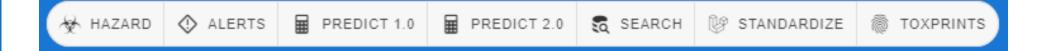


Cheminformatics Modules

Todd Martin and Antony Williams US EPA/ORD/CCTE

Views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of USEPA.

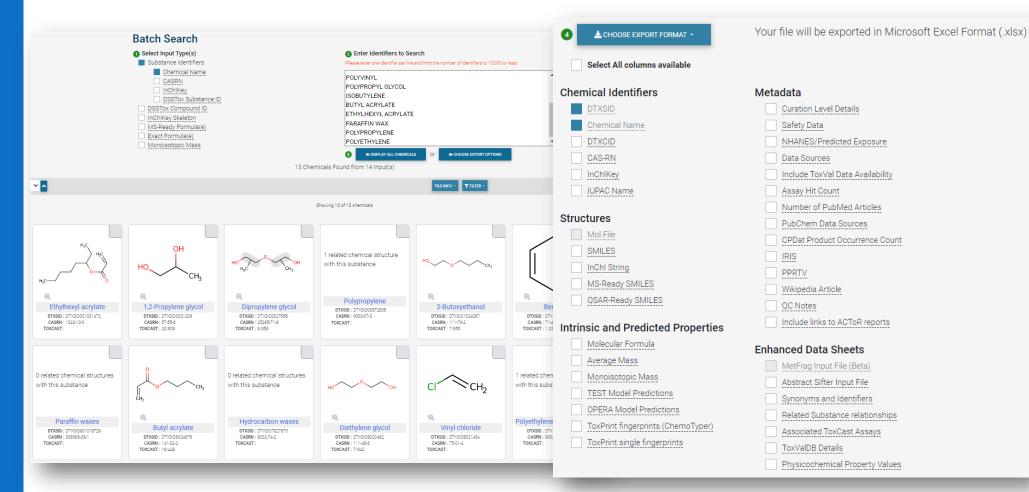

Purpose of the Cheminformatics Modules

• PoCs are research software builds to **prove approaches** before moving into production software environments

 Assemble data, develop data model(s), test user interface approaches, work with test user base to garner feedback

 PoCs are internal access data refreshes and application updates can be more frequent

Cheminformatics Modules


- Hazard Comparison module (MATURE: Background and Demo)
- Structure Alerts (DEVELOPMENT)
- PREDICT modules
 - 1.0 Batch (MATURE)
 - 2.0 New models (DEVELOPMENT)
- Structure/substructure/similarity searching (MATURE: Demo)
- Standardizer (DEVELOPMENT)
- ToxPrints (DEVELOPMENT)

Cheminformatics Modules

- Hazard Comparison module (MATURE: Background and Demo)
- Structure Alerts (DEVELOPMENT)
- PREDICT modules
 - 1.0 Batch (MATURE)
 - 2.0 New models (DEVELOPMENT)
- Structure/substructure/similarity searching (MATURE: Demo)
- Standardizer (DEVELOPMENT)
- ToxPrints (DEVELOPMENT)

Hazard Module – Batch Toxicity Data

Metadata Curation Level Details Safety Data NHANES/Predicted Exposure Data Sources Include ToxVal Data Availability Assay Hit Count Number of PubMed Articles PubChem Data Sources CPDat Product Occurrence Count IRIS PPRTV Wikipedia Article QC Notes Include links to ACToR reports Enhanced Data Sheets MetFrag Input File (Beta) Abstract Sifter Input File

- Synonyms and Identifiers
- Related Substance relationships
- Associated ToxCast Assays
- ToxValDB Details
- Physicochemical Property Values

Hazard Module – Batch Toxicity Data

- >1800 rows of hazard data for a dozen chemicals
- Is there an easier way to view complex hazard data?

A B C	D	E	F	G	Н	1	J	К	L	М	N	0	Р	Q	R	S	
714 Vinyl chlor DTXSID80.75-01-4	Vinyl chlo	r ECHA IUC	l Carcinoge	LOAEC	LOAEC	-	Point of D	LOAEC	=	127.812	_	ppm	ppm	chronic	chronic	carcinoger-	
715 Vinyl chlor DTXSID80.75-01-4	Vinyl chlo	r ECHA IUC	l Carcinoge	LOAEC	LOAEC	-	Point of D	LOAEC	=	12781.2		ppm	ppm	chronic	chronic	carcinoger-	
716 Vinyl chlor DTXSID80.75-01-4	Vinyl chlo	r ECHA IUC	l Carcinoge	LOAEL	LOAEL	-	Point of D	LOAEL	=	1.7	1.7	mg/kg-da	mg/kg bw	chronic	chronic	carcinoger-	
717 Vinyl chlor DTXSID80275-01-4	Vinyl chlo	r ECHA IUC	l Carcinoge	NOAEL	NOAEL	-	Point of D	NOAEL	=	0.13	0.13	mg/kg-da	mg/kg bw	chronic	chronic	carcinoger-	
718 Vinyl chlor DTXSID80275-01-4	Vinyl chlo	r ECHA IUC	l Developm	LOAEC	LOAEC	-	Point of D	LOAEC	=	500	500	ppm	ppm	developm	developm	developm -	
719 Vinyl chlor DTXSID80275-01-4	Vinyl chlo	r ECHA IUC	l Developm	NOAEC	NOAEC	-	Point of D	NOAEC	=	10	10	ppm	ppm	developm	developm	developm -	
720 Vinyl chlor DTXSID80:75-01-4	Vinyl chlo	r ECHA IUC	l Developm	NOAEC	NOAEC	-	Point of D	NOAEC	=	50	50	ppm	ppm	developm	developm	developm -	
721 Vinyl chlor DTXSID80.75-01-4	Vinyl chlo	r ECHA IUC	l Developm	NOAEC	NOAEC	-	Point of D	NOAEC	=	2500	2500	ppm	ppm	developm	developm	developm -	
722 Vinyl chlor DTXSID80.75-01-4	Vinyl chlo	r ECHA IUC	l Repeated	LOAEC	LOAEC	-	Point of D	LOAEC	=	127.812	50	ppm	ppm	chronic	chronic	chronic to -	
723 Vinyl chlor DTXSID80: 75-01-4	Vinyl chlo	r ECHA IUC	l Repeated	LOAEC	LOAEC	-	Point of D	LOAEC	=	12781.2	5000	ppm	ppm	chronic	chronic	chronic to -	
724 Vinyl chlor DTXSID80.75-01-4	Vinyl chlo	r ECHA IUC	l Repeated	LOAEC	LOAEC	-	Point of D	LOAEC	=	51125	20000	ppm	ppm	subchroni	subchroni	sub-chron -	
725 Vinyl chlor DTXSID80.75-01-4	Vinyl chlo	r ECHA IUC	l Repeated	LOAEC	LOAEC	-	Point of D	LOAEC	=	127812	50000	ppm	ppm	short-tern	short-term	short-tern -	
726 Vinyl chlor DTXSID80.75-01-4	Vinyl chlo	r ECHA IUC	l Repeated	LOEC	LOEC	-	Point of D	LOEC	=	260	260	mg/m3	mg/m3 aiı	chronic	chronic	repeated (-	1
727 Vinyl chlor DTXSID80.75-01-4	Vinyl chlo	r ECHA IUC	l Repeated	NOAEC	NOAEC	-	Point of D	NOAEC	=	127.812	50	ppm	ppm	subchroni	subchroni	sub-chron -	
728 Vinyl chlor DTXSID80.75-01-4	Vinyl chlo	r ECHA IUC	l Repeated	NOAEC	NOAEC	-	Point of D	NOAEC	=	255.625	100	ppm	ppm	subchroni	subchroni	sub-chron -	
729 Vinyl chlor DTXSID80.75-01-4	Vinyl chlo	r ECHA IUC	l Repeated	NOAEC	NOAEC	-	Point of D	NOAEC	=	511.25	200	ppm	ppm	subchroni	subchroni	sub-chron -	
730 Vinyl chlor DTXSID80.75-01-4	Vinyl chlo	r ECHA IUC	l Repeated	NOEC	NOEC	-	Point of D	NOEC	=	130	130	mg/m3	mg/m3 air	repeat do:	repeat do	repeated (-	
731 Vinyl chlor DTXSID80.75-01-4	Vinyl chlo	r ECHA IUC	l Repeated	LOAEL	LOAEL	-	Point of D	LOAEL	=	1.7	1.7	mg/kg-da	mg/kg bw	chronic	chronic	chronic to -	1
732 Vinyl chlor DTXSID80.75-01-4	Vinyl chlo	r ECHA IUC	Repeated	NOAEL	NOAEL	-	Point of D	NOAEL	=	0.13	0.13	mg/kg-da	mg/kg bw	chronic	chronic	chronic to -	1
733 Vinyl chlor DTXSID80.75-01-4	Vinyl chlo	ECHA IUC	Repeated	NOAEL	NOAEL	-	Point of D	NOAEL	=	30	30	mg/kg-da	mg/kg bw	subchroni	subchroni	sub-chron -	1
734 Vinyl chlor DTXSID80.75-01-4	Vinyl chlo	FECOTOX	EPA ORD	EC50	EC50	active	ingr Effect Con	EC	=	1170	1.17	mg/m3				Populatior ch	i 🖵
Cover Sheet Mai	n Data As	ssociated To	oxCast Assay	s Tox	al Details	(+)			•						•	1

