# **Quality Assurance Project Plan for**

# Analysis of the 2022 National Lakes Assessment Fish Fillet Samples for Mercury, Per- and Polyfluoroalkyl Substances, and Polychlorinated Biphenyls

**Revision 2** 

# August 25, 2023

Prepared by:

United States Environmental Protection Agency Office of Water Office of Science and Technology Standards and Health Protection Division

Prepared with support from:

General Dynamics Information Technology Company *under:* Office of Water Engineering and Analysis Division Contract No. 68HERC23D0002

# **Revision History**

#### August 25, 2023 - Revision 2

This revision includes edits to describe the procedures for PCB analyses of National Lakes Assessment 2022 fillet samples and aqueous QC samples and adds them to the mercury and PFAS analyses that are currently underway. A more detailed list of edits follows below:

- The revision number and the date on the cover page were updated.
- The footnote on the cover page was removed.
- This revision history was added.
- Section A was updated to remove mention of adding PCB information in a future revision.
- Section A6 was revised to include the Squam Lake samples that EPA agreed to have analyzed for PCBs on behalf of the New Hampshire Department of Environmental Services.
- Section B1 was revised to include the Squam Lake samples.
- Section B2.2 was updated to mention the Squam Lake samples.
- The placeholder text for PCBs in Sections B4.3 and B5.3 was replaced with the actual details.
- Section B7 was updated to include the calibration information for PCBs.
- Section D was updated to mention the Squam Lake samples.
- The Reference section was updated with the citation for the QA manual from the PCB laboratory.
- Appendix B was updated to include the PCB target MDLs and MLs.
- Appendix C was updated to include the QC acceptance criteria from Method 1668C for the PCB analyses.

#### April 18, 2023 - Revision 1

This revision includes edits to describe the procedures for PFAS analyses of National Lakes Assessment 2022 fillet samples and aqueous QC samples, as planned for the future, and adds them to the mercury analyses that are currently underway. A more detailed list of edits follows below:

- The revision number and the date on the cover page were updated.
- The footnote on the cover page was revised to move the PFAS analyses to those covered by the QAPP and leaving only the PCB details to be added in Revision 2.
- This revision history was added.
- Section A was updated to remove mention of adding PFAS information in a future revision.
- Section A1 was reformatted to facilitate electronic signatures, removing the date column.
- The name of the mercury laboratory was added to Section A3, Figure 1, and Section B4.1.
- The name of the PFAS laboratory was added to Section A3, Figure 1, and Section B4.2.
- Section A7 was revised to add a reference to Appendix C for the PFAS QC criteria.
- The placeholder text for PFAS in Sections B4.2 and B5.2 was replaced with the actual details.

- Section B7 was updated to include the calibration information for PFAS.
- Section C1.1 was updated to permit the mercury analysis laboratory to work two batches ahead of the GDIT-EPA review of QC results.
- Sections C1.1 and C1.4 were updated to include the information for PFAS.
- Section D was updated to list all three analyte classes.
- The Reference section was updated with the citations for the QA manual from the mercury analysis laboratory and the QA manual for the PFAS laboratory.
- Appendix B was updated to include the PFAS target MDLs and MLs.
- Appendix C was added to include the QC acceptance criteria from Draft Method 1633 for the PFAS analyses.

# January 26, 2022 - Original QAPP (Revision 0) signed

#### Quality Assurance Project Plan for Analysis of the 2022 National Lakes Assessment Fish Tissue Study Samples for Mercury, Per- and Polyfluoroalkyl Substances, and Polychlorinated Biphenyls

# A. PROJECT MANAGEMENT

The U.S. Environmental Protection Agency's (EPA's) Office of Science and Technology (OST) within the Office of Water (OW) prepared this Quality Assurance Project Plan (QAPP) with support from GDIT under EPA Contract No. 68HERC23D0002. It presents objectives, performance requirements, and acceptance criteria for the analyses of the 2022 National Lakes Assessment (NLA 2022) Fish Tissue Study for mercury, per- and polyfluorinated alkyl substances (PFAS) (Revision 1), and polychlorinated biphenyl (PCB) congeners (Revision 2).

This QAPP does not address fish sample preparation because OST developed a separate QAPP in June 2022 that presents objectives, procedures, performance requirements, and acceptance criteria for the preparation of fillet tissue samples from whole fish composite samples collected from designated lakes and reservoirs (collectively referred to as "lakes") in the lower 48 states that have a surface area >1 hectare and that contain 1,000 square meters of open, unvegetated space and a permanent population of predator fish species (USEPA 2022a).

This QAPP was prepared in accordance with the most recent version of EPA QA/R-5, *EPA Requirements for Quality Assurance Project Plans* (USEPA 2001a), which was reissued in 2006. In accordance with EPA QA/R-5, this QAPP is a dynamic document that is subject to change as project activities progress. Changes to procedures in this QAPP must be reviewed by the OST Project Manager for the NLA 2022 Fish Tissue Study and by the EPA Standards and Health Protection Division (SHPD) Quality Assurance Coordinator to determine whether the changes will impact the technical and quality objectives of the project. If so, the QAPP will be revised accordingly, circulated for approval, and forwarded to all project participants listed in the QAPP distribution list (Section A3). Key project personnel and their roles and responsibilities are discussed in the QAPP section to follow (Section A4), and information on project background and description is provided in Sections A5 and A6, respectively.

#### A1. Approvals

John Healey, OST Project Manager, EPA

Ed Dunne, Chief, National Branch, EPA

Bill Kramer, SHPD QA Coordinator, EPA

Joe Beaman, OST QA Officer, EPA

Yildiz Chambers-Velarde, GDIT Task Order Manager

Harry McCarty, GDIT Project Leader

Emily Surpin, QA Coordinator

# A2. Table of Contents

| A. | PRO | JECT MANAGEMENT                                           | 4   |
|----|-----|-----------------------------------------------------------|-----|
|    | A1. | Approvals                                                 | 5   |
|    | A2. | Table of Contents                                         | 6   |
|    | A3. | Distribution List                                         | . 9 |
|    | A4. | Project/Task Organization 1                               | 10  |
|    | A5. | Problem Definition/Background 1                           | 14  |
|    | A6. | Project/Task Description 1                                |     |
|    | A7. | Quality Objectives and Criteria 1                         |     |
|    | A8. | Special Training/Certification1                           |     |
|    |     | Documents and Records 1                                   |     |
| B. | DAT | A GENERATION AND ACQUISITION 1                            | 18  |
|    | B1. | Sampling Process Design (Experimental Design) 1           | 18  |
|    | B2. | Fish Sampling and Fillet Sample Preparation Methods 1     | 19  |
|    |     | B2.1 Fish Sampling Methods                                |     |
|    |     | B2.2 Fillet Sample Preparation Methods                    | 20  |
|    | B3. | Sample Receipt and Inspection                             |     |
|    | B4. | Analytical Methods                                        |     |
|    |     | B4.1 Mercury Analysis of Fillet Tissue                    |     |
|    |     | B4.2 PFAS Analysis of Fillet Tissue and Rinsate Samples   |     |
|    |     | B4.3 PCB Analysis of Fillet Tissue and Rinsate Samples    |     |
|    | B5. | Analytical Quality Control                                |     |
|    |     | B5.1 Mercury Analysis QC Criteria                         |     |
|    |     | B5.2 PFAS Analysis QC Criteria                            |     |
|    |     | B5.3 PCB Analysis QC Criteria                             |     |
|    | B6. | Instrument/Equipment Testing, Inspection, and Maintenance |     |
|    | B7. | Instrument/Equipment Calibration and Frequency            |     |
|    | B8. | Inspection/Acceptance of Supplies and Consumables         |     |
|    | B9. | Non-direct Measurements                                   |     |
|    |     | Data Management                                           |     |
| C. |     | ESSMENT AND OVERSIGHT 2                                   |     |
|    | C1. | Assessments and Response Actions                          |     |
|    |     | C1.1 Surveillance                                         |     |
|    |     | C1.2 Product Review                                       |     |
|    |     | C1.3 Quality Systems Audit                                |     |
|    |     | C1.4 Readiness Review                                     |     |
|    |     | C1.5 Technical Systems Audit                              |     |
|    |     | C1.6 Data Quality Assessment                              |     |
|    | C2. | Reports to Management                                     |     |
| D. | DAT | A VALIDATION AND USABILITY                                | 32  |
|    | D1. | Data Review, Verification, and Validation                 |     |
|    |     | D1.1 Data Review                                          |     |
|    |     | D1.2 Data Verification                                    |     |
|    |     | D1.3 Data Validation                                      | 33  |

| D2.     | Verification and Validation Methods   | 33 |
|---------|---------------------------------------|----|
|         | D2.1 Verification Methods             | 33 |
|         | D2.2 Validation Methods               |    |
| D3.     | Reconciliation with User Requirements | 34 |
| REFEREN | NCES                                  | 35 |

# TABLES

| Table 1. | Primary and Secondary NLA 2022 Target Species for Whole Fish Collection       | 20 |
|----------|-------------------------------------------------------------------------------|----|
| Table 2. | QC Samples and Acceptance Criteria for Mercury Analysis of Fish Tissue        | 24 |
| Table 3. | QC Samples and Acceptance Criteria for PFAS Analysis of Tissue and Rinsates 2 | 25 |
| Table 4. | QC Samples and Acceptance Criteria for PCB Analysis of Fish Tissue            | 26 |
|          |                                                                               |    |

# FIGURES

| Figure 1. | NLA 2022 Fish Tissue Study project team organization      | 11 |
|-----------|-----------------------------------------------------------|----|
| Figure 2. | NLA 2022 Fish Tissue Study sampling locations (636 sites) | 15 |

# APPENDICES

- Appendix A Target List of NLA 2022 Fish Tissue Study Whole Fish Sampling Locations
- Appendix B NLA 2022 Detection and Quantitation Limits for Fish Tissue Study Analyses
- Appendix C 2022 NLA Quality Control (QC) Acceptance Criteria for PFAS and PCB Analyses of Great Lakes Fish Fillet Tissue Samples and QC Rinsate Samples

# LIST OF ACRONYMS AND ABBREVIATIONS

| CCV Continuing calibration verification |                                                            |  |  |  |
|-----------------------------------------|------------------------------------------------------------|--|--|--|
| EPA                                     | Environmental Protection Agency                            |  |  |  |
| HRGC High resolution gas chromatography |                                                            |  |  |  |
| HRMS                                    | High resolution mass spectrometry                          |  |  |  |
| ID                                      | Identification or identifier                               |  |  |  |
| LC/MS/MS                                | Liquid chromatography/tandem mass spectrometry             |  |  |  |
| LCS                                     | Laboratory control sample (also known as an OPR)           |  |  |  |
| MDL                                     | Method detection limit                                     |  |  |  |
| ML                                      | Minimum level (also referred to as the quantitation limit) |  |  |  |
| MS                                      | Matrix spike sample                                        |  |  |  |
| MSD                                     | Matrix spike duplicate sample                              |  |  |  |
| NLA                                     | National Lakes Assessment                                  |  |  |  |
| OPR                                     | Ongoing precision and recovery sample                      |  |  |  |
| OST                                     | Office of Science and Technology                           |  |  |  |
| OW                                      | Office of Water                                            |  |  |  |
| OWOW                                    | Office of Wetlands, Oceans, and Watersheds                 |  |  |  |
| PCB                                     | Polychlorinated biphenyl                                   |  |  |  |
| PFAS                                    | Per- and polyfluoroalkyl substances                        |  |  |  |
| QA                                      | Quality assurance                                          |  |  |  |
| QAPP                                    | Quality Assurance Project Plan                             |  |  |  |
| QC                                      | Quality control                                            |  |  |  |
| QCS                                     | Quality control sample                                     |  |  |  |
| QSA                                     | Quality system audit                                       |  |  |  |
| RPD                                     | Relative percent difference                                |  |  |  |
| RSD                                     | Relative standard deviation                                |  |  |  |
| SHPD                                    | Standards and Health Protection Division                   |  |  |  |
| SOP                                     | Standard operating procedure                               |  |  |  |
| SPE                                     | Solid-phase extraction                                     |  |  |  |
| TBD                                     | To be determined                                           |  |  |  |
|                                         |                                                            |  |  |  |

# A3. Distribution List

| Joe Beaman                     | Ed Dunne                           |
|--------------------------------|------------------------------------|
| USEPA/OW/OST (4303T)           | USEPA/OW/OST (4305T)               |
| 1200 Pennsylvania Avenue, N.W. | 1200 Pennsylvania Ave., N.W.       |
| Washington, DC 20460           | Washington, DC 20460               |
| 202-566-0420                   | 202-564-1655                       |
| beaman.joe@epa.gov             | dunne.edmond@epa.gov               |
| Yildiz Chambers-Velarde        | Harry McCarty                      |
| GDIT                           | GDIT                               |
| 3170 Fairview Park Drive       | 3170 Fairview Park Drive           |
| Falls Church, VA 22042         | Falls Church, VA 22042             |
| 703-254-0061                   | 703-254-0093                       |
| yildiz.chambers@gdit.com       | harry.mccarty@gdit.com             |
| Tara Cohen                     | Blaine Snyder                      |
| Tetra Tech, Inc.               | Tetra Tech, Inc.                   |
| 10711 Red Run Blvd., Suite 105 | 10711 Red Run Blvd., Suite 105     |
| Owings Mills, MD 21117         | Owings Mills, MD 21117             |
| 410-902-3143                   | 410-902-3158                       |
| cohen.tara@tetratech.com       | blaine.snyder@tetratech.com        |
|                                |                                    |
| Lareina Guenzel                | Emily Surpin<br>GDIT               |
| USEPA/OW/OWOW (4503T)          |                                    |
| 1200 Pennsylvania Avenue, N.W. | 3170 Fairview Park Drive           |
| Washington, DC 20460           | Falls Church, VA 22042             |
| 202-566-0455                   | 202-804-5727                       |
| guenzel.lareina@epa.gov        | emily.surpin@gdit.com              |
| John Healey                    | ALS Environmental                  |
| USEPA/OW/OST (4305T)           | 1317 South 13th Avenue             |
| 1200 Pennsylvania Ave., N.W.   | Kelso, WA 98626                    |
| Washington, DC 20460           | (Contact Harry McCarty at GDIT)    |
| 202-566-0176                   |                                    |
| healey.john@epa.gov            |                                    |
| Bill Kramer                    | SGS-AXYS Analytical Services, Ltd. |
| USEPA/OW/OST (4305T)           | 2045 Mills Road                    |
| 1200 Pennsylvania Avenue, N.W. | Sidney, BC Canada V8L 5X2          |
| Washington, DC 20460           | (Contact Harry McCarty at GDIT)    |
| 202-566-0385                   |                                    |
| kramer.bill@epa.gov            |                                    |
| Lisa Larimer                   | Enthalpy Analytical                |
| USEPA/OW/OST (4305T)           | 1104 Windfield Way                 |
| 1200 Pennsylvania Avenue, N.W. | El Dorado Hills, CA 95762          |
| Washington, DC 20460           | (Contact Harry McCarty at CSRA)    |
| 202-566-1017                   | (                                  |
| larimer.lisa@epa.gov           |                                    |
| Sarah Lehmann                  |                                    |
| USEPA/OW/OWOW (4503T)          |                                    |
| 1200 Pennsylvania Avenue, N.W. |                                    |
| Washington, DC 20460           |                                    |
| 202-566-1379                   |                                    |
| lehmann.sarah@epa.gov          |                                    |
| remnann.saran@epa.gov          |                                    |

#### A4. Project/Task Organization

This current study of contaminants is referred to as the 2022 National Lakes Assessment (NLA 2022) Fish Tissue Study. The EPA project team for the NLA 2022 Fish Tissue Study consists of managers, scientists, and QA personnel in OST, along with statisticians in the Pacific Ecological Systems Division within EPA's ORD Center for Public Health and Environmental Assessment (Corvallis, Oregon). The EPA project team receives scientific, technical, and logistical support from contractors at Tetra Tech and at General Dynamics Information Technology (GDIT). Tetra Tech provides primarily fisheries support (e.g., fish sampling and fish sample preparation) and GDIT provides analytical support for the project team.

Members of the project team technically and/or financially responsible for fish fillet sample analysis include the OST Project Manager and Task Order Contracting Officer Representative (TOCOR), the OST Alternate TOCOR (Alt-TOCOR), the OST Quality Assurance (QA) Officer, the SHPD QA Coordinator, the GDIT Task Order Manager, the GDIT Project Leader, and the GDIT QA Coordinator who collectively provide scientific, technical, logistical, and quality control (QC) support for the study. The project team organization provides the framework for conducting fish sample analysis to meet study objectives. The organization structure and function also facilitate project performance and adherence to QC procedures and QA requirements. The project organizational chart is presented in Figure 1. It identifies individuals serving in key roles and the relationships and lines of communication among these project team members. Responsibilities for key members of the project team are described after the figure.

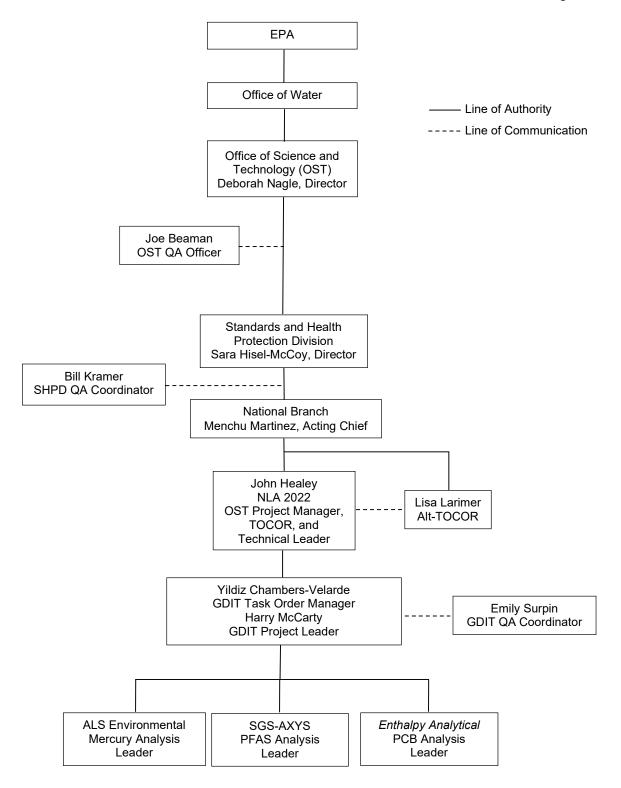



Figure 1. NLA 2022 Fish Tissue Study project team organization

John Healey of OST is the **OST Project Manager** and the **TOCOR** who is providing overall direction for planning and implementation of the Fish Tissue Study being conducted under the NLA 2022. He is also serving as the **Fish Sample Analysis Technical Leader** to provide technical and task order management support for 2022 fish fillet sample analysis and related analytical activities. Lisa Larimer is the **Alt-TOCOR** and may assist the TOCOR with administrative tasks. All of these roles involve the following NLA 2022 responsibilities:

- developing technical information for whole fish sample collection for fillet analysis that includes preparation of the fish sampling protocols and coordination with the NLA Project Leader in OWOW to integrate field sampling technical information for the NLA 2022 Fish Tissue Study into NLA documents and training materials
- developing the fish sample preparation procedures and requirements as described in the Quality Assurance Project Plan for National Lakes Assessment 2022 Fish Sample Preparation (USEPA 2022a)
- managing analysis of 2022 fish fillet samples for target chemicals and related analytical support activities, including developing and managing a task order to provide GDIT support for analyzing the 2022 fish fillet samples, directing development of the initial NLA 2022 Fish Tissue Study analysis QAPP and subsequent QAPP revisions, providing for QA review of the analytical results, developing the data files for statistical analysis of the data, reviewing and approving the final analytical QA report, and providing oversight for development of the database to store NLA 2022 Fish Tissue Study analysis results
- facilitating communication among NLA 2022 Fish Tissue Study project team members and coordinating with all of these individuals to ensure technical quality and adherence to QA/QC requirements
- developing and managing other task orders under OST or other EPA contracts to provide technical support for the NLA 2022 Fish Tissue Study, providing oversight of contractor activities, and reviewing and approving study deliverables for each task order
- scheduling and leading meetings and conference calls with NLA 2022 Fish Tissue Study project team members for planning study activities, reporting progress on study tasks, and discussing and resolving technical issues related to the study
- working with QA staff to identify corrective actions necessary to ensure that study quality objectives are met for the studies involving human health fish sample collection and analysis
- reviewing all data files for formatting, accuracy and completeness, and notifying the Branch Chief (who, in turn, will notify the Division Director of the Standards and Health Protection Division as appropriate) that the QAPPs and the data verification procedures have been adhered to, and the data files are accurate and are now ready for sharing with the public
- managing the development of and/or reviewing and approving all major work products associated with the NLA 2022 Fish Tissue Study and various other fish tissue studies, including products prepared by OWOW

- leading the Fish Tissue Study Team for reporting the NLA 2022 human health fish fillet indicator results and various other fish tissue study results in technical journal articles and federal technical reports
- presenting NLA 2022 Fish Tissue Study and other fish tissue study briefings for EPA managers and delivering fish tissue study presentations in various forums (e.g., scientific conferences, government meetings, and webinars)

Joe Beaman is the **OST Quality Assurance Officer** who is responsible for reviewing and approving all QAPPs that involve scientific work being conducted by OST. Bill Kramer is the **Standards and Health Protection Division (SHPD) QA Coordinator** who is responsible for reviewing and recommending approval of all QAPPs that include scientific work being conducted by SHPD within OST. The OST QA Officer and SHPD QA Coordinator are also responsible for the following QA/QC activities:

- reviewing and approving this QAPP
- reviewing and evaluating the QA/QC requirements and data for all the NLA 2022 activities and procedures
- conducting external performance and system audits of the procedures applied for all NLA 2022 Fish Tissue Study activities
- participating in Agency QA reviews of the study

Yildiz Chambers-Velarde is the **GDIT Task Order Manager** who is responsible for managing all aspects of the technical support being provided by GDIT staff for the NLA 2022 Fish Tissue Study. Her specific responsibilities include the following:

- monitoring the performance of GDIT staff participating in this study to ensure that they are following all the technical and QA procedures described in this QAPP that are related to GDIT tasks being performed to support this study
- ensuring completion of high-quality deliverables within established budgets and time schedules
- developing monthly progress and financial reports for support provided by GDIT
- participating in meetings and conference calls with project team members for planning study activities, reporting progress on study tasks, and discussing and resolving technical issues related to the study

Harry McCarty is the **GDIT Project Leader** who is primarily providing technical support for the NLA 2022 Fish Tissue Study. His specific responsibilities include the following:

- providing direct technical support for the following NLA 2022 Fish Tissue Study activities:
  - preparing information related to technical and quality assurance requirements for chemical analysis of homogenized fish fillet tissue samples for target analytes (e.g., mercury, PFAS, and PCBs), verification and validation of analytical data (data quality review), and development of NLA 2022 Fish Tissue Study documents (including this

QAPP) or characterization of this indicator in other NLA 2022 Fish Tissue Study documents

- obtaining laboratory services to analyze 2022 fish fillet tissue samples for target analytes (e.g., mercury, PFAS, and PCBs), and providing technical and QA oversight of laboratory operations
- completing review of the fillet tissue analytical data and developing the analytical data QA report
- compiling fish fillet tissue analytical data files for statistical analysis and for public release
- developing and maintaining project-specific databases for storing NLA 2022 Fish Tissue Study sample collection information and fillet sample analysis data, and initiating queries of these databases to respond to data requests from Agency and external users
- preparing summary project information and graphics for development of project fact sheets, presentations, and other EPA meeting and outreach materials
- supporting development of text and graphics for technical journal articles and final project reports for reporting NLA 2022 Fish Tissue Study data
- obtaining freezer space that meets the requirements for long-term storage of archived fish tissue samples, organizing the archived fish tissue samples by project to facilitate retrieval of the samples, and developing and maintaining an inventory of the archived samples, as required
- participating in meetings and conference calls with project team members for planning study activities, reporting progress on study tasks, and discussing and resolving technical issues related to the study
- serving as the project team member providing technical expertise on any issues related to analytical chemistry and analytical methods for the NLA 2022 Fish Tissue Study

Emily Surpin is the **GDIT QA Coordinator**, whose primary responsibilities include the following:

- approving this QAPP
- providing oversight for the implementation of QA procedures related to GDIT tasks that are described in this QAPP
- reporting deviations from this QAPP to the GDIT Project Leader and recommending corrective actions to resolve these deviations

# A5. Problem Definition/Background

Obtaining statistically representative occurrence data on multiple contaminants in fish tissue is a priority area of interest for EPA. Since 2008, OST has collaborated with the Office of Wetlands, Oceans, and Watersheds (OWOW) within the Office of Water (OW), and with the Office of Research and Development (ORD) to conduct a series of national-scale assessments of chemical contaminants as part of EPA's National Aquatic Resource Surveys (NARS). This current study

of contaminants in lakes fish is referred to as the NLA 2022 Fish Tissue Study. It is the first study of fish contamination conducted by OST under the NLA. OST conducted a previous study of contamination in lake fish called the National Lake Fish Tissue Study (NLFTS), published in 2009, which also analyzed fish fillet tissue for mercury, PCBs, and other contaminants; however, the NLA 2022 Fish Tissue Study will be the first national study to analyze fish fillet tissue from inland lakes for PFAS.

The NLA 2022 is a probability-based survey designed to assess the condition of our Nation's lakes across the lower 48 states. Building on EPA's experience from the 2007 NLA, the 2012 NLA, and the 2017 NLA, it includes collection and analysis of physical, chemical, and biological indicator data that will allow a statistically valid characterization of the condition of the Nation's lakes, ponds, and reservoirs. Fish collection will be attempted at 636 lakes designated as fish fillet tissue contaminants indicator (FTIS) sites (which are equivalent to NLA 2022 Fish Tissue Study sampling sites). OWOW within OW is responsible for managing the planning and implementation of the NLA.

Separate from the NLA 2022, the New Hampshire Department of Environmental Services (NHDES) has been conducting a multi-year evaluation of the potential human health risk for individuals consuming fish caught at Squam Lake. EPA provided direct technical assistance to NHDES in 2019, when EPA processed 12 samples and analyzed them for PCBs and PFAS. The objective of the Squam Lake Fish Tissue Study is to investigate the occurrence of contaminants in the edible tissue (fillets) of harvestable-sized adult fish.

#### A6. Project/Task Description

OST began planning and mobilizing for the NLA 2022 Fish Tissue Study in 2020. There were 636 NLA lakes designated for whole fish sampling, abbreviated as FTIS for data reporting in the NARS IM database (see Figure 2).



Figure 2. NLA 2022 Fish Tissue Study sampling locations (636 sites)

Mobilizing activities for the NLA 2022 Fish Tissue Study have included updating fish sampling and handling protocols for the NLA 2022 Field Operations Manual (USEPA 2022b) and National Lakes Assessment 2022 Quality Assurance Project Plan (USEPA 2022c), along with assembling and shipping whole fish sampling kits to the NLA central supply distribution center in Traverse City, Michigan. OWOW has conducted 13 training workshops for the NLA 2022, including a Train-the-Trainer workshop held in early March and 12 Regional training workshops that began in early April and continued through mid-June 2022.

NLA 2022 whole fish sample collection and fillet sample preparation for the NLA 2022 Fish Tissue Study involves the following key components:

- Attempting to collect whole fish samples at 636 randomly selected lakes (Appendix A) during 2022.
- Obtaining one fish composite sample from each lake site designated for whole fish sampling, which ideally consists of five similarly sized adult fish of the same species that are commonly consumed by humans.
- Shipping NLA whole fish samples to freezers at Microbac Laboratories in Baltimore, M Maryland for interim storage.
- Transferring the whole fish samples to the Tetra Tech facility in Owings Mills, Maryland for fish sample preparation.
- Preparing fillet tissue samples for chemical analysis by scaling and filleting each fish in the composite sample, homogenizing the fillets from all the fish in the sample, and dividing the fillet tissue into aliquots for various chemical analyses and for long-term storage of archived fish fillet tissue samples in a freezer.
- Obtaining laboratory services to analyze NLA 2022 Fish Tissue Study fillet tissue samples for target chemicals and monitoring analytical laboratory performance.
- Shipping fillet tissue samples to laboratories contracted to analyze these samples for mercury, PFAS, and PCBs. (The fish sample preparation laboratory at the Tetra Tech facility in Owings Mills, Maryland is responsible for this activity in coordination with GDIT to conform to contract analytical laboratory fillet sample analysis schedules.)
- Conducting data quality reviews for fish fillet tissue analytical and QC data and assigning data qualifiers when applicable.
- Developing databases for storage and retrieval of biological and analytical data generated during the NLA 2022 Fish Tissue Study.
- Compiling data files for each target chemical or group of related target chemicals for statistical analysis and for public release.
- Preparing summary project information and graphics for meeting materials, public outreach materials, and interim and final data reporting.

This QAPP focuses on fish fillet sample analyses activities for the NLA 2022 Fish Tissue Study, which involve the last five study components listed above. In addition, this QAPP applies to fillet sample analysis activities associated with the Squam Lake Fish Tissue Study, as mentioned in Section A5. NHDES plans to collect a total of 12 whole fish composite samples from Squam Lake, and Tetra Tech has agreed to process these whole fish samples at their laboratory in

Owings Mills, Maryland, to prepare fillet tissue samples for chemical analyses. EPA agreed to have the Squam Lake fillet tissue samples analyzed for PCBs only.

# A7. Quality Objectives and Criteria

The overall quality objective for the analysis of the NLA 2022 Fish Tissue Study samples for mercury, PFAS, and PCBs is to obtain a complete set of data for each chemical or chemical group and to produce data of known and documented quality. Analytical completeness is defined as the percentage of valid samples collected in the study for which usable analytical results are produced. The goal for analytical completeness is 95% and it is calculated at the sample-analyte level, such that an issue with the quality of one analyte out of many does not invalidate the entire sample.

OST is specifying the use of Method 1631E (USEPA 2002) and its quality control acceptance criteria for analyses of NLA 2022 Fish Tissue Study samples for mercury. The information describing the analytical method is provided in Section B4 of this QAPP. Data usability for each analysis will be assessed using QC criteria summarized in Section B5.

OST is specifying the use of the most recently released Draft EPA Method 1633 for PFAS analyses of fish tissue samples (USEPA 2022d). This method has been validated in a single laboratory and a multi-laboratory method validation study involving aqueous, soil/sediment, biosolids, and fish tissue samples is expected to be complete by the time OST begins analyses of the fish fillet tissue samples from the NLA 2022 Fish Tissue Study. The information describing the fish tissue and rinsate analytical method is provided in Section B4 of this QAPP. Data usability for each analysis will be assessed using QC criteria summarized in Section B5 and Appendix C.

OST is specifying the use of Method 1668C (USEPA 2010) and its quality control acceptance criteria for analyses of NLA 2022 Fish Tissue Study samples for PCBs. The information describing the analytical method is provided in Section B4 of this QAPP. Data usability for each analysis will be assessed using QC criteria summarized in Section B5.

# A8. Special Training/Certification

All laboratory staff involved in the analyses of fish tissue samples (and of rinsate samples, which apply to PFAS and PCB analyses) must be proficient in the associated tasks, as required by each analytical laboratory's existing quality system. All contractor staff involved in analytical data review and assessment will be proficient in data review, and no specialized training is required for data reviewers for this project.

#### A9. Documents and Records

The Statements of Work (SOWs) for the analytical subcontracts provide the specific requirements for laboratory deliverables. The major points are summarized below:

• The laboratory must provide reports of all results required from analyses of environmental and QC samples.

- Summary level data must be submitted in electronic format and must include the following information: EPA sample number, analyte name and CAS number, laboratory sample ID, measured amount, reporting units, sample preparation date, and analytical batch ID (if applicable).
- The laboratory shall provide raw data in the form of direct instrument readouts with each data package. Raw data include:
  - Copy of traffic report, chain-of-custody records, or other shipping information
  - Instrument readouts and quantitation reports for analysis of each sample, blank, standard and QC sample, and all manual worksheets pertaining to sample or QC data or the calculations thereof
  - Copies of bench notes, including preparation of standards and instrumental analyses

The laboratories will maintain records and documentation associated with these analyses for a minimum of three years after completion of the study. Additional copies will be maintained by GDIT for at least five years after completion of the study, and they may be transferred to EPA on request.

# B. DATA GENERATION AND ACQUISITION

# **B1.** Sampling Process Design (Experimental Design)

The target population for the NLA 2022 Fish Tissue Study consists of all lakes and reservoirs (collectively referred to as "lakes") in the lower 48 states that have a surface area  $\geq 1$  hectare and that contain 1,000 square meters of open, unvegetated space and a permanent population of predator fish species. The design for selecting the whole fish sampling sites for this human health fish tissue study incorporated objectives to generate the following:

- Statistically representative data on the concentrations of mercury, PFAS, and PCBs in lake fish commonly consumed by humans.
- The first national-scale information on the potential for PFAS to bioaccumulate in fish fillet tissue based on fish samples collected in lakes across the lower 48 states.
- Data to explore the occurrence of PFAS in the fillets of lake fish and the potential for human exposure through fish consumption.

Fish fillet tissue data from the NLA 2022 Fish Tissue Study will also provide EPA with the opportunity to evaluate changes in the levels of mercury and PCB contamination over time by comparing 2022 predator fish fillet tissue results to the predator fish fillet tissue data generated during the 2000 -2003 National Lake Fish Tissue Study (NLFTS).

