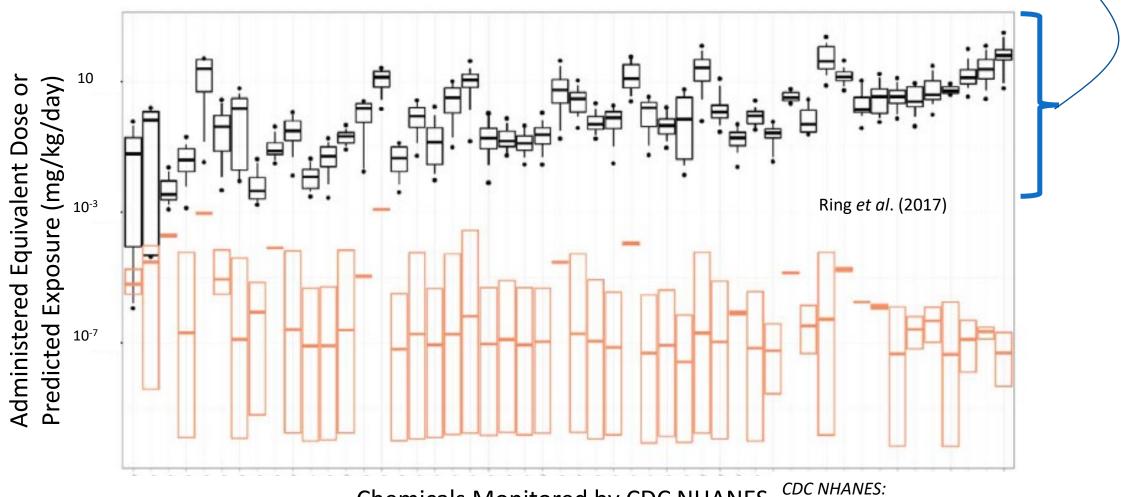

Bioactivity:Exposure Ratio Example Comparing NAM-based PODs to Estimates of Human Daily Intake

NAMs Training Workshop

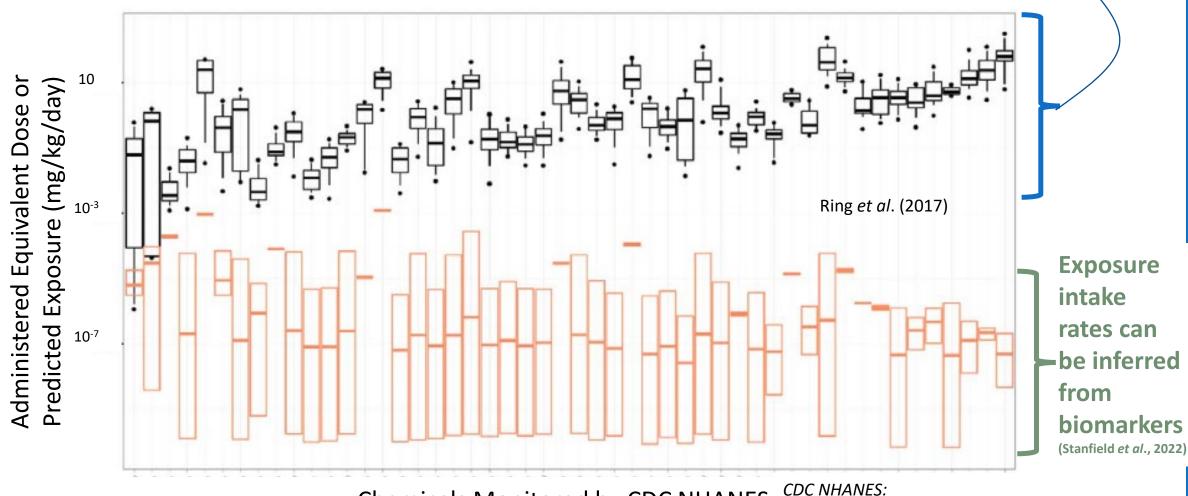
April 24th – 25th, 2024


John Wambaugh

Bioactivity : Exposure Ratios (BERs)

BERs Allow Chemical Prioritization

In Vitro Screening + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015b)

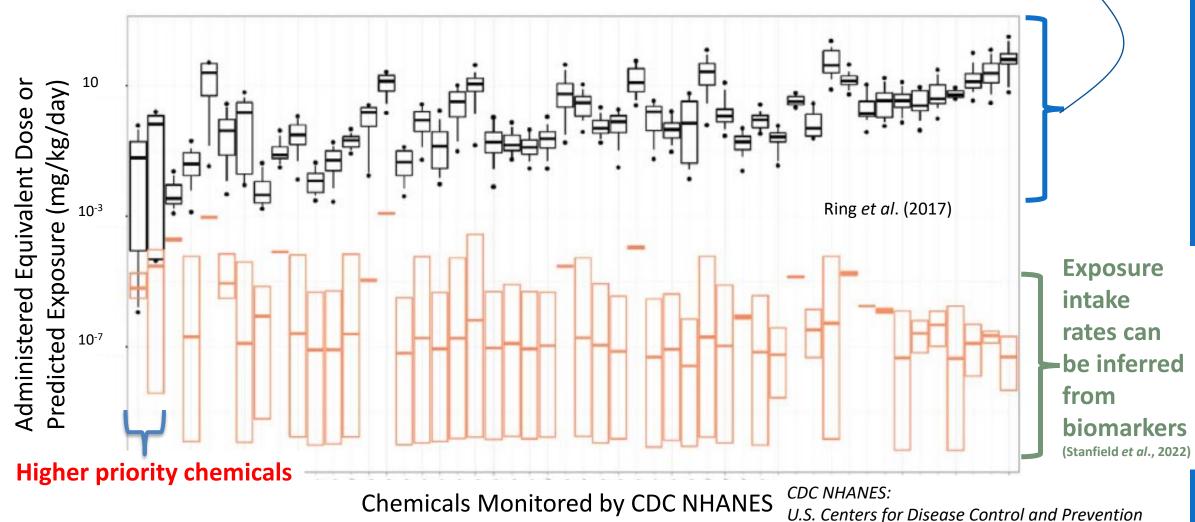


Chemicals Monitored by CDC NHANES $\frac{CL}{U}$

U.S. Centers for Disease Control and Prevention National Health and Nutrition Examination Survey

BERs Allow Chemical Prioritization

In Vitro Screening + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015b)



Chemicals Monitored by CDC NHANES

U.S. Centers for Disease Control and Prevention National Health and Nutrition Examination Survey

BERs Allow Chemical Prioritization

In Vitro Screening + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015b)

National Health and Nutrition Examination Survey

Most Chemicals Do Not Have TK Data

- We need chemical-specific toxicokinetics (TK) for *in vitro-in vivo* extrapolation (IVIVE) (Rotroff et al., 2010), **but:**
 - Most non-pharmaceutical chemicals – for example, flame retardants, plasticizers, pesticides, solvents – do not have human *in vivo* TK data
 - Non-pesticidal chemicals are unlikely to have any *in vivo* TK data, even from animals

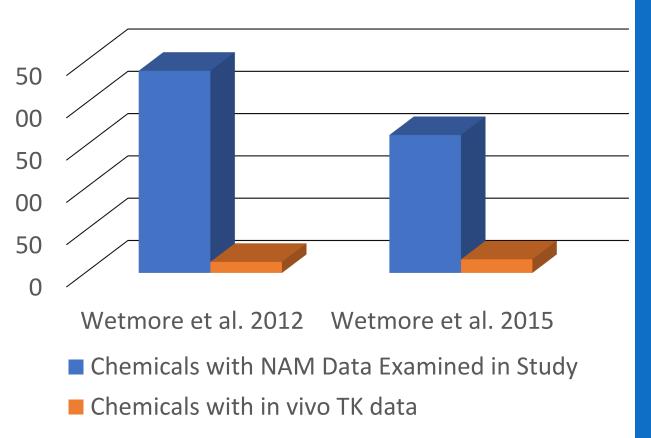
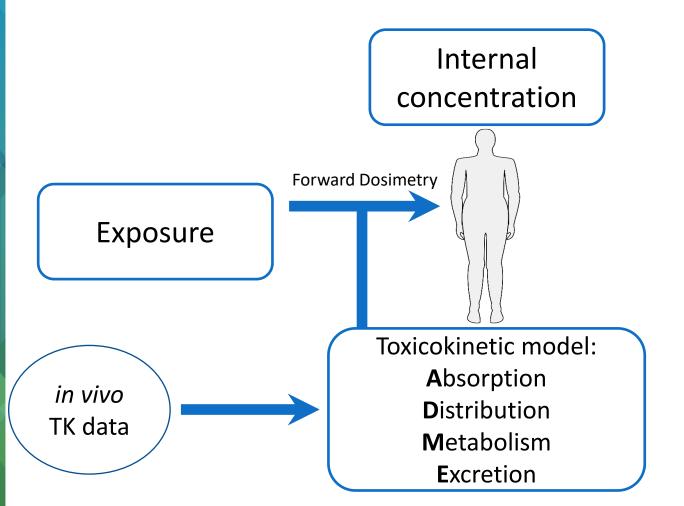
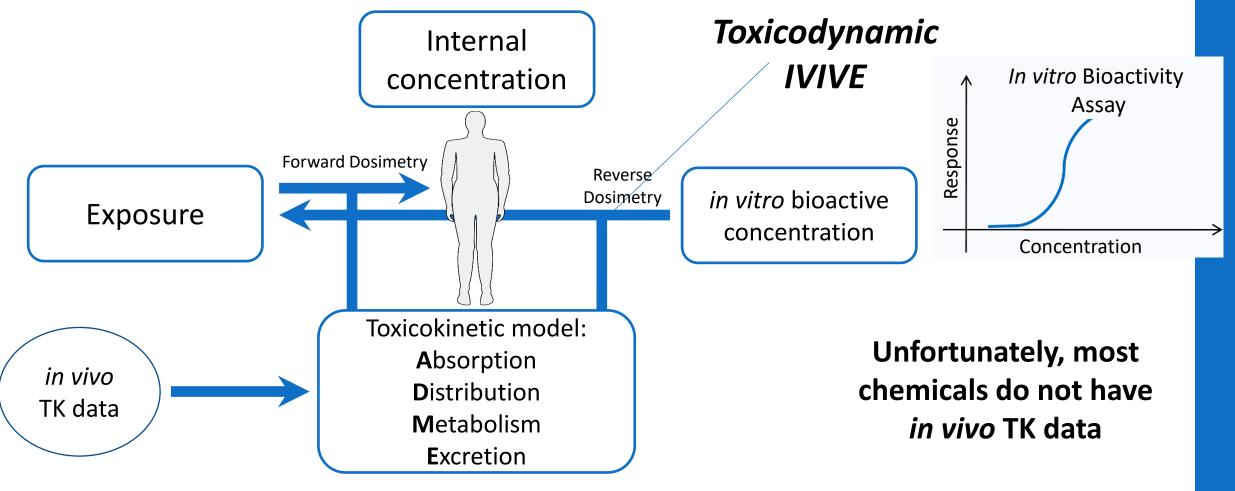