Hazard Module: Purpose

- Identify safer alternatives for chemicals of concern
 - Comparative Chemical Hazard Assessment
- OECD review* identified need for "automated tools and methods to reduce hours of highly technical work"
- The Hazard Module aims to fill this gap
 - Enable users to readily compare alternatives
 - Display compiled chemical hazard data

*Organization for Economic Cooperation and Development (OECD) (2013), *Current Landscape of Alternatives Assessment Practice: A Meta-Review.*

Hazard comparison methodology

• Based on the DfE scoring system

Design for the Environment Program Alternatives Assessment Criteria for Hazard Evaluation

Version 2.0

August 2011

An automated framework for compiling and integrating chemical hazard data

Leora Vegosen & Todd M. Martin

<u>Clean Technologies and Environmental Policy</u> 22, 441–458 (2020) <u>Cite this article</u>

Ordinal scoring

Scores of Low, Medium, High, and Very High L, M, H, VH

Human Health

- Acute mammalian toxicity*
- Carcinogenicity
- Mutagenicity*
- Endocrine disruption*
- Reproductive toxicity
- Developmental toxicity*
- Neurotoxicity
- Systemic toxicity
- Skin sensitization
- Skin irritation
- Eye irritation

Ecotoxicity

- Acute aquatic toxicity*
- Chronic aquatic toxicity

Fate

- Persistence
- Bioaccumulation*

*Six endpoints can be predicted using Quantitative Structure-Activity Relationship (QSAR) models in WebTEST

Sources of Hazard Data

• GHS H-codes

- Safe Work Australia Hazardous Chemical Information System (HCIS)
- Canada CNESST Workplace Hazardous Materials Information System (WHMIS)
- European Chemicals Agency (ECHA) Classification Labeling and Packaging (CLP)
- National Institute of Technology and Evaluation (NITE) of Japan
- Ministry of Human Resources Malaysia Industry Code of Practice on Chemicals Classification and Hazard Communication

• Hazard categories

- Germany Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area (MAK Commission)
- New Zealand Environmental Protection Authority
- Quantitative toxicity data
 - ChemID*plus, ToxVal v9*
- Quantitative Structure-Activity Relationships (QSAR) Predictions
 - WebTEST, OPERA
 - Ministry of Environment and Food of Denmark Advisory List for Self-Classification of Dangerous Substances

Sources of Hazard Data

Hazardous Chemical Lists

- Environment and Climate Change Canada Domestic Substance List (DSL)
- EPA mid-Atlantic Region Human Health Risk-Based Concentrations
- Health Canada Priority Substance Lists (Carcinogenicity and Reproductive Tox)
- International Agency for Research on Cancer (IARC) Monographs
- Integrated Risk Information System (IRIS)
- National Institute for Occupational Safety and Health (NIOSH) list of potential occupational carcinogens
- California Proposition 65
- ECHA Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) Candidate List of Substances of Very High Concern for Authorization
- Report On Carcinogens
- Chemsec Substitute It Now (SIN) List
- The Endocrine Disruption Exchange (TEDX) List of Potential Endocrine Disruptors
- Toxic Substances Control Act (TSCA) Work Plan
- University of Maryland (UMD) List of Acute Toxins, Teratogens, Carcinogens, or Mutagens

Criteria for converting acute mammalian toxicity data into hazard scores

	_		Sco	ore		-
Source	Endpoint	VH	н	М	L	N/A
	Oral LD50 (mg/kg)	≤ 50	> 50 - 300	> 300 - 2000	> 2000	
DfE criteria	Hazard Code	H300	H301	H302		
ChemID <i>plus</i> ; T.E.S.T. Predicted*	Oral LD50* (mg/kg)	≤ 50	> 50 - 300	> 300 - 2000	> 2000	
Australia; Canada; ECHA CLP; Japan**; Malaysia	Hazard Code	H300	H301	H302	H303	
Denmark	Category	AcuteTox1 and AcuteTox2	AcuteTox3	AcuteTox4		
		Category 6.1A				
New Zealand	Category	Category 6.1B	Category 6.1C	Category 6.1D	Category 6.1E	
TSCA Work Plan			Acute mammalian toxicity			
UMD		Acute toxin				

