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1 Introduction

Peak demand periods are often accompanied by high marginal costs due to capacity constraints.

Time-varying prices could align incentives in these situations, but this solution is not always possi-

ble in practice (Vickrey, 1963, 1969). Instead, policies that uniformly affect prices across peak and

off-peak periods are often levied when time-varying prices would be technologically difficult or

politically infeasible. In these cases, the relative demand elasticities across periods can ultimately

determine whether a policy helps or harms society.

The transportation sector provides a prominent example.1 US drivers logged 3.2 trillion miles

in 2017 (FHWA, 2018a). Such astronomic levels of demand on roads with finite capacity led

to an immense loss of 8.8 billion hours to traffic congestion (Schrank et al., 2019). Yet, despite

travel demand and congestion being highly temporal with known patterns, most policies affecting

travel demand — like fuel economy standards which uniformly decrease per-mile driving costs by

reducing fuel consumption — do not vary across the hour of day. Given the lack of congestion

tolling, variation in travel demand elasticities between peak and off-peak periods should be a first-

order policy concern. However, little is known about how demand elasticities vary across the time

of day. While it is often hypothesized that drivers are less responsive to fuel costs during peak

periods because they are engaging in relatively important trips (commuting) and fuel costs are a

smaller share of total costs (due to congestion), scant empirical evidence is available to support

this claim or quantify the magnitude of the potential differential (Knittel and Sandler, 2018; Parry

and Small, 2005; Portney et al., 2003; Yang et al., 2020).2

In this article, I examine how drivers respond to fuel costs differentially across the hours of the

day. I then illustrate the policy importance of heterogeneity in this elasticity in the context of the

rebound effect from fuel economy standards — a widely studied phenomenon where increasing

a good’s energy efficiency leads to increased usage due to lower usage costs. In the context of

vehicles, fuel economy standards reduce the per-mile fuel costs of driving and therefore lead to

more driving.

In practice, I accomplish this task by separately estimating how travel demand responds to fuel

1Other examples include congestible goods like popular attractions at national parks or the electricity sector, which
experiences peak demand during the afternoon associated with high generation and pollution costs.

2Bento et al. (2013) is a notable exception which estimates how fuel prices impact highway travel in Southern
California.
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cost shocks during peak and off-peak periods. The empirical strategy uses high frequency travel

demand data — 1 billion+ hourly vehicle counts from the network of traffic sensors in the US —

and exogenous variation in fuel economy caused by fluctuations in ambient air temperature in an

instrumental variables strategy. In addition, I find the effects are robust to estimation using ordinary

least squares (OLS) and multiple instrumental variables strategies, and they can be replicated using

an alternative data source and measure of fuel costs.

Ambient air temperature, particularly cold weather, plays a large role in real-world fuel econ-

omy as engines take longer to reach optimal operating temperatures, engine and transmission fric-

tion increases, and numerous other physical and mechanical issues have deleterious effects on fuel

economy. A drop in temperature from 77 to 20 degrees Fahrenheit reduces fuel economy by 15%,

and even up to a 24% reduction for short 3- or 4-mile trips (EPA, 2019; Lohse-Busch et al., 2013;

Ostrouchov, 1978). Because weather affects both fuel economy and driving patterns, I utilize

only deviations from historic average temperatures for identification and simultaneously control

for contemporaneous changes in weather (temperature, precipitation, snowfall, and snow depth)

to satisfy the exclusion restriction. In other words, deviations from a state’s historic cold-weather

induced fuel economy penalty are used for identification while also controlling for changes in trip

composition caused by contemporaneous weather.

This empirical strategy highlights the importance of the peak load and provides several other

contributions. First, the elasticities I provide are a measure of the rebound effect which directly

examines driver response to fuel economy. In contrast, much of the previous literature has exam-

ined driver response to fuel prices when estimating the rebound effect of fuel economy standards,

assuming that the responses are inversely proportional.3 Further, I identify these effects using ex-

ogenous shocks to real-world fleet fuel efficiency to recover unbiased estimates of driver response

to fuel economy. This strategy eliminates concerns about endogenous fuel economy choices and

the shifting of vehicle usage in multi-vehicle households as the instrument impacts all vehicles

simultaneously. Finally, previous research has examined how fuel economy standards affect pollu-

tion and automobile collision externalities, but I provide a better understanding of the relationship

between the standards and congestion by examining the rebound effect’s temporal variation.

3See Gillingham (2020) and Linn (2016) for an overview of the rebound effect literature and common estimating
assumptions.
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I find drivers to be more elastic during peak travel periods.4 A 1% increase in fuel economy

leads to a 0.36% increase in vehicle counts during peak periods, but only a 0.16% increase during

off-peak hours. Driver response to fuel efficiency more than doubles during peak periods. I then

explore the mechanisms driving this differential response during peak periods. The results provide

suggestive evidence that shorter (nonhighway), weekday commuting trips, in areas where higher

shares of workers commute by modes other than passenger vehicles drive the increase in elasticity

during peak periods. Though much of the prior literature has posited that drivers are less elastic

during peak periods, the results presented here are perhaps not surprising as these trips are most

likely to have low-cost alternatives (e.g., active transportation, carpooling, transit) and potentially

require less mental energy to switch modes than off-peak leisure trips.5

Finally, because the elasticity I estimate is a measure of the rebound effect, I evaluate the

change in external pollution and congestion costs induced by a fuel economy improvement while

accounting for this time-dependent rebound effect. Because large shares of the rebound effect oc-

cur during peak travel periods, when demand is more responsive to fuel economy, fuel efficiency

policies like the Corporate Average Fuel Economy Standards in the US have the potential to ex-

acerbate the congestion externality. I find that exogenously increasing the average fuel economy

of every vehicle on the road today by 1.5%, the annual increase in stringency required for model

years 2021 through 2026 by the Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule, produces

pollution benefits that are only modestly bigger than the induced congestion costs. Under some

assumptions, the standards can even lead to a net increase in these external costs.6 Though the

magnitude of these costs and benefits depend on parameter assumptions, accounting for hetero-

geneity in the rebound effect has a substantial impact on the net change in externalities across

scenarios.
4Peak periods are defined as 05:00–09:59 and 16:00–18:59. I examine robustness to this modeling decision in

Appendix Table A2, finding qualitatively similar results regardless of the definition of the peak period.
5For example, learning what transit line or bike lanes to use to get to work eliminates 10 car trips per week while

learning how to get to the grocery store, a friend’s house, or restaurant via alternative modes likely has higher average
mental costs per trip.

6This exercise only compares congestion and pollution externalities, and it does not provide a complete analysis of
the benefits and costs of fuel efficiency standards.
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2 Background

2.1 Travel Demand and Congestion

Though they vary in size and shape across regions, travel demand peaks are strongly correlated

with the timing of economic activity. Travel by urban passenger vehicles exhibits a strong bimodal

distribution across the day with peaks in the morning and evening, while travel by rural passenger

vehicles tends to increase throughout the day, beginning at 05:00 and exhibiting a single peak

in the evening (FHWA, 2014). Regardless of the timing of these peak periods, they are capable

of straining infrastructure and causing congestion. Because of these infrastructure limitations,

congestion increases nonlinearly with travel demand. When there are few vehicles on the road,

adding another vehicle may decrease speeds slightly or leave them unaffected. As the number of

vehicles increases though, the marginal effect of adding a vehicle on average speed becomes larger.

Once the capacity of the road is reached, hypercongestion and gridlocked traffic can occur.

This nonlinear relationship suggests that the marginal external costs of congestion are not uni-

form across the hours of the day. Adding another vehicle to the road during a hypercongested

period will lead to more congestion than adding the same vehicle when there are prevailing free-

flow speeds. Reductions in driving during peak demand periods can provide significant welfare

improvements while reductions in driving during off-peak periods are relatively inconsequential.

The private costs of driving also rise with congestion due to increases in per-mile time costs

— slower speeds increase travel times. Individuals factor these private congestion costs into their

decision to drive. As congestion worsens and a driver’s time costs increase, fuel costs, which are a

function of vehicle efficiency, become a smaller share of a trip’s total costs. This logic, combined

with the notion that most trips made during peak periods are commute trips and therefore relatively

important, has led economists to assume that drivers will be less responsive to fuel costs (and

therefore fuel economy) during peak periods (Knittel and Sandler, 2018; Parry and Small, 2005;

Portney et al., 2003; Yang et al., 2020).

This assumption has been scarcely tested in the empirical literature with the exception of Bento

et al. (2013) which do indeed find that drivers are less responsive to fuel prices during peak peri-

ods. Their results potentially differ from those presented in this paper for several reasons. Most

importantly, Bento et al. (2013)’s data covers only highway roads in Los Angeles and Ventura
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County. My results suggest that nonhighway roads drive the differential response in peak period

elasticities. Further, I find that areas with high shares of commute trips performed by passenger

vehicles do not have a differential peak period effect, and Southern California travel is anecdotally

known for car dependency and sprawl. Finally, though Bento et al. (2013) employ an instrumental

variables strategy to correct for the endogenous relationship between fuel prices and traffic counts

in parts of their analysis, they use OLS when examining the differences between peak and off-peak

periods, which may further mute the differential effects.

2.2 Weather and Fuel Economy

I use the relationship between ambient air temperature and fuel efficiency to identify the effects

of fuel economy on vehicle counts. The transportation engineering literature has established that

cold weather lowers vehicle fuel efficiency for mechanical and physical reasons that are largely

out of the control of drivers (EPA, 2019; Lohse-Busch et al., 2013; Ostrouchov, 1978). Low

temperatures cause engines to take longer to reach optimal operating temperatures. Air becomes

denser as temperatures fall, increasing aerodynamic drag on vehicles. Engine and transmission

friction increases due to cold engine oil and driveline fluids. Battery performance decreases with

temperature which makes it more difficult for alternators to keep the battery charged. These effects

have relatively similar impacts on fuel economy for all vehicles (Bielaczyc et al., 2011). The

effects are also nontrivial — in city driving fuel economy has been estimated to drop by 15% at 20

degrees Fahrenheit relative to fuel economy at 77 degrees (EPA, 2019). Further, this fuel economy

penalty can be as large as a 24% reduction for short 3- or 4-mile trips.

The identification strategy uses these fluctuations in fuel economy caused by cold weather, but

weather plays a significant role in when and where individuals drive. As will be described further

in section 4, I mitigate concerns that weather shocks unrelated to fuel economy drive the results

by using anomalous variations in heating degree days (HDD) as an instrument for average fuel

efficiency. Standard heating degree days are measured as the deviation in temperature below a base

of 65 degrees. For example, a day with an average temperature of 40 degrees would be equal to 25

HDD while any day above 65 degrees would be equal to 0 HDD. HDDs are a measure of if and how

much heating might be required for a residence on a cold day. Anomalous HDD are deviations from
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the historical average HDD for that state and month of year from a baseline period of 1901-2000.

This strategy allows me to isolate the identifying variation to historic deviations within a state and

month of year while also controlling for contemporaneous weather. Anomalous is not synonymous

with extreme — identifying variation comes from small deviations from historic averages that

persist over weeks, short periods that experience large deviations, and instances between.

The effects of cold weather on driving costs are potentially less salient than those caused by

gas prices. However, the relationship between temperature and fuel economy is widely advertised

by public agencies like the EPA, local and national media outlets, popular magazines like Scien-

tific American, blogs, and other outlets.7 Advances in vehicle technology have also made displays

illustrating a vehicle’s contemporaneous and recent fuel economy while driving ubiquitous. This

allows drivers to easily understand their fuel usage — information that they do respond to (Bori-

boonsomsin et al., 2010; Sanguinetti et al., 2020). However, I do not have information on driver

awareness of the relationship between temperature on fuel economy. If the relationship is not

salient to many drivers, the effects estimated using this instrument will likely be a lower bound to

the true effect. Regardless of these potential limitations, it is interesting that drivers respond to any

shock differentially during the peak periods as I find.

There are also other weather-related concerns that drivers may be able to control to an extent.

Cold temperatures reduce tire pressure which increases rolling resistance and driving at slower

speeds, loss of traction from icy or snow-covered roads, and the use of heated seats may further

decrease fuel economy. Some of these factors, like tire pressure and traction, could be mitigated

by technologies like tire-pressure monitoring systems or traction control. Other technologies could

have a countervailing effect — like heated seats which directly increase fuel usage — though these

effects may be smaller. The availability of these features likely skews toward newer vehicles owned

by high-income drivers, which have been shown to be more responsive to fuel costs (Gillingham,

2014; Gillingham et al., 2015; Spiller et al., 2017). To the extent that cold weather differentially

affects vehicle MPG through these and similar channels, it seems plausible that older (more inelas-

tic) vehicles could be impacted more. The elasticity estimates may therefore be a lower bound on

7See https://www.fueleconomy.gov/feg/coldweather.shtml, https://www.boston.
com/cars/news-and-reviews/2016/01/22/how-cold-weather-kills-your-gas-mileage-and-what-to-do-about-it/,
https://www.cnbc.com/2014/02/14/cold-weather-reduces-a-cars-mileage.html, or
https://www.scientificamerican.com/article/why-is-the-fuel-economy-o/.
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the true effect size.

While excessively hot weather may also impact fuel economy, I rely on HDD for identifica-

tion. The primary pathway that warm weather reduces fuel economy is through the use of air

conditioning. Not all individuals uniformly use their air conditioners during warm weather though

and driving with windows open can have other efficiency impacts due to aerodynamics. In con-

trast, it is impossible for individuals to avoid many of the deleterious effects of cold weather on

fuel economy. Though they may wish to avoid the additional drag cold air causes on their vehicle,

drivers cannot alter air density, making a stronger case for the use of a cold weather IV.

While I focus on internal combustion engine vehicles and the rebound effect, the effect of cold

weather on electric vehicles is also significant — decreasing both efficiency and battery range.

Electric vehicle adoption in the US during the sample (2013–2018) was quite small though, and

these vehicles are driven far less than the average internal combustion engine vehicle (Nehiba,

2024). It is therefore unlikely that these vehicles play a substantial enough role in aggregate traffic

counts to bias the results.