Figure modified from Bell et al. (2018)

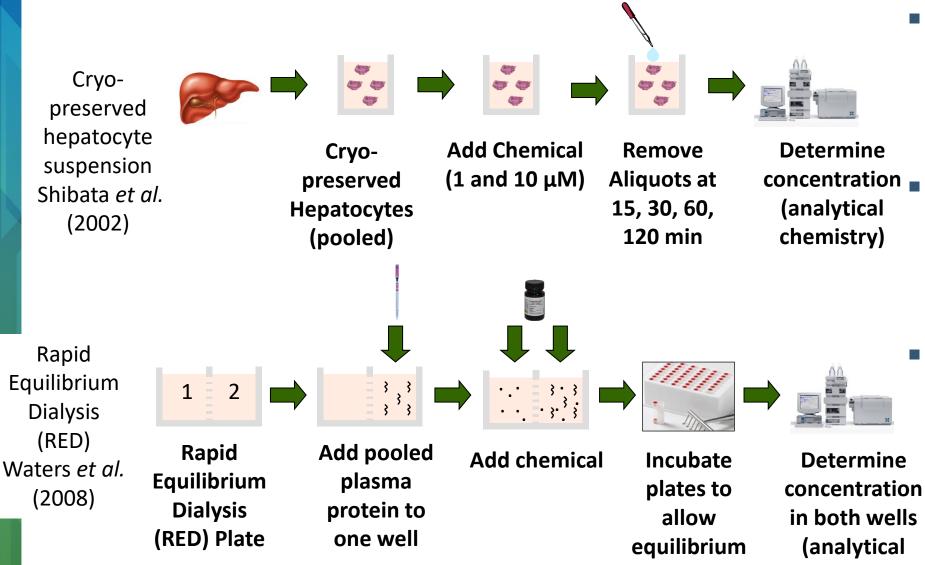
Toxicokinetics

Breen et al. (2021)


 Toxicokinetics describes the absorption, distribution, metabolism, and excretion of a chemical by the body:

Chemical-specific

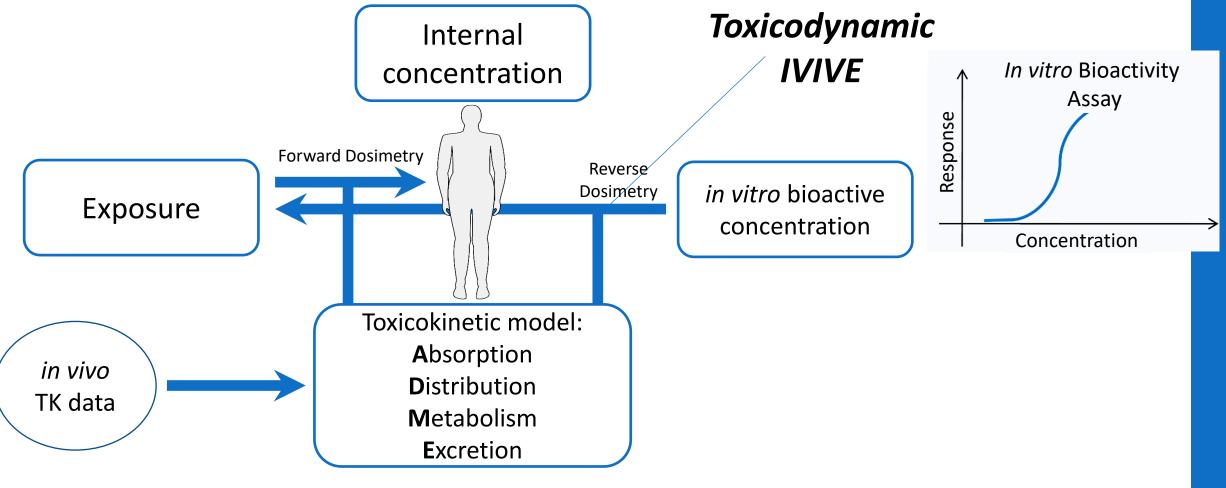
 Links exposure with internal concentrations


Translation of *in vitro* high throughput screening requires chemical-specific toxicokinetic models

Needed for anywhere from dozens to thousands of chemicals

Breen et al. (2021)

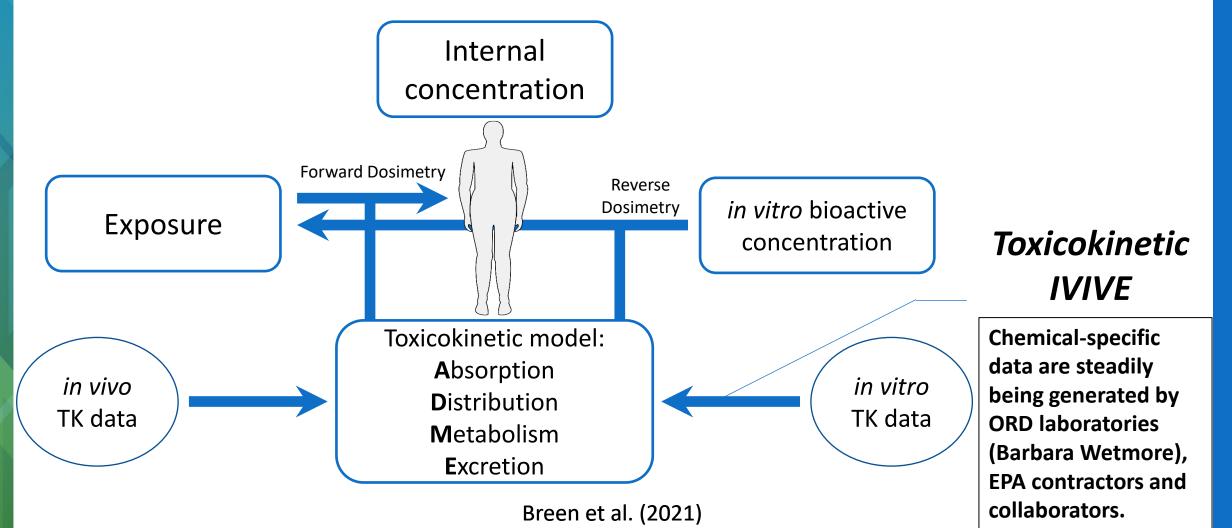
High Throughput Toxicokinetics (HTTK) for IVIVE

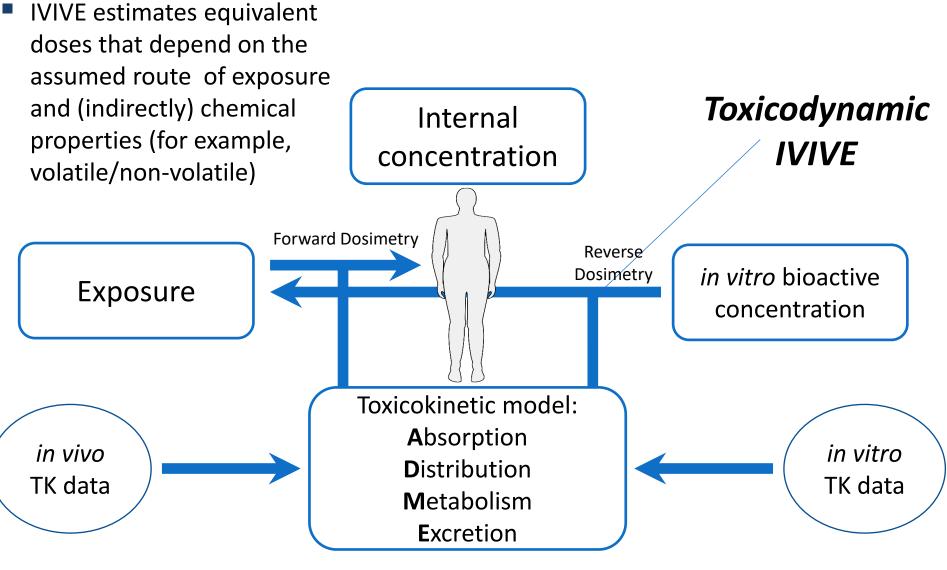


- Most chemicals do not have TK data – we use *in vitro* HTTK methods adapted from pharma to fill gaps
- In drug development, predicted concentrations are typically on the order of values measured in clinical trials (wang, 2010)
- Chemical-specific data are steadily being generated by ORD laboratories (Barbara
 Wetmore), EPA contractors, and collaborators

chemistry)

Translation of *in vitro* high throughput screening requires chemical-specific toxicokinetic models


Needed for anywhere from dozens to thousands of chemicals



Breen et al. (2021)

Translation of *in vitro* high throughput screening requires chemical-specific toxicokinetic models

Needed for anywhere from dozens to thousands of chemicals

Breen et al. (2021)

IVIVE by Scaling Factor

- There are many approaches to IVIVE, but we choose a relatively simple one:
- We make various assumptions that allow conversion of an *in vitro* concentration
 [X] (μM) into an administered equivalent dose (AED) with units of mg/kg body weight/day:

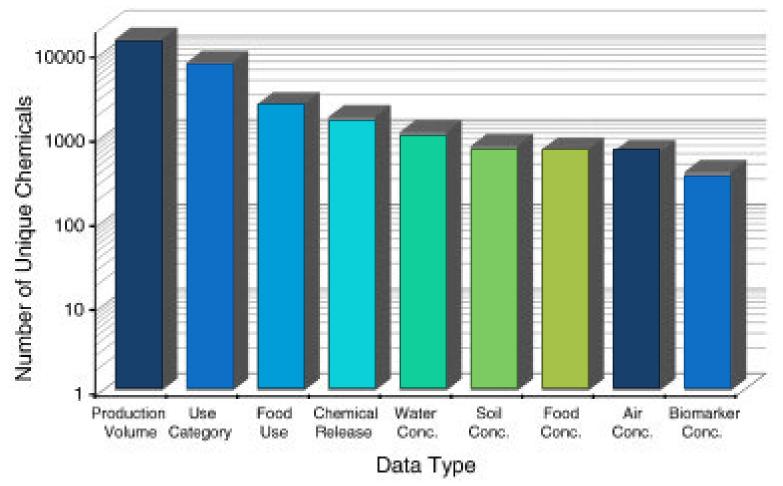
$$AED = F_{IVIVE} \times [X]$$

- AED is the external dose rate that would be needed to produce a given steady-state plasma concentration
- F_{IVIVE} is a scaling factor that varies by chemical

HTTK can predict F_{IVIVE}

IVIVE by Scaling Factor

- For a given chemical, F_{IVIVE} = 1 / C_{ss,95}
- C_{ss,95} is the steady-state plasma concentration resulting from a 1 mg/kg/day exposure
- HTTK can predict C_{ss,95} using "reverse dosimetry" IVIVE (Tan et al., 2007)


$$AED_{95} = \frac{[X]}{C_{ss,95}}$$

- The "95" refers to the upper 95th percentile due to human variability and measurement uncertainty there are a range of possible C_{ss} values
- All of this assumes that the individuals have enough time to come to "steadystate" with respect to their daily exposures

$$\mu M = 1000 \frac{1}{MW} \frac{mg}{L}$$

Limited Available Data for Exposure Estimation

Most chemicals lack public exposure-related data beyond production volume (Egeghy et al., 2012)

New approach methods for exposure address these gaps

Fit-for-Purpose Exposure Modeling Frameworks

 All models vary in complexity and data needed to describe chemical exposure

- High throughput
 exposure (HTE) models
 can handle many
 chemicals with minimal
 tem descriptive information
- HTE models can provide rough but quantitative estimates of exposure

Mechanistic description of the built environment and exposure processes, including temporal variability

Level of aggregation across sources, routes, scenarios, chemicals

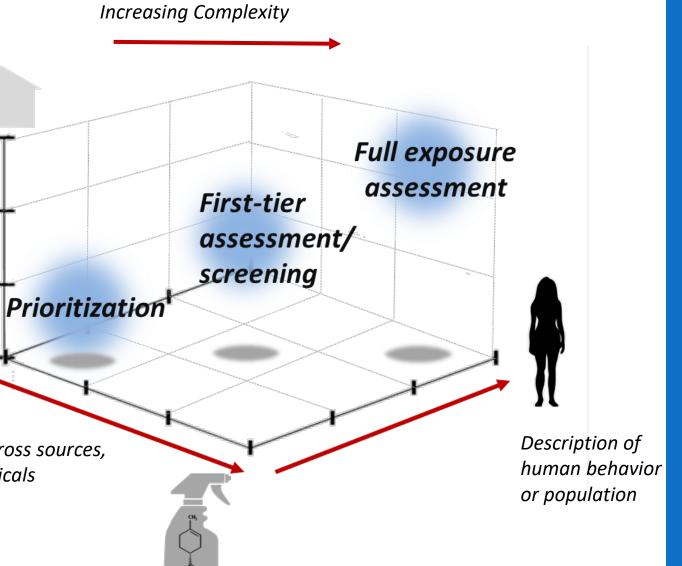
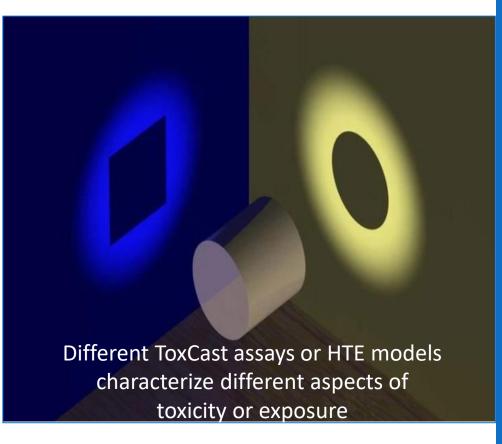



Figure from Kristin Isaacs

High Throughput Exposure: Analogy to *In Vitro* Screening

- EPA's Toxicity Forecasting (ToxCast) high throughput testing project:
 - >3000 chemicals tested to date
 - Each ToxCast assay-endpoint has the potential to capture an aspect of chemical biology – more than 1000 to date
 - No one assay gives the whole picture
 - Reference chemicals covering diverse mechanisms to establish what different types hazard "look like"
- ExpoCast (Exposure Forecasting):
 - Various HTE models provide the "assays" for different aspects (pathways, chemistries, assumptions) of exposure
 - Monitoring data provides our "reference" exposures
 - We build a probabilistic, consensus prediction using multiple HTE models and other predictors

Individual Model Predictions Available on CompTox Dashboard

SEEM3 Collaboration

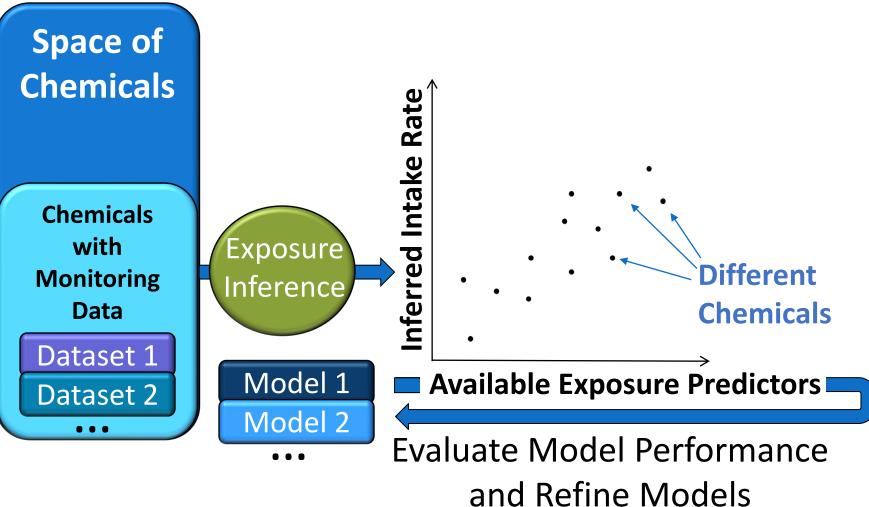
Arnot Research & C

UNIVERSITY MICHIGA

WITED STATA

ENVIRO

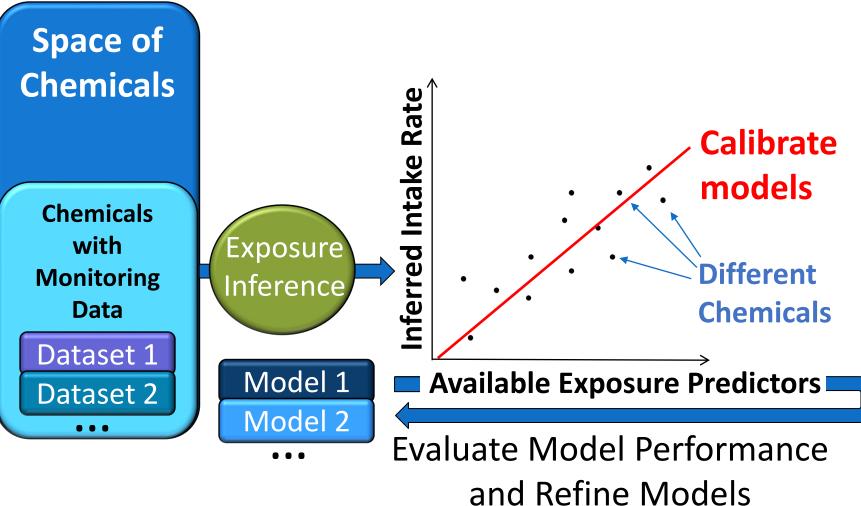
UNIVERSITY OF CAL


Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

	Predictor	Reference(s)	Chemicals Predicted	Pathway(s)
r	EPA Inventory Update Reporting and Chemical Data	US EPA (2018)	7856	All
$\frac{1}{2}$	Reporting (CDR) (2015)			
	Stockholm Convention of Banned Persistent Organic	Lallas (2001)	248	far field Industrial and
urch & Consulting	Pollutants (2017)			Pesticide
	EPA Pesticide Reregistration Eligibility Documents	Wetmore et al. (2012, 2015)	239	far field Pesticide
	(REDs) Exposure Assessments (Through 2015)			
IVERSITY OF	United Nations Environment Program and Society for	Rosenbaum et al. (2008)	8167	far field Industrial
	Environmental Toxicology and Chemistry toxicity model			
DAVIS	(USEtox) Industrial Scenario (2.0)			
Y OF CALIFORNIA UNIVERSITY OF	USEtox Pesticide Scenario (2.0)	Fantke et al. (2011, 2012, 2016)	940	far field Pesticide
TEXAS ARLINGTON	Risk Assessment IDentification And Ranking (RAIDAR)	Arnot et al. (2008)	8167	far field Pesticide
Danmarks	far field (2.02)			
Tekniske	EPA Stochastic Human Exposure Dose Simulator High	Isaacs (2017)	7511	far field Industrial and
Universitet	Throughput (SHEDS-HT) near field Direct (2017)			Pesticide
ED STATES	SHEDS-HT near field Indirect (2017)	Isaacs (2017)	1119	Residential
INCY INC	Fugacity-based INdoor Exposure (FINE) (2017)	Bennett et al. (2004), Shin et al. (2012)	645	Residential
No. 10	RAIDAR-ICE near field (0.803)	Arnot et al., (2014), Zhang et al. (2014)	1221	Residential
L PROTECTIO	USEtox Residential Scenario (2.0)	Jolliet et al. (2015), Huang et al. (2016,2017)	615	Residential
	USEtox Dietary Scenario (2.0)	Jolliet et al. (2015), Huang et al. (2016), Ernstoff et al. (2017)	8167	Dietary