Assigning the Overall Score

• Trumping Method: overall score is the most toxic score from the most authoritative source:

1. Authoritative (e.g., ECHA CLP)

- 2. Screening (e.g., ChemIDplus)
- 3. Predicted (e.g., WebTEST)

	matics Modules uild: 2022-04-21 19:14:01 U	JTC		*	h HAZA	RD	🗘 ALI	ERTS	P	REDIC	T 1.0	PRE PRE	EDICT 2.0	Į.	SEAR	сн (🖗 STA	NDARE	DIZE	<u></u> то	OXPRIN	тз	° [₽]
^															F	ull			•	∇	J		Ô
	Chemicals: 20				Toxicity:	VH - Ve	ery High I	H - High	M - Me	dium L ·	Low I -	Inconclusiv	e N/A - No	t Applica	ble Auth	ority: Au	thoritativ	re 🛈 Scr	eening (D QSAR	Model ()		
							1	Human	Health	Effects							Ecoto	oxicity		Fate			
	 Skipped (0) Unlikely (0) Filters (0) Sorting (0) Structure 		lammaliar Inhalation		Carcinogenicity	Genotoxicity Mutagenicit	Endocrine Disruption	Reproductive	Developmental	Repeat Exposure	Single Exposure	Systemic Rebeat Exposure	c Toxicity Single Exposure	Skin Sensitization	Skin Irritation	Eye Irritation	Acute Aquatic Toxicity	Chronic Aquatic Toxicity	Persistence	Bioaccumulation	Exposure		
	CAS Name	Oral	Inhal	Dermal	Carc	Gend	Endo	Repr	Deve	Repe	Sing	Repe	Sing	Skin	Skin	Eye	Acut	Chro	Pers	Bioa	Expo		
	79-06-1 AIGBT Acrylamide	н	м	м	νн	VH	L	м	н	н	н	н	н	н	н	н	м	м	L	L	Н		
	79-01-6 AIGBT Trichloroethylene	L	М	L	VH	VH	1	Н	н	Н	Н	н	М	н	н	н	н	VH	н	L	Н		
	108-95-2 AIGBT Phenol	н	н	н	н	н	н	н	н	н	Н	м	н	н	VH	VH	н	н	L	н	VH		
	50-00-0 AIGBT Formaldehyde	н	н	н	νн	н	н		L			L	М	н	VH	VH	н	L	L	L	Н		
	111-30-8 ^{AGBTM} Glutaraldehyde	н	νн	н	М	VH	н	н	L		н	Н	М	н	VH	VH	VH	н	L	L	н		
	302-01-2 ^{IGBTP} Hydrazine	н	н	н	νн	VH		Н	М	н	н	н	н	н	VH	VH	VH	VH	L	L			
	75-21-8 AIGBT Ethylene oxide	VH	н	1	VH	VH	н	н	н	н	н	н	М	Н	н	н	М	L	Н	L	VH		
	7803-57-8 GBT Hydrazine hydrat	VH	VH	VH	VH	VH		М	T	н	н	н	н	н	VH	VH	VH	VH					
	101-77-9 AGBT																						

101-77-9 AGBT

-

Cheminformatics Movements of the second seco				(.)			DDEDIO			ACTING AND ADDIZE		24
	Acute Mammali	an Toxici	t y Oral fo	r Acrylamide	(79-06-	Q)						
^		Тохісі	ty: VH - Ve	ry High <mark>H</mark> - Hig	h <mark>M</mark> - Me	dium L - Low I	- Inconclusiv	e N/A - Not App	licable Authority: A	uthoritative () Screening () QSAR Model ()		
Chemicals:	Source	Score	Route	Test Organism	Test Type	Category	Hazard Code	Hazard Statement	Rationale	Note	AR Model ^① Ite	
 Skippe Unlikel Filters Sorting Structu CA 	ECHA CLP	Н	oral			Acute Tox. 3	H301	Toxic if swallowed	Score of H was assigned based on a hazard code of H301		Exposure	
Na 79-0 Acryla 79-0 Trichloroe 108-9 Phe	Australia	Η	oral			Acute toxicity - category 3	H301	Toxic if swallowed	Score of H was assigned based on a hazard code of H301	N (The classification information for this entry was provided by the National Industrial Chemical Notification and Assessment Scheme)	- H - H - VH	
50-0 Formald 111-3 Glutarald 302-0 Hydra	Canada	Η	oral			Acute toxicity - oral - Category 3	H301	Toxic if swallowed	Score of H was assigned based on a hazard code of H301	Comments: This product could belong to the hazard class "Combustible dust", based on various factors related to the combustibility and explosiveness of its dust, including composition, shape and size of the particles.	. Н . Н	
75-2 Ethylene 7803- Hydrazine		Н	oral						50 mg/kg < Oral LD50 <=300		- VH	

Strengths and Limitations

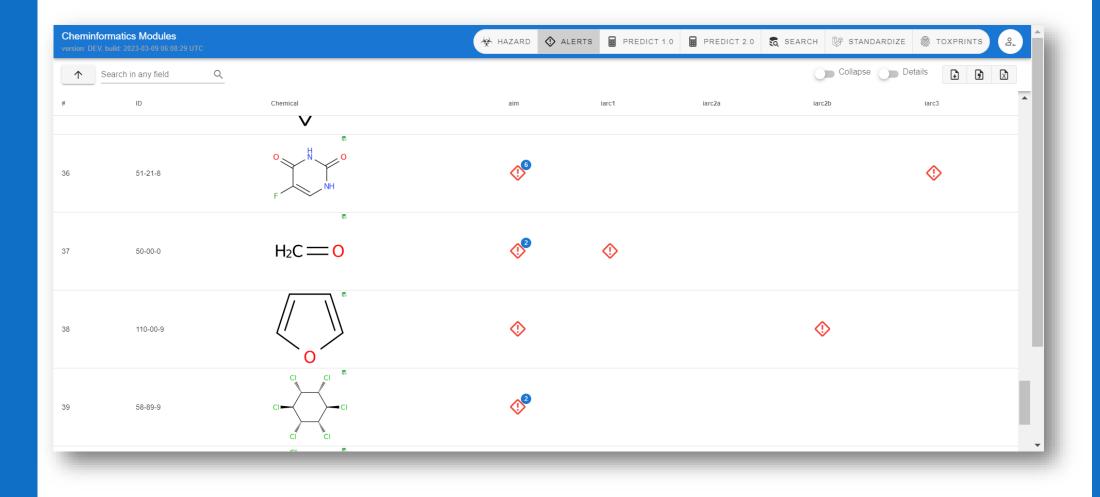
- Strengths
 - Provides rapid way to compare chemicals and retrieve hazard data
 - Includes data from several sources including QSAR models
- Limitations
 - Data gaps
 - Automation limits the scope of data searching and quality assurance, particularly of primary sources