The details of the sampling process design, sampling methods, and sample handling and custody procedures are described in EPA's National Lakes Assessment 2022 Field Operations Manual prepared by OWOW with fish sampling and handling input from OST (USEPA 2022b). Sampling at the NLA 2022 Fish Tissue Study sites involves collection of whole fish samples for analysis of fillet tissue samples for mercury, PFAS, and PCBs. To meet the study objectives, one fish sample is collected from each site. Ideally, each fish sample is a routine fish composite

sample that consists of five fish of adequate size to provide a minimum of 60 grams of fillet tissue for chemical analysis.

Fish are selected for each composite sample by applying the following criteria:

- All are of the same species.
- All satisfy legal requirements of harvestable size (or weight) for the sampled site, or at least be of consumable size if no legal harvest requirements are in effect.
- All are of similar size, so that the smallest fish specimen in a composite sample is no less than 75% of the total length of the largest specimen.
- All are collected at the same time, i.e., collected as close to the same time as possible, but no more than one week apart. (Note: Individual fish may have to be frozen until all fish to be included in the composite sample are available for delivery to the designated laboratory.)

Accurate taxonomic identification is essential in preventing the mixing of closely related target species. Under no circumstances are specimens from different species used in a human health fish composite sample. Field crews collected the composite fish samples for the NLA 2022 Fish Tissue Study between May and November 2022.

As mentioned in Section A6, this QAPP also applies to fish sample analysis activities associated with the Squam Lake Fish Tissue Study led by NHDES. The objective of the Squam Lake Fish Tissue Study is to investigate the occurrence of PCBs in the edible tissue (fillets) of harvestable-sized adult smallmouth bass and yellow perch. Squam Lake whole fish samples are being collected by NHDES, and the fish sample preparation laboratory at the Tetra Tech facility in Owings Mills, Maryland will process these fish composite samples to prepare fillet samples. The routine fish composite definition for the Squam Lake Fish Tissue Study is the same as the definition detailed above for the 2022 NLA Fish Tissue Study.

# **B2.** Fish Sampling and Fillet Sample Preparation Methods

#### **B2.1** Fish Sampling Methods

Sampling method procedures and requirements for collection of whole fish samples for the NLA 2022 Fish Tissue Study are detailed in EPA's *National Lakes Assessment 2022 Quality Assurance Project Plan* (USEPA 2022c) and *National Lakes Assessment 2022 Field Operations Manual* (USEPA 2022b). These sampling procedures and requirements, which apply to whole fish sample collection at the 636 lakes designated as NLA 2022 Fish Tissue Study and the Squam Lake sampling sites, are summarized below.

The sampling objective is for field crews to obtain one representative human health whole fish composite sample from each site. Collecting fish composite samples is a cost-effective means of estimating average chemical concentrations in the tissue of target species, and compositing fish ensures adequate sample mass for analysis of multiple chemicals. The sampling procedures specify that each human health fish composite sample should consist of five similarly sized adult fish of the same species. OST developed a recommended fish species list that contains 12 primary target predator fish species and 10 secondary predator fish species (Table 1).

Field crews use this list as the basis for selecting appropriate fish species for the NLA 2022 Fish Tissue Study samples. In the event that a crew is unable to collect fish which are on either of the predator lists, the onsite biologist may select an appropriate predator fish species. The method applied for fish collection is left to the discretion of the field crew, but the crews are encouraged to use hook and line or electrofishing. Crews may also seine or use gill nets when this would be an efficient approach to sample the target fish species and when allowed by the sampling permit, but crews are not to use trawling to collect fish.

| Primary Predator Fish<br>Species Scientific Name* | Primary Predator Fish<br>Species Common Name |
|---------------------------------------------------|----------------------------------------------|
| Micropterus salmoides                             | Largemouth Bass                              |
| Micropterus dolomieu                              | Smallmouth Bass                              |
| Pomoxis nigromaculatus                            | Black Crappie                                |
| Pomoxis annularis                                 | White Crappie                                |
| Sander vitreus                                    | Walleye                                      |
| Perca flavescens                                  | Yellow Perch                                 |
| Morone chrysops                                   | White Bass                                   |
| Esox lucius                                       | Northern Pike                                |
| Salvelinus namaycush                              | Lake Trout                                   |
| Salmo trutta                                      | Brown Trout                                  |
| Oncorhynchus mykiss                               | Rainbow Trout                                |
| Salvelinus fontinalis                             | Brook Trout                                  |

| Tabla 1  | Primary and Sacandar | ry NLA 2022 Target Species for Whole Fish Collection |
|----------|----------------------|------------------------------------------------------|
| Table I. | rimary and Secondar  | Ty NLA 2022 Target Species for whole Fish Conection  |

| Secondary Predator Fish<br>Species Scientific Name* | Secondary Predator Fish<br>Species Common Name |
|-----------------------------------------------------|------------------------------------------------|
| Lepomis macrochirus                                 | Bluegill                                       |
| Ambloplites rupestris                               | Rock Bass                                      |
| Micropterus punctulatus                             | Spotted Bass                                   |
| Sander canadesnis                                   | Sauger                                         |
| Morone saxatilis                                    | Striped Bass                                   |
| Morone americana                                    | White Perch                                    |
| Esox niger                                          | Chain Pickerel                                 |
| Oncorhynchus clarkii                                | Cutthroat Trout                                |
| Coregonus clupeaformis                              | Lake Whitefish                                 |
| Prosopium williamsoni                               | Mountain Whitefish                             |

\* Minimum acceptable length is 190 mm, TL

In preparing NLA 2022 Fish Tissue Study samples for shipping, field crews record sample number, species name, specimen length, sampling location, and sampling date and time on an electronic Whole Fish Sample Form in the NLA 2022 application. Each fish is wrapped in solvent-rinsed, oven-baked aluminum foil, with the dull side in using foil sheets provided by EPA. Individual foil-wrapped specimens are placed into a length of food-grade polyethylene tubing, each end of the tubing is sealed with a plastic cable tie, and a fish specimen label is affixed to the outside of the food-grade tubing with clear tape. All of the wrapped fish in the sample from each lake are placed in a large plastic bag and sealed with another cable tie, then placed immediately on dry ice for shipment to Microbac Laboratories in Baltimore, Maryland. Field crews are directed to pack fish samples on dry ice in sufficient quantities to keep samples frozen for up to 48 hours (i.e., 50 pounds of dry ice), and to ship them via priority overnight delivery service (i.e., FedEx), so that they arrive at Microbac Laboratories in less than 24 hours from the time of sample collection. Alternatively, field crews may transport NLA 2022 Fish Tissue Study whole fish samples on wet or dry ice (depending on the distance) to an interim facility where the fish samples are frozen and stored for up to two weeks before overnight shipping to Microbac Laboratories on dry ice as described above.

#### **B2.2** Fillet Sample Preparation Methods

The laboratory at Tetra Tech's Biological Research Facility in Owings Mills, MD, is the fish sample preparation laboratory (prep lab) for the NLA 2022 Fish Tissue Study samples and all of the sample preparation methods described here are governed by a separate QAPP (USEPA 2022a). Prior to initiating fish sample preparation, Tetra Tech coordinates with GDIT for

transfer of NLA 2022 Fish Tissue Study whole fish samples from Microbac Labs to the Tetra Tech lab, where a sample custodian checks in the whole fish samples before storing them in a freezer at a temperature of  $\leq -20^{\circ}$  Celsius (C).

#### Fish Sample Preparation Batches

An NLA 2022 Fish Tissue Study sample preparation batch generally consists of 20 whole fish samples. The number of whole fish samples in the final fish sample preparation batch (or two) for each of these series may be adjusted to include a few more than 20 or a few less than 20, depending on what fraction of 20 whole fish samples are left for assignment to a batch. The Squam Lake samples will be processed as a separate batch.

#### Homogenized Fillet Sample Preparation

Tetra Tech lab technicians prepare fillet tissue sample aliquots for chemical analysis and archive according to specifications in Table 1 of Appendix B of the NLA 2022 Fish Sample Preparation QAPP (USEPA 2022a).

#### **B3.** Sample Receipt and Inspection

This section describes the sample receipt and inspection procedures that apply to the shipment of NLA 2022 Fish Tissue Study homogenized fillet tissue samples to the analytical laboratory selected for analysis of these samples for mercury, PFAS, and PCBs.

In coordination with GDIT, Tetra Tech staff initiate packing and shipping the NLA 2022 homogenized fillet tissue samples from their fish sample preparation laboratory in Owings Mills, Maryland, to the analytical laboratory designated for each class of contaminants following procedures described in Appendix B of the NLA 2022 Fish Sample Preparation QAPP (USEPA 2022a). GDIT staff prepare sample tracking paperwork that is included in each shipment, notify the laboratory in advance of each shipment, track the progress of each shipment, and identify and resolve any delays that arise during shipment of the fillet samples.

When coolers are received at the analytical laboratory, the fillet tissue samples are inspected for damage, logged into the laboratory, and placed into freezers immediately after the laboratory measures and records the temperature of each cooler. Homogenized fillet tissue samples are stored frozen at  $\leq -20^{\circ}$  C until analyzed. Because the samples are shipped frozen, typical temperature blanks consisting of a bottle of water are not practical (they may break due to expansion), so they are not required. The laboratory measures and records the temperature of the coolers containing fillet samples on receipt using an infrared temperature sensor or other suitable device. The laboratory notifies the GDIT Project Leader about the receipt of the fillet tissue sample sample so the day of delivery. Any questions from the analytical laboratory regarding sample paperwork or sample condition are sent to GDIT and routed to OST or Tetra Tech, as appropriate, before GDIT sends the answers back to the laboratory.

#### **B4.** Analytical Methods

#### **B4.1** Mercury Analysis of Fillet Tissue

ALS Environmental prepares (a process involving tissue digestion and oxidation prior to tissue analysis) and analyzes fillet tissue samples using Procedure I from "Appendix to Method 1631, Total Mercury in Tissue, Sludge, Sediment, and Soil by Acid Digestion and BrCl Oxidation" from Revision B of Method 1631 (1631B) for sample preparation (USEPA 2001b), and Revision E of Method 1631 (1631E) for the analysis of mercury in fish tissue samples (USEPA 2002). This method requires approximately 1 g of tissue for the analysis. The sample is digested with a combination of nitric and sulfuric acids. The mercury in the sample is oxidized with bromine monochloride (BrCl) and analyzed by cold-vapor atomic fluorescence spectrometry. Tissue sample results are reported based on the wet weight of the tissue sample, in nanograms per gram (ng/g). The mercury method detection limit (MDL) and minimum level (ML) are listed in Appendix B.

#### B4.2 PFAS Analysis of Fillet Tissue and Rinsate Samples

SGS-AXYS Analytical Services extracts and analyzes fillet tissue samples using the recently released 3rd Draft EPA Method 1633 (USEPA 2022) using a 2-g aliquot of homogenized tissue. The sample is spiked with 24 isotopically labeled extracted internal standards (EIS) and extracted by shaking the tissue in a caustic solution of methanol, water, potassium hydroxide, and acetonitrile. The hydroxide solution breaks down the tissue and allows the PFAS analytes to be extracted into the solution.

After extraction, the solution is centrifuged to remove the solids, and the supernatant liquid is treated with activated carbon, shaken, and centrifuged again. The extract is concentrated by evaporation under a stream of nitrogen and processed by solid-phase extraction (SPE) on a weak anion exchange sorbent. The PFAS analytes are eluted from the SPE cartridge, and the eluant is spiked with additional labeled recovery standards and analyzed by high performance liquid chromatography with tandem mass spectrometry.

The concentration of each of the 40 PFAS target analytes is determined using the responses from one of the <sup>13</sup>C- or Deuterium-labeled standards added prior to sample extraction, applying the technique known as isotope dilution. As a result, all of the target analyte concentrations are corrected for the recovery of the labeled standards, thus accounting for extraction efficiencies and losses during cleanup.

The aqueous rinsate samples are analyzed for the 40 PFAS analytes using the same isotope dilution procedure as used for the fish tissue samples, but with a SPE step specific to aqueous matrices.

Tissue sample results are reported based on the wet weight of the tissue sample, in nanograms per gram (ng/g). Method detection limits and Minimum levels (quantitation limits) for PFAS analytes are listed in Appendix B. Aqueous rinsate results are reported based on the volume of the rinsate sample, in nanograms per liter (ng/L).

#### **B4.3** PCB Analysis of Fillet Tissue and Rinsate Samples

Fish tissue samples are being prepared and analyzed by Enthalpy Analytical, in general accordance with Revision C of EPA Method 1668, Chlorinated Biphenyl Congeners in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS (USEPA 2010). The samples are being analyzed for all 209 PCB congeners and reported as either individual congeners or coeluting groups of congeners. The following method modifications have been reviewed, found to be within the allowance for flexibility in Section 9.1.2 of Method 1668C, supported by performance data that are maintained on file at the laboratory, and have been approved for use in this study:

- Section 7.6.4: Enthalpy uses sodium sulfate as the reference matrix for QC samples associated with tissue analyses rather than vegetable oil because they have not found a source of vegetable oil that did not have traces of PCBs in it.
- Sections 7.10.1 and 15.4.2.1: Enthalpy uses a CS-3 (mid-level calibration) standard that contains all 209 of the PCB congeners, rather than the subset of congeners listed in the method. Therefore, they do not run a separate standard containing all 209 congeners during the calibration verification process in Section 15.4.2.1.
- Section 12.5: Enthalpy uses sodium hydroxide to adjust the pH of the solution in the backextraction procedure, rather than potassium hydroxide.
- Table 3: Enthalpy adds 44 13C-labeled compounds to each sample, 17 more than the 27 labeled compounds specified in the method and monitors the recoveries of all of these standards in each sample.
- **Note:** Given the large number of target analytes involved, the final list of PCB congeners and coelutions is provided in Appendix B of this QAPP, along with their MDLs and MLs.

The solvent rinsate samples are analyzed for PCB congeners using Method 1668C, but without an extraction procedure.

Tissue sample results are reported by the analytical laboratory based on the wet weight of the tissue sample in units of picograms per gram (pg/g). Rinsate sample results are reported in units of pg/L.

# **B5.** Analytical Quality Control

The analytical procedures being applied by the laboratories designated for analysis of NLA 2022 Fish Tissue Study samples include many of the traditional EPA analytical QC activities. For example, all samples are analyzed in batches and each batch includes:

- up to 20 field samples and the associated QC samples
- blanks at least 5% of the samples within a batch are method blanks (with higher percentages specified in some analytical methods)

Other common quality control activities vary by the analysis type. The QC activities associated with the mercury analysis of fillet samples are described in Subsection B5.1. The QC activities

associated with the PFAS analyses are described in Subsection B5.2. The QC activities associated with the PCB analyses are described in Subsection B5.3.

#### **B5.1** Mercury Analysis QC Criteria

Quality control samples associated with each batch of fillet tissue samples analyzed for mercury are summarized in Table 2 below.

The cold-vapor atomic fluorescence instrument is calibrated daily, as described in Method 1631E and the laboratory's SOP. At least five calibration standards and a blank are used for calibration, and the variability in the calibration factors for the five standards must have a relative standard deviation (RSD) less than or equal to 15%. The calibration is verified after every 20 samples by the analysis of the ongoing precision and recovery (OPR) standard, or the laboratory control sample (LCS). The results for the OPR/LCS standard must fall within the limits in Table 2.

| 3 blanks run during<br>calibration and with each<br>analytical batch of up to<br>20 field samples                                                                                                                                        | 50 picograms<br>(pg) of mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | If the bubbler or system blank is above 50 pg, take<br>corrective action to reduce the blank level to below 50<br>pg, and reanalyze any samples in the affected batch.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| analytical batch of up to 20 field samples                                                                                                                                                                                               | (pg) of mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 field samples                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pg, and reanalyze any samples in the affected batch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 mothed blowles non both                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 math ad blambra man 1+-1-                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 method blanks per batch<br>of up to 20 field samples,<br>with analyses interspersed<br>among the samples in the<br>analysis batch                                                                                                      | 0.4 nanograms (ng)<br>(400 pg) of mercury,<br>or<br>Less than one tenth<br>the concentration of<br>an associated sample                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>If any of the three method blank results is above 0.4 nanograms,</li> <li>take corrective action to reduce the blank level to below 0.4 ng,</li> <li>reanalyze any samples in the affected batch with results less than 10 times the observed results for any of the three blanks, and</li> <li>flag sample results greater than 10 times the observed blank level to advise the data user of the potential contamination.</li> </ul>                                                                                                                                                                 |
| Prepared once per batch of<br>up to 20 field samples,<br>analyzed <i>once prior to</i> the<br>analysis of any field<br>samples, <i>and again at</i> the<br>end of each analytical<br>batch, spiked at 4.0 pg                             | 70 - 130% recovery<br>(5.6 –10.4 ng/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>If the OPR recovery is not within the QC acceptance limits,</li> <li>take corrective action and repeat the OPR analysis, beginning with a fresh aliquot,</li> <li>reanalyze all samples in the affected analytical batch.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                  |
| Once per batch of up to 20<br>field samples                                                                                                                                                                                              | Per the provider of<br>the QCS<br>or<br>75 - 125% recovery if<br>no criteria provided<br>by the supplier                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>If the QCS results are not within the provider's acceptance limits,</li> <li>take corrective action and repeat the QCS analysis, beginning with a fresh aliquot,</li> <li>reanalyze all samples in the affected analytical batch.</li> </ul>                                                                                                                                                                                                                                                                                                                                                          |
| Once per every 10 field<br>samples (e.g., twice per 20<br>samples in a preparation<br>batch)<br>See note below this table<br>regarding spiking levels<br>and the use of a sample<br>from a previous analysis<br>batch for preparation of | 70 - 130% recovery<br>and<br>RPD ≤ 30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>If either the MS or MSD recovery is not within the QC acceptance limits,</li> <li>take corrective action and repeat the MS/MSD analysis, beginning with fresh aliquots,</li> <li>reanalyze all samples in the affected analytical batch.</li> <li>If the RPD exceeds the acceptance limit, the laboratory will reanalyze the MS/MSD samples:</li> <li>If the reanalysis results meet the RPD limit, then the</li> </ul>                                                                                                                                                                               |
|                                                                                                                                                                                                                                          | Prepared once per batch of<br>up to 20 field samples,<br>analyzed once prior to the<br>analysis of any field<br>samples, and again at the<br>end of each analytical<br>batch, spiked at 4.0 ng<br>Once per batch of up to 20<br>field samples<br>Once per every 10 field<br>samples (e.g., twice per 20<br>samples in a preparation<br>batch)<br>See note below this table<br>regarding spiking levels<br>and the use of a sample<br>from a previous analysis<br>batch for preparation of<br>the MS/MSD aliquots. | analysis batchLess than one tenth<br>the concentration of<br>an associated samplePrepared once per batch of<br>up to 20 field samples,<br>analyzed once prior to the<br>analysis of any field<br>samples, and again at the<br>end of each analytical<br>batch, spiked at 4.0 ng $70 - 130\%$ recovery<br>$(5.6 - 10.4 ng/g)$ Once per batch of up to 20<br>field samplesPer the provider of<br>the QCS<br>or<br>$75 - 125\%$ recovery if<br>no criteria provided<br>by the supplierOnce per every 10 field<br>samples in a preparation<br>batch) $70 - 130\%$ recovery<br>and<br>$RPD \le 30\%$ RPD $\le 30\%$ |

 Table 2. QC Samples and Acceptance Criteria for Mercury Analysis of Fish Tissue

\* The term "field sample" refers to homogenized fillet tissue samples provided to the analytical laboratory for mercury analysis.

**Note:** Provision of useful MS/MSD data is highly dependent on selection of an appropriate spiking level relative to the background concentration of mercury in the unspiked sample. After the first batch of samples, the MS/MSD sample may be prepared from excess volume of tissue from a sample in the previous batch, such that the background level is known. Spiking should be performed at approximately 3 to 5 times the background concentration.

#### **B5.2 PFAS Analysis QC Criteria**

The high-performance liquid chromatograph/tandem mass spectrometer is calibrated as described in Draft Method 1633. A minimum of six calibration standards are used for calibration. The calibration must achieve a relative standard deviation (RSD) or relative standard error (RSE) of  $\leq 20\%$ . The calibration is verified every 12 hours through the analysis of the calibration verification standard. The results for the calibration verification must meet the requirements in Appendix C of this QAPP.

Quality control samples associated with each batch of tissue samples or rinsate samples analyzed for PFAS are summarized in Table 3 below.

| <b>QC</b> Operation      | Frequency*              | Acceptance Limit       | Corrective Action                                                                                                              |
|--------------------------|-------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Extracted                | Spiked into             | Per Appendix C of this | Evaluate failure and impact on samples. If sample results are non-                                                             |
| Internal                 | every sample            | QAPP                   | detects for analytes which have a high labeled compound recovery,                                                              |
| Standards                | before                  |                        | report non-detect results with case narrative comment.                                                                         |
|                          | extraction              |                        |                                                                                                                                |
|                          |                         |                        | For detected analytes with low labeled compound recovery, extract                                                              |
|                          |                         |                        | and analyze a smaller sample aliquot.                                                                                          |
| Calibration              | Every 12                | 70 - 130% (both target | • Evaluate failure and impact on samples. If sample results are                                                                |
| Verification             | hours, before           | and EIS compounds)     | non-detects for analytes which have a high bias, report non-detect                                                             |
|                          | sample                  |                        | results with case narrative comment.                                                                                           |
|                          | analysis.               |                        | or .                                                                                                                           |
|                          |                         |                        | Immediately analyze two additional consecutive verification                                                                    |
|                          |                         |                        | standards. If both pass, samples may be reported without                                                                       |
|                          |                         |                        | reanalysis. If either fails, take corrective action(s) and re-                                                                 |
|                          |                         |                        | calibrate; then reanalyze all affected samples since the last                                                                  |
| 0                        |                         | 70 - 130%              | acceptable verification standard.                                                                                              |
| Ongoing<br>Precision and | Once per                | /0 - 130%              | • Reanalyze OPR once. If acceptable, report. Evaluate samples for detections, and OPR for high bias. If OPR has high bias, and |
| Recovery (OPR)           | batch of up to 20 field |                        | sample results are non-detects, report with case narrative                                                                     |
| sample                   | samples                 |                        | comment. If OPR has low bias, or if there are detected analytes                                                                |
| sample                   | samples                 |                        | with failures, evaluate and reprepare and reanalyze the OPR and                                                                |
|                          |                         |                        | all samples in the associated prep batch for failed analytes.                                                                  |
| Laboratory               | Once per                | The relative percent   | Evaluate the data, and re-extract and reanalyze the original sample                                                            |
| duplicate                | batch of up to          | difference (RPD) of    | and duplicate:                                                                                                                 |
| aupineare                | 20 field                | the duplicate          | • If the reanalysis results meet the RPD limit, then the laboratory                                                            |
|                          | samples                 | measurements must be   | will reanalyze all of the associated field and QC samples.                                                                     |
|                          | 1                       | < 50%                  | If the reanalysis result still does not meet the RPD limit, then the                                                           |
|                          |                         |                        | laboratory will re-extract and reanalyze all field samples with                                                                |
|                          |                         | Not required for       | original results above the MDL.                                                                                                |
|                          |                         | rinsates               | -                                                                                                                              |

 Table 3. QC Samples and Acceptance Criteria for PFAS Analysis of Tissue and Rinsates

| QC Operation | Frequency*     | Acceptance Limit      | Corrective Action                                                    |
|--------------|----------------|-----------------------|----------------------------------------------------------------------|
| Method blank | Once per       | Less than or equal to | All results, including blanks, are reported down to the method       |
|              | batch of up to | the MDLs in Appendix  | detection limit (MDL).                                               |
|              | 20 field       | B of this QAPP        | • If the method blank result for any PFAS is above the MDL, but      |
|              | samples        |                       | below the laboratory's nominal quantitation limit, the laboratory    |
|              |                |                       | will flag all associated tissue sample and rinsate results as having |
|              |                |                       | a detectable method blank for that analyte. (Subsequent              |
|              |                |                       | validation of the results by EPA or its contractors will evaluate    |
|              |                |                       | the potential contribution of the blank to such sample results.)     |
|              |                |                       | • If the method blank result is above the quantitation limit, the    |
|              |                |                       | laboratory will reanalyze the method blank.                          |
|              |                |                       | - If the method blank reanalysis result is below the                 |
|              |                |                       | quantitation limit, then the laboratory will reanalyze all of        |
|              |                |                       | the associated tissue or rinsate samples and QC samples.             |
|              |                |                       | - If the method blank reanalysis result is still above the           |
|              |                |                       | quantitation limit, then the laboratory will re-extract and          |
|              |                |                       | reanalyze all tissue or rinsate samples with original results        |
|              |                |                       | above the MDL.                                                       |

 Table 3. QC Samples and Acceptance Criteria for PFAS Analysis of Tissue and Rinsates

\* The term "field sample" refers to homogenized fillet tissue samples provided to the analytical laboratory for PFAS analysis.

#### **B5.3** PCB Analysis QC Criteria

The high-resolution gas chromatograph/high-resolution mass spectrometer (HRGC/HRMS) is calibrated periodically as described in Method 1668C and the laboratory's SOP. At least five calibration standards are used for calibration, and the variability in the response factors for the five standards must have a relative standard deviation (RSD) less than or equal to 20%. The calibration is verified every 12 hours by the analysis of the calibration verification (VER) standard. The results for the VER must meet the requirements in Appendix C.

Quality control samples associated with each batch of tissue samples or rinsate samples analyzed for PCBs are summarized in Table 4, below, and are based on the QC requirements of Method 1668C, with the project-specific addition of one laboratory duplicate sample per batch.

| QC Sample                            | Frequency                                             | Acceptance Limit                                                                                                                                                                                                                                                                                                                                                  | Corrective Action                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Laboratory control sample            | One per sample batch                                  | Per Appendix C                                                                                                                                                                                                                                                                                                                                                    | Per Method 1668C                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Calibration<br>verification<br>(VER) | At the beginning<br>of every 12-h<br>analytical shift | Per Appendix C                                                                                                                                                                                                                                                                                                                                                    | Per Method 1668C                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Laboratory<br>duplicate              | Once per batch<br>of up to 20 field<br>samples        | <ul> <li>The RPD of the duplicate measurements must be:</li> <li>&lt; 50% for sample concentrations greater than or equal to 5 times the MDL, and</li> <li>&lt;100% for sample concentrations less than 5 times the MDL.</li> <li>(When comparing the sample concentration to the MDL, use the lower of the two concentrations in the paired samples.)</li> </ul> | <ul> <li>If the RPD exceeds the acceptance limit, the laboratory will reanalyze the laboratory duplicate extract:</li> <li>If the reanalysis result meets the RPD limit, then the laboratory will reanalyze all of the associated field and QC samples.</li> <li>If the reanalysis result still does not meet the RPD limit, then the laboratory will re-extract and reanalyze all field samples with original results above the MDL.</li> </ul> |

 Table 4.
 QC Samples and Acceptance Criteria for PCB Analysis of Fish Tissue

| QC Sample    | Frequency                                      | Acceptance Limit                                                                                                     | Corrective Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method blank | Once per batch<br>of up to 20 field<br>samples | 5x MDL for each congener<br>(As noted elsewhere, all<br>results, including blanks, are<br>reported down to the MDL.) | <ul> <li>If the method blank result is above 5x MDL, the laboratory will reanalyze the method blank extract to confirm the presence of the blank contaminants. If the reanalysis result is still above 5x MDL, then the laboratory will compare the results in the method blank to the results in all of the associated field samples in the batch and take corrective action as follows:</li> <li>1. If the result for a congener (or group of coeluting congeners) that is present in the method blank at 5x MDL or higher is <i>not present</i> in the field sample, then the result for that field sample may be reported without corrective actions. The result must be flagged with a "B" flag that indicates the presence of the analyte in the associated blank and the data package narrative must discuss the comparison of the blank and sample results for that field sample.</li> <li>2. If the result for the congener in the field sample is more than 10 times the level found in the method blank, then the result for that field sample also may be reported without corrective actions. The result must be flagged with a "B" flag that indicates the presence of the analyte in the associated blank and the data package narrative must discuss the comparison of the blank and sample results for that field sample also may be reported without corrective actions. The result must be flagged with a "B" flag that indicates the presence of the analyte in the associated blank and the data package narrative must discuss the comparison of the blank and sample is more than 10 times the level found in the method blank, then the result for that field sample also may be reported without corrective actions. The result must be flagged with a "B" flag that indicates the presence of the analyte in the associated blank and the data package narrative must discuss the comparison of the blank and sample results for that</li> </ul> |
|              |                                                |                                                                                                                      | <ul> <li>3. If the result for the congener in the field sample is less than or equal to 10 times the level found in the method blank, then re-extraction and reanalysis of the affected sample is required (but not samples that meet the conditions in #1 and #2 above) in conjunction with a new method blank and all other method-specified QC samples. GDIT will work with the laboratory to schedule any required reanalyses in a manner that does not delay analyses of subsequent batches of field samples.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                                |                                                                                                                      | 4. If the results of the re-extraction and reanalysis of the field sample do not resolve the problem, i.e., the background levels in the method blank are still a concern, CSRA will require that the laboratory provide information on historical levels of blank contaminants for similar matrices. GDIT and EPA will evaluate those historical results and the reanalysis results on a case-by-case basis to determine if there is a pattern of blank contamination that is indicative of a broader problem and if any further corrective actions are required by the laboratory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Table 4. QC Samples and Acceptance Criteria for PCB Analysis of Fish Tissue

#### B6. Instrument/Equipment Testing, Inspection, and Maintenance

All analytical instrumentation associated with the fillet tissue and rinsate sample analyses will be inspected and maintained as described in the respective analysis methods and laboratory SOPs.

#### **B7.** Instrument/Equipment Calibration and Frequency

All analytical instrumentation associated with the fillet tissue and rinsate sample analyses will be calibrated as described in the respective analysis methods. The mercury analysis method for tissue samples, Method 1631E, specifies calibration with at least five calibration standards and multiple blanks, as described in Section B5.1 above. The PFAS analytical method for tissue and rinsate analyses, Draft Method 1633, specifies calibration with at least six calibration standards, as described in Section B5.2 above. The PCB analysis method for tissue samples and rinsate samples, Method 1668C, specifies calibration with at least five calibration standards as described in Section B5.3 above.

#### **B8.** Inspection/Acceptance of Supplies and Consumables

The inspection and acceptance of any laboratory supplies and consumables associated with the fillet tissue and rinsate sample analyses are addressed in the individual laboratory operating procedures to be used, and/or in the laboratory's existing overall quality system documentation. There are no additional requirements specific to this project, and therefore, none are described here.

#### **B9.** Non-direct Measurements

Non-direct measurements are not required for this project.

#### B10. Data Management

Data management practices employed in this study will be based on standard data management practices used for EPA's National Lake Fish Tissue Study and other EPA fish contamination studies (e.g., 2020 National Coastal Condition Assessment). The data management (i.e., sample tracking, data tracking, data inspection, data quality assessment, database development) procedures have been regularly applied to other technical studies by GDIT. These procedures are being employed because they are effective, efficient, and have successfully withstood repeated internal and external audits, including internal review by EPA Quality Staff, public review and comment, judicial challenge, and an audit by the Government Accountability Office. These procedures, as implemented for the NLA 2022 Fish Tissue Study, are summarized below.

- All laboratories performing analyses for this project are required to maintain all records and documentation associated with the analyses of the fish tissue samples for a minimum period of three years after completion of the study.
- All required reports and documentation, including raw data, must be sequentially paginated and clearly labeled with the laboratory name, and associated sample numbers. Any electronic media submitted must be similarly labeled.
- Each laboratory will adhere to a comprehensive data management plan that is consistent with the principles set forth in Good Automated Laboratory Practices, EPA Office of Administration and Resources Management (USEPA 1995) or with commonly employed data management procedures approved by the National Environmental Laboratory Accreditation Conference (NELAC). Each laboratory's data management plan is

incorporated in its overall quality system documentation, e.g., its quality management plans, copies of which will be maintained on file at GDIT.

### C. ASSESSMENT AND OVERSIGHT

#### C1. Assessments and Response Actions

The laboratory contracts prepared to support analysis of homogenized fillet tissue samples for the NLA 2022 Fish Tissue Study will stipulate that each laboratory has a comprehensive QA program in place and operating at all times during the performance of their contract, and that in performing laboratory work for this study, the laboratory shall adhere to the requirements of that QA program. These materials will be reviewed by GDIT during the laboratory solicitations, as part of an assessment of laboratory capabilities. A copy of each QA plan will be maintained on file at GDIT and will be made available to EPA for review on request.

Sections C1.1 through C1.6 describe other types of assessment activities and corresponding response actions identified to ensure that data gathering activities in the NLA 2022 Fish Tissue Study are conducted as prescribed and that the performance criteria defined for this study are met.

#### C1.1 Surveillance

The GDIT Project Leader will schedule and track all analytical work performed by the laboratories designated for mercury, PFAS, and PCB analyses. The Project Leader will coordinate with Tetra Tech staff at the fish sample preparation laboratory regarding fillet tissue sample shipments to the analytical laboratory.

When samples are shipped to the analytical laboratories for mercury, PFAS, or PCB analysis, the GDIT Project Leader will contact designated laboratory staff by email to notify them of the forthcoming shipment(s) and request that they contact GDIT on the scheduled day of delivery if the shipments do not arrive intact. Within 24 hours of scheduled sample receipt, GDIT will contact the laboratory to verify that the samples arrived in good condition, and if problems are noted, will work with the laboratory and EPA to resolve the problems as quickly as possible to minimize data integrity problems.

The laboratory designated for mercury analysis of NLA 2022 Fish Tissue Study samples will be permitted to work two batches ahead of the GDIT-EPA review of the QC results associated with the fillet tissue sample analyses. GDIT will also immediately notify the OST Project Manager of any mercury laboratory delays that are anticipated to impact EPA schedules.

