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Bioactivity : Exposure Ratios (BERs)
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Chemicals Monitored by CDC NHANES
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Ring et al. (2017)

CDC NHANES:
U.S. Centers for Disease Control and Prevention 
National Health and Nutrition Examination Survey

BERs Allow Chemical Prioritization
In Vitro Screening + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015b)
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In Vitro Screening + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015b)

Exposure 
intake 
rates can 
be inferred 
from 
biomarkers 
(Stanfield et al., 2022)

BERs Allow Chemical Prioritization
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In Vitro Screening + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015b)

Exposure 
intake 
rates can 
be inferred 
from 
biomarkers 
(Stanfield et al., 2022)

Higher priority chemicals

BERs Allow Chemical Prioritization



Most Chemicals Do Not Have TK Data

Figure modified from Bell et al. (2018)
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Chemicals with NAM Data Examined in Study
Chemicals with in vivo TK data

 We need chemical-specific 
toxicokinetics (TK) for 
in vitro-in vivo extrapolation 
(IVIVE) (Rotroff et al., 2010), but:

 Most non-pharmaceutical 
chemicals – for example, 
flame retardants, plasticizers, 
pesticides, solvents – do not 
have human in vivo TK data

 Non-pesticidal chemicals are 
unlikely to have any in vivo TK 
data, even from animals



Toxicokinetics
 Toxicokinetics describes the 

absorption, distribution, 
metabolism, and excretion 
of a chemical by the body:
 Chemical-specific
 Links exposure with 

internal concentrations
Exposure

Toxicokinetic model:
Absorption
Distribution
Metabolism

Excretion

Internal 
concentration

in vivo 
TK data

Breen et al. (2021)

Forward Dosimetry



In Vitro-In Vivo Extrapolation (IVIVE)

Exposure in vitro bioactive 
concentration

Toxicokinetic model:
Absorption
Distribution
Metabolism

Excretion

Internal 
concentration

Toxicodynamic
IVIVE

in vivo 
TK data

Breen et al. (2021)
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In vitro Bioactivity 
Assay

 Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models
 Needed for anywhere from dozens to thousands of chemicals

Forward Dosimetry
Reverse

Dosimetry

Unfortunately, most 
chemicals do not have 

in vivo TK data



High Throughput Toxicokinetics (HTTK) 
for IVIVE
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 Most chemicals do not 
have TK data – we use
in vitro HTTK methods 
adapted from pharma to 
fill gaps

 In drug development, 
predicted concentrations 
are typically on the order 
of values measured in 
clinical trials (Wang, 2010)

 Chemical-specific data 
are steadily being 
generated by ORD 
laboratories (Barbara 
Wetmore), EPA 
contractors, and 
collaborators



Exposure in vitro bioactive 
concentration
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In Vitro-In Vivo Extrapolation (IVIVE)
 Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models
 Needed for anywhere from dozens to thousands of chemicals



Chemical-specific 
data are steadily 
being generated by 
ORD laboratories 
(Barbara Wetmore), 
EPA contractors and 
collaborators.

In Vitro-In Vivo Extrapolation (IVIVE)
 Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models
 Needed for anywhere from dozens to thousands of chemicals

in vitro 
TK data

Toxicokinetic
IVIVE

Breen et al. (2021)
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concentration
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Distribution
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Internal 
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in vivo 
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Breen et al. (2021)
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 IVIVE estimates equivalent 
doses that depend on the 
assumed route  of exposure 
and (indirectly) chemical 
properties (for example, 
volatile/non-volatile)

in vitro 
TK data

In Vitro-In Vivo Extrapolation (IVIVE)

Exposure in vitro bioactive 
concentration

Toxicokinetic model:
Absorption
Distribution
Metabolism

Excretion

Internal 
concentration

Toxicodynamic
IVIVE

in vivo 
TK data

Breen et al. (2021)
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𝐀𝐀𝐀𝐀𝐀𝐀 =  𝑭𝑭𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰  ×  [𝑿𝑿]

 There are many approaches to IVIVE, but we choose a relatively simple one:
 We make various assumptions that allow conversion of an in vitro concentration 

[𝑿𝑿] (µM) into an administered equivalent dose (AED) with units of mg/kg body 
weight/day:

 AED is the external dose rate that would be needed to produce a given 
steady-state plasma concentration