Future Research Needs

- Update the data from each source
- Add additional data sources
- New/Improved QSAR models

Live DEMO

Cheminformatics Modules



- Hazard Comparison module (MATURE: Background and Demo)
- Structure Alerts (DEVELOPMENT)
- PREDICT modules
 - 1.0 Batch (MATURE)
 - 2.0 New models (DEVELOPMENT)
- Structure/substructure/similarity searching (MATURE: Demo)
- Standardizer (DEVELOPMENT)
- ToxPrints (DEVELOPMENT)

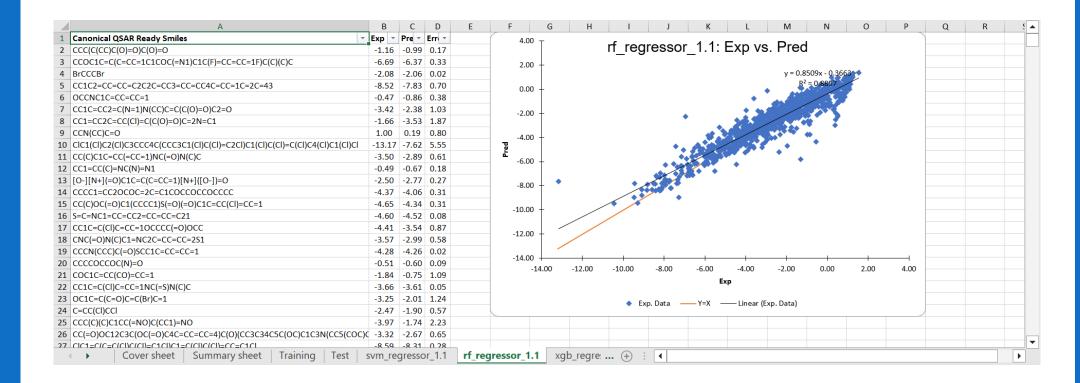
Structure Alerts (Development)

nformatics Modules DEV, build: 2023-03-0 <mark>Alerts</mark> 29 UTC		
CERAPP binders	^	Ä
IARC1		
IARC2A	ľ	
IARC2B		
IARC3		
AIM	•	

Structure Alerts (Development)

Cheminformatics Modules

- Hazard Comparison module (MATURE: Background and Demo)
- Structure Alerts (DEVELOPMENT)
- PREDICT modules
 - 1.0 Batch (MATURE)
 - 2.0 New models (DEVELOPMENT)
- Structure/substructure/similarity searching (MATURE: Demo)
- Standardizer (DEVELOPMENT)
- ToxPrints (DEVELOPMENT)


PREDICT 1.0 Batch Prediction

Legend:A = Active, N = Not active, I = Inconclusive, Experimental, Predicted

- - - ,		,		110101011	/														
 Filters Structure Products CAS Name 		Fathead minnow LC50 (96 hr)	Daphnia magna LC50 (48 hr)	T. pyriformis IGC50 (48 hr)	Oral rat LD50	Bioconcentration factor	Developmental Toxicity	Mutagenicity	Estrogen Receptor Binding	Estrogen Receptor RBA	Normal boiling point	Vapor pressure at 25°C	Melting point	Density	Flash point	Surface tension at 25°C	Thermal conductivity at 25°C	Viscosity at 25°C	Water solubility at 25°C
301-12-2 Oxydemeton-met	GBTM	3.35	5.81	I	<u>3.91</u> 4.27	0.28	N	A N	Ν			-5.19	50	<u>1.31</u> 1.28	<u>182</u> 186			T	1.10
115-29-7 Endosulfan	AIGBT	<u>6.10</u> 5.14	<u>4.35</u> 3.35	<u>8.48</u> 6.33	<u>6.08</u> 5.36	I	N		N N			319	<u>-6.76</u> -6.22	<u>106</u> 90	<u>1.94</u> 1.81	<u>226</u> 227			
1646-75-9 Aldicarb oxime	GBT	3.10	I	I	<u>2.25</u> 2.39	I	Ν	N N	Ν	I	<u>210</u> 188	I	<u>21</u> 28	<u>1.00</u> 0.99	<u>81</u> 70	31.43			
630-08-0 Carbon monoxide	AGBT	T	I	I	I	I	I	I	I	I	<u>-192</u> /	<u>8.19</u> /	<u>-205</u>		I	I	1	I	1
2312-35-8 Propargite	IGBTM	<u>6.21</u> 4.57	<u>2.37</u> 1.93	5.82		T	A		Ν		I	325	<u>-6.52</u> -6.75	23	<u>1.17</u> 1.16	<u>226</u> 226		I	I
115-90-2 Fensulfothion	GBTM	<u>2.19</u> 2.80	<u>5.15</u> 4.52	<u>3.85</u> 4.55	6.94	N N	А	1.25	N		I	I	<u>-4.30</u> /	59	<u>1.31</u> 1.37	<u>198</u> 201			I

PREDICT 2.0 – New model delivery

• Early development work for how we will deliver models in the future. The biggest benefit is data transparency

Cheminformatics Modules

- Hazard Comparison module (MATURE: Background and Demo)
- Structure Alerts (DEVELOPMENT)
- PREDICT modules
 - 1.0 Batch (MATURE)
 - 2.0 New models (DEVELOPMENT)
- Structure/substructure/similarity searching (MATURE: Demo)
- Standardizer (DEVELOPMENT)
- ToxPrints (DEVELOPMENT)

Structure/Substructure/Similarity

LIVE DEMO

Cheminformatics Modules

- Hazard Comparison module (MATURE: Background and Demo)
- Structure Alerts (DEVELOPMENT)
- PREDICT modules
 - 1.0 Batch (MATURE)
 - 2.0 New models (DEVELOPMENT)
- Structure/substructure/similarity searching (MATURE: Demo)
- Standardizer (DEVELOPMENT)
- ToxPrints (DEVELOPMENT)