The laboratory designated for PFAS analysis of NLA 2022 Fish Tissue Study samples will be permitted to work two batches ahead of the GDIT/EPA review of the QC results associated with the fillet tissue sample analyses. GDIT will also immediately notify the OST Project Manager of any PFAS laboratory delays that are anticipated to impact EPA schedules.

The laboratory designated for PCB analysis of NLA 2022 Fish Tissue Study samples will be permitted to work two batches ahead of the GDIT/EPA review of the QC results associated with

the fillet tissue sample analyses. GDIT will also immediately notify the OST Project Manager of any PCB analysis laboratory delays that are anticipated to impact EPA schedules.

Finally, the GDIT Project Leader will monitor the progress of the data quality audits (data reviews) and database development to ensure that the laboratory data submission is reviewed in a timely manner. In the event that dedicated staff are not able to meet EPA schedules, GDIT will identify additional staff who are qualified and capable of reviewing the data in a timely manner. If such resources cannot be identified, and if training new employees is not feasible, GDIT will meet with the OST Project Manager to discuss an appropriate solution.

# C1.2 Product Review

Product reviews for validated analytical data packages will be performed within GDIT to verify that the GDIT data reviews are being performed consistently over time and across data reviewers, that the review findings are technically correct, and that the reviews are being performed in accordance with this QAPP. Product reviewers will be charged with evaluating the completeness of the original GDIT data review, the technical accuracy of the reviewer's findings, and the technical accuracy of the analytical database developed to store results associated with the NLA 2022 Fish Tissue Study data packages. Product reviewers will be conducted on at least 10% of the data packages. Qualified product reviewers will include any staff members that have been trained in GDIT data review procedures, are experienced in reviewing data similar to those being reviewed and are familiar with the requirements of this QAPP. To ensure the findings of each data review are documented in a consistent and technically accurate manner, GDIT staff will review 100% of the data qualifier flags entered into each project database.

The NLA 2022 Fish Tissue Study data files prepared by GDIT for statistical analysis of the data will be reviewed internally by GDIT staff and independently by the OST Project Manager with support from Tetra Tech.

# C1.3 Quality Systems Audit

A quality system audit (QSA) is used to verify, by examination and evaluations of objective evidence, that applicable elements of the quality system are appropriate and have been developed, documented, and effectively implemented in accordance and in conjunction with specified requirements. The focus of these assessments is on the quality system processes – not on evaluating the quality of specific products or judging the quality of environmental data or the performance of personnel or programs. The SHPD QA Coordinator may perform a QSA of the NLA 2022 Fish Tissue Study mercury, PFAS, or PCB analyses.

# C1.4 Readiness Review

A readiness review of each analysis laboratory's capability to produce acceptable sample results begins with a review of materials submitted by the laboratory during the solicitation process and continues during a kick-off conference call with each laboratory (ALS Environmental for mercury, SGS-AXYS Analytical Services for PFAS, and TBD for PCBs). The requested materials include information about the laboratory's capacity, past experience with tissue analyses, and accreditations or certifications for mercury, PFAS, or PCB analyses in tissue and

other matrices. These materials are reviewed during the solicitation process to assess the laboratory's competency and will be kept on file by GDIT.

Readiness reviews are performed by GDIT data reviewers. If problems are identified during these reviews, GDIT staff will work with the laboratory, to the extent possible, to resolve the problem prior to awarding an analysis contract. If the problem cannot be resolved within the time frame required by EPA, the GDIT Project Leader will notify the OST Project Manager immediately. Records of these reviews and any corrective actions are maintained by GDIT separate from the analytical results for the field samples. GDIT staff will document their findings and recommendations concerning the readiness review as part of a written analytical QA report to EPA.

# C1.5 Technical Systems Audit

The laboratory contracts will require that the laboratory be prepared for and willing to undergo an on-site audit or technical systems audit of its facilities, equipment, staff, sample processing, tissue sample analysis, training, record keeping, data validation, data management, and data reporting procedures. An audit will be conducted only if the results of the readiness reviews, data quality audits, and surveillance suggest serious or chronic laboratory problems that warrant on-site examinations and discussion with laboratory personnel.

If such an audit is determined to be necessary, a standardized audit checklist may be used to facilitate an audit walkthrough and document audit findings. Audit participants may include the OST Project Manager and/or the SHPD QA Coordinator (or a qualified EPA staff member designated by the OST QA Officer) and a GDIT staff member experienced in conducting laboratory audits. One audit team member will be responsible for leading the audit and conducting a post-audit debriefing to convey significant findings to laboratory staff at the conclusion of the audit. Another audit team member will be responsible for gathering pre-audit documentation of problems that necessitated the audit, customizing the audit checklist as necessary to ensure that those problems are addressed during the audit, documenting audit findings on the audit checklist during the audit, and drafting a formal report of audit findings for review by EPA.

#### C1.6 Data Quality Assessment

Upon completion of data verification and validation procedures (see Section D1), GDIT staff will create an analytical database that contains all fillet tissue, and PFAS and PCB rinsate QC sample results from the NLA 2022 Fish Tissue Study. At selected intervals and upon completion of the study, the GDIT Project Leader will perform analyses to verify the accuracy of each database. The procedures will be directed at evaluating the overall quality of each database against data quality objectives established for the respective studies and in identifying trends in fillet tissue sample results derived from field samples and QC results obtained during each of the studies. GDIT staff will document their findings and recommendations concerning this data quality assessment and provide them to EPA.

#### C2. Reports to Management

GDIT will track the receipt of data submissions for the homogenized fish fillet tissue analyses and rinsate analyses and advise the OST Project Manager of progress on a monthly basis.

Following data verification and validation of all project-specific analytical data, GDIT will apply data qualifier flags, where needed, to the fillet tissue results in each project database that describe data quality limitations and recommendations concerning data use. The data qualifier flags are based on those developed for the National Lake Fish Tissue Study and the complete list of qualifier flags used and their implications for data use will be summarized in a report to EPA at or near the end of the data assessment process.

The GDIT Project Leader will provide a monthly report to the OST Project Manager that describes the status of all current analysis and data review activities, during each month in which analyses and data review are conducted.

# D. DATA VALIDATION AND USABILITY

This QAPP addresses the generation of mercury, PFAS, and PCB data from homogenized fish fillet tissue samples prepared from NLA 2022 Fish Tissue Study samples and from the PFAS and PCB rinsate QC samples. Sections D1, D2, and D3 of this QAPP apply to all of the analytical data generation for the NLA 2022 Fish Tissue Study and the Squam Lake samples.

#### D1. Data Review, Verification, and Validation

The data review, verification, and validation aspects of the homogenized fish fillet tissue analyses and rinsate QC sample analyses are described below for all of the analytical data generated for the NLA 2022 Fish Tissue Study.

# D1.1 Data Review

All laboratory results and calculations will be reviewed by the Laboratory Manager prior to data submission. Any errors identified during this peer review will be returned to the analyst for correction prior to submission of the data package. Following correction of the errors, the Laboratory Manager will verify that the final package is complete and compliant with the contract and will sign each data submission to certify that the package was reviewed and determined to be in compliance with the terms and conditions of the contract.

# D1.2 Data Verification

The basic goal of data verification is to ensure that project participants know what data were produced, if they are complete, if they are contractually compliant, and the extent to which they meet the objectives of the NLA 2022 Fish Tissue Study. Every laboratory data package submitted will be subjected to data verification by qualified GDIT staff who have been trained in procedures for verifying data and who are familiar with the laboratory methods used to analyze the samples. This includes all of the mercury, PFAS, and PCB data generated under this QAPP and any subsequent QAPP revisions. The verification process is designed to identify and correct data deficiencies as early as possible in order to maximize the amount of usable data generated

during the studies. The GDIT Project Leader will verify the summary level results for these analytical data, determine if they meet the project objectives in this QAPP, and report the verification findings to OST.

### D1.3 Data Validation

Data validation is the process of evaluating the quality of the results relative to their intended use. Data need not be "perfect" to be usable for a particular project, and the validation process is designed to identify data quality issues uncovered during the verification process that may affect the intended use. One goal of validation is to answer the "So what?" question with regard to any data quality issues. GDIT data review staff will validate all of the mercury, PFAS, and PCB analysis results to be generated under this QAPP and any subsequent QAPP revisions.

#### D2. Verification and Validation Methods

#### **D2.1** Verification Methods

In the first stage of the data verification process, the GDIT data review chemists will perform a "Data Completeness Check" in which all elements in each laboratory submission will be evaluated to verify that results for all specified samples are provided, that data are reported in the correct format, and that all relevant information, such as preparation and analysis records, are included in the data package. Corrective action procedures will be initiated if deficiencies are noted.

The second stage of the verification process will focus on an "Instrument Performance Check" in which the GDIT data review chemists will verify that calibrations, calibration verifications, standards, and calibration blanks were analyzed at the appropriate frequency and met method or study performance specifications. If errors are noted at this stage, corrective action procedures will be initiated immediately.

Stage three of the verification process will focus on a "Laboratory Performance Check" in which the GDIT data review chemists will verify that the laboratory correctly performed the required analytical procedures and was able to demonstrate a high level of precision and accuracy. This stage includes evaluation of QC elements such as the laboratory control samples, method blanks, matrix spike samples and/or reference samples, where applicable. Corrective action procedures will be initiated with the laboratories to resolve any deficiencies identified.

In stage four of the verification process, the GDIT data review chemists will perform a "Method/Matrix Performance Check" to discern whether any QC failures are a result of laboratory performance or difficulties with the method or sample matrix. Data evaluated in this stage may include matrix spike and reference sample results. The GDIT data review chemists also will verify that proper sample dilutions were performed and that necessary sample cleanup steps were taken. If problems are encountered, the GDIT data review chemists will immediately implement corrective actions.

# **D2.2** Validation Methods

GDIT data review chemists will perform a data quality and usability assessment in which the overall quality of data is evaluated against the performance criteria (see Section B5 for a

description of performance criteria). This assessment will strive to maximize use of data gathered in this study based on performance criteria established for the NLA 2022 Fish Tissue Study. This will be accomplished by evaluating the overall quality of a particular data set rather than focusing on individual QC failures. Results of this assessment will be documented in project-specific QA reports developed after all of the results have been evaluated, and before they are used in any final decision making.

During this assessment, data qualifier flags are applied to project results to identify any results that did not meet the method- or project-specific requirements; GDIT data review chemists still may also apply additional qualifiers that indicate an assessment of the impact of the problem. For example, individual sample results are often qualified based on the presence of the analyte in a method blank associated with samples prepared together (e.g., extracted or digested in the same batch). While it is important to identify any result associated with the presence of the analyte in the blank, the relative significance of the potential for sample contamination will be assessed using commonly accepted "rules." In instances where the amount of the analyte found in the method blank has very limited potential to affect the field sample result, an additional data qualifier will be applied to that field sample result to indicate that the result was not affected by the observed blank contamination. Similar assessments made for other data quality concerns may result in the application of additional flags that reconcile the observed data quality concerns with the user requirements and warn the end user of any limitations to the results (i.e., potential low or high bias, blank contamination, etc.). All of the data qualifiers will be included in the data file along with summary level comments that explain the implication in relatively plain English. The OST Project Manager will conduct a final review of all public release data files for formatting, accuracy, and completeness, and will notify the Branch Chief and Division Director of the Standards and Health Protection Division that the files are "final" and may be shared with the public or posted on EPA's website. Prior to this final review, the files are considered "deliberative," for internal use only.

Where data quality concerns suggest that no valid result was produced for a given analyte, the result for the analyte will be flagged for exclusion in the project-specific databases, and the comments will provide the rationale for the exclusion. The final report of fish tissue study results generated from each database and provided to EPA will not include such invalid results, although the records marked for exclusion will be retained in the database for transparency. As noted earlier, the overall verification and validation process is designed to maximize the amount of usable data for each fish tissue study, so flagging results for exclusion in each final fish tissue study database is intended as a last resort.

#### D3. Reconciliation with User Requirements

The QC results for the analyses of the homogenized fish fillet tissue samples for mercury, PFAS, and PCBs will be assessed against the QC acceptance criteria for those respective analyses. GDIT will track laboratory performance, notify the OST Project Manager of any issues, initiate corrective actions, and track progress by each sample analysis laboratory.

#### REFERENCES

ALS-Environmental. 2022. ALS-Environmental Kelso Facility Quality Assurance Manual. ALSKL-QAM. Revision 30.0. December 15, 2022.

Enthalpy Analytical. 2022. Quality Manual. Revision 34. June 28, 2023.

SGS-AXYS. 2022. Quality Assurance/Quality Control (QA/QC) Policies and Procedures Manual, QDO-001. Revision No. 34. August 16, 2022.

USEPA. 1995. Good Automated Laboratory Practices. EPA Manual 2185. U.S. Environmental Protection Agency, Office of Information Resources Management, Research Triangle Park, NC, August 1995.

USEPA. 2001a. EPA Requirements for Quality Assurance Project Plans. EPA QA/R-5. EPA/240/B-01/003. U.S. Environmental Protection Agency, Office of Environmental Information, Washington, DC.

USEPA. 2001b. Appendix to Method 1631, Total Mercury in Tissue, Sludge, Sediment, and Soil by Acid Digestion and BrCl Oxidation. EPA-821-R-01-013. January 2001. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

USEPA. 2002. Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. EPA-821-R-02-019. August 2002. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

USEPA. 2010. Method 1668C, Chlorinated Biphenyl Congeners in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS, April 2010. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

USEPA. 2022a. Quality Assurance Project Plan for 2022 National Lake Assessment (NLA) Fish Tissue Study Sample Preparation. September 2022. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

USEPA. 2022b. National Lakes Assessment 2022 Field Operations Manual. EPA-841-B-21-011. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

USEPA. 2022c. National Lakes Assessment 2022 Quality Assurance Project Plan. EPA-841-B-21-009. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

USEPA. 2022d. 3rd Draft Method 1633 Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS. EPA 821-D-22-003. June 2022. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

# Appendix A

# Target List of NLA 2022 Fish Tissue Study Whole Fish Sampling Locations

| EDA           | 8        |                                  |                       | issue Study whole Fish Sampling Do             |                      |                          |
|---------------|----------|----------------------------------|-----------------------|------------------------------------------------|----------------------|--------------------------|
| EPA<br>Region | Stata    | Site ID                          | County                | Site Name                                      | Latitude             | Longitude                |
| 4             | AL       | NLA22_AL-10001                   | Covington             | Unnamed Lake                                   | 31.24821             | -86.45315                |
| 4             |          |                                  |                       | 4                                              |                      |                          |
| -             | AL       | NLA22_AL-10002                   | DeKalb                | Unnamed Lake                                   | 34.38640             |                          |
| 4             | AL       | NLA22_AL-10003                   | Marengo               | Marengo Lake                                   | 32.21074             |                          |
| 4             | AL       | NLA22_AL-10004                   | Baldwin               | Dunn Lake                                      | 31.21649             |                          |
| 4             | AL       | NLA22_AL-10005                   | Montgomery            | W R Turnipseed Lake                            | 32.18871             | -86.04742                |
| 4             | AL       | NLA22_AL-10008                   | Perry                 | Watershed Structure Number Twelve              | 32.63631             | -87.48769                |
| 4             | AL       | NLA22_AL-10009                   | Bibb                  | Kornegay Lake                                  | 32.97790             |                          |
| 4             | AL       | NLA22_AL-10010                   | Montgomery            | Belser Lake                                    | 32.34362             | -86.06102                |
| 4             | AL       | NLA22_AL-10011                   | Shelby                | Riverchase Lake                                | 33.34404             |                          |
| 4             | AL       | NLA22_AL-10012                   | Tuscaloosa            | Mimosa Lake                                    | 33.15635             |                          |
| 6             | AR       | NLA22_AR-10001                   | Phillips              | DeSoto Lake                                    | 34.17390             |                          |
| 6             | AR       | NLA22_AR-10002                   | Logan                 | Fletcher Lake                                  | 35.21048             | -93.87560                |
| 6             | AR       | NLA22_AR-10003                   | Perry                 | South Fouche Site Seven Reservoir              | 35.01247             |                          |
| 6             | AR       | NLA22_AR-10004                   | Monroe                | Unnamed Lake                                   | 34.88872             | -91.24761                |
| 6             | AR       | NLA22_AR-10006                   | Greene                | Unnamed Lake                                   | 36.17826             |                          |
| 6             | AR       | NLA22_AR-10007                   | Desha                 | Walnut Lake                                    | 33.85307             | -91.51053                |
| 6             | AR       | NLA22_AR-10008                   | Prairie               | Unnamed Lake                                   | 34.66058             |                          |
| 6             | AR       | NLA22_AR-10009                   | Garland               | Unnamed Lake                                   | 34.40384             |                          |
| 9             | AZ       | NLA22_AZ-10001                   | Navajo                | Unnamed Lake                                   | 36.84980             |                          |
| 9             | AZ       | NLA22_AZ-10002                   | Graham                | Bonita Tank                                    | 33.17258             |                          |
| 9             | AZ       | NLA22_AZ-10003                   | Navajo                | Unnamed Lake                                   | 34.31337             |                          |
| 9             | AZ       | NLA22_AZ-10005                   | Mohave                | Mud Tank                                       | 35.51125             |                          |
| 9             | AZ       | NLA22_AZ-10006                   | Coconino              | Willow Springs Lake                            | 34.30857             |                          |
| 9             | AZ       | NLA22_AZ-10007                   | Apache                | Basin Lake                                     | 33.91776             |                          |
| 9             | CA       | NLA22_CA-10001                   | San Bernardino        | Unnamed Lake                                   | 34.85684             |                          |
| 9             | CA       | NLA22_CA-10002                   | Monterey              | Unnamed Lake                                   | 36.68960             |                          |
| 9             | CA       | NLA22_CA-10003                   | Fresno                | Papoose Lake                                   | 37.47135             |                          |
| 9             | CA       | NLA22_CA-10004                   | Orange                | Bonita Reservoir                               | 33.61125             |                          |
| 9             | CA       | NLA22_CA-10005                   | Tulare                | Unnamed Lake                                   | 36.53765             |                          |
| 9             | CA       | NLA22_CA-10006                   | Fresno                | Unnamed Lake                                   | 37.09401             |                          |
| 9             | CA       | NLA22_CA-10007                   | Lassen                | Hartson Lake Levee                             | 40.30286             |                          |
| 9             | CA       | NLA22_CA-10008                   | Modoc                 | Lake Annie                                     |                      | -120.10670               |
| 9<br>9        | CA       | NLA22_CA-10009                   | San Luis Obispo       | Unnamed Lake                                   | 35.67160             |                          |
| 9             | CA       | NLA22_CA-10010                   | Sonoma                | Donovan 1422 Lake                              | 38.56822             |                          |
| 9             | CA       | NLA22_CA-10011                   | Solano<br>Trinity     | Grizzly Island Unnamed Lake<br>Deadfall Lakes  | 38.16683<br>41.31673 |                          |
| 9             | CA       | NLA22_CA-10012                   |                       |                                                |                      |                          |
| 9             | CA<br>CA | NLA22_CA-10013<br>NLA22_CA-10014 | Mono<br>Alpine        | Alger Lakes<br>Lower Sunset Lake               | 37.79168             |                          |
| 9             |          | _                                |                       |                                                | 38.61141             |                          |
| 9             | CA<br>CA | NLA22_CA-10015                   | San Joaquin           | Unnamed Lake                                   |                      | -121.05130               |
| 9             |          | NLA22_CA-10016                   | San Diego<br>Humboldt | Loveland Reservoir<br>Freshwater Lagoon        |                      | -116.78180               |
| 9             | CA       | NLA22_CA-10025<br>NLA22_CA-10026 | Humboldt<br>Lake      | 6                                              |                      | -124.09326<br>-122.93803 |
| 9             | CA       | NLA22_CA-10026<br>NLA22_CA-10027 |                       | Lake Pillsbury<br>Little Lake                  | 39.41592<br>35.94668 |                          |
| 9             | CA<br>CA | NLA22_CA-10027<br>NLA22_CA-10028 | Inyo<br>Tuolumne      | Big Humbug Creek Lake                          | 37.88188             |                          |
| 9             | CA       | NLA22_CA-10028<br>NLA22_CA-10029 | Napa                  | Big Humbug Creek Lake<br>Bell Canyon Reservoir | 37.88188             |                          |
| 9             | CA       | NLA22_CA-10029<br>NLA22 CA-10030 | Placer                | Oxbow Reservoir                                | 38.55836             |                          |
| 9             | CA       | NLA22_CA-10030<br>NLA22_CA-10031 | Merced                | Unnamed Lake                                   | 39.00194             |                          |
| 9             | CA       | NLA22_CA-10031<br>NLA22_CA-10032 |                       | Unnamed Lake                                   | 36.82643             |                          |
| 9             |          |                                  | Fresno<br>Placer      | Antelope Creek Lake                            |                      |                          |
| 9             | CA<br>CA | NLA22_CA-10033                   | Amador                | Long Lake                                      | 38.80385             |                          |
| 9             | CA       | NLA22_CA-10034                   | Amador<br>San Benito  | Anzar Lake                                     | 36.88941             | -120.08100               |
| 9             |          | NLA22_CA-10035<br>NLA22_CA-10036 |                       |                                                |                      |                          |
| 9             | CA       |                                  | Mono                  | Glacier Lake                                   | 38.11576             |                          |
| 9             | CA<br>CA | NLA22_CA-10037                   | Sacramento<br>Shasta  | Unnamed Lake                                   |                      | -121.06648               |
| 9             | CA       | NLA22_CA-10038<br>NLA22_CA-10039 | Shasta<br>Tulare      | Horr Pond<br>Unnamed Lake                      | 41.11614<br>36.63681 |                          |
| 9             | CA       | NLA22_CA-10039<br>NLA22_CA-10040 | Los Angeles           | Unnamed Lake                                   | 34.59193             |                          |
| 8             | CO       | NLA22_CA-10040                   | Yuma                  | Unnamed Lake                                   | 40.08740             |                          |
| 8             | CO       | NLA22_CO-10001<br>NLA22_CO-10002 | Weld                  | Bebee Draw Pond                                | 40.08740             |                          |
| 8             | CO       | NLA22_CO-10002<br>NLA22_CO-10003 | Adams                 | Upper Derby Lake                               | 40.25343<br>39.83055 |                          |
| 8             | CO       | NLA22_CO-10003<br>NLA22_CO-10004 | Garfield              | Riland Creek Lake No. 2                        | 39.83055             |                          |
| 0             |          | 112/122_00-10004                 | Garrielu              | ICHARG OTOK LAKE INU. 2                        | 57.11241             | -10/.10220               |

| Targ | et List of NLA | 2022 Fish T | 'issue Study | Whole Fish | Sampling Lo | cations | 1 |
|------|----------------|-------------|--------------|------------|-------------|---------|---|
|      |                |             |              |            |             |         |   |

|               | 1 41 8 |                                  |                        | Tissue Study Whole Fish Sampli      | ng Locations         |            |
|---------------|--------|----------------------------------|------------------------|-------------------------------------|----------------------|------------|
| EPA<br>Region |        | Site ID                          | County                 | Site Name                           | Latitude             | 0          |
| 8             | CO     | NLA22_CO-10005                   | Logan                  | Unnamed Lake                        | 40.68702             | -103.38050 |
| 8             | CO     | NLA22_CO-10006                   | Larimer                | Rocky Ridge Lake Reservoir Number 1 | 40.67240             | -105.08550 |
| 8             | CO     | NLA22_CO-10007                   | Weld                   | Unnamed Lake                        | 40.26063             | -104.28670 |
| 8             | CO     | NLA22_CO-10011                   | La Plata               | Unnamed Lake                        | 37.47004             | -107.52019 |
| 8             | CO     | NLA22_CO-10012                   | Mesa                   | Cottonwood Lake Number 1            | 39.07303             | -107.97500 |
| 8             | CO     | NLA22_CO-10013                   | Weld                   | Banner Lakes                        | 40.07659             | -104.56291 |
| 8             | CO     | NLA22_CO-10014                   | El Paso                | Nixon Power Plant Pond              | 38.62437             | -104.6978  |
| 8             | CO     | NLA22_CO-10015                   | Archuleta              | Lake Ann                            | 37.27364             | -106.6875  |
| 8             | CO     | NLA22_CO-10016                   | Saguache               | Crow Drainage and Seepage Pond      | 37.92140             | -106.14623 |
| 1             | CT     | NLA22_CT-10001                   | Litchfield             | Deep Lake                           | 41.95109             | -73.4663   |
| 1             | CT     | NLA22_CT-10002                   | Hartford               | Unnamed Lake                        | 41.72973             | -72.8436   |
| 1             | CT     | NLA22_CT-10003                   | Middlesex              | Chapmans Pond                       | 41.30714             | -72.4956   |
| 1             | CT     | NLA22_CT-10005                   | New Haven              | Parkers Pond                        | 41.34105             | -73.0597   |
| 1             | CT     | NLA22 CT-10006                   | Litchfield             | Crystal Lake                        | 41.92229             | -73.1014   |
| 1             | CT     | NLA22 CT-10007                   | Hartford               | Whites Pond                         | 41.99542             | -72.7268   |
| 3             | DE     | NLA22 DE-10001                   | Kent                   | Unnamed Lake                        | 39.04532             | -75.71528  |
| 3             | DE     | NLA22 DE-10002                   | Kent                   | Wier Gut                            | 39.26203             | -75.4333   |
| 3             | DE     | NLA22_DE-10003                   | Kent                   | Unnamed Lake                        | 39.12592             | -75.63714  |
| 3             | DE     | NLA22 DE-10005                   | New Castle             | Noxontown Lake                      | 39.42265             | -75.6872   |
| 3             | DE     | NLA22 DE-10006                   | Kent                   | Unnamed Lake                        | 39.11172             | -75.4686   |
| 3             | DE     | NLA22 DE-10007                   | Sussex                 | Unnamed Lake                        | 38.63576             | -75.36494  |
| 4             | FL     | NLA22 FL-10001                   | Alachua                | Bonnet Lake                         | 29.72533             | -82.12170  |
| 4             | FL     | NLA22_FL-10001                   | Gulf                   | Dead Lakes                          | 30.17746             | -85.20963  |
| 4             | FL     | NLA22_FL-10002                   | Highlands              | Lake Anoka                          | 27.58052             | -81.51214  |
| 4             | FL     | NLA22 FL-10004                   | Brevard                | Unnamed Lake                        | 28.37866             | -80.76733  |
| 4             | FL     | NLA22_FL-10004                   | Monroe                 | Unnamed Lake                        | 25.30269             | -80.9266   |
| 4             | FL     | NLA22_FL-10007                   | Orange                 | Lake Mira                           | 28.59763             | -81.27203  |
| 4             | FL     | NLA22_FL-10008                   | Levy                   | Unnamed Lake                        | 29.17842             | -82.95504  |
| 4             | FL     | NLA22_FL-10009                   | Levy                   | Unnamed Lake                        | 30.45947             | -84.11412  |
| 4             | GA GA  | NLA22_FL-10010<br>NLA22_GA-10001 | Wayne                  | Little Harper Lake                  | 31.57157             | -84.11412  |
| 4             |        | _                                |                        | 1                                   |                      |            |
|               | GA     | NLA22_GA-10002                   | Colquitt<br>Washington | Unnamed Lake Unnamed Lake           | 31.09580<br>33.01464 | -83.65390  |
| 4             | GA     | NLA22_GA-10003                   |                        |                                     |                      | -83.02665  |
| 4             | GA     | NLA22_GA-10004<br>NLA22_GA-10005 | Jackson<br>Mitchell    | Unnamed Lake                        | 34.14049             | -83.68819  |
|               | GA     | _                                |                        | Rigsby Lake                         | 31.24367             | -84.0809   |
| 4             | GA     | NLA22_GA-10006                   | Atkinson               | Unnamed Lake                        | 31.13605             | -82.7649   |
| 4             | GA     | NLA22_GA-10007                   | Candler                | Unnamed Lake                        | 32.49819             | -82.0339   |
| 4             | GA     | NLA22_GA-10008                   | Stephens               | Whispering Pines Lake               | 34.53704             | -83.2483   |
| 4             | GA     | NLA22_GA-10009                   | Turner                 | Unnamed Lake                        | 31.75569             | -83.4996   |
| 4             | GA     | NLA22_GA-10010                   | Coffee                 | Unnamed Lake                        | 31.63541             | -82.8158   |
| 4             | GA     | NLA22_GA-10011                   | Candler                | Unnamed Lake                        | 32.43722             | -82.07362  |
| 4             | GA     | NLA22_GA-10017                   | Chatham                | Ambuc Park Lake                     | 31.99943             | -81.0966   |
| 4             | GA     | NLA22_GA-10018                   | Washington             | Smith Pond                          | 32.88182             | -82.8171   |
| 4             | GA     | NLA22_GA-10019                   | Berrien                | Batterbee Lake                      | 31.08497             | -83.1987   |
| 4             | GA     | NLA22_GA-10020                   | Terrell                | Unnamed Lake                        | 31.79064             | -84.3950   |
| 4             | GA     | NLA22_GA-10021                   | Richmond               | Unnamed Lake                        | 33.44645             | -81.9657   |
| 4             | GA     | NLA22_GA-10022                   | Emanuel                | Unnamed Lake                        | 32.56349             | -82.32992  |
| 4             | GA     | NLA22_GA-10023                   | Ware                   | Unnamed Lake                        | 30.65153             | -82.3775   |
| 4             | GA     | NLA22_GA-10024                   | Worth                  | Unnamed Lake                        | 31.34413             | -83.9649   |
| 4             | GA     | NLA22_GA-10025                   | Monroe                 | McCook Lake                         | 32.89196             | -83.93114  |
| 4             | GA     | NLA22_GA-10026                   | Jackson                | Bear Creek Reservoir                | 33.98931             | -83.5245   |
| 4             | GA     | NLA22_GA-10027                   | Charlton               | Unnamed Lake                        | 30.93647             | -82.3575   |
| 4             | GA     | NLA22_GA-10028                   | Troup                  | Reeds Lake                          | 33.13508             | -85.2036   |
| 7             | IA     | NLA22_IA-10001                   | Adair                  | Unnamed Lake                        | 41.46639             | -94.4404   |
| 7             | IA     | NLA22_IA-10002                   | Story                  | Unnamed Lake                        | 41.92535             | -93.5185   |
| 7             | IA     | NLA22_IA-10003                   | Des Moines             | Unnamed Lake                        | 40.87067             | -91.0706   |
| 7             | IA     | NLA22_IA-10005                   | Jackson                | Densmore Lake                       | 42.16265             | -90.2824   |
| 7             | IA     | NLA22_IA-10006                   | Davis                  | Pits Pond                           | 40.89187             | -92.4166   |
| 7             | IA     | NLA22_IA-10007                   | Ida                    | Grell Pond                          | 42.37359             | -95.4991′  |
| 10            | ID     | NLA22_ID-10001                   | Lemhi                  | Unnamed Lake                        | 44.60377             | -113.26200 |
|               | ID     | NLA22 ID-10002                   | Idaho                  | Line Lake                           | 45.57256             | -114.5749  |

