

Overview of T.E.S.T. (Toxicity Estimation Software Tool)

- Develop user friendly software that can estimate toxicity and physical properties from molecular structure
 - For applications such as hazard comparison or alternatives assessment
 - Can screen hypothetical/new chemicals and faster and cheaper than conducting experiments

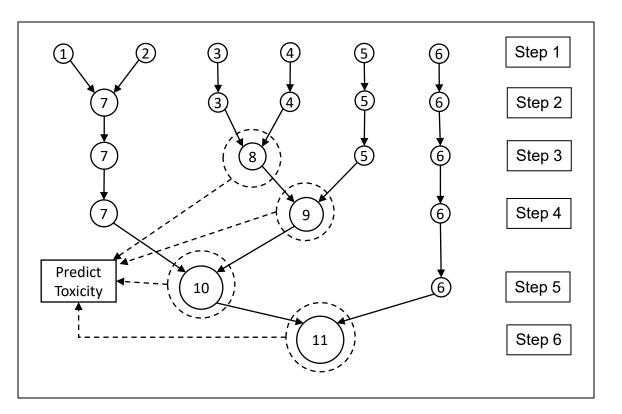
OECD* Principles for QSAR Models

- An unambiguous algorithm (QSAR methods)
- A defined endpoint (what is modeled)
- A defined domain of applicability (when to trust predictions)
- Appropriate measures of goodness-of fit, robustness and predictivity (training/test set statistics)
- A mechanistic interpretation, if possible (analysis of descriptors appearing in the models)

*Organisation for Economic Co-operation and Development

Model variables

- T.E.S.T. Descriptors are used for model building
 - Combination of whole molecule descriptors (continuous) and molecular fragment counts (integer)
 - Descriptors do not use x-y-z coordinates (3d descriptors omitted)
- Classes of descriptors:
 - E-state
 - Constitutional descriptors
 - Topological descriptors
 - Walk and path counts
 - Connectivity
 - Information content


- 2d autocorrelation
- Burden eigenvalue
- Molecular property
- H bond acceptor/donor
- Molecular distance edge
- Molecular fragment counts

QSAR Methods

- QSAR methods:
 - Hierarchical clustering
 - Single Model
 - Group contribution
 - Nearest neighbor
 - Consensus
- See the TEST User's guide for more information

Hierarchical clustering

- Similar chemicals are grouped using Ward's method
- Uses information from entire data set

Prediction = weighted average of best model from each step:

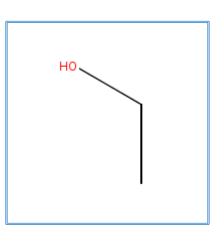
$$Tox = \sum_{i=1}^{k} w_i \times Tox_i / \sum_{i=1}^{k} w_i \qquad Tox_i = \sum_{i=1}^{\#descriptors} a_i x_i + a_0$$

Single model

• Predictions is made using multilinear regression model fit to entire training set:

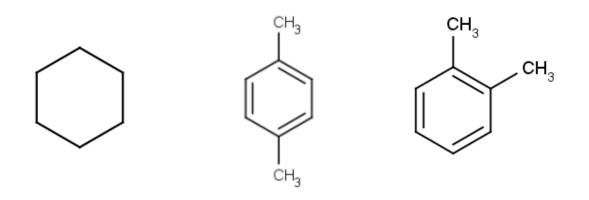
$$Tox = \sum a_i x_i + a_0$$

- Descriptors, *x_i*, are 2d molecular descriptors
- Example: 48 hr *Daphnia magna* LC₅₀ model
 - Toxicity = 1.2157×(xc4) + 0.1341×(StN) + 0.6974×(SsSH) - $1.3213 \times (SsOH acnt) + 0.8605 \times (Hmax) + 1.4685 \times (ssi) - 0.9197 \times (MDEN33)$ $+ 0.2238 \times (BEHm1) + 1.4502 \times (BEHp1) + 2.4060 \times (Mv) + 1.9085 \times (MATS1m)$ - 2.4036×(MATS1e) - 0.3463×(GATS3m) + 0.0255×(AMR) - 1.4215×(-C(=S)-[2 nitrogen attach]) - 0.7185×(AN) - 1.0232×(-N< [attached to P]) -1.5228×(-S(=O)(=O)- [aromatic attach]) - 6.5594


Group contribution

• Predictions is made using multilinear regression model fit to entire training set:

$$Tox = \sum a_i x_i + a_0$$


• Descriptors, *x_i*, are molecular fragment counts

Descriptor	Xi	a _i	a _i × x _i
-CH3 [aliphatic attach]	1	0.23	0.23
-CH2- [aliphatic attach]	1	0.27	0.27
-OH [aliphatic attach]	1	-0.58	-0.58
Model intercept (a ₀)	1	1.96	1.96
Tox (-Log10(LC ₅₀ mol/L))			1.88