2.3 The Rebound Effect

Energy efficiency programs are a common tool used to correct market failures associated with

energy usage. These programs are designed to address externalities and internalities including my-

opic consumers, firm underinvestment in energy efficiency research, or air pollution by improving

the efficiency of our automobiles, major appliances, and buildings. Improving a good’s energy

efficiency also lowers its usage costs which in turn leads owners to increase their utilization of the

good. This increase in use caused by higher efficiency is a widely studied phenomenon known

as the “rebound effect” (Gillingham et al., 2015; Jevons, 1865; Small and Van Dender, 2007). In

the context of fuel economy standards for automobiles, most studies have found relatively small

rebound effects — most elasticity estimates fall between 0.1 and 0.4.8

The most frequently employed empirical strategy to estimate the rebound effect is to estimate

the fuel price elasticity of driving using either survey data or odometer readings (Gillingham, 2020;

Linn, 2016). As discussed in Linn (2016), these elasticity estimates, often referred to as a measure

8See Gillingham (2020) or Gillingham et al. (2016) for reviews of recent estimates of the direct rebound effect of
the Corporate Average Fuel Economy Standards.
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of the direct rebound effect, tend to rely on at least one of the following assumptions: (1) the choice

of fuel economy is not correlated with other attributes of vehicles or households, (2) households

with multiple vehicles do not adjust usage intensity based on fuel costs, and (3) the effects of fuel

prices and fuel economy are inversely proportional. Assumption (3) is perhaps most critical as

relatively few studies have directly estimated the effect of fuel economy on travel demand.9 Re-

cent literature in this areas has also explored how the fuel price elasticity of driving varies across

dimensions. These studies have furthered our understanding of the welfare and distributional con-

sequences of energy policy by examining heterogeneity in fuel price elasticities across vehicles,

consumer demographics, and regions (Barla et al., 2015; Gillingham and Munk-Nielsen, 2019;

Knittel and Sandler, 2018; Nehiba, 2022; Spiller et al., 2017).

I make several contributions to the rebound effect literature. First, I propose an empirical strat-

egy to estimate the rebound effect that loosens the assumptions listed above. Instrumenting for

fuel economy using anomalous HDD eliminates concerns that fuel economy choice is endoge-

nous — drivers cannot control the weather. Because the anomalous HDD instrument affects fleet

fuel economy and the dependent variable is vehicle counts at traffic sensors as opposed to any

one vehicle’s fuel economy and vehicle miles traveled (VMT), multi-vehicle households changing

between vehicles will not bias the results, conditional on the included weather controls. In other

words, the instrument creates limited incentives to switch to a more fuel efficient vehicle in the

household because all vehicles receive a fuel economy penalty. While it is true that freezing tem-

peratures, snow, and ice may lead to the use of larger more fuel-inefficient vehicles, the included

weather controls and fixed effects capture this effect. This new strategy also provides one of the

few direct estimates of the effect of fuel economy on driving demand. The strategy assumes that

drivers respond similarly to real-world fuel economy changes and rated fuel economy of a vehicle

at the time of purchase as opposed to the more often employed assumption that drivers respond

symmetrically to fuel price and fuel economy changes. Further, I examine how the rebound effect

varies with the time of the day. While expansive literatures have examined heterogeneity in the

rebound effect and how fuel economy standards may affect other transportation externalities like

vehicle collisions and transportation emissions, few have examined the relationship between fuel

economy standards and congestion beyond measuring a change in miles driven.

9Notable exceptions include Gillingham (2011), Greene (2012), and West et al. (2017).
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3 Data Sources and Summary Statistics

3.1 Traffic Sensor Data

Travel demand data come from the network of traffic sensors across the United States. State

transportation agencies collect traffic volume data through traffic counting programs and report

these data to the US Department of Transportation’s Federal Highway Administration (FHWA).

The sensors report traffic flows, the number of vehicles that travel over the sensor each hour. Each

sensor is identified as a single traffic lane, so hourly vehicle flows can be matched to a particular

road, travel direction, and individual lane on the road segment. In total, the data set contains over

a billion hourly observations, and provides remarkably rich spatial and temporal information on

when and where individuals drive.

I aggregate these hourly traffic sensor observations to hour-of-day-by-week averages prior to

analysis. For each week in the sample, every traffic sensor has 24 observations — one for each

hour of the day.10 For example, the average hourly count at a sensor between 01:00 and 01:59 in

week 1 of 2016, 02:00 and 02:59 in week 1 of 2016, or 13:00 and 13:59 in week 32 of 2015. The

final data set contains 99.5 million observations covering 24,734 individual traffic sensors in 1,879

counties between 2013 and 2018 in the US.

A majority of these traffic sensors are located on routes designated as “Interstates” or “Princi-

pal Arterial - Other Freeways and Expressways,” but many sensors are located on smaller routes

designated as “Minor Collector,” “Major Collector,” “Minor Arterial,” and “Principal Arterial -

Other.” To the extent that the sample skews towards major roadways, the results may be more

applicable to travel on these routes.

Finally, the traffic sensors occasionally experience outages. Sensors experiencing errors may

report implausibly large traffic counts. These traffic counts are dropped if (1) the state altered the

data to identify an erroneous count (e.g., changed value to 99999) or (2) the counts exceed 5,000

vehicles per hour.11

10In addition, I aggregate the data for weekdays and weekends separately for the analysis in Table 4.
11The FHWA states that under ideal circumstances (no weaving, no trucks, and constant free-flow speed) traffic

flows can reach 2,850 vehicles per hour (FHWA, 2018b) though a somewhat larger maximum value is chosen here to
allow for possible extremes.
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3.2 Weather Data

I obtain weather data from two data sets provided by the National Oceanic and Atmospheric

Administration (NOAA). Weather controls including contemporaneous measures of temperature,

precipitation, snowfall, and snow depth come from NOAA’s Global Historical Climatology Net-

work data set, which provides daily station-level data. Past literature has outlined best practices for

utilizing these data and suggests the imputation of missing weather data prior to analysis (Auffham-

mer et al., 2013). I follow this suggestion, and impute the missing observations using linear regres-

sions and data from the nearest active neighboring weather station.12 The data are then averaged

to the county-by-week level and the precipitation, snowfall, and snow depth variables are censored

at zero.13

Data on anomalous heating degree days, measured at the state-by-month level, are obtained

from NOAA’s Climate at a Glance data set. Anomalous HDD measures the deviation in HDD

within a state and month from the average HDD in that state and month of the year between 1901

and 2000. In other words, the difference between a state’s contemporaneous HDD this month and

their historical average HDD for that month.

3.3 Fuel Economy Data

I construct a measure of state-level fuel economy using data on monthly vehicle miles traveled

(VMT) from the FHWA and gallons of gasoline sold in each state from the EIA. Dividing miles

driven by gallons sold provides average fleet fuel economy for each state and month. There are

several concerns with this measure of fuel economy.

First, the VMT data capture total mileage from all vehicles (both passenger and commercial

vehicles), including those not powered by gasoline. As diesel, electric, and alternative fuel vehicle

miles are included, the measure of MPG will likely be higher than the true fleet fuel economy in

the state. Second, not all fuel sold in a state is used within that state — vehicles are mobile and

not bound by state borders. Finally, the variables used in constructing this measure are themselves

estimates.
12The results are robust to the use of non-imputed weather controls (see Appendix Table A6).
13Because the data are imputed these variables can have implausible values (e.g., precipitation of -.3 mm), but it is

not possible to have negative precipitation, snowfall, etc. The variables are therefore censored at zero.
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These issues can largely be controlled for using location fixed effects. This removes the aver-

age MPG of a state’s vehicle fleet and the portion of VMT that comes from non-gasoline vehicles.

While the fleet composition does change over time, the relatively short duration of the sample

(2013-2018), slow retirement of vehicles, and low uptake of non-gasoline vehicles mitigates this

concern. Likewise, location fixed effects remove the average amount of fuel sold in a state that is

not used within that state, and it is unlikely that weather plays a major role in this factor. Finally,

any variation in measurement error in the VMT and gallons sold variables between states is differ-

enced out by location fixed effects, and time fixed effects mitigate concerns that this measurement

error changes over the sample.

3.4 Other Data

Several other control variables are used in the analysis. Unemployment data at the county-by-

month level are provided by the Bureau of Labor Statistics’ Local Area Unemployment Statistics

database. Annual county population estimates are obtained from the Census Bureau. State-level

gasoline tax data come from the Federal Highway Administration. Gasoline price data are web

scraped from Gasbuddy.com, a crowd sourcing website that provides users with local retail station

prices. Fuel prices are aggregated to the state-by-week level.

Finally, I obtain commuting mode shares for each county from the Census Transportation Plan-

ning Products (CTPP). These commute mode share values are five-year estimates covering 2012-

2016, so only a single value is available for each mode and county.14 In some cases, I aggregate

commuting modes into easier-to-interpret bins for analysis. For example, the CTPP data have

separate bins for carpooling that break down the number of individuals in the carpool. Instead of

examining these granular measures of carpooling, I sum each bin to determine the total share of

commute trips done by carpool regardless of the number of participants in the carpool. Similarly, I

create an active transportation (bicycling plus walking), non-passenger vehicle (all modes besides

passenger vehicle), and transit (all bus and rail modes) bins.

14The previous five-year estimates cover 2006-2010 and more recent estimates are not available.
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3.5 Summary Statistics

Figure 1 depicts the average vehicle count for each hour of the day. The figure differentiates

between weekday and weekend counts. The weekday counts exhibit a dual-hump shape with peaks

in the morning and evening. Counts are low in the early morning hours and begin to rise sharply

around 05:00 before reaching an initial peak between 07:00 and 08:00. Counts decrease slightly

after the morning commuting times before rising to a second evening peak that persists across

two hours, 16:00–17:00 and 17:00–18:00, before falling at night. The evening peak of approxi-

mately 700/vehicles/hour/lane is higher than the 600/vehicles/hour/lane morning peak, similar to

the pattern for urban and rural cars in FHWA (2014).

Figure 1: Hourly Vehicle Counts Throughout the Day

Notes: Figure depicts the average hourly vehicle counts for sensors across the hour of the day in the sample. Averages
are calculated separately for weekdays (Monday–Friday) and weekends (Saturday and Sunday).

Weekends exhibit a different pattern of traffic flows throughout the day. Not surprisingly,

slightly more driving occurs during the early morning and late-night hours on the weekends.

Drivers also take to the roads somewhat later in the morning before flows peak around noon.

This peak persists for several hours before traffic flows start to decrease at around 17:00. While

the traffic flows on weekends can approach the levels of flows during the weekday-morning peak,

12



Figure 2: Fuel Economy and Cold Weather

Notes: Figure depicts monthly average fleet fuel economy in miles per gallon and heating degree days (100s) across
all states in the sample.

the changes in flows on the weekend appear to be much more gradual.

Figure 2 aggregates the state-level fuel economy and HDD variables to monthly national aver-

ages. The figure provides visual evidence of the effect of cold weather on fleet fuel economy. As

one would expect, heating degree days peak each winter and fall to near zero during the warm sum-

mer months. While fuel economy exhibits more variability, it sharply decreases in the cold winter

months. Fuel economy is also generally at high levels during the summer. MPG also experiences

sharp drops in February and increases in March, which may raise concerns regarding seasonal

measurement error. While geography-specific month of year fixed effects capture this seasonal

variation, I also find the results are robust to dropping these months entirely (as well as several

other seasonal data restrictions) in Appendix Table A3. Fleet fuel economy gradually increases

during the sample, driven at least in part by the Corporate Average Fuel Economy Standards in the

US.

Further descriptive statistics are available in Appendix Table A1.
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4 Empirical Setting

4.1 Driver Response to Fuel Economy Shocks

I now estimate how drivers respond to fuel economy shocks. In the baseline specification, the

sample consists of hour-of-day-by-week observations from the universe of traffic sensors, and the

dependent variable is the log of hourly vehicle counts. The model for sensor i in county j and state

s is

ln(Vi jsht) = ω +η · ln(MPGsm)+ψ ·Xi jsht +µi +ρt + εi jsht (1)

where h denotes the hour of the day, t denotes the week, and m denotes the month of the sam-

ple. X is a matrix of control variables, µ contains sensor fixed effects, and ρ contains time fixed

effects. The coefficient of interest, η , measures the short-run fuel economy elasticity of traffic

flows. Standard errors are clustered at the county level throughout the analysis.15 X controls for

factors that influence both fuel economy and driving behavior. In the preferred specification, I

include county-by-week controls for contemporaneous temperature, precipitation, snowfall, and

snow depth as well as controlling for county-by-month unemployment rate, county-by-year popu-

lation, and state-by-week gas prices and taxes.16

To begin, I estimate equation 1 using OLS. However, fuel economy is a choice made by drivers,

making a region’s MPG endogenous. For example, a driver with a long commute may sort into

a more fuel-efficient vehicle. While a single atomistic driver would have a minuscule effect on

the estimates, this behavior leads to a correlation between fuel economy and unobservable local

characteristics if a region on average has long commutes and therefore more fuel-efficient vehicles.

Sensor fixed effects control for the average fleet fuel economy in an area, but unobservables that

affect fuel economy like the fleet composition, vehicle usage intensity, policies, and preferences

vary over time across regions. These issues would lead to biased estimates that understate the

responsiveness of drivers to fuel economy, suggesting that OLS estimates could be interpreted as

a conservative lower bound of the true effect.

To overcome this endogeneity issue, I leverage exogenous variation in fleet fuel economy

15Robustness to alternative error clustering is examined in Appendix Table A10.
16The results are robust to including additional control variables (e.g., GDP, income). See Appendix Table A11.
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caused by fluctuations in ambient air temperature. As outlined in the section 2, cold tempera-

ture shocks affect automobile performance for various reasons outside the control of drivers — a

change in temperature from 77 to 20 degrees Fahrenheit can reduce MPG by 15%. While cold

temperatures can reduce a vehicle’s fuel efficiency, they are also correlated with driving behavior.

Individuals are likely to change their leisure activities in response to the weather. You will find far

more people driving to the beach when it is 77 degrees out than when it is 20 degrees out, and that

difference is not likely due to the change in fuel economy between temperatures. This correlation

must be controlled for empirically to ensure that the instrument meets the exogeneity requirement

of instrumental variables (IV).