 FIVIVE is a scaling factor that varies by chemical

IVIVE by Scaling Factor

HTTK can predict FIVIVE



 For a given chemical, FIVIVE = 1 / Css,95

 Css,95 is the steady-state plasma concentration resulting from a 1 mg/kg/day 
exposure

 HTTK can predict Css,95 using “reverse dosimetry” IVIVE (Tan et al., 2007)

 The “95” refers to the upper 95th percentile – due to human variability and 
measurement uncertainty there are a range of possible Css values

 All of this assumes that the individuals have enough time to come to “steady-
state” with respect to their daily exposures

𝐀𝐀𝐀𝐀𝐀𝐀𝟗𝟗𝟗𝟗 =
[𝑿𝑿]
𝑪𝑪𝒔𝒔𝒔𝒔,𝟗𝟗𝟗𝟗

µ𝑴𝑴 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝟏𝟏

𝑴𝑴𝑴𝑴
𝒎𝒎𝒎𝒎
𝑳𝑳

Don’t forget:

IVIVE by Scaling Factor



New approach methods for exposure address these gaps

Limited Available Data for 
Exposure Estimation

Most chemicals lack public exposure-related data beyond production volume (Egeghy et al., 2012)



Mechanistic 
description of the 
built environment 

and exposure 
processes, including 
temporal variability

Increasing Complexity

Level of aggregation across sources, 
routes, scenarios, chemicals 

Description of 
human behavior
or population

Figure from Kristin Isaacs

 All models vary in 
complexity and data 
needed to describe 
chemical exposure

 High throughput 
exposure (HTE) models 
can handle many 
chemicals with minimal 
descriptive information 

 HTE models can provide 
rough but quantitative 
estimates of exposure 

Fit-for-Purpose Exposure Modeling Frameworks



c

High Throughput Exposure:
Analogy to In Vitro Screening

• EPA’s Toxicity Forecasting (ToxCast) high throughput testing 
project:

• >3000 chemicals tested to date
• Each ToxCast assay-endpoint has the potential to capture 

an aspect of chemical biology – more than 1000 to date
• No one assay gives the whole picture
• Reference chemicals covering diverse mechanisms to 

establish what different types hazard “look like”
• ExpoCast (Exposure Forecasting):

• Various HTE models provide the “assays” for different 
aspects (pathways, chemistries, assumptions) of 
exposure

• Monitoring data provides our “reference” exposures
• We build a probabilistic, consensus prediction using 

multiple HTE models and other predictors 

Different ToxCast assays or HTE models 
characterize different aspects of 

toxicity or exposure

Individual Model Predictions Available on CompTox Dashboard
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SEEM3 Collaboration
Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-

Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

Predictor Reference(s)
Chemicals 
Predicted Pathway(s)

EPA Inventory Update Reporting and Chemical Data 
Reporting (CDR) (2015)

US EPA (2018) 7856 All

Stockholm Convention of Banned Persistent Organic 
Pollutants (2017)

Lallas (2001) 248 far field Industrial and 
Pesticide

EPA Pesticide Reregistration Eligibility Documents 
(REDs) Exposure Assessments (Through 2015)

Wetmore et al. (2012, 2015) 239 far field Pesticide

United Nations Environment Program and Society for 
Environmental Toxicology and Chemistry toxicity model 
(USEtox) Industrial Scenario (2.0)

Rosenbaum et al. (2008) 8167 far field Industrial

USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 far field Pesticide

Risk Assessment IDentification And Ranking (RAIDAR) 
far field (2.02)

Arnot et al. (2008) 8167 far field Pesticide

EPA Stochastic Human Exposure Dose Simulator High 
Throughput (SHEDS-HT) near field Direct (2017)

Isaacs (2017) 7511 far field Industrial and 
Pesticide

SHEDS-HT near field Indirect (2017) Isaacs (2017) 1119 Residential

Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. (2012) 645 Residential
RAIDAR-ICE near field (0.803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential
USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. 

