DC Fast Charging Information for Consumers

How EPA can do more to educate consumers and resolve a major hurdle for EV adoption

Aaron Sobel

U.S. Environmental Protection Agency Office of Transportation & Air Quality Transportation & Climate Division Climate Analysis & Strategies Branch

1

May 30, 2024

Charging time is the top reason why those in the market for a new car would not consider an electric vehicle

Which, if any, of the following reasons describe why you would not consider purchasing [an electric engine] with your new or second-hand car? Please select all that apply. (% of US adults likely to buy a vehicle in the next 12 months)

"Electric cars take too long to charge"

- EV charging time remains a key concern for consumers
- A lack of clear information is leaving consumers confused

Charging time		
	21	
Initial cost is higher		
	20	
Hassle of charging		
	20	
Cost of charging at home		
18		
There are not enough charging stations		
17		electrify
Longevity of battery		
15		3W / Saidy
Range of models to choose from is reduced		D D States
11		
Low performance in terms of speed		
11		
Financial benefits, tax breaks and legislation are confusing		
6		
The type/model of car which I want isn't available as electric		
5		

2 **Source(s):** YouGov Polling

Charging

Supercharging Max/Payment Type 250 kW Max; Pay Per Use Onboard Charger Max 11.5 kW max (48A) **Charging Speed** Up to 147 miles added in 15 minutes Car companies are advertising their DCFC capabilities in different ways

 Direct comparison of DCFC capabilities across vehicles is not currently accessible for consumers

Hyundai Ioniq 5 💭

800V DC charging

Ford F-150 Lightning

Go from 10 to 80% in 18 minutes.

IONIQ 5 is one of the few electric vehicles that can handle these ultra-fast chargers. ③

400V DC charging

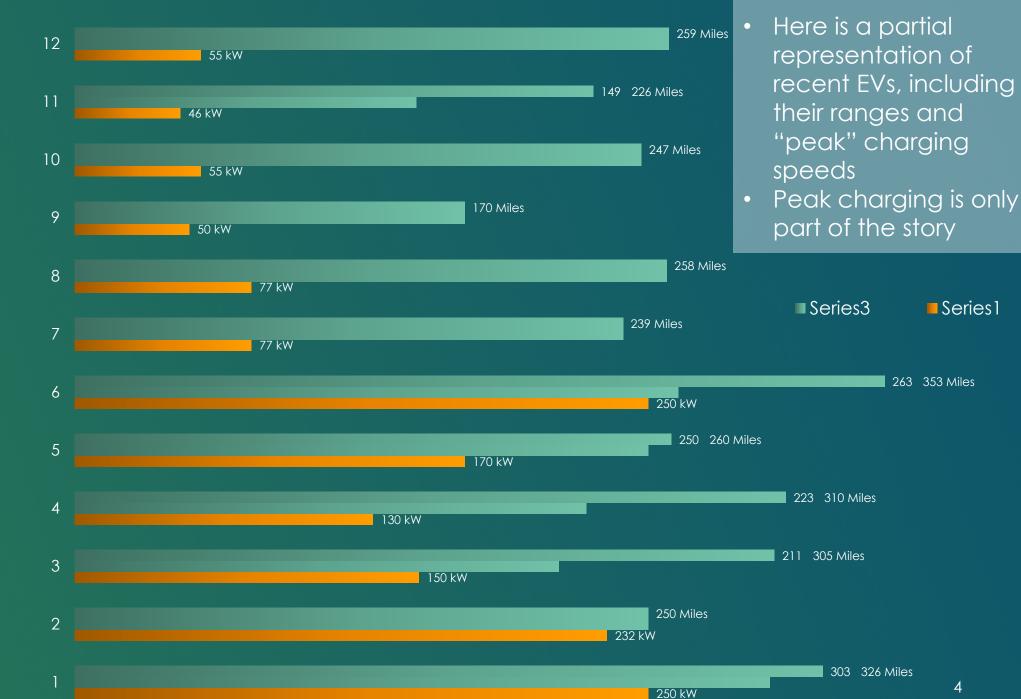
Go from 10 to 80% in 25 minutes (est.)