Nearest Neighbor

- Predicted toxicity is simply the average of the three nearest neighbors (i.e. analogous to read-across)
- All neighbors must exceed a minimum similarity
- For example, the toxicity for benzene is obtained by averaging the experimental values for the following analogs:

Consensus model

- The consensus prediction is simply the average predicted value for all the models that have predictions inside their applicability domain
- A prediction is made if at least two models have a valid prediction in terms of their respective applicability domain
- Using multiple models minimizes bad predictions and maximizes prediction accuracy
- Using different applicability domains maximizes prediction coverage
- Recommended method

Available endpoints

Toxicity endpoints

- 96 hour fathead minnow LC50
- 48 hour *D. magna* LC50
- 48 hour *T. pyriformis* IGC50
- Oral rat LD50
- Bioaccumulation factor
- Developmental toxicity
- Ames mutagenicity

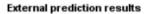
Physchem properties

- Normal boiling point
- Vapor pressure
- Melting point
- Flash point
- Density
- Surface tension
- Thermal conductivity
- Viscosity
- Water solubility

Applicability Domain (AD)

AD measures for regression-based models in T.E.S.T.:

- Rmax (all descriptors)
 - Distance from the test chemical to the centroid is less than the maximum distance for any chemical to the centroid of the cluster
- Model ellipsoid (model descriptors)
 - Leverage of test compound must be less than leverage of all compounds included in the model
- Fragments constraint
 - Cluster must contain one example of each fragment in the test chemical


Mechanistic interpretation

- Descriptors in models can be examined a posteriori for mechanistic plausibility
 - LogP descriptors (ALOGP, XLOGP) show up in models for aquatic toxicity (narcosis mechanism)
 - Molecular fragment counts modulate toxicity (+/-)
 - Whole molecule descriptors are related to features such as molecular size, polarizability, or hydrophobicity

Test set statistics*

Table 5.1.1. Prediction results for the fathead minnow LC50 test set

Method	R ²	$\frac{R^2 - R_0^2}{R^2}$	k	RMSE	MAE	Coverage
Hierarchical clustering	0.710	0.075	0.966	0.801	0.574	0.951
Single Model	0.704	0.134	0.960	0.803	0.605	0.945
Group contribution	0.686	0.123	0.949	0.811	0.579	0.872
Nearest neighbor	0.667	0.080	1.000	0.877	0.649	0.939
Consensus	0.729	0.115	0.966	0.767	0.551	0.951

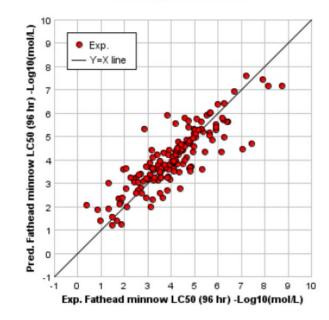


Figure 5.1.1. Experimental vs predicted values for the fathead minnow LC50 test set

* See T.E.S.T. User's Guide, Chapter 5

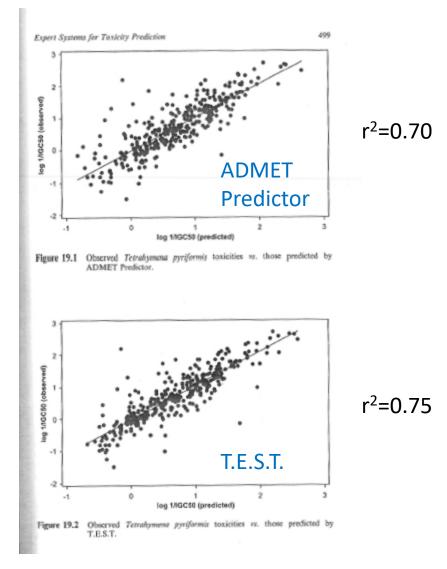
Comparison to other tools

IGC₅₀ performance*

19.5 Software Performance with Tetrahymena pyriformis Test Set

The Tetrahymena pyriformis toxicity data for the 350-compound test set used in this study were taken from Enoch et al.¹²⁵ and Ellison et al.¹²⁶

Two expert systems, ADMET Predictor from SimulationsPlus⁶² and T.E.S.T. from the US EPA⁸⁴ have a *Tetrahymena pyriformis* toxicity prediction module. SimulationsPlus kindly ran the test set used in this study through its module and obtained a reasonably good correlation of observed vs. predicted IGC₃₀ values:


$$\log 1/IGC_{s0}(observed) = 1.04 \log 1/IGC_{s0}(predicted) - 0.021$$
 (19)

 $n = 350r^2 = 0.701s = 0.433F = 816.9$

Figure 19.1 shows the plot of observed vs. predicted log 1/IGC₅₀ values from ADMET Predictor.