(2016,2017)
615 Residential

USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. 
(2016), Ernstoff et al. (2017)

8167 Dietary

Ring et al., 2018Individual Model Predictions Available on CompTox Dashboard



c

Evaluating Exposure Models with 
the SEEM Framework

We use Bayesian 
methods to incorporate 
multiple models into 
consensus predictions 
for 1000s of chemicals 
within the Systematic 
Empirical Evaluation of 
Models (SEEM) 
(Wambaugh et al., 2013, 2014; 
Ring et al., 2018)
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Wambaugh et al., 2019



c

Evaluating Exposure Models with 
the SEEM Framework

We use Bayesian 
methods to incorporate 
multiple models into 
consensus predictions 
for 1000s of chemicals 
within the Systematic 
Empirical Evaluation of 
Models (SEEM) 
(Wambaugh et al., 2013, 2014; 
Ring et al., 2018)

Space of 
Chemicals

Chemicals 
with 

Monitoring 
Data

In
fe

rr
ed

 In
ta

ke
 R

at
e

Model 1
Model 2… Evaluate Model Performance

and Refine Models

Dataset 1
Dataset 2…

Exposure 
Inference Different 

Chemicals

Available Exposure Predictors

Wambaugh et al., 2019

Calibrate 
models



c

Evaluating Exposure Models with 
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Evaluating Exposure Models with 
the SEEM Framework

We use Bayesian 
methods to incorporate 
multiple models into 
consensus predictions 
for 1000s of chemicals 
within the Systematic 
Empirical Evaluation of 
Models (SEEM) 
(Wambaugh et al., 2013, 2014; 
Ring et al., 2018)
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Inferred Exposure Rates from CDC NHANES
• Monitoring data provides our “reference” 

exposures for SEEM 
• We infer exposure from CDC NHANES 

biomarker data
• We propagate uncertainty in inferences

• Considering multiple parent chemicals for a 
given analyte

• Limit of detection issues

• These exposure inferences are made 
available on CCD

work with Miyuki Breen and Zach Stanfield

Daily Intake Rate (mg / kg /day)

13
5 

Ch
em

ic
al

s

Serum
Urine
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c

SEEM3: Pathway-Based Consensus Modeling

Ring et al., 2018
Intake Rate (mg/kg BW/day) Inferred from NHANES Serum and Urine
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 SEEM3 consensus model provides estimates of 
human median intake rate (mg/kg/day) for 
nearly 500,000 chemicals via the CompTox 
Chemicals Dashboard 
(http://comptox.epa.gov/dashboard)

 SEEM3 first predicts relevant exposure pathways 
from chemical structure – model predictions are 
then weighted according to the models’ abilities 
to explain NHANES data

 We rely on pathway determinations from CPDat

 We rely on NHANES biomonitoring data
 2014 FIFRA Scientific Advisory Panel 

identified need for broader sets of 
evaluation data

http://comptox.epa.gov/dashboard
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Computational Toxicology and Exposure
 Given a structure we can estimate bioactivity, 

distribution, and exposure
 Quantitative structure-property relationships (QSPRs)

 If we have a sample, we can test it in vitro:
 High throughput screening and toxicokinetics
 HTTK QSPRs allow predictions from structure

 If we have monitoring data, can estimate daily intake
 High throughput exposure tools provide forecasts 

from structure

RECEPTOR

MEDIA
of 

Exposure

USE and 
RELEASE

INTERNAL 
DOSE

FATE & 
TRANSPORT

EXPOSURE 
(MEDIA + RECEPTOR)

TK/TD
POP. VAR

Figure from Caroline Ring
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Standardized NAM Data and Tools

 Hazard: There are nearly 10,000 chemicals with in 
vitro bioactivity data

 Exposure: There are more than 400,000 
chemicals with “exposure forecasts” (ExpoCast)

 Dose-Response: There are currently 7,569 
chemicals with httk data/predictions (including 
Css, Vd, thalf) available on the CompTox Chemicals 
Dashboard:

https://comptox.epa.gov/dashboard

https://comptox.epa.gov/dashboard


c

Openly Available TK Information
 EPA’s data and tools for 

HTTK are made available 
through R package “httk”
 The “httk” tool has been 

used to calculate key TK 
information that is 
available on the CompTox 
Chemicals Dashboard and 
elsewhere

https://comptox.epa.gov/dashboard
The current HTTK data in CCD is HTTK v2.2.1. Please see the 

Data Sources table in the Release Notes for more information

https://comptox.epa.gov/dashboard
https://www.epa.gov/comptox-tools/comptox-chemicals-dashboard-release-notes
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Openly Available TK Information
 EPA’s data and tools for 

