Don’t be salty! Best practices to keep
waterways
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* The Spread of Freshwater Salinization Syndrome
 Salinization Mobilizes Chemical Cocktails

« Managing Freshwater Salinization Syndrome



Drinking Water Supply to Baltimore, Maryland
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Salt Consumption Is Accelerating Global Salt Cycle

b The anthropogenic salt cycle
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Freshwater Salinization Impacts Potomac...and the U.S.

Rising Sodium in Rivers of the Northeastern United States
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2. Salinization Mobilizes Chemical Cocktails

Salt Pollution Mobilizes Other
Salts, Nutrients, Organic
Matter, and Metals

Photo Courtesy: Kelsey Wood




Retention and release of chemical cocktails along stream and stormwater flowpaths

‘ Chemical cocktails:

- -Atmospheric deposition
-Surface runoff

-Urban karst

-Buried streams

Infiltration (e.g,, rain gardens ‘)

Examples:
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Stormwater Best
Management
Practices (BMPs)
can retain 30-40%
of added salt!
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3. Managing Freshwater Salinization Syndrome

Additional collaborations with Steve Hohman (EPA Region 3), Virginia Hogsten (EPA Region 3), Patrick
McGettigan (EPA Region 3), Paul Mayer (EPA ORD), Tammy Newcomer Johnson (EPA ORD), and Sydney

Shelton (EPA ORISE Fellow)...THANK YOU, EPA ROAR!
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Conservation and Restoration Attenuate Salt Pollution

a. Bull Run: Longitudinal Attenuation

Wastewater Treatment Regional Park
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b. Rock Creek: Longitudinal Plateau

National Park
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c. Scotts Level Branch: Longitudinal Attenuation
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Reversing Freshwater Salinization
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How will salt concentrations increase and
what’s driving the increase?
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What can we do to slow or reverse the trends?
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The Occoquan Reservoir in Northern
Virginia

* Drinking Water Source for up to 1 million
people in Fairfax County and surrounding
communities

* One of the first and largest deliberate
indirect potable reuse projects for surface
water augmentation in the country

* Reservoir receives gauged inflow from two
watersheds (Bull Run and the Occoquan
River), ungauged inflow, and treated
wastewater from the Upper Occoquan
Service Authority

YN EPA MID-ATLANTIC REGION
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The Occoquan “One Water” System

I UOSA Reclamation Facility I Eairfax Water
(Griffith)
33
‘ Bull Run ‘ 221 >
Watershed |
554 Occoquan >00 I Pot I
Reservoir olomac
Occoquan
River
Watershed 300 >
I Ungaged I

*flows in million gallons per day (MGD)
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Sodium ion concentration in Griffith Finished
Drinking Water is rising over time

o
80 —
o~ Giriffith Finished DW (FW)
o UOSA Reclamation Facility Fairfax Water
60 — (Griffith)
-
£ 1 °
< be Bull Run
2 0 o o Watershed
J< b4 Occoquan Pot
5 ° % 8 Reservoir otomac
Q 8&5&88 8 Occoquan
8 o & o500 o) River
c SO o |00 Watershed
2 00 66’096 &®
) o%%o Ungaged
00 00
)
I
1/1/90 1/1/00 1/1/10 1/1/20

EPA MID-ATLANTIC REGION
2024 VIRTUAL SUMMIT




On an annual average basis (2010-2022), the
sources of the sodium in Griffith’s finished drinking
water breakdown as follows

Sources of Sodium O
in Griﬂith Drin ki I'Ig WOSA Reclamation Facility Fairfax Water
Water (Griffith)
Bull Run ‘
Watershed
GccoquaLn
Griﬂ:“h Dccgquan Reservor
WTP Watershed
(32%) Ungaged
Reservoir
(68%)
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Where is the sodium in the reservoir coming
from?

Sources of Sodium
in Reservoir

HECIEimEd UOSA Reclamation Facility Fairtax Water
WﬂtEl’ ‘ (Griffith)
1 Bﬂ'jfn OCC Bull Run
( } Hiue r Watershed ‘ gf;c;z?:;?
o Dccgquan
(38%) o, @
Bull Run Ungaged

(44%)
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Where is sodium in the reservoir coming

from?

Log1o(Qin, Gl/year)

Reclaimed Water

EPA MID-ATLANTIC REGION
2024 VIRTUAL SUMMIT

Sources of Sodium
in Reservoir

Reclaimed
Water
(18%)  Occ
River
(38%)
Bull Run
(44%)

UOSA Reclamation Facility

Bull Run
Watershed

Occoquan
River
Watershed

Fairfax Water
(Griffith)

QOccoquan
Reservoir

Ungaged

Potomac




Where is sodium in the reclaimed water
coming from?