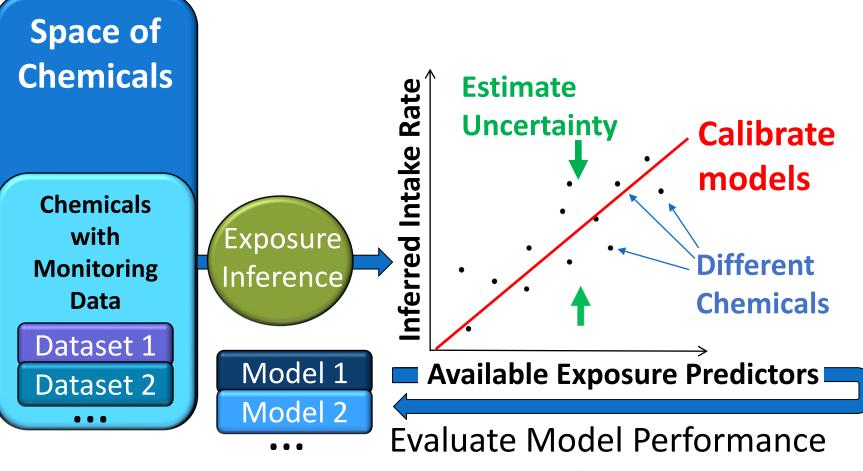
Individual Model Predictions Available on CompTox Dashboard Ring et al., 2018

We use Bayesian methods to incorporate multiple models into consensus predictions for 1000s of chemicals within the **Systematic Empirical Evaluation of Models (SEEM)**


(Wambaugh et al., 2013, 2014; Ring et al., 2018)

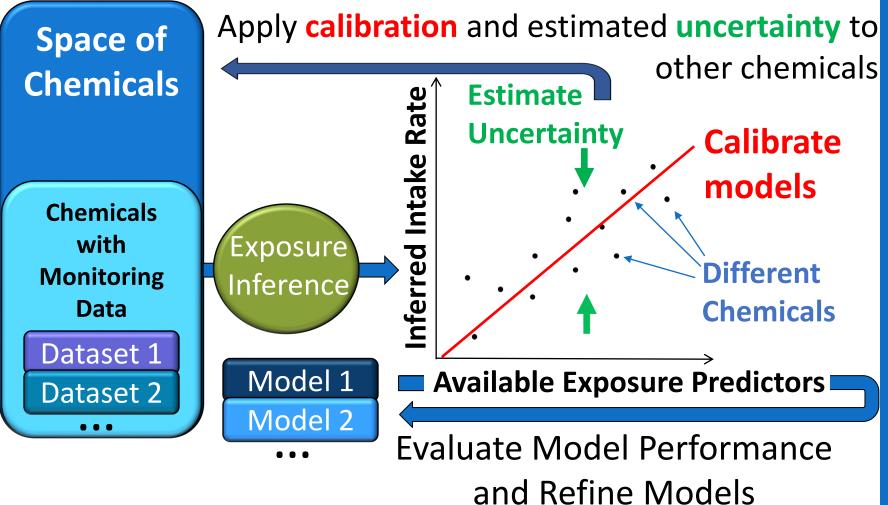
Wambaugh et al., 2019

We use Bayesian methods to incorporate multiple models into consensus predictions for 1000s of chemicals within the **Systematic Empirical Evaluation of Models (SEEM)**


(Wambaugh et al., 2013, 2014; Ring et al., 2018)

Wambaugh et al., 2019

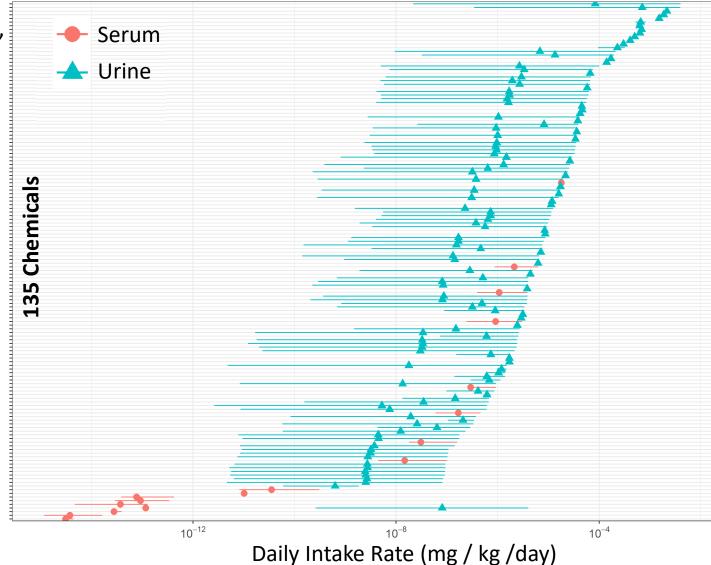
We use Bayesian methods to incorporate multiple models into consensus predictions for 1000s of chemicals within the **Systematic Empirical Evaluation of Models (SEEM)**


(Wambaugh et al., 2013, 2014; Ring et al., 2018)

and Refine Models

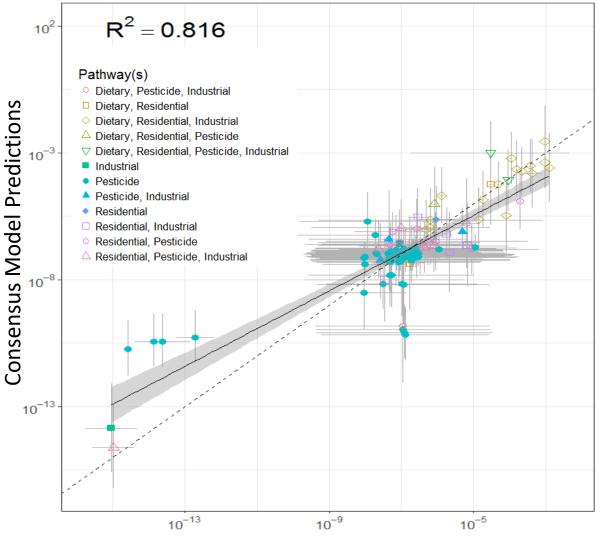
We use Bayesian methods to incorporate multiple models into consensus predictions for 1000s of chemicals within the **Systematic Empirical Evaluation of Models (SEEM)**

(Wambaugh et al., 2013, 2014; Ring et al., 2018)


Wambaugh et al., 2019

Inferred Exposure Rates from CDC NHANES

- Monitoring data provides our "reference" exposures for SEEM
- We infer exposure from CDC NHANES biomarker data
- We propagate uncertainty in inferences
 - Considering multiple parent chemicals for a given analyte
 - Limit of detection issues
- These exposure inferences are made available on CCD

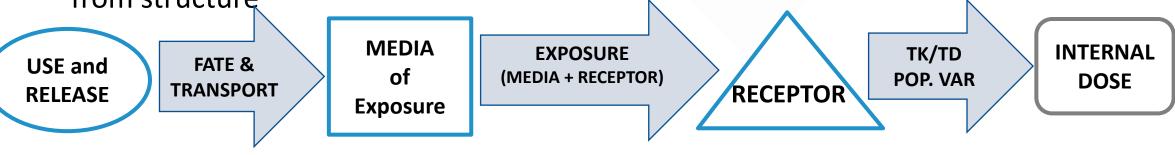


National Health and Nutrition Examination Survey

work with Miyuki Breen and Zach Stanfield

SEEM3: Pathway-Based Consensus Modeling

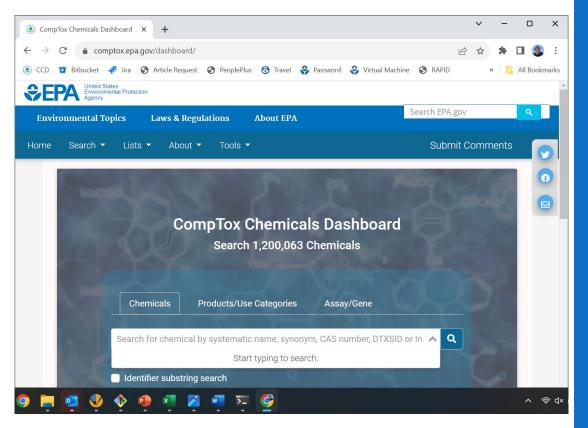
- SEEM3 consensus model provides estimates of human median intake rate (mg/kg/day) for nearly 500,000 chemicals via the CompTox Chemicals Dashboard (http://comptox.epa.gov/dashboard)
- SEEM3 first predicts relevant exposure pathways from chemical structure – model predictions are then weighted according to the models' abilities to explain NHANES data
- We rely on pathway determinations from CPDat
- We rely on NHANES biomonitoring data
 - 2014 FIFRA Scientific Advisory Panel identified need for broader sets of evaluation data