Generation of QSAR-Ready/MS-Ready

• Preparing chemicals for modeling and Linking in CCD

	informatics Modules DEV, build: 2023-03-09 06:08:29 UTC		HAZARD	♦ ALERTS ■ PREDICT 1.0 ■ PREDICT 2.0	SEARCH 🕼 STANDARDIZE	TOXPRINTS 2
\uparrow	Search in any field					ails 🕽 🕽 🕅
34	DTXSID7020558	<u>Ē</u> -}	E Nu Nu Nu Nu Nu Nu Nu Nu Nu Nu Nu Nu Nu		\oslash	
35	DTXSID1020560				\oslash	
36	DTXSID6020561				\oslash	
43	DTXSID2020686				\oslash	

Cheminformatics Modules

- Hazard Comparison module (MATURE: Background and Demo)
- Structure Alerts (DEVELOPMENT)
- PREDICT modules
 - 1.0 Batch (MATURE)
 - 2.0 New models (DEVELOPMENT)
- Structure/substructure/similarity searching (MATURE: Demo)
- Standardizer (DEVELOPMENT)
- ToxPrints (DEVELOPMENT)

ToxPrint chemotype generation

Cheminformatics Mo version: DEV, build: 2023-03			🖗 HAZAR	D 🚯 ALERTS	PREDICT 1.0	PREDICT 2.0	🕄 SEARCH	🕼 STANDARDIZE	TOXPRINTS
↑ ï								Q	Names 🚺 🕅
Structure	Labels	ToxPrints							
	bond:CN_amine_aliphatic_generic bond:CN_amine_aromatic_generic bond:CN_amine_sec-NH_alkyl bond:CN_amine_sec-NH_aromatic bond:CN_amine_sec-NH_generic bond:CN_amine_sec-NH_generic bond:CX_halide_aromatic-X_generic bond:CX_halide_aromatic-X_generic bond:X[any]_halide chain:alkaneBranch_isopropyl_C3 chain:alkaneLinear_ethyl_C2(H_gt_1) ring:hetero_[6]_N_triazine_(1_3_5-) ring:hetero_[6]_Z_1_3_5- ring:hetero_[6]_Z_1_3_5-	94 N C 422 C C C C C C	98 N C 437 C C			C , , , H C , , , H C , , , , , , , , , , , , , , , , , , ,	106 C C C C C C C C C C C C C C C C C C C	185 Q	302 * ! ?
Hc Oh	bond:COH_alcohol_aromatic bond:COH_alcohol_aromatic_phenol bond:COH_alcohol_generic chain:alkaneBranch_neopentyI_C5 chain:alkaneLinear_ethyI_C2_(connect_noZ_CN=4) chain:aromaticAlkane_Ar-C-Ar chain:aromaticAlkane_Ph-C1_acyclic_connect_noDbIBd chain:aromaticAlkane_Ph-C1_acyclic_generic chain:aromaticAlkane_Ph-C1-Ph ring:aromatic_benzene			H L C	424 c _ c _ c c _ c _ c	C C C	474 C C C	476 C C C C C C C	477 C C C C C

Examine ToxPrint Enrichment Statistics

↑ ï 🗉 💷																		Nar	nes 🔾	Images	Ţ	
	background control (62)	cytotoxicity (61)	artifact detection (2)	cell adhesion molecules (24)	cell cycle (20)	cell morphology (17)	cyp (48)	cytokine (58)	dna binding (77)	dna repair/prolif/mutag (13)	enzymatic activity (56)	gpcr (57)	growth factor (10)	ion channel (15)	kinase (24)	malformation (17)	misc cell damage (18)	nuclear receptor (142)	protease (12)	steroid hormone (28)	stress response (9)	transporter (26)
912-24-9 Irazine	10	3		9	7	8	20	9	12	3	21	41		8	13		3	25	3	14	2	11
0-05-7 isphenol A	34	51		16	8	8	17	35	50	8	18	26	6	5	8	9	8	106	6	14	4	11
0-57-1 ieldrin	46	50	1	21	6	12	17	41	43	7	18	35	6	10	6	1	11	83	7	20	6	14
763-23-1 erfluorooctanesulf	23	34		5	11	7	20	17	37	6	15	22	7	2	6	8	12	47	8	7	8	12
298-90-6 rrfluorooctanesulf	23	34		5	11	7	20	17	37	6	15	22	7	2	6	8	11	46	8	7	8	12
2-34-9 nazine	10	2		9	7	8	19	8	12	3	21	41		8	13		3	24	3	14	2	11

The Cheminformatics Modules is a set of prototype modules which are using a compilation of information sourced from many sites, databases and sources including U.S. Federal and state sources and international bodies that saves the user time by providing information in one location. The data are not reviewed by USEPA – the user must apply judgment in use of the information. The results do not indicate EPA's position on the use or regulation of these chemicals.

Work-in-Progress

• Preparing for a new release which will include Safety Module

• Safety Module

↑ Search o	hemical by	Name, CA	SRN or DTXS													Show	Structure	Full	\$	•	M	Pop 🗍
Chemical	Safety	Properties	Signal	Explosive	Flammable	Oxidizers	Compressed Gas	Corrosive	Acute Toxicity	Irritant	Health Hazard	Env. Hazard	NFPA 704	Fire Fighting	Accidental Release Measures	Handling and Storage	Stability and Reactivity	Transport Information	Regulatory Information	Other Safety Information	RQ Category	RQ in pounds (kilograms)
AIGBT													140									
71-43-2 Benzene			Danger		٨					(!)		E		i	i	i	i	i	i	i	A	10 (4.5
AIGBT													4									
75-01-4 /inyl chloride	\Box	\bigtriangleup	Danger				\diamondsuit			(!)			2 2 2 2 7	i	i	i	i	i	i	i		
25265-71-8 GBT Dipropylene glycol													v									
57-55-6 AIGBT 1,2-Propylene glycol	\Box	\bigtriangleup											010	i	i	i	i		i	i		
111-46-6 GBTM Diethylene glycol	\Box	Δ	Danger							(!)			10	i	i	i	i	i	i	i		
111-76-2 AIGBT P-Butoxyethanol	\Box	\bigtriangleup	Danger							$\langle \rangle$			320	i	i	i	i	i	i	i		
GBTM GBTM	\bigcirc	\bigtriangleup	Danger				\diamond			(!)			241	i	i	i	i	i	i	i		
141-32-2 GBTM Butyl acrylate	\bigcirc	\bigtriangleup	Danger		٢					(!)			322	i	i	i	i	i	i	i		
1322-13-0 Thylhexyl acrylate	\Box																					

udgment in use of the information. The results do not indicate EPA's position on the use or regulation of these chemicals

Work-in-Progress

- Preparing for a new release which will include Safety Module
- Data will be updated with latest curated data PLUS support for chemicals with no structures (cannot do QSAR prediction)
- Structure alerts will be updated with support for:
 - PFAS A New CSRML Structure-Based Fingerprint Method for Profiling and Categorizing Perand Polyfluoroalkyl Substances (PFAS)