| EPA    | 0       |                                  |             |                                 |                      |            |
|--------|---------|----------------------------------|-------------|---------------------------------|----------------------|------------|
| Region | State   | Site ID                          | County      | Site Name                       | Latitude             | Longitude  |
| 10     | ID      | NLA22 ID-10003                   | Boundary    | Joe Lake                        |                      | -116.77560 |
| 10     | ID      | NLA22 ID-10004                   | Custer      | Cove Lake                       |                      | -114.60850 |
| 10     | ID      | NLA22 ID-10005                   | Kootenai    | Twin Lakes                      |                      | -116.87560 |
| 10     | ID      | NLA22_ID-10006                   | Idaho       | Fish Lake                       |                      | -115.32050 |
| 10     | ID      | NLA22_ID-10009                   | Nez Perce   | Lewiston Pond                   |                      | -117.03901 |
| 10     | ID      | NLA22 ID-10009                   | Owyhee      | Succor Creek Reservoir          | 43.19169             |            |
| 10     | ID      | NLA22 ID-10010                   | Boise       | Baron Lakes                     |                      | -115.03278 |
| 10     | ID      | NLA22_ID-10011                   | Canyon      | Unnamed Lake                    |                      | -116.73120 |
| 10     | ID      | NLA22_ID-10012<br>NLA22_ID-10013 | Bonner      | Beaver Lake                     |                      | -116.40947 |
|        |         |                                  |             |                                 |                      |            |
| 10     | ID<br>H | NLA22_ID-10014                   | Valley      | Papoose Lakes                   | 44.79496             |            |
| 5      | IL      | NLA22_IL-10001                   | Gallatin    | Pounds Lake                     | 37.61538             |            |
| 5      | IL      | NLA22_IL-10002                   | Rock Island | Kickapoo Slu Unnamed Lake       | 41.46518             |            |
| 5      | IL      | NLA22_IL-10003                   | Peoria      | Lake Lancelot                   | 40.63115             |            |
| 5      | IL      | NLA22_IL-10004                   | St. Clair   | Peabody-River King Unnamed Lake | 38.33230             |            |
| 5      | IL      | NLA22_IL-10005                   | Will        | Monee Reservoir                 | 41.39280             |            |
| 5      | IL      | NLA22_IL-10006                   | Knox        | Green Oaks Lake                 | 40.97766             |            |
| 5      | IL      | NLA22_IL-10009                   | Will        | Unnamed Lake                    | 41.49623             | -87.92387  |
| 5      | IL      | NLA22_IL-10010                   | Woodford    | Upper Peoria Lake               | 40.80198             |            |
| 5      | IL      | NLA22_IL-10011                   | Macoupin    | Timbered Lake                   | 39.29383             | -89.81042  |
| 5      | IL      | NLA22_IL-10012                   | Washington  | Unnamed Lake                    | 38.45397             |            |
| 5      | IL      | NLA22_IL-10013                   | Lake        | West Meadow Lake                | 42.17020             | -87.91875  |
| 5      | IL      | NLA22_IL-10014                   | Jo Daviess  | Spratts Lake                    | 42.35543             | -90.42688  |
| 5      | IN      | NLA22_IN-10001                   | Allen       | Cook Lougheed Wildlife Pond     | 41.02069             | -85.29615  |
| 5      | IN      | NLA22_IN-10002                   | Miami       | Unnamed Lake                    | 40.92302             | -86.07928  |
| 5      | IN      | NLA22 IN-10003                   | Clark       | Money Hollow Pond               | 38.43623             | -85.86209  |
| 5      | IN      | NLA22 IN-10004                   | Sullivan    | MauMee Lake                     | 39.05293             |            |
| 5      | IN      | NLA22 IN-10005                   | Blackford   | Chapel Lake                     | 40.38023             |            |
| 5      | IN      | NLA22 IN-10006                   | LaGrange    | Pond Lil                        | 41.54465             |            |
| 5      | IN      | NLA22 IN-10007                   | Warrick     | Owen Unnamed Mine Pond          | 38.14829             |            |
| 5      | IN      | NLA22_IN-10008                   | Warren      | Jordan Creek Lake               | 40.36411             | -87.51680  |
| 5      | IN      | NLA22 IN-10013                   | Lake        | Lake Michigan                   | 41.63819             |            |
| 5      | IN      | NLA22 IN-10014                   | Steuben     | Lone Hickory Lake               | 41.73956             |            |
| 5      | IN      | NLA22 IN-10015                   | Pike        | Unnamed Lake                    | 38.42608             |            |
| 5      | IN      | NLA22_IN-10015                   | Hendricks   | Crystal Bay Pond                | 39.67847             | -86.39153  |
| 5      | IN      | NLA22_IN-10010                   | Noble       | Smalley Lake                    | 41.31160             |            |
| 5      | IN      | NLA22_IN-10017<br>NLA22_IN-10018 | LaGrange    | Unnamed Lake                    | 41.54890             |            |
| 5      |         | _                                |             |                                 |                      |            |
| 5      | IN      | NLA22_IN-10019                   | Sullivan    | More Lake                       | 38.97994<br>39.45077 |            |
| -      | IN      | NLA22_IN-10020                   | Clay        | Unnamed Lake                    |                      | -87.08941  |
| 7      | KS      | NLA22_KS-10001                   | Seward      | Unnamed Lake                    | 37.12815             |            |
| 7      | KS      | NLA22_KS-10002                   | Franklin    | Unnamed Lake                    | 38.44580             |            |
| 7      | KS      | NLA22_KS-10003                   | Sedgwick    | Fishin' Lake                    | 37.65573             |            |
| 7      | KS      | NLA22_KS-10004                   | Rice        | Sterling Lake                   | 38.20350             |            |
| 7      | KS      | NLA22_KS-10005                   | Cowley      | Unnamed Lake                    | 37.36651             | -96.78801  |
| 7      | KS      | NLA22_KS-10006                   | Coffey      | Sand Creek Pond                 | 38.38463             | -95.67273  |
| 7      | KS      | NLA22_KS-10007                   | Greenwood   | Unnamed Lake                    | 37.66700             | -96.16676  |
| 7      | KS      | NLA22_KS-10011                   | Cherokee    | Deer Creek Lake                 | 37.22608             | -94.99618  |
| 7      | KS      | NLA22_KS-10012                   | Labette     | Unnamed Lake                    | 37.01717             | -95.26623  |
| 7      | KS      | NLA22_KS-10013                   | Lane        | Unnamed Lake                    | 38.67362             | -100.36311 |
| 7      | KS      | NLA22_KS-10014                   | Kingman     | Unnamed Lake                    | 37.47586             | -98.42391  |
| 7      | KS      | NLA22_KS-10015                   | Crawford    | Unnamed Lake                    | 37.46732             | -94.83631  |
| 7      | KS      | NLA22_KS-10016                   | Johnson     | New Olathe Lake                 | 38.87607             | -94.87323  |
| 7      | KS      | NLA22_KS-10017                   | Dickinson   | Unnamed Carry Creek Lake        | 38.83591             | -97.01293  |
| 4      | KY      | NLA22_KY-10001                   | Jefferson   | Kosmos Cement Pond              | 38.04097             | -85.88920  |
| 4      | KY      | NLA22_KY-10002                   | Lincoln     | Stanford Reservoir              | 37.48693             | -84.67911  |
| 4      | KY      | NLA22_KY-10003                   | Hopkins     | Unnamed Lake                    | 37.29977             | -87.57088  |
| 4      | KY      | NLA22_KY-10005                   | Woodford    | Rowes Run Pond                  | 38.06590             | -84.80619  |
| 4      | KY      | NLA22_KY-10006                   | Pulaski     | Unnamed Lake                    | 36.86492             | -84.57831  |
| 4      | KY      | NLA22 KY-10007                   | Christian   | Lake Morris                     | 36.92895             |            |
| 4      | KY      | NLA22 KY-10008                   | Christian   | Dam Number 6 Pond               | 37.01110             |            |
| 6      | LA      | NLA22_LA-10001                   | Caddo       | Unnamed Lake                    | 32.93598             | -93.82210  |
|        |         |                                  |             | I                               |                      |            |

| EDA           |       |                                  |                 | issue study whole rish sampling De |          |           |
|---------------|-------|----------------------------------|-----------------|------------------------------------|----------|-----------|
| EPA<br>Bagian | State | Site ID                          | County          | Site Name                          | Latitude | Longitudo |
| Region        |       | Site ID                          | County          |                                    |          | Longitude |
| 6             | LA    | NLA22_LA-10002                   | Natchitoches    | Unnamed Lake                       | 31.56099 | -92.97875 |
| 6             | LA    | NLA22_LA-10003                   | Lafourche       | Unnamed Lake                       | 29.59054 | -90.36429 |
| 6             | LA    | NLA22_LA-10004                   | St. Bernard     | Bayou Pisana                       | 29.77620 | -89.51460 |
| 6             | LA    | NLA22_LA-10007                   | West Carroll    | Unnamed Lake                       | 32.89590 | -91.46462 |
| 6             | LA    | NLA22_LA-10008                   | Caddo           | Northwood Lake                     | 32.60497 | -93.87630 |
| 6             | LA    | NLA22_LA-10009                   | Iberia          | De Vance Pond                      | 29.89747 | -91.89555 |
| 6             | LA    | NLA22 LA-10010                   | Jefferson Davis | Unnamed Lake                       | 30.22668 | -92.77057 |
| 6             | LA    | NLA22_LA-10011                   | Catahoula       | Sunk Lake                          | 31.91781 | -91.81415 |
| 1             | MA    | NLA22 MA-10001                   | Nantucket       | Unnamed Lake                       | 41.28917 | -69.99508 |
| 1             | MA    | NLA22 MA-10002                   | Norfolk         | Dry Pond                           | 42.10683 | -71.13425 |
| 1             | RI    | NLA22_MA-10002<br>NLA22_MA-10003 | Providence      | Pratt Pond                         | 42.01950 | -71.54769 |
| 1             |       | NLA22_MA-10005                   | Berkshire       | Housatonic River Oxbow             |          |           |
|               | MA    | _                                |                 |                                    | 42.21780 | -73.34401 |
| 1             | MA    | NLA22_MA-10006                   | Franklin        | Unnamed Lake                       | 42.56419 | -72.38868 |
| 1             | MA    | NLA22_MA-10007                   | Bristol         | Chartley Pond                      | 41.94622 | -71.23929 |
| 1             | MA    | NLA22_MA-10008                   | Worcester       | Flint Pond                         | 42.24136 | -71.72584 |
| 3             | MD    | NLA22_MD-10001                   | Cecil           | Unnamed Lake                       | 39.69407 | -75.79279 |
| 3             | MD    | NLA22_MD-10002                   | Baltimore       | Lake Roland                        | 39.39093 | -76.64478 |
| 3             | MD    | NLA22_MD-10003                   | Dorchester      | Bullock Pond                       | 38.40128 | -76.07816 |
| 3             | MD    | NLA22_MD-10005                   | Somerset        | Unnamed Lake                       | 37.96085 | -76.00659 |
| 3             | MD    | NLA22 MD-10006                   | Dorchester      | Goose Pond                         | 38.39888 | -76.04801 |
| 3             | MD    | NLA22 MD-10007                   | Charles         | Hampshire Lake                     | 38.62289 | -76.95824 |
| 1             | ME    | NLA22 ME-10001                   | Washington      | Baileyville Sewage Disposal Pond   | 45.13076 | -67.40111 |
| 1             | ME    | NLA22_ME-10001                   | Lincoln         | Little Pond                        | 43.97281 | -69.49572 |
| 1             | ME    | NLA22_ME-10002                   | Penobscot       | Unnamed Lake                       | 45.11771 |           |
|               |       |                                  |                 |                                    | 46.43398 | -68.73956 |
| 1             | ME    | NLA22_ME-10004                   | Piscataquis     | North Echo Lake                    |          | -69.14687 |
| 1             | ME    | NLA22_ME-10005                   | York            | Unnamed Lake                       | 43.47445 | -70.92767 |
| 1             | ME    | NLA22_ME-10006                   | Lincoln         | Havener Pond                       | 44.06857 | -69.28787 |
| 1             | ME    | NLA22_ME-10009                   | Hancock         | Jones Pond                         | 44.45485 | -68.08088 |
| 1             | ME    | NLA22_ME-10010                   | Oxford          | Bird Pond                          | 44.24424 | -70.55330 |
| 1             | ME    | NLA22_ME-10011                   | Somerset        | Roberts Pond                       | 46.05930 | -70.26933 |
| 1             | ME    | NLA22_ME-10012                   | Aroostook       | Shields Lake                       | 46.53262 | -68.47856 |
| 1             | ME    | NLA22 ME-10013                   | Cumberland      | Mariner Pond                       | 43.89645 | -70.69504 |
| 5             | MI    | NLA22 MI-10001                   | Keweenaw        | Unnamed Lake                       | 48.00015 | -88.86112 |
| 5             | MI    | NLA22_MI-10002                   | Gratiot         | Unnamed Lake                       | 43.20981 | -84.41556 |
| 5             | MI    | NLA22 MI-10003                   | Livingston      | Unnamed Lake                       | 42.58746 | -84.10850 |
| 5             | MI    | NLA22 MI-10004                   | Mecosta         | Unnamed Lake                       | 43.79752 | -85.21140 |
| 5             | MI    | NLA22 MI-10005                   | Iron            | Horseshoe Lake                     | 46.09770 | -88.90776 |
| 5             | MI    |                                  | Kent            | Unnamed Lake                       | 40.09770 |           |
|               |       | NLA22_MI-10006                   |                 |                                    |          | -85.61069 |
| 5             | MI    | NLA22_MI-10007                   | Oakland         | Unnamed Lake                       | 42.64060 | -83.57703 |
| 5             | MI    | NLA22_MI-10008                   | Osceola         | Beaver Lake                        | 44.02913 | -85.54542 |
| 5             | MI    | NLA22_MI-10009                   | Schoolcraft     | Lorraine Lake                      | 46.14496 |           |
| 5             | MI    | NLA22_MI-10010                   | Barry           | Newton Lake                        | 42.58961 | -85.29964 |
| 5             | MI    | NLA22_MI-10015                   | Berrien         | Wagner Lake                        | 41.84915 | -86.44684 |
| 5             | MI    | NLA22_MI-10016                   | Alger           | Deerfoot Lake                      | 46.51802 | -86.07541 |
| 5             | MI    | NLA22_MI-10017                   | Alcona          | Lost Lake                          | 44.79656 | -83.45931 |
| 5             | MI    | NLA22_MI-10018                   | Grand Traverse  | Unnamed Lake                       | 44.74558 | -85.78277 |
| 5             | MI    | NLA22 MI-10019                   | Allegan         | Pickerel Lake                      | 42.56553 | -85.69547 |
| 5             | MI    | NLA22 MI-10020                   | Oakland         | Pine Lake                          | 42.58986 | -83.34190 |
| 5             | MI    | NLA22_MI-10020                   | Newaygo         | Second Lake                        | 43.48059 | -85.93478 |
| 5             | MI    | NLA22_MI-10021                   | Iron            | Fortune Pond                       | 46.09974 | -88.38857 |
| 5             |       |                                  | Branch          | Huyck Lake                         | 40.09974 |           |
|               | MI    | NLA22_MI-10023                   |                 |                                    |          | -84.97801 |
| 5             | MI    | NLA22_MI-10024                   | Midland         | Kawkawlin Creek Flooding           | 43.80632 | -84.27323 |
| 5             | MN    | NLA22_MN-10001                   | Pine            | Greigs Lake                        | 46.05283 | -92.47217 |
| 5             | MN    | NLA22_MN-10002                   | Grant           | Ashby Lake                         | 46.10148 | -95.81966 |
| 5             | MN    | NLA22_MN-10003                   | Lake            | Hush Lake                          | 47.86655 | -91.35346 |
| 5             | MN    | NLA22_MN-10004                   | Cass            | Lake Lomish                        | 47.07554 | -94.13103 |
| 5             | MN    | NLA22_MN-10005                   | Wright          | Somers Lake                        | 45.26380 | -94.02673 |
| 5             | MN    | NLA22 MN-10006                   | Todd            | Beauty Lake                        | 46.00960 | -94.69823 |
| 5             | MN    | NLA22 MN-10007                   | Lake            | Neglige Lake                       | 48.04965 | -91.30297 |
| 5             | MN    | NLA22 MN-10007                   | Beltrami        | Unnamed Lake                       | 47.83976 | -95.05832 |
|               | 14114 | 1.122_1111 10000                 | Seinain         | S manifou Luno                     | 17.05770 | 10.00002  |

| TRA           |       |                                  |                     | issue Study whole Fish Sampling De |          | 1          |
|---------------|-------|----------------------------------|---------------------|------------------------------------|----------|------------|
| EPA<br>Degion | State | Site ID                          | County              | Site Name                          | Latituda | Longitude  |
| Region        | State |                                  |                     |                                    | Latitude | 0          |
| 5             | MN    | NLA22_MN-10009                   | Cottonwood          | Double Lake                        | 44.05364 |            |
| 5             | MN    | NLA22_MN-10010                   | Cass                | Unnamed Lake                       | 46.75635 |            |
| 5             | MN    | NLA22_MN-10011                   | Itasca              | Mississippi Lake                   | 47.17212 | -93.40033  |
| 5             | MN    | NLA22_MN-10012                   | Hubbard             | Unnamed Lake                       | 47.15998 | -95.05449  |
| 5             | MN    | NLA22_MN-10013                   | Otter Tail          | Upper Bullhead Lake                | 46.26641 | -95.61862  |
| 5             | MN    | NLA22_MN-10014                   | Hennepin            | Unnamed Lake                       | 45.04195 | -93.76155  |
| 5             | MN    | NLA22_MN-10015                   | St. Louis           | Unnamed Lake                       | 48.36183 | -92.72804  |
| 5             | MN    | NLA22_MN-10016                   | Otter Tail          | Iverson Lake                       | 46.22321 | -96.04381  |
| 5             | MN    | NLA22_MN-10017                   | Carlton             | Jaskari Lake                       | 46.67872 | -92.70048  |
| 5             | MN    | NLA22_MN-10026                   | Kittson             | Unnamed Lake                       | 48.96596 | -96.85510  |
| 5             | MN    | NLA22 MN-10027                   | Douglas             | Unnamed Lake                       | 45.91323 | -95.69035  |
| 5             | MN    | NLA22_MN-10028                   | Becker              | Unnamed Lake                       | 46.87870 |            |
| 5             | MN    | NLA22_MN-10029                   | Chisago             | North Center Lake                  | 45.40963 |            |
| 5             | MN    | NLA22 MN-10030                   | St. Louis           | Foss Lake                          | 47.89288 |            |
| 5             | MN    | NLA22 MN-10031                   | Crow Wing           | Hampton Lake                       | 46.17622 | -94.21392  |
| 5             | MN    | NLA22 MN-10032                   | Hubbard             | Unnamed Lake                       | 47.15083 | -95.06487  |
| 5             | MN    | NLA22_MN-10032<br>NLA22_MN-10033 | Lake                | Wilbur Lake                        | 47.54885 |            |
| 5             |       | NLA22_MIN-10033                  | Itasca              | Unnamed Lake                       | 47.50128 | -93.18589  |
|               | MN    | -                                |                     |                                    |          |            |
| 5             | MN    | NLA22_MN-10035                   | Otter Tail          | Unnamed Lake                       | 46.45817 | -95.25268  |
| 5             | MN    | NLA22_MN-10036                   | Crow Wing           | Unnamed Lake                       | 46.77633 | -94.17500  |
| 5             | MN    | NLA22_MN-10037                   | Wright              | Unnamed Lake                       | 45.11807 | -94.02326  |
| 5             | MN    | NLA22_MN-10038                   | Itasca              | Unnamed Lake                       | 47.77088 | -93.28092  |
| 5             | MN    | NLA22_MN-10039                   | Otter Tail          | Sewell Lake                        | 46.14359 |            |
| 5             | MN    | NLA22_MN-10040                   | Aitkin              | Lake Four                          | 46.49527 | -93.63019  |
| 5             | MN    | NLA22_MN-10041                   | Carver              | Unnamed Lake                       | 44.80631 | -93.82413  |
| 5             | MN    | NLA22_MN-10042                   | Big Stone           | Unnamed Lake                       | 45.49689 | -96.53740  |
| 7             | MO    | NLA22_MO-10001                   | Bollinger           | Masters Lake                       | 37.18762 | -89.93068  |
| 7             | MO    | NLA22_MO-10002                   | Pulaski             | Unnamed Lake                       | 38.00504 | -92.07754  |
| 7             | MO    | NLA22 MO-10003                   | Nodaway             | Unnamed Lake                       | 40.47625 | -94.85369  |
| 7             | MO    | NLA22 MO-10004                   | Bates               | Unnamed Lake                       | 38.15652 | -94.58211  |
| 7             | MO    | NLA22 MO-10005                   | Scott               | Sikeston Power Station Pond        | 36.87839 |            |
| 7             | MO    | NLA22 MO-10008                   | Mississippi         | Henson Lake                        | 36.85729 |            |
| 7             | MO    | NLA22 MO-10009                   | Laclede             | Porto Farms Lake                   | 37.51814 |            |
| 7             | MO    | NLA22 MO-10010                   | Washington          | Diablo Lake                        | 38.05071 | -90.85549  |
| 7             | MO    | NLA22 MO-10011                   | Lafayette           | Hicklin Lake                       | 39.19283 | -93.79138  |
| 7             | MO    | NLA22 MO-10012                   | Linn                | Linneus Reservoir                  | 39.88843 | -93.19763  |
| 4             | MS    | NLA22_MO-10012<br>NLA22_MS-10001 | Tippah              | BD Cox Pond                        | 34.87096 |            |
| 4             | MS    |                                  | Clarke              | Unnamed Lake                       |          |            |
| -             |       | NLA22_MS-10002                   | Warren              | Purvis Lake                        | 32.03380 |            |
| 4             | MS    | NLA22_MS-10003                   |                     |                                    | 32.48160 |            |
| 4             | MS    | NLA22_MS-10004                   | Simpson             | Unnamed Lake                       | 32.01253 |            |
| 4             | MS    | NLA22_MS-10007                   | Lincoln             | Burgess Lake                       | 31.69412 |            |
| 4             | MS    | NLA22_MS-10008                   | Marshall            | Unnamed Lake                       | 34.57544 | -89.29050  |
| 4             | MS    | NLA22_MS-10009                   | Issaquena           | Unnamed Lake                       | 32.97438 |            |
| 4             | MS    | NLA22_MS-10010                   | Forrest             | Unnamed Lake                       | 31.18912 |            |
| 8             | MT    | NLA22_MT-10001                   | Carbon              | Triangle Lake                      | 45.01284 |            |
| 8             | MT    | NLA22_MT-10002                   | Rosebud             | Unnamed Lake                       | 46.60717 |            |
| 8             | MT    | NLA22_MT-10003                   | Carter              | Unnamed Lake                       | 45.49482 |            |
| 8             | MT    | NLA22_MT-10004                   | Ravalli             | Unnamed Lake                       | 46.51488 | -114.26860 |
| 8             | MT    | NLA22_MT-10005                   | Beaverhead          | Red Rock Lakes                     | 44.63601 | -111.80490 |
| 8             | MT    | NLA22_MT-10006                   | Sheridan            | Unnamed Lake                       | 48.89743 | -104.21200 |
| 8             | MT    | NLA22_MT-10007                   | Lincoln             | Summerville Lake                   | 48.79690 |            |
| 8             | MT    | NLA22 MT-10008                   | Powell              | Unnamed Lake                       | 47.04000 |            |
| 8             | MT    | NLA22_MT-10009                   | Dawson              | Unnamed Lake                       | 47.61756 |            |
| 8             | MT    | NLA22_MT-10010                   | Phillips            | Unnamed Lake                       | 47.97548 |            |
| 8             | MT    | NLA22_MT-10011                   | Flathead            | Elk Ridge Lake                     | 47.97640 |            |
| 8             | MT    | NLA22_MT-10011                   | Golden Valley       | Unnamed Lake                       | 46.31711 | -109.37270 |
| 8             | MT    | NLA22_MT-10012<br>NLA22_MT-10013 | Phillips            | Unnamed Lake                       | 47.76268 |            |
| 8             | MT    | NLA22_MT-10013<br>NLA22_MT-10014 | Valley              | Unnamed Lake                       | 47.76208 |            |
|               |       |                                  |                     | Unnamed Lake                       |          |            |
| 8             | MT    | NLA22_MT-10015                   | Glacier<br>Phillips |                                    | 48.90706 |            |
| 8             | MT    | NLA22_MT-10023                   | rinnips             | Frenchman Reservoir                | 48.70511 | -107.22939 |

| EPA    |       |                                  |               | issue study whole I ish sumpling Ed |          |            |
|--------|-------|----------------------------------|---------------|-------------------------------------|----------|------------|
| Region | State | Site ID                          | County        | Site Name                           | Latitudo | Longitude  |
| 8      | MT    | NLA22 MT-10024                   | Glacier       | Swiftcurrent Lake                   |          | -113.66106 |
| 8      | MT    | NLA22_MT-10024<br>NLA22_MT-10025 | Phillips      | Hewitt Lake                         |          | -107.58881 |
| -      |       |                                  |               |                                     |          |            |
| 8      | MT    | NLA22_MT-10026                   | Missoula      | Doctor Lake                         |          | -113.48145 |
| 8      | MT    | NLA22_MT-10027                   | Toole         | Tomscheck Lake                      |          | -111.64913 |
| 8      | MT    | NLA22_MT-10028                   | Carter        | Unnamed Lake                        |          | -104.76212 |
| 8      | MT    | NLA22_MT-10029                   | Phillips      | Unnamed Lake                        |          | -108.06333 |
| 8      | MT    | NLA22_MT-10030                   | Beaverhead    | Unnamed Lake                        |          | -111.82303 |
| 8      | MT    | NLA22_MT-10031                   | Flathead      | Fennon Slough                       |          | -114.12850 |
| 8      | MT    | NLA22_MT-10032                   | Custer        | Unnamed Lake                        | 45.91999 | -105.70066 |
| 8      | MT    | NLA22 MT-10033                   | McCone        | Unnamed Lake                        | 47.76746 | -105.80484 |
| 8      | MT    | NLA22_MT-10034                   | Sweet Grass   | Beley Lakes                         |          | -110.18186 |
| 8      | MT    | NLA22 MT-10035                   | Lincoln       | Tooley Lake                         |          | -115.20128 |
| 8      | MT    | NLA22_MT-10036                   | Rosebud       | Round Butte Reservoir               |          | -106.65725 |
| 8      | MT    | NLA22 MT-10037                   | Mineral       | Foley Lake                          |          | -114.92425 |
| 8      | MT    | NLA22_MT-10037<br>NLA22_MT-10038 |               | Dammel Reservoir                    |          | -110.14732 |
| -      |       | -                                | Chouteau      |                                     |          |            |
| 4      | NC    | NLA22_NC-10001                   | Avery         | Wildcat Lake                        | 36.14793 |            |
| 4      | NC    | NLA22_NC-10002                   | Stokes        | Fox Pond                            | 36.29909 |            |
| 4      | NC    | NLA22_NC-10003                   | Nash          | Unnamed Lake                        | 35.85621 | -78.03021  |
| 4      | NC    | NLA22_NC-10004                   | Alamance      | Unnamed Lake                        | 36.18589 | -79.35081  |
| 4      | NC    | NLA22_NC-10007                   | Warren        | Unnamed Lake                        | 36.46487 | -78.30042  |
| 4      | NC    | NLA22 NC-10008                   | Brunswick     | Clark Lake                          | 34.03236 | -78.21957  |
| 4      | NC    | NLA22 NC-10009                   | Lenoir        | Walters Millpond                    | 35.30355 |            |
| 4      | NC    | NLA22 NC-10010                   | Wake          | Loch Haven Lake                     | 35.83124 |            |
| 8      | ND    | NLA22 ND-10001                   | Pembina       | Unnamed Lake                        | 48.89866 |            |
| 8      | ND    | NLA22 ND-10002                   | Kidder        | Unnamed Lake                        | 47.26394 |            |
| 8      | ND    | NLA22_ND-10002                   | Stutsman      | Unnamed Lake                        | 47.13186 |            |
|        |       |                                  |               |                                     |          |            |
| 8      | ND    | NLA22_ND-10004                   | McLean        | Unnamed Lake                        | 47.63810 |            |
| 8      | ND    | NLA22_ND-10005                   | Rolette       | Unnamed Lake                        | 48.67467 |            |
| 8      | ND    | NLA22_ND-10006                   | Pierce        | Sandy Lakes                         | 47.98754 |            |
| 8      | ND    | NLA22_ND-10007                   | Stutsman      | Unnamed Lake                        | 46.76596 |            |
| 8      | ND    | NLA22_ND-10008                   | Ward          | Unnamed Lake                        | 48.35212 |            |
| 8      | ND    | NLA22_ND-10009                   | Burke         | Unnamed Lake                        | 48.60725 | -102.38170 |
| 8      | ND    | NLA22 ND-10010                   | Ramsey        | Unnamed Lake                        | 48.21080 | -98.39406  |
| 8      | ND    | NLA22 ND-10011                   | Dickey        | Reinke Waterfowl Pond               | 46.11088 | -98.89073  |
| 8      | ND    | NLA22 ND-10012                   | Mountrail     | Unnamed Lake                        | 48.33447 | -102.05070 |
| 8      | ND    | NLA22 ND-10013                   | Bottineau     | Unnamed Lake                        | 48.97325 |            |
| 8      | ND    | NLA22 ND-10020                   | Pierce        | Gilmore Lake                        | 48.51396 |            |
| 8      | ND    | NLA22_ND-10020                   | Grant         | Unnamed Lake                        |          | -101.44526 |
| 8      | ND    | NLA22_ND-10021<br>NLA22_ND-10022 | Wells         |                                     | 47.53587 |            |
|        |       |                                  |               | Unnamed Lake                        | -        |            |
| 8      | ND    | NLA22_ND-10023                   | Steele        | Willow Lake                         | 47.27271 |            |
| 8      | ND    | NLA22_ND-10024                   | Rolette       | Berry Lake                          |          | -100.11704 |
| 8      | ND    | NLA22_ND-10025                   | McLean        | Unnamed Lake                        | 47.71925 |            |
| 8      | ND    | NLA22_ND-10026                   | Ramsey        | Unnamed Lake                        | 48.18198 |            |
| 8      | ND    | NLA22_ND-10027                   | Stutsman      | Unnamed Lake                        | 46.93133 |            |
| 8      | ND    | NLA22_ND-10028                   | Burke         | Unnamed Lake                        | 48.70996 | -102.60067 |
| 8      | ND    | NLA22_ND-10029                   | McHenry       | Duckshire Lake                      | 48.12172 | -100.32450 |
| 8      | ND    | NLA22_ND-10030                   | Pierce        | Unnamed Lake                        | 48.48495 | -99.83709  |
| 8      | ND    | NLA22 ND-10031                   | Kidder        | Unnamed Lake                        | 46.97926 |            |
| 8      | ND    | NLA22 ND-10032                   | Mountrail     | Unnamed Lake                        | 48.48370 |            |
| 7      | IA    | NLA22 NE-10001                   | Pottawattamie | Unnamed Lake                        | 41.46472 | -95.98270  |
| 7      | NE    | NLA22_NE-10001                   | Morrill       | Tercett Lake                        | 41.90324 |            |
|        |       |                                  |               |                                     | -        |            |
| 7      | NE    | NLA22_NE-10003                   | Platte        | Unnamed Lake                        | 41.64920 |            |
| 7      | NE    | NLA22_NE-10004                   | Webster       | Unnamed Lake                        | 40.19761 |            |
| 7      | NE    | NLA22_NE-10005                   | Cherry        | Rat Lake                            | 42.94400 |            |
| 7      | NE    | NLA22_NE-10006                   | Grant         | Rothwell Valley Pond                | 41.78254 |            |
| 7      | NE    | NLA22_NE-10007                   | Cherry        | Bakers Lake                         | 42.65573 |            |
| 7      | NE    | NLA22_NE-10008                   | Franklin      | Unnamed Lake                        | 40.18850 | -98.90148  |
| 7      | NE    | NLA22_NE-10009                   | Sheridan      | Unnamed Lake                        | 42.18984 | -102.42180 |
| 7      | NE    | NLA22_NE-10010                   | Chase         | Unnamed Lake                        | 40.49547 |            |
| 7      | NE    | NLA22_NE-10015                   | Otoe          | Unnamed Lake                        | 40.52835 | -95.89892  |
| L      |       |                                  |               | P                                   |          | I          |