As a solution, I propose the use of anomalous heating degree days as an instrument for fuel

economy as opposed to contemporaneous HDD. These anomalous heating degree days are devi-

ations from a state’s historic HDD, based on data from 1901 to 2000, during a given month of

the year. Utilizing abnormal and unexpected fluctuations in HDD allows for the effect of county-

level weather variables including contemporaneous temperature, precipitation, snowfall, and snow

depth on driving behavior to be controlled for in all specifications. Further, because the effects

of temperature on fuel economy are relatively similar across vehicles, these shocks provide little

incentive for households with multiple vehicles to change vehicle utilization patterns.

I estimate the model using instrumental variables with a first-stage regression

ln(MPGsm) = τ +δ · (Anom. HDDsm)+φ ·Xi jsht +µi +ρt +νi jsht (2)

where Anom. HDD is the measure of anomalous heating degree days within that state and month.

The use of a state-level anomalous HDD instrument means that only deviations from a state’s

historic average HDD within a month of year identify the effects while the contemporaneous

county-level weather variables control for temperature driven travel patterns. For example, a state

may have different anomalous HDD in April of 2020 and May of 2020, but it is possible for a

county within the state to have an average temperature of 75 in both the last week of April and

first week of May. In this case, I use the deviations from historic average temperature, and there-

fore deviations from historic weather-induced fuel economy effects, for identification while also

controlling for the types of trips drivers take when the average temperature is 75. In a sense, the

empirical strategy can be thought of as examining behavioral changes arising due to deviations
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from the state’s climate while controlling for contemporaneous weather events.

Importantly, anomalous does not directly equate to extreme here. Identifying variation can

come from prolonged periods of temperatures a few degrees below the average, single days far

below the average, and situations between. Consider a state that in a given month of the year

had an average HDD of 0 between 1901–2000. Anomalous HDD may measure 60 if the mean

temperature is 63 for thirty days or if the mean temperature is 65 for twenty-eight days of the

month and 35 for two days. In other words, the identifying variation does not solely come from a

handful of extreme outlier events, but rather a wide array of instances where HDD deviates from

historical averages by small and large amounts.

These deviations do however contribute first-stage identifying variation proportionally to their

size. Larger deviations provide greater sources of identifying variation, and these larger shocks

likely provide more salient changes in fuel economy for drivers.17 Similarly, small daily fluctua-

tions in gasoline prices may go unnoticed by many drivers, while larger price shocks elicit changes

in driving behavior from broader groups. Having the most salient fuel economy shocks comprising

much of the identification would suggest that the estimates here represent the average effect. I also

find a relatively similar fuel economy response across months with more or less extreme weather

fluctuations in Appendix Table A14, though the analysis has important limitations.

Further, I include a wide set of fixed effects in the model. As mentioned above, traffic sensor

fixed effects control for factors like average fleet fuel economy and traffic load across the sample.

Week fixed effects control for macroeconomic trends that may broadly affect both fuel economy

and driving behavior. County-by-month-of-year fixed effects granularly control for the typical

types of trips being made in a county during a particular time of the year.

This set of fixed effects in conjunction with controlling for contemporaneous weather elimi-

nates any exclusion restriction concerns regarding the anomalous HDD instrument, but they also

eliminate much of the available identifying variation. As such, the empirical strategy relies on the

large number of observations provided by the traffic sensor data to precisely estimate effects.

Another potential concern in this setting would be drivers putting off some types of trips due

to weather shocks. For example, Ge and Ho (2019) provide evidence of such hysteresis or delayed

17Smaller fuel economy penalties induced by smaller temperature fluctuations could be missed by less observant
drivers.
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effect in thermostat settings. However, the aggregated nature of the data captures short-term hys-

teresis or delayed effects, and I fail to find evidence that drivers respond in a meaningful way to

weather shocks in previous weeks in Appendix Table A13. The estimates are also robust to the ex-

clusion of various months of the year that may be more susceptible to changes in driving behavior

due to weather.18

4.2 Differential Response during Peak Periods

I next explore how driver response to fuel economy shocks varies across the time of day. This

is accomplished with a relatively simple extension of the empirical model described in equations

(1) and (2) — including an interaction term of the fuel economy variable and an indicator variable

equal to one during peak hours. The model is

ln(Vi jsht) = ω +η · ln(MPGsm)+λ · (ln(MPGsm)×Ph)+α ·Ph +ψ ·Xi jsht +µi +ρt + εi jsht (3)

where P is equal to one if the hour is between 05:00 and 09:59 or 16:00 and 18:59, though the

results are robust to varying definitions of the peak period (see Appendix Table A2). The variable

of interest is now (ln(MPGsm)×Ph), which estimates how fleet fuel economy differentially affects

vehicle counts during peak periods.

Here, both MPG and the interaction of MPG and the peak period will be endogenous, neces-

sitating a second instrument and two first-stage regressions. An obvious candidate instrument is

the interaction of anomalous HDD and peak period. The first stage now consists of the following

equations

ln(MPGsm)= τ+π ·(Anom. HDDsm)+δ ·(Anom. HDDsm×Ph)+ι ·Ph+φ ·Xi jsht +µi+ρt +νi jsht

(4)

ln(MPGst)×Ph = β +ζ ·(Anom. HDDst)+θ ·(Anom. HDDst ×Ph)+υ ·Ph+κ ·Xi jsht +µi+ρt +νi jsht

(5)
18See Appendix Table A3.
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The greatest threat to identification in this setting is the potential for factors to differentially

bias the effects of fuel economy across peak and off-peak periods. The fixed effects are therefore

allowed to vary across the hours of day. For example, Peak×Sensor and Peak×Week fixed effects

are included to separately control for time invariant sensor characteristics and traffic patterns that

may differ between peak and off-peak periods and macroeconomic shocks that may differentially

affect peak and off-peak traffic, respectively. Importantly, the remaining identification concerns

not fully addressed by the fixed effects and included control variables likely impact the peak and

off-peak periods equally, or arguably have larger impacts during the off-peak periods. This would

suggest the peak-period differential I estimate is conservative. For example, cold weather may lead

to more dangerous driving conditions and black ice formation even in the absence of precipitation.

However, this concern would likely be more prevalent at night (off peak) when temperatures are

lower, thus inflating the off-peak elasticity to a greater extent than the peak elasticity.

5 Results

5.1 Aggregate Response to Fuel Economy Shocks

I present results from estimating the OLS and instrumental variables models described in equa-

tions (1) and (2) in Table 1. Columns (1) and (2) provide the OLS results, and columns (3) and (4)

provide IV results with first-stage estimates of the effects of anomalous HDD on MPG in Panel A.

Panel B provides the OLS or second-stage estimates of the effect of the predicted changes in MPG

on traffic counts. Fixed effects included vary across columns. Each regression includes controls

for contemporaneous temperature, precipitation, snowfall, snow depth, gasoline prices, gasoline

taxes, unemployment rate, and population. Standard errors are clustered at the county level.

The OLS results in columns (1) and (2) are stable across the specifications which include

either Peak×State×Month-of-Year (MOY) or Peak×County×MOY fixed effects. The OLS results

suggest that traffic counts increase by 0.9% when fuel economy increases by 10%. As discussed

in the previous section, these OLS results are likely to understate this rebound effect though and

should be interpreted as a lower bound to the true effect.

In the IV models in columns (3) and (4), anomalous HDD are a statistically significant predictor
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of fleet fuel economy, and the Kleibergen-Paap F-statistic of the excluded instruments exceeds 290

in each regression. As expected, cold weather reduces fleet fuel economy. One thousand anoma-

lous HDD in a month reduces fleet fuel economy by approximately 1%. This relatively small

effect is likely a result of the empirical strategy’s tight focus, which eliminates much of the poten-

tial variation and relies on the large data set to precisely identify small changes in behavior. It is

important to reiterate that anomalous is not synonymous with extreme in this setting. The identify-

ing variation can arise due to small deviations from historic averages that persist over weeks, short

periods that experience large deviations, and instances between. However, the empirical strategy

does provide enough identifying information to produce a relevant instrument as evidenced by the

statistical significance and large F-statistics. The empirical strategy also controls for contempora-

neous weather (e.g., snow), alleviating concerns of any remaining correlations between anomalous

HDD and driving behavior or the types of vehicles being used that do not arise due to fuel econ-

omy shocks. Further, if any such correlations remain after conditioning on the controls and fixed

effects, they would likely bias the results away from finding a significant effect. For example, if

cold weather makes individuals less likely to commute via bus or bicycle, one would expect an

increase in driving when fuel economy falls due to anomalous HDD (the opposite of the effect I

find).

Unlike the OLS estimates, the effect of fleet fuel economy on traffic counts importantly depends

on the fixed effects included in the model. When Peak×State×Month-of-Year fixed effects are

included, the elasticity is approximately 0.03 and statistically insignificant at conventional levels.

The elasticity increases in size and becomes statistically significant when Peak×County×MOY

fixed effects are included. These more granular county-level fixed effects likely better satisfy the

exclusion restriction by controlling for unobservable differences in seasonal driving patterns and

vehicle utilization that may vary greatly across space. For example, the changes in driving and

vehicles being used across months of the year in Incline Village, NV, which averages over 130

inches of snowfall annually, may be very different from those in Las Vegas, NV. In the preferred

specification in column (4), a 10% increase in fuel economy is estimated to increase traffic counts

by 2.3%. As predicted, this effect is larger in magnitude than that estimated using the OLS model,

suggesting that the OLS results are biased downard.

The elasticity estimates from the preferred OLS and IV specifications in columns (2) and (4)
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suggest a rebound effect between 9% and 23%. These estimates are similar to previous measures

of the rebound effect. For example, Gillingham et al. (2015), Leung (2015), Langer et al. (2017),

and Hymel et al. (2010) all estimate rebound effects around 10%. Hymel and Small (2015), Linn

(2016), Liu et al. (2014), and Bento et al. (2009) estimate rebound effects up to 40%, though most

estimates are closer to 20%. Of particular interest in this setting is Linn (2016) which estimates a

rebound effect between 20% and 40% while carefully examining how common empirical assump-

tions made in the previous literature can impact results.

Though not reported, the control variable coefficients generally have the predicted sign, effects

of reasonable magnitude, and are statistically significant. However, when only Peak×State×MOY

fixed effects are included the gasoline price and gasoline tax controls have small positive and

significant effects — likely due to the endogeneity between fuel prices and traffic counts biasing

the coefficient upward. These effects become smaller in magnitude and statistically insignificant,

though still positive, when Peak×County×MOY fixed effects are included, suggesting that these

more granular fixed effects correct for the endogeneity to some extent.

Table 1: Aggregate Effect of Fuel Economy on Traffic Counts

(1) (2) (3) (4)
OLS IV

Panel A: ln(MPG) first stage
Anomalous HDD -0.093*** -0.093***

(0.005) (0.005)

Panel B: ln(Traffic Count) second stage
ln(MPG) 0.088** 0.088** 0.026 0.233***

(0.038) (0.035) (0.099) (0.081)

Observations 99,522,862 99,522,861 99,522,862 99,522,861
F-stat of Excluded Instruments - - 291.475 355.802
Peak×Sensor FE Yes Yes Yes Yes
Peak×Week FE Yes Yes Yes Yes
Peak×State×MOY FE Yes No Yes No
Peak×County×MOY FE No Yes No Yes

Notes: Standard errors are clustered at the county level. Every regression controls for contemporaneous temperature,
precipitation, snow, snow depth, gasoline prices, gasoline taxes, unemployment rate, and population. ln(MPG) is fleet
average fuel economy in miles per gallon. Anomalous HDD are deviations in historic average HDD in a state-month-
of-year from a baseline of 1901–2000 measured in 1000s. Peak is an indicator variable equal to one if the hour of the
day is between 05:00 and 09:59 or 16:00 and 18:59. *** Statistically significant at the 1% level; ** 5% level; * 10%
level.
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5.2 Evidence of Differential Response During Peak Periods

Next, Table 2 examines if the rebound effect varies between peak and off-peak periods using

the methods described in equations (3), (4), and (5). Again, columns (1) and (2) present OLS

results, and columns (3) and (4) present IV results. For the IV models, Panel A presents the first-

stage estimates of anomalous HDD and the interaction of anomalous HDD and a peak indicator on

the log of MPG. Similarly, Panel B presents the first stage with the dependent variable being the

interaction of the log of MPG and an indicator for peak hours. Panel C presents the OLS or second-

stage estimates of the effects on traffic counts. Controls include contemporaneous temperature,

precipitation, snowfall, snow depth, gas prices and taxes, unemployment rate, and population, and

standard errors are clustered at the county level.

The OLS estimates in columns (1) and (2) are once again consistent across specifications. The

OLS models estimate a fuel economy elasticity of traffic counts during off peak periods — the

ln(MPG) effect — around 0.07. The differential peak effect is positive and statistically signifi-

cant in both regressions — suggesting that the peak and off peak periods do experience different

responses. A 10% increase in MPG increases traffic counts by 0.53% more during peak periods.

To get the total peak period elasticity, the effects of ln(MPG) and ln(MPG)×Peak must be added

together. Column (2) estimates this cumulative peak elasticity to be around 0.122.

Turning to the IV models in columns (3) and (4), the instruments have the predicted sign and

are statistically significant in each regression with the exception of the Anom. HDD×Peak variable

in Panel A. This lack of significance is not surprising as the interaction is not expected to provide

any further identifying variation when the dependent variable is not also interacted with the peak

period indicator. The Kleibergen-Paap F-statistics of the excluded instruments exceed 90 in both

regressions.

