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Bioactivity : Exposure Ratios (BERs)
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BERs Allow Chemical Prioritization

In Vitro Screening + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015b)
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Administered Equivalent Dose or

BERs Allow Chemical Prioritization

In Vitro Screening + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015b)
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BERs Allow Chemical Prioritization

In Vitro Screening + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015b)
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Most Chemicals Do Not Have TK Data

" We need chemical-specific
toxicokinetics (TK) for
in vitro-in vivo extrapolation
(IVIVE) (Rotroff et al., 2010), but:

" Most non-pharmaceutical
chemicals — for example,
flame retardants, plasticizers,
pesticides, solvents — do not
have human in vivo TK data

" Non-pesticidal chemicals are
unlikely to have any in vivo TK
data, even from animals
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B Chemicals with NAM Data Examined in Study

B Chemicals with in vivo TK data

Figure modified from Bell et al. (2018)




Toxicokinetics
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" Toxicokinetics describes the
absorption, distribution,
metabolism, and excretion
of a chemical by the body:

" Chemical-specific
" Links exposure with
internal concentrations




In Vitro-In Vivo Extrapolation (IVIVE)

" Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models
" Needed for anywhere from dozens to thousands of chemicals
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High Throughput Toxicokinetics (HTTK)
for VIV

® Most chemicals do not
\ have TK data — we use
in vitro HTTK methods
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In Vitro-In Vivo Extrapolation (IVIVE)

" Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models
" Needed for anywhere from dozens to thousands of chemicals

Exposure

in vivo
TK data

ﬁ

Forward Dosimetry

\_

Internal
concentration

Dosimetry

Toxicokinetic model:
Absorption
Distribution
Metabolism

Excretion )

Breen et al. (2021)

Toxicodynamic
IVIVE

in vitro bioactive
concentration

N

Response

In vitro Bioactivity
Assay

Concentration




In Vitro-In Vivo Extrapolation (IVIVE)

" Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models
" Needed for anywhere from dozens to thousands of chemicals
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In Vitro-In Vivo Extrapolation (IVIVE)

" |VIVE estimates equivalent
doses that depend on the

assumed route of exposure
and (indirectly) chemical Internal Toxicodynamic

propgrtles (for exa.\mple, IVIVE
volatile/non-volatile)
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IVIVE by Scaling Factor

" There are many approaches to IVIVE, but we choose a relatively simple one:

" We make various assumptions that allow conversion of an in vitro concentration
[X] (UM) into an administered equivalent dose (AED) with units of mg/kg body
weight/day:

AED = Fye X |X]

" AED is the external dose rate that would be needed to produce a given
steady-state plasma concentration

" Fye IS a scaling factor that varies by chemical

HTTK can predict F,,c




IVIVE by Scaling Factor

For a given chemical, Fy e =1/ Cs.05

C,, o5 is the steady-state plasma concentration resulting from a 1 mg/kg/day
exposure

HTTK can predict C o5 using “reverse dosimetry” IVIVE (Tan et al., 2007)

[X]

Css,95

The “95” refers to the upper 95" percentile — due to human variability and
measurement uncertainty there are a range of possible C values

AEDg; =

All of this assumes that the individuals have enough time to come to “steady-
state” with respect to their daily exposures

Don’t forget: 1 m g
M =1000
H MW L




Limited Available Data for
Exposure Estimation

Most chemicals lack public exposure-related data beyond production volume (Egeghy et al., 2012)
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Fit-for-Purpose Exposure Modeling Frameworks

" All models vary in
complexity and data
needed to describe
chemical exposure Mechanistic

description of the

built environment

" High throughput
exposure (HTE) models and exposure
can handle many processes, including
chemicals with minimal temporal variability

descriptive information

" HTE models can provide
rough but quantitative
estimates of exposure

Increasing Complexity

_ First-tier

Level of aggregation across sources,
routes, scenarios, chemicals

F MEning
Prioritizati

Full exposure
assessment

assessment/

Description of
human behavior
or population

Figure from Kristin Isaacs




High Throughput Exposure:
Analogy to /n VitroScreening

® EPA’s Toxicity Forecasting (ToxCast) high throughput testing
project:
® >3000 chemicals tested to date

® Each ToxCast assay-endpoint has the potential to capture
an aspect of chemical biology — more than 1000 to date

* No one assay gives the whole picture
* Reference chemicals covering diverse mechanisms to
establish what different types hazard “look like”
* ExpoCast (Exposure Forecasting):

® Various HTE models provide the “assays” for different
aspects (pathways, chemistries, assumptions) of Different ToxCast assays or HTE models
exposure characterize different aspects of

®* Monitoring data provides our “reference” exposures

* We build a probabilistic, consensus prediction using
multiple HTE models and other predictors

