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This presentation will provide an overview of ORD assessment products and the types of
decisions they inform. It will highlight innovations in different assessment approaches and will
introduce the new EPA Transcriptomics Assessment Product, which is designed to
address important gaps and target chemicals lacking traditional toxicity testing data. @;

Additional Information and Registration: https://www.epa.gov/research-states/epa-tools-and-resources-
webinar-series
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Computational Toxicology and Exposure Communities of Practice Webinar Series

The Scientific Underpinnings of the EPA
Transcriptomic Assessment Product

(ETAP) and Value of Information
(VOI) Case Study

11:00 a.m. — 12:00 p.m. ET
—— Thursday, August 22, 2024

This webinar will discuss the EPA Transcriptomics Assessment Product, which allows us to
know what dose of a chemical humans can be exposed to without substantially risking adverse
health effects. The presentation will provide a deeper dive on the scientific underpinnings of

ETAP and discuss the value of information (VOI) case study on this new
assessment product.

Additional Information and Registration: https://www.epa.gov/chemical-research/computational-
toxicology-communities-practice
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Center for Environmental Measurement and
Modeling

* Conducting research to advance the Agency’s
ability to measure and model contaminants in

the environment, including research to

provide fundamental methods and models
needed to implement environmental statutes.

Our research involves:

Occurrence, fate, and transport in the
natural environment

Regulatory methods and models

Tools to inform and evaluate
environmental management practices
and policies

Environmental indicators
Contaminants of emerging concern

* CEMM hosts NTA expertise
across several
locations/Divisions

e RTP: Strynar, McCord, Bangma,
Newton, Liberatore

e Athens, GA: Evich, Washington,
Stevens, Weber, Henderson

* Narragansett, Rl: Robuck



Today’s outline

* Review of NTA: what is it? Why is it important for PFAS?

 Case studies focused on “real world” samples:
* Water - , k. - W"
* Sediment T Sl
* Soil
* Biota: Vegetation
* Fish (not covered today)

Picture: a researcher sampling water in a river by dipping a sampling bottle into the water




Measuring unknown or understudied PFAS is
key to understand totality of exposure

L— FLUORINE MASS BALANCE ANALYSIS +«—

UNIDENTIFIED ORGANOFLUORINE MEASURED 37 PFAS
Water 1790 ng/LF
Sediment 152 ng/g F w.w,
Fish liver 258 ng/g F w.w.
Sewage 1260 ng/LF
0% 20% 40% 60% 80% 100%

Aro et al. 2021, Chemosphere, https://doi.org/10.1016/j.chemosphere.2021.131200



NTA facilitates discovery of novel chemicals

* Targeted Analysis — “Known Knowns” {Targeted
* Defined list of chemicals, requires standards

* Chemical identification compared to databases and _
libraries, limited to candidates in lists Discovery

e Capable of discovering unknown chemicals in a given
sample pending preparation and analysis conditions

e Time- and effort-intensive



NTA is made possible by high resolution mass
spectrometry (HRMS)
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100s - 1000s of features may be detected via HRMS.
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Q: How do we identify and measure unknown features?

A: We use HRMS tools to prioritize and ID novel compounds to
varying degrees of confidence

* Inclusion in libraries + DU HRMS Toolbox
databases
* Occurrence /

| [
4y © Human + ecological risk
Remediation

Feature prioritization
Mass defect filtering
Homologue searching
Diagnostic fragments and adducts

Strynar et al. 2023, JESEE, https://doi.org/10.1038/s41370-023-00578-2



Novel PFAS are increasingly found in environmental
and biological matrices

Legacy PFAS
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Novel, chlorine-containing PFAS were recently
identified in the US and NW ltaly

ClI-PFPECAs
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Nontargeted mass-spectral detection of chloroperfluo-
ropolyether carboxylates in New Jersey soils

Washington et al., Science 368, 1103—-1107 (2020)



CI-PFPECAs in soils provide information on spatial distribution and transport based on
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CI-PFPECAs in soils provide information on spatial distribution and transport based on
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PFNA - CI-PFPECAs = What Else? Where Else?
How are these novel PFAS behaving in the environment?

Vegetation
e Davis et al. 2023

Soil
* Washington et al.
2020
* Evichetal 2022

Sediment and sediment cores
* Ongoing work, Robuck and
Cashman

Water
* Washington et al. 2020
Biota * McCord et al. 2020
* Ongoing work, Robuck and * Ongoing work, McCord
Cashman * Ongoing work, Robuck



Sediment cores provide an opportunity to evaluate PFAS deposition

over time

* Radiometric dating of core underway

Little Mantua

Each horizon measured for PFAS via targeted and nontargeted analysis

Core Surface:
root mass, silty
sediment

Texture and color
change-
preserved
stratigraphy

Crude oil layers
present indicative of ™

spill events in DR

W Sand layer 19707
.| Plant-rail spur
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below sand layer

Sediment Density g/fce

-l

Tl peeh
*

P

.;._'. =]

- .
W alaat b

| g aug o T T .