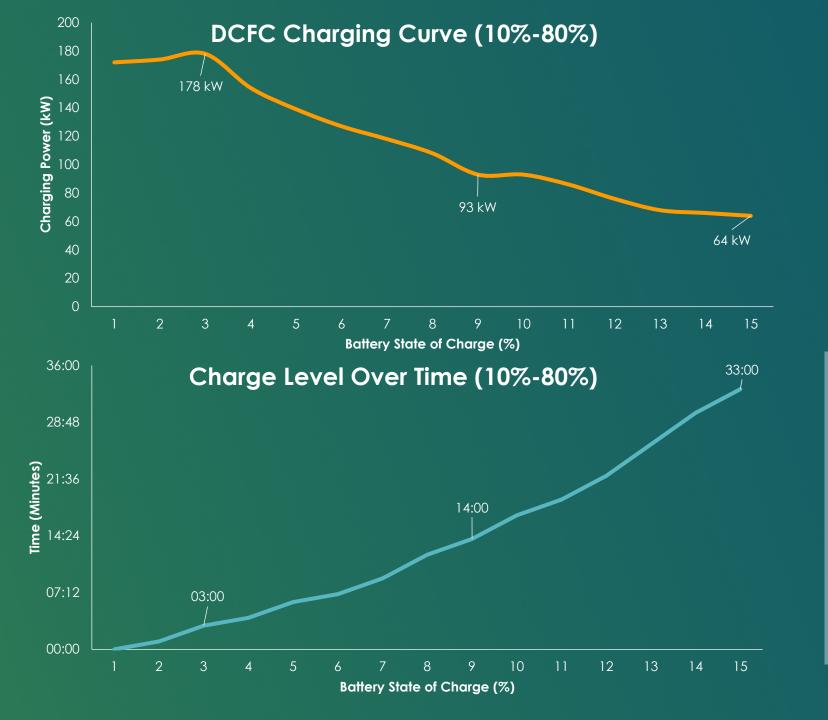
Most public DC charging stations conveniently use this Level 3 charger. ② 240V AC charging Go from 10 to 100% in about 7 hours.

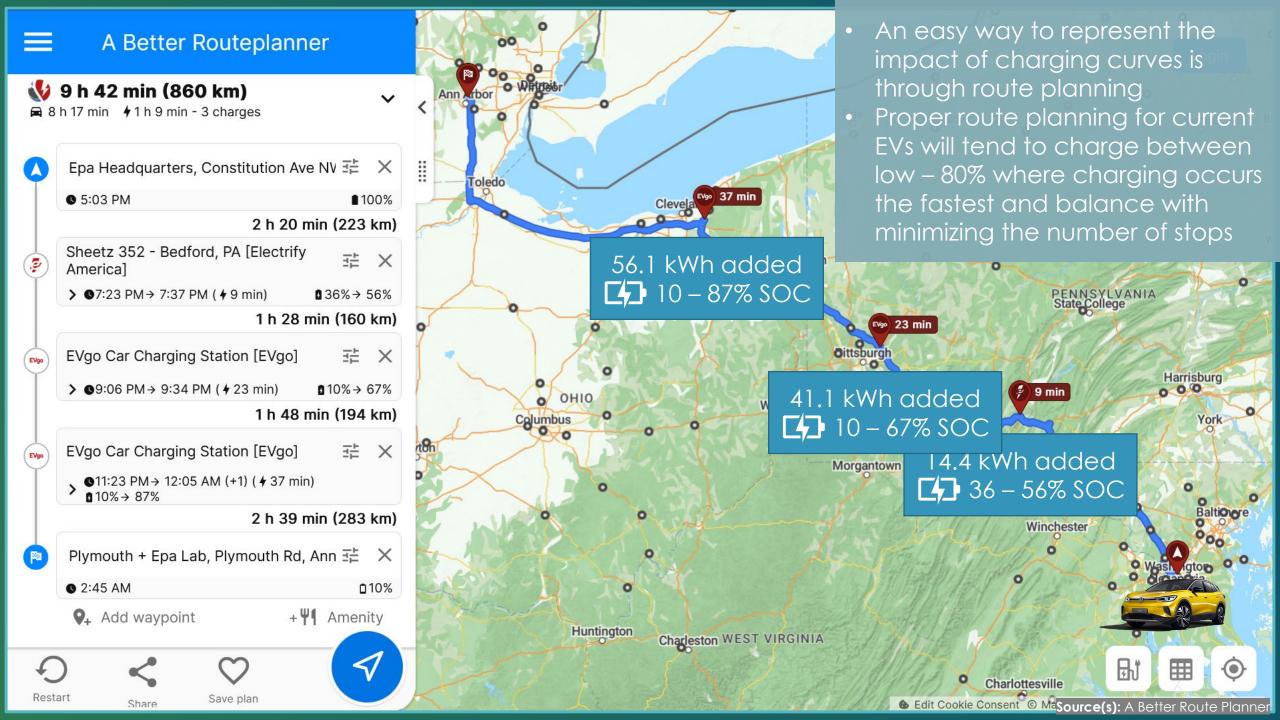
The standard 10.9kW on-board charger uses Level 2 charging to power-up your IONIQ 5 at home. ⁽⁷⁾