Individual Model Predictions Available on CompTox Dashboard



SEEM3 Collaboration

Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-
Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

o EPA Inventory Update Reporting and Chemical Data US EPA (2018) 7856 All
Reporting (CDR) (2015)
@ e Stockholm Convention of Banned Persistent Organic Lallas (2001) 248 far field Industrial and
Lrnot Rescarch & Comsuliing | Pollutants (2017) Pesticide
EPA Pesticide Reregistration Eligibility Documents Wetmore et al. (2012, 2015) 239 far field Pesticide
M (REDs) Exposure Assessments (Through 2015)
e United Nations Environment Program and Society for Rosenbaum et al. (2008) 8167 far field Industrial

Environmental Toxicology and Chemistry toxicity model

UC DAVIS (USEtox) Industrial Scenario (2.0)

UNIVERSITY OF CALIFORNIA | |JSEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 far field Pesticide
ye };Eéﬁ)ﬁ Risk Assessment IDentification And Ranking (RAIDAR)  Arnotetal. (2008) 8167 far field Pesticide
far field (2.02)
DTU Danmarks . . . | 2017 . "
Tekniske EPA Stochastic Human Exposure Dose Simulator High saacs (2017) 7511 far field Industrial and
Gt
@~ Universitet Throughput (SHEDS-HT) near field Direct (2017) Pesticide
S0 ST SHEDS-HT near field Indirect (2017) Isaacs (2017) 1119 Residential
g ° % Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. (2012) 45 Residential
% M 5 RAIDAR-ICE near field (0.803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential
D, Pnoﬁo"‘o USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. 615 Residential
(2016,2017)
USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. 8167 Dietary

(2016), Ernstoff et al. (2017)

Individual Model Predictions Available on CompTox Dashboard  Ring et al., 2018



Evaluating Exposure Models with
the SEEM Framework
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We use Bayesian .
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within the Systematic w.'th.
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(Wambaugh et al., 2013, 2014;
Ring et al., 2018)
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Wambaugh et al., 2019



Evaluating Exposure Models with
the SEEM Framework

Space of
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within the Systematic with Exposure o '~ N\

Embirical Evaluati ; Monitoring Inference £ Different
mpirical Evaluation o Data qu, Chemicals

Models (SEEM) —
(Wambaugh et al., 2013, 2014; : Dataset 1 del
Ring et al., 2018) Dataset 2
o000 MOdeI 2
Evaluate Model Performance
and Refine Models

m Available Exposure Predictors

Wambaugh et al., 2019



Evaluating Exposure Models with
the SEEM Framework

Space of
Chemicals
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Evaluating Exposure Models with
the SEEM Framework

Apply calibration and estimated uncertainty to

ﬁ other chemicals
Estimate

‘ Space of

We use Bayesian .
Y Chemicals

methods to incorporate %
multiple models into f) Uncertainty Calibrate
consensus predictions — f‘G ‘ ~ models
for 1000s of chemicals emicals c \
within the Systematic with ﬁpozjre ° v\\ .
Emoiri ) Monitoring Inference o Different
mpirical Evaluation of e .
Data Q@ f Chemicals
(Wambaugh et al., 2013, 2014; : . .
Ring et al.. 2018) Dataset 2 \Y[ele[SIIMB mm Available Exposure Predlctors:
o000 MOdeI 2
Evaluate Model Performance

and Refine Models

Wambaugh et al., 2019



Inferred Exposure Rates from CDC NHANES

* Monitoring data provides our ”reference”é
exposures for SEEM :

* We infer exposure from CDC NHANES
biomarker data

* We propagate uncertainty in inferences

® Considering multiple parent chemicals for a
given analyte

® Limit of detection issues

* These exposure inferences are made
available on CCD
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Consensus Model Predictions
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SEEM3: Pathway-Based Consensus Modeling

R?-0.816

Pathway(s)
= Dietary, Pesticide, Industrial
O Dietary, Residential
<> Dietary, Residential, Industrial
% Dietary, Residential, Pesticide
%/ Dietary, Residential, Pesticide, Industrial
B |ndustrial
#* Pesticide
A Pesticide, Industrial
+ Residential
Residential, Industrial
Residential, Pesticide
/. Residential, Pesticide, Industrial
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107>

SEEM3 consensus model provides estimates of
human median intake rate (mg/kg/day) for
nearly 500,000 chemicals via the CompTox
Chemicals Dashboard

( )

SEEM3 first predicts relevant exposure pathways
from chemical structure — model predictions are
then weighted according to the models’ abilities
to explain NHANES data

We rely on pathway determinations from CPDat

We rely on NHANES biomonitoring data
® 2014 FIFRA Scientific Advisory Panel
identified need for broader sets of
evaluation data

Intake Rate (mg/kg BW/day) Inferred from NHANES Serum and Urine

Ring et al., 2018



http://comptox.epa.gov/dashboard

Computational Toxicology and Exposure

® Given a structure we can estimate bioactivity,
distribution, and exposure

" Quantitative structure-property relationships (QSPRs)

" If we have a sample, we can test it in vitro:
" High throughput screening and toxicokinetics
" HTTK QSPRs allow predictions from structure