• AIM

Development of a CSRML version of the Analog identification Methodology (AIM) fragments and their evaluation within the Generalised Read-Across (GenRA) approach

<u>Matthew Adams</u>^{a b}, <u>Hannah Hidle</u>^{a b}, <u>Daniel Chang</u>^b, <u>Ann M. Richard</u>^b, <u>Antony J. Williams</u>^b, <u>Imran Shah</u>^b, <u>Grace Patlewicz</u>^b A ⊠

Work-in-Progress

- All Hazard and Safety profiles, and TEST predictions will be pre-generated for faster response
- "Kubernetes-support" and "queueing" will spin up additional processors for faster predictions – should support 1000s of chemicals for TEST predictions
- Adding support for multiple other prediction engines such as OPERA

Analytical Methods and Open Spectral Database

78 Results for "vinyl chloride"

CI ∕CH₂

(Preferred) Name: Vinyl chloride DTXSID: <u>DTXSID8021434</u> CASRN: 75-01-4 InChIKey: BZHJMEDXRYGGRV-UHFFFAOYSA-N Molecular Formula: C2H3Cl Mass: 61.99233

Download Results

Display Single Point Spectra Include MS-Ready methods

Unclude MS-Ready r	netnoas 😗				
<u>All Results (78)</u>	<u>Methods (4</u>	4) <u>Spectra</u>	<u>a (28)</u>	Fact Sheets (6)	
Methodology ↑	Source	Method #	#	Information	
	\bigtriangledown			□	
GC	USEPA	EPA-TO-17	41	Determination of VOCs residues in air by GC.	
GC/ELCD; GC/MS	NEMI	SMC-6200	66	Determination of Organohalides residues in water (ground, waste,	
GC/ELCD; GC/PID	NEMI	EPA-502.2	60	Determination of VOCs residues in water (drinking, raw) by GC/ELC	
GC/FID	<u>OSHA</u>	OSHA-75	1	Determination of Vinyl chloride residues in air by GC/FID with a LC	
GC/FID	<u>OSHA</u>	OSHA-4	1	Determination of Vinyl Chloride residues in air by GC/FID with a LC	
GC/MS	USEPA	EPA-601	29	Determination of Halocarbons residues in municipal and industrial	
GC/MS	USEPA	EPA-624.1	144	Determination of Purgeable organic pollutants residues in water (r	
GC/MS	<u>USEPA</u>	EPA-1624B	33	Determination of VOCs residues in water (municipal waste, industr	
GC/MS	USEPA	EPA-8260D	179	Determination of VOCs residues in various air sampling trapping n	
GC/MS	USEPA	EPA-8261	106	Determination of VOCs residues in water, soil, sediment, sludge, o	
GC/MS	Agilent	5994-3834	61	Determination of VOCs residues in water by GC/MS.	
GC/MS	Agilent	5991-6539	48	Determination of VOCs residues in water by GC/MS with a LOD of	
GC/MS	USGS	5-B12	102	Determination of VOCs residues in water by GC/MS.	
GC/MS	USEPA	CTM-028	35	Determination of VOCs residues in stationary source emissions by	
GC/MS	NEMI	USGS-0-3115-83	27	Determination of VOCs residues in water by GC/MS with a LOD of	_

Volatile Organic Compounds in Water by Purge and Trap Capillary Column Gas Chromatography with Photoionization and Electrolytic Conductivity Detectors in Series

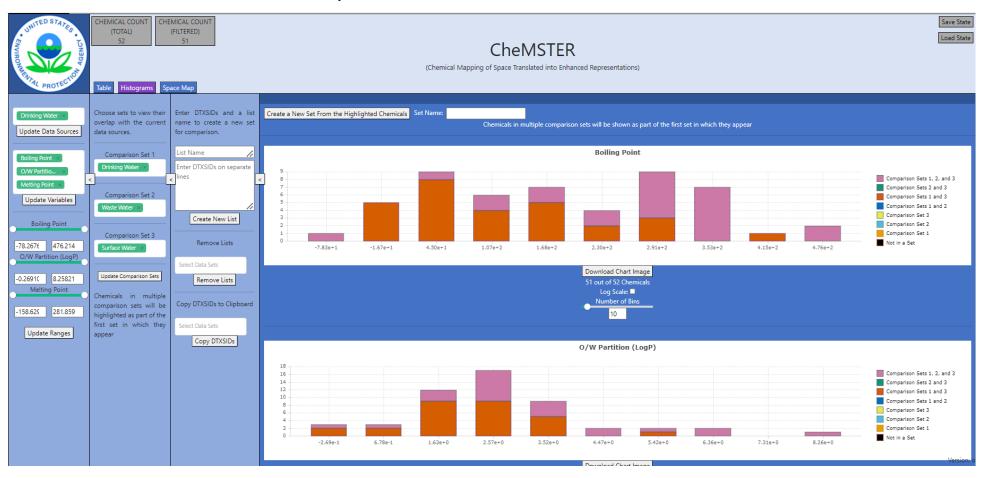
Aut Foc Lim	hor: USE us/Analy itation: I	PA / te: VOCs LOD of 0.01-2.2 etermination of	opb	-		w) by GC,	/ELCD; GC	/PID with a	LOD of 0.0	1-2.2ppb.	
<u>PDF V</u>	<u>iewer</u>	Substances	(<u>60) (grid)</u>	<u>Substan</u>	<u>ces (60) (tal</u>	<u>ble)</u>					
≡	L:\/	APPS∖s	1 / 35	-	67%	+	¢	ళ	Ŧ	ē	:
		METHOD 502.2	VOLATILE O CAPILLARY AND ELECT	COLUMN GA ROLYTIC CO	AS CHROMA	TOGRAPH	IY WITH P	HOTOIONIZ			

Edited by J.W. Munch (1995)

• Chemical Transformation database (ChET)