In Panel C, the second-stage estimates of the effect of ln(MPG) are smaller than those estimated

in Table 1 and are again only significant when County×MOY FE are included in the regression.19

19Again, the disparities in magnitude and significance between specifications may be explained by the more granular
County×MOY fixed effects better controlling for unobservable differences in seasonal driving patterns and vehicle
utilization that vary greatly across space.
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Table 2: Differential Effect of Fuel Economy during Peak Periods

(1) (2) (3) (4)
OLS IV

Panel A: ln(MPG) first stage
Anom. HDD -0.093*** -0.093***

(0.005) (0.005)
Anom. HDD×Peak -0.000 -0.000

(0.000) (0.000)

Panel B: ln(MPG)×Peak first stage
Anom. HDD -0.005*** -0.005***

(0.001) (0.001)
Anom. HDD×Peak -0.081*** -0.080***

(0.006) (0.006)

Panel C: ln(Traffic Count) second stage
ln(MPG) 0.068* 0.069** -0.048 0.156*

(0.036) (0.035) (0.101) (0.082)
ln(MPG) × Peak 0.052*** 0.053*** 0.199*** 0.204***

(0.017) (0.017) (0.053) (0.054)

Observations 99,522,862 99,522,861 99,522,862 99,522,861
F-stat of Excluded Instruments - - 95.074 91.430
Peak×Sensor FE Yes Yes Yes Yes
Peak×Week FE Yes Yes Yes Yes
Peak×State×MOY FE Yes No Yes No
Peak×County×MOY FE No Yes No Yes

Notes: Standard errors are clustered at the county level. Every regression controls for contemporaneous temperature,
precipitation, snow, snow depth, gasoline prices, gasoline taxes, unemployment rate, and population. ln(MPG) is fleet
average fuel economy in miles per gallon. Anomalous HDD are deviations in historic average HDD in a state-month-
of-year from a baseline of 1901–2000 measured in 1000s. Peak is an indicator variable equal to one if the hour of the
day is between 05:00 and 09:59 or 16:00 and 18:59. *** Statistically significant at the 1% level; ** 5% level; * 10%
level.

In contrast, the variable of interest, ln(MPG)×Peak, is positive, statistically significant, and con-

sistent in magnitude in both regressions. This positive and statistically significant effect suggests

that a 10% increase in MPG increases traffic counts by 2% more during peak periods relative to

off-peak periods. A disproportionately large amount of the rebound effect occurs during peak pe-

riods. The preferred specification in column (2) suggests that the effect of fuel economy on traffic

counts more than doubles from 0.16 to 0.36 during peak periods with an average effect — from

column (4) of Table 1 — of 0.233. Though the OLS results are again somewhat muted relative to

these IV estimates, the magnitude of the differential peak period (nearly twice that of the off peak

elasticity) is similar across the models.

Figure 3 illustrates the heterogeneity in the rebound effect by estimating a separate model for
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each hour of the day and plotting the individual elasticity estimates with a 95% confidence interval.

Two clear humps emerge in the morning and evening. Elasticities are near zero and statistically

insignificant in the early morning hours before rising to an overall daily peak between 08:00 and

09:00. The estimates then slightly decrease in the middle of the day before rising to another peak

in the evening before tapering off. I also examine if the effects of fuel economy standards on traffic

counts vary across the morning and evening peaks in Appendix Table A7. I find that the evening-

peak effect is larger in magnitude, but the morning-peak effect remains economically relevant and

statistically significant.

Figure 3: Hourly Estimates of the Fuel Economy Elasticity of Traffic Counts

Notes: Figure depicts point estimates and 95% confidence intervals from 24 separate IV regressions. Dependent
variable is the log of traffic counts and the variable of interest is the log of MPG. ln(MPG) is instrumented for us-
ing Anomalous HDD. Every regression controls for contemporaneous temperature, precipitation, snow, snow depth,
gasoline prices, gasoline taxes, unemployment rate, and population. Every regression includes sensor, week, and
County×MOY fixed effects. Standard errors are clustered at the county level.

Alternative Estimation of the Differential Peak Response

As further evidence, Table 3 examines if a similar peak period differential can be found using

an entirely different travel demand data set and measure of fuel costs. I estimate how reported
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individual trip lengths in miles and trip durations in minutes differentially respond to fuel costs

during peak periods using survey data from the 2017 National Household Travel Survey. I control

for peak periods, the log of fuel prices, and the variable of interest, Peak×ln(Gas Price), which

indicates if gasoline price elasticities vary between peak and off-peak periods. Regressions are

estimated using OLS with county and month fixed effects and standard errors clustered at the

county level.20

Columns (1) and (2) show the effects of fuel prices on trip mileage while columns (3) and (4)

show the effects on trip duration. Column (1) estimates the model using only data for trips where a

household (HH) vehicle was used. Column (2) uses only data where the HH vehicle was not used.

In other words, column (2) examines trips taken by modes other than HH vehicles (walking, public

transit, etc.) that theoretically should not have their length (in mileage or duration) affected by fuel

prices. Columns (3) and (4) vary in a similar fashion.

Table 3: Evidence of Differential Peak Elasticity Using NHTS Data

(1) (2) (3) (4)
ln(Miles)- ln(Miles)- ln(Trip Duration)- ln(Trip Duration)-
HH Vehicle Used HH Vehicle NOT

Used
HH Vehicle Used HH Vehicle NOT

Used
ln(Gas Price) 0.019 0.010 0.090 0.159

(0.119) (0.386) (0.083) (0.210)
ln(Gas Price)×Peak -0.132** 0.020 -0.087** -0.053

(0.052) (0.151) (0.037) (0.086)
Peak 0.241*** 0.096 0.143*** 0.144*

(0.045) (0.136) (0.033) (0.077)

Observations 758,296 164,022 757,526 164,607
County FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes

Notes: Dependent variable is either the log of trip length in miles or trip duration in minutes. Data is separated
between trips where a household vehicle was or was not used. Standard errors are clustered at the county level. Peak
is an indicator variable equal to one if the hour of the day is between 05:00 and 09:59 or 16:00 and 18:59. ***
Statistically significant at the 1% level; ** 5% level; * 10% level.

20While gasoline prices may be endogenous here, the direction of the bias likely means the estimates are conserva-
tive. Further, using crude oil prices as an instrument for gasoline prices (a common strategy in previous literature) is
not possible while also including month fixed effects because these global price series do not provide spatial variation.
Including month fixed effects, as is done in these regressions, therefore controls for any endogeneity that a crude oil
price IV might correct.
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A differential peak period effect is estimated in columns (1) and (3) for HH vehicle trips.

When fuel prices increase by 1%, peak period trips decrease in length by 0.132% and durations

fall by 0.087%.21 I fail to find a statistically significant effect of gasoline prices during off-peak

periods, suggesting that the commonly estimated cumulative effect of gasoline prices on travel

demand largely occurs during peak periods. Not surprisingly, I fail to find a statistically significant

effect of fuel prices during peak or off-peak periods on trip lengths when the HH vehicle is not

used. These trips are unlikely to be affected by fuel prices (except perhaps in total quantity) as gas

prices are largely inconsequential to the costs of these modes. These results confirm that fuel costs

disproportionately affect driver behavior during peak demand periods.

Drivers appear to be more responsive to both fuel economy and gasoline prices during these

peaks. Replicating the main result using survey data and a different measure of fuel costs is re-

assuring that the results are not driven by the primary data source or identification strategy. In

addition to the intensive margin responses shown here, I examine how fuel costs affect the share of

trips taken and share of miles driven during the peak period in Appendix Table A5 finding similar,

though statistically insignificant, results.

I further examine the robustness of my results in Appendix Tables A4, A6, A9, and A12. Table

A4 provides reduced form estimates showing that drivers respond differentially to anomalous HDD

during peak periods. In Table A6, I find that the results are robust to varying definitions of the HDD

instrument and weather controls. In Table A9, I estimate a differential response of traffic counts

to fuel costs during peak periods using an alternative identification strategy — instrumenting for

fuel prices using gasoline content regulations as done in Nehiba (2022). Finally, in Table A12,

I include time-varying regional fixed effects. These fixed effects control for unobservable time-

varying confounders that arise between regions like a particularly cold winter covering the entire

Midwest. I find that controlling for these effects does not qualitatively change the peak-period

differential response, but does increase the aggregate effect of fuel economy on traffic counts.

Beyond the importance of these results for the rebound effect, it is generally fascinating that

any shift in driving costs would have a larger effect during peak hours. Whether the change be due

to fuel policies like fuel economy standards or gasoline taxes, congestion tolls, or other factors, a

21The drop in trip durations does not appear to be due to increases in speed, as evidenced by Appendix Table A5.
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differential peak-period response may have enormous implications.22

5.3 Mechanisms Driving Differential Response

In contrast to the estimates presented in Table 2, prior literature has consistently posited that

travel demand is less elastic during peak periods because the trips are more important and fuel costs

are a smaller share of total costs (Knittel and Sandler, 2018; Parry and Small, 2005; Portney et al.,

2003; Yang et al., 2020). Further, Bento et al. (2013) explicitly estimates that drivers on highways

in Southern California are less responsive to fuel costs during peak periods. In this section, I will

explore several possible explanations for these results.

Weekdays and Weekends

Peak periods are generally associated with high priority morning and evening commutes. As a

first step to understanding why drivers respond to fuel efficiency and fuel costs to a greater extent

during peak periods, I separately estimate the effects of fuel economy during peak and off-peak

periods for weekdays and weekends. Columns (1) and (2) of Table 4 provide IV estimates for only

weekdays while (3) and (4) provide estimates for only weekends.

The first-stage results in Panels A and B are similar to those seen in Table 2 and have Kleibergen-

Paap F-statistics ranging from 81 to 92; however, the second-stage results diverge between week-

days and weekends. The effect of ln(MPG) decreases for weekdays and increases for weekends.

In contrast, the effect of ln(MPG)×Peak becomes larger in magnitude during weekdays and much

smaller for weekends, relative to the estimates in Table 2. Further, the effects of ln(MPG)×Peak

on traffic counts on weekends are estimated with less precision.

These results indicate a clear divide in elasticities between weekdays and weekends, partic-

ularly during peak periods. Drivers are more elastic during off-peak periods on weekends than

weekdays. Evidence for a peak period differential becomes weaker during weekends and stronger

when focusing solely on weekdays. Cumulatively, these estimates suggest that commute trips

largely drive the differential elasticities between peak and off-peak periods.

22Consider even the reduced form results presented in Appendix Table A4. The anticipated mechanism is that
anomalous HDD impact MPG and therefore traffic counts. However, even if this were not true, it is interesting that
the effect of anomalous HDD on traffic counts is larger during the peak period.
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Several characteristics of carpooling and public transit that make these options specifically

lower-cost alternatives for commute trips may contribute to this pattern. First, carpool and public

transit generally operate to bring workers to employment centers. Second, public transportation

systems often operate at a higher frequency during commute hours. Third, there are lower average

mental costs associated with mode switching for a commute trip relative to leisure trips which tend

to be more idiosyncratic. For example, an individual switching her commute mode from car to rail

only needs to look up transit directions once to remove 10 car trips per week, but each leisure trip

switched may require its own route planning.

Table 4: Weekday and Weekend Estimates of Fuel Economy Elasticities

(1) (2) (3) (4)
Weekdays Weekends

Panel A: ln(MPG) first stage
Anom. HDD -0.092*** -0.091*** -0.089*** -0.089***

(0.005) (0.005) (0.006) (0.005)
Anom. HDD×Peak -0.000 -0.000 -0.000*** -0.000**

(0.000) (0.000) (0.000) (0.000)

Panel B: ln(MPG)×Peak first stage
Anom. HDD -0.004*** -0.004*** -0.005*** -0.005***

(0.001) (0.001) (0.000) (0.001)
Anom. HDD×Peak -0.080*** -0.080*** -0.077*** -0.077***

(0.006) (0.006) (0.006) (0.006)

Panel C: ln(Traffic Count) second stage
ln(MPG) -0.098 0.117 0.151 0.341***

(0.104) (0.087) (0.124) (0.109)
ln(MPG) × Peak 0.257*** 0.271*** 0.111* 0.118*

(0.058) (0.059) (0.062) (0.063)

Observations 98,746,716 98,746,716 96,023,855 96,023,855
F-stat of Excluded Instruments 91.929 89.923 80.905 77.589
Peak×Sensor FE Yes Yes Yes Yes
Peak×Week FE Yes Yes Yes Yes
Peak×State×MOY FE Yes No Yes No
Peak×County×MOY FE No Yes No Yes

Notes: Weekends are Saturday and Sunday. Weekdays are Monday–Friday. Standard errors are clustered at the
county level. Every regression controls for contemporaneous temperature, precipitation, snow, snow depth, gasoline
prices, gasoline taxes, unemployment rate, and population. ln(MPG) is fleet average fuel economy in miles per gallon.
Anomalous HDD are deviations in historic average HDD in a state-month-of-year from a baseline of 1901–2000
measured in 1000s. Peak is an indicator variable equal to one if the hour of the day is between 05:00 and 09:59 or
16:00 and 18:59. *** Statistically significant at the 1% level; ** 5% level; * 10% level.
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Highways and nonhighways

Table 5 examines how the results vary depending on the road type. I divide the traffic sensors

into two groups, highway and nonhighway, based on functional class codes provided by the FHWA.

A majority of the sensors are located on highways, with 81.2 million highway observations relative

to the 18.3 million nonhighway observations. Though the functional class codes provide additional

road-type information, I avoid further segmentation of the data due to the relatively small number

of sensors in more precisely coded nonhighway classifications.

Columns (1) and (2) of Table 5 use only observations from nonhighway sensors, while columns

(3) and (4) use only highway sensors. For nonhighways, fuel economy only has a statistically

significant impact on traffic counts during peak periods, and this effect is larger in magnitude than

that estimated in Table 2. In contrast, the results from the highway-only regressions are similar to

those in Table 2 with a slightly larger ln(MPG) effect and somewhat diminished peak differential.

While both road classifications exhibit a stronger response to fuel economy during peak peri-

ods, this differential effect is more pronounced for nonhighway trips. This discrepancy can par-

tially explain why the results presented in this paper differ from those in Bento et al. (2013), which

finds drivers are less responsive to fuel costs during peak periods. Bento et al. (2013)’s empirical

analysis used only highway data from Los Angeles and Ventura counties in Southern California,

which may have muted the effects of fuel prices during peak periods.

The more pronounced effect for nonhighway roads also provides suggestive evidence that

shorter trips or those in denser areas are more likely to be affected by fuel economy changes.