T

Cores are characterized using physical and chemical measurements to understand geological context
Each core subsampled at intervals based on logging data and visual information
Site information used to estimate initial sedimentation rates
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CI-PFPECAs increase with decreasing sediment depth in core taken
from Little Mantua Creek
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Chlorinated PFPECAs dominate in surface water, with discovery of new H- and F-substituted

analogs
e Surface water ] Chlorinated [ Fluorinated [ Hydrogenated [] cher
Summer Winter
data from
mainstem DE 1.00
sites
* Average
abundance b 0.75 |
season ! c Changing use of Cl-
| o PFPECAS?
* Normalized to =
summer flow ©
Q'O >0 Seasonal
levels o :
y environmental
(2
changes?

©
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Downstream 7 Downstream
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Paired vegetation is dominated by shorter chain Cl-

PFPECAs and PFCAs

1 ! e m All Others
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* Vegetation also dominated by smaller PFAS Surface Soi Vegetation

* Elevated C9, C11, C13 near Solvay ; Surflon was in use
until 2003

Davis et al., Environ. Sci. Technol. 57, 24, 8994-9004 (2023)



Paired vegetation is dominated by shorter chain Cl-

PFPECAs and PFCAs

3
CIPFCA = -0.07C#+1.1
= 2 A i R=-0.248P=0.01
[=]
u: [ B ]
£ 1 -
2 0 li i
VAF (X) = Xveg E0- 'ml"ﬁn"”
- [X] . o ° = l '
soil < -1 short =-0.52C#+2.9 ' 2
% R=-0.741P<0.01 * 9
- -2 long =-0.13C#+0.56 § o A
R=-0.325P <0.01
_3 1 1 1 1 1
2 4 6 8 10 12 14
Fluorinated Carbons (#)
2
5 B
S Short = 0.14C#- 0.64 ®
o R=0.643P<0.01 o ® |long=-0.32C#+2.8
T | e g ¢ e R=-0.664P < 0.01
S ] ® . °
SAF (X) = Casub 20 et Pl
" [(Xlsoi1 2 e-® 8
soil £ 1 ° 03
= 0
Qo [} L
[N
< 5 |
o CIPFCA =-0.29(C#) + 1.5
° R=-0.696 P < 0.01
_3 1 1 T T T
2 4 6 8 10 12 14

Fluorinated Carbons (#)

- PFCA

Vegetation Accumulation Factor (VAF)

Ratio enables comparison between different compounds
Short-chain PFCAs exhibit stronger trend with chain length
Long-chain PFCAs and CI-PFPECAs follow similar trend with chain
length

Subsoil Accumulation Factor (SAF)

Ratio enables comparison between different compounds

For CI-PFPECAs, significant reduction in subsoil accumulation factor
with increased chain length

Legacy PFCAs show similar trend with chain length, but overall
higher accumulation in soil cores

Davis et al., Environ. Sci. Technol. 57, 24, 8994-9004 (2023)



Paired vegetation is dominated by shorter chain Cl-
PFPECAs and PFCAs

- PFCA
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After normalizing PFAS in terrestrial vegetation to estimated soil water, the trends flip from negative
to positive for the CI-PFPECAs and long-chain PFCAs, becoming more consistent with reported

. . Davis et al., Environ. Sci. Technol. 57, 24, 8994-9004 (2023)
aquatic accumulation patterns



Possibility of transformation?
CTS: PFAS Reaction Library

Introduction of additional function groups
e Potential for transformation in the

environment — expanding list of possible PFAS
exposure

Chemical Transformation Simulator (CTS) web-based

tool for predicting environmental and biological

transformation pathways and physiochemical

properties of organic chemicals

Incorporates environmental and metabolic reaction

schemes based on published literature

59 reaction schemes generated for PFAS

transformation/metabolism

17 PFAS functional groups covered

c F o I
N L” ~N
FSC&( Y %
F F

CF3 F F

s = - I B

Reaction Process

Decarboxylation

Desulfonation

Epoxidation

Hydrolysis

Hydroxylation

N-Deacetylation

N-Dealkylation

Oxidation

Reduction

Total

https://ged.epa.gov/cts/
Weber et al., Environmental Science: Processes & Impacts, 24(5), 689-753 (2022)



Predicting CI-PFPECA transformation products

it Y
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l a-Decarboxylation (-CO) [21]
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Pathway predicted using PFAS module of CTS

Example shown for (0,1) congener

* These predicted degradation products are expected at low
concentrations in nontargeted data — the CTS tool is vital in
informing us on what to look for!