| EDA           |       |                 |              | issue study whole I ish sampling De             |          |            |
|---------------|-------|-----------------|--------------|-------------------------------------------------|----------|------------|
| EPA<br>Region | State | Site ID         | County       | Site Name                                       | Latitude | Longitude  |
| 7             |       | NLA22 NE-10016  |              |                                                 |          |            |
|               |       |                 | Cherry       | Cody Lake                                       | 42.99306 |            |
| 7             | NE    | NLA22_NE-10017  | Dawson       | Unnamed Lake                                    | 40.89808 |            |
| 7             | NE    | NLA22_NE-10018  | Madison      | Unnamed Lake                                    | 41.98412 | -97.41806  |
| 7             | NE    | NLA22_NE-10019  | Cherry       | Unnamed Lake                                    | 42.81278 |            |
| 7             | NE    | NLA22_NE-10020  | Garden       | Twin Lake                                       | 41.71661 | -102.54054 |
| 7             | NE    | NLA22_NE-10021  | Brown        | Rat Lake                                        | 42.28000 | -100.11907 |
| 7             | NE    | NLA22_NE-10022  | Lancaster    | Yankee Hill Lake                                | 40.72519 | -96.78433  |
| 7             | NE    | NLA22 NE-10023  | Sheridan     | Miller Lake                                     | 42.43342 | -102.21267 |
| 7             | NE    | NLA22 NE-10024  | Scotts Bluff | Unnamed Lake                                    | 41.73575 |            |
| 1             | NH    | NLA22 NH-10001  | Carroll      | Pequawket Pond                                  | 43.96937 | -71.13569  |
| 1             | NH    | NLA22 NH-10002  | Merrimack    | Unnamed Lake                                    | 43.23972 | -71.76053  |
| 1             | NH    | NLA22 NH-10003  | Cheshire     | Ash Swamp Lake                                  | 42.83783 | -72.52464  |
| 1             | NH    | NLA22 NH-10005  | Carroll      | Bearcamp Pond                                   | 43.81588 | -71.37039  |
|               |       |                 |              | Meadow Dam Pond                                 |          |            |
| 1             | NH    | NLA22_NH-10006  | Belknap      |                                                 | 43.45836 | -71.24505  |
| 1             | NH    | NLA22_NH-10007  | Strafford    | Unnamed Lake                                    | 43.25171 | -71.03483  |
| 2             | NJ    | NLA22_NJ-10001  | Warren       | Catfish Pond                                    | 41.03964 | -74.99616  |
| 2             | NJ    | NLA22_NJ-10002  | Ocean        | Unnamed Lake                                    | 39.73888 | -74.18749  |
| 2             | NJ    | NLA22_NJ-10003  | Monmouth     | Sunset Lake                                     | 40.22553 | -74.00517  |
| 2             | NJ    | NLA22_NJ-10005  | Ocean        | Unnamed Lake                                    | 39.99744 | -74.33554  |
| 2             | NJ    | NLA22_NJ-10006  | Ocean        | Unnamed Lake                                    | 39.55246 | -74.36599  |
| 2             | NJ    | NLA22 NJ-10007  | Hudson       | Unnamed Lake                                    | 40.75414 | -74.10356  |
| 6             | NM    | NLA22 NM-10001  | Valencia     | Unnamed Lake                                    | 34.74814 | -106.01360 |
| 6             | NM    | NLA22 NM-10002  | Chaves       | Zuber Hollow Reservoir                          | 33.21249 | -104.35860 |
| 6             | NM    | NLA22 NM-10003  | McKinley     | Unnamed Lake                                    | 35.40173 |            |
| 6             | NM    | NLA22 NM-10005  | Eddy         | Nash Lake                                       | 32.33315 |            |
| 6             | NM    | NLA22_NM-10005  | Union        | Unnamed Lake                                    | 36.18013 |            |
| 6             | NM    | NLA22 NM-10007  | Guadalupe    | Unnamed Lake                                    | 35.05349 | -104.41676 |
| 9             | NV    |                 |              |                                                 |          |            |
| -             |       | NLA22_NV-10001  | Humboldt     | Echo Lake                                       | 41.87949 |            |
| 9             | NV    | NLA22_NV-10002  | Lyon         | Unnamed Lake                                    | 38.87624 |            |
| 9             | NV    | NLA22_NV-10003  | Lyon         | Unnamed Lake                                    | 39.11693 | -119.08000 |
| 9             | NV    | NLA22_NV-10005  | Nye          | Horseshoe Reservoir                             | 36.40765 | -116.34202 |
| 9             | NV    | NLA22_NV-10006  | Elko         | Ralphs Warm Springs                             | 40.95635 |            |
| 9             | NV    | NLA22_NV-10007  | Churchill    | Twin Lakes                                      | 39.57537 | -118.68186 |
| 2             | NY    | NLA22_NY-10001  | Genesee      | Galloway Swamp Pond                             | 43.02094 | -78.30916  |
| 2             | NY    | NLA22_NY-10002  | Orange       | Wilkins Pond                                    | 41.38004 | -74.03007  |
| 2             | NY    | NLA22_NY-10003  | St. Lawrence | Long Pond                                       | 44.27153 | -75.06178  |
| 2             | NY    | NLA22_NY-10004  | Lewis        | Unnamed Lake                                    | 43.80737 | -75.15523  |
| 2             | NY    | NLA22 NY-10005  | Ulster       | Unnamed Lake                                    | 41.69110 | -74.46433  |
| 2             | NY    | NLA22 NY-10006  | Dutchess     | Moffit Pond                                     | 41.74694 | -73.73502  |
| 2             | NY    | NLA22 NY-10007  | Essex        | Rock Pond                                       | 43.85124 | -73.59510  |
| 2             | NY    | NLA22 NY-10008  | Fulton       | County Line Lake                                | 43.23406 |            |
| 2             | NY    | NLA22_NY-10009  | Sullivan     | Unnamed Lake                                    | 41.58713 | -74.38424  |
| 2             | NY    | NLA22 NY-10010  | Columbia     | Melcher Pond                                    | 42.15924 | -73.58872  |
| 2             | NY    | NLA22_N1-10010  | Cattaraugus  | Keyser Lake                                     | 42.10162 | -78.95409  |
| 2             | NY    | NLA22_NY-10017  | Warren       | Upper Kellum Pond                               | 43.55993 | -73.77761  |
| 2             |       | _               |              |                                                 |          |            |
|               | NY    | NLA22_NY-10018  | Sullivan     | Davis Pond                                      | 41.57370 | -74.98260  |
| 2             | NY    | NLA22_NY-10019  | Delaware     | Unnamed Lake                                    | 42.27785 | -75.06931  |
| 2             | NY    | NLA22_NY-10020  | Lewis        | Crooked Pond                                    | 44.11567 | -75.44370  |
| 2             | NY    | NLA22_NY-10021  | Essex        | Hammond Pond                                    | 44.00739 | -73.62855  |
| 2             | NY    | NLA22_NY-10022  | Ulster       | Cape Pond                                       | 41.75099 | -74.46746  |
| 2             | NY    | NLA22_NY-10023  | Orange       | Unnamed Lake                                    | 41.28816 | -74.21149  |
| 2             | NY    | NLA22_NY-10024  | Herkimer     | Gray Lake                                       | 43.70266 | -74.96271  |
| 2             | NY    | NLA22_NY-10025  | Steuben      | Unnamed Lake                                    | 42.00399 | -77.01247  |
| 5             | OH    | NLA22_OH-10001  | Darke        | Wabash Conservancy District Structure Reservoir | 40.31302 | -84.63687  |
| 5             | OH    | NLA22 OH-10002  | Montgomery   | Unnamed Lake                                    | 39.78671 | -84.27526  |
| 5             | OH    | NLA22_OH-10003  | Harrison     | Consolidation Coal Company Pond 0110-           | 40.19428 | -81.11995  |
| 5             | OH    | NLA22_OH-10004  | Stark        | Sippo Lake                                      | 40.80506 | -81.45572  |
| 5             | OH    | NLA22_OH-10007  | Mahoning     | Burgess Lake                                    | 41.00363 | -80.59803  |
| 5             | OH    | NLA22_OH-10007  | Knox         | Unnamed Lake                                    | 40.50757 | -82.55143  |
| 5             |       | NLA22_OH-10009  | Paulding     | Paulding Upground Reservoir                     |          |            |
| 3             | OH    | INLA22_00-10009 | i auluing    | i autuing Opground Reservoir                    | 41.12247 | -84.58798  |

| EPA    |       |                                  |              |                                           |                      |                        |
|--------|-------|----------------------------------|--------------|-------------------------------------------|----------------------|------------------------|
| Region | State | Site ID                          | County       | Site Name                                 | Latitude             | Longitude              |
| 5      | OH    | NLA22 OH-10010                   | Preble       | Unnamed Lake                              | 39.61885             | -84.65425              |
| 5      | OH    | NLA22 OH-10011                   | Columbiana   | Caldwell Spring Lake                      | 40.76430             | -80.59751              |
| 6      | OK    | NLA22 OK-10001                   | Love         | Oknoname 085003 Reservoir                 | 33.74768             | -97.16772              |
| 6      | OK    | NLA22 OK-10002                   | Seminole     | Unnamed Lake                              | 34.95707             | -96.67291              |
| 6      | OK    | NLA22 OK-10003                   | Craig        | Unnamed Lake                              | 36.58641             | -95.13408              |
| 6      | OK    | NLA22 OK-10004                   | Kingfisher   | Uncle John Creek Site 12 Reservoir        | 35.75334             | -97.86541              |
| 6      | OK    | NLA22_OK-10005                   | Seminole     | Unnamed Lake                              | 35.30597             | -96.62588              |
| 6      | OK    | NLA22_OK-10006                   | Stephens     | Unnamed Lake                              | 34.64651             | -98.00002              |
| 6      | OK    | NLA22_OK-10007                   | Rogers       | Unnamed Lake                              | 36.12308             | -95.53258              |
| 6      | OK    | NLA22_OK-10008                   | Payne        | Unnamed Lake                              | 35.96813             | -96.70164              |
| 6      | OK    | NLA22_OK-10009                   | Grady        | Unnamed Lake                              | 34.89731             | -97.69107              |
| 6      | OK    | NLA22_OK-10009                   | Washita      | Boggy Creek Watershed Site 25 Reservoir   | 35.41359             | -99.00814              |
| 6      | OK    | NLA22 OK-10011                   | Sequoyah     | Sallisaw Creek Site 36 Reservoir          | 35.52939             | -94.69622              |
| 6      | OK    | NLA22_OK-10012                   | Custer       | Unnamed Lake                              | 35.71496             | -98.96675              |
| 6      | OK    | NLA22_OK-10012                   | McCurtain    | Red Lake                                  | 33.78855             | -94.88728              |
| 6      | OK    | NLA22_OK-10020                   | Osage        | Unnamed Lake                              | 36.23489             | -96.00728              |
| 6      | OK    | NLA22_OK-10020                   | Kay          | Horseshoe Lake                            | 36.61554             | -97.19082              |
| 6      | OK    | NLA22_OK-10021<br>NLA22_OK-10022 | Pontotoc     | Upper Clear Boggy Creek Site 32 Reservoir | 34.66990             | -96.67818              |
| 6      | OK    | NLA22_OK-10022<br>NLA22_OK-10023 | Pittsburg    | Lake Talawanda Number Two                 | 34.98518             | -95.78925              |
| 6      | OK    | NLA22_OK-10023                   | Rogers       | Petersons Lake                            | 36.25544             | -95.58686              |
| 6      | OK    | NLA22_OK-10024<br>NLA22_OK-10025 | Harmon       | Tri County Turkey Creek Site 4 Reservoir  | 34.75801             | -99.72474              |
| 6      | OK    | NLA22_OK-10025                   | Bryan        | Unnamed Lake                              | 34.05207             |                        |
| 6      | OK    | NLA22_OK-10020<br>NLA22_OK-10027 | Okmulgee     | Unnamed Lake                              | 34.03207             | -96.38090<br>-95.93679 |
| 6      | OK    | NLA22_OK-10027                   | Oklahoma     | Lake Arcadia                              | 35.62662             | -97.39418              |
| 6      | OK    | NLA22_OK-10028<br>NLA22_OK-10029 | Jackson      | Unnamed Lake                              | 33.02002             | -97.39418              |
| 6      | OK    |                                  | Canadian     |                                           |                      |                        |
| 10     | OR    | NLA22_OK-10030<br>NLA22_OR-10001 | Coos         | Unnamed Lake                              | 35.51577<br>43.45662 | -97.85610              |
| -      | OR    |                                  | Jackson      | Unnamed Lake                              |                      | -124.08930             |
| 10     |       | NLA22_OR-10002                   |              | Unnamed Lake                              | 42.43052             | -122.86150             |
| 10     | OR    | NLA22_OR-10003                   | Lane         | Griffith Reservoir                        | 44.02009             | -123.29050             |
| 10     | OR    | NLA22_OR-10004                   | Multnomah    | Unnamed Lake                              | 45.55846             | -122.50370             |
|        | OR    | NLA22_OR-10005                   | Lake         | Unnamed Lake                              | 43.20602             | -119.90430             |
| 10     | OR    | NLA22_OR-10006                   | Klamath      | Spring Lake                               | 42.11722             | -121.77900             |
| 10     | OR    | NLA22_OR-10007                   | Lane         | Tenas Lakes                               | 44.22932             | -121.91610             |
| 10     | OR    | NLA22_OR-10011                   | Malheur      | Becker Ponds                              | 44.03957             | -116.96937             |
| 10     | OR    | NLA22_OR-10012                   | Lane         | Fern Ridge Lake                           | 44.11966             |                        |
| 10     | OR    | NLA22_OR-10013                   | Washington   | Valley Memorial Park Lake                 | 45.50404             | -122.94387             |
| 10     | OR    | NLA22_OR-10014                   | Lake         | Greaser Reservoir                         | 42.17032             | -119.80749             |
| 10     | OR    | NLA22_OR-10015                   | Union        | North Powder Pond Number Two              | 44.99582             | -117.98936             |
| 10     | OR    | NLA22_OR-10016                   | Klamath      | Karen Lake                                | 43.55363             |                        |
| 10     | OR    | NLA22_OR-10017                   | Clatsop      | Alder Lake                                | 46.17782             |                        |
| 10     | OR    | NLA22_OR-10018                   | Lake         | Unnamed Lake                              | 43.46192             |                        |
| 3      | PA    | NLA22_PA-10001                   | Fayette      | Seghis Lakes                              | 39.77971             | -79.78948              |
| 3      | PA    | NLA22_PA-10002                   | Adams        | Unnamed Lake                              | 39.98016             | -77.17689              |
| 3      | PA    | NLA22_PA-10003                   | Wayne        | Waynewood Lake                            | 41.39491             | -75.36279              |
| 3      | PA    | NLA22_PA-10004                   | Erie         | Unnamed Lake                              | 41.94115             | -79.97291              |
| 3      | PA    | NLA22_PA-10007                   | Susquehanna  | Lake Montrose                             | 41.84200             | -75.85694              |
| 3      | PA    | NLA22_PA-10008                   | Wayne        | Unnamed Lake                              | 41.50965             | -75.33922              |
| 3      | PA    | NLA22_PA-10009                   | Lycoming     | Unnamed Lake                              | 41.23798             | -76.91237              |
| 3      | PA    | NLA22_PA-10010                   | Berks        | Trout Run Reservoir                       | 40.33491             | -75.70646              |
| 3      | PA    | NLA22_PA-10011                   | Wayne        | Unnamed Lake                              | 41.92842             | -75.43960              |
| 1      | RI    | NLA22_RI-10001                   | Washington   | Silver Lake                               | 41.43472             | -71.48838              |
| 1      | RI    | NLA22_RI-10002                   | Washington   | Barber Pond                               | 41.50025             | -71.56469              |
| 1      | RI    | NLA22_RI-10003                   | Washington   | Payne Pond                                | 41.15776             | -71.55597              |
| 1      | RI    | NLA22_RI-10005                   | Washington   | Deep Pond                                 | 41.56003             | -71.76208              |
| 1      | RI    | NLA22_RI-10006                   | Washington   | Thirty Acre Pond                          | 41.48984             | -71.54649              |
| 1      | RI    | NLA22_RI-10007                   | Providence   | Unnamed Lake                              | 41.87345             | -71.47984              |
| 4      | SC    | NLA22_SC-10001                   | Williamsburg | Unnamed Lake                              | 33.67812             | -79.74744              |
| 4      | SC    | NLA22_SC-10002                   | Horry        | Bear Swamp                                | 33.81961             | -79.05574              |
| 4      | SC    | NLA22_SC-10003                   | Colleton     | Unnamed Lake                              | 33.05264             | -80.91202              |
| 4      | SC    | NLA22_SC-10005                   | Marlboro     | Sandhill Bay                              | 34.51973             | -79.68648              |