" If we have monitoring data, can estimate daily intake
" High throughput exposure tools provide forecasts
from structur

S MEDIA EXPOSURE TK/TD [INTERNAL
of (MEDIA + RECEPTOR) POP. VAR DOSE
TRANSPORT
Exposure ECEPTOR

Figure from Caroline Ring

USE and
RELEASE




Standardized NAM Data and Tools

" Hazard: There are nearly 10,000 chemicals with in
vitro bioactivity data

" Exposure: There are more than 400,000
chemicals with “exposure forecasts” (ExpoCast)

" Dose-Response: There are currently 7,569
chemicals with httk data/ﬁredictions (including
Ce, Vy, tha@ available on the CompTox Chemicals
Dashboard:

https://comptox.epa.gov/dashboard

‘e’EPA Em(ed States

= : . Search EPA.gov
Environmental Topics Laws & Regulations About EPA

Home Search v Lists ~ About ¥ Tools ¥ Submit Comments

CompTox Chemicals Dashboard
Search 1,200,063 Chemicals

Chemicals Products/Use Categories Assay/Gene

Search for chemical by systematic name, synonym, CAS number, DTXSID or In A 8} ‘

Start typing to search.

@ Identifier substring search

< v - 0 X
(&} CompTox Chemicals Dashboard X -+
< C @ comptox.epagov/dashboard/ 2w *» 0@ :
(@) CCD W Bitbucket W' Jira @ Article Request @ PeoplePlus @ Travel & Password g Virtual Machine @ RAPID All Bookmarks



https://comptox.epa.gov/dashboard

Openly Available TK Information

[ | EPA’S data and tools for (@) Fenazaquin - Chemical Details X + v - o x

&« C @ comptox.epa.gov/dashboard/chemical/details/DTXSID4040476 2 w %» 0O ‘ i

.
I I I I K a re I I lad e ava I Ia b I e (@& CCD © Bitbucket -.‘l" Jira @ Article Request @ PeoplePlus @ Travel 3 Password "'; Virtual Machine @ RAPID B STICS @ Sharedrive Request Concur » All Bookmarks

t h r‘o u g h R pa C ka ge “" htt k” CompTox Chemicals Dashboard v2.3.0 Home  Search ¥  Lists *  About ¥  Tools ~ osr:ents Search all data
a0 Fenazaquin

® The “httk” tool has been 1@ 120928-09-8 | DTXSID4040476
& Searched by Approved Name.
used to calculate key TK —

information that is .
Executive Summary @F
=

YO0

available On the CompTOX Physchem Prop. j\l
C h e m i Ca I S D a S h b O a r‘d a n d Env. Fate/Transpor: 5 o Molecular Formula: CogH,5N,0 Q FIND ALL CHEMICALS

Hazard Data Average Mass: 306.409 g/mol

il ISOTOPE MASS DISTRIBUTION
e I S eW h e re Safety > GHS Data o Monoisotopic Mass: 306.173213 g/mol

CH,
ADME > IVIVE
- CH Structural Identifiers v
3

Exposure HyC

. o - Linked Substances v
Bioactivity

»

https://comptox.epa.gov/dashboard

The current HTTK data in CCD is HTTK v2.2.1. Please see the
Data Sources table in the Release Notes for more information



https://comptox.epa.gov/dashboard
https://www.epa.gov/comptox-tools/comptox-chemicals-dashboard-release-notes

Openly Available TK Information

" EPA’s data and tools for Ommnine  ~ © e

< C' @& comptox.epa.gov/dashboard/chemical/adme-ivive-subtab/DTXSID4040476 = Y » 0O ‘ H

HTTK a re I I la d e ava I Ia b I e (&) CCD W Bitbucket <@ Jira @ ArticleRequest @ PeoplePlus & Travel \0’ Password :'l Virtual Machine @ RAPID s STICS € Sharedrive Request  [C] Concur » All Bookmarks
o V24 . : Submit )
t h rou g h R pa C ka ge htt k CompTox Chemicals Dashboard v2.3.0 Home  Search ~  Lists ¥  About ¥  Tools ¥ Search all data M |
omments )

“ ” e Fenazaquin
" The “httk” tool has been 1@ 120928-09-8 | DTXSID4040476

used to calculate key TK Searched by Approved Name.
information that is —
available on the CompTox |

Chemicals DaShboard and Env. Fate/Transport

ADME - IVIVE @

YO0

Label LT = Species {7 = Measured LT = Predicted /T = Units LT = Model L7 = Percentile LT = Reference LT = S W=
elsewhere e -
>
L % () Humar| ¥ v |v ¥ | [@) 1comp| ¥ |[@)NASS ¥ ¥ v
ADME > IVIVE IUISIC Mepaus Ciearance i D vz gLy T AUt i Sipes ot .
Human NA 0.021 ADMet NA Sipes 2017 Hurman
Exposure |
Human NA 3.099 Lkg Tcompartment NA NA Human
BIOHCTIVIty Human NA 4075 hours Tcompartment NA NA Human
GenRA Steady-State Plasma Concentra  Human NA 003263 ma/L 3compartme. 9% NA Human - S

https://comptox.epa.gov/dashboard

The current HTTK data in CCD is HTTK v2.2.1. Please see the
Data Sources table in the Release Notes for more information



https://comptox.epa.gov/dashboard
https://www.epa.gov/comptox-tools/comptox-chemicals-dashboard-release-notes