Evich et al., Environ. Sci. Technol. 56, 12, 7779-7788, (2022)



Predicting CI-PFPECA transformation products
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* Pathway predicted using PFAS module of CTS

* Example shown for (0,1) congener

* These predicted degradation products are expected at low
concentrations in nontargeted data — the CTS tool is vital in
informing us on what to look for!
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Iterative analysis of different environmental matrices
provides insight about complexity of PFPECA exposure

Compound Name Cl15,0 Cl1 0,1 -(N2) Cl10,2 -(N3) Cl10,3 - (N4) Cl10,4 - (N5) Cl0,5
Environmental Occurrence WER Nl 2l | ikely Present Washington 2020  Washington 2020  Washington 2020 [ Present
Compound Name H4,0 H 5,0 HO0,4 HO0,5
Environmental Occurrence Present Present

Compound Name F1,0 F2,0 F 3,0 F 4,0 F 5,0 FO0,2 F 0,2 F0,3 Fo04 F0,5
Environmental Occurrence |Present Present Present Likely Present Present Present Likely Present

Compound Name diOH-1,0 diOH-2,0 diOH-3,0 diOH-4,0 diOH-5,0 diOH-0,1 diOH-0,2 diOH-0,3 diOH-0,4 diOH-0,5
Environmental Occurrence |Likely Present Evich 2022

Compound Name epox-1,0 epox-2,0 epox-3,0 epox-4,0 epox-5,0 epox-0,1 epox-0,2 epox-0,3 epox-0,4 epox-0,5
Environmental Occurrence likely Present Evich 2022 Likely Present

Compound Name Cl1,1-(M3) Cl1,2 -(M4) Ci1,3 Cl21 Cl2,2 Cl23 Cl 31 C13,2 Cl41 ClI51
Environmental Occurrence JER TG P2 BRI N Ity 202@ Present C Present Present

Compound Name H1,3 H2,1 H2,.2 H2,3 H3,1 H3,2 H4,1 H5,1
Environmental Occurrence Present Present Present

Compound Name F1,1 F1,2 F1,3 F21 F 2,2 F 2,3 F 31 F 3,2 Fa41 F5,1
Environmental Occurrence |Present Likely Present Likely Present Present Present Present Present

Compound Name diOH-1,1 diOH-1,2 diOH-1,3 diOH-2,1 diOH-2,2 diOH-2,3 diOH-3,1 diOH-3,2 diOH-4,1 diOH-5,1
Environmental Occurrence |Evich 2022

Compound Name epox-1,1 epox-1,2 epox-1,3 epox-2,1 epox-2,2 epox-2,3 epox-3,1 epox-3,2 epox-4,1 epox-5,1
Environmental Occurrence |Evich 2022 Likely Present

Robuck, draft/deliberative
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A Third Generation: Identification of Polymeric PVDF
Byproducts in Surface Water

PVDF Sulfonate PVDF Carboxylate PVDF Sulfate
doi: 10.1021/acs.est.6b05330
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Slide courtesy Dr. James McCord


https://dx.doi.org/10.1021%2Facs.est.6b05330
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In summary...

* HRMS facilitates NTA of PFAS, allowing us to discover unknown or
understudied PFAS beyond those typically monitored via targeted
analysis

* A series of studies focused on samples from SW New Jersey
demonstrate the utility of this approach

* Multiple novel or understudied PFAS discovered across different
environmental matrices over time

* Discovery facilitates further evaluation of physicochemical properties,
environmental behavior, etc.
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EPA

Questions, comments, concerns?

Thank you to our colleagues and collaborators

ACESD: Michaela Cashman, lIzak Hill, Maggie McNamara, Bryan Clark
RTP: James McCord, Mark Strynar, Jackie Bangma
URI: Rainer Lohmann
EPD: John Washington, Mary Davis, Eric Weber, Caroline Stevens, Matthew Henderson

New Jersey Dept. Environmental Protection: Sandra Goodrow, Erica Bergman

Contact Info:
Marina Evich, evich.marina@epa.gov
Anna Robuck, robuck.anna@epa.gov

The views expressed in this presentation are those of the authors and do not
necessarily represent the views or policies of the U.S. Environmental
Protection Agency. 32
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