The consensus predictions from T.E.S.T. were somewhat better:

$$\log 1/IGC_{50}(\text{observed}) = 1.06 \log 1/IGC_{50}(\text{predicted}) - 0.023$$
 (19.3)
 $n = 349 r^2 = 0.751 s = 0.395 F = 1048.5$

*Dearden, 2010

Mutagenicity performance*

Table 2: Performance of the 8 Predictive Mutagenicity Models

	ACD	ADMET	CAESAR	Derek	SARpy	T.E.S.T.	TOPKAT	Toxtree
Interpretation of the results	Ames probability ≥ 0,5	Tox Mut Risk > 2,5	Suspect = mutagen	Toxicophore = mutagen	Presence of SA = mutagen	yes/no	y e s/no	Presence of SA = mutagen
Compounds predicted Not predicted Accuracy Sensitivity Specificity	6062 3 0.88 0.95 0.79	6065 0 0.76 0.72 0.82	6064 1 0.82 0.91 0.71	6062 3 0.77 0.78 0.75	6062 3 0.77 0.82 0.71	6060 5 0.83 0.84 0.82	6065 0 0.83 0.82 0.84	6065 0 0.76 0.84 0.65
% of compounds predicted Accuracy Sensitivity Specificity	87.7% 0.93 0.95 0.91	70.8% 0.78 0.73 0.84	nside training 50.1% 0.90 0.97 0.82	gset NA	50.1% 0.82 0.85 0.79	72.4% 0.85 0.86 0.83	No data	NA
% of compounds predicted Accuracy Sensitivity Specificity	12.3% 0.47 0.84 0.34	In: 29.1% 0.72 0.69 0.76	side predictio 49.9% 0.73 0.85 0.60	on set	<u>49.9%</u> 0.72 0.79 0.64	27.6% 0.79 0.79 0.80		

• T.E.S.T. achieved highest prediction accuracy for external set

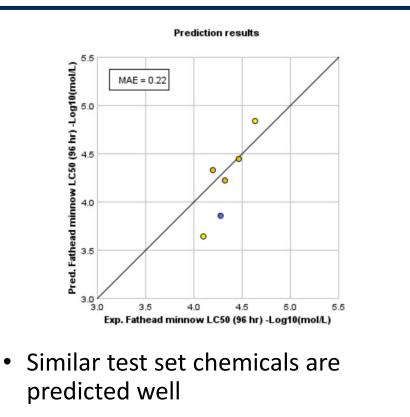
*Bakhtyari et al., 2013

T.E.S.T (Toxicity Estimation Software Tool)		- 🗆 X
File Help		
Enter a CAS, SMILES, Name, InChi, InChiKey, or DTXSID and click Search	Draw Chemical	
Molecule ID: 91-20-3 Name: Naphthalene Calculation Options Endpoint: Fathead minnow LC50 (96 hr) Method: Consensus 2 Relax fragment constraint	Edit View Atom Bond Tools Image: Imag	Drawing Help
Run CTS Hydrolysis ? Select output folder: ? C:\Users\TMARTI02\OneDrive - Environmental Protection Agency (EPA)\MyToxicityBz Browse	T.E.S.T. Application	
Create detailed reports ? View results		

Switch to Batch Mode

Sample output: well predicted chemical

Predicted Fathead minnow LC50 (96 hr) for DTXSID1022003 (141-93-5) from Consensus method


Prediction results				
Endpoint	Experimental value (CAS= 141-93-5) Source: <u>ECOTOX</u>	Predicted value ^a		
Fathead minnow LC ₅₀ (96 hr) -Log10(mol/L)	4.51	4.42		
Fathead minnow LC ₅₀ (96 hr) mg/L	4.15	5.15		

^aNote: the test chemical was present in the external test set.

Individual Pre	dictions	
Method	Predicted value -Log10(mol/L)	
Hierarchical clustering	<u>4.52</u>	
Single model	<u>4.29</u>	H ₃ C
Group contribution	<u>4.49</u>	
Nearest neighbor	<u>4.36</u>	

Descriptor values for test chemical

• Predictions are consistent

Well predicted chemical, cont.