Openly Available TK Information

" EPA’s data and tools for ® o [ I

< C' @& comptox.epa.gov/dashboard/chemical/adme-ivive-subtab/DTXSID4040476 = Y » 0O ‘ H

HTTK a re I I la d e ava I Ia b I e (&) CCD W Bitbucket <@ Jira @ ArticleRequest @ PeoplePlus & Travel \9, Password :'l Virtual Machine @ RAPID s STICS € Sharedrive Request  [C] Concur » All Bookmarks
o V24 . : Submit )
t h rou g h R p acC ka ge htt k CompTox Chemicals Dashboard v2.3.0 Home  Search ¥ Lists ¥  About~  Tools v Search all data v Kok
omments )

N enazaquin
«“ ” CI( F q i
" The “httk” tool has been o, 120028-09-8 | DTXSID4040476

used to calculate key TK oot by Avorored Narme
information that is p—— —
aVaiIable On the COmpTOX Executive Summary

Chemicals DaShboard and Env. Fate/Transport

ADME - IVIVE @

YO0

e I S e h e re Hazard Data - Label LT = Species LT = Measured LT = Predicted LT = Units [T = Model LT =  Percentile LT = Reference LT = o =
T (R 5 L ¥ [() Humar| ¥ v |v ¥ | [@) 1comp| ¥ |[@)NASS ¥ ¥ v
ADME > IVIVE IS EUGU e Ui Iy U TRATRTRTARRITIeN LIviEL I s zuTy I
Vd Volume of Distribution Human NA 3.099 L/kg lcompartment NA NA Human
tha|f PK Half Life Human NA 4075 hours lcompartment NA NA Human
Stes - a Con =10 0.0326 ;"; ime... 5% d
css Steady-State Plasma Concentra  Huma NA 0.03263 mg/L 3compartm 95% NA Human

https://comptox.epa.gov/dashboard

The current HTTK data in CCD is HTTK v2.2.1. Please see the
Data Sources table in the Release Notes for more information



https://comptox.epa.gov/dashboard
https://www.epa.gov/comptox-tools/comptox-chemicals-dashboard-release-notes

Calculation 1: Reverse Dosimetry, Steady-State Exposure

N DEET (CASRN 134-62-3, DTXSID2021995):
—\CH3 Cos 05 = 1.37 mg/L per 1 mg/kg/day

0o

In vitro Perform Divide by sfes;\cljm?:tz(:e
estimated chemical- chemical- intak:/a B
point of specific unit specific TK C, — S
departure conversion (mg/Lfor 1 — cause blasma
(PODy,, yitro) from uM to mg/kg/day concenl?cration
(in UM units) mg/L intake rate)
Bioactivity - TOXCAST Summary @
, 1uM=1pumol/L 0.191mg/L 0.14 mg/kg/day
: . . x Molecular Weight /1.37mg/L exposure will
I i
| (191.2 g/mol) per 1 mg/kg/day produce
| x 1 mg/ 1000 ug 0.191 mg/L
| . =0.191mg /L plasma
| concentration

|
1 uM seems protective at steady-state




Openly Available Exposure Information

https://comptox.epa.gov/dashboard

" For chemicals monitored by the
Centers for Disease Control and
Prevention (CDC) National
Health and Nutrition
Examination Survey (NHANES)
we have inferred daily intake
rates (mg/kg/day) for the
median U.S. population
(Only ~100 chemicals)

Product & Use Categories

Chemical Weight Fraction
Chemical Functional Use
Toxics Release Inventory
Exposure Predictions

Production Volume

Chemical Details

Executive Summary
Physchem Prop.
Env. Fate/Transport
Hazard Data

Safety > GHS Data

ADME > IVIVE

Bioactivity

(&) CCD @ Bitbucket -“!" Jira

v (2] DEET - Exposure: Monitoring [ X or

@ Article Request @ PeoplePlus ® Travel ""’ Password :"l Virtual Machine @ RAPID g STICS € Sharedrive Request |G| Concur » 3 All Bookmarks

HC H,c*\
I
o

< c 25 comptox.epa.gov/dashboard/chemical/monitoring-data/DTXSID2021995

DEET
134-62-3 | DTXSID2021995

Searched by DSSTox_Substance_ld.