Intake Rate (mg/kg BW/day) Inferred from NHANES Serum and Urine

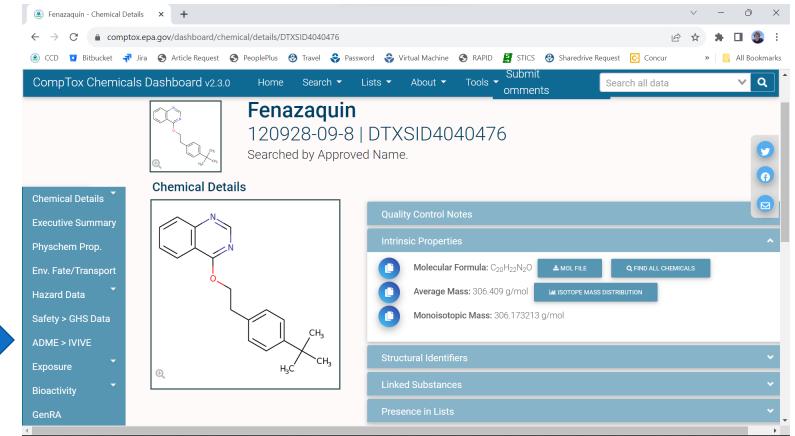
Computational Toxicology and Exposure

33

Figure from Caroline Ring


- Given a structure we can estimate bioactivity, distribution, and exposure
 - Quantitative structure-property relationships (QSPRs)
- If we have a sample, we can test it in vitro:
 - High throughput screening and toxicokinetics
 - HTTK QSPRs allow predictions from structure
- If we have monitoring data, can estimate daily intake
 - High throughput exposure tools provide forecasts from structure

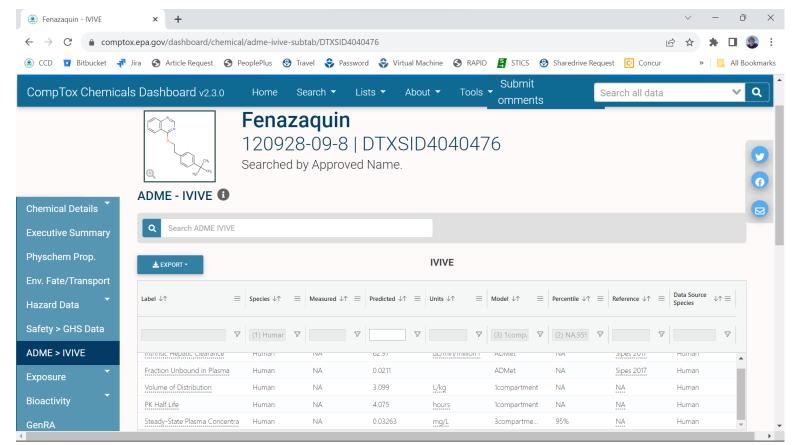
Standardized NAM Data and Tools


- Hazard: There are nearly 10,000 chemicals with in vitro bioactivity data
- Exposure: There are more than 400,000 chemicals with "exposure forecasts" (ExpoCast)
- Dose-Response: There are currently 7,569 chemicals with httk data/predictions (including C_{ss}, V_d, t_{half}) available on the CompTox Chemicals Dashboard:

https://comptox.epa.gov/dashboard

Openly Available TK Information

- EPA's data and tools for HTTK are made available through R package "httk"
- The "httk" tool has been used to calculate key TK information that is available on the CompTox Chemicals Dashboard and elsewhere



https://comptox.epa.gov/dashboard

The current HTTK data in CCD is HTTK v2.2.1. Please see the Data Sources table in the <u>Release Notes</u> for more information

Openly Available TK Information

- EPA's data and tools for HTTK are made available through R package "httk"
- The "httk" tool has been used to calculate key TK information that is available on the CompTox Chemicals Dashboard and elsewhere

https://comptox.epa.gov/dashboard

The current HTTK data in CCD is HTTK v2.2.1. Please see the Data Sources table in the <u>Release Notes</u> for more information

Openly Available TK Information

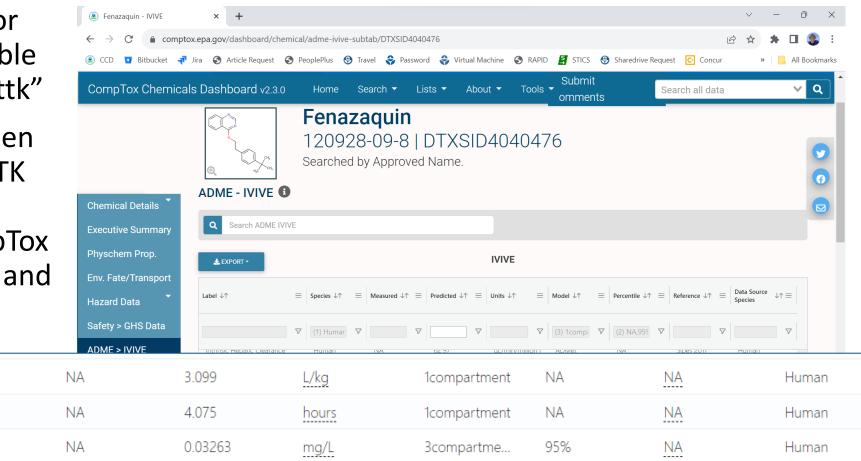
- EPA's data and tools for HTTK are made available through R package "httk"
- The "httk" tool has been used to calculate key TK information that is available on the CompTox Chemicals Dashboard and elsewhere

Human

Human

Human

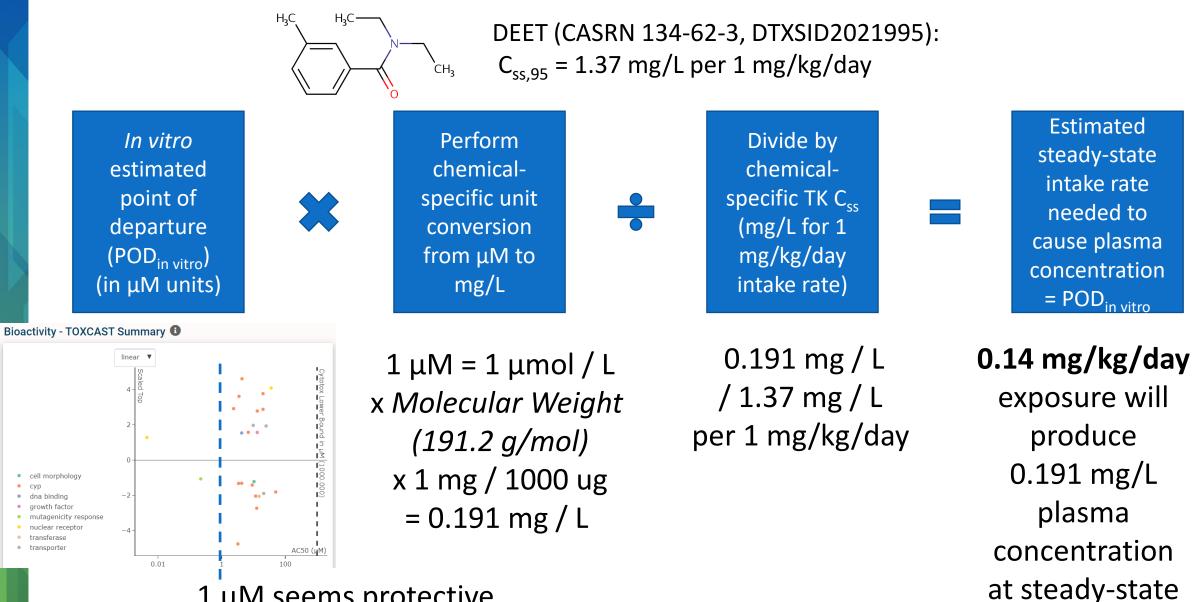
N⁴


t_{half}

C_{ss}

Volume of Distribution

Steady-State Plasma Concentra

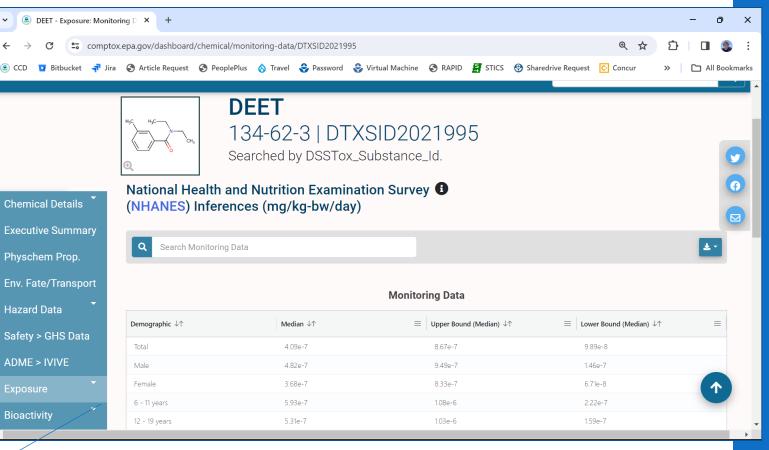

PK Half Life

https://comptox.epa.gov/dashboard

The current HTTK data in CCD is HTTK v2.2.1. Please see the Data Sources table in the <u>Release Notes</u> for more information

Calculation 1: Reverse Dosimetry, Steady-State Exposure

1 μM seems protective


Openly Available Exposure Information

 For chemicals monitored by the Centers for Disease Control and Prevention (CDC) National Health and Nutrition
 Examination Survey (NHANES) we have inferred daily intake rates (mg/kg/day) for the median U.S. population (Only ~100 chemicals)

> Product & Use Categories Chemical Weight Fraction Chemical Functional Use Toxics Release Inventory Biomonitoring Data Exposure Predictions

Production Volume

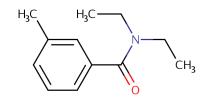
https://comptox.epa.gov/dashboard

Openly Available Exposure Information

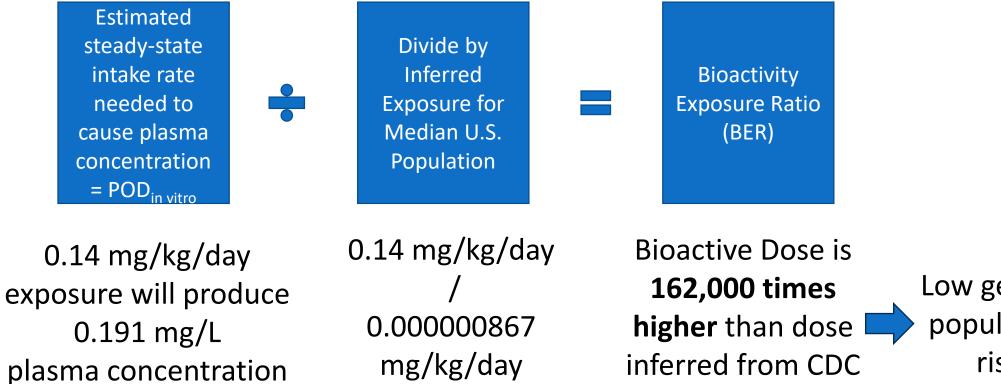
- The 95th percentile refers to the uncertainty about the median value, it does not reflect variability
- We typically use the upper 95th limit on the uncertainty to be conservative – but this is still only for the population median