How fast can the Ford F-150[®] Lightning[®] charge?

Using a 150kW+ DC fast charger, the standard-range 98kWh pack can charge from 15-80% in about 36 minutes. The extended-range 131kWh pack can charge from 15-80% in 41 minutes.¹⁷⁸






Source(s): Auto OEM Websites

Volkswagen ID.4 Pro AWD (2023) 170 kW Peak Charge Rate* 275 Mile Range 77 kWh Battery 3.1 Miles / kWh

- All EVs have nominal (or ideal condition) DCFC curves
- Variations abound but there are consistent trends, such as frontloading faster charging speeds and tapering off as they approach full
- This is an active area of improvement, and many factors are being balanced by the OEMs

2023 Ford F-150 Lightning (Standard Range)

2023 Chevy Bolt

8 h 10 min
 2 hr 0 min (3 charges)

The impact of the charging curve is clear across vehicles

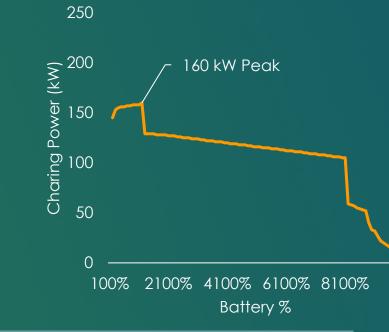
8 h 18 min
 2 hr 30 min (4 charges)

2023 Hyundai Ioniq 6

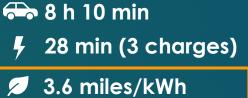
8 h 10 min
 28 min (3 charges)

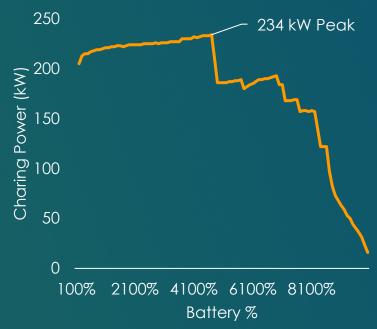
	100%
P	34 – 58% (<i>¥</i> 5 min)
<u>ې</u>	10 – 60% (🗡 11 min)
P	10 – 65% (🗡 12 min)
	10%

7
Source(s): A Better Route Planner


2023 Ford F-150 Lightning (Standard Range)

🖚 8 h 18 min


2 hr 30 min (4 charges)


2.0 miles/kWh

2023 Hyundai Ioniq 6

8

Vehicle efficiency and battery size also play a role in travel time

2023 Chevy Bolt

🖚 8 h 10 min

()