National Health and Nutrition Examination Survey @
(NHANES) Inferences (mg/kg-bw/day)

n Search Monitoring Data

Demographic LT

Total

Monitoring Data

Median T =  Upper Bound (Median) T
4.09e-7 8.67e-7
482e-7 9.49e-7
8 8

- o X

Q@ 9 0o0$ :

D0

K

=  Lower Bound (Median) 4T



https://comptox.epa.gov/dashboard

Openly Available Exposure Information

https://comptox.epa.gov/dashboard

" The 95 percentile refers to the [« = s e < e
u n Ce rta i nty a b O u t t h e m e d ia n :_ cco ﬂGBitbuc:t C:'nFJ):Xe:lg::ia:qbuzjtrd/ze:::i::):ito;ni;::a/i;xzii:%5\'-‘, Virtual Machine @ RAPID EJ STICS &) Sharedrive Request CoG::urﬁ »D D[]AII B:kmar;s
value, it does not reflect EET
variability S| 134-62-3| DTXSID2021995

- . th ' Searched by DSSTox_Substance_Id. o
We typ ICa I Iy use t h eu p pe r 95 National Health and Nutrition Examination Survey @ 0

limit on the uncertainty to be Sl (NHANES) Inferences (mg/kg-bw/day)
conservative — but this is still S — =
only for the population median [

A4

Physchem Prop.

Monitoring Data
Hazard Data

Demographic LT Median T = Upper Bound (Median) T = Lower Bound (Median) LT

Monitoring Data

Demographic T Median LT = Upper Bound (Median) T = Lower Bound (Median) T
Total 4.09e-7 8.67e-7 9.89%-8
Male 4.82e-7 9.49e-7 146e-7

Inferences from Centers for Disease Control and Prevention (CDC) National Health and Nutrition
Examination Survey (NHANES) made using R package bayesMarker (Stanfield et al., 2022 & 2024)

| e Y



https://comptox.epa.gov/dashboard

Calculation 2: NHANES Bioactivity:Exposure Ratio

NN DEET (CASRN 134-62-3, DTXSID2021995):
—\CH3 NHANES Total Population Daily Intake Rate

0 Upper 95t™: 8.67 x 107 mg/kg/day
Estimated
steady-state Divide by
intake rate Inferred Bioactivity
needed to Exposure for — Exposure Ratio
cause plasma Median U.S. (BER)
concentration Population
0.14 mg/kg/day 0.14 mg/kg/day Bioactive Dose is
exposure will produce / 162,000 times Low general
0.191 mg/L 0.000000867 higher than dose » population
plasma concentration mg/kg/day inferred from CDC risk
at steady-state biomonitoring

data




Openly Available Exposure Information

https://comptox.epa.gov/dashboard
[ Demogra phic_speCifiC ~ (£ DEET- Exposure: Monitoring | X + = fa) X
i nfe re n Ces fro m N HAN ES ¢ > C % comptoxepagov/dashboard/chemical/monitoring-data/DTXSID2021995 Q% O OoO@ :

(8) cCD W Bitbucket <4 Jira @ Article Request @ PeoplePlus 6 Travel \r'; Password :"l Virtual Machine @ RAPID E STICS @ Sharedrive Request  |C:| Concur » 3 All Bookmarks
are available for certain

demographic groups S| 134-62-3| DTXSID2021995
. . ’ Searched by DSSTox_Substance_Id.
" Again, only for median

— National Health and Nutrition Examination Survey @ o
Chemical Details (NHANES) Inferences (mg/kg-bw/day)

" Again, we have only ~¥100 |~
chemicals prysctomprop. L. IS &

Env. Fate/Transport

Monitoring Data
Hazard Data

Demographic LT Median T =  Upper Bound (Median) T = Lower Bound (Median) {1

Monitoring Data

Demographic LT Median LT =  Upper Bound (Median) T = Lower Bound (Median) T = P
66 years and older 4 35e-7 8.6de-7 1.08e-7
ReproAgeFemale 3.82e-7 8.89%e-7 7.74e-8
BMI <= 30 4 42e-7 9.18e-7 1.07e-7

ritio
Examination Survey (NHANES) made using R package bayesMarker (Stanfield et al., 2022 & 202



https://comptox.epa.gov/dashboard

Calculation 3: NHANES Demographic

Bioactivity:Exposure Ratio

DEET (CASRN 134-62-3, DTXSID2021995):
¢,  NHANES Total Population Daily Intake Rate

H;C H;C
N

0 Upper 95t™: 8.89 x 107 mg/kg/day
Estimated
steady-state Divide by
intake rate Inferred Bioactivity
needed to Exposure for — Exposure Ratio
cause plasma Median U.S. (BER)
concentration Population
0.14 mg/kg/day 0.14 mg/kg/day Bioactive Dose is Low risk for
exposure will produce / 157,000 times median
0.191 mg/L 0.000000889 higher than dose B woman of
plasma concentration mg/kg/day inferred from CDC reproductive
at steady-state biomonitoring age

data



Openly Available Exposure Information
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Product & Use Categories