Reaction Map For Phosmet

Show Instructions			
Show/Hide Map	Highlight Map	Species	Reference
<u>Map 113</u>	<u>Map 113</u>	Cherry / Stone fruit	A, Barnes, J. P.; Goldsby, G., Phosmet metabolism in an orchard tree fruit - cherry - (Volume 1), (p. 94), (1989); B, Codrea, E. , F
<u>Map 116</u>	<u>Map 116</u>	Corn	A, Toia, R.F., Patrick, G., Ewing, A.D., Kimmel, E., A Metabolism Study with 14C-Phosmet on Corn, (p. 264), (1993)
<u>Map 117</u>	<u>Map 117</u>	Apples	A, Mohajeri, S.; Zane, J., METABOLISM OF [14C]PHOSMET BY APPLES (MALUS DOMESTICA), (p. 161), (2015)
<u>Map 118</u>	<u>Map 118</u>		A, The nature of the residues of orally administered (carbonyl-14C)-Phosmet in tissues and eggs of laying hens , (p. 154), (19
<u>Map 119</u>	<u>Map 119</u>		A, The Nature of the Residues of Orally Administered [carbonyl-14C]-Phosmet in Tissues and Milk of Lactating Goats, (p. 117
<u>Map 114</u>	<u>Map 114</u>	Potatoes	A, Toia, R. F.; Ewing, A. D.; Patrick, G.; Kimmel, E., Metabolism study with 14C Phosmet on potatoes, (p. 143), (1993); B, Rose, J


Open Two or Three Maps to Compare Them

Show All Chemicals Hide All Chemicals

Search this map by DTXSID or Name:

Submit Clear Search

• ChemSTER: Chemical Mapping of Space Translated into Enhanced Representations

Interested in a demo?

• Cheminformatics Modules:

https://www.epa.gov/comptox-tools/cheminformatics

- Contact for follow up demo(s):
- Antony Williams <u>williams.antony@epa.gov</u>
- Todd Martin <u>martin.todd@epa.gov</u>

Demo screen shots (just in case)

Final record used to assign score on hover

Chemicals: 21				Toxicity:	VH - Very	/ High <mark>I</mark>	H - High	M - Me	dium L -	Low I -	Inconclusive	N/A - No	t Applica	ble Auth	nority: Au	thoritativ	re 🛈 Scr	eening G	QSAR	Model 🛈	
						ł	Human	Health	Effects							Ecoto	oxicity		Fate		
Skipped (0)	Acute Ma	ammalian	Toxicity		nicit				Neurotoxicity Systemic		Toxicity				>	city					
 Unlikely (0) Filters (0) Sorting (0) Structure CAS Name 	Oral	Inhalation	Dermal	Carcinogenicity	Genotoxicity Mutagenicit	Endocrine Disruption	Reproductive	Developmental	Repeat Exposure	Single Exposure	Repeat Exposure	Single Exposure	Skin Sensitization	Skin Irritation	Eye Irritation	Acute Aquatic Toxicity	Chronic Aquatic Toxicity	Persistence	Bioaccumulation	Exposure	
79-06-1 AIGBT	н	м	М	νн	νн	1	м	н	н	н	н	н	н	н	н	М	м	М	L	Н	
Acrylamide		1	Acrylamide Acute Mammalian Toxicity Oral													-					
79-01-6 AIGBT	L										н	н	VH	М	L	Н					
Trichloroethylene	-				Source												•		-		
108-95-2 AIGBT	н			А	uthority	Autho	oritative					4	н	νн	VH	н	н	М	н	VH	
Phenol					Score	Н								VII	VII			171		VII	
50-00-0 AIGBT	н				Route	oral						Л	u	VL	VL	н	L	М		Н	
Formaldehyde	"		Category Acute Tox. 3											п	-	IVI	L	п			
111-30-8 AGBTM	н													VH	н	М	L	Н			
Glutaraldehyde	"	Hazard Statement Toxic if swallowed										VП	п	IVI	L	п					
302-01-2 IGBTP	н	Rationale Score of H was assigned based on a hazard code of H WH VH										VH	VH		L						
Hydrazine		H301																			
75-21-8 AIGBT		Note																			

All records for a given score on click

heminformatics Mod	lules										त्रि TOXF
ersion: DEV, build: 2023-03-	Acute Mammal	lian Toxici	ty Oral fo	r Acrylamide	(79-06-	1Q)					
^		Tovici	ity: VH - Ve	ery High H - Hig	nh M - M	edium L - Low L	- Inconclusiv	e N/A - Not Apr	licable Authority A	uthoritative ⁽¹⁾ Screening ⁽¹⁾ QSAR Model ⁽¹⁾	
Chemicals:		TOXICI									AR Model
	Source	Score	Route	Test Organism	Test Type	Category	Hazard Code	Hazard Statement	Rationale	Note	ite
Skippe	ECHA CLP	н	oral			Acute Tox.	H301	Toxic if	Score of H		-
Unlikel			orai			3	11501	swallowed	was assigned		5
Sorting									based on a		a
Structu									hazard code of H301		Exposure
C <i>i</i> Na											Expo
79-0	Australia	Н	oral			Acute	H301	Toxic if	Score of H	N (The classification information	
Acryla						toxicity - category 3		swallowed	was assigned based on a	for this entry was provided by the National Industrial Chemical	- Н
79-0									hazard code	Notification and Assessment	
Trichloroe									of H301	Scheme)	- H
108-9	Canada	Н	oral			Acute	H301	Toxic if	Score of H	Comments: This product could	+ VF
Phe						toxicity -		swallowed	was assigned	belong to the hazard class	
50-0 Formalc						oral - Category			based on a hazard code	"Combustible dust", based on various factors related to the	_ н
111-3						3			of H301	combustibility and explosiveness	
Glutaral										of its dust, including composition,	- H
302-0										shape and size of the particles.	
Hydra	ChemIDplus	н	oral						50 ma/ka <		-