Intuitively, these trips may have higher quality substitutes. For example, it is likely easier to switch

a relatively short trip from car to public transit than it is a 25-mile trip taken by highway. Simi-

larly, shorter trips are more likely to be performed using active transportation modes. This may be

especially true if the trip does not require crossing or traveling on/near a highway as these large

roadways significantly reduce an area’s “walkability” and safety for active transportation modes,

which contribute to individuals’ mode choice decisions (Liao et al., 2020; Nehiba and Tyndall,

2023).
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Table 5: Variation in Fuel Economy Elasticities between Road Types

(1) (2) (3) (4)
Nonhighways Highways

Panel A: ln(MPG) first stage
Anom. HDD -0.091*** -0.090*** -0.093*** -0.094***

(0.005) (0.005) (0.006) (0.005)
Anom. HDD×Peak -0.000 -0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

Panel B: ln(MPG)×Peak first stage
Anom. HDD -0.003*** -0.003*** -0.005*** -0.005***

(0.001) (0.001) (0.001) (0.001)
Anom. HDD×Peak -0.083*** -0.082*** -0.080*** -0.079***

(0.005) (0.005) (0.007) (0.007)

Panel C: ln(Traffic Count) second stage
ln(MPG) -0.208 -0.124 -0.025 0.201**

(0.145) (0.116) (0.113) (0.093)
ln(MPG) × Peak 0.316*** 0.315*** 0.178*** 0.178***

(0.085) (0.086) (0.059) (0.059)

Observations 18,336,280 18,336,280 81,186,582 81,186,581
F-stat of Excluded Instruments 158.041 154.794 73.503 70.454
Peak×Sensor FE Yes Yes Yes Yes
Peak×Week FE Yes Yes Yes Yes
Peak×State×MOY FE Yes No Yes No
Peak×County×MOY FE No Yes No Yes

Notes: Highways are roads with FHWA classifications of “Interstate” or “Principal Arterial - Other Freeways and
Expressways.” Nonhighways include road classifications “Minor Collector,” “Major Collector,” “Minor Arterial,”
and “Principal Arterial - Other.” Standard errors are clustered at the county level. Every regression controls for
contemporaneous temperature, precipitation, snow, snow depth, gasoline prices, gasoline taxes, unemployment rate,
and population. ln(MPG) is fleet average fuel economy in miles per gallon. Anomalous HDD are deviations in historic
average HDD in a state-month-of-year from a baseline of 1901–2000 measured in 1000s. Peak is an indicator variable
equal to one if the hour of the day is between 05:00 and 09:59 or 16:00 and 18:59. *** Statistically significant at the
1% level; ** 5% level; * 10% level.

Commuting Modes

Finally, I examine how fuel economy differentially affects areas depending on their commuting

mode choices. Unfortunately, granular panel data on commuting mode choices across the sample

do not exist. In lieu of these data, I segment the data based on a county being above or below the

US median share of a particular commuting mode based on cross-sectional data from the Census

Transportation Planning Products. Splitting the data in this manner highlights whether having a

high share of a commuting mode is associated with higher peak period elasticities.

Table 6 presents the results from five separate commuting mode choices. Each mode has

two regressions — one including counties above the US median share of commuters selecting

that mode and a second containing counties below the median share of commuters selecting that
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mode. Columns (1)–(2) present results for above and below median share of commuters selecting

any mode besides a privately owned passenger vehicle (e.g., public transit, active transit, etc.).

Columns (3)–(4) present results for public transit, (5)–(6) active transportation modes (walking

and bicycling), (7)–(8) carpooling, and (9)–(10) work from home (no commute necessary).

The first-stage results are qualitatively similar across regressions and to those presented previ-

ously. However, a significant amount of variation exists in the second-stage estimates. Counties

that have a higher share of commuters selecting modes other than private passenger vehicles drive

the results (columns (1) and (2)). Counties above the median in this metric exhibit statistically sig-

nificant effects for ln(MPG) and ln(MPG)×Peak, with both effects being larger in magnitude than

those estimated in Table 2. In fact, the model fails to estimate a statistically effect of fuel economy

regardless of time of day in counties below the median in this metric. The statistical insignificance

in counties with high shares of commute trips performed with passenger vehicles may also explain

the difference in conclusions between this paper and Bento et al. (2013), which again examines

only Southern California — an area anecdotally known for sprawl and car dependency.

Interestingly, the differential effect of fuel economy during peak periods is not driven by coun-

ties with high shares of transit ridership. Though a statistically significant differential effect exists

in counties with above median transit share, the effect is larger in counties below the median. This

result persists when I estimate the model separately for bus transit and rail transit, as can be seen in

Appendix Table A8. In contrast, active transportation (columns (5) and (6)), carpooling (columns

(7) and (8)), and working from home (columns (9) and (10)) all appear to be important for the

differential rebound effect during peak periods. Counties with higher shares of each of these mode

choices exhibit larger effects of ln(MPG)×Peak than their below median counterparts.

While public transit is undoubtedly valuable in reducing congestion, it appears drivers are

more likely to switch to other commute modes like active transportation or carpooling during peak

periods when fuel costs increase. These results again suggest that shorter (nonhighway) commute

trips may be the easiest trips for drivers to eliminate or mode switch, leading to more elastic

demand during peak periods.
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Table 6: Results by Commuting Mode Share

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Commute mode: Non-passenger vehicle Transit Active Carpool Work from home

Above
Median

Below
Median

Above
Median

Below
Median

Above
Median

Below
Median

Above
Median

Below
Median

Above
Median

Below
Median

Panel A: ln(MPG) first stage
Anom. HDD -0.089*** -0.105*** -0.090*** -0.107*** -0.102*** -0.077*** -0.083*** -0.111*** -0.094*** -0.100***

(0.006) (0.009) (0.006) (0.006) (0.006) (0.008) (0.005) (0.007) (0.006) (0.008)
Anom. HDD×Peak -0.000 0.000 -0.000 0.000 -0.000 0.000* -0.000** 0.000 -0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Panel B: ln(MPG)×Peak first stage
Anom. HDD -0.005*** -0.000 -0.006*** -0.002** -0.006*** -0.004*** -0.005*** -0.006*** -0.004*** -0.004**

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002)
Anom. HDD×Peak -0.075*** -0.104*** -0.074*** -0.102*** -0.087*** -0.067*** -0.071*** -0.095*** -0.084*** -0.090***

(0.008) (0.011) (0.007) (0.006) (0.008) (0.009) (0.006) (0.009) (0.006) (0.010)

Panel C: ln(Traffic Count) second stage
ln(MPG) 0.209** -0.077 0.203* 0.038 0.158 0.194 0.430*** -0.077 0.138 0.099

(0.106) (0.121) (0.104) (0.088) (0.099) (0.144) (0.121) (0.091) (0.112) (0.103)
ln(MPG) × Peak 0.286*** 0.020 0.176** 0.291*** 0.234*** 0.146 0.305*** 0.200*** 0.284*** 0.124**

(0.076) (0.071) (0.071) (0.054) (0.063) (0.115) (0.083) (0.068) (0.078) (0.062)

Observations 68,801,755 30,721,106 76,312,659 23,210,202 55,079,376 44,443,485 42,936,226 56,586,635 57,817,923 41,704,938
F-stat of Excluded Instruments 43.323 62.142 48.888 170.232 52.887 26.547 81.638 59.242 129.246 69.714
Peak×Sensor FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Peak×Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Peak×County×MOY FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Commuting mode shares come from the Census Transportation Planning Products. Non-passenger vehicle
includes all modes besides consumer-owned passenger vehicles. Transit includes all bus and rail modes. Active
includes walking and bicycling. Standard errors are clustered at the county level. Every regression controls for
contemporaneous temperature, precipitation, snow, snow depth, gasoline prices, gasoline taxes, unemployment rate,
and population. ln(MPG) is fleet average fuel economy in miles per gallon. Anomalous HDD are deviations in historic
average HDD in a state-month-of-year from a baseline of 1901–2000 measured in 1000s. Peak is an indicator variable
equal to one if the hour of the day is between 05:00 and 09:59 or 16:00 and 18:59. *** Statistically significant at the
1% level; ** 5% level; * 10% level.

6 Interaction Between the Rebound Effect and Externalities

I next apply the results to an analysis of fuel economy standards in the US. For simplicity, I

omit many implementation issues surrounding the Corporate Average Fuel Economy Standards

and focus solely on the effects of an exogenous shock to fuel economy on driving. I do not account

for how CAFE standards affect vehicle weight and therefore collision severity (Bento et al., 2017),

alter used vehicle prices and scrappage decisions (Jacobsen and van Benthem, 2015), are regressive

(Davis and Knittel, 2019), and other issues raised in the vast literature on fuel efficiency standards.

The policy analysis estimates how the rebound effect from a uniform 1.5% MPG increase in

fleet fuel economy, the annual increase in CAFE standard fuel economy stringency required for

new vehicles in model years 2021 through 2026 by the Safer Affordable Fuel-Efficient (SAFE)

Vehicles Rule23, would affect pollution and congestion if applied to the entire fleet. Given the

23The SAFE rule, passed in March of 2020, replaced more stringent (approximately 5%/year) annual fuel
economy increases for these model years from a previous 2012 rule, and itself has since been replaced
by a rule for 2024–2026 model year vehicles. See https://www.nhtsa.gov/laws-regulations/
corporate-average-fuel-economy#light-duty-vehicles for more information on CAFE and
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limitations, this is not a direct or complete analysis of fuel economy standards, but rather an il-

lustration of how accounting for time-of-day heterogeneity in the rebound effect impacts the costs

and benefits of fuel efficiency standards more broadly.

The analysis requires several parameters beyond the peak and off-peak elasticities estimated in

Table 2. Local pollution damages from Muller and Mendelsohn (2012) and recently updated social

cost of greenhouse gas (SC-GHG) values from EPA (2023) can be converted to damages per gallon

of gasoline consumed using EPA estimates of per-gallon emissions of nitrogen oxides, particulate

matter (both particles less than 10 microns and less than 2.5 microns), volatile organic compounds,

and carbon.24 Unfortunately, estimates of US average marginal external congestion costs per mile

that vary by the time of day are not available. I therefore take a conservative approach using a

range of costs. As a baseline for congestion costs, I use inflation adjusted lower and upper bounds

of US average marginal external costs of congestion from FHWA (2000) for off-peak and peak

per-mile congestion costs, respectively. This calculation estimates peak period congestion costs

to be $0.164 per mile while off-peak costs are $0.012 per mile. These costs are comparable to

other averaged estimates in magnitude and the dispersion between peak and off-peak is similar to

that seen in studies estimating costs in single locations (Parry et al., 2005; Parry, 2005; Parry and

Small, 2009). I then perform the analysis assuming peak congestion costs that are ± $0.10/mile

from the baseline of $0.164/mile. Finally, I use values of light-duty vehicle VMT and average fuel

economy in 2019 from the Bureau of Transportation Statistics.

Table 7 presents results from two policy simulations. Panel B examines the change in pollution

and congestion externalities from a 1.5% increase in fleet fuel economy when accounting for the

heterogeneity in the timing of the rebound effect estimated in this paper. The peak period elasticity

is 0.36, while the off-peak elasticity is significantly smaller at 0.156. In contrast, Panel C assumes

that the peak elasticity is 0, while the off-peak elasticity is identical to Panel B at 0.156.

Panel B estimates a total increase in VMT of 8,687 million miles due to the rebound effect.

This VMT increase equates to just over 26 miles per capita annually, or an individual changing

their daily VMT by less than a tenth of a mile. The improved fuel efficiency leads to a reduction

in pollution valued at $1,101 million in that year due to reduced fuel consumption. However,

SAFE.
24For simplicity, the SC-GHG values use a 2.5% near-term Ramsey discount rate, an emission year of 2020, and

values are adjusted to 2019 dollars.
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because the increase in VMT occurs mostly during peak periods, the increase in fuel economy

leads to large increases in congestion. Congestion damages range from $417–$1,621 million,

with the baseline per-mile congestion cost ($0.164/mile) leading to an estimated $1,019 million

increase in congestion damages. Under the lowest congestion cost scenario, net external damages

are estimated to decrease. However, a net increase in external damages is found under the highest

congestion cost scenario, and the changes in costs between pollution and congestion nearly cancel

out under the baseline congestion cost scenario. In other words, the pollution benefits have the

potential to be entirely offset by the exacerbated congestion costs under plausible assumptions

when I account for the relatively elastic peak period. A much smaller increase in VMT of 2,666

million miles is seen in Panel C where the rebound effect is assumed to be zero during peak periods.

This simulation leads to larger pollution benefits of $1,365 million/year and substantially smaller

increases in congestion costs. These smaller congestion costs arise because the rebound effect

occurs solely during the uncongested off-peak periods in this setting. Assuming an inelastic peak

produces a vastly different conclusion of the net change in external damages.

Table 7: Policy Analysis

Panel A: Baseline Simulation Parameters
Peak congestion costs per milea [$0.064, $0.164, $0.264]
Off-peak congestion costs per milea $0.012
Pollution costs per gallonb $1.076
Light-duty vehicle VMT (millions)c 2,254,309
Light-duty vehicle fuel economyd 24.2

Panel B: Effects of 1.5% Increase in MPG Accounting for Elastic Peak Period
Off-Peak Elasticity 0.156
Peak Elasticity 0.36
∆ VMT (millions) 8,687
Pollution Damages (millions) -$1,101
Congestion Damages (millions) [+$417, +$1,019, +$1,621]
Net ∆ External Damages (millions) [-$684, -$82, +$521]

Panel C: Effects of 1.5% Increase in MPG Assuming Inelastic Peak Period
Off-Peak Elasticity 0.156
Peak Elasticity 0
∆ VMT (millions) 2,666
Pollution Damages (millions) -$1,365
Congestion Damages (millions) +$32
Net ∆ External Damages (millions) -$1,333

Notes:
a https://www.fhwa.dot.gov/policy/hcas/addendum.cfm;
b Muller and Mendelsohn (2012) and EPA (2023)
c https://www.bts.gov/content/us-vehicle-miles
d https://www.bts.gov/content/average-fuel-efficiency-us-light-duty-vehicles
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These conclusions can be seen clearly in Figure 4. This figure plots the changes in the external

pollution and congestion costs as well as the net change in external costs by the hour of day under

both elasticity regimes using peak congestion costs of $0.164 per mile. Using the elasticities I

estimate in this paper in the top panel, congestion costs increase significantly during morning and

evening peaks, while pollution costs decrease during the daytime hours. Erroneously assuming

an inelastic peak in the bottom panel leads to a reversal of these findings. Large pollution bene-

fits are accrued during peak periods because these hours have high VMT and no rebound effect.