Demographic $\downarrow\uparrow$

Total


Male

fers to the e median ect	Image: Specific texposure: Monitoring D × + Image: Specific texposure: Monitoring D × + <	- ∂ × Q ☆ ♪ □ @ : drive Request ⓒ Concur » ▷ All Bookmarks
upper 95 th ity to be is is still on median	Chemical Details Executive Summary Physchem Prop. Env. Fate/Transport Hazard Data	() () ()
	Demographic ↓↑ Median ↓↑ ≡ Upper Bound (Median) ↓↑ Monitoring Data	E Lower Bound (Median) ↓↑
Median $\downarrow\uparrow$	\equiv Upper Bound (Median) $\downarrow\uparrow$ \equiv Lower Bound (Median) $\downarrow\uparrow$	
4.09e-7	8.67e-7 9.89e-8	· · · ·
4.82e-7	9.49e-7 1.46e-7	
2,60, 7	0.220.7	


Inferences from Centers for Disease Control and Prevention (CDC) National Health and Nutrition Examination Survey (NHANES) made using R package bayesMarker (Stanfield et al., 2022 & 2024)

https://comptox.epa.gov/dashboard

Calculation 2: NHANES Bioactivity: Exposure Ratio

DEET (CASRN 134-62-3, DTXSID2021995): NHANES Total Population Daily Intake Rate Upper 95^{th} : 8.67 x 10^{-7} mg/kg/day

at steady-state

biomonitoring data

Low general population risk

Openly Available Exposure Information

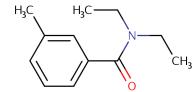
https://comptox.epa.gov/dashboard

- Demographic-specific inferences from NHANES are available for certain demographic groups
- Again, only for median

Demographic $\downarrow\uparrow$

66 years and older

ReproAgeFemale


BMI <= 30

Again, we have only ~100 chemicals

specific	DEET - Exposure: Monite	oring D × +				- 0 X
m NHANES	\leftrightarrow \rightarrow C \simeq compto	ox.epa.gov/dashboard/chemical/monitorir	ng-data/DTXSID2021995		Q #	ይ 🛛 🔹 ፤
	😩 CCD 🔽 Bitbucket 👎 Jira	a 🕥 Article Request 🕥 PeoplePlus ᠔	Travel 💝 Password	🏷 Virtual Machine 🔇 RAPID 🚦 STICS 😁 Shar	redrive Request 🖸 Concur	>> 🗅 All Bookmarks
or certain groups r median e only ~100	Chemical Details * Executive Summary Physchem Prop.		-62-3 DT) ned by DSSTox_ Itrition Examina	ation Survey 🕄		↔ • • •
	Env. Fate/Transport Hazard Data			Monitoring Data		
	Osfatus OLIO Data	Demographic ↓↑	Median ↓↑	$\equiv ig $ Upper Bound (Median) $\downarrow \uparrow$	\equiv Lower Bound (Median) $\downarrow\uparrow$	
	Monitor	ing Data				
Median $\downarrow\uparrow$	≡	Upper Bound (Median) $\downarrow\uparrow$	=	Lower Bound (Median) $\downarrow\uparrow$	E	
4.35e-7		8.64e-7		1.08e-7		, · ·
3.82e-7		8.89e-7		7.74e-8		
4.42e-7		9.18e-7		1.07e-7		trition
				· · ·		

Examination Survey (NHANES) made using R package bayesMarker (Stanfield et al., 2022 & 2024)

Calculation 3: NHANES Demographic Bioactivity:Exposure Ratio

DEET (CASRN 134-62-3, DTXSID2021995): NHANES Total Population Daily Intake Rate Upper 95th: 8.89 x 10⁻⁷ mg/kg/day

0.14 mg/kg/day exposure will produce 0.191 mg/L plasma concentration at steady-state 0.14 mg/kg/day / 0.000000889 mg/kg/day Bioactive Dose is **157,000 times higher** than dose inferred from CDC biomonitoring data

Low risk for median woman of reproductive age

Openly Available Exposure Information

✓ ④ DEET - Exposure: Exposure Pre × +

https://comptox.epa.gov/dashboard

- 0 X

For most chemicals we do not have intake rates from NHANES

 However, systematic empirical evaluation of models (SEEM) gives estimated intake rates for hundreds of thousands of chemicals

Production Volume	
Exposure Predictions	
Biomonitoring Data	
Toxics Release Inventory	
Chemical Functional Use	
Chemical Weight Fraction	
Product & Use Categories	

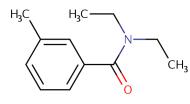
Draduct & Llas Catagorias

\leftrightarrow \rightarrow C \sim compto	x.epa.gov/dashboard/	chemical/exposu	re-predictions/DTXSI	D2021995					Q	☆	Ď	•
🖲 CCD 🧧 Bitbucket 🖪 Jira	Article Request	S PeoplePlus	👌 Travel 🛭 😝 Passwo	rd 🛛 😌 Virtual M	chine 🔇 RAP	ID 📮 STICS	😌 Share	edrive Request	C Concur	:	»	🗀 All Boo
Home Search 🕶	Lists 👻 Abou	ut 👻 Tools	; 🕶		Submit Cor	mments		Search	all data			~
	H ₅ C H ₅ C - H ₅ C - CH ₅		ET 1-62-3 D ched by DSST		nce_Id.	95						
Chemical Details	_	Exposure P	Predictions (r	ng/kg-bw,	day) 🕚							4
	_		`			ictions Data						1
Executive Summary	Q Search De	mographics Pred	dictions Data	Demogr	phics Predi	ictions Data						4
Executive Summary Physchem Prop.	_	mographics Pred	`	Demogr		ictions Data		oer 95%ile ↓↑		=	Units ↓1	4
Executive Summary Physchem Prop. Env. Fate/Transport Hazard Data	Q Search De	mographics Pred	dictions Data	Demogr ≡∣	phics Predi	ictions Data		oer 95%ile ↓↑			Units ↓1	4
Executive Summary Physchem Prop. Env. Fate/Transport	Q Search De	emographics Pred	dictions Data Predictor ↓↑	Demogr ≡∣	phics Predi	ictions Data	= Upp	5er 95%ile ↓↑ 37e-5			Units ↓1	
Executive Summary Physchem Prop. Env. Fate/Transport Hazard Data	Q Search De	emographics Pred	fictions Data Predictor ↓↑ (2) SEEM2 Heuristic	Demogr ≡∣	aphics Predi Median ↓↑	ictions Data	■ Upp ♥					≜ ` `day
Executive Summary Physchem Prop. Env. Fate/Transport Hazard Data	C Search De Demographic ↓↑	emographics Pred	dictions Data Predictor ↓↑ (2) SEEM2 Heuristic SEEM2 Heuristic	Demogr ≡∣	nphics Predi Median ↓↑ 1.29e-7	ictions Data	■ Upp ▼	37e-5			mg/kg/	★ day day

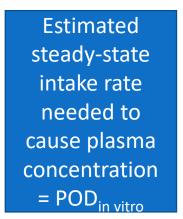
SEEM3 Consensus Model described in Ring et al. (2019)

Openly Available Exposure Information

- SEEM forecasts are much more uncertain than NHANES measurements
- For sake of conservatism, we use upper 95th limit on estimated median intake
- This does not reflect population variability


Centre DEET - Exposure: Exposu	ire Pres × +				- 0 X
\leftrightarrow \rightarrow C \odot compto	x.epa.gov/dashboard/chemica	al/exposure-predictions/DTXS	ID2021995		९ ☆ छै। 🛯 🂲 :
🖲 CCD 🔽 Bitbucket 🕂 Jira	Article Request 🔗 Peop	plePlus 👌 Travel 🝣 Passwo	ord Virtual Machine 🔇 RAPID	🔄 STICS ƏSharedrive Request 🖸	Concur » 🗅 All Bookmarks
Home Search -	Lists 👻 About 👻	Tools 🔻	Submit Comm	nents Search all	data 🗸 🗸
Chemical Details * Executive Summary		Searched by DSS	DTXSID2021995 Tox_Substance_Id. mg/kg-bw/day)	5	 ✓ ✓ ✓
Physchem Prop.			Demographics Predictio	ons Data	
Env. Fate/Transport	Demographic ↓↑	■ Predictor ↓↑	≡ Median ↓↑	≡ Upper 95%ile ↓↑	≡ Units ↓↑
Hazard Data					
Safety > GHS Data		(2) SEEM2 Heuristic	c,SEEM3 Cc 🛛 🗸		
	Age 6-11	SEEM2 Heuristic	1.29e-7	4.37e-5	mg/kg/day
ADME > IVIVE	Age 12-19	SEEM2 Heuristic	1.54e-7	8.91e-5	mg/kg/slay
Exposure	Age 20-65	SEEM2 Heuristic	1.19e-7	4.86e-5	mg/kg/day
	Age 66+	SEEM2 Heuristic	1.25e-7	5.25e-5	ng/kg/day .
					· · · ·