Scoring Dictionaries available in headers

९ ☆ छे =ा

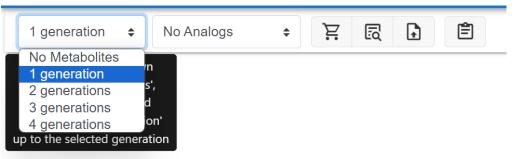
Cheminformatics Modules version: DEV, build: 2023-03-09 06:08:29 UT	с	Acute Mammalian Toxicity Oral													🕼 STANDARDIZE				C TOXPRIN		
•		Source			Endpoin	t	νн		н			М	L					÷	V	Ð	
<u>^</u>		DfE criteria			Oral LD5 (mg/kg)	0	≤ 50		>	50 - 300		> 300 - 2000	> 20	00		Ecoto	oxicity	•] [↓ Fate	Ŀ	
	Acute	DfE criteria			EU CLP		H300		H	301		H302				LCOIC			Tate		
Skipped (0) Unlikely (0)		ChemIDplu *	is; TEST Pre		Oral LD5 (mg/kg)	0	≤ 50		>	> 50 - 300		> 300 - 2000				Toxicity	Chronic Aquatic Toxicity		Ę		
Filters (0)Sorting (0)Structure		Australia; C Malaysia	anada; ECI	HA CLP;	GHS Cod	le	H300		H	301		H302				Acute Aquatic Toxicity	Aquatio	ence	Bioaccumulation	Ð	
CAS	Oral (Denmark			Category	/	AcuteTo: AcuteTo:		Ac	uteTox3		AcuteTox4			· · · · · · · · · · · · · · · · · · ·	Acute A	Chronic	Persistence	Bioaccu	Exposure	
Ethylene oxide	VH	Japan			GHS Cod	le	H300		Ha	301		H302	H303 Class	3 Not sified		м	L	М	L	VH	
7803-57-8 ^{GBT} Hydrazine hydrat	VH	New Zealar	Category Category 6.1A Category 6.1B					Category Category 6.1E 6.1D		-1	VH	VH									
101-77-9 ^{AGBT} 4,4'-Diaminobiph	н	TSCA Work	Plan							Acute mammalian toxicity				1	VH	н	М	L	н		
10588-01-9 GBT	н	UMD					Acute to	Acute toxin						-1	νн	νн		L			
Sodium dichromate	* TEST Predicted predicts rat LD50 values. ChemIDplus										bbits, and	guinea pig	s were in	cluded.							
Acrylonitrile	н	н	н	VH	VH	L	Н	Н	Н	Н	Н	М	н	н	VH	н	н	М	L	VH	
110-91-8 ^{GBTM} Morpholine	М	м	м	I	L	L	1	L			н	н	T	νн	VH	L	М	М	L	н	
106-93-4 AIGBT 1,2-Dibromoethane	н	н	н	VH	VH	н	Μ	н		н	М	М	1	н	н	н	н	М	L	н	
630-08-0 AGBT																					

List of sources by type from authority info buttons

Authoritative sources

- European Chemicals Agency (ECHA) Classification Labeling and Packaging (CLP);
- EPA mid-Atlantic Region Human Health Risk-Based Concentrations;
- Germany Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area;
- World Health Organization International Agency for Research on Cancer (IARC) Monographs on the Evaluation of Carcinogenic Risks to Humans;
- Integrated Risk Information System (IRIS);
- US National Institute for Occupational Safety and Health (NIOSH) list of potential occupational carcinogens;
- California Office of Environmental Health Hazard Assessment Proposition 65 List;
- EU European Chemicals Agency (ECHA) Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) Candidate List of Substances of Very High Concern for Authorization;
- US Department of Health and Human Services National Toxicology Program Report on Carcinogens

Reference: An automated framework for compiling and integrating chemical hazard data


\$	∇	Ŧ	
----	----------	---	--

Authoritative (i) Screening (i) QSAR Model (i)

Ecoto	oxicity		Fate		
Acute Aquatic Toxicity	Chronic Aquatic Toxicity	Persistence	Bioaccumulation	Exposure	

CTS Metabolite Feature

Chemicals: 3

Toxicity: VH - Very High H - High M - Medium L - Low I - Inconclusive N/A - Not Applicable Authority: Authoritative 🛈 Screening 🛈 QSAR Model 🛈

							Human	Health	Effects							Ecotoxicity			Fate	
Skipped (0)	Acute M	ammalian	n Toxicity		nicit	_			Neurot	toxicity	Systemic	c Toxicity				>.	city			
 Unlikely (3) Filters (0) Sorting (0) Structure CAS Name 	Oral	Inhalation	Dermal	Carcinogenicity	Genotoxicity Mutagenicity	Endocrine Disruption	Reproductive	Developmental	Repeat Exposure	Single Exposure	Repeat Exposure	Single Exposure	Skin Sensitization	Skin Irritation	Eye Irritation	Acute Aquatic Toxicity	Chronic Aquatic Toxicity	Persistence	Bioaccumulation	Exposure
115-86-6 ^{HGBTM} Triphenyl phosph…	М	L	L	I	L	н	L	L	L	I	L	I	I	L	н	VH	VH	М	н	М
838-85-7 ^M Diphenyl phos <mark>blKELY</mark>	М				VH	L	М	Н								L		М	L	Н
108-95-2 AIGBT Phenol LIKELY	н	н	н	н	н	Н	н	н	н	н	М	н	н	VH	VH	н	н	М	н	VH

Similar chemicals feature

F Ä EQ No Metabolites \$ SIMILAR \$

Ê

Toxicity: VH - Very High H - High M - Medium L - Low I - Inconclusive N/A - Not Applicable Authority: Authoritative ① Screening ① QSAR Model ① Chemicals: 20 Human Health Effects Ecotoxicity Fate Genotoxicity Mutagenicity Acute Mammalian Toxicity Neurotoxicity Systemic Toxicity Chronic Aquatic Toxicity Skipped (0) Acute Aquatic Toxicity Endocrine Disruption Unlikely (0) Skin Sensitization Repeat Exposure Repeat Exposure Single Exposure Single Exposure Bioaccumulation Filters (0) Carcinogenicity Developmental Reproductive Skin Irritation Eye Irritation Sorting (0) Persistence Inhalation Exposure Structure Dermal CAS Oral Name 115-86-6 HGBTM Μ L L Н L L Η VH VH Μ Н М L L L Triphenyl phosph... 4009-39-6 Μ L Н Н М L methyl phenyl hy 1.00 10113-28-7 М Н Н VH L Μ М Phosphoric acid, 1.00 Μ 838-85-7 VH М Н L Μ Н М L Diphenyl phosphat.00

NOCAS 892675

Diphenyl hydroge1 00

Custom report feature

								Full	gency Res	ponse 🗢		
Chemicals: 22			Toxicity: V	'H - Very High	H - High M		conclusive N/A - Not Applicable	Au Custo	om gency Res	oonse) 🛈 QSAR Model 🛈	
						Human Health Eff	fects		Specific Scr	Ecotoxicity		
Skipped (0)		Acute	Mammalian T	oxicity	nicit				>			
 Unlikely (0) Filters (0) Sorting (0) Structure CAS Name 			Inhalation	Dermal	Genotoxicity Mutagenicit	Single Exposure	Single Exposure	Skin Sensitization	Skin Irritation	Eye Irritation	Acute Aquatic Toxicity	
79-06-1 Acrylamide	AIGBT	н	М	М	νн	н	н	н	н	н	М	
79-01-6 Trichloroethylene	AIGBT	L	М	M L V		н	М	Н	н	н	н	
108-95-2 Phenol	AIGBT	н	н	н	н	н	н	н	VH	VH	н	
50-00-0 Formaldehyde	AIGBT	н	н	н	н		М	н	VH	VH	н	
111-30-8 Glutaraldehyde	AGBTM	н	VH	Н	VH	н	М	н	VH	VH	νн	
302-01-2 Hydrazine	IGBTP	н	н	н	VH	н	н	н	νн	VH	νн	
75-21-8	AIGBT											