Further, the assumed inelastic effect during peak periods leads there to be only minor increases in

congestion costs.

Figure 4: Change in External Costs Due to 1.5% Increase in Fuel Economy

Notes: Figure depicts the hourly change in external pollution and congestion costs as well as the net difference in
external costs from the policy analyses in Panels B and C of Table 7, assuming peak congestion costs of $0.164/mile.
The top panel uses elasticities estimated in this paper, while the bottom panel incorrectly assumes that drivers are
inelastic during peak periods.
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These calculations are intended for illustrative purposes only. They do not represent a com-

plete picture of the benefits and costs of fuel efficiency standards nor do they amount to a complete

accounting of net benefits of externalities associated with fuel economy standards. However, this

exercise sheds light on the importance of accounting for differential behavioral responses to pol-

icy in a second-best setting. The relative behavioral responses, measured as elasticities, between

peak and off-peak periods play an important role in determining the welfare effects of fuel econ-

omy standards and many other policies that uniformly shift the costs of driving throughout the

day. Per-capita VMT increases only slightly when fuel economy improves, but the bulk of this

increase occurs during already congested periods. Though fuel economy standards reduce vehicle

emissions, these benefits have the potential to be almost entirely or more than offset by increases

in congestion costs depending on parameter assumptions. In contrast, applying these elasticities to

an analysis of a policy which increases costs, like a gasoline tax, would find much larger benefits

than previous studies because of the relatively large reduction in driving during congested peak

periods.

7 Conclusion

The congestion created by peaks within daily travel demand is an enormously costly negative

externality. While demand patterns are easily observed, how and why drivers respond to prices

during these peak periods is less clear. Heterogeneity in elasticities between peak and off-peak

periods is particularly important when considering transportation policies which uniformly affect

the costs of driving but have the potential to disproportionately affect the demand for travel during

congested periods. However, the rebound effect from fuel economy standards has been estimated

widely, but studies have focused on the magnitude of the effect with little consideration for when

the effect occurs.

I examine how drivers differentially respond to the costs of driving across the hours of the

day. I find that drivers are more responsive to fuel costs, as measured by fuel economy, during

peak periods. A 10% increase in fuel economy elicits a 3.6% increase in traffic counts during

peak demand periods but only a 1.6% increase during off-peak periods. This estimate proves to

be robust to various estimation methods, numerous tests of instrument validity, and replication
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using a different data source and measure of fuel costs. This estimated fuel economy elasticity

— a measure of the rebound effect that loosens many of the assumptions made in prior studies

— is critically important for the evaluation of fuel efficiency standards. A policy simulation that

accounts for the doubling of the rebound effect during peak periods relative to off-peak periods

leads congestion costs from fuel economy improvements to be exacerbated to the extent that they

nearly cancel out or, in some cases, exceed the pollution benefits.

These results highlight the importance of timing when considering energy efficiency programs.

However, the context of the specific durable good and market failures involved will play a role

in the effectiveness of the programs. For example, Boomhower and Davis (2020) illustrate that

much of the energy savings from air conditioner energy efficiency improvements occur during

peak electricity demand hours — a desirable outcome because electricity costs are high during

these peak hours. Fuel economy standards, while reducing peak period gasoline consumption and

therefore emissions, have the undesirable effect of exacerbating congestion externalities. Likewise,

substitution patterns may influence these conclusions. Automobiles, particularly for trips during

peak commuting hours, appear to have relatively low-cost alternatives that individuals can switch

to, driving some of the within-day variation in the rebound effect. Other goods covered by energy

efficiency programs, say household appliances like a washing machine or oven, may or may not

have high-quality substitutes available. Individuals may be more likely to shift the timing of use

for these goods from high-cost peak periods as opposed to substituting to another product during

that period, which could have substantial welfare implications.
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Appendix

Table A1 provides summary statistics (mean, standard deviation, and observations) for each

variable used in the analysis.

Table A2 presents results from regressions with varying definitions of peak period to ensure

that this modeling choice does not drive the results. A broad definition of the peak periods (05:00

and 09:59 and 15:00 and 19:59 for morning and evening peaks, respectively) is used in column (1).

I progressively narrow this window across columns until only the hours 08:00–08:59 and 17:00–

17:59 are defined as peak hours in column (4). In column 5, I denote a single period from 05:00 to

19:59 as the peak period.

The results are qualitatively similar across the regressions and consistent with those estimated

in the preferred specification in column (4) of Table 2. ln(MPG) and ln(MPG)×Peak are positive

and statistically significant in each regression. As the definition of peak narrows (i.e., hours are

moved from being defined as peak to being defined as off-peak hours), ln(MPG) becomes larger in

magnitude and ln(MPG)×Peak becomes smaller in magnitude (with the exception of column (3)).

This pattern is to be expected if the hours redefined as off-peak hours exhibit stronger responses

to fuel efficiency. These results reinforce that traffic counts are more responsive to fuel efficiency

changes during peak periods.

Table A3 examines the robustness of the results to the removal of varying months of the year.

In columns (1)–(4), warmer months that may be more likely to violate the instrumental variables

exclusion restriction are removed. It may be that abnormally cold weather affects driving patterns

and activities to a greater extent during warmer months than already cold winter months. For

example, a day that is 10 degrees colder than historical averages in July may dissuade an individual

from going to the beach or bicycling to work. In contrast, a 10 degree drop in temperature from

the historic average in December is likely to have a smaller impact on the probability that an

individual engages in either of these activities because that probability was already small. Column

(5) removes February and March to examine if the results are robust to seasonal patterns in the

MPG measure that arise due to changes in the VMT and fuel sales estimates used to construct

MPG.
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Column (1) includes only winter months (December–February) and the number of months

included increases across the columns until only summer months (June–August) are excluded in

column (4). The results are qualitatively similar across specifications and are consistent with the

main results in Table 2. Interestingly, the magnitude of the ln(MPG)×Peak effect becomes larger

when restricting the sample to only colder months (columns (1) and (2)). This result suggests that

including all months of the year in the analysis may be producing a conservative estimate of the

effects. However, ln(MPG) is negative and statistically significant in column (2), so these results

should be interpreted with caution. Excluding February and March in column (5) also does not

qualitatively impact the results.

Table A4 provides reduced form estimates of the effects of Anom. HDD and Anom. HDD×Peak

on traffic counts. The reduced form estimates show that drivers respond to cold weather shocks

to a greater extent during the peak period. Ultimately, drivers illustrating a larger response to any

cost shifter, fuel or otherwise, during the peak period is of interest.

Table A5 presents additional results using the NHTS travel data. In columns (1) and (2), I

test whether the differential decrease in trip durations during the peak period seen in Table 3 is

due to increases in speed. This MPH variable is constructed using the trip miles and duration,

and I fail to find a statistically significant effect regardless of whether a household vehicle was

used for the trip. This result suggests that the change in peak trip durations is due to reductions in

distance. In columns (3) and (4), I collapse the data to the household by month level to examine

how the share of a household’s mileage and total number of trips during the peak period varies

with gasoline prices. While I fail to estimate a statistically significant result in either column, I

estimate that higher gasoline prices have a negative effect on the share of mileage and quantity

of trips occurring during the peak period. This lack of precision may be due to smaller number

of observations caused by the data aggregation, but the results are broadly consistent with those

presented in the main text.

Table A6 provides estimates using coarser weather controls and instrumenting for fuel econ-

omy using raw HDD as opposed to anomalous HDD. Columns (1) and (2) control for contempo-

raneous state-level precipitation and temperatures as opposed to the county-level weather controls

used in the main analysis. The effect of ln(MPG) becomes substantially larger in columns (1) and

(2); however, the size of the ln(MPG)×Peak effect remains relatively constant at 0.2 and statis-
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tically significant. This suggests that weather may be affecting estimates of the average rebound

effect, but not the differential effect during the peak period. Columns (3) and (4) instrument for

fuel economy using HDD, but control for county-level weather. The estimates for both ln(MPG)

and ln(MPG)×Peak are nearly identical to those reported in the main analysis.

Table A7 separates the effect of fuel economy on traffic counts between morning and evening

peak periods. I accomplish this by interacting ln(MPG) with separate indicators for the morning

and evening peak periods, which necessitates an additional first-stage regression with a similarly

interacted IV. The results indicate that the differential effect of fuel economy is larger during the

evening peak, but still exists at relevant and statistically significant levels during the morning peak

period.

Table A8 further decomposes the public transit mode share regressions from Table 6 to regres-

sions for rail transit and bus transit. The results for both are qualitatively similar to the transit

regressions in Table 6, confirming that areas with high levels of bus or rail transit are not driving

the results.

Table A9 examines if a peak period differential gasoline price elasticity exists in the traffic

sensor data. I accomplish this by restricting the sample to the 380 counties for which county-

level gasoline price data are available and instrumenting for gasoline prices using gasoline content

regulations — an identification strategy similar to Nehiba (2022). Gasoline content regulations are

seasonal pollution controls, often mandated at the county level, that cause fuel prices to increase

due to higher refining costs and market segmentation. They are shown to be plausibly exogenous

to travel demand in Nehiba (2022) as the regulation stringency is due to a region’s weather and

past travel demand, which can be readily controlled for using location fixed effects. Importantly,

the content regulations are independent from contemporaneous changes in travel demand.

I examine how RVP 9, RVP 7.8, RVP 7, and RFG gasoline content regulations affect gasoline

prices and the ensuing effect of these exogenous changes in prices on vehicle counts. Columns

(1) and (2) examine the aggregate effect of these regulations. Each regulation is found to have a

positive and statistically significant effect on gasoline prices. The gasoline price elasticity of traffic

counts is found to be between -0.254 and -0.259, similar in magnitude to Nehiba (2022) and the

results estimated in this paper for the fuel economy elasticity of traffic counts.

Columns (3) and (4) estimate how gasoline prices may differentially affect traffic counts during
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peak periods. Again, drivers are found to be more elastic during peak periods; however, drivers

are estimated to have a positive baseline elasticity and a very large negative elasticity differential

during peak periods. The total peak period elasticity is estimated to be approximately -1 in both

specifications. Though this elasticity and the differential estimated are quite large in magnitude,

the results again support the conclusion that drivers are more elastic during peak periods.

Table A10 varies the level of standard error clustering in the preferred specification. Column

(1) clusters at the traffic sensor level. Column (2) clusters at the week level. Column (3) two-way

clusters the errors at the county and week levels. The results remain statistically significant at

conventional levels regardless of the level of clustering chosen.

Table A11 tests the robustness of the results to the inclusion of additional controls for economic

conditions. Both specifications include controls for quarterly county-level GDP and annual county-

level median income. The results are qualitatively similar to those in Table 2.

Table A12 includes regional fixed effects that vary over time. I group states using the EIA’s

Petroleum Administration for Defense Districts (PADDs) definitions.25 I then include PADD×Month

and PADD×Week fixed effects and their counterparts interacted with the Peak period indicator as

well. The inclusion of these fixed effects controls for unobservable time-varying confounders

across regions. The fixed effects further isolate the identifying variation to changes within the

PADD region and time. The results remain qualitatively similar — the fuel economy elasticity is

around 0.14–0.29 larger during peak periods — though the aggregate effect of fuel economy on

traffic counts increases in magnitude across all specifications.

Following (Ge and Ho, 2019), Table A13 includes lags of the weather variables to examine

potential hysteresis in driver decisions — do individuals adjust their travel patterns this week due

to weather shocks that happened in previous weeks. In column 1, I include 1-week lag term for

each of the weather variables. Column 2 includes lag terms for 2-weeks, and column 3 in includes

a third week so that the specification (including the contemporaneous week) covers approximately

a month of weather shocks. Column 4 includes 3-weeks of lag terms for only temperature.

The results are highly robust to these (and other) lag specifications. Focusing on column 3,

higher contemporaneous temperatures lead to a statistically and economically significant increase

25These groupings and more information about PADDs can be found at https://www.eia.gov/
todayinenergy/detail.php?id=4890. Following the EIA, I break the East Coast PADD 1 into PADD 1A,
PADD 1B, and PADD 1C.
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in driving during the week. The effect of temperature in previous weeks remains positive, but it

is far smaller. Though the first and third lags are statistically significant, all estimates are small

enough to be considered economically insignificant. Similarly, precipitation and snow in a week

greatly reduces driving, but small effects are found for the lagged variables. Based on these results,

it appears that there is either little hysteresis or delayed effects in driver response to weather, or it

is already largely captured by using week-level data.

It is possible that drivers respond differently to fluctuations in MPG that are caused by small

and persistent changes in anomalous HDD versus fluctuations from extreme deviations. Small,

persistent anomalous HDD variation may have a less salient impact on MPG, leading only ultra-

price sensitive individuals to respond to these shocks. Likewise, larger shocks may have a more

salient impact, and a broader set of individuals could respond. Similar differences may arise when

considering driver response to typically small daily gasoline price fluctuations versus large salient

fluctuations in prices (e.g., changes from Russia invading Ukraine or gasoline taxes).

To investigate if drivers do have different responses to MPG due to the underlying first-stage

variation, Table A14 splits the sample based on how many days in a month have “extreme” levels of

anomalous HDD. I define an extreme day as follows. First, I calculate a state-level daily anomalous

HDD variable using the disaggregated weather station data and historic HDD values based on the

more aggregated NOAA Climate at a Glance data. Monthly measures of anomalous HDD based on

the weather station data do not perfectly align with the Climate at a Glance data due to differences

in imputation and aggregation, but the two measures are very strongly correlated. I then define an

extreme day as one that has an anomalous HDD value that is plus-or-minus two standard deviations

from the average anomalous HDD in the sample.

Table A14 splits the sample along these extreme weather days. Column 1 includes only months

with at least 6 extreme days while column 2 includes only months with fewer than 6 extreme days.