HTTK are made available 
through R package “httk”
 The “httk” tool has been 

used to calculate key TK 
information that is 
available on the CompTox 
Chemicals Dashboard and 
elsewhere

https://comptox.epa.gov/dashboard
The current HTTK data in CCD is HTTK v2.2.1. Please see the 

Data Sources table in the Release Notes for more information

https://comptox.epa.gov/dashboard
https://www.epa.gov/comptox-tools/comptox-chemicals-dashboard-release-notes


c

Openly Available TK Information
 EPA’s data and tools for 

HTTK are made available 
through R package “httk”
 The “httk” tool has been 

used to calculate key TK 
information that is 
available on the CompTox 
Chemicals Dashboard and 
elsewhere

https://comptox.epa.gov/dashboard
The current HTTK data in CCD is HTTK v2.2.1. Please see the 

Data Sources table in the Release Notes for more information

thalf

Css

Vd

https://comptox.epa.gov/dashboard
https://www.epa.gov/comptox-tools/comptox-chemicals-dashboard-release-notes
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Calculation 1: Reverse Dosimetry, Steady-State Exposure

In vitro 
estimated 
point of 

departure 
(PODin vitro) 

(in µM units)

Perform 
chemical-

specific unit 
conversion 
from µM to 

mg/L

Divide by 
chemical-

specific TK Css 
(mg/L for 1 
mg/kg/day 
intake rate)

Estimated 
steady-state 
intake rate 
needed to 

cause plasma 
concentration 

= PODin vitro

DEET (CASRN 134-62-3, DTXSID2021995):
 Css,95 = 1.37 mg/L per 1 mg/kg/day 

1 µM seems protective

1 µM = 1 µmol / L
x Molecular Weight 

(191.2 g/mol)
x 1 mg / 1000 ug
= 0.191 mg / L 

0.191 mg / L
/ 1.37 mg / L 

per 1 mg/kg/day 

0.14 mg/kg/day 
exposure will 

produce 
0.191 mg/L 

plasma 
concentration 
at steady-state
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Openly Available Exposure Information
 For chemicals monitored by the 

Centers for Disease Control and 
Prevention (CDC) National 
Health and Nutrition 
Examination Survey (NHANES) 
we have inferred daily intake 
rates (mg/kg/day) for the 
median U.S. population
(Only ~100 chemicals)

https://comptox.epa.gov/dashboard

https://comptox.epa.gov/dashboard


c

 The 95th percentile refers to the 
uncertainty about the median 
value, it does not reflect 
variability
We typically use the upper 95th 

limit on the uncertainty to be 
conservative – but this is still 
only for the population median

Inferences from Centers for Disease Control and Prevention (CDC) National Health and Nutrition 
Examination Survey (NHANES) made using R package bayesMarker (Stanfield et al., 2022 & 2024)

Openly Available Exposure Information
https://comptox.epa.gov/dashboard

https://comptox.epa.gov/dashboard


Calculation 2: NHANES Bioactivity:Exposure Ratio

Divide by 
Inferred 

Exposure for 
Median U.S. 
Population

Bioactivity 
Exposure Ratio 

(BER)

DEET (CASRN 134-62-3, DTXSID2021995):
NHANES Total Population Daily Intake Rate 
Upper 95th: 8.67 x 10-7 mg/kg/day

0.14 mg/kg/day 
exposure will produce 

0.191 mg/L 
plasma concentration 

at steady-state

0.14 mg/kg/day 
/

0.000000867 
mg/kg/day 

Bioactive Dose is 
162,000 times 

higher than dose 
inferred from CDC 

biomonitoring 
data

Estimated 
steady-state 
intake rate 
needed to 

cause plasma 
concentration 

= PODin vitro

Low general 
population 

risk



Demographic-specific 
inferences from NHANES 
are available for certain 
demographic groups
 Again, only for median
 Again, we have only ~100 

chemicals

Inferences from Centers for Disease Control and Prevention (CDC) National Health and Nutrition 
Examination Survey (NHANES) made using R package bayesMarker (Stanfield et al., 2022 & 2024)

Openly Available Exposure Information
https://comptox.epa.gov/dashboard

https://comptox.epa.gov/dashboard
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Calculation 3: NHANES Demographic 
Bioactivity:Exposure Ratio

Divide by 
Inferred 

Exposure for 
Median U.S. 
Population

Bioactivity 
Exposure Ratio 

(BER)

