                                  | 100.00                      | 0.43                                  |

| Table 8 | Ozone ( | <b>DC</b> Summary | for Third | Ouarter 2015 | (2  of  2)  |
|---------|---------|-------------------|-----------|--------------|-------------|
|         | O LONG  |                   | 101 11110 | Quarter Dore | $(- \circ)$ |

Notes: <sup>1</sup> Percentage of comparisons that pass the criteria listed in Table 4. Values falling below 90 percent are addressed in Table 9. <sup>2</sup> Absolute value of the average percent differences between the on-site transfer standard and the site monitor. Values exceeding the criteria listed in Table 4 are addressed in Table 9.

<sup>3</sup> 90 percent confidence limit of the coefficient of variation. This should be less than or equal to the 7 percent single point QC check critical criterion. Values exceeding this criterion are addressed in Table 9.

%D = percent difference

CL = confidence limit

ppb = parts per billion

| Site ID    | QC Criterion           | Comments                                                      |
|------------|------------------------|---------------------------------------------------------------|
| COW137, KY | % Span Pass            | The analyzer sample pump failed and was subsequently replaced |
|            | Span  %D               | in early September. Associated data were invalidated.         |
|            | % Single Point QC Pass |                                                               |
|            | Single Point QC  %D    |                                                               |

#### Table 9 Ozone QC Observations for Third Quarter 2015

**Note:** %D = percent difference

#### Table 10 Trace-level Gas QC Summary for Third Quarter 2015

|            | % Span     | Span             | % Single<br>Point QC | Single Point                 | Single<br>Point    | % Zero | Zero<br>Average    |
|------------|------------|------------------|----------------------|------------------------------|--------------------|--------|--------------------|
| Parameter  | Pass       | %D  <sup>2</sup> | Pass                 | $\mathbf{QC}  \mathbf{D} ^2$ | QC CL <sup>3</sup> | Pass   | (ppb) <sup>2</sup> |
| BEL116, MD |            |                  |                      |                              |                    |        |                    |
| $SO_2$     | 92.31      | 9.87             | 94.87                | 7.82                         | 5.89               | 100.00 | 0.74               |
| NOy        | 80.43      | 14.33            | 84.21                | 8.96                         | 5.85               | 97.50  | 1.30               |
|            | BVL130, IL |                  |                      |                              |                    |        |                    |
| $SO_2$     | 93.33      | 7.48             | 93.33                | 9.53                         | 6.35               | 100.00 | 0.97               |
| NOy        | 100.00     | 2.65             | 100.00               | 4.98                         | 0.53               | 100.00 | 0.96               |
| СО         | 100.00     | 0.84             | 78.26                | 6.65                         | 1.89               | 91.67  | 18.64              |
| HWF187, NY |            |                  |                      |                              |                    |        |                    |
| NOy        | 100.00     | 1.75             | 100.00               | 1.69                         | 0.38               | 97.78  | 1.30               |
| PND165, WY |            |                  |                      |                              |                    |        |                    |
| NOy        | 100.00     | 3.64             | 100.00               | 2.76                         | 0.42               | 100.00 | 0.74               |
| PNF126, NC |            |                  |                      |                              |                    |        |                    |
| NOy        | 84.78      | 4.43             | 89.13                | 4.26                         | 1.17               | 100.00 | 0.65               |
| ROM206, CO |            |                  |                      |                              |                    |        |                    |
| NOy        | 100.00     | 0.30             | 100.00               | 0.97                         | 0.19               | 100.00 | 1.72               |

Notes: <sup>1</sup> Percentage of comparisons that pass the criteria listed in Table 5. Values falling below 90 percent are addressed in Table 11.

<sup>2</sup> Absolute value of the average percent differences between the supplied and observed concentrations. Values exceeding the criteria listed in Table 5 are addressed in Table 11.

<sup>3</sup> 90 percent confidence limit of the coefficient of variation. This should be less than or equal to the 10 percent single point QC check critical criterion. Values exceeding this criterion are addressed in Table 11.

%D = percent difference

CL = confidence limit

ppb = parts per billion

| Site ID    | Parameter | QC Criterion                                        | Comments                                                                                                               |
|------------|-----------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| BEL116, MD | NOy       | % Span Pass<br>Span  %D  <br>% Single Point QC Pass | A solenoid switch failed during September.<br>Associated data were invalidated.                                        |
| BVL130, IL | СО        | % Single Point QC Pass                              | Instrument calibration settings drifted. The<br>analyzer was remotely calibrated. Associated<br>data were invalidated. |
| PNF126, NC | NOy       | % Span Pass<br>% Single Point QC Pass               | Instrument calibration settings drifted. The<br>analyzer was remotely calibrated. Associated<br>data were invalidated. |

| <b>Table 11</b> Trace-level Gas QC Observations for Third Quart |
|-----------------------------------------------------------------|
|-----------------------------------------------------------------|

**Notes:** %D = percent difference

| Table 12 Filter | Packs Flagged | as Suspect of | Invalid during | Third Ouarter 2015 |
|-----------------|---------------|---------------|----------------|--------------------|
|                 |               |               |                |                    |

| Site ID    | Sample No. | Reason                                             |
|------------|------------|----------------------------------------------------|
| BEL116, MD | 1533001-09 | Insufficient flow volume                           |
| CAD150, AR | 1530001-13 | Insufficient flow volume                           |
| DCP114, OH | 1537001-26 | Power failure resulted in insufficient flow volume |
| FOR605, WY | 1531003-03 | Insufficient flow volume                           |
| JOT403, CA | 1531001-42 | Insufficient flow volume                           |
| PNF126, NC | 1531001-61 | Power failure resulted in insufficient flow volume |
| PSU106, PA | 1536001-63 | Insufficient flow volume                           |
| SHN418, VA | 1536001-71 | Insufficient flow volume                           |
| VIN140, IN | 1536001-80 | Insufficient flow volume                           |

### Table 13 Field Problems Affecting Data Collection

| Days to Resolution           | Problem Count |
|------------------------------|---------------|
| 30                           | 337           |
| 60                           | 15            |
| 90                           | 3             |
| Unresolved by End of Quarter | 24            |



### Figure 1 Reference Standard Results for Third Quarter 2015 (percent recovery)



### Figure 2 Continuing Calibration Spike Results for Third Quarter 2015 (percent recovery)



## **Figure 3** Replicate Sample Analysis Results for Third Quarter 2015 (percent difference)



### Figure 4 Laboratory Control Sample Results for Third Quarter 2015 (percent recovery)



### Figure 5 Method Blank Analysis Results for Third Quarter 2015 (total micrograms)



### Figure 6 Laboratory Blank Analysis Results for Third Quarter 2015 (total micrograms)



