Buzzards Bay Salt Marshes: Vulnerability and Adaptation Potential

Callista Macpherson, Buzzards Bay Coalition SNEP Symposium, June 12, 2024

Photos courtesy of Buzzards Bay Coalition

Community Concern

From an email to the Buzzards Bay Coalition:

"The marsh grass is dying off in patches, leaving just mud that the water now flows into and is creating new smaller canals/rivulets when the tides are high.

The grass die-off is [a] ...recent phenomenon, within the last year from what I've seen.

The shoreline itself, which my property abuts, has not changed or been affected yet, though once the marsh goes I would imagine that would soon follow.

This area has brought us so much peace and joy; **we are willing to do quite a lot to save it.**"

savebuzzardsbay.org

Outline

• Overview 💾

- Methods and Metrics
- Current Conditions 🗐
- Results and Conclusion 🗓

• Coastal wetlands dominated by grasses

- Coastal wetlands dominated by grasses
- Ecosystem Services
 - Provisioning

ľ.

- Coastal wetlands dominated by grasses
- Ecosystem Services
 - Provisioning
 - Regulating

- Coastal wetlands dominated by grasses
- Ecosystem Services
 - Provisioning
 - Regulating

• Supporting

- Coastal wetlands dominated by grasses
- Ecosystem Services
 - Provisioning
 - Regulating
 - Supporting
 - Cultural

ľť.

Marsh loss around Buzzards Bay

Marsh Resilience

- Marsh Migration
- Elevation
- Plant Community
- Active adaptation strategies

Outline

- Overview
- Methods and Metrics
- Current Conditions 🗐
- Results and Conclusion 🚺

savebuzzardsbay.org

Q

Q

Ð

Q

Methods & Metrics

- Percent low-lying
- Nitrogen
- Tidal restrictions

- Percent above mean high
- Plant community
- Percent resilient

- Percent vegetated
- Unvegetated to Vegetated ratio (UVVR)
- Marsh loss

Outline

- Overview
- Methods and Metrics
- Current Conditions 🗐

• Results and Conclusion 🚺

savebuzzardsbay.org

Stressors

Percent Low- Lying	21%
Nitrogen Pollution	0.7 mg/L estuary

Current Conditions

Percent	4 0/
Unvegetated	1 70

Plant Community	31% High Marsh 69% Low Marsh
Percent Above MHW	36%

Stressors

Percent Low- Lying	21%
Nitrogen Pollution	0.7 mg/L estuary
Current Conditions	
Percent Unvegetated	1%
Potential for Adaptation	
Plant Community	31% High Marsh 69% Low Marsh

36%

Percent Above

MHW

Stressors

Percent Low- Lying	21%
Nitrogen Pollution	0.7 mg/L estuary

Current Conditions

Percent Unvegetated	1%
------------------------	----

Plant Community	31% High Marsh 69% Low Marsh	
Percent Above MHW	36%	

Stressors

Percent Low- Lying	21%
Nitrogen Pollution	0.7 mg/L estuary

Current Conditions

Percent	4 0/
Unvegetated	1 70

Plant Community	31% High Marsh 69% Low Marsh
Percent Above MHW	36%

Stressors

Percent Low- Lying	2%
Nitrogen Pollution	0.5 * mg/L estuary
Current Conditions	

Percent	40/
Unvegetated	1 70

Plant Community	41% High Marsh 59% Low Marsh
Percent Above MHW	89%

Stressors

Percent Low- Lying	2%	
Nitrogen Pollution	0.5 * mg/L estuary	
Current Conditions		
Percent Unvegetated	1%	
Potential for Adaptation		
Plant Community	41% High Marsh 59% Low Marsh	
Percent Above MHW	89%	

Stressors

Percent Low- Lying	2%
Nitrogen Pollution	0.5 * mg/L estuary

Current Conditions

Percent Unvegetated	1%
------------------------	----

Plant Community	41% High Marsh 59% Low Marsh	
Percent Above MHW	89%	

Stressors

Percent Low- Lying	2%
Nitrogen Pollution	0.5 * mg/L estuary
Current Conditions	

Percent	40/
Unvegetated	1 70

Plant Community	41% High Marsh 59% Low Marsh
Percent Above MHW	89%

Stressors

Percent Low- Lying	5%*
Nitrogen Pollution	0.9 mg/L estuary

Current Conditions

Percent	1 6 0/ *
Unvegetated	10%

Potential for Adaptation

Plant Community	27% High Marsh 73% Low Marsh
Percent Above MHW	47%

*Runnel test site. On the ground measurements were collected using a modified sampling design