Sources of Sodium Mass Load (kg/day) in UOSA's I Y
— Effluent (2017)

UOSA Reclamation Facility Fairfax Water

4.2% (Griffith)
13.8%
. m Wastewater Treatment —— I
= Micron Hetershed SN Ul RN g
14.10/ . o eservoir
» Human excretion o T
Watershed
m Water Treatment =
Ungaged

= Unknown sources

Bhide, S.V.; Grant, S.B; et al. (2021) Addressing the contribution of indirect potable reuse to inland freshwater
salinization. Nature Sustainability. https://doi.org/10.1038/s41893-021-00713-7
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https://doi.org/10.1038/s41893-021-00713-7

Where is sodium in the reclaimed water
coming from?

Along the flow path
> O
o 1.2 4)
— ®©
O m - T
§ = 1.0 UOSA Reclamation Facility Fairfax Water
S o) o (Giriffith)
= 0.8
80 n=419 n=419
N — 68 mg/L 49 mg/L
S, O Chloride Bull Run
£ B Sodium | Watershed
H Occoquan Potomac
2 60— | Reservoir
g QOccoquan
g River
S Watershed
O 40—
2 n=21 n=21 Ungaged
5 24 mg/L 14 mg/L
= n=21 n=21
) 17mg/L 9.8 mg/L |
= 20 -
o }
S n=1 n=1
3 <1.5mg/L <1.5mg/L -
.
! Rainwater ! Source Water " Finished Drinking Water ! Sanitary Flow
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Where is sodium in the reclaimed water
coming from?

Table 1. Molar ratios in water discharged from the CSIRO model house

Washing | Dish Shower Kitchen Vanity Toilet+ Total
Machine | Washer sink Unit Vanity
Cl (g/wk) 6.296 7.580 2.269 5.021 0.5258 15.902 37.595
Cl (mol/wk) 0.178 0.214 0.064 0.142 0.0148 0.449 1.060
Na (g/wk) 55.609 7.456 2.466 3.213 0.766 15.362 84.872
Na (mol/wk) | 2.418 0.324 0.107 0.140 0.033 0.668 3.69
Molar Na/Cl | 13.58 1.51 1.67 1.00 2.23 1.5 3.48
Detergents
Soaps
e 0
e e P e e \giple) Na H3C\/\/\\/\/\ 1] _ Il _ .
C 0-S—0 Na' HaC~CHz+O0—CH,CHz}—0—S—0  Na
[l Il Il
°o | SO °
"""" hydrophobic group " hdophiG group . hydrophobic group " hydrophiic group e
a soap an alkyl sulfate H3c/(CH2)'N(o/\)n/O_':?:’_O- Na*
y o]
N R

an alkyl ether sulfate
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Where is sodium in watershed outflow
coming from?

149 square miles

v

T

UOSA Reclamation Facility Fairfax Water

\ (Griffith)

Broad Run

Bull Run
Watershed
Ocgoquan Occoquan Pat
Resexvoir ’ Reservoir . otomac
Occoquan

Watershed

Ungaged

Cedar Run

B Bull Run Watershed
Occoquan River Watershed

A
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Deicers/anti-icers are a major source of

sodium in the reservoir and drinking water
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Deicers/anti-icers are a major source of
sodium in the reservoir and drinking water
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What are some possible solutions...

Opportunities for Experimentation and Learning

Reduce sodium

. Deicer Wash-Off
inputs to sewage

collection system [ Reduce sodium inputs

frorn.: to streams with:

(1) industry; _ |

(2) households; | Alternative Deicers

(3) water and ’ Application Guidelines
wastewater Education/Certification
treatment _ Stormwater Infrastructure

Y
NaOH added by

Sodium in Griffith : O
I O ; Drinking Water | Griffith to control pH
[ 1

UOSA's Reduce sodium inputs
Reclaimed Water from water treatment by:
Switching to lime for pH control
nitrogen management Reducing reservoir alkalinity from in-
s s s = == == = reservoir (hypolimnetic) and watershed
sources
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Fairfax County
Water-Resources Monitoring:

Assessing Watershed Scale Responses to BMP Implementation
in Urban Watersheds

John Jastram, Aaron Porter, and Jeff Chanat
USGS — Virginia and West Virginia Water Science Center

USGS

science for a r:hangmg world




The monitoring network is
designed to assess Fairfax County
stream conditions

« 21 stream monitoring stations, 0.5 to 5.5 mi?