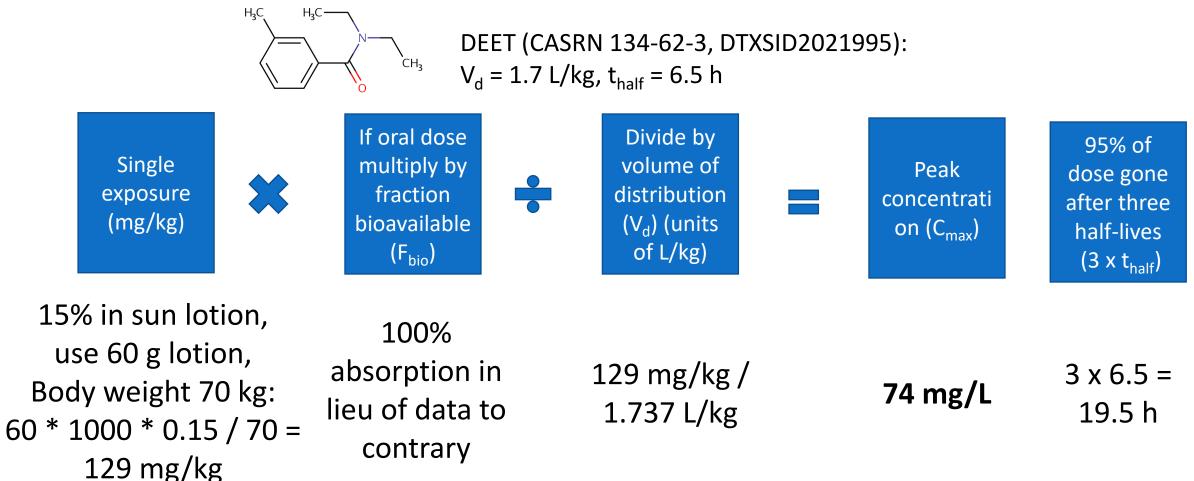
SEEM3 Consensus Model described in Ring et al. (2019)


https://comptox.epa.gov/dashboard

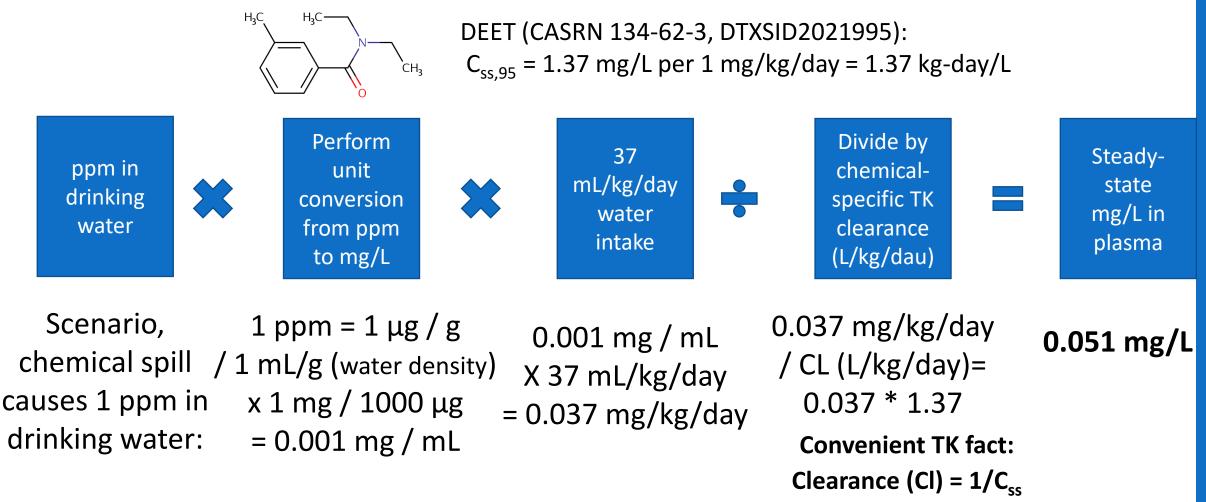
Demographics Predictions Data							
Demographic $\downarrow\uparrow$	\equiv Predictor $\downarrow\uparrow$	\equiv Median $\downarrow\uparrow$	\equiv Upper 95%ile $\downarrow\uparrow$	\equiv Units $\downarrow\uparrow$			
Repro. Age Females	SEEM2 Heuristic	3.11e-7	7.36e-5	mg/kg/day			
Total	SEEM3 Consensus	1.52e-6	1.11e-4	mg/kg/day			
4				(↑			

Calculation 4: SEEM Bioactivity: Exposure Ratio

DEET (CASRN 134-62-3, DTXSID2021995): SEEM Total Population Daily Intake Rate Upper 95th: 1.11 x 10⁻⁴ mg/kg/day



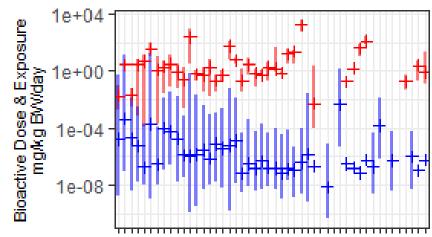
0.14 mg/kg/day exposure will produce 0.191 mg/L plasma concentration at steady-state 0.14 mg/kg/day / 0.000111 mg/kg/day Bioactive Dose is **1,260 times higher** than intake rate forecast by SEEM

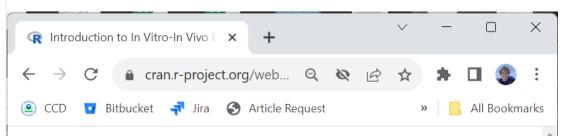

Note that this BER is less than for NHANES because of greater uncertainty

Calculation 5: Forward Dosimetry, Single Exposure

Note that if we use a mathematical simulation tool (such as R package httk) we could do more elaborate, tissue specific predictions (httk:solve_pbtk) as well as simulate other exposure routes (inhalation – httk::solve gas pbtk(), gestational – httk::solve fetal pbtk())

Calculation 6: Forward Dosimetry, Steady-State Exposure




37 mL/kg/day water intake Is from

the EPA Exposure Factors Handbook Table 3-1 for all ages, 95th Percentile

https://cran.r-project.org/web/packages/httk/vignettes/V2_IntrotoIVIVE.html

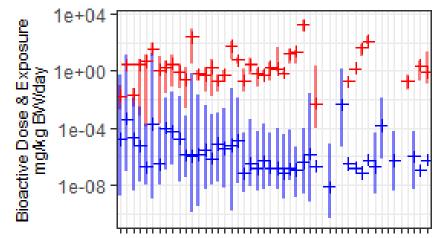
- An online R tutorial walks you through the steps needed to calculate Bioactivity:Exposure Ratios. It covers:
 - Loading in vitro screening data into R
 - HTTK-based IVIVE
 - Applying relevant QSPRs
 - Comparing with Exposure predictions
 - Making a BER Plot

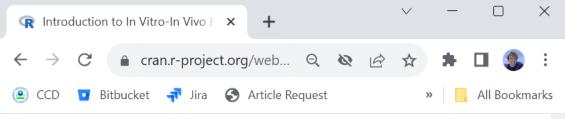
Introduction to *In Vitro-In Vivo* Extrapolation (IVIVE) with R Package httk

John Wambaugh and Elaina Kenyon

November, 2022

Please send questions to wambaugh.john@epa.gov


Introduction


Chemical risk assessment depends on knowledge of inherent chemical hazard, the doseresponse relationship, and the extent of exposure that occurs (<u>NASEM 2017</u>). High throughput screening (HTS) for *in vitro* bioactivity allows characterization of potential hazard for thousands of chemicals for which no other testing has occurred (<u>Judson et al.</u>, <u>2009</u>).

Toxicokinetics (TK) describes the Absorption, Distribution, Metabolism, and Excretion (ADME) of a chemical by the body. TK relates external exposures to internal tissue

https://cran.r-project.org/web/packages/httk/vignettes/V2_IntrotoIVIVE.html

- An online R tutorial walks you through the steps needed to calculate Bioactivity:Exposure Ratios. It covers:
 - Loading in vitro screening data into R
 - HTTK-based IVIVE
 - Applying relevant QSPRs
 - Comparing with Exposure predictions
 - Making a BER Plot

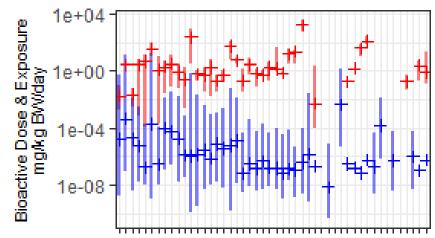
Prepare R to run the vignette

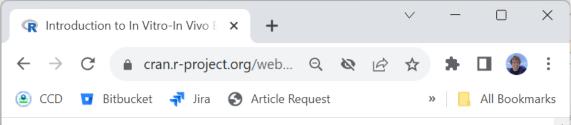
R package **knitr** generates html and PDF documents from this RMarkdown file, Each bit of code that follows is known as a "chunk". We start by telling **knitr** how we want our chunks to look.

knitr::opts_chunk\$set(collapse = TRUE, comment = '#>')
options(rmarkdown.html_vignette.check_title = FALSE)

Clear the memory

It is a bad idea to let variables and other information from previous R sessions float around, so we first remove everything in the R memory.

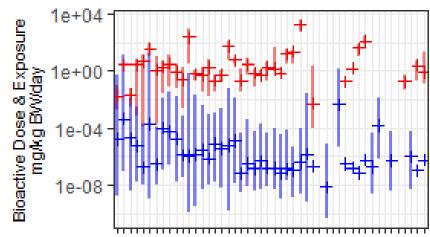

rm(list=ls())

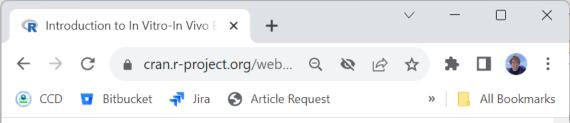

HTTK Version

This vignette was created using **httk** v2.2.2 in 2022. Although we attempt to maintain backward compatibility, if you encounter issues with the latest release of **httk** and cannot easily address the changes, bistorial variance of **httk** are evailable from https://oran.r.

https://cran.r-project.org/web/packages/httk/vignettes/V2_IntrotoIVIVE.html

- An online R tutorial walks you through the steps needed to calculate Bioactivity:Exposure Ratios. It covers:
 - Loading in vitro screening data into R
 - HTTK-based IVIVE
 - Applying relevant QSPRs
 - Comparing with Exposure predictions
 - Making a BER Plot


Step One: Loading *In Vitro* Screening Data


The <u>ToxCast</u> and <u>Tox21</u> research programs employ batteries of high-throughput assays to assess chemical bioactivity *in vitro*. Not every chemical is tested through every assay (<u>Richard et al., 2016</u>). Most assays are conducted in concentration response, and each corresponding assay endpoint is analyzed statistically to determine if there is a concentration-dependent response or "hit" using the ToxCast Pipeline (<u>Filer et al., 2017</u>). Most assay endpoint-chemical combinations are nonresponsive. Here, only the hits are treated as potential indicators of bioactivity.