DEET (CASRN 134-62-3, DTXSID2021995):
NHANES Total Population Daily Intake Rate 
Upper 95th: 8.89 x 10-7 mg/kg/day

0.14 mg/kg/day 
exposure will produce 

0.191 mg/L 
plasma concentration 

at steady-state

0.14 mg/kg/day 
/

0.000000889 
mg/kg/day 

Bioactive Dose is 
157,000 times 

higher than dose 
inferred from CDC 

biomonitoring 
data

Estimated 
steady-state 
intake rate 
needed to 

cause plasma 
concentration 

= PODin vitro

Low risk for 
median 

woman of 
reproductive 

age



 For most chemicals 
we do not have intake 
rates from NHANES
However, systematic 

empirical evaluation 
of models (SEEM) 
gives estimated intake 
rates for hundreds of 
thousands of 
chemicals

SEEM3 Consensus Model described in Ring et al. (2019)

Openly Available Exposure Information
https://comptox.epa.gov/dashboard

https://comptox.epa.gov/dashboard


 SEEM forecasts are much more 
uncertain than NHANES 
measurements
 For sake of conservatism, we use 

upper 95th limit on estimated median 
intake
 This does not reflect population 

variability

SEEM3 Consensus Model described in Ring et al. (2019)

Openly Available Exposure Information
https://comptox.epa.gov/dashboard

https://comptox.epa.gov/dashboard


Calculation 4: SEEM Bioactivity:Exposure Ratio

Divide by 
Inferred 

Exposure for 
Median U.S. 

Demographic 
Group

Bioactivity 
Exposure Ratio 

(BER)

DEET (CASRN 134-62-3, DTXSID2021995):
SEEM Total Population Daily Intake Rate 
Upper 95th: 1.11 x 10-4 mg/kg/day

Estimated 
steady-state 
intake rate 
needed to 

cause plasma 
concentration 

= PODin vitro

Note that this BER is less than for NHANES 
because of greater uncertainty

0.14 mg/kg/day 
exposure will produce 

0.191 mg/L 
plasma concentration 

at steady-state

0.14 mg/kg/day 
/

0.000111 
mg/kg/day 

Bioactive Dose is 
1,260 times 
higher than 
intake rate 

forecast by SEEM

Low general 
population 

risk
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Calculation 5: Forward Dosimetry, Single Exposure

Single 
exposure 
(mg/kg)

Divide by 
volume of 

distribution 
(Vd) (units 

of L/kg)

If oral dose 
multiply by 

fraction 
bioavailable 

(Fbio)

Peak 
concentrati

on (Cmax)

95% of 
dose gone 
after three 
half-lives
 (3 x thalf)

Note that if we use a mathematical simulation tool (such as R package 
httk) we could do more elaborate, tissue specific predictions 

(httk:solve_pbtk) as well as simulate other exposure routes (inhalation – 
httk::solve_gas_pbtk(), gestational – httk::solve_fetal_pbtk())

DEET (CASRN 134-62-3, DTXSID2021995): 
Vd = 1.7 L/kg, thalf = 6.5 h 

15% in sun lotion,
use 60 g lotion,

Body weight 70 kg:
60 * 1000 * 0.15 / 70 =

129 mg/kg

100% 
absorption in 
lieu of data to 

contrary

129 mg/kg /
1.737 L/kg 74 mg/L 3 x 6.5 = 

19.5 h
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Calculation 6: Forward Dosimetry, Steady-State Exposure

Convenient TK fact: 
Clearance (Cl) = 1/Css

37 mL/kg/day water intake Is from 
the EPA Exposure Factors Handbook Table 3-1 for all ages, 95th Percentile

DEET (CASRN 134-62-3, DTXSID2021995):
 Css,95 = 1.37 mg/L per 1 mg/kg/day = 1.37 kg-day/L

ppm in 
drinking 

water

Scenario, 
chemical spill 

causes 1 ppm in 
drinking water:

37 
mL/kg/day 

water 
intake

0.001 mg / mL 
X 37 mL/kg/day 

= 0.037 mg/kg/day

Perform 
unit 

conversion 
from ppm 
to mg/L

1 ppm = 1 µg / g
/ 1 mL/g (water density)

x 1 mg / 1000 µg
= 0.001 mg / mL 

Divide by  
chemical-
specific TK 
clearance 
(L/kg/dau)