Stressors

Percent Low- Lying	5%*
Nitrogen Pollution	0.9 mg/L estuary
Current Conditions	
Percent Unvegetated	16%*
Potential for Adaptation	
Plant Community	27% High Marsh 73% Low Marsh

Percent Above 47%

*Runnel test site. On the ground measurements were collected using a modified sampling design

Stressors

Percent Low- Lying	5%*
Nitrogen Pollution	0.9 mg/L estuary

Current Conditions

Percent Unvegetated	16%*
------------------------	------

Potential for Adaptation

Plant Community	27% High Marsh 73% Low Marsh	
Percent Above MHW	47%	

*Runnel test site. On the ground measurements were collected using a modified sampling design

Site map with marsh area in different years shown by shaded regions. Blue, pink, and orange shading indicate areas that were previously vegetated marsh but were bare in 2019. Created with Google Earth.

600 ft

Stressors

Percent Low- Lying	5%*
Nitrogen Pollution	0.9 mg/L estuary

Current Conditions

Percent	16%*
Unvegetated	

Potential for Adaptation

Plant Community	27% High Marsh 73% Low Marsh
Percent Above MHW	47%

*Runnel test site. On the ground measurements were collected using a modified sampling design

Outline

- Overview
 Methods and Metrics
- Current Conditions
- Results and Conclusion 🖺

savebuzzardsbay.org

Results

- Between 2001-2019, 2 acres of marsh loss
 - Suggests 200 acres baywide

Results

- Between 2001-2019, 2 acres of marsh loss
 - Suggests 200 acres baywide
- Tidal restrictions
 higher

 UVVR

Results

- Between 2001-2019, 2 acres of marsh loss
 - Suggests 200 acres baywide
- Tidal restrictions
 higher

 UVVR
- 68% of marshes are at a resilient elevation

Conclusions

- Marshes are diverse
- Land protection to facilitate marsh migration
- Monitoring is essential

Acknowledgements

Project Team

Rachel Jakuba, Alice Besterman, Lillie Hoffart, Neil Ganju, Linda Deegan, Joe Costa, Wenley Ferguson, Diana Brennan

Landowners, Collaborators, and Students / Interns

Linda Vanderveer (Dartmouth Natural Resource Trust), Whitney McClees (Town of Fairhaven), Hillary Sullivan, Melissa Herring, Gizella Spencer, Julia Holtzer, Kara Falvey, Nico Gentile, Shea Stobaugh, Dawson Little, Jennifer Sepanara, Erica Judd, Melissa Belen Gonzalez, Cameron Forehand, Devon Bolt, Sj Brusini, and Rosie Hazelton

Questions? Comments?

Callista Macpherson Buzzards Bay Coalition, Research Assistant

Macpherson@savebuzzardsbay.org

Buzzards Bay Coalition Salt Marsh 2023 Report

Runnels

Adapted from Mariotti 2016

Runnels

Runnels

Ocean View Farm - Before Runnel Ocean View Farm - After Runnel Before: November 2020 After: August 2022

Sharon Great Cedar Swamp

Mitigating the hydrologic and ecologic impacts of a drainage ditch June 12, 2024

Site Description

- Inland Atlantic Cedar Swamp
- Approximately 250 acres
- Residential properties on multiple sides
- Impaired by a drainage ditch
- The position, hydrology, and ecology of the GCS provide many benefits:
- Globally rare ACS habitat
- Organic rich soils act as a carbon sink
- Water quality benefits

Reduced ground water levels in the swamp have led to:

- Death of stands of Cedar trees
- Replacement of wetland plants with common and invasive species
- Subsidence of ground surface elevations
- Increased threat of wildfire

Image from Fletcher et al., Sharon GCS Progress Report, 2012

Field Investigations

- Vegetation and Wildlife Studies (Fletcher et al., 2010)
- Soil Investigations (Fletcher et al. 2008)
- Groundwater monitoring, topographic survey of wells, and water table mapping (HW, 2010)
- Streamflow monitoring in ditch

Proposed Solution

Current Efforts

Balance of objectives:

Raise swamp water levels while avoiding impacts to surrounding property

Groundwater Modeling

Service Layer Credits: Source: Est, Maxar, Earthstar Geographics, IGN, and the GIS User Community Date: 6/27/2023 Data Sources: Bureau of Geographic Information (MassGIS), ESRI

This map is for informational purposes and may not be suitable for legal, engineering, or surveying purposes.