Results for similar chemicals				
ID	Structure	Similarity Coefficient	Experimental value -Log10(mol/L)	Predicted value -Log10(mol/L)
DTXSID1022003 (test chemical)	H ₃ CCH ₃	1.00	4.51	4.42
DTXSID3020596	H ₃ C	0.87	3.95	3.78
DTXSID6022054	Снз	0.83	4.94	4.78
DTXSID6021402	H ₃ C H ₃ C CH ₃	0.77	4.19	3.92
DTXSID6026298	CH ₃	0.75	3.82	3.68

 Similar chemicals are present in the training set

Poorly predicted chemical

Predicted Fathead minnow LC50 (96 hr) for DTXSID0028038 (55406-53-6) from Consensus method

Prediction results				
EndpointExperimental value (CAS= 55406-53-6) Source: ECOTOX		Predicted value ^a		
Fathead minnow LC ₅₀ (96 hr) -Log10(mol/L)	6.15	4.35		
Fathead minnow LC ₅₀ (96 hr) mg/L	0.20	12.45		

^aNote: the test chemical was present in the external test set.

Individual Pre		
Method	Predicted value -Log10(mol/L)	
Hierarchical clustering	<u>4.39</u>	NE CONTRACTOR
Single model	<u>4.32</u>	н П
Group contribution	<u>N/A</u>	
Nearest neighbor	N/A	

- For poorly predicted chemicals:
 - The predictions are not consistent between models
 - Some models are outside their applicability domain

Poorly predicted chemical, cont.

ID	Structure	Similarity Coefficient	Experimental value -Log10(mol/L)	Predicted value -Log10(mol/L)
DTXSID0028038 (test chemical)	H¢ Y	1.00	6.15	4.35
DTXSID6022214	нус	0.60	5.16	4.48

- There are no sufficiently similar chemicals in the test set
- In this example there is only one similar chemical in the training set and it doesn't have the same functional groups

Chemical which can't be predicted

Predicted Fathead minnow LC50 (96 hr) for DTXSID4024145 (51235-04-2) from Consensus method

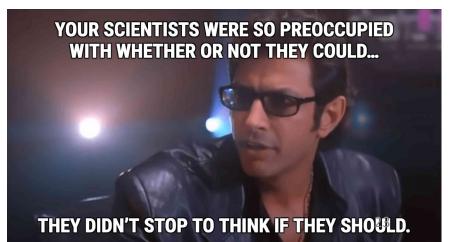
Prediction results				
Endpoint	Experimental value (CAS= 51235-04-2) Source: <u>ECOTOX</u>	Predicted value ^{a,b}		
Fathead minnow LC ₅₀ (96 hr) -Log10(mol/L)	2.96	N/A		
Fathead minnow LC ₅₀ (96 hr) mg/L	274.17	N/A		

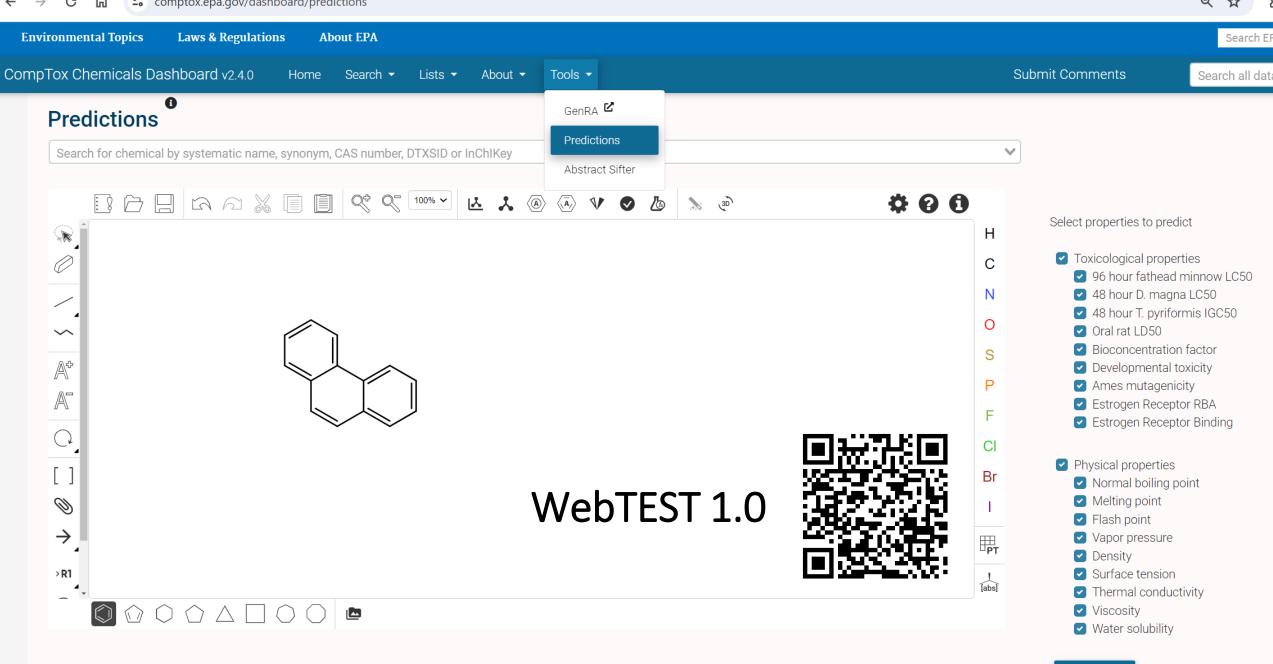
^aNote: the test chemical was present in the external test set.