| 8         SD         NLA22         SD-10004         Haakon         Unnamed Lake         44.3245         -101.6482           8         SD         NLA22         SD-10006         Roberts         Tahana Lake         44.55437         97.1670           8         SD         NLA22         SD-10007         Meade         Unnamed Lake         44.24947         1-02.8916           8         SD         NLA22         SD-10008         Mellette         England Lake         43.69813         1-00.9510           8         SD         NLA22         SD-10010         Hand         Spring Lake         44.20970         98.2524           8         SD         NLA22         SD-10011         Herking         Unnamed Lake         45.69864         1-03.9526           8         SD         NLA22         SD-10012         Harding         Unnamed Lake         44.08274         -99.2294           8         SD         NLA22         SD-10012         Kingbury         Unnamed Lake         44.08274         -99.2294           8         SD         NLA22         SD-10021         Kingbury         Unnamed Lake         44.36711         -97.4636           8         SD         NLA22         SD-10021         Kingbury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Region         State           4         SC           4         SC           8         SD           8         SD <t< th=""><th></th><th></th><th></th><th></th><th></th></t<> |               |               |                     |          |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------------|----------|------------|
| 4         SC         NLA22         SC-10007         Berkeley         Lowar Reserve         33,1022         -79.8394           4         SC         NLA22         SD-10007         Berkeley         Lowar Reserve         33,1022         -79.8394           8         SD         NLA22         SD-10003         Deacl         Umanned Lake         45,0301         -97.709           8         SD         NLA22         SD-10005         Faulk         Umanned Lake         44,92484         -101.6462           8         SD         NLA22         SD-10005         Faulk         Umanned Lake         44,92483         -96.6493           8         SD         NLA22         SD-10007         Meede         Umanned Lake         44,92431         -102.8916           8         SD         NLA22         SD-10007         Meede         Umanned Lake         44,36911         -102.8916           8         SD         NLA22         SD-10010         Perkins         Meyric         45,3844         -98.294           8         SD         NLA22         SD-10011         Perkins         Meyric         45,9926         -102.997           8         SD         NLA22         SD-10013         Duffalo         Knipip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4         SC           4         SC           8         SD                                                                      |               | <b>a</b> (    | S'4 N               | T        |            |
| 4         SC         NLA22         SD-10001         Union         Unage         Junage         Junage <thjunage< th="">         Junage         <thjunage< th=""></thjunage<></thjunage<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4         SC           8         SD                                                                      |               | ĩ             |                     |          | 0          |
| 8         SD         NLA22         SD-10001         Union         Unamod Lake         44.248984         -96.7719           8         SD         NLA22         SD-10003         Dead!         Umamed Lake         44.32086         -96.6490           8         SD         NLA22         SD-10005         Faalk         Umamed Lake         44.32185         -101.6482           8         SD         NLA22         SD-10007         Meade         Umamed Lake         44.94751         -96.9246           8         SD         NLA22         SD-10007         Meade         Umamed Lake         44.34947         -102.8916           8         SD         NLA22         SD-10007         Meade         Umamed Lake         44.34947         -102.8916           8         SD         NLA22         SD-10010         Henkins         Meyers Lake         45.8344         498.161           8         SD         NLA22         SD-10011         Perkins         Meyers Lake         45.8323         -100.8911         -90.294           8         SD         NLA22         SD-10013         Buffalo         Kripping Lake         44.08274         -90.294           8         SD         NLA22         SD-10013         Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8         SD                                                                      |               |               |                     |          |            |
| 8         SD         NLA22 SD-10003         Clark         ReidRound Lake         44.9001         97.7708           8         SD         NLA22 SD-10004         Haakon         Unnamed Lake         44.32485         101.6482           8         SD         NLA22 SD-10006         Roberts         Tahana Lake         44.3437         91.6707           8         SD         NLA22 SD-10006         Roberts         Tahana Lake         45.5437         97.1670           8         SD         NLA22 SD-10006         Roberts         Tahana Lake         44.24947         102.8916           8         SD         NLA22 SD-10008         Mellette         England Lake         44.26917         98.9254           8         SD         NLA22 SD-10010         Band         Spring Lake         44.26201         98.9254           8         SD         NLA22 SD-10012         Harding Unnamed Lake         45.89986         102.0976           8         SD         NLA22 SD-10012         Roberts         Lake Whipple         45.60015         97.1463           8         SD         NLA22 SD-10021         Keingland Unnamed Lake         44.36711         97.4090           8         SD         NLA22 SD-10021         Keingland Unnamed Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8         SD                                                                      |               |               |                     |          |            |
| 8         SD         NLA22 SD-10003         Devel         Unnamed Lake         44.8206         96.6493           8         SD         NLA22 SD-10005         Faulk         Unnamed Lake         44.3248         -101.6482           8         SD         NLA22 SD-10007         Reade         Unnamed Lake         44.2447         -102.8467           8         SD         NLA22 SD-10007         Medie Unnamed Lake         44.2447         -102.8467           8         SD         NLA22 SD-10007         Medie Unnamed Lake         44.26471         -102.8464           8         SD         NLA22 SD-10007         Medie Unnamed Lake         45.8484         -98.2161           8         SD         NLA22 SD-10011         Parkins         Myers Lake         44.26920         -98.9254           8         SD         NLA22 SD-10011         Barkins         Minping Lake         44.06244         -99.2244           8         SD         NLA22 SD-10011         Rekins         Lake Whipple         44.6611         -97.1463           8         SD         NLA22 SD-10012         Kingsburg         Unnamed Lake         44.3611         -97.1463           8         SD         NLA22 SD-10022         Kingsburg         Unnamed Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8         SD                                                                      |               |               |                     |          |            |
| 8         SD         NLA22 SD-10005         Faulk         Unnamed Lake         44.3245         -101.6482           8         SD         NLA22 SD-10006         Roberts         Tahana Lake         44.5353         -98.2466           8         SD         NLA22 SD-10007         Mende         Unnamed Lake         44.24947         102.8916           8         SD         NLA22 SD-10008         Mellette         England Lake         43.69813         100.9510           8         SD         NLA22 SD-10010         Hand         Spring Lake         44.20201         98.2524           8         SD         NLA22 SD-10011         Barding         Unnamed Lake         45.60284         103.5553           8         SD         NLA22 SD-10013         Barding         Ckn ripping Lake         44.08274         -99.2294           8         SD         NLA22 SD-10013         Barding         Rok Trib Lake         44.36711         -99.2294           8         SD         NLA22 SD-10013         Barding         Ckn ripping Lake         44.08274         -99.2294           8         SD         NLA22 SD-10013         Barding         Ckn ripping Lake         44.36711         -97.4030           8         SD         NLA22 SD-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8         SD                                                                      |               |               |                     |          |            |
| 8         SD         NLA22 SD-10005         Fault         Unnamed Lake         44:95733         99:8246           8         SD         NLA22 SD-10007         Meade         Unnamed Lake         44:24947         -102:816           8         SD         NLA22 SD-10007         Meade         Unnamed Lake         44:24947         -102:816           8         SD         NLA22 SD-10007         Meade         Unnamed Lake         44:844         98:251           8         SD         NLA22 SD-10011         Berkins         Meyers Lake         45:8986         -102:9986         -102:9986         -102:9986         -102:9986         -102:9986         -102:9986         -102:9986         -102:9986         -102:9986         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:298         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:998         -102:9989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8         SD                                                                      |               |               | Unnamed Lake        |          | -96.64930  |
| 8         SD         NLA22         SD-10007         Meade         Tahama Lake         44 5,4437         -071670           8         SD         NLA22         SD-10008         Melletie         England Lake         43,69813         -100,9510           8         SD         NLA22         SD-10008         Melletie         England Lake         44,20201         98,9254           8         SD         NLA22         SD-10011         Perkins         Meyers Lake         44,20201         98,9254           8         SD         NLA22         SD-10012         Harding         Umamed Lake         45,50268         -102,976           8         SD         NLA22         SD-10012         Roberts         Lake         44,08214         -99,2294           8         SD         NLA22         SD-10021         Roberts         Lake         Mipple         45,60915         -97,1463           8         SD         NLA22         SD-10023         Jerauld         Umamed Lake         44,36711         -97,409           8         SD         NLA22         SD-10023         Jerauld         Umamed Lake         45,2528         97,557           8         SD         NLA22         SD-10023         Lerauld <td>8         SD           8         SD</td> <td></td> <td></td> <td>Unnamed Lake</td> <td></td> <td>-101.64820</td>                            | 8         SD                                                                      |               |               | Unnamed Lake        |          | -101.64820 |
| 8         SD         NLA22 SD-10007         Mende         Unnamed Lake         44 24947         -102 8010           8         SD         NLA22 SD-10009         Brown         Unnamed Lake         45 33444         48 2161           8         SD         NLA22 SD-10011         Parkins         Meyers Lake         45 50986         102.0976           8         SD         NLA22 SD-10011         Parkins         Meyers Lake         45 50248         102.0976           8         SD         NLA22 SD-10011         Barkins         Meyers Lake         45 60268         103.5855           8         SD         NLA22 SD-10012         Roberts         Lake Whipple         45 60915         -97.1463           8         SD         NLA22 SD-10021         Roberts         Lake Whipple         45 60915         -97.1463           8         SD         NLA22 SD-10021         Roberts         Lake Whipple         45 60915         -97.1453           8         SD         NLA22 SD-10022         Jergabury         Unnamed Lake         43.40711         -97.4090           8         SD         NLA22 SD-10027         Spink         Alkali Lake         45.4528         -97.5571           8         SD         NLA22 SD-10027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8         SD                                                                      |               |               | Unnamed Lake        | 44.95753 | -98.92468  |
| 8         SD         NLA22         SD-10009         Mellette         England Lake         43.69813         -100.95101           8         SD         NLA22         SD-10010         Hand         Spring Lake         44.26920         -98.9254           8         SD         NLA22         SD-10011         Perkins         Meyers Lake         44.26920         -98.9254           8         SD         NLA22         SD-10012         Perkins         Meyers Lake         44.26920         -98.9254           8         SD         NLA22         SD-10012         Burding         Unnamed Lake         44.08274         -99.2294           8         SD         NLA22         SD-10012         Roberts         Lake Whipple         45.60915         97.1463           8         SD         NLA22         SD-10023         Jerauld         Unnamed Lake         44.36711         -97.4090           8         SD         NLA22         SD-10023         Jerauld         Unnamed Lake         44.36711         -97.499           8         SD         NLA22         SD-10023         Loraumed Lake         45.72528         +02.519         +0.519         Hading         -04.52528         +0.5557           8         SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8         SD                                                                      | D NLA22_SD-1  | 0006 Roberts  | Tahana Lake         | 45.54837 | -97.16700  |
| 8         SD         NLA22         SD-10010         Hand         Spring Lake         44.26920         -98.254           8         SD         NLA22         SD-10011         Perkins         Meyers Lake         45.39986         -102.0976           8         SD         NLA22         SD-10013         Burfalo         Knippling Lake         45.69086         -102.0976           8         SD         NLA22         SD-10013         Burfalo         Knippling Lake         45.6915         -99.234           8         SD         NLA22         SD-10021         Roberts         Lake Whipple         45.6015         -97.4630           8         SD         NLA22         SD-10021         Kingsbury         Unnamed Lake         44.36711         -97.4090           8         SD         NLA22         SD-10022         Kingsbury         Unnamed Lake         45.6015         -102.1099           8         SD         NLA22         SD-10022         Day         Unnamed Lake         45.14866         -98.7311           8         SD         NLA22         SD-10027         Spink         Alkali Lake         45.14866         -98.6321           8         SD         NLA22         SD-10029         Marshal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8         SD                                                                      | D NLA22_SD-1  | 0007 Meade    | Unnamed Lake        | 44.24947 | -102.89160 |
| 8         SD         NLA22         SD-10011         Hand         Spring Lake         44.2020         99.8254.           8         SD         NLA22         SD-10011         Perkins         Meyers Lake         45.60268.         102.0976           8         SD         NLA22         SD-10013         Buffalo         Knippling Lake         44.08274.         99.2344.           8         SD         NLA22         SD-10014         Corson         Standing Rock Tribe Lake         45.78323.         101.8911.           8         SD         NLA22         SD-10022         Kingsbury         Unnamed Lake         44.05644.         98.7301.           8         SD         NLA22         SD-10023         Perauld         Unnamed Lake         43.80275.         102.1097.           8         SD         NLA22         SD-10024         Pennington         Unnamed Lake         43.80275.         102.1097.           8         SD         NLA22         SD-10027         Spink         Alkali Lake         43.8237.         102.1097.           8         SD         NLA22         SD-10027         Spink         Alkali Lake         45.72184.         107.3178.           8         SD         NLA22         SD-10028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8         SD                                                                      | D NLA22_SD-1  | 0008 Mellette | England Lake        | 43.69813 | -100.95100 |
| 8         SD         NLA22         SD-10012         Harding         Unnamed Lake         45.60268         -102.976           8         SD         NLA22         SD-10013         Burfalo         Knippling Lake         45.6026         -103.5855           8         SD         NLA22         SD-10014         Corson         Standing Rock Tribe Lake         45.6015         -97.1463           8         SD         NLA22         SD-10021         Kingsbury         Unnamed Lake         44.06274         -97.1463           8         SD         NLA22         SD-10022         Kingsbury         Unnamed Lake         44.06564         -98.7010.102           8         SD         NLA22         SD-10024         Pornington         Unnamed Lake         44.350275         -102.1099           8         SD         NLA22         SD-10027         Spink         Alkali Lake         45.14866         -98.7511           8         SD         NLA22         SD-10027         Spink         Alkali Lake         45.14866         -97.8572           8         SD         NLA22         SD-10027         Spink         Alkali Lake         45.71484         -73.797           8         SD         NLA22         SD-10020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8         SD                                                                      | D NLA22 SD-1  | 0009 Brown    | Unnamed Lake        | 45.83484 | -98.21610  |
| 8         SD         NLA22         SD-10012         Harding         Unnamed Lake         45.60268         -102.976           8         SD         NLA22         SD-10013         Burfalo         Knippling Lake         44.08274         -92.294           8         SD         NLA22         SD-10014         Corson         Standing Rock Tribe Lake         45.6015         -97.1463           8         SD         NLA22         SD-10022         Kingsbury         Unnamed Lake         44.08274         -97.1463           8         SD         NLA22         SD-10022         Jernuid         Unnamed Lake         44.06584         -98.7010.102           8         SD         NLA22         SD-10024         Permington         Unnamed Lake         44.350275         -102.1099           8         SD         NLA22         SD-10026         Codington         Unnamed Lake         45.14866         -98.6621           8         SD         NLA22         SD-10027         Spink         Alkali Lake         45.14866         -98.6621           8         SD         NLA22         SD-10028         Harding         Unnamed Lake         45.71484         -97.3593           8         SD         NLA22         SD-10020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8         SD                                                                      | D NLA22 SD-1  | 0010 Hand     | Spring Lake         | 44.26920 | -98.92549  |
| 8         SD         NLA22         SD-10013         Buffalo         Knipping Lake         44.08274         -99.2294           8         SD         NLA22         SD-10014         Corson         Standing Rock Tribe Lake         44.08274         -99.2294           8         SD         NLA22         SD-10021         Röpetrs         Lake Whipple         45.78323         -101.0891           8         SD         NLA22         SD-10022         Kingsbury         Unnamed Lake         44.36711         -97.4403           8         SD         NLA22         SD-10024         Pennington         Unnamed Lake         43.80275         -102.1099           8         SD         NLA22         SD-10025         Deay         Unnamed Lake         45.42528         -97.557           8         SD         NLA22         SD-10025         Deay         Unnamed Lake         45.42528         -97.557           8         SD         NLA22         SD-10025         Day         Unnamed Lake         45.42524         -97.557           8         SD         NLA22         SD-10027         Marshall         Unnamed Lake         45.72198         -103.8188           8         SD         NLA22         SD-10031         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8         SD                                                                      |               |               |                     | 45.89986 | -102.09760 |
| 8         5D         NLA22         SD-10013         Buffalo         Knipping         Lake         Mipping         Lake         Mipping         Advance         45.78323         -101.0891           8         SD         NLA22         SD-10021         Roberts         Lake Whipping         45.0711         -97.1403           8         SD         NLA22         SD-10021         Kingsbury         Unnamed Lake         44.0564         -98.7301           8         SD         NLA22         SD-10023         Lernuld         Unnamed Lake         44.0564         -98.7301           8         SD         NLA22         SD-10025         Day         Unnamed Lake         44.51216         -97.4131           8         SD         NLA22         SD-10025         Codington         Unnamed Lake         45.14866         -98.821           8         SD         NLA22         SD-10027         Spink         Alatal         Lake         45.7198         -103.8188           8         SD         NLA22         SD-10029         Marshall         Unnamed Lake         45.72198         -103.8189           8         SD         NLA22         SD-10031         McPherson         Unnamed Lake         45.77199         -99.3298 <td>8         SD           8         SD           4         TN           4         TN           4         TN           4         TN           6         TX           6         TX           6         TX           6         TX           6         TX           6         TX      <tr td=""></tr></td> <td></td> <td></td> <td></td> <td></td> <td>-103.58550</td> | 8         SD           4         TN           4         TN           4         TN           4         TN           6         TX           6         TX           6         TX           6         TX           6         TX           6         TX <tr td=""></tr>                                                      |               |               |                     |          | -103.58550 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          |            |
| 8         SD         NLA22         SD-10021         Roberts         Lake Whipple         45,78323         -101.0891           8         SD         NLA22         SD-10022         Kingsbury         Unnamed Lake         44,36711         97,4000           8         SD         NLA22         SD-10023         Kingsbury         Unnamed Lake         44,05684         -98,7301           8         SD         NLA22         SD-10024         Pennington         Unnamed Lake         44,05684         -98,7301           8         SD         NLA22         SD-10025         Day         Unnamed Lake         44,85210         -97,74131           8         SD         NLA22         SD-10026         Codington         Unnamed Lake         45,14866         -98,8211           8         SD         NLA22         SD-10029         Marshall         Unnamed Lake         45,72148         +97,3879           8         SD         NLA22         SD-10031         McPherson         Unnamed Lake         45,7242         +99,9582           8         SD         NLA22         SD-10031         McPherson         Unnamed Lake         45,77247         -97,9989           8         SD         NLA22         SD-10031 <td< td=""><td>8         SD           8         SD           4         TN           4         TN           4         TN           4         TN           6         TX           6         TX           6         TX           6         TX           6         TX           6         TX      <tr td=""></tr></td><td></td><td>0</td><td></td><td></td><td>-99.22945</td></td<>  | 8         SD           4         TN           4         TN           4         TN           4         TN           6         TX           6         TX           6         TX           6         TX           6         TX           6         TX <tr td=""></tr>                                                      |               | 0             |                     |          | -99.22945  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          |            |
| 8         D         NLA22         SD-10021         Roberts         Lake Whipple         45,60915         97,1463           8         SD         NLA22         SD-10023         Lerauld         Unnamed Lake         44,36711         -97,4090           8         SD         NLA22         SD-10023         Day         Unnamed Lake         44,05644         -98,7301           8         SD         NLA22         SD-10024         Pennington         Unnamed Lake         44,8510         -97,1453           8         SD         NLA22         SD-10025         Day         Unnamed Lake         45,4228         -97,5573           8         SD         NLA22         SD-10026         Marking         Unnamed Lake         44,8510         -97,3179           8         SD         NLA22         SD-10029         Markington         Unnamed Lake         45,71848         -97,3270           8         SD         NLA22         SD-10030         McPherson         Unnamed Lake         45,71848         -97,3270           8         SD         NLA22         SD-10033         McPherson         Unnamed Lake         45,78772         -97,9989           8         SD         NLA22         SD-10033         Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8         SD           4         TN           4         TN           4         TN           4         TN           6         TX           6         TX <tr td=""></tr>                                                      |               |               | 11 0                | -        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          |            |
| 8         SD         NLA22         SD-10022         Kingsbury         Unnamed Lake         44.36711         -97.4090           8         SD         NLA22         SD-10023         Pernnigton         Unnamed Lake         44.368275         -102.1099           8         SD         NLA22         SD-10025         Day         Unnamed Lake         45.8225         -97.5557           8         SD         NLA22         SD-10026         Codington         Unnamed Lake         45.7184         -97.5577           8         SD         NLA22         SD-10027         Spink         Alkali Lake         45.71848         -97.5571           8         SD         NLA22         SD-10029         Marshall         Unnamed Lake         45.71848         -97.3579           8         SD         NLA22         SD-10029         Marshall         Unnamed Lake         45.72184         -97.3520           8         SD         NLA22         SD-10031         McPherson         Unnamed Lake         45.7724         -97.3520           8         SD         NLA22         SD-10033         Brown         Renzienhaues         S0.9772         -97.9989           8         SD         NLA22         SD-10034         Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8         SD           4         TN           4         TN           4         TN           4         TN           6         TX           6         TX <tr td=""></tr>                                                      |               |               |                     |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          |            |
| 8         SD         NLA22         SD-10023         Jerauld         Unnamed Lake         44.05684         -98.7301           8         SD         NLA22         SD-10025         Day         Unnamed Lake         43.80275         -102.1099           8         SD         NLA22         SD-10026         Codington         Unnamed Lake         44.85510         -97.4537           8         SD         NLA22         SD-10027         Spink         Alkai Lake         44.85510         -97.4537           8         SD         NLA22         SD-10029         Marshall         Unnamed Lake         45.72198         -103.8158           8         SD         NLA22         SD-10030         Codington         Unnamed Lake         45.72642         -99.5582           8         SD         NLA22         SD-10031         McPherson         Unnamed Lake         45.72642         -99.5582           8         SD         NLA22         SD-10033         Brown         Rezienhausen Slough         45.78772         -97.5996           4         TN         NLA22         SD-10034         Day         Unnamed Lake         35.0558         +85.5848           4         TN         NLA22         TN-10001         Greene </td <td>8         SD           8         SD           4         TN           4         TN           4         TN           4         TN           4         TN           6         TX           6         TX      <tr td=""></tr></td> <td></td> <td></td> <td></td> <td></td> <td></td>             | 8         SD           4         TN           4         TN           4         TN           4         TN           4         TN           6         TX           6         TX <tr td=""></tr>                                                      |               |               |                     |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          |            |
| 8         SD         NLA22         SD-10024         Pennington         Unnamed Lake         43.80275         -102.1092           8         SD         NLA22         SD-10025         Day         Unnamed Lake         45.42528         -97.5557           8         SD         NLA22         SD-10027         Spink         Alkali Lake         45.14866         -97.4311           8         SD         NLA22         SD-10028         Harding         Unnamed Lake         45.71848         -97.3379           8         SD         NLA22         SD-10029         Marshall         Unnamed Lake         45.70149         -103.8158           8         SD         NLA22         SD-10030         McPherson         Unnamed Lake         45.0012         -97.3200           8         SD         NLA22         SD-10031         McPherson         Unnamed Lake         45.72642         -99.5582           8         SD         NLA22         SD-10033         Brown         Renzienhausen Slough         45.78772         -97.3998           8         SD         NLA22         SD-10034         Day         Unnamed Lake         35.0558         -85.7848           4         TN         NLA22         TN-10001         Greene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8         SD           4         TN           4         TN           4         TN           4         TN           4         TN           6         TX           6         TX <tr td=""></tr>                                                      |               | 8,9           |                     |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          |            |
| 8         SD         NLA22         SD-10025         Day         Unnamed Lake         45.42528         -97.5573           8         SD         NLA22         SD-10026         Codington         Unnamed Lake         44.8510         -97.4131           8         SD         NLA22         SD-10028         Harding         Unnamed Lake         45.7198         -103.818           8         SD         NLA22         SD-10029         Marshall         Unnamed Lake         45.72198         -103.818           8         SD         NLA22         SD-10030         Codington         Unnamed Lake         45.72642         -97.3230           8         SD         NLA22         SD-10031         McPherson         Unnamed Lake         45.72642         -97.5320           8         SD         NLA22         SD-10032         Pennington         Sheridan Lake         45.72642         -97.5928           8         SD         NLA22         SD-10033         Brown         Renzienhausen Slugh         45.78772         -97.9989           8         SD         NLA22         SD-10034         Day         Unnamed Lake         36.16733         +82.7406           4         TN         NLA22         SD-10030         Gye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8         SD           4         TN           4         TN           4         TN           4         TN           4         TN           6         TX           6         TX <tr td=""></tr>                                                      |               |               |                     |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          |            |
| 8         SD         NLA22         SD-10026         Codington         Unnamed Lake         44.85510         -97.4131           8         SD         NLA22         SD-10027         Spink         Alkali Lake         45.14866         -98.68211           8         SD         NLA22         SD-10029         Marshall         Unnamed Lake         45.71218         -97.3379           8         SD         NLA22         SD-10030         Codington         Unnamed Lake         45.71248         -97.3379           8         SD         NLA22         SD-10031         McPherson         Unnamed Lake         45.72642         -99.5582           8         SD         NLA22         SD-10031         Brevinan         Rerzienhausen Slough         45.78772         -97.9988           8         SD         NLA22         SD-10034         Day         Unnamed Lake         36.19580         -82.7406           4         TN         NLA22         SD-10034         Day         Unnamed Lake         35.0558         -85.8884           4         TN         NLA22         SD-10030         Mere         Unnamed Lake         35.10558         -85.8984           4         TN         NLA22         TN-10003         Mere <td>8         SD           8         SD           4         TN           4         TN           4         TN           4         TN           4         TN           6         TX           6         TX      <tr td=""></tr></td> <td></td> <td></td> <td></td> <td></td> <td></td>                   | 8         SD           4         TN           4         TN           4         TN           4         TN           4         TN           6         TX           6         TX <tr td=""></tr>                                                      |               |               |                     |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          |            |
| 8         SD         NLA22         SD-10027         Spink         Alkali Lake         45.14866         -98.6821           8         SD         NLA22         SD-10028         Harding         Unnamed Lake         45.71848         -97.8379           8         SD         NLA22         SD-10030         Codington         Unnamed Lake         45.71848         -97.8379           8         SD         NLA22         SD-10031         McPherson         Unnamed Lake         45.71848         -97.8379           8         SD         NLA22         SD-10031         McPherson         Unnamed Lake         45.77242         -99.5582           8         SD         NLA22         SD-10034         Pennington         Sheridan Lake         45.7727         -97.9989           8         SD         NLA22         SD-10034         Day         Unnamed Lake         45.78772         -97.9989           4         TN         NLA22         SD-10034         Day         Unnamed Lake         35.0558         +85.5888           4         TN         NLA22         TN-10005         Grunned Lake         35.0558         +85.5888           4         TN         NLA22         TN-10005         Grunnu         Unnamed Lake </td <td>8         SD           8         SD           4         TN           4         TN           4         TN           4         TN           4         TN           6         TX           6         TX      <tr td=""></tr></td> <td></td> <td>5</td> <td></td> <td></td> <td></td>            | 8         SD           4         TN           4         TN           4         TN           4         TN           4         TN           6         TX           6         TX <tr td=""></tr>                                                      |               | 5             |                     |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          |            |
| 8         SD         NLA22         SD-10029         Harding         Unnamed Lake         45.72198         -103.8158           8         SD         NLA22         SD-10029         Marshall         Unnamed Lake         45.71848         -97.3879           8         SD         NLA22         SD-10031         McPherson         Unnamed Lake         45.06012         -97.3320           8         SD         NLA22         SD-10032         Pennington         Sheridan Lake         43.97316         -103.4713           8         SD         NLA22         SD-10034         Day         Unnamed Lake         45.24518         -97.5796           4         TN         NLA22         SD-10034         Day         Unnamed Lake         36.19580         -82.7406           4         TN         NLA22         TN-10001         Greene         Unnamed Lake         35.0558         -85.888           4         TN         NLA22         TN-10003         Dyer         Unnamed Lake         35.25500         -85.8084           4         TN         NLA22         TN-10005         Grundy         Highlander Pond         35.25500         -85.0210           4         TN         NLA22         TN-10007         McNairy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8         SD           4         TN           4         TN           4         TN           4         TN           4         TN           6         TX           6         TX <tr td=""></tr>                                                      |               |               |                     |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          |            |
| 8         SD         NLA22         SD-10030         Codington         Unnamed Lake         45.71848         -97.3879           8         SD         NLA22         SD-10031         McPherson         Unnamed Lake         45.72642         -99.5582           8         SD         NLA22         SD-10031         McPherson         Unnamed Lake         45.72642         -99.5582           8         SD         NLA22         SD-10033         Brown         Renzienhausen Slough         45.78772         -97.9989           8         SD         NLA22         SD-10034         Day         Unnamed Lake         45.24518         -97.5796           4         TN         NLA22         TN-10002         Marion         Browns Lake         35.0558         -85.5888           4         TN         NLA22         TN-10005         Grundy         Highander Pond         35.25560         -85.8084           4         TN         NLA22         TN-10006         Bledsoe         Timber Lake         35.25506         -88.5277           6         NM:TX         NLA22         TX-10001         Loving         Red Bluft Reservoir         31.95055         -103.94055           6         TX         NLA22         TX-100002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8         SD           8         SD           8         SD           8         SD           8         SD           8         SD           4         TN           4         TN           4         TN           4         TN           4         TN           4         TN           6         NM:TX           6         TX                                                                   |               |               |                     |          |            |
| 8         SD         NLA22         SD-10030         Codington         Unnamed Lake         45.06012         -97.3230           8         SD         NLA22         SD-10031         McPherson         Unnamed Lake         43.97316         -103.4713           8         SD         NLA22         SD-10033         Brown         Renzienhausen Slough         45.78772         -97.9989           8         SD         NLA22         SD-10034         Day         Unnamed Lake         45.24518         -97.5796           4         TN         NLA22         TN-10001         Greene         Unnamed Lake         36.19580         -82.7406           4         TN         NLA22         TN-10003         Dyer         Unnamed Lake         36.16733         -89.3969           4         TN         NLA22         TN-10005         Grundy         Highlander Pond         35.25506         -85.8788           4         TN         NLA22         TN-10007         MeNairy         Tacker Lake         35.25506         -85.9216           6         TX         NLA22         TX-10007         MeNairy         Tacker Lake         32.2016         -97.3230           6         TX         NLA22         TX-10007         MeNairy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8         SD           8         SD           8         SD           8         SD           4         TN           4         TN           4         TN           4         TN           4         TN           4         TN           6         NM:TX           6         TX                                                                   |               |               |                     |          |            |
| 8         SD         NLA22         SD-10031         McPherson         Unnamed Lake         45.72642         -99.5582           8         SD         NLA22         SD-10032         Pennington         Sheridan Lake         43.97316         -103.4713.           8         SD         NLA22         SD-10034         Day         Unnamed Lake         45.78772         -97.9989           8         SD         NLA22         SD-10034         Day         Unnamed Lake         45.24518         -97.5796           4         TN         NLA22         TN-10001         Greene         Unnamed Lake         36.19580         -82.7406           4         TN         NLA22         TN-10003         Dyer         Unnamed Lake         36.16733         -89.3969           4         TN         NLA22         TN-10005         Grundy         Highlander Pond         35.25506         88.5727           6         NM:X22         TN-10007         McNairy         Tacker Lake         35.25306         88.5727.           6         TX         NLA22         TX-10007         McNairy         Tacker Lake         32.2116         -94.5178.           6         TX         NLA22         TX-10007         McNairy         Lake Arr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |               |                     |          |            |
| 8         SD         NLA22         SD-10032         Pennington         Sheridan Lake         43.97316         -103.4713           8         SD         NLA22         SD-10033         Brown         Renzienhausen Slough         45.78772         -97.9989           8         SD         NLA22         SD-10034         Day         Unnamed Lake         45.78772         -97.9989           4         TN         NLA22         SD-10016         Greene         Unnamed Lake         36.16733         -89.3969           4         TN         NLA22         TN-10005         Grundy         Highlander Pond         35.25560         -85.8084           4         TN         NLA22         TN-10005         Grundy         Highlander Pond         35.25500         -85.8084           4         TN         NLA22         TN-10007         McNairy         Tacker Lake         35.25306         -88.5727           6         NM:TX         NLA22         TX-10007         McNairy         Tacker Lake         35.25306         -88.5727           6         TX         NLA22         TX-10002         Clay         Lake Arrowhead         33.71431         -98.3716           6         TX         NLA22         TX-10002 <td< td=""><td>8         SD           8         SD           4         TN           6         TX           6         TX      <tr td=""></tr></td><td></td><td>~</td><td></td><td></td><td></td></td<>           | 8         SD           8         SD           4         TN           6         TX           6         TX <tr td=""></tr>                                                      |               | ~             |                     |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          |            |
| 8         SD         NLA22         SD-10033         Brown         Renzienhausen Slough         45.78772         -97.9989           8         SD         NLA22         SD-10034         Day         Unnamed Lake         45.24518         -97.5796           4         TN         NLA22         TN-10001         Greene         Unnamed Lake         36.19580         +82.7406           4         TN         NLA22         TN-10002         Marion         Browns Lake         35.00558         +85.5888           4         TN         NLA22         TN-10003         Dyer         Unnamed Lake         36.16733         +89.3969           4         TN         NLA22         TN-10005         Grundy         Highlander Pond         35.25560         +85.8884           4         TN         NLA22         TN-10006         Bledsoe         Timber Lake         35.25500         +85.8727           6         NN:TX NLA22         TX-10001         Loving         Red Bluff Reservoir         31.95055         -103.9405           6         TX         NLA22         TX-10001         Loving         Red Bluff Reservoir         31.95055         +103.9405           6         TX         NLA22         TX-10003         Calhoun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8         SD           8         SD           4         TN           6         TX           6         TX <tr td=""></tr>                                                      |               |               |                     |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          |            |
| 8         SD         NLA22_SD-10034         Day         Unnamed Lake         45.24518         -97.5796           4         TN         NLA22_TN-10001         Greene         Unnamed Lake         36.19580         -82.7406           4         TN         NLA22_TN-10002         Marion         Browns Lake         35.00558         -85.5888           4         TN         NLA22_TN-10003         Dyer         Unnamed Lake         36.16733         -85.39869           4         TN         NLA22_TN-10005         Grundy         Highlander Pond         35.25500         -85.8084           4         TN         NLA22_TN-10006         Bledsoe         Timber Lake         35.25306         -88.5727.           6         NM:TX NLA22_TX-10001         Loving         Red Bluff Reservoir         31.9505         -103.94055           6         TX         NLA22_TX-10001         Loving         Red Bluff Reservoir         33.71431         -98.5716           6         TX         NLA22_TX-10004         Panola         Martin Lake         28.16242         -96.7864           6         TX         NLA22_TX-10005         Wise         Unnamed Lake         28.62651         -98.4069           6         TX         NLA22_TX-10006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |               |                     |          |            |
| 4         TN         NLA22         TN-10001         Greene         Unnamed Lake         36.19580         -82.7406           4         TN         NLA22         TN-10003         Dyer         Unnamed Lake         35.00558         -85.5888           4         TN         NLA22         TN-10005         Grundy         Highlander Pond         35.25560         -85.0884           4         TN         NLA22         TN-10006         Bledsoe         Timber Lake         35.65453         -85.0210           4         TN         NLA22         TN-10007         McNairy         Tacker Lake         35.25306         -88.5727           6         NM:TX         NLA22         TX-10001         Loving         Red Bluff Reservoir         31.95055         -103.94055           6         TX         NLA22         TX-10001         Loving         Red Bluff Reservoir         33.71431         -98.3716           6         TX         NLA22         TX-10003         Calhoun         Unnamed Lake         22.20116         -94.5178           6         TX         NLA22         TX-10005         Wise         Unnamed Lake         28.16242         -96.7444           6         TX         NLA22         TX-10005 <td< td=""><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td></td><td></td><td>0</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |               | 0                   |          |            |
| 4         TN         NLA22_TN-10002         Marion         Browns Lake         35.00558         -85.5888           4         TN         NLA22_TN-10003         Dyer         Unnamed Lake         36.16733         -89.3969           4         TN         NLA22_TN-10005         Grundy         Highlander Pond         35.25560         -85.8084           4         TN         NLA22_TN-10006         Bledsoe         Timber Lake         35.65453         -85.0210           4         TN         NLA22_TN-10007         McNairy         Tacker Lake         35.65453         -85.0210           6         NM:TX NLA22_TX-10001         Loving         Red Bluff Reservoir         31.95055         -103.9405           6         TX         NLA22_TX-10002         Clay         Lake Arrowhead         33.71431         -98.3716           6         TX         NLA22_TX-10003         Calhoun         Unnamed Lake         28.16242         -96.7864           6         TX         NLA22_TX-10005         Wise         Unnamed Lake         33.36387         -97.4112           6         TX         NLA22_TX-10005         Wise         Unnamed Lake         28.62651         -98.9100           6         TX         NLA22_TX-10006         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4         TN           4         TN           4         TN           4         TN           4         TN           6         NM:TX           6         TX                                                                                          |               |               |                     | -        |            |
| 4         TN         NLA22         TN-10003         Dyer         Unnamed Lake         36.16733         -89.3969           4         TN         NLA22         TN-10005         Grundy         Highlander Pond         35.25560         -85.8084           4         TN         NLA22         TN-10006         Bledsoe         Timber Lake         35.65433         -85.0210           4         TN         NLA22         TN-10007         McNairy         Tacker Lake         35.25306         -88.5727           6         NM:TX         NLA22         TX-10001         Loving         Red Bluff Reservoir         31.95055         -103.94050           6         TX         NLA22         TX-10003         Calhoun         Unnamed Lake         28.16242         -96.7864           6         TX         NLA22         TX-10003         Calhoun         Unnamed Lake         33.36387         -97.4112           6         TX         NLA22         TX-10005         Wise         Unnamed Lake         28.62651         -98.4069           6         TX         NLA22         TX-10006         McMullen         Unnamed Lake         28.9914         -98.7110           6         TX         NLA22         TX-10007         McMu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |               | Unnamed Lake        |          | -82.74069  |
| 4         TN         NLA22_TN-10005         Grundy         Highlander Pond         35.25560         -85.8084           4         TN         NLA22_TN-10006         Bledsoe         Timber Lake         35.65453         -85.0210           4         TN         NLA22_TN-10007         McNairy         Tacker Lake         35.25306         -88.5727           6         NM:TX         NLA22_TX-10001         Loving         Red Bluff Reservoir         31.95055         -103.94055           6         TX         NLA22_TX-10002         Clay         Lake Arrowhead         33.71431         -98.37143           6         TX         NLA22_TX-10003         Calhoun         Unnamed Lake         28.16242         -96.7864           6         TX         NLA22_TX-10004         Panola         Martin Lake         33.31431         -98.37142           6         TX         NLA22_TX-10005         Wise         Unnamed Lake         28.62651         -98.4069           6         TX         NLA22_TX-10006         McMullen         Unnamed Lake         28.62651         -98.4069           6         TX         NLA22_TX-10007         McMullen         Unnamed Lake         28.5308         -96.3710           6         TX         NLA22_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4         TN           4         TN           6         NM:TX           6         TX                                                                                                                                                                                                                                    |               |               | Browns Lake         | 35.00558 | -85.58884  |
| 4         TN         NLA22         TN-10006         Bledsee         Timber Lake         35.65453         -85.0210           4         TN         NLA22         TN-10007         McNairy         Tacker Lake         35.25306         -88.5727           6         NM:TX         NLA22         TX-10001         Loving         Red Bluff Reservoir         31.95055         -103.9405           6         TX         NLA22         TX-10002         Clay         Lake Arrowhead         33.71431         -98.3716           6         TX         NLA22         TX-10003         Calhoun         Unnamed Lake         28.16242         -96.7864           6         TX         NLA22         TX-10004         Panola         Martin Lake         32.20116         -94.5178           6         TX         NLA22         TX-10005         Wise         Unnamed Lake         28.62651         -98.4069           6         TX         NLA22         TX-10006         McMullen         Unnamed Lake         28.62651         -98.4069           6         TX         NLA22         TX-10008         Jefferson         Utility Department #7 Reservoir         29.90287         -93.9468           6         TX         NLA22         TX-10010 <td>4         TN           4         TN           6         NM:TX           6         TX           6         TX</td> <td>'N NLA22_TN-1</td> <td>0003 Dyer</td> <td>Unnamed Lake</td> <td>36.16733</td> <td>-89.39693</td>                                                                                            | 4         TN           4         TN           6         NM:TX           6         TX                                                                                                                                                                                      | 'N NLA22_TN-1 | 0003 Dyer     | Unnamed Lake        | 36.16733 | -89.39693  |
| 4         TN         NLA22         TN-10007         McNairy         Tacker Lake         35.25306         -88.5727           6         NM:TX         NLA22         TX-10001         Loving         Red Bluff Reservoir         31.95055         -103.94050           6         TX         NLA22         TX-10002         Clay         Lake Arrowhead         33.71431         -98.3716           6         TX         NLA22         TX-10003         Calhoun         Unnamed Lake         28.16242         -96.7864           6         TX         NLA22         TX-10004         Panola         Martin Lake         32.20116         -94.5178           6         TX         NLA22         TX-10005         Wise         Unnamed Lake         33.36387         -97.4112           6         TX         NLA22         TX-10006         McMullen         Unnamed Lake         28.19148         98.74112           6         TX         NLA22         TX-10006         McMullen         Unnamed Lake         28.19148         98.74112           6         TX         NLA22         TX-10008         Jefferson         Utility Department #7 Reservoir         29.90287         -93.9468           6         TX         NLA22         TX-10010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4         TN           6         NM:TX           6         TX                                                                                                                                                                                                                                                           | 'N NLA22_TN-1 | 0005 Grundy   | Highlander Pond     | 35.25560 | -85.80847  |
| 6         NM:TX         NLA22_TX-10001         Loving         Red Bluff Reservoir         31.95055         -103.94050           6         TX         NLA22_TX-10002         Clay         Lake Arrowhead         33.71431         -98.37160           6         TX         NLA22_TX-10003         Calhoun         Unnamed Lake         28.16242         -96.7864           6         TX         NLA22_TX-10004         Panola         Martin Lake         32.20116         -94.5178           6         TX         NLA22_TX-10005         Wise         Unnamed Lake         33.36387         -97.4112           6         TX         NLA22_TX-10006         McMullen         Unnamed Lake         28.62651         -98.4069           6         TX         NLA22_TX-10007         McMullen         Unnamed Lake         28.62651         -98.4069           6         TX         NLA22_TX-10007         McMullen         Unnamed Lake         28.90287         -93.9468           6         TX         NLA22_TX-10008         Jefferson         Utility Department #7 Reservoir         29.85308         -96.3710           6         TX         NLA22_TX-10010         Austin         Unnamed Lake         28.55559         -99.7406           6         TX <td>6         NM:TX           6         TX           6         TX</td> <td>'N NLA22_TN-1</td> <td>0006 Bledsoe</td> <td>Timber Lake</td> <td>35.65453</td> <td>-85.02103</td>                                                                                                                                                                                                                 | 6         NM:TX           6         TX                                                                                                                                                                                                                                                                                                                                | 'N NLA22_TN-1 | 0006 Bledsoe  | Timber Lake         | 35.65453 | -85.02103  |
| 6         TX         NLA22         TX-10002         Clay         Lake Arrowhead         33.71431         -98.3716           6         TX         NLA22         TX-10003         Calhoun         Unnamed Lake         28.16242         -96.7864           6         TX         NLA22         TX-10004         Panola         Martin Lake         32.20116         -94.5178           6         TX         NLA22         TX-10005         Wise         Unnamed Lake         33.36387         -97.4112           6         TX         NLA22         TX-10006         McMullen         Unnamed Lake         28.62651         -98.4069           6         TX         NLA22         TX-10007         McMullen         Unnamed Lake         28.62651         -98.4069           6         TX         NLA22         TX-10007         McMullen         Unnamed Lake         28.62651         -98.4069           6         TX         NLA22         TX-10007         McMullen         Unnamed Lake         28.62651         -98.4069           6         TX         NLA22         TX-10008         Jefferson         Utility Department #7 Reservoir         29.90287         -93.9468           6         TX         NLA22         TX-10010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 'N NLA22_TN-1 | 0007 McNairy  | Tacker Lake         | 35.25306 | -88.57275  |
| 6         TX         NLA22         TX-10003         Calhoun         Unnamed Lake         28.16242         -96.7864           6         TX         NLA22         TX-10004         Panola         Martin Lake         32.20116         -94.51783           6         TX         NLA22         TX-10005         Wise         Unnamed Lake         33.36387         -97.41122           6         TX         NLA22         TX-10006         McMullen         Unnamed Lake         28.62651         -98.40692           6         TX         NLA22         TX-10007         McMullen         Unnamed Lake         28.19148         -98.741162           6         TX         NLA22         TX-10007         McMullen         Unnamed Lake         28.19148         -98.741162           6         TX         NLA22         TX-10007         McMullen         Unnamed Lake         28.990287         -93.94689           6         TX         NLA22         TX-10009         Mills         Soil Conservation Service Site 6 Reservoir         31.50956         -98.91000           6         TX         NLA22         TX-10010         Austin         Unnamed Lake         29.85308         -96.37102           6         TX         NLA22 <t< td=""><td>6         TX           6         TX</td><td>TX NLA22_TX-1</td><td>0001 Loving</td><td>Red Bluff Reservoir</td><td>31.95055</td><td>-103.94050</td></t<>                                                                                                                                                                                                                                                                                                                     | 6         TX                                                                                                                                                                                                                                                                                                                                                                                                                               | TX NLA22_TX-1 | 0001 Loving   | Red Bluff Reservoir | 31.95055 | -103.94050 |
| 6         TX         NLA22         TX-10004         Panola         Martin Lake         32.20116         -94.5178           6         TX         NLA22         TX-10005         Wise         Unnamed Lake         33.36387         -97.4112           6         TX         NLA22         TX-10006         McMullen         Unnamed Lake         28.62651         -98.40699           6         TX         NLA22         TX-10007         McMullen         Unnamed Lake         28.19148         -98.74110           6         TX         NLA22         TX-10007         McMullen         Unnamed Lake         28.19148         -98.74114           6         TX         NLA22         TX-10008         Jefferson         Utility Department #7 Reservoir         29.90287         -93.9468           6         TX         NLA22         TX-10010         Austin         Unnamed Lake         29.85308         -96.3710           6         TX         NLA22         TX-1011         Dimmit         Bermuda Lake         28.55559         -99.7406           6         TX         NLA22         TX-10012         Walker         Unnamed Lake         30.92462         -95.46999           6         TX         NLA22         TX-10013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6         TX                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X NLA22_TX-1  | 0002 Clay     | Lake Arrowhead      | 33.71431 | -98.37163  |
| 6         TX         NLA22         TX-10005         Wise         Unnamed Lake         33.36387         -97.4112           6         TX         NLA22         TX-10006         McMullen         Unnamed Lake         28.62651         -98.4069           6         TX         NLA22         TX-10007         McMullen         Unnamed Lake         28.19148         -98.74114           6         TX         NLA22         TX-10008         Jefferson         Utility Department #7 Reservoir         29.90287         -93.9468           6         TX         NLA22         TX-10009         Mills         Soil Conservation Service Site 6 Reservoir         31.50956         -98.9100           6         TX         NLA22         TX-10010         Austin         Unnamed Lake         29.85308         -96.3710           6         TX         NLA22         TX-10011         Dimmit         Bermuda Lake         28.55559         -99.7406           6         TX         NLA22         TX-10012         Walker         Unnamed Lake         30.92462         -95.46990           6         TX         NLA22         TX-10013         Kaufman         Unnamed Lake         30.50752         -97.09255           6         TX         NLA22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6         TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X NLA22 TX-1  | 0003 Calhoun  | Unnamed Lake        | 28.16242 | -96.78641  |
| 6         TX         NLA22         TX-10005         Wise         Unnamed Lake         33.36387         -97.4112           6         TX         NLA22         TX-10006         McMullen         Unnamed Lake         28.62651         -98.4069           6         TX         NLA22         TX-10007         McMullen         Unnamed Lake         28.19148         -98.74114           6         TX         NLA22         TX-10008         Jefferson         Utility Department #7 Reservoir         29.90287         -93.9468           6         TX         NLA22         TX-10009         Mills         Soil Conservation Service Site 6 Reservoir         31.50956         -98.9100           6         TX         NLA22         TX-10010         Austin         Unnamed Lake         29.85308         -96.3710           6         TX         NLA22         TX-10011         Dimmit         Bermuda Lake         28.55559         -99.7406           6         TX         NLA22         TX-10012         Walker         Unnamed Lake         30.92462         -95.46990           6         TX         NLA22         TX-10013         Kaufman         Unnamed Lake         30.50752         -97.09255           6         TX         NLA22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6         TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X NLA22 TX-1  | 0004 Panola   | Martin Lake         | 32.20116 | -94.51782  |
| 6         TX         NLA22         TX-10006         McMullen         Unnamed Lake         28.62651         -98.40692           6         TX         NLA22         TX-10007         McMullen         Unnamed Lake         28.19148         -98.74114           6         TX         NLA22         TX-10008         Jefferson         Utility Department #7 Reservoir         29.90287         -93.9468           6         TX         NLA22         TX-10009         Mills         Soil Conservation Service Site 6 Reservoir         31.50956         -98.9100           6         TX         NLA22         TX-10010         Austin         Unnamed Lake         29.85308         -96.3710           6         TX         NLA22         TX-10011         Dimmit         Bermuda Lake         28.55559         -99.7406           6         TX         NLA22         TX-10012         Walker         Unnamed Lake         30.92462         -95.46992           6         TX         NLA22         TX-10013         Kaufman         Unnamed Lake         30.50752         -97.09257           6         TX         NLA22         TX-10014         Milam         Unnamed Lake         33.65809         -95.62372           6         TX         NLA22 </td <td>6         TX           6         TX</td> <td></td> <td></td> <td></td> <td></td> <td>-97.41123</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6         TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |               |                     |          | -97.41123  |
| 6         TX         NLA22         TX-10007         McMullen         Unnamed Lake         28.19148         -98.74110           6         TX         NLA22         TX-10008         Jefferson         Utility Department #7 Reservoir         29.90287         -93.9468           6         TX         NLA22         TX-10009         Mills         Soil Conservation Service Site 6 Reservoir         31.50956         -98.9100           6         TX         NLA22         TX-10010         Austin         Unnamed Lake         29.85308         -96.3710           6         TX         NLA22         TX-10010         Austin         Unnamed Lake         28.55559         -99.7406           6         TX         NLA22         TX-10012         Walker         Unnamed Lake         30.92462         -95.4699           6         TX         NLA22         TX-10013         Kaufman         Unnamed Lake         30.92462         -95.4699           6         TX         NLA22         TX-10013         Kaufman         Unnamed Lake         30.50752         -97.0925'           6         TX         NLA22         TX-10014         Milam         Unnamed Lake         33.65809         -95.6237'           6         TX         NLA22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6         TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |               |                     |          | -98.40695  |
| 6         TX         NLA22         TX-10008         Jefferson         Utility Department #7 Reservoir         29.90287         -93.9468           6         TX         NLA22         TX-10009         Mills         Soil Conservation Service Site 6 Reservoir         31.50956         -98.9100           6         TX         NLA22         TX-10010         Austin         Unnamed Lake         29.85308         -96.3710           6         TX         NLA22         TX-10011         Dimmit         Bermuda Lake         28.55559         -99.7406           6         TX         NLA22         TX-10012         Walker         Unnamed Lake         30.92462         -95.4699           6         TX         NLA22         TX-10013         Kaufman         Unnamed Lake         30.50752         -97.0925'           6         TX         NLA22         TX-10014         Milam         Unnamed Lake         33.65809         -95.6237'           6         TX         NLA22         TX-10015         Lamar         Unnamed Lake         32.68214         -96.2347           6         TX         NLA22         TX-10016         Chambers         Blind Lake         33.65809         -95.6237'           6         TX         NLA22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6         TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |               |                     |          |            |
| 6         TX         NLA22_TX-10009         Mills         Soil Conservation Service Site 6 Reservoir         31.50956         -98.91000           6         TX         NLA22_TX-10010         Austin         Unnamed Lake         29.85308         -96.3710           6         TX         NLA22_TX-10010         Austin         Unnamed Lake         28.55559         -99.7406           6         TX         NLA22_TX-10012         Walker         Unnamed Lake         30.92462         -95.46999           6         TX         NLA22_TX-10013         Kaufman         Unnamed Lake         32.68214         -96.2347           6         TX         NLA22_TX-10014         Milam         Unnamed Lake         30.50752         -97.0925'           6         TX         NLA22_TX-10015         Lamar         Unnamed Lake         33.65809         -95.6237'           6         TX         NLA22_TX-10016         Chambers         Blind Lake         29.78289         -94.71014           6         TX         NLA22_TX-10017         Mitchell         Butler Lake         32.40757         -101.0307'           6         TX         NLA22_TX-10026         Moore         Unnamed Lake         36.03511         -101.8078'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6         TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |               |                     |          | -93.94689  |
| 6         TX         NLA22_TX-10010         Austin         Unnamed Lake         29.85308         -96.3710           6         TX         NLA22_TX-10011         Dimmit         Bermuda Lake         28.55559         -99.7406           6         TX         NLA22_TX-10012         Walker         Unnamed Lake         30.92462         -95.46993           6         TX         NLA22_TX-10013         Kaufman         Unnamed Lake         32.68214         -96.23473           6         TX         NLA22_TX-10013         Kaufman         Unnamed Lake         30.50752         -97.09257           6         TX         NLA22_TX-10015         Lamar         Unnamed Lake         33.65809         -95.62379           6         TX         NLA22_TX-10016         Chambers         Blind Lake         29.78289         -94.71014           6         TX         NLA22_TX-10017         Mitchell         Butler Lake         32.40757         -101.03074           6         TX         NLA22_TX-10026         Moore         Unnamed Lake         36.03511         -101.80782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6         TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |               |                     |          | -98.91006  |
| 6         TX         NLA22         TX-10011         Dimmit         Bermuda Lake         28.55559         -99.7406           6         TX         NLA22         TX-10012         Walker         Unnamed Lake         30.92462         -95.46999           6         TX         NLA22         TX-10013         Kaufman         Unnamed Lake         32.68214         -96.2347           6         TX         NLA22         TX-10014         Milam         Unnamed Lake         30.50752         -97.0925'           6         TX         NLA22         TX-10015         Lamar         Unnamed Lake         33.65809         -95.6237'           6         TX         NLA22         TX-10016         Chambers         Blind Lake         29.78289         -94.71014           6         TX         NLA22         TX-10017         Mitchell         Butler Lake         32.40757         -101.0307'           6         TX         NLA22         TX-10026         Moore         Unnamed Lake         36.03511         -101.8078'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6         TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |               |                     |          |            |
| 6         TX         NLA22         TX-10012         Walker         Unnamed Lake         30.92462         -95.46999           6         TX         NLA22         TX-10013         Kaufman         Unnamed Lake         32.68214         -96.2347           6         TX         NLA22         TX-10014         Milam         Unnamed Lake         30.50752         -97.0925           6         TX         NLA22         TX-10015         Lamar         Unnamed Lake         33.65809         -95.62379           6         TX         NLA22         TX-10016         Chambers         Blind Lake         29.78289         -94.71014           6         TX         NLA22         TX-10017         Mitchell         Butler Lake         32.40757         -101.03074           6         TX         NLA22         TX-10026         Moore         Unnamed Lake         36.03511         -101.80782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6         TX           6         TX           6         TX           6         TX           6         TX           6         TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          |            |
| 6         TX         NLA22_TX-10013         Kaufman         Unnamed Lake         32.68214         -96.2347           6         TX         NLA22_TX-10014         Milam         Unnamed Lake         30.50752         -97.0925'           6         TX         NLA22_TX-10015         Lamar         Unnamed Lake         33.65809         -95.6237'           6         TX         NLA22_TX-10016         Chambers         Blind Lake         29.78289         -94.71014'           6         TX         NLA22_TX-10017         Mitchell         Butler Lake         32.40757         -101.0307'           6         TX         NLA22_TX-10026         Moore         Unnamed Lake         36.03511         -101.8078'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6         TX           6         TX           6         TX           6         TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |               |                     |          |            |
| 6         TX         NLA22_TX-10014         Milam         Unnamed Lake         30.50752         -97.0925           6         TX         NLA22_TX-10015         Lamar         Unnamed Lake         33.65809         -95.6237           6         TX         NLA22_TX-10016         Chambers         Blind Lake         29.78289         -94.7101           6         TX         NLA22_TX-10017         Mitchell         Butler Lake         32.40757         -101.0307/           6         TX         NLA22_TX-10026         Moore         Unnamed Lake         36.03511         -101.8078/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6         TX           6         TX           6         TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |               |                     |          |            |
| 6         TX         NLA22_TX-10015         Lamar         Unnamed Lake         33.65809         -95.6237           6         TX         NLA22_TX-10016         Chambers         Blind Lake         29.78289         -94.7101           6         TX         NLA22_TX-10017         Mitchell         Butler Lake         32.40757         -101.03070           6         TX         NLA22_TX-10026         Moore         Unnamed Lake         36.03511         -101.80782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 TX<br>6 TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |               |                     |          |            |
| 6         TX         NLA22_TX-10016         Chambers         Blind Lake         29.78289         -94.71014           6         TX         NLA22_TX-10017         Mitchell         Butler Lake         32.40757         -101.03074           6         TX         NLA22_TX-10026         Moore         Unnamed Lake         36.03511         -101.80782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |               |                     |          |            |
| 6         TX         NLA22_TX-10017         Mitchell         Butler Lake         32.40757         -101.0307           6         TX         NLA22_TX-10026         Moore         Unnamed Lake         36.03511         -101.8078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          |            |
| 6         TX         NLA22_TX-10026         Moore         Unnamed Lake         36.03511         -101.80782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 6 TV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |                     |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          | -96.23896  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          | -98.88690  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          | -94.60379  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |                     |          | -97.22381  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V NILADO TV 1 | 0031 Jack     | Lake Jacksboro      | 33.22644 | -98.14856  |
| 6 TX NLA22 TX-10032 Jackson Unknown Menefee Flat Pond 28.81378 -96.58017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |               |                     |          |            |