DEET
. Chemical Weight Fraction S 134-62-3 | DTXSID2021995
N FO r m OSt Ch e m |Ca IS ©_< ) Searched by DSSTox_Substance_Id
) Chemical Functional Use ’ ) o
We d O n Ot h ave I nta ke AN Exposure - Exposure Predictions (mg/kg-bw/day) @

Toxics Release Inventory

rates from NHANES | ™ E—
Biomonitoring Data

“ However, systematic v —
empirical evaluation | pduction volume el - -
of models (SEEM) - R . o
gives estimated intake
rates for hundreds of
thousands of

chemicals

Demographics Predictions Data

< 1l
i 1l
< [}
E 1l

SEEM3 Consensus Model described in Ring et al. (2019)
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Openly Available Exposure Information
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measurements b o
52| 134-62-3 | DTXSID2021995

Searched by DSSTox_Substance_ld.

" For sake of conservatism, we use
upper 95t limit on estimated median [+ =

Executive Summary n Search Demographics Predictions Data

.
I n ta ke Physchem Prop.
Demographics Predictions Data

Env. Fate/Transport

Exposure - Exposure Predictions (mg/kg-bw/day) @

= Median L1 = Upper 95%le 11T

i
2
P
S

Demographic 4

" This does not reflect population S E— :

Safety > GHS Data

e oge Age 6-11 SEEM2 Heuristic 129e-7 437e-5
variabil ity ADME > IVE
Age 20-65 SEEM2 Heuristic 119e-7 4.86e-5

Exposure ge 20-65 B
Age 66+ SEEM. stic 25e-7 5.25e-5

Demographics Predictions Data

Demographic T = Predictor T =  Median T = Upper 95%ile T = Units 4T

Repro. Age Females SEEMZ2 Heuristic 311e-7 7.36e-5 mag/kg/day

Total SEEM3 Consensus 1.52e-6 1.71e-4 mg/kg/day
<« | _
SEEM3 Consensus Model described in Ring et al. (2019)

-
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Calculation 4: SEEM Bioactivity:Exposure Ratio

NN DEET (CASRN 134-62-3, DTXSID2021995):
i,  SEEM Total Population Daily Intake Rate
0 Upper 95%: 1.11 x 10* mg/kg/day
Estimated Sitele oy
steady-state
: Inferred : ..
intake rate Exposure for Bioactivity
] o
needed to Median U.S. — Exposure Ratio
cause plasma : (BER)
: Demographic
concentration e
= IDODin vitro i
0.14 mg/kg/day 0.14 mg/kg/day Bioactive Dose is
exposure will produce / 1,260 times Low general
0.191 mg/L 0.000111 higher than » population
plasma concentration mg/kg/day intake rate risk
at steady-state forecast by SEEM

Note that this BER is less than for NHANES
because of greater uncertainty




Calculation 5: Forward Dosimetry, Single Exposure

H;C HyC

T\ DEET (CASRN 134-62-3, DTXSID2021995):

CHy

Y V,=1.7 L/kg, t, += 6.5 h
If oral dose Divide by 95% of
Single multiply by volume of Peak dose gone
exposure fraction distribution — concentrati -
(mg/kg) bioavailable (Vy) (units on (C...,) half-lives
(Foio) of L/kg) (3 Xt
15% in sun lotion, 100%
use 60 g lotion P
, ’ absorption in 12 5=
Body weight 70kg: ., ofpdata to 1 33n;gL//k|§ / 74 mg/L 31)(9655h
60 ¥1000*0.15/70= " ' 5 |

129 mg/kg

Note that if we use a mathematical simulation tool (such as R package
httk) we could do more elaborate, tissue specific predictions
(httk:solve_pbtk) as well as simulate other exposure routes (inhalation —
httk::solve _gas_pbtk(), gestational — httk::solve_fetal_pbtk())




Calculation 6: Forward Dosimetry, Steady-State Exposure

N

H;C HyC
A\ — DEET (CASRN 134-62-3, DTXSID2021995):

i, Cyo5 = 1.37 mg/L per 1 mg/kg/day = 1.37 kg-day/L

Perform 37 Divide by
ppm in unit chemical-
drinking conversion mL/ki/day specific TK o
water from ppm ivr\:’?aE(: clearance
to mg/L (L/kg/dau)
Scenario, lppm=1pg/g 0.001 mg/ mL 0.037 mg/kg/day 0.051 mg/L

chemical spill /1 mL/g (water density) X 37 mL/kg/day / CL (L/kg/day)=

drinking water:  =0.001 mg / mL Convenient TK fact:
Clearance (Cl) = 1/C

37 mL/kg/day water intake Is from
the EPA Exposure Factors Handbook Table 3-1 for all ages, 95t Percentile