Columns 3 and 4 set the threshold at 10 extreme days. The first-stages for each regression are

strong, but the F-statistics and coefficients for and first-stage effects are smaller for columns 2 and

4 which include less extreme weather days as extreme weather provides a stronger source of iden-

tifying variation. In the second stage, the effect of ln(MPG) varies substantially in magnitude and

significance. However, the effect of ln(MPG) is statistically significant, quite stable in magnitude,

and similar to the main result across each specification.
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These results provide some suggestive evidence that drivers respond in a similar fashion to

MPG shocks during peak periods caused by large and small weather events. There are several

limitations in splitting the sample as I do in Table A14 though. First, the aggregated nature of the

data creates some temporal mismatch when looking for this type of differential behavior. Second,

there is a mechanical relationship between extreme days and the strength of the first stage. More

extreme weather leads to more fluctuation in anomalous HDD and therefore more identifying vari-

ation. Table A14 purposefully splits the sample such that the first stage is strong (as defined by

usual measures of statistical significance and F-statistics). Drivers appear to respond similarly to

peak-period MPG fluctuations induced during months with fewer than 6 and more than 6 extreme

weather days. It is difficult to say if this similarity holds as the number of extreme days decreases

though.

Table A1: Summary Statistics

Variable Mean Std. Dev. Obs.

Traffic Count 399.8 616.3 99,522,862
Fuel Economy (MPG) 24.1 3.8 99,522,862
Anom. HDD -37.8 91.3 99,522,862
Contemporaneous HDD 394.4 412.9 99,522,862
Contemporaneous Temperature (Fahrenheit) 55.3 18.4 99,522,862
Contemporaneous Precipitation (mm) 29.2 30.1 99,522,862
Contemporaneous Snowfall (mm) 2.4 6.5 99,522,862
Contemporaneous Snow Depth (mm) 42.4 129.3 99,522,862
Gasoline Price ($/gal) 2.94 0.66 99,522,862
Gasoline Tax ($/gal) 0.27 0.08 99,522,862
Unemployment Rate 0.053 0.021 99,522,862
County Population 528,281 998,972 99,522,862

Notes: All dollar values are inflation adjusted to 2019 dollars.
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Table A2: Varying Peak Definitions

(1) (2) (3) (4) (5)
Peak=1 if hour of day= 05:00–09:59

15:00–19:59
06:00-08:59
16:00–18:59

07:00–08:59
17:00–18:59

08:00–08:59
17:00–17:59

05:00–18:59

Panel A: ln(MPG) first stage
Anom. HDD -0.093*** -0.093*** -0.093*** -0.093*** -0.093***

(0.005) (0.005) (0.005) (0.005) (0.005)
Anom. HDD×Peak -0.000 -0.000 -0.000 0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

Panel B: ln(MPG)×Peak first stage
Anom. HDD -0.005*** -0.003*** -0.002*** -0.001*** -0.008***

(0.001) (0.001) (0.000) (0.000) (0.001)
Anom. HDD×Peak -0.080*** -0.080*** -0.080*** -0.080*** -0.080***

(0.006) (0.006) (0.006) (0.006) (0.006)

Panel C: ln(Traffic Count) second stage
ln(MPG) 0.127 0.176** 0.185** 0.212*** 0.059

(0.081) (0.081) (0.080) (0.081) (0.089)
ln(MPG)×Peak 0.258*** 0.210*** 0.261*** 0.178*** 0.302***

(0.050) (0.046) (0.039) (0.042) (0.067)

Observations 99,522,861 99,522,861 99,522,861 99,522,860 99,522,860
F-stat of Excluded Instruments 91.453 91.5 91.489 91.239 91.529
Peak×Sensor FE Yes Yes Yes Yes Yes
Peak×Week FE Yes Yes Yes Yes Yes
Peak×County×MOY FE Yes Yes Yes Yes Yes

Notes: Standard errors are clustered at the county level. Every regression controls for contemporaneous temperature,
precipitation, snow, snow depth, gasoline prices, gasoline taxes, unemployment rate, and population. ln(MPG) is fleet
average fuel economy in miles per gallon. Anomalous HDD are deviations in historic average HDD in a state-month-
of-year from a baseline of 1901–2000 measured in 1000s. Peak is an indicator variable equal to one if the hour of the
day is between those listed at the top of each column. *** Statistically significant at the 1% level; ** 5% level; * 10%
level.
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Table A3: Varying the Months Included

(1) (2) (3) (4) (5)
MOY included: Dec.–Feb. Nov.–Mar. Oct.–Apr. Sep.–May Apr.–Jan.

Panel A: ln(MPG) first stage
Anom. HDD -0.104*** -0.101*** -0.094*** -0.090*** -0.087***

(0.006) (0.005) (0.005) (0.005) (0.006)
Anom. HDD×Peak -0.000 -0.000 -0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

Panel B: ln(MPG)×Peak first stage
Anom. HDD -0.003*** -0.005*** -0.004*** -0.004*** -0.003***

(0.001) (0.001) (0.001) (0.001) (0.001)
Anom. HDD×Peak -0.096*** -0.089*** -0.084*** -0.080*** -0.079***

(0.007) (0.006) (0.006) (0.006) (0.006)

Panel C: ln(Traffic Count) second stage
ln(MPG) -0.090 -0.138** 0.031 0.070 0.289**

(0.078) (0.069) (0.087) (0.083) (0.118)
ln(MPG) × Peak 0.323*** 0.334*** 0.185*** 0.208*** 0.237***

(0.058) (0.054) (0.060) (0.054) (0.065)

Observations 24,090,951 40,655,621 57,731,222 74,420,332 83,202,509
F-stat of Excluded Instruments 149.19 183.651 178.809 168.716 98.429
Peak×Sensor FE Yes Yes Yes Yes Yes
Peak×Week FE Yes Yes Yes Yes Yes
Peak×County×MOY FE Yes Yes Yes Yes Yes

Notes: Data are restricted to months of the year listed at the top of each column. Standard errors are clustered at the
county level. Every regression controls for contemporaneous temperature, precipitation, snow, snow depth, gasoline
prices, gasoline taxes, unemployment rate, and population. ln(MPG) is fleet average fuel economy in miles per gallon.
Anomalous HDD are deviations in historic average HDD in a state-month-of-year from a baseline of 1901–2000
measured in 1000s. Peak is an indicator variable equal to one if the hour of the day is between 05:00 and 09:59 or
16:00 and 18:59. *** Statistically significant at the 1% level; ** 5% level; * 10% level.
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Table A4: Reduced Form

Dependent Variable:ln(Traffic Count)
(1) (2) (3) (4)

Anom. HDD -0.002 -0.022*** 0.004 -0.016**
(0.009) (0.007) (0.009) (0.007)

Anom. HDD×Peak -0.016*** -0.016***
(0.004) (0.004)

Observations 99,522,862 99,522,861 99,522,862 99,522,861
R-squared 0.667 0.668 0.667 0.668
Peak×Sensor FE Yes Yes Yes Yes
Peak×Week FE Yes Yes Yes Yes
Peak×State×MOY FE Yes No Yes No
Peak×County×MOY FE No Yes No Yes

Notes: All specifications estimated using Ordinary Least Squares. Standard errors are clustered at the county level.
Every regression controls for contemporaneous temperature, precipitation, snow, snow depth, gasoline prices, gasoline
taxes, unemployment rate, and population. ln(MPG) is fleet average fuel economy in miles per gallon. Peak is an
indicator variable equal to one if the hour of the day is between 05:00 and 09:59 or 16:00 and 18:59. *** Statistically
significant at the 1% level; ** 5% level; * 10% level.

Table A5: Additional Results Using NHTS Data

(1) (2) (3) (4)
ln(Avg. MPH)- ln(Avg. MPH)- HH Share of HH Share of
HH Vehicle Used HH Vehicle NOT

Used
Mileage During
Peak

Trips During Peak

ln(Gas Price) -0.079 -0.120 -0.010 -0.010
(0.072) (0.273) (0.079) (0.079)

ln(Gas Price)×Peak -0.042 0.066
(0.050) (0.106)

Peak 0.095** -0.044
(0.043) (0.096)

Observations 757,352 163,646 94,814 94,810
County FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes

Notes: Dependent variable is either the log of trip average speed, the share of a household’s mileage occurring during
peak periods, or the share of a household’s trips that took place during the peak period. Data is separated between trips
where a household vehicle was or was not used in columns (1) and (2). Standard errors are clustered at the county
level. Peak is an indicator variable equal to one if the hour of the day is between 05:00 and 09:59 or 16:00 and 18:59.
*** Statistically significant at the 1% level; ** 5% level; * 10% level.
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Table A6: Alternative Weather Controls and HDD Instrument

(1) (2) (3) (4)
Specification: Alt. Weather Controls Alt. HDD Instrument

Panel A: ln(MPG) first stage
Anom. HDD -0.160*** -0.161***

(0.013) (0.013)
Contemporaneous HDD -0.093*** -0.093***

(0.005) (0.005)
Anom. HDD×Peak -0.000 -0.000

(0.000) (0.000)
Contemporaneous HDD×Peak -0.000 -0.000

(0.000) (0.000)

Panel B: ln(MPG)×Peak first stage
Anom. HDD -0.030*** -0.030***

(0.004) (0.004)
Contemporaneous HDD -0.005*** -0.005***

(0.001) (0.001)
Anom. HDD×Peak -0.080*** -0.079***

(0.006) (0.006)
Contemporaneous HDD×Peak -0.081*** -0.080***

(0.006) (0.006)

Panel C: ln(Traffic Count) second stage
ln(MPG) 0.566*** 0.618*** -0.048 0.156*

(0.153) (0.150) (0.101) (0.082)
ln(MPG) × Peak 0.204*** 0.211*** 0.199*** 0.204***

(0.052) (0.052) (0.053) (0.054)

Observations 104,575,134 104,575,134 99,522,862 99,522,861
F-stat of Excluded Instruments 73.945 77.504 95.08 91.434
Peak×Sensor FE Yes Yes Yes Yes
Peak×Week FE Yes Yes Yes Yes
Peak×State×MOY FE Yes No Yes No
Peak×County×MOY FE No Yes No Yes

Notes: Standard errors are clustered at the county level. Columns (1) and (2) control for contemporaneous state-
level temperature and precipitation while columns (3) and (4) control for county-level temperature, precipitation,
snow, snow depth. Every regression controls for gasoline prices, gasoline taxes, unemployment rate, and population.
ln(MPG) is fleet average fuel economy in miles per gallon. Anomalous HDD are deviations in historic average HDD
in a state-month-of-year from a baseline of 1901–2000 measured in 1000s. HDD are simple contemporaneous HDD
for a state and month. Peak is an indicator variable equal to one if the hour of the day is between 05:00 and 09:59 or
16:00 and 18:59. *** Statistically significant at the 1% level; ** 5% level; * 10% level.
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Table A7: AM and PM Peak Differences

(1) (2)
Panel A: ln(MPG) first stage

Anom. HDD -0.093*** -0.093***
(0.005) (0.005)

Anom. HDD×Morning Peak 0.000 0.000
(0.000) (0.000)

Anom. HDD×Evening Peak -0.000 -0.000
(0.000) (0.000)

Panel B: ln(MPG)×Morning Peak first stage
Anom. HDD -0.003*** -0.002***

(0.001) (0.000)
Anom. HDD×Morning Peak -5.452*** -5.453***

(0.153) (0.153)
Anom. HDD×Evening Peak 6.737*** 6.738***

(0.197) (0.197)

Panel C: ln(MPG)×Evening Peak first stage
Anom. HDD -0.002*** -0.003***

(0.000) (0.000)
Anom. HDD×Morning Peak 5.372*** 5.373***

(0.155) (0.155)
Anom. HDD×Evening Peak -6.818*** -6.818***

(0.195) (0.195)

Panel D: ln(Traffic Count) second stage
ln(MPG) -0.049 0.155*

(0.101) (0.082)
ln(MPG)×Morning Peak 0.106** 0.112**

(0.053) (0.054)
ln(MPG)×Evening Peak 0.326*** 0.332***

(0.052) (0.053)

Observations 99,522,862 99,522,861
F-stat of Excluded Instruments 63.383 60.953
Peak×Sensor FE Yes Yes
Peak×Week FE Yes Yes
Peak×State×MOY FE Yes No
Peak×County×MOY FE No Yes

Notes: This table separately estimates the effects of ln(MPG) during morning and evening peaks. Morning peak is
an indicator variable equal to one if the hour of the day is between 05:00 and 09:59, and evening peak is an indicator
equal to one if the hour of the day is between 16:00–18:59. Standard errors are clustered at the county level. Every
regression controls for contemporaneous temperature, precipitation, snow, snow depth, gasoline prices, gasoline taxes,
unemployment rate, and population. ln(MPG) is fleet average fuel economy in miles per gallon. Anomalous HDD are
deviations in historic average HDD in a state-month-of-year from a baseline of 1901–2000 measured in 1000s. ***
Statistically significant at the 1% level; ** 5% level; * 10% level.
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Table A8: Bus and Rail Commute Shares

(1) (2) (3) (4)
Sample: Bus transit Rail transit

Above Median Below Median Above Median Below Median
Panel A: ln(MPG) first stage

Anom. HDD -0.090*** -0.105*** -0.088*** -0.103***
(0.006) (0.006) (0.007) (0.005)

Anom. HDD×Peak -0.000 -0.000 -0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Panel B: ln(MPG)×Peak first stage
Anom. HDD -0.006*** -0.002* -0.006*** -0.003***

(0.001) (0.001) (0.001) (0.001)
Anom. HDD×Peak -0.074*** -0.101*** -0.072*** -0.096***

(0.007) (0.006) (0.009) (0.006)

Panel C: ln(Traffic Count) second stage
ln(MPG) 0.203** 0.034 0.209* 0.122

(0.102) (0.091) (0.118) (0.079)
ln(MPG) × Peak 0.164** 0.328*** 0.158* 0.280***

(0.069) (0.057) (0.081) (0.056)

Observations 76,920,852 22,602,009 65,956,372 33,566,489
F-stat of Excluded Instruments 49.882 164.422 35.408 240.171
Peak×Sensor FE Yes Yes Yes Yes
Peak×Week FE Yes Yes Yes Yes
Peak×County×MOY FE Yes Yes Yes Yes