Measurements of hydrology, water quality, and ecology
« Nitrogen, phosphorus, and suspended-sediment
concentrations analyzed from water-quality samples

» Specific conductance measured at all stations each
month, measured continuously at 6 stations

« Major-ion (including chloride) concentrations have
been collected at 6 stations since 2020

M1 AMD
WEST ¥TRGINT A AR L
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Specific conductan

ce

increased throughout the

monitoring network from

2008 - 2018.

Specific Conductance
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The largest increases
occurred in the most
impervious
watersheds.

Specific conductance increases

of about 2.5%, or 7.5 uS/cm/yr

were observed throughout the
network.

These trends are likely
related to the increased use
of road salts and/or the
increased delivery of road
salts to streams.
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In recent years, Fairfax County has received little snowfall.
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Specific conductance increased

in about half the monitored
watersheds from 2008 - 2023.

* Increasing trends are most commonly occurring at
stations located in the Piedmont physiographic
province.

* The exception is BRR (Big Rocky Run) where
impervious cover is one of the highest in the
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Logarithm-transformed specific conductance
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USGS has multiple tools to evaluate changing conditions

Trends in high-frequency specific conductance data
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Changes in specific conductance
may not be uniform across all
conditions.

We have additional tools for investigating
trends that can help identify mechanisms of
change.

Are high values of SC increasing? What about
average levels? What about the lowest levels?
The distribution of observed SC may not be
changing in the same way.

At Long Branch, SC is decreasing, and this is
occurring in the higher values. This means
there may have been a reduction in salt-loading
events.

At other sites, the average values are
increasing, which may be related to a slow
release of salts stored in soils from past loading
events.

Trend slope, in percent per year
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We also can assess how conditions are changing throughout the year

Annual change, in percent

A Trend

¥ Decreasing
A Increasing
No Trend

r A
A A
A A
A ap A
| oA 2.8 %
L A
A A A yAC AA-A A
v & v
. T '
v v
v v
v
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Mov Dec
Manth

Most notably, trends are
rarely identified during
Winter when deicing salts
are applied.

Increasing trends in Spring
and early Summer may be
indicative of transport of
salts applied the previous
winter.

Increasing trends in Fall
may suggest salts stored in
soils and shallow
groundwater are released to
streams during periods of
drought.
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What is driving differences between watersheds and changes over time?

Specific conductance (SC) was likely related to the
applied amount and storage of salt on the landscape. O

5

Observed Responses

SC values (on average, 150 — 500 uS/cm) declined in 0 (Y ) and
increased in 10 (A) study watersheds between 2008 and 2018. é}
K]

Other stations had no trend (O).

Map showing the trend (\/\_-1
. . .ys in specific conductance values
Explanatlon of Val'lablhty at 14 study watersheds between 2008

and 2018 and developed land (red shading).

Developed Land \T{ Soil Depth \6/ Air Temperature @
SC values were higher in SC values were higher SC values were higher in
watersheds with more in watersheds with years with colder minimum
developed land uses. more shallow soils. air temperatures.

r and others, 2023: “Evaluating Drivers of Hydrology, Water Quality, and
Macroinvertebrates in Streams of Fairfax County, Virginia, 2007-18”



Research questions

How much CI is being exported in
streamflow? What are the trends?

How much are we applying? What are
the trends?

How much CI is currently stored in the
watershed?

What input reductions would be
necessary to reach a specified
reduction in export?

How long would it take for us to
observe such a reduction?

Long Branch (Fairfax County) Chloride Study

Conceptual model
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Metropolitan Washington
Council of Governments

Why is this information useful to stakeholders? (@:

These data can be used to answer many practical questions.

Stream salinization is a growing concern, in particular, in urban watersheds.
1. Where are these issues occurring?
2. Are conditions getting better or worse, and by how much?
3. Why are streams becoming more saline?
4. Are some watersheds at greater risk than others?

» Tracking progress towards meeting regulatory requirements (e.g., chloride TMDL in the
Accotink Creek/Long Branch watershed)

« Scenario building and forecasting — if a management action is taken to improve stream
condition, how long might it take to achieve the project’s stated goals?

» Determining causes of stream impairment — what is the most probable stressor (303d
list)? Salinization should be considered alongside many other factors in multi-stressor
studies.
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