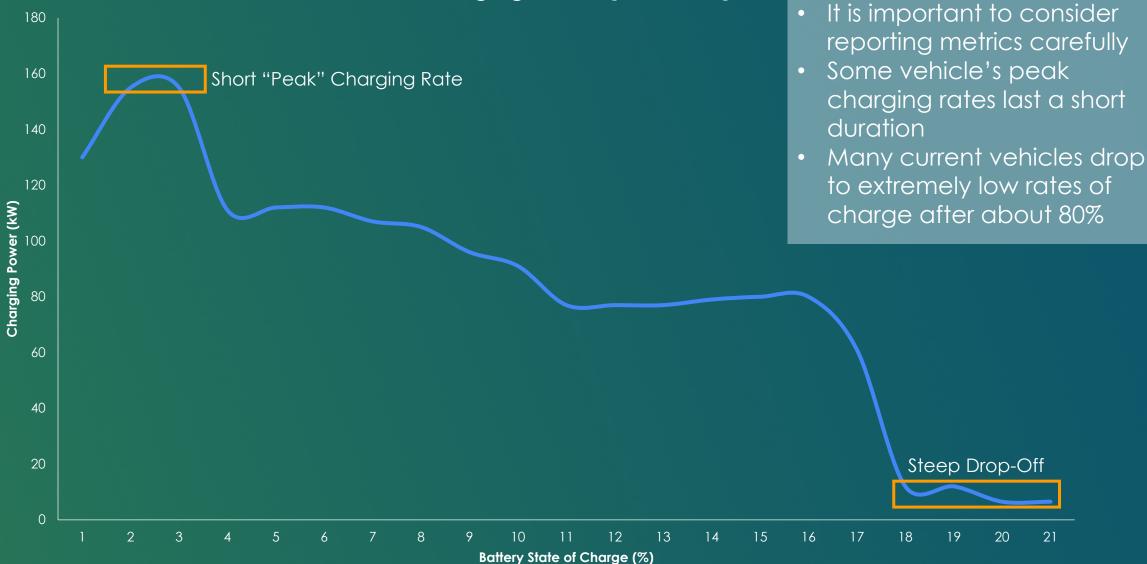
250

Charing Power (kW) 00 120 00 001

50

2 hr 0 min (3 charges)

100% 2100% 4100% 6100% 8100%


Battery %

54 kW Peak

3.6 miles/kWh

Source(s): Aat de Kwaasteniet, Bjorn Nyland, Fastned Charging

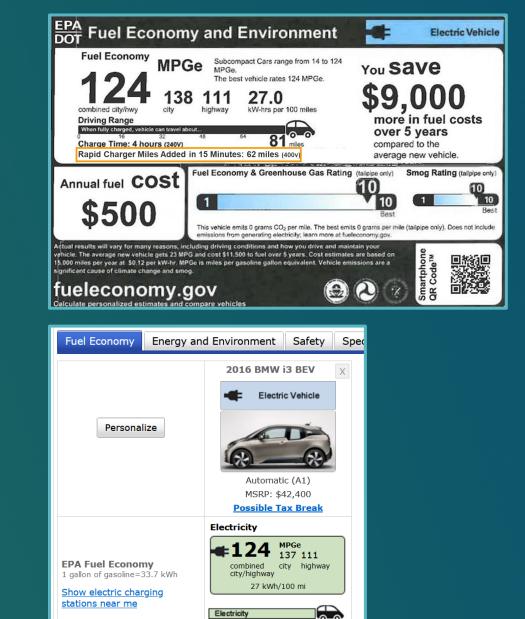
DCFC Charging Curve (10%-80%)

9

Source(s): Aat de Kwaasteniet, Bjorn Nyland, Fastned Charging

Temperature Impacts & Battery Pre-Conditioning State of Charge (SoC)Battery Management System (BMS)ImpactsSoftware Updates

A few final topics to consider how to communicate/measure:


- Battery pre-conditioning in hot or cold weather uses additional energy but can allow for ideal charging speeds
- The **State of Charge (SoC)**, or how full the battery already is will often impact where you are along the charging curve (exceptions apply)
- Software updates can change many of these factors after the vehicles are on the road

Considerations

Standardize fast-charging test procedures that EPA and OEMs can use to commonly measure DCFC curves

Select common metric(s) for communicating fast charging speeds to consumers

Provide information to consumers so they can compare fast charging speeds and understand what they mean on the road using fuel economy labels, EPA's green vehicle guide, and fueleconomy.gov

Electricity

Rapid Charger (DCFC)

Miles Added in 15 Minutes

81 miles Total Range

About All-Electric Cars

62 Miles

Example Possibilities for Conveying Charging DCFC to Consumers

Average Charging Speed (Between 10 – 80%)	Peak DC Fast Charging Speed	Time to Charge from 10 – 80%	Miles Per 15-Minutes of Charging	Numeric or Color-Coded Indication of Speed
120 kW	175 kW	23 Minutes	Up to 157 miles	8

We need not be constrained by how information has been conveyed in the past, but familiarity might help consumers

Aaron Sobel sobel.aaron@epa.gov

DC Fast Charging Information for Consumers

How EPA can do more to educate consumers and resolve a major hurdle for EV adoption