Notes: Bus transit covers all bus modes and rail transit covers all rail modes. Standard errors are clustered at the
county level. Every regression controls for contemporaneous temperature, precipitation, snow, snow depth, gasoline
prices, gasoline taxes, unemployment rate, and population. ln(MPG) is fleet average fuel economy in miles per gallon.
Anomalous HDD are deviations in historic average HDD in a state-month-of-year from a baseline of 1901–2000
measured in 1000s. Peak is an indicator variable equal to one if the hour of the day is between 05:00 and 09:59 or
16:00 and 18:59. *** Statistically significant at the 1% level; ** 5% level; * 10% level.
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Table A9: Evidence of Differential Peak Elasticity Using Gasoline Content Instruments

(1) (2) (3) (4)
Aggregate Effect Differential Peak

Panel A: ln(Gas Price) first stage
RVP 9 0.072*** 0.078*** 0.072*** 0.078***

(0.003) (0.003) (0.003) (0.003)
RVP 7.8 0.066*** 0.108*** 0.066*** 0.108***

(0.010) (0.022) (0.010) (0.022)
RVP 7 0.100*** 0.097*** 0.100*** 0.098***

(0.010) (0.009) (0.010) (0.009)
RFG 0.085*** 0.097*** 0.085*** 0.097***

(0.007) (0.005) (0.007) (0.005)
RVP 9×Peak -0.000 -0.000

(0.000) (0.000)
RVP 7.8×Peak -0.001** 0.000

(0.000) (0.001)
RVP 7×Peak -0.000 -0.000

(0.000) (0.001)
RFG×Peak -0.000 -0.000

(0.000) (0.001)

Panel B: ln(Gas Price)×Peak first stage
RVP 9 0.016*** 0.016***

(0.001) (0.001)
RVP 7.8 0.011*** 0.019***

(0.002) (0.003)
RVP 7 0.017*** 0.021***

(0.001) (0.002)
RFG 0.015*** 0.025***

(0.002) (0.002)
RVP 9×Peak 0.029*** 0.036***

(0.002) (0.001)
RVP 7.8×Peak 0.037*** 0.057**

(0.006) (0.028)
RVP 7×Peak 0.055*** 0.042***

(0.008) (0.007)
RFG×Peak 0.044*** 0.030***

(0.007) (0.002)

Panel C: ln(Traffic Count) second stage
ln(Gas Price) -0.259*** -0.254*** 0.203*** 0.286***

(0.049) (0.027) (0.073) (0.046)
ln(Gas Price)×Peak -1.235*** -1.441***

(0.109) (0.088)

Observations 32,376,493 32,376,493 32,376,493 32,376,493
F-stat of Excluded Instruments 130.427 220.447 34.425 129.867
Peak×Sensor FE Yes Yes Yes Yes
Peak×State×MOY FE Yes No Yes No
Peak×County×MOY FE No Yes No Yes

Notes: Standard errors are clustered at the county level. Every regression controls for contemporaneous temperature,
precipitation, snow, and snow depth. RVP 9, RVP 7.8, RVP 7, and RFG are indicator variables equal to one when
the gasoline content regulation is active. Regressions contain only data from the 380 counties for which county-level
gasoline price data are available. Peak is an indicator variable equal to one if the hour of the day is between 05:00 and
09:59 or 16:00 and 18:59. *** Statistically significant at the 1% level; ** 5% level; * 10% level.
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Table A10: Alternative Error Clustering

(1) (2) (3)
Cluster level: Traffic Sensor Week County and Week

Panel A: ln(MPG) first stage
Anom. HDD -0.093*** -0.093*** -0.093***

(0.001) (0.007) (0.008)
Anom. HDD×Peak -0.000 -0.000 -0.000

(0.000) (0.000) (0.000)

Panel B: ln(MPG)×Peak first stage
Anom. HDD -0.005*** -0.005*** -0.005***

(0.000) (0.001) (0.002)
Anom. HDD×Peak -0.080*** -0.080*** -0.080***

(0.001) (0.006) (0.008)

Panel C: ln(Traffic Count) second stage

ln(MPG) 0.156*** 0.156 0.156
(0.038) (0.143) (0.158)

ln(MPG) × Peak 0.204*** 0.204** 0.204*
(0.025) (0.103) (0.110)

Observations 99,522,861 99,522,861 99,522,861
F-stat of Excluded Instruments 3316.243 97.689 50.339
Peak×Sensor FE Yes Yes Yes
Peak×Week FE Yes Yes Yes
Peak×County×MOY FE Yes Yes Yes

Notes: Standard error clustering varies across regressions with two-way clustering used in column (3). Every re-
gression controls for contemporaneous temperature, precipitation, snow, snow depth, gasoline prices, gasoline taxes,
unemployment rate, and population. ln(MPG) is fleet average fuel economy in miles per gallon. Anomalous HDD
are deviations in historic average HDD in a state-month-of-year from a baseline of 1901–2000 measured in 1000s.
Peak is an indicator variable equal to one if the hour of the day is between 05:00 and 09:59 or 16:00 and 18:59. ***
Statistically significant at the 1% level; ** 5% level; * 10% level.
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Table A11: Additional Controls

(1) (2)
Panel A: ln(MPG) first stage

Anom. HDD -0.093*** -0.093***
(0.005) (0.005)

Anom. HDD×Peak -0.000 -0.000
(0.000) (0.000)

Panel B: ln(MPG)×Peak first stage
Anom. HDD -0.005*** -0.005***

(0.001) (0.001)
Anom. HDD×Peak -0.081*** -0.080***

(0.006) (0.006)

Panel C: ln(Traffic Count) second stage
ln(MPG) -0.044 0.166**

(0.101) (0.082)
ln(MPG) × Peak 0.199*** 0.204***

(0.053) (0.054)

Observations 99,522,862 99,522,861
F-stat of Excluded Instruments 95.074 91.430
Peak×Sensor FE Yes Yes
Peak×Week FE Yes Yes
Peak×State×MOY FE Yes No
Peak×County×MOY FE No Yes

Notes: Standard error are clustered at the county level. Every regression controls for contemporaneous temperature,
precipitation, snow, snow depth, gasoline prices, gasoline taxes, unemployment rate, population, GDP, and income.
ln(MPG) is fleet average fuel economy in miles per gallon. Anomalous HDD are deviations in historic average HDD
in a state-month-of-year from a baseline of 1901–2000 measured in 1000s. Peak is an indicator variable equal to one
if the hour of the day is between 05:00 and 09:59 or 16:00 and 18:59. *** Statistically significant at the 1% level; **
5% level; * 10% level.
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Table A12: Including Regional Time Fixed Effects

(1) (2) (3) (4)
Panel A: ln(MPG) first stage

Anom. HDD -0.104*** -0.104*** -0.111*** -0.111***
(0.009) (0.009) (0.006) (0.006)

Anom. HDD×Peak -0.000 -0.000 0.000 -0.000
(0.000) (0.000) (0.000) (0.000)

Panel B: ln(MPG)×Peak first stage
Anom. HDD -0.009*** -0.008*** -0.012*** -0.007***

(0.003) (0.001) (0.002) (0.001)
Anom. HDD×Peak -0.080*** -0.084*** -0.080*** -0.091***

(0.006) (0.010) (0.006) (0.008)

Panel C: ln(Traffic Count) second stage
ln(MPG) 0.488** 0.512** 0.363*** 0.331**

(0.193) (0.199) (0.123) (0.129)
ln(MPG) × Peak 0.204*** 0.140 0.204*** 0.291***

(0.053) (0.092) (0.053) (0.077)

Observations 99,522,861 99,522,861 99,522,861 99,522,861
F-stat of Excluded Instruments 72.479 32.519 175.704 73.918
Peak×Sensor FE Yes Yes Yes Yes
Peak×Week FE Yes Yes Yes No
Peak×County×MOY FE No Yes No Yes
PADD×Month FE Yes No No No
PADD×Month×Peak FE No Yes No No
PADD×Week FE No No Yes No
PADD×Week×Peak FE No No No Yes

Notes: PADD refers to Petroleum Administration for Defense Districts. Standard errors are clustered at the county
level. Every regression controls for contemporaneous temperature, precipitation, snow, snow depth, gasoline prices,
gasoline taxes, unemployment rate, and population. ln(MPG) is fleet average fuel economy in miles per gallon.
Anomalous HDD are deviations in historic average HDD in a state-month-of-year from a baseline of 1901–2000
measured in 1000s. Peak is an indicator variable equal to one if the hour of the day is between 05:00 and 09:59 or
16:00 and 18:59. *** Statistically significant at the 1% level; ** 5% level; * 10% level.

57



Table A13: Hysteresis in Weather Effects

(1) (2) (3) (4)
Panel A: ln(MPG) first stage

Anom. HDD -0.096*** -0.097*** -0.097*** -0.097***
(0.005) (0.005) (0.005) (0.005)

Anom. HDD×Peak -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000)

Panel B: ln(MPG)×Peak first stage
Anom. HDD -0.006*** -0.007*** -0.007*** -0.007***

(0.001) (0.001) (0.001) (0.001)
Anom. HDD×Peak -0.080*** -0.079*** -0.077*** -0.077***

(0.006) (0.006) (0.006) (0.006)

Panel C: ln(Traffic Count) second stage
ln(MPG) 0.137* 0.108 0.081 0.073

(0.080) (0.081) (0.080) (0.079)
ln(MPG) × Peak 0.203*** 0.220*** 0.231*** 0.231***

(0.054) (0.055) (0.057) (0.057)
Contemporaneous Temperature 0.021*** 0.021*** 0.021*** 0.021***

(0.001) (0.001) (0.001) (0.001)
Contemporaneous Temperature 1-Week Lag 0.000** 0.000** 0.000** 0.000

(0.000) (0.000) (0.000) (0.000)
Contemporaneous Temperature 2-Week Lag 0.000* 0.000 0.000

(0.000) (0.000) (0.000)
Contemporaneous Temperature 3-Week Lag 0.000*** 0.000***

(0.000) (0.000)
Contemporaneous Precip. -0.035*** -0.035*** -0.035*** -0.035***

(0.001) (0.001) (0.001) (0.001)
Contemporaneous Precip. 1-Week Lag 0.000*** 0.000*** 0.000***

(0.000) (0.000) (0.000)
Contemporaneous Precip. 2-Week Lag 0.000 0.000

(0.000) (0.000)
Contemporaneous Precip. 3-Week Lag 0.000

(0.000)
Contemporaneous Snow -0.260*** -0.261*** -0.262*** -0.263***

(0.029) (0.029) (0.029) (0.027)
Contemporaneous Snow 1-Week Lag 0.000*** 0.000** 0.000***

(0.000) (0.000) (0.000)
Contemporaneous Snow 2-Week Lag 0.000*** 0.000***

(0.000) (0.000)
Contemporaneous Snow 3-Week Lag 0.000***

(0.000)
Contemporaneous Snow Depth -0.005*** -0.004*** -0.004*** -0.003

(0.002) (0.002) (0.002) (0.002)
Contemporaneous Snow Depth 1-Week Lag 0.000 0.000 0.000

(0.000) (0.000) (0.000)
Contemporaneous Snow Depth 2-Week Lag -0.000 -0.000

(0.000) (0.000)
Contemporaneous Snow Depth 3-Week Lag -0.000

(0.000)

Observations 99,456,638 99,096,770 98,734,285 98,734,285
F-stat of Excluded Instruments 177.508 171.077 166.766 170.288
Peak×Sensor FE Yes Yes Yes Yes
Peak×Week FE Yes Yes Yes Yes
Peak×County×MOY FE Yes Yes Yes Yes

Notes: Standard errors are clustered at the county level. Every regression controls for contemporaneous temperature,
precipitation, snow, snow depth, gasoline prices, gasoline taxes, unemployment rate, and population. ln(MPG) is fleet
average fuel economy in miles per gallon. Anomalous HDD are deviations in historic average HDD in a state-month-
of-year from a baseline of 1901–2000 measured in 1000s. Peak is an indicator variable equal to one if the hour of the
day is between 05:00 and 09:59 or 16:00 and 18:59. *** Statistically significant at the 1% level; ** 5% level; * 10%
level.
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Table A14: Extreme Weather Months

(1) (2) (3) (4)
≥ 6 Extreme
Days

< 6 Extreme
Days

≥ 10 Extreme
Days

< 10 Extreme
Days

Panel A: ln(MPG) first stage
Anom. HDD -0.160*** -0.073*** -0.225*** -0.094***

(0.011) (0.009) (0.023) (0.006)
Anom. HDD×Peak 0.000 -0.000 0.001 -0.000

(0.000) (0.000) (0.001) (0.000)

Panel B: ln(MPG)×Peak first stage
Anom. HDD -0.008*** -0.005*** -0.002 -0.005***

(0.002) (0.001) (0.004) (0.001)
Anom. HDD×Peak -0.137*** -0.059*** -0.220*** -0.082***

(0.012) (0.010) (0.020) (0.007)

Panel C: ln(Traffic Count) second stage
ln(MPG) 0.037 0.369** 0.042 0.127

(0.075) (0.151) (0.133) (0.091)
ln(MPG) × Peak 0.253*** 0.247*** 0.224** 0.250***

(0.065) (0.082) (0.113) (0.055)

Observations 11,795,226 87,727,509 5,019,396 94,503,389
F-stat of Excluded Instruments 67.127 16.798 50.73 65.891
Peak×Sensor FE Yes Yes Yes Yes
Peak×Week FE Yes Yes Yes Yes
Peak×County×MOY FE Yes Yes Yes Yes

Notes: Extreme days are defined as a day plus-or-minus 2 standard deviations from average anomalous HDD. The
sample is split between months with more or less extreme days as noted at the top of each column. Standard errors are
clustered at the county level. Every regression controls for contemporaneous temperature, precipitation, snow, snow
depth, gasoline prices, gasoline taxes, unemployment rate, and population. ln(MPG) is fleet average fuel economy in
miles per gallon. Anomalous HDD are deviations in historic average HDD in a state-month-of-year from a baseline of
1901–2000 measured in 1000s. Peak is an indicator variable equal to one if the hour of the day is between 05:00 and
09:59 or 16:00 and 18:59. *** Statistically significant at the 1% level; ** 5% level; * 10% level.
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