| EPA    | 0        |                                  |               |                                              |                      |            |
|--------|----------|----------------------------------|---------------|----------------------------------------------|----------------------|------------|
| Region | State    | Site ID                          | County        | Site Name                                    | Latitude             | Longitude  |
| 6      | TX       | NLA22 TX-10033                   | Chambers      | Crooked Lake                                 | 29.86688             | -94.59420  |
| 6      | TX       | NLA22 TX-10034                   | Lee           | Soil Conservation Service Site 1 Reservoir   | 30.15778             | -96.84824  |
| 6      | TX       | NLA22 TX-10035                   | Archer        | McKinney Lake                                | 33.49508             | -98.61346  |
| 6      | TX       | NLA22 TX-10036                   | Shelby        | Unnamed Lake                                 | 31.92401             | -94.08047  |
| 6      | TX       | NLA22 TX-10037                   | Harris        | Unnamed Lake                                 | 29.87366             |            |
| 6      | TX       | NLA22 TX-10037                   | Fannin        | Lake Bonham                                  | 33.65389             | -96.13948  |
| 6      | TX       | NLA22 TX-10038<br>NLA22 TX-10039 | Martin        | Unnamed Lake                                 | 32.41959             |            |
| 6      | TX       | NLA22_TX-10039<br>NLA22_TX-10040 | Van Zandt     | Soil Conservation Service Site 105 Reservoir | 32.65203             | -96.00741  |
| 6      | TX       | NLA22_TX-10040<br>NLA22_TX-10041 | Jefferson     | Rhodair Gully                                | 29.90072             | -94.05628  |
| 6      | TX       | NLA22_TX-10041<br>NLA22_TX-10042 | Donley        | Greenbelt Reservoir                          | 35.00531             | -100.90121 |
| -      |          |                                  | ~             |                                              |                      |            |
| 8      | UT<br>UT | NLA22_UT-10001                   | Iron<br>Weber | Modena Draw Reservoir                        | 37.78044<br>41.17782 | -113.89390 |
| -      |          | NLA22_UT-10002                   |               | Ogden Bay Spring                             |                      |            |
| 8      | UT       | NLA22_UT-10003                   | Uintah        | Nine Mile Reservoir                          | 39.82802             |            |
| 8      | UT       | NLA22_UT-10004                   | Summit        | Bear Lake                                    | 40.84628             |            |
| 8      | UT       | NLA22_UT-10005                   | Garfield      | The Baldys Lake                              | 38.04021             | -111.41530 |
| 8      | UT       | NLA22_UT-10008                   | Grand         | Intrepid Potash Pond                         | 38.51915             |            |
| 8      | UT       | NLA22_UT-10009                   | Salt Lake     | Unnamed Lake                                 | 40.80043             |            |
| 8      | UT       | NLA22_UT-10010                   | Box Elder     | Unnamed Lake                                 | 41.49557             | -112.18598 |
| 8      | UT       | NLA22_UT-10011                   | Uintah        | Unnamed Lake                                 | 40.71802             | -109.82110 |
| 8      | UT       | NLA22_UT-10012                   | Beaver        | Middle Kents Lake Number Two                 | 38.23533             |            |
| 3      | VA       | NLA22_VA-10001                   | Washington    | Beaver Creek Reservoir                       | 36.64651             | -82.11079  |
| 3      | VA       | NLA22_VA-10002                   | James City    | Wenger Pond                                  | 37.39947             | -76.76699  |
| 3      | VA       | NLA22_VA-10003                   | Greensville   | Beaver Pond                                  | 36.62833             | -77.61589  |
| 3      | VA       | NLA22_VA-10004                   | Spotsylvania  | Cool Spring Lake                             | 38.29925             | -77.65349  |
| 3      | VA       | NLA22_VA-10007                   | Rappahannock  | Unnamed Lake                                 | 38.69649             | -78.21736  |
| 3      | VA       | NLA22_VA-10008                   | Albemarle     | Unnamed Lake                                 | 37.78030             | -78.58079  |
| 3      | VA       | NLA22_VA-10009                   | Halifax       | Wade Lake                                    | 36.63033             | -79.06388  |
| 3      | VA       | NLA22_VA-10010                   | Northampton   | Bulls Pond                                   | 37.14896             | -75.95533  |
| 1      | VT       | NLA22_VT-10001                   | Rutland       | Unnamed Lake                                 | 43.37749             | -73.24616  |
| 1      | VT       | NLA22_VT-10002                   | Windsor       | Unnamed Lake                                 | 43.79542             | -72.39685  |
| 1      | VT       | NLA22_VT-10003                   | Washington    | Unnamed Lake                                 | 44.43086             | -72.43137  |
| 1      | VT       | NLA22_VT-10005                   | Franklin      | Lake Champlain                               | 45.04239             |            |
| 1      | VT       | NLA22_VT-10006                   | Windsor       | Echo Lake                                    | 43.47264             | -72.70051  |
| 1      | VT       | NLA22_VT-10007                   | Orange        | Tenney Pond                                  | 44.15989             |            |
| 10     | WA       | NLA22_WA-10001                   | Whitman       | Cherry Cove Lake                             | 47.02138             |            |
| 10     | WA       | NLA22_WA-10002                   | Whatcom       | Lake Padden                                  | 48.70292             |            |
| 10     | WA       | NLA22_WA-10003                   | King          | Larsen Lake                                  | 47.60519             |            |
| 10     | WA       | NLA22_WA-10004                   | Stevens       | Echo Lakes                                   | 48.66424             |            |
| 10     | WA       | NLA22_WA-10005                   | Walla Walla   | Iowa Beef Processors Waste Pond              | 46.14082             |            |
| 10     | WA       | NLA22_WA-10006                   | Mason         | Oak Patch Lake                               | 47.47637             |            |
| 10     | WA       | NLA22_WA-10007                   | Douglas       | Grimes Lake                                  |                      | -119.59030 |
| 10     | WA       | NLA22_WA-10008                   | Spokane       | Hog Lake                                     |                      | -117.80260 |
| 10     | WA       | NLA22_WA-10009                   | Lewis         | Jess Lake                                    |                      | -121.38900 |
| 10     | WA       | NLA22_WA-10010                   | Grant         | Lower Crab Creek Lake                        |                      | -119.25630 |
| 10     | WA       | NLA22_WA-10015                   | Ferry         | Lake Ellen                                   |                      | -118.25540 |
| 10     | WA       | NLA22_WA-10016                   | Grant         | Babcock Ridge Lake                           | 47.23551             |            |
| 10     | WA       | NLA22_WA-10017                   | Pend Oreille  | Oidneys Pond                                 | 48.16961             | -117.07844 |
| 10     | WA       | NLA22_WA-10018                   | Thurston      | Sunwood Lake                                 | 46.96955             |            |
| 10     | WA       | NLA22_WA-10019                   | Okanogan      | Summit Lake                                  | 48.88754             |            |
| 10     | WA       | NLA22_WA-10020                   | King          | Lake Clarice                                 | 47.62490             |            |
| 10     | WA       | NLA22_WA-10021                   | Clark         | Lancaster Lake                               | 45.85000             |            |
| 10     | WA       | NLA22_WA-10022                   | Mason         | Isabella Lake                                | 47.17153             |            |
| 10     | WA       | NLA22_WA-10023                   | Spokane       | Hardesty Road Pond                           | 47.94572             |            |
| 5      | MN       | NLA22_WI-10001                   | Goodhue       | Sturgeon Lake                                | 44.63935             |            |
| 5      | WI       | NLA22_WI-10002                   | Price         | Lake Ten                                     | 45.62225             |            |
| 5      | WI       | NLA22_WI-10003                   | Bayfield      | Priest Lake                                  | 46.35399             |            |
| 5      | WI       | NLA22_WI-10004                   | Brown         | Unnamed Lake                                 | 44.59728             |            |
| 5      | WI       | NLA22_WI-10005                   | Jackson       | Unnamed Lake                                 | 44.31349             |            |
| 5      | WI       | NLA22_WI-10006                   | Burnett       | Lind Lake                                    | 45.75032             |            |
| 5      | WI       | NLA22_WI-10007                   | Burnett       | Fawn Lake                                    | 46.03363             | -92.17979  |

| EPA    |       |                |            |                                               |          |            |
|--------|-------|----------------|------------|-----------------------------------------------|----------|------------|
| Region | State | Site ID        | County     | Site Name                                     | Latitude | Longitude  |
| 5      | WI    | NLA22_WI-10008 | Forest     | Ludington Lake                                | 45.47702 | -88.76988  |
| 5      | WI    | NLA22_WI-10009 | Dane       | Lake Belle View                               | 42.87001 | -89.54856  |
| 5      | WI    | NLA22_WI-10010 | Polk       | Rice Lake                                     | 45.27248 | -92.55141  |
| 5      | WI    | NLA22_WI-10015 | Crawford   | Unknown Island Number One Hundred Seventy-Two | 43.06007 | -91.17273  |
|        |       |                |            | Lake                                          |          |            |
| 5      | WI    | NLA22_WI-10016 | Burnett    | Birch Island Lake                             | 45.93917 | -92.15971  |
| 5      | WI    | NLA22_WI-10017 | Dunn       | Big River Resources Unnamed Pond              | 45.05083 | -91.98766  |
| 5      | WI    | NLA22_WI-10018 | Washington | Serendipity Lake                              | 43.21534 | -88.17801  |
| 5      | WI    | NLA22_WI-10019 | Adams      | Camelot Lake                                  | 44.20597 | -89.75933  |
| 5      | WI    | NLA22_WI-10020 | Marathon   | Townline Flowage                              | 44.70543 | -89.82463  |
| 5      | WI    | NLA22_WI-10021 | Oneida     | Long Lake                                     | 45.78981 | -89.49794  |
| 5      | WI    | NLA22_WI-10022 | Sheboygan  | Elkhart Lake                                  | 43.82542 | -88.02346  |
| 5      | WI    | NLA22_WI-10023 | Columbia   | Columbia Energy Center Pond 1                 | 43.49264 | -89.41734  |
| 3      | WV    | NLA22_WV-10001 | Jackson    | Bar Run Lake                                  | 38.84854 | -81.85081  |
| 3      | WV    | NLA22_WV-10002 | Nicholas   | Summersville Lake                             | 38.24675 | -80.86071  |
| 3      | WV    | NLA22_WV-10003 | Preston    | Unnamed Lake                                  | 39.69735 | -79.64590  |
| 3      | WV    | NLA22_WV-10005 | Lincoln    | Mud River Lake                                | 38.15533 | -82.05795  |
| 3      | WV    | NLA22_WV-10006 | Mercer     | Horton Lake                                   | 37.27717 | -81.17648  |
| 3      | WV    | NLA22_WV-10007 | Grant      | Stony River Reservoir                         | 39.12445 | -79.30738  |
| 8      | WY    | NLA22_WY-10001 | Laramie    | Unnamed Lake                                  | 41.01086 | -105.25930 |
| 8      | WY    | NLA22_WY-10002 | Fremont    | Unnamed Lake                                  | 42.88123 | -109.28700 |
| 8      | WY    | NLA22_WY-10003 | Sublette   | Sauerkraut Lakes                              | 43.10524 | -109.73260 |
| 8      | WY    | NLA22_WY-10004 | Natrona    | S P Reservoir                                 | 42.79375 | -106.42590 |
| 8      | WY    | NLA22_WY-10005 | Albany     | Glade Number 1 Reservoir                      | 41.92218 | -105.55290 |
| 8      | WY    | NLA22_WY-10006 | Fremont    | Lewiston Lakes                                | 42.44411 | -108.45990 |
| 8      | WY    | NLA22_WY-10007 | Crook      | Lone Tree Reservoir                           | 44.92057 | -104.24600 |
| 8      | WY    | NLA22_WY-10008 | Albany     | Twin Buttes Lake                              | 41.23809 | -105.86160 |
| 8      | WY    | NLA22_WY-10009 | Park       | Coe Enlargement Reservoir                     | 44.28174 |            |
| 8      | WY    | NLA22_WY-10014 | Crook      | Unnamed Lake                                  | 44.82254 | -104.14463 |
| 8      | WY    | NLA22_WY-10015 | Fremont    | Unknown Continental Glacier Lake              | 43.34200 | -109.68715 |
| 8      | WY    | NLA22_WY-10016 | Sublette   | Upper Silver Lakes                            | 42.81388 | -109.36968 |
| 8      | WY    | NLA22_WY-10017 | Goshen     | Goshen Hole Reservoir                         | 41.88002 | -104.28134 |
| 8      | WY    | NLA22_WY-10018 | Teton      | Unknown Jackass Meadows Lake                  | 44.04085 | -111.03434 |
| 8      | WY    | NLA22_WY-10019 | Fremont    | Unnamed Lake                                  | 43.02493 | -109.49361 |
| 8      | WY    | NLA22_WY-10020 | Sublette   | Big Sandy Reservoir                           | 42.27426 | -109.43074 |
| 8      | WY    | NLA22 WY-10021 | Laramie    | Granite Springs Reservoir                     | 41.17702 | -105.23435 |
| 8      | WY    | NLA22 WY-10022 | Park       | Mirror Lake                                   | 44.73563 | -110.16326 |

<sup>1</sup> This list of sites is subject to change as the project proceeds. For example, access to some sites may not be granted by property owners. Other sites may not yield fish of suitable size or species. OST maintains the list of valid sites, and this QAPP will **not** be revised just to address changes in the list of sites.

# **Appendix B**

# NLA 2022 Detection and Quantitation Limits for Fish Tissue Study Analyses

#### Method Detection Limits (MDLs) and Minimum Levels (MLs) for NLA 2022 Fish Tissue Study Target Analytes

| Mercury (based on a 0.5-g sample) |           |  |  |  |
|-----------------------------------|-----------|--|--|--|
| $MDL^{1} (ng/g)$                  | ML (ng/g) |  |  |  |
| 0.2                               | 1         |  |  |  |

 The MDL is based on the EPA procedure described at 40 CFR 136, Appendix B, Revision 2, from August 2017.

|                                                |              | Tissues Rinsates |     |       |     |
|------------------------------------------------|--------------|------------------|-----|-------|-----|
| Target Analyte Name                            | Abbreviation | MDL              | ML  | MDL   | ML  |
| Perfluoroalkyl carboxylic acids                |              | 1 1              | I   |       |     |
| Perfluorobutanoic acid                         | PFBA         | 0.593            | 2.0 | 0.330 | 6.4 |
| Perfluoropentanoic acid                        | PFPeA        | 0.083            | 1.0 | 0.196 | 3.  |
| Perfluorohexanoic acid                         | PFHxA        | 0.096            | 0.5 | 0.318 | 1.  |
| Perfluoroheptanoic acid                        | PFHpA        | 0.088            | 0.5 | 0.221 | 1.  |
| Perfluorooctanoic acid                         | PFOA         | 0.086            | 0.5 | 0.302 | 1.  |
| Perfluorononanoic acid                         | PFNA         | 0.160            | 0.5 | 0.221 | 1.  |
| Perfluorodecanoic acid                         | PFDA         | 0.124            | 0.5 | 0.333 | 1.  |
| Perfluoroundecanoic acid                       | PFUnA        | 0.152            | 0.5 | 0.264 | 1.  |
| Perfluorododecanoic acid                       | PFDoA        | 0.130            | 0.5 | 0.379 | 1.  |
| Perfluorotridecanoic acid                      | PFTrDA       | 0.086            | 0.5 | 0.238 | 1.  |
| Perfluorotetradecanoic acid                    | PFTeDA       | 0.185            | 0.5 | 0.264 | 1.  |
| Perfluoroalkyl sulfonic acids                  |              |                  |     | 1     |     |
| Perfluorobutanesulfonic acid                   | PFBS         | 0.070            | 0.5 | 0.245 | 1.  |
| Perfluoropentansulfonic acid                   | PFPeS        | 0.032            | 0.5 | 0.204 | 1.  |
| Perfluorohexanesulfonic acid                   | PFHxS        | 0.083            | 0.5 | 0.217 | 1.  |
| Perfluoroheptanesulfonic acid                  | PFHpS        | 0.043            | 0.5 | 0.137 | 1.  |
| Perfluorooctanesulfonic acid                   | PFOS         | 0.294            | 0.5 | 0.327 | 1.6 |
| Perfluorononanesulfonic acid                   | PFNS         | 0.114            | 0.5 | 0.303 | 1.  |
| Perfluorodecanesulfonic acid                   | PFDS         | 0.101            | 0.5 | 0.334 | 1.  |
| Perfluorododecanesulfonic acid                 | PFDoS        | 0.177            | 0.5 | 0.179 | 1.  |
| Fluorotelomer sulfonic acids                   |              |                  |     |       |     |
| 1H,1H, 2H, 2H-Perfluorohexane sulfonic acid    | 4:2FTS       | 0.740            | 2.0 | 2.281 | 6.4 |
| 1H,1H, 2H, 2H-Perfluorooctane sulfonic acid    | 6:2FTS       | 1.149            | 2.0 | 3.973 | 6.  |
| 1H,1H, 2H, 2H-Perfluorodecane sulfonic acid    | 8:2FTS       | 0.373            | 2.0 | 1.566 | 6.  |
| Perfluorooctane sulfonamides                   |              |                  |     |       |     |
| Perfluorooctanesulfonamide                     | PFOSA        | 0.094            | 0.5 | 0.227 | 1.  |
| N-methyl perfluorooctanesulfonamide            | NMeFOSA      | 0.161            | 0.5 | 0.196 | 1.  |
| N-ethyl perfluorooctanesulfonamide             | NEtFOSA      | 0.169            | 0.5 | 0.585 | 1.  |
| Perfluorooctane sulfonamidoacetic acids        |              |                  |     |       |     |
| N-methyl perfluorooctanesulfonamidoacetic acid | NMeFOSAA     | 0.093            | 0.5 | 0.586 | 1.  |
| N-ethyl perfluorooctanesulfonamidoacetic acid  | NEtFOSAA     | 0.138            | 0.5 | 0.324 | 1.  |
| Perfluorooctane sulfonamide ethanols           |              | · · ·            |     |       |     |
| N-methyl perfluorooctanesulfonamidoethanol     | NMeFOSE      | 9.978            | 5.0 | 1.191 | 1   |
| N-ethyl perfluorooctanesulfonamidoethanol      | NEtFOSE      | 1.501            | 5.0 | 1.022 | 1   |
| Per- and Polyfluoroether carboxylic acids      |              |                  |     |       |     |
| Hexafluoropropylene oxide dimer acid           | HFPO-DA      | 0.161            | 2.0 | 0.406 | 6.  |
| 4,8-Dioxa-3H-perfluorononanoic acid            | ADONA        | 0.082            | 2.0 | 0.779 | 6.  |
| Perfluoro-3-methoxypropanoic acid              | PFMPA        | 0.070            | 1.0 | 0.177 | 3.  |
| Perfluoro-4-methoxybutanoic acid               | PFMBA        | 0.069            | 1.0 | 0.117 | 3.  |
| Nonafluoro-3,6-dioxaheptanoic acid             | NFDHA        | 0.294            | 1.0 | 1.384 | 3.  |

| PFAS Target Analytes, Identifiers, and Target Method Detection Limits and Minimum Levels <sup>1</sup> |              |         |      |          |     |  |  |
|-------------------------------------------------------------------------------------------------------|--------------|---------|------|----------|-----|--|--|
|                                                                                                       |              | Tissues |      | Rinsates |     |  |  |
| Target Analyte Name                                                                                   | Abbreviation | MDL     | ML   | MDL      | ML  |  |  |
| Ether sulfonic acids                                                                                  |              |         |      |          |     |  |  |
| 9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid                                                    | 9C1-PF3ONS   | 0.152   | 2.0  | 0.871    | 6.4 |  |  |
| 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid                                                   | 11Cl-PF3OUdS | 0.312   | 2.0  | 0.819    | 6.4 |  |  |
| Perfluoro(2-ethoxyethane)sulfonic acid                                                                | PFEESA       | 0.045   | 1.0  | 0.137    | 3.2 |  |  |
| Fluorotelomer carboxylic acids                                                                        |              |         |      |          |     |  |  |
| 3-Perfluoropropyl propanoic acid                                                                      | 3:3FTCA      | 0.247   | 2.5  | 0.721    | 8.0 |  |  |
| 2H,2H,3H,3H-Perfluorooctanoic acid                                                                    | 5:3FTCA      | 1.537   | 12.5 | 5.066    | 40  |  |  |
| 3-Perfluoroheptyl propanoic acid                                                                      | 7:3FTCA      | 0.845   | 12.5 | 5.942    | 40  |  |  |

<sup>1</sup> The MDL and ML values above are taken from the 3<sup>rd</sup> Draft Method 1633 and are to be used as targets for laboratory sensitivity. The PFAS laboratory will use their actual MDL values to make the "detection decision" for all fish tissue and rinsate analyses.

The PCB congeners to be determined in this project are listed in the table below. The method detection and quantitation limits (also referred to as minimum levels) were provided by the laboratory as part of its bid submission.

| (in elution order, based on a 10-g sample) |                  |    |  |  |  |  |  |
|--------------------------------------------|------------------|----|--|--|--|--|--|
| Analyte                                    | MDL <sup>1</sup> | ML |  |  |  |  |  |
| PCB-1                                      | 0.15             | 1  |  |  |  |  |  |
| PCB-2                                      | 0.90             | 1  |  |  |  |  |  |
| PCB-3                                      | 0.13             | 1  |  |  |  |  |  |
| PCB-4/10                                   | 0.47             | 1  |  |  |  |  |  |
| PCB-5/8                                    | 0.39             | 1  |  |  |  |  |  |
| PCB-6                                      | 0.75             | 1  |  |  |  |  |  |
| PCB-7/9                                    | 0.45             | 1  |  |  |  |  |  |
| PCB-11                                     | 0.63             | 1  |  |  |  |  |  |
| PCB-12/13                                  | 0.72             | 1  |  |  |  |  |  |
| PCB-14                                     | 0.70             | 1  |  |  |  |  |  |
| PCB-15                                     | 0.29             | 1  |  |  |  |  |  |
| PCB-16/32                                  | 0.29             | 1  |  |  |  |  |  |
| PCB-17                                     | 0.21             | 1  |  |  |  |  |  |
| PCB-18                                     | 0.28             | 1  |  |  |  |  |  |
| PCB-19                                     | 0.20             | 1  |  |  |  |  |  |
| PCB-20/21/33                               | 0.80             | 2  |  |  |  |  |  |
| PCB-22                                     | 0.30             | 1  |  |  |  |  |  |
| PCB-23                                     | 0.32             | 1  |  |  |  |  |  |
| PCB-24/27                                  | 0.38             | 1  |  |  |  |  |  |
| PCB-25                                     | 0.35             | 1  |  |  |  |  |  |
| PCB-26                                     | 0.30             | 1  |  |  |  |  |  |
| PCB-28                                     | 0.32             | 1  |  |  |  |  |  |
| PCB-29                                     | 0.35             | 1  |  |  |  |  |  |
| PCB-30                                     | 0.18             | 1  |  |  |  |  |  |
| PCB-31                                     | 0.48             | 1  |  |  |  |  |  |
| PCB-34                                     | 0.37             | 1  |  |  |  |  |  |
| PCB-35                                     | 0.28             | 1  |  |  |  |  |  |
| PCB-36                                     | 0.27             | 1  |  |  |  |  |  |
| PCB-37                                     | 0.29             | 1  |  |  |  |  |  |
| PCB-38                                     | 0.24             | 1  |  |  |  |  |  |
| PCB-39                                     | 0.36             | 1  |  |  |  |  |  |
| PCB-40                                     | 0.45             | 1  |  |  |  |  |  |
| PCB-41/64/71/72                            | 0.66             | 2  |  |  |  |  |  |
| PCB-42/59                                  | 0.38             | 1  |  |  |  |  |  |
| PCB-43/49                                  | 0.40             | 1  |  |  |  |  |  |

|                    | based on a 10-g<br>MDL <sup>1</sup> |        |
|--------------------|-------------------------------------|--------|
| Analyte<br>PCB-44  |                                     | 1<br>1 |
|                    | 0.29                                | 1      |
| PCB-45             | 0.26                                |        |
| PCB-46             | 0.46                                | 1      |
| PCB-47             | 0.29                                | 1      |
| PCB-48/75          | 0.37                                | 1      |
| PCB-50             | 0.28                                | 1      |
| PCB-51             | 0.20                                | 1      |
| PCB-52/69          | 0.51                                | 1      |
| PCB-53             | 0.62                                | 1      |
| PCB-54             | 0.21                                | 1      |
| PCB-55             | 0.25                                | 1      |
| PCB-56/60          | 0.37                                | 1      |
| PCB-57             | 0.25                                | 1      |
| PCB-58             | 0.24                                | 1      |
| PCB-61/70          | 0.34                                | 1      |
| PCB-62             | 0.28                                | 1      |
| PCB-63             | 0.23                                | 1      |
| PCB-65             | 0.19                                | 1      |
| PCB-66/76          | 0.40                                | 1      |
| PCB-67             | 0.26                                | 1      |
| PCB-68             | 0.20                                | 1      |
| PCB-73             | 0.14                                | 1      |
| PCB-74             | 0.21                                | 1      |
| PCB-77             | 0.14                                | 1      |
| PCB-78             | 0.14                                | 1      |
|                    | 0.30                                | 1      |
| PCB-79             |                                     |        |
| PCB-80             | 0.24                                | 1      |
| PCB-81             | 0.26                                | 1      |
| PCB-82             | 0.35                                | 1      |
| PCB-83             | 0.32                                | 1      |
| PCB-84/92          | 0.39                                | 1      |
| PCB-85/116         | 0.37                                | 1      |
| PCB-86             | 0.32                                | 1      |
| PCB-87/117/125     | 0.56                                | 2      |
| PCB-88/91          | 0.42                                | 1      |
| PCB-89             | 0.24                                | 1      |
| PCB-90/101         | 0.38                                | 1      |
| PCB-93             | 0.57                                | 1      |
| PCB-94             | 0.31                                | 1      |
| PCB-95/98/102      | 0.61                                | 2      |
| PCB-96             | 0.27                                | 1      |
| PCB-97             | 0.34                                | 1      |
| PCB-99             | 0.34                                | 1      |
| PCB-100            | 0.30                                | 1      |
| PCB-100            | 0.30                                | 1      |
| PCB-103<br>PCB-104 | 0.18                                | 1      |
|                    | 0.20                                |        |
| PCB-105            |                                     | 1      |
| PCB-106/118        | 0.47                                | 1      |
| PCB-107/109        | 0.38                                | 1      |
| PCB-108/112        | 0.61                                | 1      |
| PCB-110            | 0.22                                | 1      |
| PCB-111/115        | 0.57                                | 1      |
| PCB-113            | 0.17                                | 1      |
| PCB-114            | 0.36                                | 1      |
| PCB-119            | 0.25                                | 1      |
| PCB-120            | 0.22                                | 1      |
| PCB-121            | 0.30                                | 1      |
| PCB-122            | 0.26                                | 1      |

| (in elution order, b |                  |    |
|----------------------|------------------|----|
| Analyte              | MDL <sup>1</sup> | ML |
| PCB-123              | 0.35             | 1  |
| PCB-124              | 0.26             | 1  |
| PCB-126              | 0.25             | 1  |
| PCB-127              | 0.30             | 1  |
| PCB-128/162          | 0.68             | 1  |
| PCB-129              | 0.23             | 1  |
| PCB-130              | 0.36             | 1  |
| PCB-131/133          | 0.45             | 1  |
| PCB-132/161          | 0.41             | 1  |
| PCB-134/143          | 0.56             | 1  |
| PCB-135              | 0.34             | 1  |
| PCB-136              | 0.26             | 1  |
| PCB-137              | 0.36             | 1  |
| PCB-138/163/164      | 0.70             | 2  |
| PCB-139/149          | 0.52             | 1  |
| PCB-140              | 0.29             | 1  |
| PCB-141              | 0.33             | 1  |
| PCB-142              | 0.29             | 1  |
| PCB-144              | 0.24             | 1  |
| PCB-145              | 0.24             | 1  |
| PCB-146/165          | 0.32             | 1  |
| PCB-147              | 0.50             | 1  |
| PCB-148              | 0.33             | 1  |
| PCB-150              | 0.21             | 1  |
| PCB-151              | 0.34             | 1  |
| PCB-152              | 0.25             | 1  |
| PCB-152<br>PCB-153   | 0.25             | 1  |
| PCB-155              | 0.20             | 1  |
| PCB-155              | 0.31             | 1  |
|                      |                  | 1  |
| PCB-156              | 0.37<br>0.25     | 1  |
| PCB-157              |                  |    |
| PCB-158/160          | 0.54             | 1  |
| PCB-159              | 0.26             | 1  |
| PCB-166              | 0.19             | 1  |
| PCB-167              | 0.23             | 1  |
| PCB-168              | 0.19             | 1  |
| PCB-169              | 0.33             | 1  |
| PCB-170              | 0.41             | 1  |
| PCB-171              | 0.24             | 1  |
| PCB-172              | 0.31             | 1  |
| PCB-173              | 0.33             | 1  |
| PCB-174              | 0.37             | 1  |
| PCB-175              | 0.20             | 1  |
| PCB-176              | 0.23             | 1  |
| PCB-177              | 0.40             | 1  |
| PCB-178              | 0.37             | 1  |
| PCB-179              | 0.27             | 1  |
| PCB-180              | 0.33             | 1  |
| PCB-181              | 0.39             | 1  |
| PCB-182/187          | 0.54             | 1  |
| PCB-183              | 0.45             | 1  |
| PCB-184              | 0.24             | 1  |
| PCB-185              | 0.27             | 1  |
| PCB-186              | 0.27             | 1  |
| PCB-188              | 0.20             | 1  |
| PCB-189              | 0.20             | 1  |
| PCB-190              | 0.30             | 1  |
| PCB-190<br>PCB-191   | 0.37             | 1  |

| (in elution order, based on a 10-g sample) |                                                                                                                                                                                                                                                      |  |  |  |  |  |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| MDL <sup>1</sup>                           | ML                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 0.28                                       | 1                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 0.27                                       | 1                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 0.35                                       | 1                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 0.45                                       | 1                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 0.55                                       | 1                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 0.31                                       | 1                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 0.56                                       | 1                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 0.41                                       | 1                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 0.28                                       | 1                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 0.25                                       | 1                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 0.20                                       | 1                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 0.31                                       | 1                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 0.39                                       | 1                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 0.35                                       | 1                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 0.25                                       | 1                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 0.29                                       | 1                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 0.35                                       | 1                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                            | MDL1           0.28           0.27           0.35           0.45           0.55           0.31           0.56           0.41           0.28           0.25           0.20           0.31           0.39           0.35           0.25           0.20 |  |  |  |  |  |