^bThe consensus prediction for this chemical is considered unreliable since only one prediction can only be made

Individual Pre	dictions	
Method	Predicted value -Log10(mol/L)	сна сна 1
Hierarchical clustering	<u>N/A</u>	H ₃ C N N N
Single model	<u>N/A</u>	
Group contribution	<u>N/A</u>	Ť
Nearest neighbor	<u>5.42</u>	

After relaxing fragment constraint


Predicted Fathead minnow LC50 (96 hr) for DTXSID4024145 (51235-04-2) from Consensus method


P	rediction results	
Endpoint	Experimental value (CAS= 51235-04-2) Source: <u>ECOTOX</u>	Predicted value ^a
Fathead minnow LC ₅₀ (96 hr) -Log10(mol/L)	2.96	4.03
Fathead minnow LC ₅₀ (96 hr) mg/L	274.17	23.61

^aNote: the test chemical was present in the external test set.

Method	Predicted value -Log10(mol/L)	сн, сн,
Hierarchical clustering	<u>3.89</u>	H ₃ C N N
Single model	<u>2.78</u>	
Group contribution	<u>N/A</u>	
Nearest neighbor	5.42	

 A prediction can be made but it's not reliable (applicability domain worked properly)

CALCULATE

WebTEST1.0 output

Property	\equiv Experimental Value	≡ Consensus	\equiv Hierarchical clustering	\equiv Single model	
96 hour fathead minnow LC50		5.299 -Log10(mol/L)	5.344 -Log10(mol/L)	4.960 -Log10(mol/L)	5.530 -L
50 Hour rathead minihow EC50		0.894 mg/L	0.807 mg/L	1.955 mg/L	0.526 m
48 hour D. magna LC50	5.406 -Log10(mol/L)	5.370 -Log10(mol/L)	5.488 -Log10(mol/L)	5.051 -Log10(mol/L)	5.010 -L(
Hour D. Magna LC30	0.700 mg/L	0.760 mg/L	0.580 mg/L	1.587 mg/L	1.743 mg
48 hour T. pyriformis IGC50		4.268 -Log10(mol/L)	4.080 -Log10(mol/L)		4.591 -L(
to flour 1. pyfliorffils i deso		9.610 mg/L	14.824 mg/L		4.566 m
Oral rat LD50		2.049 -Log10(mol/kg)	1.862 -Log10(mol/kg)		
		1591.833 mg/kg	2451.638 mg/kg		
Bioconcentration factor	3.312 Log10 2053.276	2.852 Log10 711.018	3.233 Log10 1711.092	2.959 Log10 909.337	2.351 Lo
Developmental toxicity		true	true	false	
Ames mutagenicity		true	true		
Estrogen Receptor RBA		-4.119 Log10 7.607*10^-5	-4.119 Log10 7.607*10^-5	-4.119 Log10 7.607*10^-5	
Estrogen Receptor Binding		false	false	false	
Normal boiling point	340.0 °C	331.1 °C	326.4 °C		323.5 °C
Melting point	99.2 °C	94.3 °C	104.7 °C		96.4 °C
Elach naint	110000	110 0 00	1/7100		1/0100
4					•