Online Tutorial on Bioactivity : Exposure Ratios

https://cran.r-project.org/web/packages/httk/vignettes/V2 IntrotolVIVE.htmi

" An online R tutorial walks you through

v - 0 x|
R Introduction to In Vitro-In Vivo X +
the steps needed to calculate )
. . . . | & C cranr-projectorg/web.. @ © | % ¥ O :
Bioactivity:Exposure Ratios. It covers: | & crenrprelctord/ “ ¢
. . . . . | (& CCD W Bitbucket <t Jira @ Article Request » All Bookmarks
" Loading in vitro screening data into R
" HTTK-based IVIVE Introduction to In Vitro-In Vivo
= Applying relevant QSPRs ~ Extrapolation (IVIVE) with R
" Comparing with Exposure predictions ‘ Package httk
- Mak|ng d BER PIOt John Wambaugh and Elaina Kenyon
E 1e+04 0 + November, 2022
:%_ a 16+00 _::==:|:-+1::F]:t|-—]_| | | _H_ _;Ii_ _|_1: ‘ Please send questions to. wambaugh.john@epa.gov
w2 1 1[ Introduction
3% i |
S E le-04 gl -=:|~ J ‘} Chemical risk assessment depends on knowledge of inherent chemical hazard, the dose-
o — | response relationship, and the extent of exposure that occurs (NASEM 2017). High
=E T | [ +‘i‘ '|=|:|_t|‘ + ‘I:f— throughput screening (HTS) for in vitro bioactivity allows characterization of potential
E 1e-08 hazard for thousands of chemicals for which no other testing has occurred (Judson et al.,
% 2009).

Toxicokinetics (TK) describes the Absorption, Distribution, Metabolism, and Excretion
(ADMEY of a chamical by the bodyvy TK ralatase avtarnal avnoesiiras to intarnal tiee o



Online Tutorial on Bioactivity : Exposure Ratios

https://cran.r-project.org/web/packages/httk/vignettes/V2_ IntrotolVIVE.htmi

" An online R tutorial walks you through R Intioduction to I Vitrorln Vivo | X B
the steps needed to calculate ¢ > C & canrpoecogmeb. @ & @ % * O @
Bioactivity:Exposure Ratios. It covers: @ CCD W Bitbucket 4 Jra @ Aticle Request » | [1 AllBookmarks

" Loading in vitro screening data into R ' Prepare R to run the vignette -
® HTTK-based IVIVE |

R package knitr generates html and PDF documents from this RMarkdown file, Each bit
of code that follows is known as a “chunk”. We start by telling knitr how we want our

" Applying relevant QSPRs | chunks to look.
® Comparing with Exposure predictions |
" Making a BER Plot

knitr::opts_chunk$set(collapse = TRUE, comment = '#>')
options(rmarkdown.html_vignette.check title = FALSE)

|
I
=+
& Te+04 + i Clear the memory
5 4
: by T bt |
E_ - H1 L B + 1: It is a bad idea to let variables and other information from previous R sessions float
u}j g 1e+00 :I:'ﬂ:.l:" _]_ _|_ ' around, so we first remove everything in the R memory.
ol = i |
%% i I rm(list=1s())
g E Te-04 LT
o n :I— -+ I .
= E T | [ H HTTK Version
3 1e-03
o This vignette was created using httk v2.2.2 in 2022. Although we attempt to maintain

TTTTITITT I T T T I T T I T T T I I T T T T T T T I T T T T T T backward compatibility, if you encounter issues with the latest release of httk and cannot

PR R [ Y R (N - S S (. S o U N ] [ SN [N N (R U SR Y
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https://cran.r-project.org/web/packages/httk/vignettes/V2_ IntrotolVIVE.htmi

" An online R tutorial walks you through R Inroducton to n Vito-nVivo X T B

the steps needed to calculate € 5> C @& canrpojectorgimeb.. @ & 2 % #» O @
BioaCtiVity:EXpOSUre RatiOS. It covers.: (&) CCD ¥ Bitbucket <t Jira @ Article Request » All Bookmarks
- I_ . . . . . | i ) -
_ H?Ifl'debg o (‘j”f\r/ T \f;ree”'”g data into R Step One: Loading In Vitro
-pase .
Screening Data
" Applying relevant QSPRs 9
The ToxCast and Tox21 research programs employ batteries of high-throughput assays to |

" Com pa rl ng Wlth EXpOSU re pred ICtlonS | assess chemical bioactivity in vitro. Not every chemical is tested through every assay

. (Richard et al., 2016). Most assays are conducted in concentration response, and each
|
M d kl ng d B E R P I Ot corresponding assay endpoint is analyzed statistically to determine if there is a
1e+04

concentration-dependent response or “hit” using the ToxCast Pipeline (Filer et al., 2017).
Most assay endpoint-chemical combinations are nonresponsive. Here, only the hits are
treated as potential indicators of bioactivity.