# Appendix C

# 2022 NLA Quality Control (QC) Acceptance Criteria for PFAS and PCB Analyses of Great Lakes Fish Fillet Tissue Samples and QC Rinsate Samples

The QC acceptance criteria for the calibration verification (CV), ongoing precision and recovery (OPR) samples, and labeled compound recoveries for the PFAS analyses are presented below and, where available, are taken from the 3<sup>rd</sup> Draft Method 1633, which is still ongoing multi-laboratory validation study.

|                                     | 1        |                   | cceptance Cri |            |                        |
|-------------------------------------|----------|-------------------|---------------|------------|------------------------|
|                                     |          |                   | covery (%)    |            | ecovery in Samples (%) |
| Analyte                             | CV (%)   | Tissues           | Rinsates      | Tissues*** | Rinsates               |
| PFBA                                |          | 90 - 110 58 - 148 |               |            |                        |
| PFPeA                               |          | 96 - 114          | 54 - 152      | -          |                        |
| PFHxA                               |          | 90 - 111          | 55 - 152      | -          |                        |
| PFHpA                               |          | 87 - 118          | 54 - 154      |            |                        |
| PFOA                                |          | 82 - 114          | 52 - 161      | -          |                        |
| PFNA                                |          | 87 - 119          | 59 - 149      | -          |                        |
| PFDA                                | _        | 84 - 112          | 52 - 147      | -          |                        |
| PFUnA                               | _        | 91 - 117          | 48 - 159      | -          |                        |
| PFDoA                               | _        | 77 – 141          | 64 - 142      | -          |                        |
| PFTrDA                              |          | 106 - 133         | 49 - 148      | -          |                        |
| PFTeDA                              |          | 91 - 111          | 47 - 161      | -          |                        |
| PFBS                                |          | 89 - 117          | 62 - 144      | -          |                        |
| PFPeS                               |          | 89 - 112          | 59 - 151      | -          |                        |
| PFHxS                               |          | 91 - 123          | 57 - 146      | -          |                        |
| PFHpS                               |          | 86 - 108          | 55 - 152      | -          |                        |
| PFOS                                |          | 97 - 124          | 58 - 149      | _          |                        |
| PFNS                                |          | 85 - 114          | 52 - 148      | _          |                        |
| PFDS                                |          | 78 - 110          | 51 - 147      |            |                        |
| PFDoS                               |          | 29 - 108          | 36 - 145      |            | NA                     |
| 4:2FTS                              | 70 - 130 | 90 - 103          | 67 – 146      | NA         |                        |
| 6:2FTS                              | 70 - 150 | 92 - 119          | 61 - 151      |            |                        |
| 8:2FTS                              |          | 102 - 136         | 63 - 152      |            |                        |
| PFOSA                               |          | 96 - 121          | 61 - 148      |            |                        |
| NMeFOSA                             |          | 86 - 117          | 63 – 145      |            |                        |
| NEtFOSA                             |          | 90 - 127          | 65 - 139      |            |                        |
| NMeFOSAA                            |          | 93 - 117          | 58 - 144      |            |                        |
| NEtFOSAA                            |          | 90 - 117          | 59 - 146      |            |                        |
| NMeFOSE                             |          | 118 - 344         | 71 - 136      |            |                        |
| NEtFOSE                             |          | 61 - 159          | 69 - 137      |            |                        |
| HFPO-DA                             |          | 86 - 114          | 63 - 144      |            |                        |
| ADONA                               |          | 86 - 132          | 68 - 146      |            |                        |
| PFMPA                               |          | 86 - 109          | 51 - 145      |            |                        |
| PFMBA                               |          | 84 - 117          | 55 - 148      | ]          |                        |
| NFDHA                               |          | 56 - 115          | 48 - 161      |            |                        |
| 9C1-PF3ONS                          |          | 95 - 126          | 56 - 156      | 1          |                        |
| 11Cl-PF3OUdS                        |          | 94 - 138          | 46 - 156      |            |                        |
| PFEESA                              |          | 88-107            | 56 - 151      |            |                        |
| 3:3FTCA                             |          | 41 - 126          | 62 - 129      |            |                        |
| 5:3FTCA                             |          | 78 – 199          | 63 - 134      |            |                        |
| 7:3FTCA                             |          | 99 - 139          | 50 - 138      | 1          |                        |
| Labeled Compounds                   | •        |                   |               | 1          |                        |
| <sup>13</sup> C <sub>4</sub> -PFBA  |          | 95 - 105          | 10 - 130      | 10 - 150   | 10-130*                |
| <sup>13</sup> C <sub>5</sub> -PFPeA |          | 89 - 103          | 40 - 150      | 10 - 150   | 35 - 150               |
| <sup>13</sup> C <sub>5</sub> -PFHxA |          | 88 - 98           | 40 - 150      | 10 - 150   | 55 - 150               |
| <sup>13</sup> C <sub>4</sub> -PFHpA |          | 80 - 102          | 40 - 150      | 10 - 150   | 55 - 150               |
| <sup>13</sup> C <sub>6</sub> -PFOA  |          | 86-102            | 30 - 140      | 10 - 150   | 60 - 140               |
| <sup>13</sup> C <sub>9</sub> -PFNA  | 50 - 150 | 89 - 101          | 30 - 140      | 10 - 150   | 55 - 140               |
| <sup>13</sup> C <sub>6</sub> -PFDA  |          | 90 - 104          | 20 - 140      | 10 - 150   | 50 - 140               |
| <sup>13</sup> C <sub>7</sub> -PFUnA | -        | 88 - 109          | 20 - 140      | 10 - 150   | 30 - 140               |
| <sup>13</sup> C <sub>2</sub> -PFDoA | -        | 70 - 108          | 10 - 150      | 10 - 150   | 10 - 150               |
| <sup>13</sup> C <sub>2</sub> -PFTeA | $\neg$   | 10-110            | 10 - 130      | 10 - 150   | 10-130*                |
| <sup>13</sup> C <sub>3</sub> -PFBS  | -        | 95 - 106          | 25 - 150      | 10 - 150   | 55 - 150               |

| PFAS QC Acceptance Criteria           |          |                  |          |                                        |           |  |
|---------------------------------------|----------|------------------|----------|----------------------------------------|-----------|--|
|                                       |          | OPR Recovery (%) |          | Labeled Compound Recovery in Samples ( |           |  |
| Analyte                               | CV (%)   | Tissues          | Rinsates | Tissues***                             | Rinsates  |  |
| <sup>13</sup> C <sub>3</sub> -PFHxS   |          | 91 - 103         | 25 - 150 | 10 - 150                               | 55 - 150  |  |
| <sup>13</sup> C <sub>8</sub> -PFOS    |          | 95 - 103         | 20 - 140 | 10 - 150                               | 45 - 140  |  |
| <sup>13</sup> C <sub>2</sub> -4:2 FTS |          | 155 - 291        | 25 - 200 | 10 - 150                               | 60 - 200* |  |
| <sup>13</sup> C <sub>2</sub> -6:2 FTS |          | 117 - 149        | 25 - 200 | 10 - 150                               | 60 - 200* |  |
| <sup>13</sup> C <sub>2</sub> -8:2 FTS |          | 79 - 304         | 25 - 200 | 10 - 150                               | 50-200*   |  |
| <sup>13</sup> C <sub>8</sub> -PFOSA   |          | 88 - 120         | 10 - 130 | 10 - 150                               | 30 - 130  |  |
| D <sub>3</sub> -N-MeFOSA              | 50 - 150 | 3 - 34           | 10 - 130 | 10 - 150                               | 15 - 130  |  |
| D5-N-EtFOSA                           | 30-130   | 0-56**           | 10 - 130 | 10 - 150                               | 10-130    |  |
| D <sub>3</sub> -N-MeFOSAA             |          | 144 - 196        | 10 - 200 | 10 - 150                               | 45 - 200* |  |
| D5-N-EtFOSAA                          |          | 175 - 223        | 10 - 200 | 10 - 150                               | 10 - 200  |  |
| D7-N-MeFOSE                           |          | 0-8**            | 10 - 150 | 10 - 150                               | 10-150*   |  |
| D <sub>9</sub> -N-EtFOSE              |          | 0-33**           | 10 - 150 | 10 - 150                               | 10-150*   |  |
| <sup>13</sup> C <sub>3</sub> -HFPO-DA |          | 81 - 106         | 25 - 160 | 10 - 150                               | 25 - 160  |  |

\* In the multi-laboratory validation study for wastewater matrices, some laboratories had difficulties achieving EIS recoveries in this range.

\*\* Statistically derived lower acceptance limits below 0% were set to 0% for the purposes of the method.

\*\*\* Tissue limits are still being developed from the multi-laboratory validation study data. The limits here are for the purposes of this study.

The QC acceptance criteria for the calibration verification (CV), ongoing precision and recovery (OPR) samples, and labeled compound recoveries for the PCB analyses are presented below and are taken from EPA Method 1668C.

|                                                               | Congener    |         | OPR              | Labeled Compound<br>Recovery in Samples |
|---------------------------------------------------------------|-------------|---------|------------------|-----------------------------------------|
| Congener Name                                                 | Number      | VER (%) | Recovery (%)     | (%)                                     |
| 2-MonoCB                                                      | 1           | 75-125  | 60-135           |                                         |
| 3-MonoCB                                                      | 2           | 75-125  | 60-135           |                                         |
| 4-MonoCB                                                      | 3           | 75-125  | 60-135           | ]                                       |
| 2,2'-DiCB/2,6-DiCB                                            | 4/10        | 75-125  | 60-135           |                                         |
| 2,3-DiCB/2,4'-DiCB                                            | 5/8         | 75-125  | 60-135           |                                         |
| 2,3'-DiCB                                                     | 6           | 75-125  | 60-135           |                                         |
| 2,4-DiCB/2,5-DiCB                                             | 7/9         | 75-125  | 60-135           |                                         |
| 3,3'-DiCB                                                     | 11          | 75-125  | 60-135           |                                         |
| 3,4-DiCB/3,4'-DiCB                                            | 12/13       | 75-125  | 60-135           |                                         |
| 3,5-DiCB                                                      | 14          | 75-125  | 60-135           |                                         |
| 4,4'-DiCB                                                     | 15          | 75-125  | 60-135           | -                                       |
| 2,2',3-TrCB/2,4',6-TrCB                                       | 16/32       | 75-125  | 60-135           | -                                       |
| 2,2',4-TrCB                                                   | 17          | 75-125  | 60-135           | 1                                       |
| 2,2',5-TrCB                                                   | 18          | 75-125  | 60-135           | 1                                       |
| 2,2',6-TrCB                                                   | 19          | 75-125  | 60-135           | 1                                       |
| 2,3,3'-TrCB/2,3,4-TrCB/2',3,4-TrCB                            | 20/21/33    | 75-125  | 60-135           | 1                                       |
| 2,3,4'-TrCB                                                   | 20/21/33    | 75-125  | 60-135           | -                                       |
| 2,3,5-TrCB                                                    | 22          | 75-125  | 60-135           | -                                       |
| 2,3,6-TrCB/2,3',6-TrCB                                        | 23          | 75-125  | 60-135           | {                                       |
|                                                               | 24/27       | 75-125  |                  | -                                       |
| 2,3',4-TrCB                                                   | 25          | 75-125  | 60-135<br>60-135 | -                                       |
| 2,3',5-TrCB                                                   | 28          | 75-125  |                  | -                                       |
| 2,4,4'-TrCB                                                   |             |         | 60-135           | -                                       |
| 2,4,5-TrCB                                                    | 29          | 75-125  | 60-135           | -                                       |
| 2,4,6-TrCB                                                    | 30          | 75-125  | 60-135           | -                                       |
| 2,4',5-TrCB                                                   | 31          | 75-125  | 60-135           | -                                       |
| 2,3',5'-TrCB                                                  | 34          | 75-125  | 60-135           |                                         |
| 3,3',4-TrCB                                                   | 35          | 75-125  | 60-135           | NA                                      |
| 3,3',5-TrCB                                                   | 36          | 75-125  | 60-135           |                                         |
| 3,4,4'-TrCB                                                   | 37          | 75-125  | 60-135           | -                                       |
| 3,4,5-TrCB                                                    | 38          | 75-125  | 60-135           | -                                       |
| 3,4',5-TrCB                                                   | 39          | 75-125  | 60-135           | -                                       |
| 2,2',3,3'-TeCB                                                | 40          | 75-125  | 60-135           | -                                       |
| 2,2',3,4-TeCB/2,3,4',6-TeCB/2,3',4',6-TeCB/<br>2,3',5,5'-TeCB | 41/64/71/72 | 75-125  | 60-135           |                                         |
| 2,2',3,4'-TeCB/2,3,3',6-TeCB                                  | 42/59       | 75-125  | 60-135           |                                         |
| 2,2',3,5-TeCB/2,2',4,5'-TeCB                                  | 43/49       | 75-125  | 60-135           |                                         |
| 2,2',3,5'-TeCB                                                | 44          | 75-125  | 60-135           |                                         |
| 2,2',3,6-TeCB                                                 | 45          | 75-125  | 60-135           |                                         |
| 2,2',3,6'-TeCB                                                | 46          | 75-125  | 60-135           | ]                                       |
| 2,2',4,4'-TeCB                                                | 47          | 75-125  | 60-135           |                                         |
| 2,2',4,5-TeCB/2,4,4',6-TeCB                                   | 48/75       | 75-125  | 60-135           |                                         |
| 2,2',4,6-TeCB                                                 | 50          | 75-125  | 60-135           | 1                                       |
| 2,2',4,6'-TeCB                                                | 51          | 75-125  | 60-135           | 1                                       |
| 2,2',5,5'-TeCB/2,3',4,6-TeCB                                  | 52/69       | 75-125  | 60-135           | 1                                       |
| 2,2',5,6'-TeCB                                                | 53          | 75-125  | 60-135           | 1                                       |
| 2,2',6,6'-TeCB                                                | 54          | 75-125  | 60-135           | 1                                       |
| 2,3,3',4-TeCB                                                 | 55          | 75-125  | 60-135           | 1                                       |
| 2,3,3',4'-TeCB/2,3,4,4'-TeCB                                  | 56/60       | 75-125  | 60-135           | 1                                       |
| 2,3,3',5-TeCB                                                 | 57          | 75-125  | 60-135           | 1                                       |
| 2,3,3',5'-TeCB                                                | 58          | 75-125  | 60-135           | 1                                       |
| 2,3,4,5-TeCB/2,3',4',5-TeCB                                   | 61/70       | 75-125  | 60-135           | 1                                       |
| 2,3,4,6-TeCB                                                  | 62          | 75-125  | 60-135           | 1                                       |
| 2,3,4',5-TeCB                                                 | 63          | 75-125  | 60-135           | 1                                       |

#### QC Acceptance Criteria for VER<sup>1</sup>, OPR<sup>2</sup>, and Labeled Compounds<sup>3</sup> in Samples

| QC Acceptance Criteria for VEK, OFK,    |            |         |              | Labeled Compound    |
|-----------------------------------------|------------|---------|--------------|---------------------|
|                                         | Congener   |         | OPR          | Recovery in Samples |
| Congener Name                           | Number     | VER (%) | Recovery (%) | (%)                 |
| 2,3,5,6-TeCB                            | 65         | 75-125  | 60-135       |                     |
| 2,3',4,5-TeCB                           | 67         | 75-125  | 60-135       | -                   |
| 2,3',4,5'-TeCB                          | 68         | 75-125  | 60-135       | -                   |
| 2,3',4',5-TeCB                          | 70         | 75-125  | 60-135       | -                   |
| 2,3',5',6-TeCB                          | 73         | 75-125  | 60-135       | -                   |
|                                         | 73         |         |              | -                   |
| 2,4,4',5-TeCB                           |            | 75-125  | 60-135       | -                   |
| 2',3,4,5-TeCB/2,3',4,4'-TeCB            | 76/66      | 75-125  | 60-135       | -                   |
| 3,3',4,5-TeCB                           | 77         | 75-125  | 60-135       | -                   |
| 3,3',4,5'-TeCB                          | 78         | 75-125  | 60-135       | -                   |
| 3,3',5,5'-TeCB                          | 79         | 75-125  | 60-135       | -                   |
| 3,4,4',5-TeCB                           | 80         | 75-125  | 60-135       | -                   |
| 2,2',3,3',4-PeCB                        | 81         | 75-125  | 60-135       |                     |
| 2,2',3,3',5-PeCB                        | 82         | 75-125  | 60-135       |                     |
| 2,2',3,3',5-PeCB                        | 83         | 75-125  | 60-135       |                     |
| 2,2',3,3',6-PeCB/2,2',3,5,5'-PeCB       | 84/92      | 75-125  | 60-135       |                     |
| 2,2',3,4,4'-PeCB/2,3,4,5,6-PeCB         | 85/116     | 75-125  | 60-135       |                     |
| 2,2',3,4,5-PeCB                         | 86         | 75-125  | 60-135       |                     |
| 2,2',3,4,5'-PeCB/2,3,4',5,6-PeCB/       | 87/117/125 | 75-125  | 60-135       |                     |
| 2',3,4,5,6'-PeCB                        | 8//11//123 | /3-123  | 00-133       |                     |
| 2,2',3,4,6-PeCB/2,2',3,4',6-PeCB        | 88/91      | 75-125  | 60-135       |                     |
| 2,2',3,4,6'-PeCB                        | 89         | 75-125  | 60-135       |                     |
| 2,2',3,4',5-PeCB/2,2',4,5,5'-PeCB       | 90/101     | 75-125  | 60-135       |                     |
| 2,2',3,5,6-PeCB                         | 93         | 75-125  | 60-135       |                     |
| 2,2',3,5,6'-PeCB                        | 94         | 75-125  | 60-135       |                     |
| 2,2',3,5',6-PeCB/2,2',3',4,6-PeCB/      |            |         |              | -                   |
| 2,2',4,5,6'-PeCB                        | 95/98/102  | 75-125  | 60-135       |                     |
| 2,2',3,6,6'-PeCB                        | 96         | 75-125  | 60-135       | -                   |
| 2,2',3,4',5-PeCB                        | 97         | 75-125  | 60-135       |                     |
| 2,2',4,4',5-PeCB                        | 99         | 75-125  | 60-135       | NA                  |
| 2,2',4,4',6-PeCB                        | 100        | 75-125  | 60-135       |                     |
| 2,2',4,5',6-PeCB                        | 100        | 75-125  | 60-135       | -                   |
| 2,2',4,4,6'-PeCB                        | 103        | 75-125  | 60-135       | -                   |
|                                         | 104        | 75-125  | 60-135       | •                   |
| 2,3,3',4,4'-PeCB                        | 118/106    | 75-125  |              | -                   |
| 2,3',4,4',5-PeCB/2,3,3',4,5-PeCB        |            |         | 60-135       | -                   |
| 2,3,3',4',5-PeCB/2,3,3',4,6-PeCB        | 107/109    | 75-125  | 60-135       | -                   |
| 2,3,3',4,5'-PeCB/2,3,3',5,6-PeCB        | 108/112    | 75-125  | 60-135       | -                   |
| 2,3,3',4',6-PeCB                        | 110        | 75-125  | 60-135       |                     |
| 2,3,3',5,5'-PeCB/2,3,4,4',6-PeCB        | 111/115    | 75-125  | 60-135       |                     |
| 2,3,3',5',6-PeCB                        | 113        | 75-125  | 60-135       |                     |
| 2,3,4,4',5-PeCB                         | 114        | 75-125  | 60-135       |                     |
| 2,3',4,4',6-PeCB                        | 119        | 75-125  | 60-135       |                     |
| 2,3',4,5,5'-PeCB                        | 120        | 75-125  | 60-135       | 1                   |
| 2,3',4,5',6-PeCB                        | 121        | 75-125  | 60-135       |                     |
| 2,3,3',4',5'-PeCB                       | 122        | 75-125  | 60-135       |                     |
| 2,3',4,4',5'-PeCB                       | 123        | 75-125  | 60-135       |                     |
| 2,3',4',5,5'-PeCB                       | 124        | 75-125  | 60-135       |                     |
| 3,3'4,4',5-PeCB                         | 126        | 75-125  | 60-135       |                     |
| 3,3',4,5,5'-PeCB                        | 127        | 75-125  | 60-135       | 1                   |
| 2,2',3,3',4,4'-HxCB/2,3,3',4',5,5'-HxCB | 128/162    | 75-125  | 60-135       | 1                   |
| 2,2',3,3',4,5-HxCB                      | 129        | 75-125  | 60-135       | 1                   |
| 2,2',3,3',4,5'-HxCB                     | 130        | 75-125  | 60-135       | 1                   |
| 2,2',3,3',4,6-HxCB                      | 130        | 75-125  | 60-135       | 1                   |
| 2,2',3,3',4,6'-HxCB/2,3,3',4,5',6-HxCB  | 132/161    | 75-125  | 60-135       | 1                   |
| 2,2',3,3',5,5'-HxCB/2,2',3,4,5,6-HxCB   | 133/142    | 75-125  | 60-135       | 1                   |
| 2,2',3,3',5,6-HxCB/2,2',3,4,5,6'-HxCB   | 133/142    | 75-125  | 60-135       | 1                   |
|                                         |            |         |              | 4                   |
| 2,2',3,3',5,6'-HxCB                     | 135        | 75-125  | 60-135       | 1                   |
| 2,2',3,3',6,6'-HxCB                     | 136        | 75-125  | 60-135       |                     |

#### **\_\_\_\_\_QC** Acceptance Criteria for VER<sup>1</sup>, OPR<sup>2</sup>, and Labeled Compounds<sup>3</sup> in Samples

|                                                  |                    |         |                     | Labeled Compound    |
|--------------------------------------------------|--------------------|---------|---------------------|---------------------|
| Congener Name                                    | Congener<br>Number | VER (%) | OPR<br>Recovery (%) | Recovery in Samples |
| 2,2',3,4,4',5-HxCB                               | 137                | 75-125  | 60-135              |                     |
| 2,2',3,4,4',5'-HxCB/2,3,3',4',5,6-HxCB/          |                    |         |                     | 1                   |
| 2,3,3',4',5',6-HxCB                              | 138/163/164        | 75-125  | 60-135              |                     |
| 2,2',3,4,4',6-HxCB/2,2',3,4',5',6-HxCB           | 139/149            | 75-125  | 60-135              | 1                   |
| 2,2',3,4,4',6'-HxCB                              | 140                | 75-125  | 60-135              | 1                   |
| 2,2',3,4,5,5'-HxCB                               | 141                | 75-125  | 60-135              | 1                   |
| 2,2',3,4,5',6-HxCB                               | 144                | 75-125  | 60-135              | 1                   |
| 2,2',3,4,6,6'-HxCB                               | 145                | 75-125  | 60-135              | 1                   |
| 2,2',3,4',5,5'-HxCB/2,3,3',5,5',6-HxCB           | 146/165            | 75-125  | 60-135              | 1                   |
| 2,2',3,4',5,6-HxCB                               | 147                | 75-125  | 60-135              | 1                   |
| 2,2',3,4',5,6'-HxCB                              | 148                | 75-125  | 60-135              | 1                   |
| 2,2',3,4',6,6'-HxCB                              | 150                | 75-125  | 60-135              | 1                   |
| 2,2',3,5,5',6-HxCB                               | 150                | 75-125  | 60-135              | 4                   |
| 2,2',3,5,6,6'-HxCB                               | 151                | 75-125  | 60-135              | 4                   |
| 2,2',4,4',5,5'-HxCB                              | 152                | 75-125  | 60-135              | 4                   |
| 2,2',4,4',5,6'-HXCB                              | 155                | 75-125  | 60-135              | 1                   |
| 2,2',4,4',5,0'-HXCB                              | 155                | 75-125  | 60-135              | 1                   |
| 2,2,4,4,0,0 - HXCB<br>2,3,3',4,4',5-HxCB         | 155                | 75-125  | 60-135              | 1                   |
| 2,3,3',4,4',5'-HxCB                              | 150                | 75-125  | 60-135              | 1                   |
| 2,3,3',4,4',6-HxCB/2,3,3',4,5,6-HxCB             | 158/160            | 75-125  | 60-135              | -                   |
|                                                  | 158/100            | 75-125  | 60-135              | -                   |
| 2,3,3',4,5,5'-HxCB<br>2,3,4,4',5,6-HxCB          | 166                | 75-125  | 60-135              | -                   |
|                                                  | 167                | 75-125  | 60-135              | 4                   |
| 2,3',4,4',5,5'-HxCB<br>2,3',4,4',5',6-HxCB       | 167                | 75-125  | 60-135              | 4                   |
|                                                  | 168                |         | 60-135              | 4                   |
| 3,3',4,4',5,5'-HxCB                              | 170                | 75-125  |                     | 4                   |
| 2,2',3,3',4,4',5-HpCB                            | 170                | 75-125  | 60-135<br>60-135    | -                   |
| 2,2',3,3',4,4',6-HpCB                            | 171                | 75-125  |                     | -                   |
| 2,2',3,3',4,5,5'-HpCB                            |                    | 75-125  | 60-135              |                     |
| 2,2',3,3',4,5,6-HpCB                             | 173                | 75-125  | 60-135              | NA                  |
| 2,2',3,3',4,5,6'-HpCB                            | 174                | 75-125  | 60-135              | -                   |
| 2,2',3,3',4,5',6-HpCB                            | 175                | 75-125  | 60-135              | 4                   |
| 2,2',3,3'4,6,6'-HpCB                             | 176                | 75-125  | 60-135              | 4                   |
| 2,2',3,3',4',5,6-HpCB                            | 177<br>178         | 75-125  | 60-135<br>60-135    | -                   |
| 2,2',3,3',5,5',6-HpCB                            |                    |         |                     | 4                   |
| 2,2',3,3',5,6,6'-HpCB                            | 179                | 75-125  | 60-135              | -                   |
| 2,2',3,4,4',5,5'-HpCB                            | 180                | 75-125  | 60-135              | 4                   |
| 2,2',3,4,4',5,6-HpCB                             | 181                | 75-125  | 60-135              | -                   |
| 2,2',3,4,4',5,6'-HpCB/2,2',3,4',5,5',6-HpCB      | 182/187            | 75-125  | 60-135              | 4                   |
| 2,2',3,4,4',5',6-HpCB                            | 183                | 75-125  | 60-135              | 4                   |
| 2,2',3,4,4',6,6'-HpCB                            | 184                | 75-125  | 60-135              | 4                   |
| 2,2',3,4,5,5',6-HpCB                             | 185                | 75-125  | 60-135              | 4                   |
| 2,2',3,4,5,6,6'-HpCB                             | 186                | 75-125  | 60-135              | 4                   |
| 2,2',3,4',5,6,6'-HpCB                            | 188                | 75-125  | 60-135              | 4                   |
| 2,3,3',4,4',5,5'-HpCB                            | 189                | 75-125  | 60-135              | 4                   |
| 2,3,3',4,4',5,6-HpCB                             | 190                | 75-125  | 60-135              | 4                   |
| 2,3,3',4,4',5',6-HpCB                            | 191                | 75-125  | 60-135              | 4                   |
| 2,3,3',4,5,5',6-HpCB                             | 192                | 75-125  | 60-135              | 4                   |
| 2,3,3',4',5,5',6-HpCB                            | 193                | 75-125  | 60-135              | 4                   |
| 2,2',3,3',4,4',5,5'-OcCB                         | 194                | 75-125  | 60-135              | 4                   |
| 2,2',3,3',4,4',5,6-OcCB                          | 195                | 75-125  | 60-135              | 4                   |
| 2,2',3,3',4,4',5,6'-OcCB/2,2',3,4,4',5,5',6-OcCB | 196/203            | 75-125  | 60-135              | 4                   |
| 2,2',3,3',4,4',6,6'-OcCB                         | 197                | 75-125  | 60-135              | 4                   |
| 2,2',3,3',4,5,5',6-OcCB                          | 198                | 75-125  | 60-135              | 4                   |
| 2,2',3,3',4,5,5',6'-OcCB                         | 199                | 75-125  | 60-135              | 4                   |
| 2,2',3,3',4,5,6,6'-OcCB                          | 200                | 75-125  | 60-135              | 4                   |
| 2,2',3,3',4,5',6,6'-OcCB                         | 201                | 75-125  | 60-135              | 4                   |
| 2,2',3,3',5,5',6,6'-OcCB                         | 202                | 75-125  | 60-135              | 1                   |

#### QC Acceptance Criteria for VER<sup>1</sup>, OPR<sup>2</sup>, and Labeled Compounds<sup>3</sup> in Samples

|                                            |                    |                                         |                     | Labeled Compound           |
|--------------------------------------------|--------------------|-----------------------------------------|---------------------|----------------------------|
| Congener Name                              | Congener<br>Number | VER (%)                                 | OPR<br>Recovery (%) | Recovery in Samples<br>(%) |
| 2,2',3,4,4',5,6,6'-OcCB                    | 204                | 75-125                                  | 60-135              |                            |
| 2,3,3',4,4',5,5',6-OcCB                    | 205                | 75-125                                  | 60-135              |                            |
| 2,2',3,3',4,4',5,5',6-NoCB                 | 206                | 75-125                                  | 60-135              | NA                         |
| 2,2',3,3',4,4',5,6,6'-NoCB                 | 207                | 75-125                                  | 60-135              |                            |
| 2,2',3,3',4,5,5',6,6'-NoCB                 | 208                | 75-125                                  | 60-135              |                            |
| DeCB                                       | 209                | 75-125                                  | 60-135              |                            |
| Labeled Compounds                          |                    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                     |                            |
| <sup>13</sup> C-2-MonoCB                   | 1L                 | 50-145                                  | 15-145              | 5-145                      |
| <sup>13</sup> C-4-MonoCB                   | 3L                 | 50-145                                  | 15-145              | 5-145                      |
| <sup>13</sup> C-2,2'-DiCB                  | 4L                 | 50-145                                  | 15-145              | 5-145                      |
| <sup>13</sup> C-2,5-DiCB                   | 9L                 | 50-145                                  | 15-145              | 5-145                      |
| <sup>13</sup> C-3,3'-DiCB                  | 11L                | 50-145                                  | 15-145              | 5-145                      |
| <sup>13</sup> C- 2,2',6-TrCB               | 19L                | 50-145                                  | 15-145              | 5-145                      |
| <sup>13</sup> C-2,4,4'-TrCB                | 28L                | 50-145                                  | 15-145              | 5-145                      |
| <sup>13</sup> C-2,4',6-TrCB                | 32L                | 50-145                                  | 15-145              | 5-145                      |
| <sup>13</sup> C-3,4,4'-TrCB                | 37L                | 50-145                                  | 15-145              | 5-145                      |
| <sup>13</sup> C-2,2',4,4'-TeCB             | 47L                | 50-145                                  | 15-145              | 5-145                      |
| <sup>13</sup> C-2,2',5,5'-TeCB             | 52L                | 50-145                                  | 15-145              | 5-145                      |
| <sup>13</sup> C-2,2',6,6'-TeCB             | 54L                | 50-145                                  | 15-145              | 5-145                      |
| <sup>13</sup> C-2,3',4',5-TeCB             | 70L                | 30-135                                  | 15-145              | 10-145                     |
| <sup>13</sup> C-3,3',4,4'-TeCB             | 70L                | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-3,4,4',5-TeCB              | 80L                | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-3,3',4,4'-TeCB             | 81L                | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,2',3,5',6-PeCB           | 95L                | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,2',3,4',5-PeCB           | 97L                | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,2',4,5,5'-PeCB           | 101L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,2',4,6,6'-PeCB           | 101L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,3,3',4,4'-PeCB           | 101E               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,3,4,4',5-PeCB            | 114L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,3',4,4',5-PeCB           | 118L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2',3,4,4',5-PeCB           | 123L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-3,3',4,4',5-PeCB           | 125E               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-3,3',4,5,5'-PeCB           | 120L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,2',3,4,4',5'-HxCB        | 138L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,2',3,4,5,5'-HxCB         | 141L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,2',4,4',5,5'-HxCB        | 153L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C- 2,2',4,4',6,6'-HxCB       | 155L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,3,3',4,4',5-HxCB         | 156L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,3,3',4,4',5'-HxCB        | 150L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,3,3',4,5,5'-HxCB         | 159L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,3',4,4',5,5'-HxCB        | 167L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-3,3',4,4',5,5'-HxCB        | 169L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,2',3,3',4,4',5-HpCB      | 170L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,2',3,4,4',5,5'-HpCB      | 180L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C- 2,2',3,4',5,6,6'-HpCB     | 188L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C- 2,3,3',4,4',5,5'-HpCB     | 189L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,2',3,3',4,4',5,5'-OcCB   | 194L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,2',3,3',5,5',6,6'-OcCB   | 202L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,2',3,3',4,4',5,5',6-NoCB | 202L<br>206L       | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-2,2',3,3',4,5,5',6,6'-NoCB | 208L               | 50-145                                  | 40-145              | 10-145                     |
| <sup>13</sup> C-DeCB                       | 208L<br>209L       | 50-145                                  | 40-145              | 10-145                     |
| Cleanup Standards                          | 209L               | 30-143                                  | +0-143              | 10-143                     |
| <sup>13</sup> C-3,3',4,5'-TeCB             | 79L                | 50-145                                  | 40-145              | 10-145                     |
|                                            |                    |                                         |                     |                            |
| <sup>13</sup> C-2,2'3,3'5,5'6-HpCB         | 178L               | 50-145                                  | 40-145              | 10-145                     |

CAL VER = Calibration verification

OPR = Ongoing precision and recovery