"GET" API Call

URL/endpointAbbreviation?smiles=desiredSmiles&method=methodAbbreviation

where URL = https://comptox.epa.gov/dashboard/web-test/

Endpoint	Abbreviation	Method	Abbreviation
Fathead minnow LC50 (96 hr)	LC50	Hierarchical clustering	hc
Daphnia magna LC50 (48 hr)	LC50DM	Single model	sm
T. pyriformis IGC50 (48 hr)	IGC50	Nearest neighbor	nn
Oral rat LD50	LD50	Group contribution	gc
Bioaccumulation factor	BCF	Consensus	consensus (default)
Developmental Toxicity	DevTox	consensus	
Mutagenicity	Mutagenicity		
Normal boiling point	BP		
Vapor pressure at 25°C	VP		
Melting point	MP		
Flash point	Density		
Density	FP		
Surface tension at 25°C	ST		
Thermal conductivity at 25°C	TC		
Viscosity at 25°C	Viscosity		
Water solubility at 25°C	WS		

Example "GET" Call

← → C බ comptox.epa.gov/dashboard/web-test/WS?smiles=CCCCCO&method=consensus

```
"uuid": "61e2c1e1-24a2-498b-8155-79cf64246126",
  "predictionTime": 1713380383602,
  "software": "T.E.S.T (Toxicity Estimation Software Tool)",
  "softwareVersion": "5.01",
  "condition": "25°C",
v "predictions": [
    \mathbf{v}
         "id": "71-41-0",
          "smiles": "OCCCCC",
          "expValMolarLog": "0.603",
          "expValMass": "21994.842",
          "predValMolarLog": "0.615",
          "predValMass": "21383.057",
          "molarLogUnits": "-Log10(mol/L)",
          "massUnits": "mg/L",
          "endpoint": "WS",
          "method": "consensus",
          "dtxsid": "DTXSID6021741",
          "casrn": "71-41-0",
          "preferredName": "1-Pentanol",
          "inChICode": "InChI=1/C5H120/c1-2-3-4-5-6/h6H,2-5H2,1H3",
          "inChIKey": "AMQJEAYHLZJPGS-UHFFFAOYNA-N"
      },
```


▼ {

WebTEST 2.0: A database centered modeling platform for building and deploying QSAR models

Features of WebTEST2.0

- Central location for real time predictions for EPA models
- Datasets, molecular descriptors, and QSAR methodologies can be versioned in the database
- Utilizes R/python machine learning libraries (e.g. scikit-learn) to build models and make predictions
- Ability to generate WebTEST, PaDEL, Mordred, ToxPrints, and RDKit descriptors

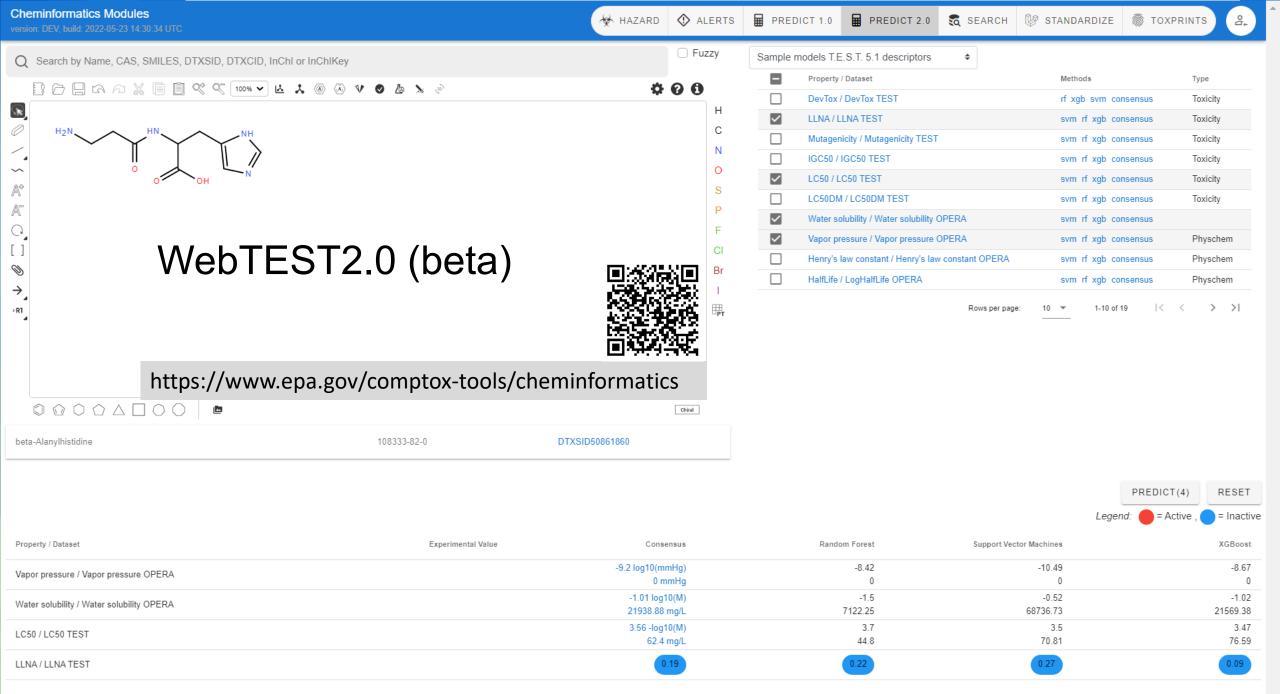
Features of WebTEST2.0, cont.