Pumping Well Constant Head Boundaries No-flow Stream (Ditch) Model Contours (ft)

Model Setup

- Field Data
 - 2010 and 2023 surveys
- USGS surficial geology
- Subsurface boring logs
- Hydrography data
- LiDAR elevation data
- Previous water table maps

Conceptual Approach – Profile

How will a flow control structure influence groundwater elevations in and around the swamp?

This approach conservatively assumes the ditch will always be filled with water to the level of the flow control structure.

Conceptual Approach – Cross Section

Increased water elevation in the ditch reduces the potential from drainage

Projected water level changes within ditch

- 1-foot structure
- 2-foot structure
- 3-foot structure
- 4-foot structure
- 5-foot structure
- Other model stream cells

Available Data Infrastructure Constraints

- Available septic elevations and field surveyed stormwater infrastructure.
- All elevations available were provided by engineer <u>without</u> datum information.
- Some septic plans do not include groundwater elevations, lack of test pit, etc.

Increase in long-term average groundwater levels, reported in feet

Increase *over* existing riffle structure

Increase in long-term average groundwater levels, reported in feet

Increase in long-term average groundwater levels, reported in feet

Increase in long-term average groundwater levels, reported in feet

Next Steps

- Permit-level designs for a variable flow-control structure are underway
- Development of a monitoring and adaptive management plan
- Public outreach and education
- Pre-permit coordination with relevant agencies

Partners and preceding research:

Current and former members of the Sharon Conservation Commission; MA Div. of Ecological Restoration; SNEP; Peter Fletcher and others

Restoring the Kickemuit Estuary

SNEP Symposium June 12, 2024

ALL THERE

Upper Kickemuit River -watershed in Swansea and Warren

Upper Kickemuit Dam 🖓 Schoolhouse Rd

Lower Kickemuit Dam 🔶 Child St

Project goals:

- Restore estuarine habitat
- Increase connectivity for estuarine species
- Improve water quality
- Increase community resilience
- Enhance marsh
 migration corridor
- Reduce maintenance costs

Lower Kickemuit Reservoir Dam

- Head of tide dam built in 1883 for water supply
- Never a good water source: poor water quality and insufficient quantity
- BCWA connected to Providence Water system in late 1990s rendering dams obsolete

Lower Kickemuit Reservoir Salinity

- Upper Kickemuit Reservoir Dam
- Berm built in 1961 to protect water supply during coastal storms
- Dam requires repairs and not built to current State standards

Monitoring pre-restoration conditions

Marsh Migration: 3 feet of Sea Level Rise

Project Timeline

2012: BCWA begins to secure a new back up water supply

2015: BCWA hires consultant to conduct Upper Dam removal assessment

2017: BCWA decides to remove Upper Dam; H and H modeling & sediment sampling conducted

2018: Modeling determines Lower and Upper Dam have to removed together and Schoolhouse Road needs to be elevated

2018: Outreach to RIDOT about elevation and installation of new culverts at Schoolhouse Road

2019: RIDOT agrees to conduct work; engineering of removal of both dams; ongoing public outreach

2020: BCWA submits permit application for dam removals

2021: RIDOT upgrades Schoolhouse Road

2023: Final permits received; dam removal begins

2024: Upper dam removal to be completed

2025-2027: Monitoring and adaptive management

Phase 1: State elevated state-owned road and resized culverts (2022)

Phase 2: Lower Dam Removal Fall 2023 – Winter 2024

Relocation of oysters located just below Lower Dam prior to dam removal activity

Phase 3: Upper Dam Removal

- Full removal in Summer 2024

Public Concerns

- Environmental health of the Kickemuit Reservoir
- Flooding concerns
- Historic preservation historic cemetery adjacent to the reservoir
- Private property impacts concern with salinity within private wells/BCWA offered to conduct testing pre and post dam removal for abutting properties
- Aesthetics post dam removal
- Community partner committee established in early project phase
- Multiple public meetings before and during COVID, outreach to abutters

Response to public concerns:

• Flap gates installed at culverts along Serpentine Road

Modeling and hydraulic analysis provided visuals at public meetings

Tidal Conditions at the Waterview Condominiums

Low Tide

High Tide

Cross Section

Project Challenges

- Multi-jurisdictional permitting
- Bid Prices significantly higher than engineer's cost estimates
- Value engineer project resulted in savings of \$500,000
- Work during winter months with record rainfall and tidal surges
- Sediment removal was potential challenge however there was very little sediment migration during removal of the Lower Dam Lower Dam Project

Next Steps

- Lower Dam project essentially complete
- Dam fully removed

- Upper Dam to be completed in Summer 2024

- Shoreline plantings, long-term monitoring and adaptive management by Save The Bay