_|_
if oo |
"_==:|: '1'1::|:]‘ -]_ + -i: In vitro bioactivity does not necessarily indicate adversity or hazard. Biological models |

can be used to make predictions of toxicity based on in vitro data (for example, Sipes et
al., 2011, Browne et al., 2015 and Kleinstreuer et al., 2017). However, here we make a
more conservative, precautionary assumption that concentrations too low to cause in vitro
bioactivity are mare likely to be safe (Paul Friedman et al., 2019). Among all of the assay
| | hits for each chemical, we choose to use the lower 10th percentile of the M potencies
i1kl | [ - '|=|:|_ m (50% active concentration or AC%5g). We are assuming that the 10th percentile

represents a low concentration for activating multiple assays (assuming 10 or more
bioactive assays were observed for a given chemical). However, this bioactivity does not
necessarily have a direct toxicological interpretation.

—
4
+
=
=

mgikg BWWIiday
—&
T
—_
o
1 E—

1e-08

Bioactive Dose & Exposure
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" Loading in vitro screening data into R N

Critical Step: Select your
" HTTK-based IVIVE

" Applying relevant QSPRs

" Comparing with Exposure predictions
" Making a BER Plot

-1 E'H:Iq' set.seed(1234)

I it |
[ ==°F-*ff1%4ﬂ F + |

chemicals of interest

any chemical ID's you want into the following my.chems vector, or even load it from a file.

1
1
|
f
I We might have chemicals we are interested in for one reason or another — you could type |
\ Here we'll pick 50 chemicals at random from among the ToxCast chemicals:

my.chems <- sample(mcS5$dsstox_substance_id,58)

example.toxcast <- as.data.frame(mc5[mc5%dsstox_substance_id %in% my.chems,])

—h
9]
+

=

=
]

Unfortunately for this vignette there are too many ToxCast data to fit into a 5mb R
package. So we will subset to just the selected chemicals and distribute only those data.
In addition, out of 78 columns in the data, we will keep only eight. Download the full data

le-04 grl :|‘ J ‘} following the instructions above.
Ll | I- 1] I H 1 1 ("ch
example.toxcast <- example.toxcast[, c("chnm",
1e-08 i i ;

mgikg BWWIiday

"dsstox_substance id",

Bioactive Dose & Exposure

"spid”,

TTTTIT IT T I T T T I T I T I I T I T T T T T T I T T T T T T T T T I 1T "hitc",
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" An online R tutorial walks you through R Introduction to In Vitro-In Vivo - X = oo PR
the steps needed to calculate € 5> C @& canrpojectorgimeb.. @ & 2 % #» O @
BioaCtiVity:EXpOSUre RatiOS. It covers.: (&) CCD ¥ Bitbucket <t Jira @ Article Request » All Bookmarks

knitr::kable(toxcast.table[1:18,c("Compound™,"Q168.AC508","Css", "EquivDose™)],

" Loading in vitro screening data into R |
" HTTK-based IVIVE
" Applying relevant QSPRs ?

I

caption = "Summarized ToxCast Data",

floating.environment="sidewaystable")

Summarized ToxCast Data

Compound Q10.AC50 Css EquivDose
® Comparing with Exposure predictions |
p g p p Methyl perfluoro(3-(1-ethenyloxypropan-2- _0.435 NA NA
. yloxy)propanoate) )
m |
Maklng d BER PIOt | Nonafluoropentanamide 1.110 NA NA
o 1e+04 + | Bisphenol A 0196 7.735  8.23e-02
= I |
g 4+ -tl' _H_ -|i_ | Tris(2-ethylhexyl) trimellitate -0.632 2.017 1.46e-01 .
Q- T ot + |
w = 1e+00 -1-12 t]-F{'Ll— H | 1-Octen-3-ol 1.220 NA NA
Mg jF 'F]_ ‘]‘ + |
e % i | Thalidomide -0.761 7.366  2.3be-02
o |
g o 1e-04 il "-=l J *|~ | Tributyl phosphate 0.605 1143.000 3.52e-03 :
S5 T , g | Monocrotophos 3490 3465  9.346-05
ZE Ht | | |
H 16-08 N-Butyl-p-toluenesulfonamide -0.762 11.060 1.56e-02 .
m o |
o Anilazine 0.508  37.670 8.55e-02
(i} |

e‘A“ E:IIAI hAm“ﬁ“A Ill:‘h



Please send any questions to:

Conclusions

mg/kg/day

" High throughput toxicokinetics (HTTK) are available High

Throughput
to convert from bioactive in vitro concentrations to Screening

putative dose rates that might cause those Toxicokinetics }
concentrations (new approach method-based igh
points of departure or POD,,,) " Exposure >

(Daily Intake Rate)

" We calculate the Bioactivity:Exposure Ratio (BER) ower  MedumRik  Higher
by comparing POD,\, to a daily intake rate ek Risk

" For a small subset of chemicals daily intake rates are monitored by the U.S. CDC

" The systematic empirical evaluation of models (SEEM) tool provides estimated intake

rates for most chemicals
The 95% interval on SEEM intake rates reflects uncertainty on median population value and does not
reflect population variability
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