- Working on adding functionality to deploy models not stored in the database (i.e. "third party" models)
 - Third party models sometimes use special descriptors such as experimental or predicted property values
- Models can be added to the webtool without redeploying the application
- Predictions and molecular descriptors accessible via API calls
- Full documentation of models via Excel summary or QMRF pdf

QSAR Methods in WebTEST2.0

- A variety of QSAR methods can be utilized:
 - MLR Multilinear Regression
 - RF Random Forest
 - XGBoost Extreme Gradient Boosting
 - SVM Support Vector Machine
 - kNN k Nearest Neighbors
 - Consensus average of selected models
- Easily implementable as web services for both model building and model prediction

Physicochemical properties are needed to evaluate environmental and exposure pathways of PFAS


Property	PFAS Experimental Data	All Chemical Experimental Data
HLC	32	1908
VP	101	3440
BP	260	6903
WS	81	9241
LogP	53	14545
MP	195	29052

- Curated experimental data for PFAS have been limited.
- Physical chemical data was compiled from multiple public sources and QCd to the data source.
- Two sets of consensus QSAR models were developed for each of the six physical chemical properties
 - PFAS only model
 - All chemicals model
- Consensus model averaged the predictions from XGBoost and Random forest models

Development of Updated QSAR Models to Predict PFAS Physical Chemical Properties Test set results for PFAS

	Trained to All Chemicals			ed to AS
Property	R ²	MAE	R^2	MAE
HLC	0.68	1.18	0.85	1.13
VP	0.97	0.55	0.93	0.63
BP	0.88	20.1	0.87	19.4
WS	0.65	0.83	0.57	0.83
LogP	0.59	0.91	0.47	1.07
MP	0.84	40.2	0.77	46.1

- Consensus QSAR models trained on all chemical classes gave slighter better results for predicting physical chemical properties of PFAS.
- Model performance for PFAS is similar to CADASTER models, which were trained on PFAS substances.
- Additional QC of experimental data is on-going.