In vitro bioactivity does not necessarily indicate adversity or hazard. Biological models can be used to make predictions of toxicity based on *in vitro* data (for example, <u>Sipes et al., 2011</u>, <u>Browne et al., 2015</u> and <u>Kleinstreuer et al., 2017</u>). However, here we make a more conservative, precautionary assumption that concentrations too low to cause *in vitro* bioactivity are more likely to be safe (<u>Paul Friedman et al., 2019</u>). Among all of the assay hits for each chemical, we choose to use the lower 10th percentile of the μM potencies (50% active concentration or AC_{50}). We are assuming that the 10th percentile represents a low concentration for activating multiple assays (assuming 10 or more bioactivity does not necessarily have a direct toxicological interpretation.

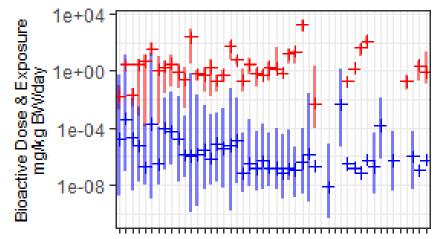
https://cran.r-project.org/web/packages/httk/vignettes/V2_IntrotoIVIVE.html

- An online R tutorial walks you through the steps needed to calculate Bioactivity:Exposure Ratios. It covers:
 - Loading in vitro screening data into R
 - HTTK-based IVIVE
 - Applying relevant QSPRs
 - Comparing with Exposure predictions
 - Making a BER Plot

Critical Step: Select your chemicals of interest

We might have chemicals we are interested in for one reason or another – you could type any chemical ID's you want into the following my.chems vector, or even load it from a file. Here we'll pick 50 chemicals at random from among the ToxCast chemicals:

set.seed(1234)


my.chems <- sample(mc5\$dsstox_substance_id,50)

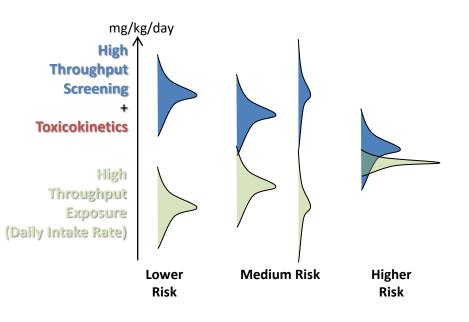
```
example.toxcast <- as.data.frame(mc5[mc5$dsstox_substance_id %in% my.chems,])</pre>
```

Unfortunately for this vignette there are too many ToxCast data to fit into a 5mb R package. So we will subset to just the selected chemicals and distribute only those data. In addition, out of 78 columns in the data, we will keep only eight. Download the full data following the instructions above.

https://cran.r-project.org/web/packages/httk/vignettes/V2_IntrotoIVIVE.html

- An online R tutorial walks you through the steps needed to calculate Bioactivity:Exposure Ratios. It covers:
 - Loading in vitro screening data into R
 - HTTK-based IVIVE
 - Applying relevant QSPRs
 - Comparing with Exposure predictions
 - Making a BER Plot

R Introduction	to In Vitro-In Vivo E 🗙 🕂	\sim	_		×
\leftrightarrow \rightarrow G	🔒 cran.r-project.org/web ର୍ 🗞 🖄	☆	*	•	
🙆 CCD 🛛 🖬	tbucket 👎 Jira Article Request		»	All Bookn	narks
knitr::kable(<pre>toxcast.table[1:10,c("Compound","Q10.AC50","Css</pre>],	
	caption = "Summarized ToxCa floating.environment="sidewaystable")	st Dai	ta",		
	Toating.environment- sidewaystable)				


Summarized ToxCast Data						
Compound	Q10.AC50	Css	EquivDose			
Methyl perfluoro(3-(1-ethenyloxypropan-2- yloxy)propanoate)	-0.435	NA	NA			
Nonafluoropentanamide	1.110	NA	NA			
Bisphenol A	-0.196	7.735	8.23e-02			
Tris(2-ethylhexyl) trimellitate	-0.532	2.017	1.46e-01			
1-Octen-3-ol	1.220	NA	NA			
Thalidomide	-0.761	7.366	2.35e-02			
Tributyl phosphate	0.605	1143.000	3.52e-03			
Monocrotophos	-3.490	3.465	9.34e-05			
N-Butyl-p-toluenesulfonamide	-0.762	11.060	1.56e-02			
Anilazine	0.508	37.670	8.55e-02			

Stan Eiver Compare with

Conclusions

Please send any questions to: wambaugh.john@epa.gov

- High throughput toxicokinetics (HTTK) are available to convert from bioactive *in vitro* concentrations to putative dose rates that might cause those concentrations (new approach method-based points of departure or POD_{NAM})
- We calculate the **Bioactivity:Exposure Ratio (BER)** by comparing POD_{NAM} to a daily intake rate
- For a small subset of chemicals daily intake rates are monitored by the U.S. CDC
- The systematic empirical evaluation of models (SEEM) tool provides estimated intake rates for most chemicals The 95% interval on SEEM intake rates reflects uncertainty on median population value and does not reflect population variability

References

- Bell, Shannon M., et al. "In vitro to in vivo extrapolation for high throughput prioritization and decision making." Toxicology in vitro 47 (2018): 213-227.
- Bell, Shannon, et al. "An integrated chemical environment with tools for chemical safety testing." *Toxicology in Vitro* 67 (2020): 104916.
- Breen, Miyuki, et al. "High-throughput PBTK models for in vitro to in vivo extrapolation." Expert opinion on drug metabolism & toxicology 17.8 (2021): 903-921.
- Coecke, Sandra, et al. "Toxicokinetics as a key to the integrated toxicity risk assessment based primarily on nonanimal approaches." Toxicology in vitro 27.5 (2013): 1570-1577.
- Dorne, Jean-Lou, et al. "Reconnecting exposure, toxicokinetics and toxicity in food safety: OpenFoodTox and TKplate for human health, animal health and ecological risk assessment." 54. Congress of the European Societies of Toxicology (EUROTOX 2018). Vol. 295. No. Suppl. 1. 2018.
- Kapraun, Dustin F., et al. "Evaluation of a rapid, generic human gestational dose model." Reproductive Toxicology 113 (2022): 172-188.
- Khalidi, Hiba, et al. "SimRFlow: An R-based workflow for automated high-throughput PBPK simulation with the Simcyp[®] simulator." *Frontiers in Pharmacology* 13 (2022).
- Linakis, Matthew W., et al. "Development and evaluation of a high throughput inhalation model for organic chemicals." Journal of exposure science & environmental epidemiology 30.5 (2020): 866-877.
- National Research Council. "Risk assessment in the federal government: managing the process." (1983).
- Paul Friedman, Katie, et al. "Utility of in vitro bioactivity as a lower bound estimate of in vivo adverse effect levels and in risk-based prioritization." Toxicological Sciences 173.1 (2020): 202-225.

- Pearce, Robert G., et al. "Httk: R package for highthroughput toxicokinetics." *Journal of Statistical Software* 79.4 (2017a): 1.
- Pearce, Robert G., et al. "Evaluation and calibration of highthroughput predictions of chemical distribution to tissues." Journal of pharmacokinetics and pharmacodynamics 44 (2017b): 549-565.
- Ring, Caroline L., et al. "Identifying populations sensitive to environmental chemicals by simulating toxicokinetic variability." Environment International 106 (2017): 105-118.
- Sayre, Risa R., John F. Wambaugh, and Christopher M. Grulke. "Database of pharmacokinetic time-series data and parameters for 144 environmental chemicals." Scientific data 7.1 (2020): 122.
- Sobels, F. H. (1982) "The parallelogram; an indirect approach for the assessment of genetic risks from chemical mutagens." In: Progress in Mutation Research, Vol. 3 (K. C. Bora, G. R. Douglas, and E. R. Nestman, Eds.), Elsevier, Amsterdam, pp. 233-327.
- Stanfield, Zachary, et al. "Bayesian inference of chemical exposures from NHANES urine biomonitoring data." Journal of Exposure Science & Environmental Epidemiology 32.6 (2022): 833-846.
- Stanfield, Zachary, et al. "Characterizing Chemical Exposure Trends from NHANES Urinary Biomonitoring Data." Environmental Health Perspectives 132.1 (2024): 017009.
- Tan, Yu-Mei, Kai H. Liao, and Harvey J. Clewell. "Reverse dosimetry: interpreting trihalomethanes biomonitoring data using physiologically based pharmacokinetic modeling." Journal of exposure science & environmental epidemiology 17.7 (2007): 591-603.
- Wambaugh, John F., et al. "Evaluating in vitro-in vivo extrapolation of toxicokinetics." Toxicological Sciences 163.1 (2018): 152-169.

Please send any questions to: wambaugh.john@epa.gov

- Wang, Ying-Hong. "Confidence assessment of the Simcyp time-based approach and a static mathematical model in predicting clinical drug-drug interactions for mechanismbased CYP3A inhibitors." Drug Metabolism and Disposition 38.7 (2010): 1094-1104.
- Wetmore, Barbara A., et al. "Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity assessment." Toxicological Sciences 125.1 (2012): 157-174.
- Wetmore, Barbara A. "Quantitative in vitro-to-in vivo extrapolation in a high-throughput environment." Toxicology 332 (2015a): 94-101.
- Wetmore, Barbara A., et al. "Incorporating high-throughput exposure predictions with dosimetry-adjusted in vitro bioactivity to inform chemical toxicity testing." Toxicological Sciences 148.1 (2015b): 121-136.
- Williams, Antony J., et al. "The CompTox Chemistry Dashboard: a community data resource for environmental chemistry." *Journal of cheminformatics* 9 (2017): 1-27.

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the author's institution