0.037 mg/kg/day
/ CL (L/kg/day)=

0.037 * 1.37

Steady-
state

mg/L in 
plasma

0.051 mg/L
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Online Tutorial on Bioactivity : Exposure Ratios

 An online R tutorial walks you through 
the steps needed to calculate 
Bioactivity:Exposure Ratios. It covers:
 Loading in vitro screening data into R
 HTTK-based IVIVE
 Applying relevant QSPRs
 Comparing with Exposure predictions
 Making a BER Plot

https://cran.r-project.org/web/packages/httk/vignettes/V2_IntrotoIVIVE.html
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Conclusions

 For a small subset of chemicals daily intake rates are monitored by the U.S. CDC

 The systematic empirical evaluation of models (SEEM) tool provides estimated intake 
rates for most chemicals
The 95% interval on SEEM intake rates reflects uncertainty on median population value and does not 
reflect population variability

 High throughput toxicokinetics (HTTK) are available 
to convert from bioactive in vitro concentrations to 
putative dose rates that might cause those 
concentrations (new approach method-based 
points of departure or PODNAM)

 We calculate the Bioactivity:Exposure Ratio (BER) 
by comparing PODNAM to a daily intake rate

Please send any questions to: 
wambaugh.john@epa.gov

High 
Throughput 

Exposure 
(Daily Intake Rate)

mg/kg/day
High 

Throughput 
Screening 

+ 
Toxicokinetics

Lower
Risk

Medium Risk Higher
Risk

mailto:wambaugh.john@epa.gov


c

 Bell, Shannon M., et al. "In vitro to in vivo extrapolation for 
high throughput prioritization and decision making." 
Toxicology in vitro 47 (2018): 213-227.

 Bell, Shannon, et al. "An integrated chemical environment 
with tools for chemical safety testing." Toxicology in Vitro 67 
(2020): 104916. 

 Breen, Miyuki, et al. "High-throughput PBTK models for in 
vitro to in vivo extrapolation." Expert opinion on drug 
metabolism & toxicology 17.8 (2021): 903-921.

 Coecke, Sandra, et al. "Toxicokinetics as a key to the 
integrated toxicity risk assessment based primarily on non-
animal approaches." Toxicology in vitro 27.5 (2013): 1570-
1577.

 Dorne, Jean-Lou, et al. "Reconnecting exposure, 
toxicokinetics and toxicity in food safety: OpenFoodTox and 
TKplate for human health, animal health and ecological risk 
assessment." 54. Congress of the European Societies of 
Toxicology (EUROTOX 2018). Vol. 295. No. Suppl. 1. 2018.

 Kapraun, Dustin F., et al. "Evaluation of a rapid, generic 
human gestational dose model." Reproductive Toxicology 
113 (2022): 172-188.

 Khalidi, Hiba, et al. "SimRFlow: An R-based workflow for 
automated high-throughput PBPK simulation with the 
Simcyp® simulator." Frontiers in Pharmacology 13 (2022).

 Linakis, Matthew W., et al. "Development and evaluation of 
a high throughput inhalation model for organic chemicals." 
Journal of exposure science & environmental epidemiology 
30.5 (2020): 866-877.

 National Research Council. "Risk assessment in the federal 
government: managing the process." (1983).

 Paul Friedman, Katie, et al. "Utility of in vitro bioactivity as a 
lower bound estimate of in vivo adverse effect levels and in 
risk-based prioritization." Toxicological Sciences 173.1 
(2020): 202-225.

 Pearce, Robert G., et al. "Httk: R package for high-
throughput toxicokinetics." Journal of Statistical 
Software 79.4 (2017a): 1.

 Pearce, Robert G., et al. "Evaluation and calibration of high-
throughput predictions of chemical distribution to tissues." 
Journal of pharmacokinetics and pharmacodynamics 44 
(2017b): 549-565.

 Ring, Caroline L., et al. "Identifying populations sensitive to 
environmental chemicals by simulating toxicokinetic 
variability." Environment International 106 (2017): 105-118.

 Sayre, Risa R., John F. Wambaugh, and Christopher M. 
Grulke. "Database of pharmacokinetic time-series data and 
parameters for 144 environmental chemicals." Scientific data 
7.1 (2020): 122.

 Sobels, F. H. (1982) “The parallelogram; an indirect approach 
for the assessment of genetic risks from chemical 
mutagens.” In: Progress in Mutation Research, Vol. 3 (K. C. 
Bora, G. R. Douglas, and E. R. Nestman, Eds.), Elsevier, 
Amsterdam, pp. 233-327. 

 Stanfield, Zachary, et al. "Bayesian inference of chemical 
exposures from NHANES urine biomonitoring data." Journal 
of Exposure Science & Environmental Epidemiology 32.6 
(2022): 833-846.

 Stanfield, Zachary, et al. "Characterizing Chemical Exposure 
Trends from NHANES Urinary Biomonitoring Data." 
Environmental Health Perspectives 132.1 (2024): 017009.

 Tan, Yu-Mei, Kai H. Liao, and Harvey J. Clewell. "Reverse 
dosimetry: interpreting trihalomethanes biomonitoring data 
using physiologically based pharmacokinetic modeling." 
Journal of exposure science & environmental epidemiology 
17.7 (2007): 591-603.

 Wambaugh, John F., et al. "Evaluating in vitro-in vivo 
extrapolation of toxicokinetics." Toxicological Sciences 163.1 
(2018): 152-169.

 Wang, Ying-Hong. "Confidence assessment of the Simcyp 
time-based approach and a static mathematical model in 
predicting clinical drug-drug interactions for mechanism-
based CYP3A inhibitors." Drug Metabolism and Disposition 
38.7 (2010): 1094-1104.

 Wetmore, Barbara A., et al. "Integration of dosimetry, 
exposure, and high-throughput screening data in chemical 
toxicity assessment." Toxicological Sciences 125.1 (2012): 
157-174.

 Wetmore, Barbara A. "Quantitative in vitro-to-in vivo 
extrapolation in a high-throughput environment." Toxicology 
332 (2015a): 94-101.

 Wetmore, Barbara A., et al. "Incorporating high-throughput 
exposure predictions with dosimetry-adjusted in vitro 
bioactivity to inform chemical toxicity testing." Toxicological 
Sciences 148.1 (2015b): 121-136.

 Williams, Antony J., et al. "The CompTox Chemistry 
Dashboard: a community data resource for environmental 
chemistry." Journal of cheminformatics 9 (2017): 1-27.

The views expressed in this 
presentation are those of the 
author and do not necessarily 
reflect the views or policies of 

the author’s institution

References Please send any questions to: 
wambaugh.john@epa.gov

mailto:wambaugh.john@epa.gov

	Bioactivity:Exposure Ratio Example�Comparing NAM-based PODs to Estimates of Human Daily Intake
	Bioactivity : Exposure Ratios (BERs)
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Most Chemicals Do Not Have TK Data
	Toxicokinetics
	In Vitro-In Vivo Extrapolation (IVIVE)
	High Throughput Toxicokinetics (HTTK) for IVIVE
	In Vitro-In Vivo Extrapolation (IVIVE)
	In Vitro-In Vivo Extrapolation (IVIVE)
	In Vitro-In Vivo Extrapolation (IVIVE)
	IVIVE by Scaling Factor
	IVIVE by Scaling Factor
	Limited Available Data for �Exposure Estimation
	Fit-for-Purpose Exposure Modeling Frameworks
	High Throughput Exposure:�Analogy to In Vitro Screening
	Slide Number 19
	Evaluating Exposure Models with �the SEEM Framework
	Evaluating Exposure Models with �the SEEM Framework
	Evaluating Exposure Models with �the SEEM Framework
	Evaluating Exposure Models with �the SEEM Framework
	Inferred Exposure Rates from CDC NHANES
	SEEM3: Pathway-Based Consensus Modeling
	Computational Toxicology and Exposure
	Standardized NAM Data and Tools
	Openly Available TK Information
	Openly Available TK Information
	Openly Available TK Information
	Calculation 1: Reverse Dosimetry, Steady-State Exposure
	Openly Available Exposure Information
	Openly Available Exposure Information
	Calculation 2: NHANES Bioactivity:Exposure Ratio
	Openly Available Exposure Information
	Calculation 3: NHANES Demographic �Bioactivity:Exposure Ratio
	Slide Number 37
	Slide Number 38
	Calculation 4: SEEM Bioactivity:Exposure Ratio
	Calculation 5: Forward Dosimetry, Single Exposure
	Calculation 6: Forward Dosimetry, Steady-State Exposure
	Online Tutorial on Bioactivity : Exposure Ratios
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Conclusions
	References