Excel summary

А	В	С	D	E F	G H I J K L M N
exp_prop_id	Canonical QSAR Ready Smiles	 Observed (-log10(atm-m3/mol)) 	Predicted (-log10(atm-m3/mol))	Error Inside AD	
<u>77111</u>	O=C1C2CC=CCC2C(=O)N1SC(Cl)(Cl)C(Cl)Cl	8.57	7.85	0.72 true	$14.00 \top$ xgb_regressor_1.3
<u>73357 73344</u>	CIC1=CC(CI)=C(CI)C=C1	2.73	2.74	0.02 true	······································
<u>78325 78324</u>	O=C1C2C=CC=CC=2C(=O)N1SC(CI)(CI)CI	6.27	7.95	1.68 true	
<u>79097</u>	CC(=O)N1CCCC1	8.80	7.95	0.85 true	Ŭ,
<u>54944 76983</u>	FC(F)(F)Br	0.30	0.06	0.25 true	a 12.00 - b 10.00 - b 10
77066	CC(=NOC(=O)NC)C(C)S(C)(=O)=O	11.55	9.29	2.26 true	
<u>79550</u>	C(OC1C=CC=CC=1)C1CO1	6.08	5.37	0.72 true	e 3 8.00 +
74206 74207	CC1CCC(=CC=1)C(C)C	1.56	1.58	0.02 true	
<u>75564 75563</u>	O=C1CCCCCN1	9.28	7.53	1.76 true	± 6.00 +
<u>74195 74193</u>	CC1C=CC(=CC=1[N+]([O-])=O)[N+]([O-])=O	6.91	6.63	0.28 true	6.00 - 6.
<u>78484</u>	N#CCCCCC#N	7.39	6.25	1.14 true	
77969	CCC=CCCOC(C)=O	3.52	3.43	0.09 true	
76212 55238	CC(C)CC(O)=O	6.06	6.42	0.36 true	9 0.00
74713 74711	CIC1C=CC=CC=1C1C=CC(CI)=C(CI)C=1CI	3.66	3.54	0.12 true	H 2.00 -
<u>78321</u>	CN1C=C(C(=O)C(=C1)C1C=CC=CC=1)C1=CC(=CC=C1)C(F)(F)	F 8.45	4.80	3.65 true	P
73845	NC1=CC=C(CI)C=C1	6.01	5.57	0.43 true	
<u>75761 75760</u>	CC=C(C)C	0.76	0.06	0.71 true	-2.00
<u>55203</u>	CICCCCI	3.01	2.51	0.51 true	ž -2.00 –
<u>76182 76181</u>	CCC(O)CCC	4.34	4.60	0.26 true	
76062 55397	CIC1=CC(=CC(CI)=C1)C1C=C(CI)C=CC=1	3.77	3.46	0.31 true	-4.00 + + + + + + + + + + + + + + + + + +
<u>75919</u>	CCCCCCC(C)=O	3.44	3.66	0.22 true	
76549 76547	C1=CC=C2C=CC=C3C=CC1=C32	3.96	3.37	0.59 true	Observed Henry's law constant (-log10(atm-m3/mol))
<u>55229</u>	OC1=CC=C(F)C=C1	6.15	5.61	0.54 true	Exp. Data — Y=X
<u>73072 73073</u>	BrC(Br)C(Br)Br	3.95	3.59	0.36 true	Exp. Data — I=A
78238	CCOP(=S)(OC1C=CC(=CC=1)[N+]([O-])=O)C1C=CC=CC=1	6.35	7.51	1.16 true	
76093	OC1=C(CI)C(CI)=C(CI)C=C1O	7.39	8.26	0.87 true	
75161 75162	ClC1=C(C=C(Cl)C(Cl)=C1Cl)C1C=CC=CC=1	3.70	3.58	0.12 true	
79588	CC1=NC(=NC(OC(=O)N(C)C)=C1C)N(C)C	8.70	8.70	0.01 true	
55038 76404	NC1=CC=C(C=C1)[N+]([O-])=O	8.92	8.00	0.92 true	
76562	CCOP(C)(=O)SCCN(C(C)C)C(C)C	7.96	5.48	2.48 true	
75542	CC1C=CC=C(C)C=1N	3.77	6.26	2.49 true	
76296	O=C1OCC2=C1C(Cl)=C(Cl)C(Cl)=C2Cl	6.26	5.22	1.04 true	
		s field descriptions Test set predict	ions Model descriptors Model d	descriptor values (+)	
Cover sh	eet statistics fraining set fest set Records Record	s neid descriptions lest set predict	ions Model descriptors Model o	descriptor values 🛛 🕀	÷ •

QMRF identifier (JRC Inventory): TBA
QMRF Title: Martin 2024 Model for Henry's Law Constant, v1.0
Date: July 29, 2023

1.QSAR identifier

1.1.QSAR identifier (title):

Martin 2024 Model for Henry's Law Constant, v1.0

1.2. Other related models:

None

1.3.Software coding the model:

The Cheminformatics Modules is a web-based software application that provides information on chemicals including high-quality chemical structures, experimental and predicted physicochemical properties, environmental fate and transport information, and appropriately linked toxicity data. The PREDICT 2.0 module (<u>https://hcd.rtpnc.epa.gov/#/predictor</u>) provides real-time predictions using QSAR (quantitative structure activity relationship) models stored in a PostgreSQL database. The database contains schemas for storing raw experimental data, modeling datasets, molecular descriptor values, and models.

The PREDICT 2.0 module can generate predictions using QSAR models based on methodologies such as random forest (RF), support vector machines (SVM), extreme gradient boosting (XGB), and k nearest neighbors (KNN). The independent variables for the models are molecular descriptors calculated using open-source packages.

The Java computer code for managing the database is available in a private GitHub repository: https://github.com/USEPA/hibernate_qsar_model_building.

The python computer code for generating QSAR models is available in a private GitHub repository:

1.QSAR identifier

1.1.QSAR identifier (title):

1.2.Other related models:

1.3.Software coding the model:

2.General information

2.1.Date of QMRF:

2.2.QMRF author(s) and contact details:

2.3.Date of QMRF update(s):

2.4.QMRF update(s):

2.5.Model developer(s) and contact details:

2.6.Date of model development and/or publication:

2.7.Reference(s) to main scientific papers and/or software package:

2.8. Availability of information about the model:

2.9. Availability of another QMRF for exactly the same model:

➤ 3.Defining the endpoint - OECD Principle 1

3.1.Species:

3.2.Endpoint:

3.3.Comment on endpoint:

3.4.Endpoint units:

3.5.Dependent variable:

36

3.6 Experimental protocol

Demo

Questions???

The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency