For assistance in accessing this document, please contact ghgreporting@epa.gov.

OFFICE OF AIR AND RADIATION

WASHINGTON, D.C. 20460

August 30, 2024

Mr. Jimmy Oxford Area Manager Targa Resources Corporation 1934 W NM Highway 128 Jal, New Mexico 88252

Re: Monitoring, Reporting and Verification (MRV) Plan for Red Hills Gas Processing Plant

Dear Mr. Oxford:

The United States Environmental Protection Agency (EPA) has reviewed the Monitoring, Reporting and Verification (MRV) Plan submitted for Red Hills Gas Processing Plant, as required by 40 CFR Part 98, Subpart RR of the Greenhouse Gas Reporting Program. The EPA is approving the MRV Plan submitted by Red Hills Gas Processing Plant on July 23, 2024, as the final MRV plan. The MRV Plan Approval Number is 1011064-2. This decision is effective September 4, 2024 and is appealable to the EPA's Environmental Appeals Board under 40 CFR Part 78. Furthermore, this decision is applicable only to the MRV plan and does not constitute an EPA endorsement of the project, technologies, or parties involved.

If you have any questions regarding this determination, please contact me or Melinda Miller of the Greenhouse Gas Reporting Branch at <u>miller.melinda@epa.gov</u>.

Sincerely,

' Julius Banks, Supervisor, Greenhouse Gas Reporting Branch

Technical Review of Subpart RR MRV Plan for the Red Hills Gas Processing Plant

August 2024

Contents

1	Overview of Project	1
2	Evaluation of the Delineation of the Maximum Monitoring Area (MMA) and Active Monitoring Area (AMA)	2
3	Identification of Potential Surface Leakage Pathways	3
4	Strategy for Detection and Quantifying Surface Leakage of CO ₂ and for Establishing Expected Baselines for Monitoring	8
5	Considerations Used to Calculate Site-Specific Variables for the Mass Balance Equation1	4
6	Summary of Findings1	8

Appendices

Appendix A: Final MRV Plan Appendix B: Submissions and Responses to Requests for Additional Information This document summarizes the U.S. Environmental Protection Agency's (EPA's) technical evaluation of the Greenhouse Gas Reporting Program (GHGRP) Subpart RR Monitoring, Reporting, and Verification (MRV) plan submitted by Red Hills Gas Processing Plant (RHGPP) for its Acid Gas Injection (AGI) project located in Lea County, New Mexico. Note that this evaluation pertains only to the Subpart RR MRV plan for the RHGPP, and does not in any way replace, remove, or affect Underground Injection Control (UIC) permitting obligations. Furthermore, this decision is applicable only to the MRV plan and does not constitute an EPA endorsement of the project, technologies, or parties involved.

1 Overview of Project

The MRV plan states that Targa Northern Delaware, LLC (TND) is currently authorized to inject treated acid gas (TAG) into the Red Hills Acid Gas Injection well (RH AGI #1) (American Petroleum Institute (API) # 30-025-40448) and RH AGI #3 well (API # 30-025-51970) under the New Mexico Oil Conservation Commission (NMOCC) Orders R-13507 – 13507F and Order R-20916H, respectively, at the RHGPP located approximately 20 miles NNW of Jal in Lea County, New Mexico. Both the RH AGI #1 and the RH AGI #3 wells are approved to inject 13 million standard cubic feet per day (MMSCFD) of TAG. However, the MRV plan states that the RH AGI #1 is physically only capable of taking approximately 5 MMSCFD of TAG due to formation and surface pressure limitations.

The MRV plan states that the RH AGI #1 was previously operated by Lucid Energy Delaware, LLC (Lucid). TND acquired Lucid assets in 2022. Lucid received authorization to construct a redundant well, RH AGI #2 (API # 30-025-49474) under NMOCC Order R-20916-H, which is offset 200 feet (ft) to the north of RH AGI #1 and is currently temporarily abandoned in the Bell Canyon Formation. RHGPP states that they recently received approval from NMOCC for its C-108 application to drill, complete and operate a third acid gas injection well (RH AGI #3) in which TND requested an injection volume of up to 13 MMSCFD. The MRV plan states that the RH AGI #3 well was spudded on 9/13/2023, completed on 9/27/2023, and injection commenced on 1/11/2024. The MRV plan states that since the RH AGI #1 does not have complete redundancy, having a greater permitted disposal volume will also increase operational reliability. At the time of its most recent MRV plan submittal, RHGPP is currently drilling the RH AGI #3. The depth of the proposed injection zone for the RH AGI #3 is approximately 5,700 to 7,600 ft in the Bell Canyon and Cherry Canyon Formations. The MRV plan states that analysis of the reservoir characteristics of these units confirms that they act as excellent closed-system reservoirs that will accommodate the future needs of the RHGPP for disposal of TAG. RHGPP states that they intend to inject carbon dioxide (CO₂) for another 30 years.

The MRV plan states that, based on geologic analysis of the subsurface at the RHGPP, the uppermost portion of the Cherry Canyon Formation was chosen for AGI and CO₂ sequestration for the RH AGI #1 and the uppermost Delaware Mountain Group (the Bell Canyon and Cherry Canyon Formations) for the RH AGI #3.

The MRV plan states that for the RH AGI #1, the injection interval includes five high porosity sandstone units and has excellent caps above, below, and between the individual sandstone units. The MRV plan

also states that there is no local production in the overlying Delaware Sands Pool of the Bell Canyon Formation. Additionally, the MRV plan states that there are no structural features or faults that would serve as potential vertical conduits. RHGPP believes that the high net porosity of the RH AGI #1 injection zone indicates that the injected hydrogen sulfide (H₂S) and CO₂ will be easily contained close to the injection well.

The MRV plan states that for the RH AGI #3, this interval has been expanded to include the five high porosity zones in the Cherry Canyon sandstone as well as the sandstone horizons in the overlying Bell Canyon Formation. RHGPP believes that there are several potential high porosity sandstones, that if present in the RH AGI #3, would be excellent injection zones. The thickest of these sands is commonly referred to as the Delaware Sand within the Delaware Basin. The MRV plan states that while the Delaware Sand is productive, it is not in the local area surrounding RHGPP. The MRV plan states that most of the sand bodies in the Bell Canyon and Cherry Canyon Formations are surrounded by shales or limestones, forming caps for the injection zones. There are no structural features or faults that would serve as potential vertical conduits, and the overlying Ochoan evaporites form an excellent seal.

The description of the project provides the necessary information for 40 CFR 98.448(a)(6).

2 Evaluation of the Delineation of the Maximum Monitoring Area (MMA) and Active Monitoring Area (AMA)

As part of the MRV plan, the reporter must identify and delineate both the maximum monitoring area (MMA) and active monitoring area (AMA), pursuant to 40 CFR 98.448(a)(1). Subpart RR defines the maximum monitoring area as "the area that must be monitored under this regulation and is defined as equal to or greater than the area expected to contain the free phase CO_2 plume until the CO_2 plume has stabilized plus an all-around buffer zone of at least one-half mile." Subpart RR defines the active monitoring area as "the area that will be monitored over a specific time interval from the first year of the period (n) to the last year in the period (t). The boundary of the active monitoring area is established by superimposing two areas: (1) the area projected to contain the free phase CO_2 plume at the end of year t, plus an all-around buffer zone of one-half mile or greater if known leakage pathways extend laterally more than one-half mile; (2) the area projected to contain the free phase CO_2 plume at the end of year t + 5." See 40 CFR 98.449.

The MRV plan states that Schlumberger's Petrel software was used to construct the geological models used for the MRV plan. RHGPP states that the modeling and simulation focused on the Bell Canyon and Cherry Canyon formations as the main injection target zone for acid gas storage. The MRV plan states that in determining the MMA and AMA, the extent of the TAG plume is equal to the superposition of plumes in any layer for any of the model scenarios described in Section 3.8 of the MRV plan.

The MMA and AMA are delineated in Figure 4.1-1. The MRV plan states that the MMA is equal to or greater than the area expected to contain the free phase CO_2 plume until the CO_2 plume has stabilized

plus an all-around buffer zone of at least one-half mile. The MRV plan states that the MMA is defined by the extent of the TAG plume at year 2059 plus a one-half mile buffer. The MRV plan states that RHGPP intends to define the AMA as the same area as the MMA.

The MRV plan states that the AMA is consistent with the requirements in 40 CFR 98.449 because it is the area projected:

- 1. To contain the free phase CO_2 plume for the duration of the project (year t, t = 2054), plus an allaround buffer zone of one-half mile
- 2. To contain the free phase CO_2 plume for at least 5 years after injection ceases (year t + 5, t + 5 = 2059).

The delineations of the MMA and AMA are acceptable per the requirements in 40 CFR 98.448(a)(1). The MMA and AMA described in the MRV plan are clearly delineated in the plan and are consistent with the definitions in 40 CFR 98.449.

3 Identification of Potential Surface Leakage Pathways

As part of the MRV plan, the reporter must identify potential surface leakage pathways for CO₂ in the MMA and the likelihood, magnitude, and timing of surface leakage of CO₂ through these pathways pursuant to 40 CFR 98.448(a)(2). In Section 5 of their MRV plan, RHGPP identified the following potential leakage pathways that required consideration:

- Surface Equipment
- Approved, Not Yet Drilled Wells
- Existing Wells
- Confining/Seal System
- Lateral Migration
- Fractures and Faults
- Natural/Induced Seismicity

3.1 Surface Equipment

The MRV plan states that due to the corrosive nature of CO₂ and H₂S, there is a potential for a leakage from surface equipment at sour gas facilities. RHGPP infers that there is a potential for CO₂ leakage via surface equipment. For timing, the MRV plan states that surface component leakage or venting is only a concern during the injection operation phase. Any leaks from surface equipment would result in immediate (timing) emissions of CO₂ to the atmosphere, the magnitude of which would depend on the duration of the leak, the operational conditions at the time of leakage, the location of the leak, and the component's failure mode. For example, the MRV plan states that a rapid break or rupture could release thousands of pounds of CO₂ into the atmosphere almost instantly, while a slowly deteriorating seal at a

flanged connection could release only a few pounds of CO_2 over several hours or days. Once the injection phase is complete, the surface components will no longer be able to store or transport CO_2 , eliminating any potential risk of leakage.

The MRV plan states that preventative risk mitigation for CO₂ leakage from surface equipment includes adherence to relevant regulatory requirements and industry standards governing the construction, operation, and maintenance of gas plants. Additional operational risk mitigation measures will include a schedule for regular inspection and maintenance of surface equipment.

Thus, the MRV plan provides an acceptable characterization of CO₂ leakage that could be expected through surface equipment at the RHGPP.

3.2 Approved, Not Yet Drilled Wells

The MRV plan states that the RH AGI #3 well very recently began injecting in January 2024. The only wells within the MMA that are approved but not yet drilled are horizontal wells. The MRV plan states that there are no vertical wells within the MMA with a well status of "permitted."

Horizontal Wells

Figure 4.1-1 of the MRV plan shows a number of horizontal wells in the area, many of which have approved permits to drill but which are not yet drilled. The MRV plan states if any of these wells are drilled through the Bell Canyon and Cherry Canyon injection zones for RH AGI #3 and the Cherry Canyon injection zone for RH AGI #1, they will be required to take special precautions to prevent leakage of TAG minimizing the likelihood of CO₂ leakage to the surface. This precaution will be made by the New Mexico Oil Conservation Division (NMOCD) in regulating applications for permit to drill (APD) and in ensuring that the operator and driller are aware that they are drilling through an H₂S injection zone in order to access their target production formation. Additionally, the MRV plan states that NMAC 19.15.11 for Hydrogen Sulfide Gas includes standards for personnel and equipment safety and H₂S detection and monitoring during well drilling, completion, well workovers, and well servicing operations all of which apply for wells drilled through the RHGPP TAG plume. The MRV plan states that the likelihood of CO₂ emissions to the surface via these horizontal wells to be highly unlikely.

Thus, the MRV plan provides an acceptable characterization of CO_2 leakage that could be expected through approved, not yet drilled wells.

3.3 Existing Wells

The MRV plan states that RHGPP considered all wells completed and approved within the MMA in the National Risk Assessment Partnership (NRAP) risk assessment. Some of these wells penetrate the injection and/or confining zones while others do not. Even though the risk of CO₂ leakage through the wells that did not penetrate confining zones is highly unlikely, RHGPP did not omit any potential source of leakage in the NRAP analysis. If leakage through wellbores happens, the worst-case scenario is

predicted using the NRAP tool to quantitatively assess the amount of CO₂ leakage through existing and approved wellbores within the MMA. Thirty-nine existing and approved wells inside MMA were addressed in the NRAP analysis. Through this analysis, RHGPP states that CO₂ leakage to the surface via this potential leakage pathway can be considered improbable.

Wells Completed in the Bell Canyon and Cherry Canyon Formations

The MRV plan states that the only wells completed in the Bell Canyon and Cherry Canyon Formations within the MMA are RH AGI #1, RH AGI #2 (drilling stopped in the Bell Canyon), and RH AGI #3, and the 30-025-08371 well which was completed at a depth of 5,425 ft. This well is within the RHGPP facility boundary and is plugged and abandoned. The MRV plan states that injection of TAG into the RH AGI #1 and #3 occurs through tubing with a permanent production packer set above the injection zone.

The MRV plan states that the RH AGI #2 is located in close proximity to RH AGI #1 and is temporarily abandoned. Drilling of this well stopped at 6,205 ft due to concerns about high pressures by drilling into the Cherry Canyon Formation and therefore, did not penetrate the Cherry Canyon Formation. The MRV plan states that the cement plug was tagged at 5,960 ft which is above the injection zone for RH AGI #1.

The MRV plan states that due to the robust construction of the RH AGI wells, the plugging of the 30-025-08371 well above the Bell Canyon, the plugging of RH AGI #2 above the Cherry Canyon Formation, and considering the NRAP analysis described above, RHGPP considers that, while the likelihood of CO_2 emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

Thus, the MRV plan provides an acceptable characterization of CO₂ leakage that could be expected through existing wells.

Wells Completed in the Bone Spring/Wolfcamp Zones

The MRV plan states that several wells are completed in the Bone Spring and Wolfcamp oil and gas production zones. These productive zones lie more than 2,000 ft below the RH AGI well injection zones minimizing the likelihood of communication between the RH AGI well injection zones and the Bone Spring/Wolfcamp production zones. The MRV plan states that due to the construction of these wells, the fact that the modeled TAG plume does not reach the surface hole location (SHL) of these wells and considering the NRAP analysis, RHGPP considers that, while the likelihood of CO_2 emissions to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

Wells Completed in the Siluro-Devonian Zone

The MRV plan states that one well penetrated the Devonian at the boundary of the MMA – EOG Resources, Government Com 001, API # 30-025-25604, TVD = 17,625 ft, 0.87 miles from the RH AGI #3. The MRV plan states that this well was permanently plugged and abandoned on December 30, 2004. The MRV plan also states that the approved plugging provides zonal isolation for the Bell Canyon and

Cherry Canyon injection zones minimizing the likelihood that this well will be a pathway for CO₂ emissions to the surface from either injection zone. Due to the location of this well at the edge of the MMA and considering the NRAP analysis, RHGPP considers that, while the likelihood of CO₂ emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

Groundwater Wells

The MRV plan states that 15 water wells are within a 2-mile radius of the RH AGI wells, with two of these wells being within the MMA. The deepest of these wells is 650 ft deep. The evaporite sequence of the Permian Ochoan Salado and Castile Formations provides an excellent seal between these groundwater wells, and the Bell and Cherry Canyon injection zones of the RH AGI #1 and RH AGI #3 according to the MRV plan. Due to the shallow depth of the groundwater wells within the MMA relative to the depth of the RH AGI wells and considering the NRAP analysis described in the introductory paragraph in Section 5, TND considers that, while the likelihood of CO₂ emissions to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

3.4 Confining/Seal System

The MRV plan states that the injection zone for the RH AGI wells is overlain by a thick sequence of Permian Ochoan evaporates, limestone, and siltstones with no evidence of faulting, as described in Sections 3.2.2 and 3.3.1 of the MRV plan. Therefore, RHGPP states that it is unlikely that TAG injected into the Bell Canyon and Cherry Canyon Formations will leak through the confining zone to the surface. The MRV plan states that the injection pressure will also be limited to less than the fracture pressure of the confining zone, further minimizing the likelihood of CO₂ leakage through the confining seal of this reservoir.

The MRV plan states that the worst-case scenario is defined as leakage through the seal happening right above the injection wells, where CO₂ saturation is highest. However, the worst-case scenario of leakage only shows that 0.0017% of total CO₂ injection in 30 years was leaked from the injection zone through the seals. The MRV plan states that the likelihood of such an event will diminish proportionally with the distance from the source. Additionally, if a leakage event does occur, the leak must pass upward through the confining zone, the secondary confining strata that consists of additional low permeability geologic units, and other geologic units. Therefore, RHGPP concludes that the risk of leakage through this pathway is highly unlikely.

Thus, the MRV plan provides an acceptable characterization of CO₂ leakage that could be expected through the confining/seal system.

3.5 Lateral Migration

As described in the MRV plan, the Cherry Canyon Formation is composed of channel turbidite sandstones deposited in submarine fan complexes. Due to the nature of their depositional environment, these sandstones are encased in low porosity and low permeability, fine-grained siliciclastics and mudstones with lateral continuity. The regional consideration of the depositional environment suggests a preferred orientation for fluid and gas flow to be south-to-north along the channel axis. However, the MRV plan states that the local high net porosity of the RH AGI #1 and RH AGI #3 injection zones indicates adequate storage capacity such that the injected TAG will be easily contained close to the injection well, thus minimizing the likelihood of lateral migration of TAG outside the MMA due to the preferred regional depositional orientation.

Based on the discussion of the channeled sands in the injection zone, RHGPP considers that the likelihood of CO₂ to migrate laterally along the channel axes is possible. However, RHGPP states that the turbidite sands are encased in low porosity and permeability, fine-grained siliciclastics and mudstones with lateral continuity. In addition, the MRV plan states that the injectate is projected to be contained within the injection zone close to the injection wells which minimizes the likelihood that CO₂ will migrate to a potential conduit to the surface.

Thus, the MRV plan provides an acceptable characterization of CO₂ leakage that could be expected from lateral migration.

3.6 Fractures and Faults

RHGPP states that prior to injection, a thorough geological characterization of the injection zone and surrounding formations was performed to understand the geology as well as identify and understand the distribution of faults and fractures. The MRV plan states that the identified faults are confined to the Paleozoic section below the injection zone for the RH AGI wells and that no faults were identified in the confining zone above the Bell Canyon and Cherry Canyon injection zone for the RH AGI wells.

The MRV plan states that no faults were identified within the MMA which could potentially serve as conduits for surface CO₂ emissions. The closest RHGPP identified fault lies approximately 1.5 miles east of the RHGPP site and has approximately 1,000 ft of down-to-the-west structural relief. The MRV plan states that since this fault is confined to the lower Paleozoic unit well below the injection zone for the RH AGI wells, there is minimal chance it would be a potential leakage pathway. Therefore, RHGPP believes that the CO₂ leakage rate through the fault is zero and that the risk of leakage through this potential leakage pathway is highly improbable.

Thus, the MRV plan provides an acceptable characterization of CO₂ leakage that could be expected through fractures and faults.

3.7 Natural and Induced Seismicity

RHGPP states that they used the New Mexico Tech Seismological Observatory (NMTSO) to search for seismic activity near the RHGPP. The MRV plan states that a search through the NMTSO database showed that no recent seismic events occurred close to the RHGPP operations. The closest recent seismic events as of September 4, 2023 are:

- 7.5 miles, 2022-09-03, Magnitude 3.0
- 8.0 miles, 2022-09-02, Magnitude 2.23
- 8.6 miles, 2022-10-29, Magnitude 2.1

The MRV plan states that due to the distance between the RH AGI wells and the recent seismic events, the magnitude of these events, and the fact that RHGPP injects at pressures below fracture opening pressure, RHGPP considers the likelihood of CO₂ emissions to the surface caused by seismicity to be improbable.

Thus, the MRV plan provides an acceptable characterization of CO_2 leakage that could be expected from natural and induced seismicity.

4 Strategy for Detection and Quantifying Surface Leakage of CO₂ and for Establishing Expected Baselines for Monitoring

Under the provisions of 40 CFR 98.448(a)(3) an MRV plan requires a strategy for detecting and quantifying any surface leakage of CO₂, and 40 CFR 98.448(a)(4) requires that an MRV plan include a strategy for establishing the expected baselines for monitoring potential CO₂ leakage. Sections 5, 6, and 7 of the MRV plan discuss the strategies RHGPP will employ for monitoring and quantifying surface leakage of CO₂ through the pathways identified in the previous section to meet the requirements of 40 CFR §98.448(a)(4). Section 7 of the MRV plan discusses the strategies that RHGPP will use for establishing expected baselines for CO₂ leakage. Monitoring will occur during the planned 30-year injection period, or otherwise the cessation of operations, plus a proposed 5-year post-injection period. A summary table of RHGPP's detection monitoring strategy for CO₂ leakage or loss can be found in Table 6-1 of the MRV plan and is recreated below.

Potential Leakage Pathway	Detection Monitoring
Surface Equipment	 Distributed control system (DCS) surveillance of plant operations Visual inspections Inline inspections Fixed in-field gas monitors/CO₂ flux monitoring network Personal and hand-held gas monitors
Existing RH AGI Wells	 DCS surveillance of well operating parameters Visual inspections Mechanical integrity tests (MIT) Fixed in-field gas monitors/CO₂ flux monitoring network Personal and hand-held gas monitors In-well P/T sensors Groundwater monitoring
Fractures and Faults	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring
Confining Zone / Seal	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring
Natural / Induced Seismicity	DCS surveillance of well operating parametersSeismic monitoring
Lateral Migration	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring
Additional Monitoring	Groundwater monitoringSoil flux monitoring

4.1 Detection of Leakage from Surface Equipment

The MRV plan states that RHGPP implements several tiers of monitoring for surface leakage including frequent periodic visual inspection of surface equipment, use of fixed in-field and personal H₂S and CO₂ sensors, and continual monitoring of operational parameters. As described in Section 6 of the MRV plan,

RHGPP considers H_2S to be a proxy for CO_2 leakage to the surface and as such will employ and expand upon methodologies detailed in their H_2S contingency plan to establish baselines for monitoring CO_2 surface leakage.

The MRV plan states that leaks from surface equipment are detected by RHGPP field personnel, wearing personal H₂S monitors, following daily and weekly inspection protocols which include reporting and responding to any detected leakage events. RHGPP also maintains in-field gas monitors to detect H₂S and CO₂. The in-field gas monitors are connected to the distributed control system (DCS) and housed in the onsite control room. The MRV plan states that if one of the gas detectors sets off an alarm, it would trigger an immediate response to address and characterize the situation.

Thus, the MRV plan provides adequate characterization of RHGPP's approach to detect potential leakage from surface equipment as required by 40 CFR 98.448(a)(3).

4.2 Detection of Leakage from Approved, Not Yet Drilled Wells

RHGPP states in the MRV plan that special precautions will be taken in the drilling of any new wells that will penetrate the injection zones as described in Section 5.2.1 of the MRV plan for RH AGI #3 including more frequent monitoring during drilling operations. These precautions apply to RHGPP and other operators drilling new wells through the RH AGI wells injection zones within the MMA.

Thus, the MRV plan provides adequate characterization of RHGPP's approach to detect potential leakage from approved, not yet drilled wells as required by 40 CFR 98.448(a)(3).

4.3 Detection of Leakage from Existing Wells

The MRV plan states that, as part of ongoing operations, RHGPP continuously monitors and collects flow, pressure, temperature, and gas composition data in the data collection system. These data are monitored continuously by qualified technicians who follow response and reporting protocols when the system delivers alerts that data is not within acceptable limits.

To monitor leakage and wellbore integrity, RHGPP deployed two pressure and temperature gauges as well as Distributed Temperature Sensing (DTS) in the RH AGI #1. The MRV plan states that one gauge is designated to monitor the tubing ID (reservoir) pressure and temperature and the second gauge monitors the annular space between the tubing and the long string casing. The MRV plan states that temperature variation could be an indicator of leaks.

The MRV plan states that pressure and temperature gauges as well as DTS were deployed in the RH AGI #3. The MRV plan also states that the temporarily abandoned RH AGI #2 well will be monitored by the fixed in-field gas monitors, handheld H₂S monitors, and CO₂ soil flux monitoring.

The MRV plan states that if operational parameter monitoring and Mechanical Integrity Test (MIT) failures indicate a CO₂ leak has occurred, RHGPP will take actions to quantify the leak based on

operating conditions at the time of the detection including pressure at the point of emission, flowrate at the point of emission, duration of the emission, and the estimate of the size of the emission site.

For other existing wells within the MMA, the MRV plan states that well surveillance by other operators of existing wells would provide an indication of CO_2 leakage. Additionally, the MRV plan states that groundwater and soil CO_2 flux monitoring locations throughout the MMA will also produce an indication of CO_2 leakage to the surface.

Thus, the MRV plan provides adequate characterization of RHGPP's approach to detect potential leakage from existing wells as required by 40 CFR 98.448(a)(3).

4.4 Detection of Leakage through the Confining/Seal System

As discussed in Section 5 of the MRV plan, RHGPP states that it is very unlikely that CO_2 leakage to the surface will occur through the confining zone. According to the MRV plan, continuous operational monitoring of the RH AGI wells, described in Sections 6.3 and 7.5 of the MRV plan, will provide an indicator if CO_2 leaks out of the injection zone. Furthermore, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO_2 leakage to the surface.

The MRV plan states that, if changes in operating parameters or other monitoring listed in Table 6-1 of the MRV plan indicate leakage of CO_2 through the confining/seal system, RHGPP will take actions to quantify the amount of CO_2 released and take mitigative action to stop it, including shutting in the well(s).

Thus, the MRV plan provides adequate characterization of RHGPP's approach to detect potential leakage through the confining/seal system as required by 40 CFR 98.448(a)(3).

4.5 Detection of Leakage due to Lateral Migration

The MRV plan states that continuous monitoring of the RH AGI wells during and after the period of injection will provide an indication of the movement of the CO₂ plume migration in the injection zones. The CO₂ monitoring network and routine well surveillance will provide an indicator if CO₂ leaks out of the injection zone. Furthermore, the MRV plan states that groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO₂ leakage to the surface.

The MRV plan states that if monitoring of operational parameters of other monitoring methods listed in Table 6-1 indicates that the CO₂ plume extends beyond the area modeled, RHGPP will reassess the plume migration modeling for evidence that the plume may have intersected a pathway for CO₂ release to the surface. As this scenario would be considered a material change per 40 CFR 98.448(d)(1), RHGPP states that they would submit a revised MRV plan.

Thus, the MRV plan provides adequate characterization of RHGPP's approach to detect potential leakage due to lateral migration as required by 40 CFR 98.448(a)(3).

4.6 Detection of Leakage from Fractures and Faults

As discussed in the MRV plan, RHGPP claims that it is very unlikely that CO₂ leakage to the surface will occur through faults. However, the MRV plan states that if monitoring of operational parameters and the fixed in-field gas monitors indicate possible CO₂ leakage to the surface, RHGPP will identify which of the pathways listed in the MRV plan are responsible for the leak, including the possibility of heretofore unidentified faults or fractures within the MMA. RHGPP will take measures to quantify the mass of CO₂ emitted based on the operational conditions that existed at the type of surface emission, including pressure at the point of emission, flowrate at the point of emission, duration of the emission, and estimation of the size of the emission site. Additionally, the MRV plan states that groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO₂ leakage to the surface.

Thus, the MRV plan provides adequate characterization of RHGPP's approach to detect potential leakage from fractures and faults as required by 40 CFR 98.448(a)(3).

4.7 Detection of Leakage due to Natural/Induced Seismicity

The MRV plan states that RHGPP will use the established NMTSO seismic network to monitor the influence of natural and/or induced seismicity. The network consists of seismic monitoring stations that detect and locate seismic events. The MRV plan states that continuous monitoring helps differentiate between natural and induced seismicity.

Thus, the MRV plan provides adequate characterization of RHGPP's approach to detect potential leakage due to natural/induced seismicity as required by 40 CFR 98.448(a)(3).

4.8 Determination of Baselines

Section 7 of the MRV plan identifies the strategies that RHGPP will use to establish the baselines for monitoring CO₂ surface leakage per §98.448(a)(4). RHGPP will use the existing automatic distributed control system to continuously monitor operating parameters and to identify any excursions from normal operating conditions that may indicate leakage of CO₂. RHGPP considers H₂S to be a proxy for CO₂ leakage to the surface and as such will employ and expand upon methodologies detailed in their H₂S contingency plan to establish baselines for monitoring CO₂ surface leakage.

Visual Inspection

RHGPP state their field personnel conduct frequent periodic inspections of all surface equipment providing opportunities to assess baseline concentrations of H_2S , a proxy for CO₂, at the RHGPP.

Fixed In-Field, Handheld, and Personal H₂S Monitors

The MRV plan that compositional analysis of the gas injectate at the RHGPP indicates an approximate H₂S concentration of 20%, thus requiring RHGPP to develop and maintain an H₂S Contingency Plan according to the NMOCD Hydrogen Sulfide Gas Regulations, Rule 11 (19.15.11 NMAC). This H₂S Contingency Plan contains procedures to provide for an organized response to an unplanned release of H₂S from the plant or the associated RH AGI wells and documents procedures that would be followed in case of such an event.

The MRV plan states that RHGPP utilizes numerous fixed-point monitors, strategically located throughout the plant to detect the presence of H₂S in ambient air. In addition, handheld gas detection monitors are available at strategic locations around the plant so that plant personnel can check specific areas and equipment prior to initiating maintenance or other work. The MRV plan states that all personnel, including contractors who perform operations, maintenance and/or repair work in sour gas areas within the plant must wear personal H₂S monitoring devices to assist them in detecting the presence of unsafe levels of H₂S.

CO₂ Detection

The MRV plan states that New Mexico Tech, through a Department of Energy (DOE) research grant, will assist RHGPP in setting up a monitoring network for CO_2 leakage detection in the AMA. The DOE project includes field sampling activities to monitor CO_2/H_2S at the two RH AGI wells. These monitoring activities include periodic well (groundwater and gas) and atmospheric sampling from an area of 10-15 square miles around the injection wells. RHGPP will assume responsibility for the monitoring, recording, and reporting of the data collected once the project network has been set up.

Continuous Parameter Monitoring

The MRV plan states that the DCS of the plant monitors injection rates, pressures, and composition on a continuous basis. High and low set points are programmed into the DCS, and engineering and operations are alerted if the parameter is outside the allowable window. The MRV plan states that if the parameter is outside the allowable window. The MRV plan states that if the parameter is outside the allowable further investigation to determine if the issue poses a leak threat.

Well Surveillance

RHGPP states that they adhere to the requirements of NMOCC Rule 26 governing the construction, operation, and closing of an injection well under the Oil and Gas Act. Rule 26 also includes requirements for testing and monitoring of Class II injection wells to ensure they maintain mechanical integrity at all times. The MRV plan states RHGPP's Routine Operations and Maintenance Producers for the RH AGI wells ensure frequent periodic inspection of the wells and opportunities to detect leaks and implement corrective action.

Seismic (Microseismic) Monitoring Stations

RHGPP states in the MRV plan that they have installed a model TCH120-1 Trillium Compact Horizon Seismometer and a model CTR4-3S Centaur Digital Recorder to monitor for and record for any seismic events at the RHGPP. The MRV plan states that the seismic station meets the requirements of the NMOCC Order No. R-20916-H to "install, operate, and monitor for the life of the [Class II AGI] permit a seismic monitoring station or stations as directed by the manager of the New Mexico Tech Seismological Observatory ("state seismologist") at the New Mexico Bureau of Geology and Mineral Resources."

In addition, the MRV plan also states that data that are recorded by the State of New Mexico deployed seismic network within a 10-mile radius of the Red Hills Gas Plant will be analyzed by the New Mexico Bureau of Geology (NMBGMR) and made publicly available. The MRV plan states that the NMBGMR seismologist will create a report and map showing the magnitudes of recorded events from seismic activity. The data are being continuously recorded. By examining historical data, a seismic baseline prior to the start of TAG injection can be well established and used to verify anomalous events that occur during current and future injection activities. If necessary, a certain period of time can be extracted from the overall data set to identify anomalous events during that period.

Groundwater Monitoring

As part of the same DOE research grant described above, New Mexico Tech will monitor groundwater wells for CO₂ leakage within the AMA. The MRV plan states that water samples will be collected and analyzed monthly for 12 months to establish baseline data. After establishing the water chemistry baseline, samples will be collected and analyzed bi-monthly for one year and then quarterly. The MRV plan will be collected according to EPA methods for groundwater sampling.

Soil CO₂ Flux Monitoring

The MRV plan states that a vital part of the monitoring program is to identify potential leakage of CO_2 and/or brine from the injection horizon into the overlying formations and to the surface. RHGPP states that they will gather and analyze soil CO_2 flux data which serves as a means for assessing potential migration of CO_2 through the soil and its escape to the atmosphere.

The MRV plan states that soil CO_2 flux will be collected monthly for 12 months to establish the baseline and understand seasonal and other variation at the RHGPP. After the baseline is established, data will be collected bi-monthly for one year and then quarterly.

Thus, the RHGPP provides an acceptable approach for establishing expected baselines in accordance with 40 CFR 98.448(a)(4).

5 Considerations Used to Calculate Site-Specific Variables for the Mass Balance Equation

Section 8 of the MRV plan provides the equations that RHGPP will use to calculate sequestration masses.

5.1 Calculation of Mass of CO₂ Received

The MRV plan states that Equation RR-2 will be used to calculate the mass of CO₂ received from through pipelines and measured through volumetric flow meters. The MRV plan states that receiving flow meter r in the following equations corresponds to meters M1 and M2 in Figure 3.6-2 of the MRV plan.

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$

(Equation RR-2 for Pipelines)

where:

 $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons).

Q_{r,p} = Quarterly volumetric flow through a receiving flow meter r in quarter p at standard conditions (standard cubic meters).

 $S_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (standard cubic meters).

 $D = Density of CO_2$ at standard conditions (metric tons per standard cubic meter): 0.0018682.

 $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (vol percent CO₂, expressed as a decimal fraction).

p = Quarter of the year.

r = Receiving flow meter.

The MRV plan states that the total annual mass of CO₂ received through these pipelines will be calculated using Equation RR-3.

$$CO_2 = \sum_{r=1}^{R} CO_{2T,r}$$

(Equation RR-3 for Pipelines)

where:

 CO_2 = Total net annual mass of CO_2 received (metric tons).

 $CO_{2T,r}$ = Net annual mass of CO_2 received (metric tons) as calculated in Equation RR-1 or RR-2 for flow meter r.

r = Receiving flow meter.

RHGPP provides an acceptable approach for calculating the mass of CO₂ received under Subpart RR.

5.2 Calculation of Mass of CO₂ Injected

The MRV plan states that RHGPP injects CO_2 into the RH AGI #1 and RH AGI #3. The MRV plan states that the annual mass of CO_2 injected at the RHGPP at each injection well will be calculated with Equation RR-5. The MRV plan states that receiving flow meter r in the following equations corresponds to meters M1 and M2 in Figure 2.6-2 of the MRV plan.

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$

(Equation RR-5)

where:

CO_{2,u} = Annual CO₂ mass injected (metric tons) as measured by flow meter u.

 $Q_{p,u}$ = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter).

 $D = Density of CO_2$ at standard conditions (metric tons per standard cubic meter): 0.0018682.

 $C_{CO2,p,u}$ = CO₂ concentration measurement in flow for flow meter u in quarter p (vol. percent CO₂, expressed as a decimal fraction).

p = Quarter of the year.

u = Flow meter.

The MRV plan states that the total annual mass of CO₂ injected into both wells will be calculated with Equation RR-6:

$$CO_{2I} = \sum_{u=1}^{U} CO_{2,u}$$

(Equation RR-6)

where:

CO₂₁ = Total annual CO₂ mass injected (metric tons) through all injection wells.

 $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.

u = Flow meter.

RHGPP provides an acceptable approach for calculating the mass of CO₂ injected.

5.3 Calculation of CO₂ Produced/Recycled

RHGPP states that they do not produce oil or gas or any other liquid at its Red Hills Gas Plant so there is no CO_2 produced or recycled.

RHGPP provides an acceptable approach for calculating CO₂ produced/recycled.

5.4 Calculation of CO₂ Lost by Surface Leakage

The MRV plan states that Equation RR-10 will be used to calculate the annual mass of CO₂ lost due to surface leakage from the leakage pathways identified and evaluated in Section 5 of the MRV plan.

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$

(Equation RR-10)

where:

 CO_{2E} = Total annual CO_2 mass emitted by surface leakage (metric tons) in the reporting year.

 $CO_{2,x}$ = Annual CO₂ mass emitted (metric tons) at leakage pathway x in the reporting year.

x = Leakage pathway.

RHGPP provides an acceptable approach for calculating the mass of CO₂ lost by surface leakage under Subpart RR.

5.5 Calculation of CO₂ Emitted from Equipment Leaks and Vented Emissions

The MRV plan states that RHGPP will assess leakage from relevant surface equipment listed in Sections 98.233 and 98.234 of Subpart W. According to 98.233(r)(2) of Subpart W, the emissions factor listed in Table W-1A of Subpart W shall be used to estimate all streams of gases. Parameter CO_{2FI} in Equation RR-12 is the total annual CO_2 mass emitted or vented from equipment located between the flow meter for measuring injection quantity and the injection wellhead. The MRV plan states that a calculation procedure is provided in Subpart W.

5.6 Calculation of CO₂ Sequestered in Subsurface Geologic Formations

The MRV plan states that Equation RR-12 in 40 CFR 98.443 will be used to calculate the total annual CO₂ mass sequestered in subsurface geologic formations.

$$CO_2 = CO_{2I} - CO_{2E} - CO_{2FI}$$
 (Equation RR-12)

where:

 CO_2 = Total annual CO_2 mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.

 CO_{21} = Total annual CO_2 mass injected (metric tons) in the well or group of wells covered in the reporting year.

 CO_{2E} = Total annual CO_2 mass emitted (metric tons) by surface leakage in the reporting year.

 CO_{2FI} = Total annual CO_2 mass emitted (metric tons) from equipment leaks and vented emissions of CO_2 from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in Subpart W of this part.

RHGPP provides an acceptable approach for calculating the mass of CO₂ sequestered in subsurface geologic formations.

6 Summary of Findings

The Subpart RR MRV plan for the Red Hills Gas Processing facility meets the requirements of 40 CFR 98.448. The regulatory provisions of 40 CFR 98.448(a), which specifies the requirements for MRV plans, are summarized below along with a summary of relevant provisions in RHGPP's MRV plan.

Subpart RR MRV Plan Requirement	RHGPP MRV Plan		
40 CFR 98.448(a)(1): Delineation of the maximum monitoring area (MMA) and the active monitoring areas (AMA).	MMA and AMA. The MMA is defined by the most conservative extent of the TAG plume at year 2054 plus a one-half mile buffer. RHGPP states that they intend to define the active monitoring area as the same area as the MMA.		
40 CFR 98.448(a)(2): Identification of potential surface leakage pathways for CO ₂ in the MMA and the likelihood, magnitude,	Section 5 of the MRV plan identifies and evaluates potential surface leakage pathways. The MRV plan identifies the following potential pathways: surface		

and timing, of surface leakage of CO_2	equipment; approved, not yet drilled wells; existing
through these pathways.	wells; confining/seal system; lateral migration; faults
	and fractures, and natural/induced seismicity. The MRV
	plan analyzes the likelihood, magnitude, and timing of
	surface leakage through these pathways.
40 CFR 98.448(a)(3): A strategy for	Sections 5, 6, and 7 of the MRV plan describe the
detecting and quantifying any surface	strategies that RHGPP will use to detect and quantify
leakage of CO ₂ .	potential CO ₂ leakage to the surface should it occur.
	The MRV plan states that leakage models including
	transport, geomechanical, or reactive transport model
	simulations will be used to quantify CO ₂ leakage.
40 CFR 98.448(a)(4): A strategy for	Section 7 of the MRV plan describes the strategies for
establishing the expected baselines for	establishing baselines against which monitoring results
monitoring CO ₂ surface leakage.	will be compared to assess potential surface leakage.
	RHGPP will use an existing automatic distributed
	control system to identify and investigate deviations
	from expected performance that could indicate CO_2
	leakage. RHGPP's approach to collecting information
	inspection: H-S monitors: CO, detection: continuous
	narameter monitoring; well surveillance; seismic (micro
	seismic) monitoring stations: groundwater monitoring
	and soil CO_2 flux monitoring.
40 CFR 98.448(a)(5): A summary of the	Section 8 of the MRV plan describes RHGPP's approach
considerations you intend to use to	to determining the total amount of CO ₂ sequestered
balance equation	using the subpart RR mass balance equations, including
40 CFR 98.448(a)(6): For each injection	Section 12 of the MRV plan identifies the injection and
well, report the well identification number	monitoring wells used in the RHGPP. The RHGPP has
used for the UIC permit (or the permit	Class II AGI permits under the NMOCD.
application) and the UIC permit class.	
40 CFR 98.448(a)(7): Proposed date to	Section 8 of the MRV plan states that it is anticipated
begin collecting data for calculating total	that the RHGPP will be implemented as soon as it is
amount sequestered according to equation	approved by EPA. The MRV plan states that baseline
RR-11 or RR-12 of this subpart.	

monitoring have been established and data collected	
by RHGPP and its predecessor.	

Appendix A: Final MRV Plan

MONITORING, REPORTING, AND VERIFICATION PLAN

Red Hills AGI #1 and Red Hills AGI #3

Targa Northern Delaware, LLC (TND)

Version 1.0 July 23, 2024

Table of Contents

1	In	troduction	5
2	Fa	acility Information	7
	2.1	Reporter number	7
	2.2	UIC injection well identification numbers	7
	2.3	UIC permit class	7
3	Pr	roject Description	7
	3.1	General Geologic Setting / Surficial Geology	8
	3.2	Bedrock Geology	8
	3.	2.1 Basin Development	8
	3.	2.2 Stratigraphy	. 17
	3.	2.3 Faulting	. 22
	3.3	Lithologic and Reservoir Characteristics	. 22
	3.4	Formation Fluid Chemistry	. 25
	3.5	Groundwater Hydrology in the Vicinity of the Red Hills Gas Plant	. 25
	3.6	Historical Operations	. 26
	3.	6.1 Red Hills Site	. 26
	3.	.6.2 Operations within the MMA for the RH AGI Wells	. 29
	3.7	Description of Injection Process	. 31
-	3.8	Reservoir Characterization Modeling	. 32
4	De	elineation of the Monitoring Areas	. 39
4	4.1	MMA – Maximum Monitoring Area	. 39
4	4.2	AMA – Active Monitoring Area	. 39
5	Id	lentification and Evaluation of Potential Leakage Pathways to the Surface	. 40
ļ	5.1	Potential Leakage from Surface Equipment	. 40
ļ	5.2	Potential Leakage from Approved, Not Yet Drilled Wells	. 41
	5.	2.1 Horizontal Wells	. 41
ļ	5.3	Potential Leakage from Existing Wells	. 41
	5.	3.1 Wells Completed in the Bell Canyon and Cherry Canyon Formations	. 41
	5.	3.2 Wells Completed in the Bone Spring / Wolfcamp Zones	. 42
	5.	3.3 Wells Completed in the Siluro-Devonian Zone	. 42
	5. 54	.3.4 Groundwater Wells	.42 43
	5.5	Potential Leakage due to Lateral Migration	رب. ۱2
	5.5	Potential Leakage due to Lateral Migration	.43 ЛЛ
	5.0		. 44
	o./	Potential Leakage due to Natural / Induced Seismicity	. 45
6	St	rategy for Detecting and Quantifying Surface Leakage of CO ₂	. 46
	0.1		. 47
(b.2	Leakage from Approved Not Yet Drilled Wells	.47
(6.3	Leakage from Existing Wells	. 48

	6.3	3.1 RH AGI Wells	48
	6.3	3.2 Other Existing Wells within the MMA	50
	6.4	Leakage through the Confining / Seal System	50
	6.5	Leakage due to Lateral Migration	50
	6.6	Leakage from Fractures and Faults	50
	6.7	Leakage due to Natural / Induced Seismicity	50
	6.8	Strategy for Quantifying CO ₂ Leakage and Response	51
	6.8	8.1 Leakage from Surface Equipment	51
	6.8	8.2 Subsurface Leakage	51
	6.8	8.3 Surface Leakage	51
7	Str	rategy for Establishing Expected Baselines for Monitoring CO ₂ Surface Leakage	52
	7.1	Visual Inspection	52
	7.2	Fixed In-Field, Handheld, and Personal H ₂ S Monitors	52
	7.2	2.1 Fixed In-Field H ₂ S Monitors	52
	7.2	2.2 Handheld and Personal H ₂ S Monitors	52
	7.3	CO ₂ Detection	52
	7.4	Continuous Parameter Monitoring	53
	7.5	Well Surveillance	53
	7.6	Seismic (Microseismic) Monitoring Stations	53
	7.7	Groundwater Monitoring	53
	7.8	Soil CO ₂ Flux Monitoring	54
8	Sit	te Specific Considerations for Determining the Mass of CO ₂ Sequestered	55
	8.1	CO ₂ Received	55
	8.2	CO ₂ Injected	56
	8.3	CO ₂ Produced / Recycled	57
	8.4	CO ₂ Lost through Surface Leakage	57
	8.5	CO ₂ Emitted from Equipment Leaks and Vented Emissions	58
	8.6	CO ₂ Sequestered	
9	Fst	timated Schedule for Implementation of MRV Plan	58
1() GF	HG Monitoring and Quality Assurance Program	
	10.1	GHG Monitoring	58
	10	0.1.1 General	59
	10	0.1.2 CO ₂ received	59
	10	0.1.3 CO ₂ injected	59
	10	0.1.4 CO ₂ produced	59
	10	0.1.5 CO ₂ emissions from equipment leaks and vented emissions of CO ₂ .	59
	10	0.1.6 Measurement devices	59
	10.2	QA/QC Procedures	60
	10.3	Estimating Missing Data	60
	10.4	Revisions of the MRV Plan	60

11 Record	s Retention	60
12 Append	dices	62
Appendix 1	TND Wells	63
Appendix 2	Referenced Regulations	67
Appendix 3	Water Wells	69
Appendix 4	Oil and Gas Wells within 2-mile Radius of the RH AGI Well Site	71
Appendix 5	References	74
Appendix 6	Abbreviations and Acronyms	77
Appendix 7	TND Red Hills AGI Wells - Subpart RR Equations for Calculating CO ₂ Geologic Sequestration	78
Appendix 8	Subpart RR Equations for Calculating Annual Mass of CO ₂ Sequestered	79
Appendix 9	P&A Records	

1 Introduction

Targa Northern Delaware, LLC (TND) is currently authorized to inject treated acid gas (TAG) into the Red Hills Acid Gas Injection #1 well (RH AGI #1)(American Petroleum Institute (API) 30-025-40448) and the RH AGI #3 well (API # 30-025-51970) under the New Mexico Oil Conservation Commission (NMOCC) Orders R-13507 – 13507F and Order R-20916H, respectively, at the Red Hills Gas Plant located approximately 20 miles NNW of Jal in Lea County, New Mexico (**Figure 1-1**). Each well is approved to inject 13 million standard cubic feet per day (MMSCFD). However, although approved to inject 13 MMSCFD, RH AGI #1 is physically only capable of taking ~5 MMSCFD due to formation and surface pressure limitations.

RH AGI #1 was previously operated by Lucid Energy Delaware, LLC's ("Lucid"). TND acquired Lucid assets in 2022. Lucid received authorization to construct a redundant well, RH AGI #2 (API# 30-025-49474) under NMOCC Order R-20916-H, which is offset 200 ft to the north of RH AGI #1 and is currently temporarily abandoned in the Bell Canyon Formation.

TND recently received approval from NMOCC for its C-108 application to drill, complete and operate a third acid gas injection well (RH AGI #3) for which TND requested an injection volume of up to 13 MMSCFD. RH AGI #3 was spudded on 9/13/2023, completed on 9/27/2023, and injection commenced on 1/11/2024. Because RH AGI #1 does not have complete redundancy, having a greater permitted disposal volume will also increase operational reliability. RH AGI #3 is a vertical well with its surface location at approximately 3,116 ft from the north line (FNL) and 1,159 ft from the east line (FEL) of Section 13. The depth of the injection zone for this well is approximately 5,700 to 7,600 ft in the Bell Canyon and Cherry Canyon Formations (see As-Built schematic in **Figure Appendix 1-2**). Analysis of the reservoir characteristics of these units confirms that they act as excellent closed-system reservoirs that will accommodate the future needs of TND for disposal of treated acid gas (H₂S and CO₂) from the Red Hills Gas Plant.

TND has chosen to submit this Monitoring, Reporting, and Verification (MRV) plan to EPA for approval according to 40CFR98.440(c)(1), Subpart RR of the Greenhouse Gas Reporting Program (GHGRP) for the purpose of qualifying for the tax credit in section 45Q of the federal Internal Revenue Code. TND intends to inject CO₂ for another 30 years.

Figure 1-1: Location of the Red Hills Gas Plant and Wells – RH AGI #1, RH AGI #2 (temporarily abandoned), and RH AGI #3

This MRV Plan contains twelve sections:

Section 1 is this Introduction.

Section 2 contains facility information.

Section 3 contains the project description.

Section 4 contains the delineation of the maximum monitoring area (MMA) and the active monitoring area (AMA), both defined in 40CFR98.449, and as required by 40CFR98.448(a)(1), Subpart RR of the GHGRP.

Section 5 identifies the potential surface leakage pathways for CO_2 in the MMA and evaluates the likelihood, magnitude, and timing of surface leakage of CO_2 through these pathways as required by 40CFR98.448(a)(2), Subpart RR of the GHGRP.

Section 6 describes the detection, verification, and quantification of leakage from the identified potential sources of leakage as required by 40CFR98.448(a)(3).

Section 7 describes the strategy for establishing the expected baselines for monitoring CO_2 surface leakage as required by 40CFR98.448(a)(4), Subpart RR of the GHGRP.

Section 8 provides a summary of the considerations used to calculate site-specific variables for the mass balance equation as required by 40CFR98.448(a)(5), Subpart RR of the GHGRP.

Section 9 provides the estimated schedule for implementation of this MRV Plan as required by 40CFR98.448(a)(7).

Section 10 describes the quality assurance and quality control procedures that will be implemented for each technology applied in the leak detection and quantification process. This section also includes a discussion of the procedures for estimating missing data as detailed in 40CFR98.445.

Section 11 describes the records to be retained according to the requirements of 40CFR98.3(g) of Subpart A of the GHGRP and 40CFR98.447 of Subpart RR of the GRGRP.

Section 12 includes Appendices supporting the narrative of the MRV Plan, including information required by 40CFR98.448(a)(6).

2 Facility Information

2.1 Reporter number

Greenhouse Gas Reporting Program ID is 553798

2.2 UIC injection well identification numbers

This MRV plan is for RH AGI #1 and RH AGI #3 (**Appendix 1**). The details of the injection process are provided in Section 3.7.

2.3 UIC permit class

For injection wells that are the subject of this MRV plan, the New Mexico Oil Conservation Division (NMOCD) has issued Underground Injection Control (UIC) Class II acid gas injection (AGI) permits under its State Rule 19.15.26 NMAC (see **Appendix 2**). All oil- and gas-related wells around the RH AGI wells, including both injection and production wells, are regulated by the NMOCD, which has primacy to implement the UIC Class II program.

3 Project Description

The following project description was developed by the Petroleum Recovery Research Center (PRRC) at New Mexico Institute of Mining and Technology (NMT) and the Department of Geosciences at the University of Texas Permian Basin (UTPB).

3.1 General Geologic Setting / Surficial Geology

The TND Red Hills Gas Plant is located in T 24 S R 33 E, Section 13, in Lea County, New Mexico, immediately adjacent to the RH AGI wells. (Figure 3.1-1). The plant location is within a portion of the Pecos River basin referred to as the Querecho Plains reach (Nicholson & Clebsch, 1961). This area is relatively flat and largely covered by sand dunes underlain by a hard caliche surface. The dune sands are locally stabilized with shin oak, mesquite, and some burr-grass. There are no natural surface bodies of water within one mile of the plant and where drainages exist in interdunal areas, they are ephemeral, discontinuous, dry washes. The plant site is underlain by Quaternary alluvium overlying the Triassic red beds of the Santa Rosa Formation (Dockum Group), both of which are local sources of groundwater.

Figure 3.1-1: Map showing location of TND Red Hills Gas Plant and RH AGI Wells in Section 13, T 24 S, R 33 E

3.2 Bedrock Geology

3.2.1 Basin Development

The Red Hills Gas Plant and the RH AGI wells are located at the northern margin of the Delaware Basin, a sub-basin of the larger, encompassing Permian Basin (**Figure 3.2-1**), which covers a large area of southeastern New Mexico and west Texas.

Figure 3.2-1: Structural features of the Permian Basin during the Late Permian. Location of the RH AGI wells is shown by the black circle. (Modified from Ward, et al (1986))

Figure 3.2-2 is a generalized stratigraphic column showing the formations that underlie the Red Hills Gas Plant and RH AGI wells site. The thick sequences of Permian through Cambrian rocks are described below. A general description of the stratigraphy of the area is provided in this section. A more detailed discussion of the injection zone and the upper and lower confining zones is presented in Section 3.3 below.

The RH AGI wells are located in the Delaware Basin portion of the broader Permian Basin. Sediments in the area date back to the Cambrian Bliss Sandstone (Broadhead, 2017; **Figure 3.2-2**) and overlay Precambrian granites. These late Cambrian transgressive sandstones were the initial deposits from a shallow marine sea that covered most of North America and Greenland (**Figure 3.2-3**). With continued down warping and/or sea-level rise, a broad, relatively shallow marine basin formed. The Ellenburger Formation (0 - 1000 ft) is dominated by dolostones and limestones that were deposited on restricted carbonate shelves (Broadhead, 2017; Loucks and Kerans, 2019). Throughout this narrative, the numbers after the formations indicate the range in thickness for that unit. Tectonic activity near the end of Ellenburger deposition resulted in subaerial exposure and karstification of these carbonates which increased the unit's overall porosity and permeability.

AGE			CENTRAL BASIN PLATFORM- NORTHWEST SHELF		DELAWARE BASIN	
Cenozoic		Alluvium		Alluvium		
Triccolo		Chinle Formation		Chinle Formation		
Triassic			Santa Rosa Sandstone		Santa Rosa Sandstone	
	Loningian	[Dewey Lake Formation		Dewey Lake Formation	
	(Ochoan)	<u> </u>	Rustler Formation	Salado Formation		
			Salado Formation		Castile Formation	
			Tansill Formation	d	Lamar Limestone	
		Loup	Yates Formation	Brou	Bell Canyon Formation	
	Guadalunian	rtesia G	Seven Rivers Formation	ain (Don ounjoir i onnadon	
	Guadalupian		Queen Formation	ount	Charme Conven Formation	
Demoiser		◄	Grayburg Formation	e Mo	Cherry Canyon Formation	
Permian			San Andres Formation	lawar	Brushy Canvon Formation	
	Cisuralian		Glorieta Formation	De		
	(Leonardian)	ő	Blinebry Mbr			
	(Leonardian)	Ϋ́ĕ	Tubb Sandstone Mbr.		Bana Sanian Farmatian	
			Drinkard Mbr.		Bone Spring Formation	
			Abo Formation			
	Wolfcampian		Hueco ("Wolfcamp") Fm.		Hueco ("Wolfcamp") Fm.	
	Virgilian		Cisco Formation		Cisco	
	Missourian	Canyon Formation			Canyon	
Pennsylvanian	Des Moinesian	Strawn Formation		Strawn		
	Atokan	Atoka Formation		Atoka		
	Morrowan	Morrow Formation Morrow		Morrow		
Mississinnian	Upper		Barnett Shale		Barnett Shale	
wississippian	Lower	"Mississippian limestone"		"Mississippian limestone"		
	Upper		Woodford Shale		Woodford Shale	
Devonian	Middle					
	Lower		Thirtyone Formation		Thirtyone Formation	
	Upper		Wristen Group		Wristen Group	
Silurian	Middle					
	Lower		Fusselman Formation		Fusselman Formation	
	Upper		Montoya Formation		Montoya Formation	
Ordovician	Middle	Simpson Group		Simpson Group		
ordoviolari	Lower	I	Ellenburger Formation		Ellenburger Formation	
Cambrian			Bliss Ss.		Bliss Ss.	
Precambrian		me	Miscellaneous igneous, etamorphic, volcanic rocks		Miscellaneous igneous, metamorphic, volcanic rocks	

Figure 3.2-2: Stratigraphic column for the Delaware basin, the Northwest Shelf and Central Basin Platform (modified from Broadhead, 2017).

During Middle to Upper Ordovician time, seas once again covered the area and deposited the carbonates, sandstones and shales of the Simpson Group (0 – 1000 ft) and then the Montoya Formation (0 – 600 ft). This is the period when the Tobosa Basin formed due to the Pedernal uplift and development of the Texas Arch (**Figure 3.2-4**; Harrington, 2019), which shed Precambrian crystalline clasts into the basin. Simpson reservoirs in New Mexico are typically within deposits of shoreline sandstones (Broadhead, 2017). A subaerial exposure and karstification event followed the deposition of the Simpson Group. The Montoya Formation marked a return to dominantly carbonate sedimentation with minor siliciclastic sedimentation within the Tobosa Basin (Broadhead, 2017; Harrington and Loucks, 2019). The Montoya Formation consists of sandstones and dolomites and has also undergone karstification.

Figure 3.2-3: A subsidence chart from Reeves County, Texas showing the timing of development of the Tobosa and Delaware basins during Paleozoic deposition (from Ewing, 2019)

Figure 3.2-4: Tectonic Development of the Tobosa and Permian Basins. A) Late Mississippian (Ewing, 2019). Note the lateral extent (pinchout) for the lower Paleozoic strata. B) Late Permian (Ruppel, 2019a).

Siluro-Devonian formations consist of the Upper Ordovician to Lower Silurian Fusselman Formation (0 – 1,500 ft), the Upper Silurian to Lower Devonian Wristen Group (0 – 1,400 ft), and the Lower Devonian Thirtyone Formation (0 – 250 ft). The Fusselman Formation is primarily shallow-marine platform deposits of dolostones and limestones (Broadhead, 2017; Ruppel, 2019b). Subaerial exposure and karstification associated with another unconformity at top of the Fusselman Formation as well as intraformational exposure events created brecciated fabrics, widespread dolomitization, and solution-enlarged pores and fractures (Broadhead, 2017). The overlying Wristen and Thirtyone units appear to be conformable. The Wristen Group consists of tidal to high-energy platform margin carbonate deposits of dolostones, limestones, and cherts with minor siliciclastics (Broadhead, 2017; Ruppel, 2020). The Thirtyone Formation is present in the southeastern corner of New Mexico and appears to be either removed by erosion or not deposited elsewhere in New Mexico (**Figure 3.2-5**). It is shelfal carbonate with varying amounts of chert nodules and represents the last carbonate deposition in the area during Devonian time (Ruppel et al., 2020a).

Figure 3.2-5: A subcrop map of the Thirtyone and Woodford formations. The Woodford (brown) lies unconformably on top of the Wristen Group where there are no Thirtyone sediments (yellow). Diagram is from Ruppel (2020).

The Siluro-Devonian units are saltwater injection zones within the Delaware Basin and are typically dolomitized, shallow marine limestones that have secondary porosity produced by subaerial exposure, karstification and later fracturing/faulting. These units will be discussed in more detail in Section 3.2.2.

The Devonian Woodford Shale, an un-named Mississippian limestone, and the Upper Mississippian Barnett Shale are seals for the underlying Siluro-Devonian strata. While the Mississippian recrystallized limestones

have minor porosity and permeability, the Woodford and Barnett shales have extremely low porosity and permeability and would be effective barriers to upward migration of acid gas out of the injection zone. The Woodford Shale (0 – 300 ft) ranges from organic–rich argillaceous mudstones with abundant siliceous microfossils to organic-poor argillaceous mudstones (Ruppel et al., 2020b). The Woodford sediments represent stratified deeper marine basinal deposits with their organic content being a function of the oxygenation within the bottom waters – the more anoxic the waters the higher the organic content.

The Mississippian strata within the Delaware Basin consists of an un-named carbonate member and the Barnett Shale and unconformably overlies the Woodford Shale. The lower Mississippian limestone (0 – 800 ft) are mostly carbonate mudstones with minor argillaceous mudstones and cherts. These units were deposited on a Mississippian ramp/shelf and have mostly been overlooked because of the reservoirs limited size. Where the units have undergone karstification, porosity may approach 4 to 9% (Broadhead, 2017), otherwise porosity is very low. The Barnett Shale (0 – 400 ft) unconformably overlies the Lower Mississippian carbonates and consists of Upper Mississippian carbonates deposited on a shelf to basinal siliciclastic deposits that make up the Barnett Shale.

Pennsylvanian sedimentation is dominated by glacio-eustatic sea-level cycles that produced shallowing upward cycles of sediments, ranging from deep marine siliciclastic and carbonate deposits to shallow-water limestones and siliciclastics, and capping terrestrial siliciclastic sediments and karsted limestones. Lower Pennsylvanian units consist of the Morrow and Atoka formations. The Morrow Formation (0 - 2,000 ft) within the northern Delaware Basin was deposited as part of a deepening upward cycle with depositional environments ranging from fluvial/deltaic deposits at the base, sourced from the crystalline rocks of the Pedernal Uplift to the northwest, to high-energy, near-shore coastal sandstones and deeper and/or low-energy mudstones (Broadhead, 2017; Wright, 2020). The Atoka Formation (0-500 ft) was deposited during another sea-level transgression within the area. Within the area, the Atoka sediments are dominated by siliciclastic sediments, and depositional environments range from fluvial/deltas, shoreline to near-shore coastal barrier bar systems to occasional shallow-marine carbonates (Broadhead, 2017; Wright, 2020).

Middle Pennsylvanian units consist of the Strawn group (an informal name used by industry). Strawn sediments (250 - 1,000 ft) within the area consist of marine sediments that range from ramp carbonates, containing patch reefs, and marine sandstone bars to deeper marine shales (Broadhead, 2017).

Upper Pennsylvanian Canyon (0 – 1,200 ft) and Cisco (0 – 500 ft) group deposits are dominated by marine, carbonate-ramp deposits and basinal, anoxic, organic-rich shales.

Deformation, folding and high-angle faulting, associated with the Upper Pennsylvanian/Early Permian Ouachita Orogeny, created the Permian Basin and its two sub-basins, the Midland and Delaware basins (Hills, 1984; King, 1948), the Northwest Shelf (NW Shelf), and the Central Basin Platform (CBP; **Figures 3.2-4**, **3.2-6**, **3.2-7**). The Permian "Wolfcamp" or Hueco Formation was deposited after the creation of the Permian Basin. The Wolfcampian sediments were the first sediments to fill in the structural relief (**Figure 3.2-6**). The Wolfcampian Hueco Group (~400 ft on the NW Shelf, >2,000 ft in the Delaware Basin) consists of shelf margin deposits ranging from barrier reefs and fore slope deposits, bioherms, shallow-water carbonate shoals, and basinal carbonate mudstones (Broadhead, 2017; Fu et al., 2020). Since deformation continued throughout the Permian, the Wolfcampian sediments were truncated in places like the Central Basin Platform (**Figure 3.2-6**).

Figure 3.2-6: Cross section through the western Central Basin Platform showing the structural relationship between the Pennsylvanian and older units and Permian strata (modified from Ward et al., 1986; from Scholle et al., 2007).

Figure 3.2-7: Reconstruction of southwestern United States about 278 million years ago. The Midland Basin (MB), Delaware Basin (DB) and Orogrande Basin (OB) were the main depositional centers at that time (Scholle et al., 2020).

Differential sedimentation, continual subsidence, and glacial eustasy impacted Permian sedimentation after Hueco deposition and produced carbonate shelves around the edges of deep sub-basins. Within the Delaware Basin, this subsidence resulted in deposition of roughly 12,000 ft of siliciclastics, carbonates, and evaporites (King, 1948). Eustatic sea-level changes and differential sedimentation played an important role in the distribution of sediments/facies within the Permian Basin (**Figure 3.2-2**). During sea-level lowstands, siliciclastic sediments largely bypassed the shelves and were deposited deeper in the basin. Scattered, thin sandstones and siltstones as well as fracture and pore filling sands found up on the shelves correlate to those lowstands. During sea-level highstands, thick sequences of carbonates were deposited by a "carbonate factory" on the shelf and shelf edge. Carbonate debris beds shedding off the shelf margin were transported into the basin (Wilson, 1972; Scholle et al., 2007). Individual debris flows thinned substantially from the margin to the basin center (from 100s feet to feet).

Unconformably overlying the Hueco Group is the Abo Formation (700 – 1,400 ft). Abo deposits range from carbonate grainstone banks and buildups along Northwest Shelf margin to shallow-marine, back-reef carbonates behind the shelf margin. Further back on the margin, the backreef sediments grade into intertidal carbonates to siliciclastic-rich sabkha red beds to eolian and fluvial deposits closer to the Sierra Grande and Uncompahgre uplifts (Broadhead, 2017, Ruppel, 2019a). Sediments basinward of the Abo margin are equivalent to the lower Bone Spring Formation. The Yeso Formation (1,500 – 2,500 ft), like the Abo Formation, consists of carbonate banks and buildups along the Abo margin. Unlike Abo sediments, the Yeso Formation contains more siliciclastic sediments associated with eolian, sabkha, and tidal flat facies (Ruppel, 2019a). The Yeso shelf sandstones are commonly subdivided into the Drinkard, Tubb, Blinebry, Paddock members (from base to top of section). The Yeso Formation is equivalent to the upper Bone Spring Formation. The Bone Spring Formation is a thick sequence of alternating carbonate and siliciclastic horizons that formed because of changes in sea level; the carbonates during highstands, and siliciclastics during lowstands. Overlying the Yeso, are the clean, white eolian sandstones of the Glorietta Formation, a key marker bed in the region, both on outcrop and in the subsurface. Within the basin, it is equivalent to the lowermost Brushy Canyon Formation of the Delaware Mountain Group.

The Guadalupian San Andres Formation (600 – 1,600 ft) and Artesia Group (<1,800 ft) reflect the change in the shelf margin from a distally steepened ramp to a well-developed barrier reef complex. The San Andres Formation consists of supratidal to sandy subtidal carbonates and banks deposited a distally steepened ramp. Within the San Andres Formation, several periods of subaerial exposure have been identified that have resulted in karstification and pervasive dolomitization of the unit. These exposure events/sea-level lowstands are correlated to sandstones/siltstones that moved out over the exposed shelf leaving minor traces of their presence on the shelf but formed thick sections of sandstones and siltstones in the basin. Within the Delaware Basin, the San Andres Formation is equivalent to the Brushy and lower Cherry Canyon Formations.

The Artesia Group (Grayburg, Queen, Seven Rivers, Yates, and Tansill formations, ascending order) is equivalent to Capitan Limestone, the Guadalupian barrier/fringing reef facies. Within the basin, the Artesia Group is equivalent to the upper Cherry and Bell Canyon formations, a series of relatively featureless sandstones and siltstones. The Queen and Yates formations contain more sandstones than the Grayburg, Seven Rivers, and Tansill formations. The Artesia units and the shelf edge equivalent Capitan reef sediments represent the period when the carbonate factory was at its greatest productivity with the shelf margin/Capitan reef prograding nearly 6 miles into the basin (Scholle et al., 2007). The Artesia Group sediments were deposited in back-reef, shallow marine to supratidal/evaporite environments. Like the San Andres Formation, the individual formations were periodically exposed during lowstands.

The final stage of Permian deposition on the Northwest Shelf consists of the Ochoan/Lopingian Salado Formation (<2,800 ft, Nance, 2020). Within the basin, the Castile formation, a thick sequence (total thickness ~1,800 ft, Scholle et al., 2007) of cyclic laminae of deep-water gypsum/anhydrite interbedded with calcite and organics, formed due to the restriction of marine waters flowing into the basin. Gypsum/anhydrite laminae precipitated during evaporative conditions, and the calcite and organic-rich horizons were a result of seasonal "freshening" of the basin waters by both marine and freshwaters. Unlike the Castile Formation, the Salado Formation is a relatively shallow water evaporite deposit. Halite, sylvite, anhydrite, gypsum, and numerous potash minerals were precipitated. The Rustler Formation (500 ft, Nance, 2020) consists of gypsum/anhydrite, a few magnesitic and dolomitic limestone horizons, and red beds. These are mostly shallow marginal marine deposits and represent the last Permian marine deposits in the Delaware Basin. The Rustler Formation was followed by terrestrial sabkha red beds of the Dewey Lake Formation (~350', Nance, 2020), ending Permian deposition in the area.

Beginning early in the Triassic, uplift and the breakup of Pangea resulted in another regional unconformity and the deposition of non-marine, alluvial Triassic sediments (Santa Rosa Sandstone and Chinle Formation). They are unconformably overlain by Cenozoic alluvium (which is present at the surface). Cenozoic Basin and Range tectonics resulted in the current configuration of the region and reactivated numerous Paleozoic faults.

3.2.2 Stratigraphy

The Permian rocks found in the Delaware Basin are divided into four series, the Ochoa (most recent, renamed Lopingian), Guadalupian, Leonardian (renamed Cisuralian), and Wolfcampian (oldest) (**Figure 3.2-2**). This sequence of shallow marine carbonates and thick, basinal siliciclastic deposits contains abundant oil and gas resources and are the main source of oil within New Mexico. In the area around the RH AGI wells, Permian strata are mainly basin deposits consisting of sandstones, siltstones, shales, and lesser amounts of carbonates. Besides production in the Delaware Mountain Group, there is also production, mainly gas, in the basin Bone Spring Formation, a sequence of carbonates and siliciclastics. The injection and confining zones for RH AGI #1 and RH AGI #3 are discussed below.

CONFINING/SEAL ROCKS

Permian Ochoa Series. The youngest of the Permian sediments, the Ochoan- or Lopingian-aged deposits, consists of evaporites, carbonates, and red beds. The Castile Formation is made of cyclic laminae of deepwater gypsum/anhydrite beds interlaminated with calcite and organics. This basin-occurring unit can be up to 1,800 ft thick. The Castile evaporites were followed by the Salado Formation (~1,500 ft thick). The Salado Formation is a shallow water evaporite deposit, when compared to the Castile Formation, and consists of halite, sylvite, anhydrite, gypsum, and numerous potash/bittern minerals. Salado deposits fill the basin and lap onto the older Permian shelf deposits. The Rustler Formation (up to 500 ft, Nance, 2020) consists of gypsum/anhydrite, a few magnesitic and dolomitic limestone horizons, and red beds. These are mostly shallow marginal marine deposits and represents the last Permian marine deposits in the Delaware Basin. The Ochoan evaporitic units are superb seals (usually <1% porosity and <0.01 mD permeability) and are the reason that the Permian Basin is such a hydrocarbon-rich region despite its less than promising total organic carbon (TOC) content.

INJECTION ZONE

Permian Guadalupe Series. Sediments in the underlying Delaware Mountain Group (descending, Bell Canyon, Cherry Canyon, and Brushy Canyon formations) are marine units that represent deposition controlled by eustacy and tectonics. Lowstand deposits are associated with submarine canyons that incised the carbonate platform margin surrounding the Delaware basin. Depositional environments consist of turbidite channels, splays, and levee/overbank deposits (**Figure 3.2-8**).

Additionally, debris flows formed by the failure of the carbonate margin and density currents also make up basin sediments. Isolated coarse-grained to boulder-sized carbonate debris flows and grain falls within the lowstand clastic sediments likely resulted from erosion and failure of the shelf margin during sea-level lowstands or slope failure to tectonic activity (earthquakes). Density current deposits resulted from stratified basin waters. The basal waters were likely stratified and so dense that turbidity flows containing sands, silts and clays were unable to displace those bottom waters and instead flowed out over the density interface (**Figure 3.2-9**). Eventually, the entrained sediments would settle out in a constant rain of sediment forming laminated deposits with little evidence of traction (bottom flowing) deposition.

Interbedded with the very thick lowstand sequences are thin, deep-water limestones and mudstones that represent highstand deposition. These deposits are thickest around the edge (toe-of-slope) of the basin and thin to the basin center (**Figure 3.2-10**). The limestones are dark, finely crystalline, radiolarian-rich micrites to biomicrites. These highstand deposits are a combination of suspension and pelagic sediments that also thin towards the basin center. These relatively thin units are time equivalent to the massive highstand carbonate deposits on the shelf.

Figure 3.2-8: A diagram of typical Delaware Mountain Group basinal siliciclastic deposition patterns (from Nance, 2020). The channel and splay sandstones have the best porosity, but some of the siltstones also have potential as injection zones.

Figure 3.2-9: Harms' (1974) density overflow model explains the deposition of laminated siliciclastic sediments in the Delaware Basin. Low density sand-bearing fluids flow over the top of dense, saline brines at the bottom of the basin. The sands gradually drop out as the flow loses velocity creating uniform, finely laminated deposits (from Scholle et al., 2007).

Figure 3.2-10: The impact of sea-level fluctuations (also known as reciprocal sedimentation) on the depositional systems within the Delaware Basin. A) A diagrammatic representation of sea-level variations impact on deposition. B) Model showing basin-wide depositional patterns during lowstand and highstand periods (from Scholle et al., 2007).

The top of the Guadalupian Series is the Lamar Limestone, which is the source of hydrocarbons found in underlying Delaware Sand (an upper member of the Bell Canyon Formation). The Bell Canyon Formation is roughly 1,000 ft thick in the Red Hills area and contains numerous turbidite input points around the basin margin (**Figures 3.2-10, 3.2-11**). During Bell Canyon deposition, the relative importance of discrete sand sources varied (Giesen and Scholle, 1990), creating a network of channel and levee deposits that also varied in their size and position within the basin. Based on well log analyses, the Bell Canyon 2 and 3 had the thickest sand deposits.

Figure 3.2-11: These maps of Bell Canyon Formation were created by measuring sandstone thicknesses on well logs in four regionally correlatable intervals (from Giesen and Scholle, 1990 and unpublished thesis research). The red circle on the last map surrounds the Red Hills area.

Like the Bell Canyon and Brushy Canyon formations, the Cherry Canyon Formation is approximately 1,300 ft thick and contains numerous turbidite source points. Unlike the Bell Canyon and Brushy Canyon deposits, the channel deposits are not as large (Giesen and Scholle, 1990), and the source of the sands appears to be dominantly from the eastern margin (**Figure 3.2-12**). Cherry Canyon 1 and 5 have the best channel development and the thickest sands. Overall, the Cherry Canyon Formation, on outcrop, is less influenced by traction current deposition than the rest of the Delaware Mountain Group deposits and is more influenced by sedimentation by density overflow currents (**Figure 3.2-9**). The Brushy Canyon has notably more discrete channel deposits and coarser sands than the Cherry Canyon and Bell Canyon. The Brushy Canyon Formation is approximately 1,500 ft thick.

Figure 3.2-12: These maps of Cherry Canyon Formation were created by measuring sandstone thicknesses on well logs in five regionally correlatable intervals (from Giesen and Scholle, 1990 and unpublished thesis research). Unlike the Bell Canyon sandstones, the Cherry Canyon sands are thinner and contain fewer channels. The red circle on the last map surrounds the Red Hills area.

Within the Delaware Mountain Group in the Red Hills area, the Bell Canyon and Cherry Canyon have better porosity (averaging 15 – 25 % within channel/splay sandstones) and permeability (averaging 2-13 mD) than the Brushy Canyon (~14% porosity, an <3 mD; Ge et al, 2022, Smye et al., 2021).

UNDERLYING CONFINING ZONE

Permian Leonard Series. The Leonardian/Cisuralian Series, located beneath the Guadalupian Series sediments, is represented by >3,000 ft of basin-deposited carbonate and siliciclastic sediments of the Bone Spring Formation. The Bone Spring Formation is more carbonate rich than the Delaware Mountain Group deposits, but the sea-level-driven cycles of sedimentation and the associated depositional environments are similar with debris flows, turbidites, and pelagic carbonate sediments. The Bone Spring Formation contains both conventional and unconventional fields within the Delaware Basin in both sandstone-rich and carbonate-rich facies. Most of these plays occur within toe-of-slope carbonate and siliciclastic deposits or the turbidite facies in the deeper sections of the basin (Nance and Hamlin, 2020). The upper most Bone Spring is usually dense carbonate mudstone with limited porosity and low porosity.

3.2.3 Faulting

In this immediate area of the Permian Basin, faulting is primarily confined to the lower Paleozoic section, where seismic data shows major faulting and ancillary fracturing-affected rocks only as high up as the base of the lower Wolfcamp strata (**Figures 3.2-6 and 5.6-1**). Faults that have been identified in the area are normal faults associated with Ouachita related movement along the western margin of the Central Platform to the east of the RH AGI facilities. The closest identified fault lies approximately 1.5 miles east of the Red Hills facilities and has approximately 1,000 ft of down-to-the-west structural relief. Because these faults are confined to the lower Paleozoic unit well below the injection zone for the RH AGI wells, they will not be discussed further (Horne et al., 2021). Within the area of the Red Hills site, no shallow faults within the Delaware Mountain Group have been identified by seismic data interpretation nor as reported by Horne et al., 2022).

3.3 Lithologic and Reservoir Characteristics

Based on the geologic analyses of the subsurface at the Red Hills Gas Plant, the uppermost portion of the Cherry Canyon Formation was chosen for acid gas injection and CO₂ sequestration for RH AGI #1 and the uppermost Delaware Mountain Group (the Bell Canyon and Cherry Canyon Formations) for RH AGI #3.

In the Red Hills area, the thickest sand within the Delaware Mountain Group is a sandstone within the Bell Canyon Formation that is informally and locally referred to as the Delaware Sand. The Delaware sand is productive, but it is not locally.

For RH AGI #1, this injection interval includes five high porosity sandstone units (sometimes referred to as the Manzanita) and has excellent caps above, below and between the individual sandstone units. There is no local production in the overlying Delaware Sands pool and there are no structural features or faults that would serve as potential vertical conduits. The high net porosity of the RH AGI #1 injection zone indicates that the injected H₂S and CO₂ will be easily contained close to the injection well.

For RH AGI #3, the injection interval has been expanded to include high porosity sandstones present within the Bell Canyon Formation in RH AGI #3 as well as the five high porosity zones in the Cherry Canyon Formation. Most of the sand bodies in the Bell Canyon and Cherry Canyon formations are surrounded by shales or limestones, forming caps for the injection zones. There are no structural features or faults that would serve as potential vertical conduits, and the overlying Ochoan evaporites form an excellent overall seal for the system. Even if undetected faulting existed, the evaporites (Castile and Salado) would self-seal and prevent vertical migration out of the Delaware Mountain Group.

3D seismic data, as well as geophysical logs for all wells penetrating the Bell Canyon and Cherry Canyon formations within a three-mile radius of the RH AGI wells were reviewed. There are no faults visible within the Delaware Mountain Group in the Red Hills area. Within the seismic review area, the units dip gently to the southeast with approximately 200 ft of relief across the area. Heterogeneities within both the Bell Canyon and Cherry Canyon sandstones, such as turbidite and debris flow channels, will exert a significant control over the porosity and permeability within the two units and fluid migration within those sandstones. In addition, these channels are frequently separated by low porosity and permeability siltstones and shales (Figure 3.2-8) as well as being encased by them. Based on regional studies (Giesen and Scholle, 1990 and Figures 3.2-11, 3.2-12), the preferred orientation of the channels, and hence the preferred fluid migration pathways, are roughly from the east to the west.

Porosity was evaluated using geophysical logs from nearby wells penetrating the Cherry Canyon Formation. **Figure 3.3-1** shows the Resistivity (Res) and Thermal Neutron Porosity (TNPH) logs from 5,050 ft to 6,650 ft and includes the injection interval. Five clean sands (>10% porosity and <60 API gamma units) are targets for injection within the Cherry Canyon formation and potentially another 5 sands with >10% porosity and <60 API gamma units were identified. Ten percent was the minimum cut-off considered for adequate porosity for injection. The sand units are separated by lime mudstone and shale beds with lateral continuity. The high porosity sand units exhibit an average porosity of about 18.9%; taken over the average thickness of the clean sand units within ½ mile of the RH AGI #1. There is an average of 177 ft with an irreducible water (S_{wir}) of 0.54 (see Table 1 of the RH AGI #1 permit application). Many of the sands are very porous (average porosity of > 22%) and it is anticipated that for these more porous sands, the S_{wir} may be too high. The effective porosity (Total Porosity – Clay Bound Water) would therefore also be higher. As a result, the estimated porosity ft (PhiH) of approximately 15.4 porosity-ft should be considered to be a minimum. The overlying Bell Canyon Formation has 900 ft of sands and intervening tight limestones, shales, and calcitic siltstones with porosities as low as 4%, but as mentioned above, there are at least 5 zones with a total thickness of approximately 460 ft and containing 18 to 20% porosity. The injection interval is located more than 2,650 ft above the Bone Spring Formation, which is the next production zone in the area.

Figure 3.3-1: Geophysical logs from the Bell Canyon and the Upper Cherry Canyon from the Government L Com #002 well, located 0.38 miles from the RH AGI #1 Well. The blue intervals are Bell Canyon porosity zones, and the yellow intervals are Cherry Canyon porosity zones.

3.4 Formation Fluid Chemistry

A chemical analysis (**Table 3.4-1**) of water from Federal 30 Well No. 2 (API 30-025-29069), approximately 3.9 miles away, indicates that the formation waters are highly saline (180,000 ppm NaCl) and compatible with the injection.

Sp. Gravity	1.125 @ 74°F	Resistivity	0.07 @ 74°F
рН	7	Sulfate	1,240
Iron	Good/Good	Bicarbonate	2,135
Hardness	45,000	Chloride	110,000
Calcium	12,000	NaCl	180,950
Magnesium	3,654	Sod. & Pot.	52,072

 Table 3.4-1:
 Formation fluid analysis for Cherry Canyon Formation from Federal 30 Well No. 2

Table extracted from C-108 Application to Inject by Ray Westall Associates with SWD-1067 – API 30-025-24676. Water analysis for formation water from Federal 30 #2 Well (API 30-025-29069), depth 7,335-7,345 ft, located 3.9 miles from RH AGI #1 well.

3.5 Groundwater Hydrology in the Vicinity of the Red Hills Gas Plant

Based on the New Mexico Water Rights Database from the New Mexico Office of the State Engineer, there are 15 freshwater wells located within a two-mile radius of the RH AGI wells, and only 2 water wells within one mile; the closest water well is located 0.31 miles away and has a total depth of 650 ft (**Figure 3.5-1; Appendix 3**). All water wells within the two-mile radius are shallow, collecting water from about 60 to 650 ft depth, in Alluvium and the Triassic redbeds. The shallow freshwater aquifer is protected by the surface and intermediate casings and cements in the RH AGI wells (**Figures Appendix 1-1 and Appendix 1.2**). While the casings and cements protect shallow freshwater aquifers, they also serve to prevent CO₂ leakage to the surface along the borehole.

Figure 3.5-1: Reported Water Wells within the MMA for the RH AGI Wells.

3.6 Historical Operations

3.6.1 Red Hills Site

On July 20, 2010, Agave Energy Company (Agave) filed an application with NMOCD to inject treated acid gas into an acid gas injection well. Agave built the Red Hills Gas Processing Plant and drilled RH AGI #1 in 2012-13. However, the well was never completed and never put into service because the plant was processing only sweet gas (no H₂S). Lucid purchased the plant from Agave in 2016 and completed the RH AGI #1 well. TND acquired Lucid's Red Hills assets in 2022. **Figure 3.6-1** shows the location of fixed H₂S and lower explosive limit (LEL) detectors in the immediate vicinity of the RH AGI wells. **Figure 3.6-2** shows a process block flow diagram.

Figure 3.6-1: Diagram showing the location of fixed H₂S and lower explosive limit (LEL) detectors in the immediate vicinity of the RH AGI wells. RH AGI #2 is temporarily abandoned.

Figure 3.6-2: Process Block Flow Diagram. RH AGI #2 is temporarily abandoned. M1 – M6: volumetric flow meters; C1 and C2: compressors; ST1 and ST2: sour treaters; and Sample Points (SP) for biweekly collection of data for determining the TAG stream concentration.

3.6.2 Operations within the MMA for the RH AGI Wells

NMOCD records identify a total of 22 oil- and gas-related wells within the MMA for the RH AGI wells (see **Appendix 4**). **Figure 3.6-3** shows the geometry of producing and injection wells within the MMA for the RH AGI wells. **Appendix 4** summarizes the relevant information for those wells. All active production in this area is targeted for the Bone Spring and Wolfcamp zones, at depths of 8,900 to 11,800 ft, the Strawn (11,800 to 12,100 ft) and the Morrow (12,700 to 13,500 ft). All of these productive zones lie at more than 2,000 ft below the RH AGI #1 and AGI #3 injection zone.

Figure 3.6-3: Location of all oil- and gas-related wells within the MMA for the RH AGI wells. Both the surface hole locations (SHL) and bottom hole locations (BHL) are labeled on the figure. For clarity, only the last five digits of the API numbers are used in labeling the wells.

3.7 Description of Injection Process

The Red Hills Gas Plant, including RH AGI #1 and RH AGI #3, is in operation and staffed 24-hours-a-day, 7-days-a week. The plant operations include gas compression, treating and processing. The plant gathers and processes produced natural gas from Lea and Eddy Counties in New Mexico. Once gathered at the plant, the produced natural gas is compressed, dehydrated to remove the water content, and processed to remove and recover natural gas liquids. The processed natural gas and recovered natural gas liquids are then sold and shipped to various customers. The inlet gathering lines and pipelines that bring gas into the plant are regulated by U.S. Department of Transportation (DOT), National Association of Corrosion Engineers (NACE) and other applicable standards which require that they be constructed and marked with appropriate warning signs along their respective rights-of-way. TAG from the plant's sweeteners will be routed to a central compressor facility, located west of the well head. Compressed TAG is then routed to the wells via high-pressure rated lines. **Figure 3.7-1** is a schematic of the AGI facilities.

The approximate composition of the TAG stream is: 80% CO₂, 20% H₂S, with trace components of C₁ – C₆ (methane – hexane) and Nitrogen. The anticipated duration of injection is 30 years.

3.8 Reservoir Characterization Modeling

The modeling and simulation focused on the Bell Canyon and Cherry Canyon Formations as the main injection target zone for acid gas storage. RH AGI #1 (API 30-025-40448) and RH AGI #3 (API 30-025-51970) are the approved injectors for treated acid gas injection by NMOCD and will serve as the injection wells in the model under the approved disposal timeframe and maximum allowable injection pressure. RH AGI #1 is completed in the Cherry Canyon Formation between 6,230 feet to 6,583 feet (MD). RH AGI #3 is completed in both the Bell Canyon and Cherry Canyon Formations between approximately 5,700 feet to 7,600 feet (MD).

Schlumberger's Petrel[®] (Version 2023.1) software was used to construct the geological models used in this work. Computer Modeling Group (CMG)'s CMG-GEM[®] (Version 2023.10) was used in the reservoir simulations presented in this MRV plan. CMG-WINPROP[®] (Version 2023.10) was used to perform PVT calculation through Equation of States and properties interactions among various compositions to feed the hydrodynamic modeling performed by CMG-GEM[®]. The hydrodynamical model considered aqueous, gaseous, and supercritical phases, and simulates the storage mechanisms including structural trapping, residual gas trapping, and solubility trapping. Injected TAG may exist in the aqueous phase in a dissolved state and the gaseous phase in a supercritical state. The model was validated through matching the historical injection data of RH AGI #1 and will be reevaluated periodically as required by the State permitting agency.

The static model is constructed with well tops and licensed 3D seismic data to interpret and delineate the structural surfaces of a layer within the caprock (Lamar Limestone) and its overlaying, underlying formations. The geologic model covers a 3.5-mile by 3.3-mile area. No distinctive geological structures such as faults have been identified within the geologic model boundary. The model is gridded with 182 x 167 x 18, totaling 547,092 cells. The average grid dimension of the active injection area is 100 square feet. **Figure 3.8-1** shows the simulation model in 3D view. The porosity and permeability of the model is populated through existing well logs. The range of the porosity is between 0.01 to 0.31. The initial permeability are interpolated between 0.02 to 155 millidarcy (mD), and the vertical permeability anisotropy was 0.1. **(Figure 3.8-2 and Figure 3.8-3)**. These values are validated and calibrated with the historical injection data of RH AGI #1 since 2018 as shown in **Figures 3.8-4, 3.8-5, and 3.8-6**.

The simulation model is calibrated with the injection history of RH AGI #1 since 2018. Simulation studies were further performed to estimate the reservoir responses when predicting TAG injection for 30 years through both RH AGI #1 (2018 – 2048) and RH AGI #3 (2024 - 2054). RH AGI #2 is temporarily abandoned as of the submission of this document. RH AGI #1 is simulated to inject with the average rate of the last 5 years, 1.2 MMSCF, in the prediction phase. RH AGI #3 is simulated to inject with permitted injection rate, 13 MMSCF, with 1,767 psi maximum surface injection pressure constraint approved by State agency. The simulation terminated in the year 2084, 30 years after the termination of all injection activities, to estimate the maximum impacted area during post injection phase.

During the calibration period (2018 – 2023), the historical injection rates were used as the primary injection control, and the maximum bottom hole pressures (BHP) are imposed on wells as the constraint, calculated based on the approved maximum injection pressure. This restriction is also estimated to be less than 90% of the formation fracture pressure calculated at the shallowest perforation depth of each well to ensure safe injection operations. The reservoir properties are tuned to match the historical injection until it was reasonably matched. **Figure 3.8-4** shows that the historical injection rates from RH AGI #1 in the Cherry Canyon Formation. **Figure 3.8-5** shows the BHP response of RH AGI #1 during the history matching phase.

During the forecasting period, linear cumulative injection behavior indicates that the Cherry Canyon and Bell Canyon Formations received the TAG stream freely. **Figure 3.8-6** shows the cumulative disposed H₂S and CO₂ of each RH AGI injector separately in gas mass. The modeling results indicate that the Cherry Canyon and Bell Canyon Formations are capable of safely storing and containing the gas volume without violating the permitted rate and pressure. **Figure 3.8-7** shows the gas saturation represented TAG plume at the end of 30-year forecasting in 3D view. **Figure 3.8-8** shows the extent of the plume migration in a map view at 4 key time steps. It can be observed that the size of the TAG plume is very limited and mainly stayed within Targa's Red Hills facility boundary at the end of injection. In the year 2084, after 30 years of monitoring, the injected gas remained trapped in the reservoir and there was no significant change in the observed TAG footprint as compared to that at the end of injection.

In summary, after careful reservoir engineering review and numerical simulation study, our analysis shows that the Bell Canyon and Cherry Canyon Formations can receive treated acid gas (TAG) at the injection rate and permitted maximum surface injection pressure permitted by NMOCC. The injection formations will safely contain the injected TAG volume within the injection and post-injection timeframe. The injection wells will allow for sequestration while preventing associated environmental impacts.

Figure 3.8-1: 3D view of the simulation model of RH AGI #1 and RH AGI #3, containing Salado-Castile Formation, Lamar Limestone, Bell Canyon Formation, and Cherry Canyon Formation. Color legends represents the elevation of layers.

Figure 3.8-2: Porosity estimation using available well data for the simulation domain.

Figure 3.8-3: Permeability estimation using available well data for simulation domain.

Figure 3.8-4: The historical injection rate and total gas injected from RH AGI #1 (2018 to 2023).

Figure 3.8-5: The historical bottom hole pressure response from RH AGI #1 (2018 to 2023)

Figure 3.8-6: Prediction of cumulative mass of injected CO₂ and H₂S for RH AGI #1 and RH AGI #3 (2018 to 2054).

Figure 3.8-7: Simulation model depicting the free phase TAG (represented by gas saturation) at the end of the 30-year post-injection monitoring period (2054) in 3D view.

Figure 3.8-8: Map view depicting the free phase TAG plume at years 2030, 2035, 2045, 2055 (1-year post injection).

4 Delineation of the Monitoring Areas

In determining the monitoring areas below, the extent of the TAG plume is equal to the superposition of plumes in any layer for any of the model scenarios described in Section 3.8.

4.1 MMA – Maximum Monitoring Area

As defined in Subpart RR, the maximum monitoring area (MMA) is equal to or greater than the area expected to contain the free phase CO_2 plume until the CO_2 plume has stabilized plus an all-around buffer zone of at least one-half mile. **Figures 4.1-1** shows the MMA as defined by the extent of the stabilized TAG plume at year 2059 plus a 1/2-mile buffer.

4.2 AMA – Active Monitoring Area

The Active Monitoring Area (AMA) is shown in **Figure 4.1-1**. The AMA is consistent with the requirements in 40 CFR 98.449 because it is the area projected: (1) to contain the free phase CO_2 plume for the duration of the project (year t, t = 2054), plus an all-around buffer zone of one-half mile. (2) to contain the free phase CO_2 plume for at least 5 years after injection ceases (year t + 5, t + 5 = 2059). Targa intends to define the active monitoring area (AMA) as the same area as the MMA. The purple cross-hatched polygon in **Figure 4.1-1** is the plume extent at the end of injection. The yellow polygon in **Figure 4.1-1** is the stabilized plume extent 5 years after injection ceases. The AMA/MMA shown as the red-filled polygon contains the CO_2 plume during the duration of the project and at the time the plume has stabilized.

Figure 4.1-1: Active monitoring area (AMA) for RH AGI #1, RH AGI #2 (temporarily abandoned) and RH AGI #3 at the end of injection (2054, purple polygon) and 5 years post-monitoring (2059, yellow polygon). Maximum monitoring area (MMA) is shown in red shaded area.

5 Identification and Evaluation of Potential Leakage Pathways to the Surface

Subpart RR at 40 CFR 448(a)(2) requires the identification of potential surface leakage pathways for CO_2 in the MMA and the evaluation of the likelihood, magnitude, and timing of surface leakage of CO_2 through these pathways.

Through the site characterization required by the NMOCD C-108 application process for Class II injection wells, the geologic characterization presented in Section 3, and the reservoir modeling described in Section 3.8, TND has identified and evaluated the potential CO_2 leakage pathways to the surface.

A qualitative evaluation of each of the potential leakage pathways is described in the following paragraphs. Risk estimates were made utilizing the National Risk Assessment Partnership (NRAP) tool, developed by five national laboratories: NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL). The NRAP collaborative research effort leveraged broad technical capabilities across the Department of Energy (DOE) to develop the integrated science base, computational tools, and protocols required to assess and manage environmental risks at geologic carbon storage sites. Utilizing the NRAP tool, TND conducted a risk assessment of CO₂ leakage through various potential pathways including surface equipment, existing and approved wellbores within MMA, faults and fractures, and confining zone formations.

5.1 Potential Leakage from Surface Equipment

Due to the corrosive nature of CO₂ and H₂S, there is a potential for leakage from surface equipment at sour gas facilities. Preventative risk mitigation includes adherence to relevant regulatory requirements and industry standards governing the construction, operation, and maintenance of gas plants. Specifically, NMAC 19.15.26.10 requires injection well operators to operate and maintain "surface facilities in such a manner as will confine the injected fluids to the interval or intervals approved and prevent surface damage or pollution resulting from leaks, breaks or spills."

Operational risk mitigation measures relevant to potential CO₂ emissions from surface equipment include a schedule for regular inspection and maintenance of surface equipment. Additionally, TND implements several methods for detecting gas leaks at the surface. Detection is followed up by immediate response. These methods are described in more detail in sections 6 and 7.

Although mitigative measures are in place to minimize CO_2 emissions from surface equipment, such emissions are possible. Any leaks from surface equipment would result in immediate (timing) emissions of CO_2 to the atmosphere the magnitude of which would depend on the duration of the leak and the operational conditions at the time and location of the leak.

The injection wells and the pipeline that carries CO_2 to them are the most likely surface components of the system to allow CO_2 to leak to the surface. The accumulation of wear and tear on the surface components, especially at the flanged connection points, is the most probable source of the leakage. Another possible source of leakage is the release of air through relief valves, which are designed to alleviate pipeline overpressure. Leakage can also occur when the surface components are damaged by an accident or natural disaster, which releases CO_2 . Therefore, TND infers that there is a potential for leakage via this route. Depending on the component's failure mode, the magnitude of the leak can vary greatly. For example, a rapid break or rupture could release thousands of pounds of CO_2 into the atmosphere almost instantly, while a slowly deteriorating seal at a flanged connection could release only a few pounds of CO_2 over several hours or days. Surface component leakage or venting is only a concern during the injection operation phase. Once the injection phase is complete, the surface components will no longer be able to store or transport CO_2 , eliminating any potential risk of leakage.

5.2 Potential Leakage from Approved, Not Yet Drilled Wells

The only wells within the MMA that are approved but not yet drilled are horizontal wells. These wells have a Well Status of "permitted" in **Appendix 4**. There are no vertical wells within the MMA with a Well Status of "permitted".

5.2.1 Horizontal Wells

The table in **Appendix 3** and **Figure 4.1-1** shows a number of horizontal wells in the area, many of which have approved permits to drill but which are not yet drilled. If any of these wells are drilled through the Bell Canyon and Cherry Canyon injection zones for RH AGI #3 and RH AGI #1, they will be required to take special precautions to prevent leakage of TAG minimizing the likelihood of CO₂ leakage to the surface. This requirement will be made by NMOCD in regulating applications for permit to drill (APD) and in ensuring that the operator and driller are aware that they are drilling through an H₂S injection zone in order to access their target production formation. NMAC 19.15.11 for Hydrogen Sulfide Gas includes standards for personnel and equipment safety and H₂S detection and monitoring during well drilling, completion, well workovers, and well servicing operations all of which apply for wells drilled through the RH AGI wells TAG plume.

Due to the safeguards described above, the fact there are no proposed wells for which the surface hole location (SHL) lies within the simulated TAG plume and, considering the NRAP risk analysis described here in Section 5, TND considers the likelihood of CO₂ emissions to the surface via these horizontal wells to be highly unlikely.

5.3 Potential Leakage from Existing Wells

Existing oil and gas wells within the MMA as delineated in Section 4 are shown in **Figure 3.6-3** and detailed in **Appendix 4**.

TND considered all wells completed and approved within the MMA in the NRAP risk assessment. Some of these wells penetrate the injection and/or confining zones while others do not. Even though the risk of CO_2 leakage through the wells that did not penetrate confining zones is highly unlikely, TND did not omit any potential source of leakage in the NRAP analysis. If leakage through wellbores happens, the worst-case scenario is predicted using the NRAP tool to quantitatively assess the amount of CO₂ leakage through existing and approved wellbores within the MMA. Thirty-nine existing and approved wells inside MMA were addressed in the NRAP analysis. The reservoir properties, well data, formation stratigraphy, and MMA area were incorporated into the NRAP tool to forecast the rate and mass of CO₂ leakage. The worst scenario is that all of the 39 wells were located right at the source of CO_2 – the injection wells' location. In this case, the maximum leakage rate of one well is approximately 7e-6 kg/s. This value is the maximum amount of CO_2 leakage, 220 kg/year, and occurs in the second year of injection, then gradually reduces to 180 kg at the end of year 30. Comparing the total amount of CO_2 injected (assuming 5 MMSCFD of supercritical CO_2 injected continuously for 30 years), the leakage mass amounts to 0.0054% of the total CO₂ injected. This leakage is considered negligible. Also, this worst-case scenario, where 39 wells are located right at the injection point, is impossible in reality. Therefore, CO₂ leakage to the surface via this potential leakage pathway can be considered improbable.

5.3.1 Wells Completed in the Bell Canyon and Cherry Canyon Formations

The only wells completed in the Bell Canyon and Cherry Canyon Formations within the MMA are RH AGI #1, RH AGI #2 (drilling stopped in the Bell Canyon), and RH AGI #3 and the 30-025-08371 well which was completed at a depth of 5,425 ft. This well is within the Red Hills facility boundary and is plugged and abandoned (see **Appendix 9** for plugging and abandonment (P&A) record).

Appendix 1 includes schematics of the RH AGI #1, RH AGI #2, and RH AGI #3 wells' construction showing multiple strings of casing all cemented to surface. Injection of TAG into RH AGI #1 and RH AGI #3 occurs through tubing with a permanent production packer set above the injection zone.

RH AGI #2 is located in close proximity to RH AGI #1 and is temporarily abandoned. Drilling of this well stopped at 6,205 ft due to concerns about high pressures by drilling into the Cherry Canyon Formation and therefore, did not penetrate the Cherry Canyon Formation. The cement plug was tagged at 5,960 feet which is above the injection zone for RH AGI #1 (see **Figure Appendix 1-3**).

Due to the robust construction of the RH AGI wells, the plugging of the well 30-025-08371 above the Bell Canyon, the plugging of RH AGI #2 above the Cherry Canyon Formation, and considering the NRAP analysis described above, TND considers that, while the likelihood of CO₂ emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.3.2 Wells Completed in the Bone Spring / Wolfcamp Zones

Several wells are completed in the Bone Spring and Wolfcamp oil and gas production zones as described in Section 3.6.2. These productive zones lie more than 2,000 ft below the RH AGI wells injection zone minimizing the likelihood of communication between the RH AGI well injection zones and the Bone Spring / Wolfcamp production zones. Construction of these wells includes surface casing set at 1,375 ft and cemented to surface and intermediate casing set at the top of the Bell Canyon at depths of from 5,100 to 5,200 ft and cemented through the Permian Ochoan evaporites, limestone and siltstone (**Figure 3.2-2**) providing zonal isolation preventing TAG injected into the Bell Canyon and Cherry Canyon formations through the RH AGI wells from leaking upward along the borehole in the event the TAG plume were to reach these wellbores. **Figure 4.1-1** shows that the modeled TAG plume extent after 30 years of injection and 5 years of post-injection stabilization does not extend to well boreholes completed in the Bone Spring / Wolfcamp production zones thereby indicating that these wells are not likely to be pathways for CO₂ leakage to the surface.

Due to the construction of these wells, the fact that the modeled TAG plume does not reach the SHL of these wells and considering the NRAP analysis described in the introductory paragraph of Section 5, TND considers that, while the likelihood of CO_2 emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.3.3 Wells Completed in the Siluro-Devonian Zone

One well penetrated the Devonian at the boundary of the MMA - EOG Resources, Government Com 001, API # 30-025-25604, TVD = 17,625 ft, 0.87 miles from RH AGI #3. This well was drilled to a total depth of 17,625 ft on March 5, 1978, but plugged back to 14,590 ft, just below the Morrow, in May of 1978. Subsequently, this well was permanently plugged and abandoned on December 30, 2004, and approved by NMOCD on January 4, 2005 (see **Appendix 9** for P&A records). The approved plugging provides zonal isolation for the Bell Canyon and Cherry Canyon injection zones minimizing the likelihood that this well will be a pathway for CO_2 emissions to the surface from either injection zone.

Due to the location of this well at the edge of the MMA and considering the NRAP analysis described in the introductory paragraph of Section 5, TND considers that, while the likelihood of CO₂ emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.3.4 Groundwater Wells

The table in Appendix 3 lists 15 water wells within a 2-mile radius of the RH AGI wells, only 2 of which are within a 1-mile radius of and within the MMA for the RH AGI wells (**Figure 3.5-1**). The deepest ground water well is 650 ft deep. The evaporite sequence of the Permian Ochoan Salado and Castile Formations (see

Section 3.2.2) provides an excellent seal between these groundwater wells and the Bell and Cherry Canyon injection zones of RH AGI #1and RH AGI #3. Therefore, it is unlikely that these two groundwater wells are a potential pathway of CO₂ leakage to the surface. Nevertheless, the CO₂ surface monitoring and groundwater monitoring described in Sections 6 and 7 will provide early detection of CO₂ leakage followed by immediate response thereby minimizing the magnitude of CO₂ leakage volume via this potential pathway.

Due to the shallow depth of the groundwater wells within the MMA relative to the depth of the RH AGI wells and considering the NRAP analysis described in the introductory paragraph in Section 5, TND considers that, while the likelihood of CO_2 emissions to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.4 Potential Leakage through the Confining / Seal System

The site characterization for the injection zone of the RH AGI wells described in Sections 3.2.2 and 3.3 indicates a thick sequence of Permian Ochoan evaporites, limestone, and siltstones (**Figure 3.2-2**) above the Bell Canyon and Cherry Canyon Formations and no evidence of faulting. Therefore, it is unlikely that TAG injected into the Bell Canyon and Cherry Canyon Formations will leak through this confining zone to the surface. Limiting the injection pressure to less than the fracture pressure of the confining zone will minimize the likelihood of CO_2 leakage through this potential pathway to the surface.

Leakage through a confining zone happens in low-permeability shale formations containing natural fractures. The injection zone for RH AGI #1 and RH AGI #3 is the Delaware Mountain Group Formation (Bell Canyon and Cherry Canyon), which underlie the very much lower permeability (<0.01 mD) Castile and Salado Formations that provide excellent seals. Still, TND took leakage through confining zones into consideration in the NRAP risk assessment. The worst-case scenario is defined as leakage through the seal happening right above the injection wells, where CO₂ saturation is highest. However, this worst-case scenario of leakage only shows that 0.0017% of total CO₂ injection in 30 years was leaked from the injection zone through the seals. As we go further from the source of CO₂, the likelihood of such an event will diminish proportionally with the distance from the source. Considering that this is the greatest amount of CO₂ leakage in this worst-case scenario, if the event happens, the leak must pass upward through the confining zone, the secondary confining strata that consists of additional low permeability geologic units, and other geologic units, TND concludes that the risk of leakage through this pathway is highly unlikely.

5.5 Potential Leakage due to Lateral Migration

The characterization of the sand layers in the Cherry Canyon Formation described in Section 3.3 states that these sands were deposited by turbidites in channels in submarine fan complexes; each sand is encased in low porosity and permeability fine-grained siliciclastics and mudstones with lateral continuity. Regional consideration of their depositional environment suggests a preferred orientation for fluid and gas flow would be south-to-north along the channel axis. However, locally the high net porosity of the RH AGI #1 and RH AGI #3 injection zones indicates adequate storage capacity such that the injected TAG will be easily contained close to the injection well, thus minimizing the likelihood of lateral migration of TAG outside the MMA due to a preferred regional depositional orientation.

Lateral migration of the injected TAG was addressed in detail in Section 3.3. Therein it states that the units dip gently to the southeast with approximately 200 ft of relief across the area. Heterogeneities within both the Bell Canyon and Cherry Canyon sandstones, such as turbidite and debris flow channels, will exert a significant control over the porosity and permeability within the two units and fluid migration within those sandstones. In addition, these channels are frequently separated by low porosity and permeability siltstones and shales as well as being encased by them.

Based on the discussion of the channeled sands in the injection zone, TND considers that the likelihood of CO₂ to migrate laterally along the channel axes is possible. However, the facts that the turbidite sands are encased in low porosity and permeability fine-grained siliciclastics and mudstones with lateral continuity and that the injectate is projected to be contained within the injection zone close to the injection wells minimizes the likelihood that CO₂ will migrate to a potential conduit to the surface.

5.6 Potential Leakage through Fractures and Faults

Prior to injection, a thorough geological characterization of the injection zone and surrounding formations was performed (see Section 3) to understand the geology as well as identify and understand the distribution of faults and fractures. **Figure 5.6-1** shows the fault traces in the vicinity of the Red Hills plant. The faults shown on **Figure 5.6-1** are confined to the Paleozoic section below the injection zone for the RH AGI wells. No faults were identified in the confining zone above the Bell Canyon and Cherry Canyon injection zone for the RH AGI wells.

No faults were identified within the MMA which could potentially serve as conduits for surface CO₂ emission. The closest identified fault lies approximately 1.5 miles east of the Red Hills site and has approximately 1,000 ft of down-to-the-west structural relief. Because this fault is confined to the lower Paleozoic unit more than 5,100 feet below the injection zone for the RH AGI wells, there is minimal chance it would be a potential leakage pathway. This inference is supported by the NRAP simulation result. Therefore, TND concludes that the CO₂ leakage rate through this fault is zero and that the risk of leakage through this potential leakage pathway is highly improbable.

Figure 5.6-1: New Mexico Tech Seismological Observatory (NMTSO) seismic network close to the operations, recent seismic events, and fault traces (2022-2023). Note: Fault traces are from Horne et al 2021 for deep seated faults in the lower Paleozoic. The fault traces shown close to the Red Hills facility die out at the base of the Wolfcamp formation at a depth of 12,600 feet, more than 5,100 feet below the bottom of the injection zone at 7,500 feet.

5.7 Potential Leakage due to Natural / Induced Seismicity

The New Mexico Tech Seismological Observatory (NMTSO) monitors seismic activity in the state of New Mexico. A search of the database shows no recent seismic events close to the Red Hills operations. The closest recent, as of 4 September 2023, seismic events are:

- 7.5 miles, 2022-09-03, Magnitude 3
- 8 miles, 2022-09-02, Magnitude 2.23
- 8.6 miles, 2022-10-29, Magnitude 2.1

Figure 5.6-1 shows the seismic stations and recent seismic events in the area around the Red Hills facility.

Due to the distance between the RH AGI wells and the recent seismic events, the magnitude of these events, and the fact that TND injects at pressures below fracture opening pressure, TND considers the likelihood of CO₂ emissions to the surface caused by seismicity to be improbable.

Monitoring of seismic events in the vicinity of the RH AGI wells is discussed in Section 6.7.

6 Strategy for Detecting and Quantifying Surface Leakage of CO₂

Subpart RR at 40 CFR 448(a)(3) requires a strategy for detecting and quantifying surface leakage of CO₂. TND will employ the following strategy for detecting, verifying, and quantifying CO₂ leakage to the surface through the potential pathways for CO₂ surface leakage identified in Section 5. TND considers H₂S to be a proxy for CO₂ leakage to the surface and as such will employ and expand upon methodologies detailed in their H₂S Contingency plan to detect, verify, and quantify CO₂ surface leakage. **Table 6-1** summarizes the leakage monitoring of the identified leakage pathways. Monitoring will occur for the duration of injection and the 5-year post-injection period.

Potential Leakage Pathway	Detection Monitoring	
Surface Equipment	 Distributed control system (DCS) surveillance of plant operations Visual inspections Inline inspections Fixed in-field gas monitors/CO₂ flux monitoring network Personal and hand-held gas monitors 	
Existing RH AGI Wells	 DCS surveillance of well operating parameters Visual inspections Mechanical integrity tests (MIT) Fixed in-field gas monitors/CO₂ flux monitoring network Personal and hand-held gas monitors In-well P/T sensors Groundwater monitoring 	
Fractures and Faults	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring 	
Confining Zone / Seal	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring 	
Natural / Induced Seismicity	DCS surveillance of well operating parametersSeismic monitoring	
 DCS surveillance of well operating parameter Fixed in-field gas monitors/CO₂ flux monitorin network Groundwater monitoring 		
Additional Monitoring	Groundwater monitoringSoil flux monitoring	

Table 6-1: Summary of Leak Detection Monitoring

6.1 Leakage from Surface Equipment

TND implements several tiers of monitoring for surface leakage including frequent periodic visual inspection of surface equipment, use of fixed in-field and personal H₂S sensors, and continual monitoring of operational parameters.

Leaks from surface equipment are detected by TND field personnel, wearing personal H₂S monitors, following daily and weekly inspection protocols which include reporting and responding to any detected leakage events. TND also maintains in-field gas monitors to detect H₂S and CO₂. The in-field gas monitors are connected to the DCS housed in the onsite control room. If one of the gas detectors sets off an alarm, it would trigger an immediate response to address and characterize the situation.

The following description of the gas detection equipment at the Red Hills Gas Processing Plant was extracted from the H₂S Contingency Plan:

"Fixed Monitors

The Red Hills Plant has numerous ambient hydrogen sulfide detectors placed strategically throughout the Plant to detect possible leaks. Upon detection of hydrogen sulfide at 10 ppm at any detector, visible beacons are activated, and an alarm is sounded. Upon detection of hydrogen sulfide at 90 ppm at any detector, an evacuation alarm is sounded throughout the Plant at which time all personnel will proceed immediately to a designated evacuation area. The Plant utilizes fixed-point monitors to detect the presence of H₂S in ambient air. The sensors are connected to the Control Room alarm panel's Programmable Logic Controllers (PLCs), and then to the Distributed Control System (DCS). The monitors are equipped with amber beacons. The beacon is activated at 10 ppm. The plant and the RH AGI well horns are activated with a continuous warbling alarm at 10 ppm and a siren at 90 ppm. All monitoring equipment is Red Line brand. The Control Panel is a 24 Channel Monitor Box, and the fixed point H₂S Sensor Heads are model number RL-101.

The Plant will be able to monitor concentrations of H_2S via H_2S Analyzers in the following locations:

- Inlet gas of the combined stream from Winkler and Limestone
- Inlet sour liquid downstream of the slug catcher
- Outlet Sweet Gas to Red Hills 1
- Outlet Sweet Liquid to Red Hills Condensate Surge

The RH AGI system monitors can also be viewed on the PLC displays located at the Plant. These sensors are all shown on the plot plan (see **Figure 3.6-1**). This requires immediate action for any occurrence or malfunction. All H₂S sensors are calibrated monthly.

Personal and Handheld H₂S Monitors

All personnel working at the Plant wear personal H₂S monitors. The personal monitors are set to alarm and vibrate at 10 ppm. Handheld gas detection monitors are available at strategic locations around the Plant so that plant personnel can check specific areas and equipment prior to initiating maintenance or other work. The handheld gas detectors have sensors for oxygen, LEL (explosive hydrocarbon atmospheres), H₂S and carbon dioxide (CO₂)."

6.2 Leakage from Approved Not Yet Drilled Wells

Special precautions will be taken in the drilling of any new wells that will penetrate the injection zones including more frequent monitoring during drilling operations (see **Table 6-1**). This applies to TND and other operators drilling new wells through the RH AGI wells injection zones within the MMA.
6.3 Leakage from Existing Wells

6.3.1 RH AGI Wells

As part of ongoing operations, TND continuously monitors and collects flow, pressure, temperature, and gas composition data in the data collection system. These data are monitored continuously by qualified technicians who follow response and reporting protocols when the system delivers alerts that data is not within acceptable limits.

To monitor leakage and wellbore integrity, two pressure and temperature gauges as well as Distributed Temperature Sensing (DTS) were deployed in RH AGI #1. One gauge is designated to monitor the tubing ID (reservoir) pressure and temperature and the second gauge monitors the annular space between the tubing and the long string casing (**Figure 6.2-1**). A leak is indicated when both gauges start reading the same pressure. DTS is clamped to the tubing, and it monitors the temperature profiles of the annulus from 6,159 ft to surface. DTS can detect variation in the temperature profile events throughout the tubing and or casing. Temperature variation could be an indicator of leaks. Data from temperature and pressure gauges is recorded by an interrogator housed in an onsite control room. DTS (temperature) data is recorded by a separate interrogator that is also housed in the onsite control room. Data from both interrogators are transmitted to a remote location for daily real time or historical analysis.

As is described above for RH AGI #1, pressure and temperature gauges as well as DTS were deployed in RH AGI #3 (see **Figure Appendix 1-2** for location of PT gauges).

The temporarily abandoned RH AGI #2 well will be monitored by the fixed in-field gas monitors, handheld H_2S monitors, and CO_2 soil flux monitoring described in Sections 7.2 and 7.3.

If operational parameter monitoring, MIT failures, or surface gas monitoring indicate a CO_2 leak has occurred, TND will take actions to quantify the leak based on operating conditions at the time of the detection including pressure at the point of emission, flowrate at the point of emission, duration of the emission, and estimation of the size of the emission site.

F	IALLIBU	RTON			Lucid Red Hills AGI 1 WSP. Tray Gillen / Michael Er	orrior	
	Installat	ion		Lea	County New Mexico Sales Rep - Lynn Talley (432) 63	1-4626	
	Installation	Donth	Longth	lte	2/3/21 - 2/28/21 Tool Specialists: Carey Lehmann, Jonathan Pl	nillips, Jose	Vargas
2		18.50	18.50	015.	KB		10
のためのない	20	22.90 64.05	4.40 41.15	1	20) Hanger Sub 3 1/2" 9.2# CRA VAMTOP x 7.7# VAM Ace Pin 19) 3 1/2" 7.7# VAM ACE 125K G3 Tubing (Slick Joint) Pan Eight Subs 8' 8' 6' 6' 4' 4' 2' 2'	7.000 3.500	3.000 3.035
	■1 8	103.97	39 . 92		18) 3 1/2" 7.7# VAM ACE 125K G3 Spaceout Subs	3.500	3.035
0.00	↓ 17	235.95	131.98	3	17) 3 1/2" 7.7# VAM ACE 125K G3 Tubing	3.500	3.035
100 M	16	241.95	6.00		16) 6' x 3 1/2" 7.7# CRA VAM ACE Box x 9.2# VAMTOP Pin	3.540	2.959
のため、彼	15	246.30	4.35		15) 3 1/2" NE HES SSSV Nickel Alloy 925 w/Alloy 825 Control Line 3 1/2" 9.2# VAMTOP Box x Pin	5.300	2.813
	14	252.29	5.99		14) 6' x 3 1/2" 9.2# CRA VAMTOP Box x 7.7# VAM ACE Pin	3.540	2.959
0.00	14	6,140.23	5,887.94	134	13) 3 1/2" 7.7# VAM ACE 125K G3 Tubing 12) 3 1/2" 7.7# VAM ACE Box x 9.2# VAMTOP Pin CRA Crossover	3.500 3.830	3.305 2.959
Set 2	11				11) 2.813" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy 925	4.073	2.813
の時代	10	6,153.72	13.49		10) 6' x 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy G3 Sub 13.49' Length Includes Line Items 10, 11 & 12	3.540	2.959
10.20	9	6.159 Tubina 6.162.6 Annular	P/T P/T	H	9) Baker PT Sensor Mandrel 3 1/2" 9.2# VAMTOP Box x Pin 6' VAMTOP 9.2# CRA Tubing Sub Above & Below Gauge Mdl	5.200	2.992
8-15-15-15-15-15-15-15-15-15-15-15-15-15-	8	6,161.23	7.51		8) 4.00" BWS Landed Seal Asmbly 9.2# VAM TOP Nickel Alloy 925 7.51' Length Includes Line Items 8 & 9	4.470	2.959
West Law		6,164.55	3.32		7) 7" 26-32# x 4.00" BWS Packer Nickel Alloy 925 Casing Collar @ 6,160.6' WL Measurement	5.875	4.000
たいのである	- - - - 6	6,172.05	7.5		6) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5 .032	4.000
50.03	5	6,172.88	0.83		5) 4.00" PBR Adapter x 9.2# VAMTOP BxP Nickel Alloy 925	5.68 0	2.959
VE CO	4 4	6,181.19	8.31		4) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub Nickel Alloy G3	3.540	2.959
12.00	3	6 ,182.52	1.33		3) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy 925 #102204262	4.073	2.562
00.00	2	6,184.29	1.77		2) Straight Slot Locator Seal Assembly Above Top Of Packer	4.450	2.880
S.Co.	3 E 1		6,186.06		1) BWD Permanent Packer. WL Measured Depth Previously 6189'	5.875	4.000
10.00					1a) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5.660	2.965
Set 3	1a				1b) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
					1c) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel,	2.920	2.562
10.00					1d) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
読むの	↓ 1b				1e) 2.562" RN Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel	3.920	2.321
1000	1c				1f) Re-Entry Guide / POP	3.950	3.000
10.00	1d						
の日本	1e						
State and	■						

Figure 6.2-1: Well Schematic for RH AGI #1 showing installation of P/T sensors

6.3.2 Other Existing Wells within the MMA

The CO₂ monitoring network described in Section 7.3 and well surveillance by other operators of existing wells will provide an indication of CO₂ leakage. Additionally, groundwater and soil CO₂ flux monitoring locations throughout the MMA will also provide an indication of CO₂ leakage to the surface. See Sections 7.7 and 7.8 for details.

6.4 Leakage through the Confining / Seal System

As discussed in Section 5, it is very unlikely that CO₂ leakage to the surface will occur through the confining zone. Continuous operational monitoring of the RH AGI wells, described in Sections 6.3 and 7.5, will provide an indicator if CO₂ leaks out of the injection zone. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO₂ leakage to the surface. See Sections 7.7 and 7.8 for details.

If changes in operating parameters or other monitoring listed in **Table 6-1** indicate leakage of CO₂ through the confining / seal system, TND will take actions to quantify the amount of CO₂ released and take mitigative action to stop it, including shutting in the well(s) (see Section 6.8).

6.5 Leakage due to Lateral Migration

Continuous operational monitoring of the RH AGI wells during and after the period of injection will provide an indication of the movement of the CO_2 plume migration in the injection zones. The CO_2 monitoring network described in Section 7.3, and routine well surveillance will provide an indicator if CO_2 leaks out of the injection zone. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO_2 leakage to the surface. See Sections 7.7 and 7.8 for details.

If monitoring of operational parameters or other monitoring methods listed in **Table 6-1** indicates that the CO₂ plume extends beyond the area modeled in Section 3.8 and presented in Section 4, TND will reassess the plume migration modeling for evidence that the plume may have intersected a pathway for CO₂ release to the surface. As this scenario would be considered a material change per 40CFR98.448(d)(1), TND will submit a revised MRV plan as required by 40CFR98.448(d). See Section 6.8 for additional information on quantification strategies.

6.6 Leakage from Fractures and Faults

As discussed in Section 5, it is very unlikely that CO_2 leakage to the surface will occur through faults. However, if monitoring of operational parameters and the fixed in-field gas monitors indicate possible CO_2 leakage to the surface, TND will identify which of the pathways listed in this section are responsible for the leak, including the possibility of heretofore unidentified faults or fractures within the MMA. TND will take measures to quantify the mass of CO_2 emitted based on the operational conditions that existed at the time of surface emission, including pressure at the point of emission, flowrate at the point of emission, duration of the emission, and estimation of the size of the emission site. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO_2 leakage to the surface. See Sections 7.7 and 7.8 for details. See Section 6.8 for additional information on quantification strategies.

6.7 Leakage due to Natural / Induced Seismicity

In order to monitor the influence of natural and/or induced seismicity, TND will use the established NMTSO seismic network. The network consists of seismic monitoring stations that detect and locate seismic events. Continuous monitoring helps differentiate between natural and induced seismicity. The network surrounding the Red Hills Gas Processing Plant has been mapped on **Figure 5.6-1**. The monitoring network records Helicorder data from UTC (coordinated universal time) all day long. The data are plotted daily at

5pm MST (mountain standard time). These plots can be browsed either by station or by day. The data are streamed continuously to the New Mexico Tech campus and archived at the Incorporated Research Institutions for Seismology Data Management Center (IRIS DMC).

If monitoring of the NMTSO seismic monitoring stations, the operational parameters and the fixed infield gas monitors indicates surface leakage of CO_2 linked to seismic events, TND will assess whether the CO_2 originated from the RH AGI wells and, if so, take measures to quantify the mass of CO_2 emitted to the surface based on operational conditions at the time the leak was detected. See Section 7.6 for details regarding seismic monitoring and analysis. See Section 6.8 for additional information on quantification strategies.

6.8 Strategy for Quantifying CO₂ Leakage and Response

6.8.1 Leakage from Surface Equipment

For normal operations, quantification of emissions of CO₂ from surface equipment will be assessed by employing the methods detailed in Subpart W according to the requirements of 98.444(d) of Subpart RR. Quantification of major leakage events from surface equipment as identified by the detection techniques listed in **Table 6-1** will be assessed by employing methods most appropriate for the site of the identified leak. Once a leak has been identified the leakage location will be isolated to prevent additional emissions to the atmosphere. Quantification will be based on the length of time of the leak and parameters that existed at the time of the leak such as pressure, temperature, composition of the gas stream, and size of the leakage point. TND has standard operating procedures to report and quantify all pipeline leaks in accordance with the NMOCD regulations (New Mexico administrative Code 19.15.28 Natural Gas Gathering Systems). TND will modify this procedure to quantify the mass of carbon dioxide from each leak discovered by TND or third parties. Additionally, TND may employ available leakage models for characterizing and predicting gas leakage from gas pipelines. In addition to the physical conditions listed above, these models are capable of incorporating the thermodynamic parameters relevant to the leak thereby increasing the accuracy of quantification.

6.8.2 Subsurface Leakage

Selection of a quantification strategy for leaks that occur in the subsurface will be based on the leak detection method (**Table 6-1**) that identifies the leak. Leaks associated with the point sources, such as the injection wells, and identified by failed MITs, variations of operational parameters outside acceptable ranges, and in-well P/T sensors can be addressed immediately after the injection well has been shut in. Quantification of the mass of CO₂ emitted during the leak will depend on characterization of the subsurface leak, operational conditions at the time of the leak, and knowledge of the geology and hydrogeology at the leakage site. Conservative estimates of the mass of CO₂ emitted to the surface will be made assuming that all CO₂ released during the leak will reach the surface. TND may choose to estimate the emissions to the surface more accurately by employing transport, geochemical, or reactive transport model simulations.

Other wells within the MMA will be monitored with the atmospheric and CO₂ flux monitoring network placed strategically in their vicinity.

Nonpoint sources of leaks such as through the confining zone, along faults or fractures, or which may be initiated by seismic events and as may be identified by variations of operational parameters outside acceptable ranges will require further investigation to determine the extent of leakage and may result in cessation of operations.

6.8.3 Surface Leakage

A recent review of risk and uncertainty assessment for geologic carbon storage (Xiao et al., 2024) discussed monitoring for sequestered CO₂ leaking back to the surface emphasizing the importance of monitoring

network design in detecting such leaks. Leaks detected by visual inspection, hand-held gas sensors, fixed infield gas sensors, atmospheric, and CO₂ flux monitoring will be assessed to determine if the leaks originate from surface equipment, in which case leaks will be quantified according to the strategies in Section 6.8.1, or from the subsurface. In the latter case, CO₂ flux monitoring methodologies, as described in Section 7.8, will be employed to quantify the surface leaks.

7 Strategy for Establishing Expected Baselines for Monitoring CO₂ Surface Leakage

TND uses the existing automatic distributed control system to continuously monitor operating parameters and to identify any excursions from normal operating conditions that may indicate leakage of CO_2 . TND considers H_2S to be a proxy for CO_2 leakage to the surface and as such will employ and expand upon methodologies detailed in their H_2S Contingency plan to establish baselines for monitoring CO_2 surface leakage. The following describes TND's strategy for collecting baseline information.

7.1 Visual Inspection

TND field personnel conduct frequent periodic inspections of all surface equipment providing opportunities to assess baseline concentrations of H_2S , a proxy for CO₂, at the Red Hills Gas Plant.

7.2 Fixed In-Field, Handheld, and Personal H₂S Monitors

Compositional analysis of TND's gas injectate at the Red Hills Gas Plant indicates an approximate H₂S concentration of 20% thus requiring TND to develop and maintain an H₂S Contingency Plan (Plan) according to the NMOCD Hydrogen Sulfide Gas Regulations, Rule 11 (19.15.11 NMAC). TND considers H₂S to be a proxy for CO₂ leaks at the plant. The Plan contains procedures to provide for an organized response to an unplanned release of H₂S from the plant or the associated RH AGI wells and documents procedures that would be followed in case of such an event.

7.2.1 Fixed In-Field H₂S Monitors

The Red Hills Gas Plant utilizes numerous fixed-point monitors, strategically located throughout the plant, to detect the presence of H₂S in ambient air. The sensors are connected to the Control Room alarm panel's Programmable Logic Controllers (PLCs), and then to the DCS. Upon detection of H₂S at 10 ppm at any detector, visible amber beacons are activated, and horns are activated with a continuous warbling alarm. Upon detection of hydrogen sulfide at 90 ppm at any monitor, an evacuation alarm is sounded throughout the plant at which time all personnel will proceed immediately to a designated evacuation area.

7.2.2 Handheld and Personal H₂S Monitors

Handheld gas detection monitors are available at strategic locations around the plant so that plant personnel can check specific areas and equipment prior to initiating maintenance or other work. The handheld gas detectors have sensors for oxygen, LEL (explosive hydrocarbon atmospheres), H₂S and CO₂.

All personnel, including contractors who perform operations, maintenance and/or repair work in sour gas areas within the plant must wear personal H₂S monitoring devices to assist them in detecting the presence of unsafe levels of H₂S. Personal monitoring devices will give an audible alarm and vibrate at 10 ppm.

7.3 CO₂ Detection

In addition to the handheld gas detection monitors described above, New Mexico Tech, through a DOE research grant (DE-FE0031837 – Carbon Utilization and Storage Project of the Western USA (CUSP)), will assist TND in setting up a monitoring network for CO_2 leakage detection in the AMA as defined in Section 4.2. The scope of work for the DOE project includes field sampling activities to monitor CO_2/H_2S at the two RH AGI wells. These activities include periodic well (groundwater and gas) and atmospheric sampling from an area of 10 - 15 square miles around the injection wells. Once the network is set up, TND will assume responsibility for monitoring, recording, and reporting data collected from the system for the duration of the project.

7.4 Continuous Parameter Monitoring

The DCS of the plant monitors injection rates, pressures, and composition on a continuous basis. High and low set points are programmed into the DCS, and engineering and operations are alerted if a parameter is outside the allowable window. If a parameter is outside the allowable window, this will trigger further investigation to determine if the issue poses a leak threat. Also, see Section 6.2 for continuous monitoring of P/T in the well.

7.5 Well Surveillance

TND adheres to the requirements of NMOCC Rule 26 governing the construction, operation and closing of an injection well under the Oil and Gas Act. Rule 26 also includes requirements for testing and monitoring of Class II injection wells to ensure they maintain mechanical integrity at all times. Furthermore, NMOCC includes special conditions regarding monitoring, reporting, and testing in the individual permits for each injection well, if they are deemed necessary. TND's Routine Operations and Maintenance Procedures for the RH AGI wells ensure frequent periodic inspection of the wells and opportunities to detect leaks and implement corrective action.

7.6 Seismic (Microseismic) Monitoring Stations

TND has Installed a model TCH120-1 Trillium Compact Horizon Seismometer and a model CTR4-3S Centaur Digital Recorder to monitor for and record data for any seismic event at the Red Hills Gas Plant (see **Figure 7-1**). The seismic station meets the requirements of the NMOCC Order No. R-20916-H to "install, operate, and monitor for the life of the [Class II AGI] permit a seismic monitoring station or stations as directed by the Manager of the New Mexico Tech Seismological Observatory ("state seismologist") at the New Mexico Bureau of Geology and Mineral Resources."

In addition, data that are recorded by the State of New Mexico deployed seismic network within a 10-mile radius of the Red Hills Gas Plant will be analyzed by the New Mexico Bureau of Geology (NMBGMR), see **Figure 5.6-1**, and made publicly available. The NMBGMR seismologist will create a report and map showing the magnitudes of recorded events from seismic activity. The data are being continuously recorded. By examining historical data, a seismic baseline prior to the start of TAG injection can be well established and used to verify anomalous events that occur during current and future injection activities. If necessary, a certain period of time can be extracted from the overall data set to identify anomalous events during that period.

7.7 Groundwater Monitoring

New Mexico Tech, through the same DOE research grant described in Section 7.3 above, will monitor groundwater wells for CO₂ leakage which are located within the AMA as defined in Section 4.2. Water samples will be collected and analyzed on a monthly basis for 12 months to establish baseline data. After establishing the water chemistry baseline, samples will be collected and analyzed bi-monthly for one year and then quarterly. Samples will be collected according to EPA methods for groundwater sampling (U.S. EPA, 2015).

The water analysis includes total dissolved solids (TDS), conductivity, pH, alkalinity, major cations, major anions, oxidation-reduction potentials (ORP), inorganic carbon (IC), and non-purgeable organic carbon (NPOC). Charge balance of ions will be completed as quality control of the collected groundwater samples. See **Table 7.7-1**. Baseline analyses will be compiled and compared with regional historical data to determine patterns of change in groundwater chemistry not related to injection processes at the Red Hills Gas Plant. A report of groundwater chemistry will be developed from this analysis. Any water quality samples not within the expected variation will be further investigated to determine if leakage has occurred from the injection zone.

Parameters
рН
Alkalinity as HCO3- (mg/L)
Chloride (mg/L)
Fluoride (F-) (mg/L)
Bromide (mg/L)
Nitrate (NO3-) (mg/L)
Phosphate (mg/L)
Sulfate (SO42-) (mg/L)
Lithium (Li) (mg/L)
Sodium (Na) (mg/L)
Potassium (K) (mg/L)
Magnesium (Mg) (mg/L)
Calcium (Ca) (mg/L)
TDS Calculation (mg/L)
Total cations (meq/L)
Total anions (meq/L)
Percent difference (%)
ORP (mV)
IC (ppm)
NPOC (ppm)

Table 7.7-1: Groundwater Monitoring Parameters

7.8 Soil CO₂ Flux Monitoring

A vital part of the monitoring program is to identify potential leakage of CO₂ and/or brine from the injection horizon into the overlying formations and to the surface. One method that will be deployed is to gather and analyze soil CO₂ flux data which serves as a means for assessing potential migration of CO₂ through the soil and its escape to the atmosphere. By taking CO₂ soil flux measurements at periodic intervals, TND can continuously characterize the interaction between the subsurface and surface to understand potential leakage pathways. Actionable recommendations can be made based on the collected data.

Soil CO₂ flux will be collected on a monthly basis for 12 months to establish the baseline and understand seasonal and other variation at the Red Hills Gas Plant. After the baseline is established, data will be collected bi-monthly for one year and then quarterly.

Soil CO₂ flux measurements will be taken using a LI-COR LI-8100A flux chamber, or similar instrument, at pre planned locations at the site. PVC soil collars (8cm diameter) will be installed in accordance with the LI-8100A specifications. Measurements will be subsequently made by placing the LI-8100A chamber on the soil collars and using the integrated iOS app to input relevant parameters, initialize measurement, and record the system's flux and coefficient of variation (CV) output. The soil collars will be left in place such that each subsequent measurement campaign will use the same locations and collars during data collection.

Figure 7-1: Red Hills monitoring network of 32 CO₂ flux locations, 2 groundwater wells, and a seismic station developed by New Mexico Tech and Targa Resources to detect leakage during injection.

8 Site Specific Considerations for Determining the Mass of CO₂ Sequestered

Appendix 7 summarizes the twelve Subpart RR equations used to calculate the mass of CO₂ sequestered annually. **Appendix 8** includes the twelve equations from Subpart RR. Not all of these equations apply to TND's current operations at the Red Hills Gas Plant but are included in the event TND's operations change in such a way that their use is required.

Figure 3.6-2 shows the location of all surface equipment and points of venting listed in 40CFR98.232(d) of Subpart W that will be used in the calculations listed below.

8.1 CO₂ Received

Currently, TND receives gas to its Red Hills Gas Plant through six pipelines: Gut Line, Winkler Discharge, Red Hills 24" Inlet Loop, Greyhound Discharge, Limestone Discharge, and the Plantview Loop. The gas is processed as described in Section 3.8 to produce compressed TAG which is then routed to the wellhead and pumped to injection pressure through NACE-rated (National Association of Corrosion Engineers) pipeline suitable for injection. TND will use Equation RR-2 for Pipelines to calculate the mass of CO₂ received through pipelines and measured through volumetric flow meters. The total annual mass of CO₂ received through these pipelines will be calculated using Equation RR-3. Receiving flow meter r in the following equations corresponds to meters M1 and M2 in **Figure 3.6-2**.

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$
(Equation RR-2 for Pipelines)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons).
- $Q_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r in quarter p at standard conditions (standard cubic meters).
- $S_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- *p* = Quarter of the year.
- *r* = Receiving flow meter.

$$CO_2 = \sum_{r=1}^R CO_{2T,r}$$

(Equation RR-3 for Pipelines)

where:

- CO 2 = Total net annual mass of CO₂ received (metric tons).
- $CO_{2T,r}$ = Net annual mass of CO_2 received (metric tons) as calculated in Equation RR-1 or RR-2 for flow meter r.
- r = Receiving flow meter.

Although TND does not currently receive CO_2 in containers for injection, they wish to include the flexibility in this MRV plan to receive gas from containers. When TND begins to receive CO_2 in containers, TND will use Equations RR-1 and RR-2 for Containers to calculate the mass of CO_2 received in containers. TND will adhere to the requirements in 40CFR98.444(a)(2) for determining the quarterly mass or volume of CO_2 received in containers.

If CO_2 received in containers results in a material change as described in 40CFR98.448(d)(1), TND will submit a revised MRV plan addressing the material change.

8.2 CO₂ Injected

TND injects CO_2 into RH AGI #1 and RH AGI #3. Equation RR-5 will be used to calculate CO_2 measured through volumetric flow meters before being injected into the wells. Equation RR-6 will be used to calculate the total annual mass of CO_2 injected into both wells. The calculated total annual CO_2 mass injected is the parameter CO_{21} in

Equation RR-12. Volumetric flow meter u in the following equations corresponds to meters M3 and M6 in **Figure 3.6-2**.

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$

(Equation RR-5)

where:

- $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.
- $Q_{p,u}$ = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter).
- D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,u} = CO_2$ concentration measurement in flow for flow meter u in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- *p* = Quarter of the year.

$$CO_{2I} = \sum_{u=1}^{U} CO_{2,u}$$

(Equation RR-6)

where:

CO ₂₁ = Total annual CO₂ mass injected (metric tons) though all injection wells.

 $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.

u = Flow meter.

8.3 CO₂ Produced / Recycled

TND does not produce oil or gas or any other liquid at its Red Hills Gas Plant so there is no CO_2 produced or recycled.

8.4 CO₂ Lost through Surface Leakage

Equation RR-10 will be used to calculate the annual mass of CO_2 lost due to surface leakage from the leakage pathways identified and evaluated in Section 5 above. The calculated total annual CO_2 mass emitted by surface leakage is the parameter CO_{2E} in Equation RR-12 addressed in Section 8.6 below. Quantification strategies for leaks from the identified potential leakage pathways is discussed in Section 6.8.

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$

(Equation RR-10)

where:

CO 2E = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year.

 $CO_{2,x}$ = Annual CO_2 mass emitted (metric tons) at leakage pathway x in the reporting year.

x = Leakage pathway.

8.5 CO₂ Emitted from Equipment Leaks and Vented Emissions

As required by 98.444(d) of Subpart RR, TND will assess leakage from the relevant surface equipment listed in Sections 98.233 and 98.234 of Subpart W. According to 98.233(r)(2) of Subpart W, the emissions factor listed in Table W-1A of Subpart W shall be used to estimate all streams of gases. Parameter CO_{2FI} in Equation RR-12 is the total annual CO_2 mass emitted or vented from equipment located between the flow meter for measuring injection quantity and the injection wellhead. A calculation procedure is provided in subpart W.

8.6 CO₂ Sequestered

(

Since TND does not actively produce oil or natural gas or any other fluid at its Red Hills Gas Plant, Equation RR-12 will be used to calculate the total annual CO₂ mass sequestered in subsurface geologic formations.

$$CO_2 = CO_{2I} - CO_{2E} - CO_{2FI}$$
 (Equation RR-12)

- CO ₂ = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CO_{2I} = Total annual CO_2 mass injected (metric tons) in the well or group of wells in the reporting year.
- CO_{2E} = Total annual CO_2 mass emitted (metric tons) by surface leakage in the reporting year.
- CO _{2FI} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part.

9 Estimated Schedule for Implementation of MRV Plan

The baseline monitoring and leakage detection and quantification strategies described herein have been established and data collected by TND and its predecessor, Lucid, for several years and continues to the present. TND will begin implementing this revised MRV plan as soon as it is approved by EPA.

10 GHG Monitoring and Quality Assurance Program

TND will meet the monitoring and QA/QC requirements of 40CFR98.444 of Subpart RR including those of Subpart W for emissions from surface equipment as required by 40CFR98.444(d).

10.1 GHG Monitoring

As required by 40CFR98.3(g)(5)(i), TND's internal documentation regarding the collection of emissions data includes the following:

- Identification of positions of responsibility (i.e., job titles) for collection of the emissions data
- Explanation of the processes and methods used to collect the necessary data for the GHG calculations

• Description of the procedures and methods that are used for quality assurance, maintenance, and repair of all continuous monitoring systems, flow meters, and other instrumentation used to provide data for the GHGs reported

10.1.1 General

<u>Measurement of CO_2 Concentration</u> – All measurements of CO_2 concentrations of any CO_2 quantity will be conducted according to an appropriate standard method published by a consensus-based standards organization or an industry standard practice such as the Gas Producers Association (GPA) standards. All measurements of CO_2 concentrations of CO_2 received will meet the requirements of 40CFR98.444(a)(3).

<u>Measurement of CO₂ Volume</u> – All measurements of CO₂ volumes will be converted to the following standard industry temperature and pressure conditions for use in Equations RR-2 and RR-5, of Subpart RR of the GHGRP: Standard cubic meters at a temperature of 60 degrees Fahrenheit and at an absolute pressure of 1 atmosphere. TND will adhere to the American Gas Association (AGA) Report #3 – Orifice Metering.

10.1.2 CO₂ received.

Daily CO₂ received is recorded by totalizers on the volumetric flow meters on each of the pipelines listed in Section 8 using accepted flow calculations for CO₂ according to the AGA Report #3.

10.1.3 CO₂ injected.

Daily CO₂ injected is recorded by totalizers on the volumetric flow meters on the pipelines to the RH AGI #1 and RH AGI #3 wells using accepted flow calculations for CO₂ according to the AGA Report #3.

10.1.4 CO₂ produced.

TND does not produce CO₂ at the Red Hills Gas Plant.

10.1.5 CO₂ emissions from equipment leaks and vented emissions of CO₂.

As required by 98.444(d), TND will follow the monitoring and QA/QC requirements specified in Subpart W of the GHGRP for equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead.

As required by 98.444(d) of Subpart RR, TND will assess leakage from the relevant surface equipment listed in Sections 98.233 and 98.234 of Subpart W. According to 98.233(r)(2) of Subpart W, the emissions factor listed in Table W-1A of Subpart W shall be used.

10.1.6 Measurement devices.

As required by 40CFR98.444(e), TND will ensure that:

- All flow meters are operated continuously except as necessary for maintenance and calibration
- All flow meters used to measure quantities reported are calibrated according to the calibration and accuracy requirements in 40CFR98.3(i) of Subpart A of the GHGRP.
- All measurement devices are operated according to an appropriate standard method published by a
 consensus-based standards organization or an industry standard practice. Consensus-based standards
 organizations include, but are not limited to, the following: ASTM International, the American National
 Standards Institute (ANSI), the American Gas Association (AGA), the Gas Producers Association (GPA),
 the American Society of Mechanical Engineers (ASME), the American Petroleum Institute (API), and the
 North American Energy Standards Board (NAESB).
- All flow meter calibrations performed are National Institute of Standards and Technology (NIST) traceable.

10.2 QA/QC Procedures

TND will adhere to all QA/QC requirements in Subparts A, RR, and W of the GHGRP, as required in the development of this MRV plan under Subpart RR. Any measurement devices used to acquire data will be operated and maintained according to the relevant industry standards.

10.3 Estimating Missing Data

TND will estimate any missing data according to the following procedures in 40CFR98.445 of Subpart RR of the GHGRP, as required.

- A quarterly flow rate of CO₂ received that is missing would be estimated using invoices, purchase statements, or using a representative flow rate value from the nearest previous time period.
- A quarterly CO₂ concentration of a CO₂ stream received that is missing would be estimated using invoices, purchase statements, or using a representative concentration value from the nearest previous time period.
- A quarterly quantity of CO₂ injected that is missing would be estimated using a representative quantity of CO₂ injected from the nearest previous period of time at a similar injection pressure.
- For any values associated with CO₂ emissions from equipment leaks and vented emissions of CO₂ from surface equipment at the facility that are reported in Subpart RR, missing data estimation procedures specified in subpart W of 40 CFR Part 98 would be followed.

10.4 Revisions of the MRV Plan

TND will revise the MRV plan as needed to reflect changes in monitoring instrumentation and quality assurance procedures; or to improve procedures for the maintenance and repair of monitoring systems to reduce the frequency of monitoring equipment downtime; or to address additional requirements as directed by the USEPA or the State of New Mexico. If any operational changes constitute a material change as described in 40CFR98.448(d)(1), TND will submit a revised MRV plan addressing the material change.

11 Records Retention

TND will meet the recordkeeping requirements of paragraph 40CFR98.3(g) of Subpart A of the GHGRP. As required by 40CFR98.3(g) and 40CFR98.447, TND will retain the following documents:

- (1) A list of all units, operations, processes, and activities for which GHG emissions were calculated.
- (2) The data used to calculate the GHG emissions for each unit, operation, process, and activity. These data include:
 - (i) The GHG emissions calculations and methods used
 - (ii) Analytical results for the development of site-specific emissions factors, if applicable
 - (iii) The results of all required analyses
 - (iv) Any facility operating data or process information used for the GHG emission calculations
- (3) The annual GHG reports.

(4) Missing data computations. For each missing data event, TND will retain a record of the cause of the event and the corrective actions taken to restore malfunctioning monitoring equipment.

(5) A copy of the most recent revision of this MRV Plan.

(6) The results of all required certification and quality assurance tests of continuous monitoring systems, fuel flow meters, and other instrumentation used to provide data for the GHGs reported.

(7) Maintenance records for all continuous monitoring systems, flow meters, and other instrumentation used to provide data for the GHGs reported.

(8) Quarterly records of CO₂ received, including mass flow rate of contents of container (mass or volumetric) at standard conditions and operating conditions, operating temperature and pressure, and concentration of these streams.

(9) Quarterly records of injected CO_2 including mass flow or volumetric flow at standard conditions and operating conditions, operating temperature and pressure, and concentration of these streams.

(10) Annual records of information used to calculate the CO₂ emitted by surface leakage from leakage pathways.

(11) Annual records of information used to calculate the CO_2 emitted from equipment leaks and vented emissions of CO_2 from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead.

(12) Any other records as specified for retention in this EPA-approved MRV plan.

12 Appendices

Appendix 1 TND Wells

Well Name	API #	Location	County	Spud Date	Total Depth	Packer
Red Hills AGI #1	30-025-40448	1,600 ft FSL, 150 ft FEL Sec. 13, T24S, R33E, NMPM	Lea, NM	10/23/2013	6,650 ft	6,170 ft
Red Hills AGI #2 (temporarily abandoned)	30-025-49474	150 ft FEL, 1,800 ft FSL Sec. 13, T24S, R33E, NMPM	Lea, NM		6,205 ft	
Red Hill AGI #3	30-025-51970	3,116 ft FNL, 1,159 ft FEL Sec. 13, T24S, R33E, NMPM	Lea, NM	9/13/2023	7,600 ft	5,700 ft

Figure Appendix 1-1: Schematic of RH AGI #1

Figure Appendix 1-2: As-built wellbore schematic for RH AGI #3

Note: Depths are not to scale.

Figure Appendix 1-3: As-built wellbore schematic for the RH AGI #2 Well (temporarily abandoned). The colored portion of the schematic below 6,205 ft was not completed.

Appendix 2 Referenced Regulations

U.S. Code > Title 26. INTERNAL REVENUE CODE > Subtitle A. Income Taxes > Chapter 1. NORMAL TAXES AND SURTAXES > Subchapter A. Determination of Tax Liability > Part IV. CREDITS AGAINST TAX > Subpart D. Business Related Credits > Section 45Q - Credit for carbon oxide sequestration

New Mexico Administrative Code (NMAC) > Title 19 – Natural resources > Chapter 15 – Oil and Gas

19.15.1 NMAC	GENERAL PROVISIONS AND DEFINITIONS [REPEALED]
19.15.2 NMAC	GENERAL PROVISIONS FOR OIL AND GAS OPERATIONS
19.15.3 NMAC	RULEMAKING
19.15.4 NMAC	ADJUDICATION
19.15.5 NMAC	ENFORCEMENT AND COMPLIANCE
19.15.6 NMAC	TAX INCENTIVES
19.15.7 NMAC	FORMS AND REPORTS
19.15.8 NMAC	FINANCIAL ASSURANCE
19.15.9 NMAC	WELL OPERATOR PROVISIONS
19.15.10 NMAC	SAFETY
19.15.11 NMAC	HYDROGEN SULFIDE GAS
19.15.12 NMAC	POOLS
19.15.13 NMAC	COMPULSORY POOLING
19.15.14 NMAC	DRILLING PERMITS
19.15.15 NMAC	WELL SPACING AND LOCATION
19.15.16 NMAC	DRILLING AND PRODUCTION
19.15.17 NMAC	PITS, CLOSED-LOOP SYSTEMS, BELOW-GRADE TANKS AND SUMPS
19.15.18 NMAC	PRODUCTION OPERATING PRACTICES
19.15.19 NMAC	NATURAL GAS PRODUCTION OPERATING PRACTICE
19.15.20 NMAC	OIL PRORATION AND ALLOCATION
19.15.21 NMAC	GAS PRORATION AND ALLOCATION
19.15.22 NMAC	HARDSHIP GAS WELLS
19.15.23 NMAC	OFF LEASE TRANSPORT OF CRUDE OIL OR CONTAMINANTS
19.15.24 NMAC	ILLEGAL SALE AND RATABLE TAKE
19.15.25 NMAC	PLUGGING AND ABANDONMENT OF WELLS
19.15.26 NMAC	INJECTION
19.15.27 - 28 NMAC	[RESERVED] PARTS 27 - 28
19.15.29 NMAC	RELEASES

CHAPTER 15 - OIL AND GAS

19.15.30 NMAC	REMEDIATION
19.15.31 - 33 NMAC	[RESERVED] PARTS 31 - 33
19.15.34 NMAC	PRODUCED WATER, DRILLING FLUIDS AND LIQUID OIL FIELD WASTE
19.15.35 NMAC	WASTE DISPOSAL
19.15.36 NMAC	SURFACE WASTE MANAGEMENT FACILITIES
19.15.37 NMAC	REFINING
19.15.38 NMAC	[RESERVED]
19.15.39 NMAC	SPECIAL RULES
19.15.40 NMAC	NEW MEXICO LIQUIFIED PETROLEUM GAS STANDARD
19.15.41 - 102 NMAC	[RESERVED] PARTS 41 - 102
19.15.103 NMAC	SPECIFICATIONS, TOLERANCES, AND OTHER TECHNICAL REQUIREMENTS FOR COMMERCIAL WEIGHING AND MEASURING DEVICES
19.15.104 NMAC	STANDARD SPECIFICATIONS/MODIFICATIONS FOR PETROLEUM PRODUCTS
19.15.105 NMAC	LABELING REQUIREMENTS FOR PETROLEUM PRODUCTS
19.15.106 NMAC	OCTANE POSTING REQUIREMENTS
19.15.107 NMAC	APPLYING ADMINISTRATIVE PENALTIES
19.15.108 NMAC	BONDING AND REGISTRATION OF SERVICE TECHNICIANS AND SERVICE ESTABLISHMENTS FOR COMMERCIAL WEIGHING OR MEASURING DEVICES
19.15.109 NMAC	NOT SEALED NOT LEGAL FOR TRADE
19.15.110 NMAC	BIODIESEL FUEL SPECIFICATION, DISPENSERS, AND DISPENSER LABELING REQUIREMENTS [REPEALED]
19.15.111 NMAC	E85 FUEL SPECIFICATION, DISPENSERS, AND DISPENSER LABELING REQUIREMENTS [REPEALED]
19.15.112 NMAC	RETAIL NATURAL GAS (CNG / LNG) REGULATIONS [REPEALED]

Appendix 3 Water Wells

Water wells identified by the New Mexico State Engineer's files within two miles of the RH AGI wells; water wells within one mile are highlighted in yellow.

POD Number	County	Sec	Tws	Rng	UTME	UTMN	Distance (mi)	Depth Well (ft)	Depth Water (ft)	Water Column (ft)
C 03666 POD1	LE	13	245	33E	639132	3565078	0.31	650	390	260
C 03917 POD1	LE	13	245	33E	638374	3565212	0.79	600	420	180
C 03601 POD1	LE	23	245	33E	638124	3563937	1.17			
C 02309	LE	25	245	33E	639638	3562994	1.29	60	30	30
C 03601 POD3	LE	24	245	33E	638142	3563413	1.38			
C 03932 POD8	LE	7	245	34E	641120	3566769	1.40	72		
C 03601 POD2	LE	23	245	33E	637846	3563588	1.44			
C 03662 POD1	LE	23	245	33E	637342	3564428	1.48	550	110	440
C 03601 POD5	LE	23	245	33E	637988	3563334	1.48			
C 03601 POD6	LE	23	245	33E	637834	3563338	1.55			
C 03601 POD7	LE	23	245	33E	637946	3563170	1.58			
C 03600 POD2	LE	25	245	33E	638824	3562329	1.78			
C 03602 POD2	LE	25	245	33E	638824	3562329	1.78			
C 03600 POD1	LE	26	245	33E	637275	3563023	1.94			
C 03600 POD3	LE	26	245	33E	637784	3562340	2.05			

Appendix 4 Oil and Gas Wells within 2-mile Radius of the RH AGI Well Site

Note – a completion status of "New" indicates that an Application for Permit to Drill has been filed and approved but the well has not yet been completed. Likewise, a spud date of 31-Dec-99 is actually 12-31-9999, a date used by NMOCD databases to indicate work not yet reported.

ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
30-025- 08371	COSSATOT E 002	PRE-ONGARD WELL OPERATOR	OIL	DELAWARE VERTICAL	P & A	VERTICAL	5425	Yes
30-025- 25604	GOVERNMENT L COM 001	EOG RESOURCES INC	GAS	DELAWARE VERTICAL	P & A	VERTICAL	17625	No
30-025- 26369	GOVERNMENT L COM 002	EOG RESOURCES INC	GAS	DELAWARE VERTICAL	P & A	VERTICAL	14698	Yes
30-025- 26958	SIMS 001	BOPCO, L.P.	GAS	DELAWARE VERTICAL	P & A	VERTICAL	15007	Yes
30-025- 27491	SMITH FEDERAL 001	PRE-ONGARD WELL OPERATOR	OIL	DELAWARE	P & A	VERTICAL	15120	No
30-025- 29008	MADERA RIDGE 24 001	EOG RESOURCES	GAS	DELAWARE	TA	VERTICAL	15600	No
30-025- 29008	MADERA RIDGE 24 001	EOG RESOURCES	GAS	DELAWARE	TA	VERTICAL	15600	No
30-025- 40448	RED HILLS AGI 001	TARGA NORTHERN DELAWARE, LLC.	INJECTOR	DELAWARE	INJECTING	VERTICAL	6650	Yes
30-025- 40914	DECKARD FEE 001H	COG OPERATING LLC	OIL		PRODUCING	VERTICAL	10997	No
30-025- 40914	DECKARD FEE 001H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11034	No
30-025- 41382	DECKARD FEDERAL COM 002H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11067	Yes
30-025- 41383	DECKARD FEDERAL COM 003H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11162	Yes
30-025- 41384	DECKARD FEDERAL COM 004H	COG OPERATING LLC	OIL	3RD BONE SPRING	PRODUCING	HORIZONTAL	11103	Yes
30-025- 41666	SEBASTIAN FEDERAL COM 002H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10927	Yes
30-025- 41687	SEBASTIAN FEDERAL COM 001H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10944	Yes
30-025- 41688	SEBASTIAN FEDERAL COM 003H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11055	No
30-025- 43532	LEO THORSNESS 13 24 33 211H	MATADOR PRODUCTION COMPANY	GAS	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12371	No
30-025- 44442	STRONG 14 24 33 AR 214H	MATADOR PRODUCTION COMPANY	GAS	WOLFCAMP A LOWER	PRODUCING	HORIZONTAL	12500	No
30-025- 46154	LEO THORSNESS 13 24 33 221H	MATADOR PRODUCTION COMPANY	OIL	WOLFCAMP B UPPER	PRODUCING	HORIZONTAL	12868	No
30-025- 46282	LEO THORSNESS 13 24 33 AR 135H	MATADOR PRODUCTION COMPANY	OIL	3RD BONE SPRING SAND	PRODUCING	HORIZONTAL	12103	No

ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
30-025- 46517	BROADSIDE 13 W FEDERAL COM 001H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12213	No
30-025- 46518	BROADSIDE 13 24 FEDERAL COM 002H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 46519	BROADSIDE 13 24 FEDERAL COM 003H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP A LOWER	PRODUCING	HORIZONTAL	12320	Yes
30-025- 46985	SEBASTIAN FEDERAL COM 703H	COG OPERATING LLC	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12123	No
30-025- 46988	SEBASTIAN FEDERAL COM 704H	COG OPERATING LLC	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12142	No
30-025- 47869	JUPITER 19 FEDERAL COM 501H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11175	Yes
30-025- 47870	JUPITER 19 FEDERAL COM 502H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11141	Yes
30-025- 47870	JUPITER 19 FEDERAL COM 502H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11141	Yes
30-025- 47872	JUPITER 19 FEDERAL COM 403H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PRODUCING	HORIZONTAL	10584	No
30-025- 47872	JUPITER 19 FEDERAL COM 403H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PRODUCING	HORIZONTAL	10584	No
30-025- 47873	JUPITER 19 FEDERAL COM 309H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10250	No
30-025- 47873	JUPITER 19 FEDERAL COM 309H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10250	No
30-025- 47874	JUPITER 19 FEDERAL COM 506H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10950	No
30-025- 47875	JUPITER 19 FEDERAL COM 507H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11150	No
30-025- 47875	JUPITER 19 FEDERAL COM 507H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11150	No
30-025- 47876	JUPITER 19 FEDERAL COM 508H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11143	No
30-025- 47876	JUPITER 19 FEDERAL COM 508H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11143	No
30-025- 47877	JUPITER 19 FEDERAL COM 509H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11156	No
30-025- 47878	JUPITER 19 FEDERAL COM 510H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11102	No
30-025- 47908	JUPITER 19 FEDERAL COM 601H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes

ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
30-025- 47910	JUPITER 19 FEDERAL COM 702H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	DUC	HORIZONTAL	0	Yes
30-025- 47911	JUPITER 19 FEDERAL COM 705H	EOG RESOURCES INC	OIL	WOLFCAMP A LOWER	PERMITTED	HORIZONTAL	12290	No
30-025- 47912	JUPITER 19 FEDERAL COM 707H	EOG RESOURCES INC	OIL	WOLFCAMP B UPPER	PERMITTED	HORIZONTAL	12515	No
30-025- 47913	JUPITER 19 FEDERAL COM 708H	EOG RESOURCES INC	OIL	WOLFCAMP A LOWER	PERMITTED	HORIZONTAL	12477	No
30-025- 48239	JUPITER 19 FEDERAL COM 306H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10270	No
30-025- 48889	JUPITER 19 FEDERAL COM 701H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 48890	JUPITER 19 FEDERAL COM 703H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 49262	BROADSIDE 13 24 FEDERAL COM 004H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP B UPPER	PRODUCING	HORIZONTAL	12531	Yes
30-025- 49263	BROADSIDE 13 24 FEDERAL COM 015H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP B LOWER	PRODUCING	HORIZONTAL	12746	Yes
30-025- 49264	BROADSIDE 13 24 FEDERAL COM 025H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	3RD BONE SPRING	PRODUCING	HORIZONTAL	11210	Yes
30-025- 49474	RED HILLS AGI 002	TARGA NORTHERN DELAWARE, LLC.	INJECTOR	DELAWARE VERTICAL	Temporarily Abandoned	VERTICAL	17600	Yes

Appendix 5 References

Application for Authorization to Inject via Proposed Red Hills AGI #1 Well, Agave Energy Red Hills Gas Plant, Lea County, New Mexico; July 20, 2011; prepared by Geolex, Inc. for Agave Energy Company

Application for a Redundant Class II AGI Well, Lucid Energy Delaware, LLC; Red Hills AGI #2; August 8, 2019, prepared by Geolex, Inc. for Lucid Energy Delaware, LLC

Boyle, T.B., Carroll, J.J., 2002. Study determines best methods for calculating acid-gas density. *Oil and Gas Journal* 100 (2): 45-53.

Broadhead, R.F., 2017. Energy and Mineral Resources of New Mexico: Petroleum Geology; Socorro, New Mexico Bureau of Geology and Mineral Resources: 104 p.

Case No. 20779, Notice Regarding Hearing Exhibits, Application of Lucid Energy Delaware, LLC for Authorization to Inject, Lea County, New Mexico

Giesen, J.H. and Scholle, P.A., 1990. Regional basinal sandstone depositional patterns during the Guadalupian (Late Permian), Delaware basin, west Texas-New Mexico [abs.]: The American Association of Petroleum Geologists Bulletin 74: 660-661.

Ewing, E., 2019. Tectonics of the West Texas (Permian) Basin—Origins, structural geology, subsidence, and later modification: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 63-96.

Ge, J., Nicot, J.P., Hennings, P.H., Smye, K.M., Hosseini, S.A., Gao, R.S., and Breton, C.L., 2022. Recent water disposal and pore pressure evolution in the Delaware Mountain Group, Delaware Basin, Southeast New Mexico and West Texas, USA: Journal of Hydrology: Regional Studies 40: 101041.

Fu, Q., Baumgardner, R.W., Jr., and Hamlin, H.S., 2020. Early Permian (Wolfcampian) succession in the Permian Basin: icehouse platform, slope carbonates, and basinal mudrocks: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 185-225.

H₂S Contingency Plan, Targa Northern Delaware, August 2023, Red Hills Gas Processing Plant, Lea County, NM

Harms, J.C., 1974. Brushy Canyon Formation, Texas: A deepwater density current deposit: Geological Society of America Bulletin 85: 1763-1784.

Harrington, R., 2019. The Middle–Upper Ordovician Simpson Group of the Permian Basin: stratigraphy, lithofacies, and reservoir development: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 331-352.

Harrington, R. and Ruppel, S., 2019. Patterns of Montoya Group (Middle Ordovician) deposition, diagenesis, and reservoir development in the Permian Basin: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 353-378.

Hills, J.M., 1984. Sedimentation, tectonism, and hydrocarbon generation in Delaware Basin, west Texas and southeastern New Mexico: The American Association of Petroleum Geologists Bulletin 68: 250-267.

Horne, E., Hennings, P., Zahm, C., 2021. Basement-rooted faults of the Delaware Basin and Central Basin Platform, Permian Basin, West Texas and southeastern New Mexico: O.A. Callahan, P. Eichhubl (eds.), The Geologic Basement of Texas: A Volume in Honor of Peter T. Flawn, Austin, The University of Texas, Bureau of Economic Geology: 1-37. Horne, E.A., Hennings, P.H., Smye, K.M., Staniewicz, S., Chen, J., Savvaidis, A., 2022. Structural characteristics of shallow faults in the Delaware Basin: Interpretation 10: T807-T835.

King, P.B., 1948. Geology of the southern Guadalupe Mountains, Texas: United States Geological Survey Professional Paper 215: 183 p.

Lambert, S.J., 1992. Geochemistry of the Waste Isolation Pilot Plant (WIPP) site, southeastern New Mexico, U.S.A. *Applied Geochemistry* 7: 513-531.

Loucks, R. and Kerans, C., 2019. A Geologic review of the Lower Ordovician Ellenburger Group of the Permian Basin, West Texas and southeast New Mexico: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 295-330.

Luo, Ming; Baker, Mark R.; and LeMone, David V.; 1994, *Distribution and Generation of the Overpressure System, Eastern Delaware Basin, Western Texas and Southern New Mexico*, AAPG Bulletin, V.78, No. 9 (September 1994) p. 1386-1405.

Madalyn S. Blondes, Kathleen D. Gans, James J. Thordsen, Mark E. Reidy, Burt Thomas, Mark A. Engle, Yousif K. Kharaka, and Elizabeth L. Rowan, 2014. U.S. Geological Survey National Produced Waters Geochemical Database v2.1,

http://energy.usgs.gov/EnvironmentalAspects/EnvironmentalAspectsofEnergyProductionandUse/ProducedWaters. aspx

Nance, H.S., 2020. Upper Permian Delaware Mountain Group: Record of highstand/lowstand platform: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 399-436.

Nance, H.S., Hamlin, H.S., 2020. The Bone Spring Formation (Leonardian) of the Delaware Basin: deepwater lithofacies and stratigraphy: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 321-348.

Nicholson, A., Jr., Clebsch, A., Jr., 1961. *Geology and ground-water conditions in southern Lea County, New Mexico*. New Mexico Bureau of Mines and Mineral Resources, Ground-Water Report 6, 123 pp., 2 Plates.

Powers, D.W., Lambert, S. J., Shafer, S., Hill, L. R. and Weart, W. D., 1978., *Geological Characteristic Report, Waste Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico (SAND78-1596)*, Department 4510, Waste Management Technology, Sandia Laboratories, Albuquerque, New Mexico

Ruppel, S., 2019a. Anatomy of a Paleozoic basin: the Permian Basin, USA: Introduction, overview, and evolution: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 1-27.

Ruppel, S., 2019b. The Fusselman of the Permian Basin: patterns in depositional and diagenetic facies development on a stable platform during the Late Ordovician–Early Silurian icehouse: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 379-399.

Ruppel, S., 2020. The Middle Silurian–Lower Devonian Wristen Group, Permian Basin: impact of tectonic subsidence on patterns of deposition, diagenesis, and reservoir development: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 1-36.

Ruppel, S., Hovorka, S., Barnaby, R., 2020a. Proximal shallow-water carbonates and distal biosiliceous cherts of the Lower Devonian Thirtyone Formation, Permian Basin: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 37-74.

Ruppel, S.C., Rowe, H., Reed, R., Barrick, J.E., James, E.W., Loucks, R.G., 2020b. The Woodford Formation of the Permian Basin: regional, Middle to Late Devonian transgression of the southern Midcontinent and accompanying global anoxia: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 75-124.

Scholle, P.A., Goldstein, R.H., Ulmer-Scholle, D.S., 2007. Classic Upper Paleozoic reefs and bioherms of West Texas and New Mexico: Field guide to the Guadalupe and Sacramento Mountains of West Texas and New Mexico. Socorro, New Mexico Bureau of Geology and Mineral Resources, Open-File Report 504: 178 p.

Scholle, P., Broadhead, R.F., McLemore, V., 2020. The Permian Basin: Scholle, P., Ulmer-Scholle, D., Cather, and S., Kelley, S. (eds.), The Geology of Southern New Mexico Parks, Monuments, and Public Lands: Socorro, New Mexico Bureau of Geology and Mineral Resources: 285-295.

Silver, B.A., Todd, R.G., 1969. Permian cyclic strata, northern Midland and Delaware Basins, west Texas and southeastern New Mexico, *The American Association of Petroleum Geologists Bulletin* 53: 2223- 2251.

Smye, K.D., Banerji, A., Eastwood, R., McDaid, G., and Hennings, P., 2021. Lithology and reservoir properties of the Delaware Mountain Group of the Delaware Basin and implications for saltwater disposal and induced seismicity: Journal of Sedimentary Research 91 (11): 1113–1132.

US EPA, O., 2015, *Procedures for Groundwater Sampling in the Laboratory Services and Applied Science Division*: https://www.epa.gov/quality/procedures-groundwater-sampling-laboratory-services-and-applied-science-division (accessed September 2023).

Walsh, R., Zoback, M.D., Pasi, D., Weingarten, M. and Tyrrell, T., 2017, FSP 1.0: A Program for Probabilistic Estimation of Fault Slip Potential Resulting from Fluid Injection, User Guide from the Stanford Center for Induced and Triggered Seismicity, available from SCITS.Stanford.edu/software

Ward, R.F., Kendall, C.G.St.C., Harris, P.M., 1986. Upper Permian (Guadalupian) facies and their association with hydrocarbons – Permian Basin, west Texas and New Mexico. *The American Association of Petroleum Geologists Bulletin* 70: 239-262.

Wilson, J.L., 1972. Cyclic and reciprocal sedimentation in Virgilian strata of southern New Mexico: J.G. Elam, S. Chuber (eds.), Cyclic Sedimentation in the Permian Basin (2nd edition), Midland, West Texas Geological Society: 82-99.

Wright, W., 2020. Pennsylvanian (upper Carboniferous) paleodepositional evolution of the greater Permian Basin, Texas and New Mexico: depositional systems and hydrocarbon reservoir: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 159-183.

Xiao, Ting et al. (2024). A review of risk and uncertainty assessment for geologic carbon storage. Renewable and Sustainable Energy Reviews 189 (2024) 113945

Appendix 6 Abbreviations and Acronyms

3D - 3 dimensional AGA – American Gas Association AMA – Active Monitoring Area AoR – Area of Review **API – American Petroleum Institute** CFR - Code of Federal Regulations C1 – methane C6 – hexane C7 - heptane CO₂ – carbon dioxide DCS - distributed control system EPA – US Environmental Protection Agency, also USEPA ft – foot (feet) GHGRP – Greenhouse Gas Reporting Program GPA – Gas Producers Association m - meter(s)md – millidarcy(ies) mg/I – milligrams per liter MIT – mechanical integrity test MMA – maximum monitoring area MSCFD- thousand standard cubic feet per day MMSCFD - million standard cubic feet per day MMstb - million stock tank barrels MRRW B – Morrow B MRV – Monitoring, Reporting, and Verification MT -- Metric tonne NIST - National Institute of Standards and Technology NMOCC - New Mexico Oil Conservation Commission NMOCD - New Mexico Oil Conservation Division PPM – Parts Per Million psia – pounds per square inch absolute QA/QC – quality assurance/quality control SCITS - Stanford Center for Induced and Triggered Seismicity Stb/d – stock tank barrel per day TAG – Treated Acid Gas TDS – Total Dissolved Solids TVD – True Vertical Depth **TVDSS** – True Vertical Depth Subsea UIC – Underground Injection Control USDW - Underground Source of Drinking Water

	Subpart RR Equation	Description of Calculations and Measurements [*]	Pipeline	Containers	Comments			
	RR-1	calculation of CO ₂ received and measurement of CO ₂ mass	through mass flow meter.	in containers. **				
CO ₂ Received	RR-2	calculation of CO ₂ received and measurement of CO ₂ volume	through volumetric flow meter.	in containers. ***				
	RR-3	summation of CO ₂ mass received	through multiple meters.					
	RR-4	calculation of CO ₂ mass injected, mea	asured through mass flow me	ters.				
CO ₂ Injected	RR-5	calculation of CO ₂ mass injected, mea	calculation of CO ₂ mass injected, measured through volumetric flow meters.					
	RR-6	summation of CO2 mass injected, as						
	RR-7	calculation of CO ₂ mass produced / r mass flow meters.	alculation of CO ₂ mass produced / recycled from gas-liquid separator, measured through nass flow meters.					
CO ₂ Produced / Recycled	RR-8	calculation of CO ₂ mass produced / revolumetric flow meters.						
	RR-9	summation of CO ₂ mass produced / r in Equations RR-7 and/or RR8.						
CO ₂ Lost to Leakage to the Surface	RR-10	calculation of annual CO ₂ mass emitt	calculation of annual CO_2 mass emitted by surface leakage					
CO₂ Sequestered	RR-11	calculation of annual CO ₂ mass seque any other fluid; includes terms for CC emitted from surface equipment bet emitted from surface equipment bet	n of annual CO ₂ mass sequestered for operators ACTIVELY producing oil or gas or fluid; includes terms for CO ₂ mass injected, produced, emitted by surface leakage, rom surface equipment between injection flow meter and injection well head, and rom surface equipment between production well head and production flow meter.					
	RR-12	calculation of annual CO ₂ mass seque or any other fluid; includes terms for from surface equipment between inj	Calculation procedures are provided in Subpart W of GHGRP for CO _{2FI} .					

Appendix 7 TND Red Hills AGI Wells - Subpart RR Equations for Calculating CO₂ Geologic Sequestration

* All measurements must be made in accordance with 40 CFR 98.444 – Monitoring and QA/QC Requirements.

** If you measure the mass of contents of containers summed quarterly using weigh bill, scales, or load cells (40 CFR 98.444(a)(2)(i)), use RR-1 for Containers to calculate CO₂ received in containers for injection.

*** If you determine the volume of contents of containers summed quarterly (40 CFR 98.444(a)(2)(ii)), use RR-2 for Containers to calculate CO₂ received in containers for injection.

Appendix 8 Subpart RR Equations for Calculating Annual Mass of CO₂ Sequestered RR-1 for Calculating Mass of CO₂ Received through Pipeline Mass Flow Meters

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * C_{CO_{2,p,r}}$$

(Equation RR-1 for Pipelines)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons).
- Q r,p = Quarterly mass flow through a receiving flow meter r in quarter p (metric tons).
- S_{r,p} = Quarterly mass flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (metric tons).
- $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (wt. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- r = Receiving flow meter.

RR-1 for Calculating Mass of CO₂ Received in Containers by Measuring Mass in Container

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * C_{CO_{2,p,r}}$$

(Equation RR-1 for Containers)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received in containers r (metric tons).
- $Q_{r,p}$ = Quarterly mass of contents in containers r in quarter p (metric tons).
- S r,p = Quarterly mass of contents in containers r redelivered to another facility without being injected into your well in quarter p (metric tons).
- C _{CO2,p,r} = Quarterly CO₂ concentration measurement of contents in containers r in quarter p (wt. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- r = Containers.

RR-2 for Calculating Mass of CO₂ Received through Pipeline Volumetric Flow Meters

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$
(Equation RR-2 for Pipelines)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons).
- Q r,p = Quarterly volumetric flow through a receiving flow meter r in quarter p at standard conditions (standard cubic meters).
- S r,p = Quarterly volumetric flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- r = Receiving flow meter.

RR-2 for Calculating Mass of CO₂ Received in Containers by Measuring Volume in Container

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$
(Equation RR-2 for Containers)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received in containers r (metric tons).
- Q r,p = Quarterly volume of contents in containers r in quarter p at standard conditions (standard cubic meters).
- S r,p = Quarterly volume of contents in containers r redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO₂ received in containers at standard conditions (metric tons per standard cubic meter): 0.0018682.

 $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement of contents in containers r in quarter p (vol. percent CO₂, expressed as a decimal fraction).

p = Quarter of the year.

RR-3 for Summation of Mass of CO2 Received through Multiple Flow Meters for Pipelines

$$CO_2 = \sum_{r=1}^{R} CO_{2T,r}$$

(Equation RR-3 for Pipelines)

where:

- CO₂ = Total net annual mass of CO₂ received (metric tons).
- $CO_{2T,r}$ = Net annual mass of CO_2 received (metric tons) as calculated in Equation RR-1 or RR-2 for flow meter r.
- r = Receiving flow meter.

RR-4 for Calculating Mass of CO₂ Injected through Mass Flow Meters into Injection Well

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * C_{CO_{2,p,u}}$$

(Equation RR-4)

where:

 $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.

 $Q_{p,u}$ = Quarterly mass flow rate measurement for flow meter u in quarter p (metric tons per quarter).

 $C_{CO2,p,u}$ = Quarterly CO₂ concentration measurement in flow for flow meter u in quarter p (wt. percent CO₂, expressed as a decimal fraction).

RR-5 for Calculating Mass of CO₂ Injected through Volumetric Flow Meters into Injection Well

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$
 (Equation RR-5)

where:

- $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.
- Q _{p,u} = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter).
- D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,u} = CO_2$ concentration measurement in flow for flow meter u in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.

u = Flow meter.

RR-6 for Summation of Mass of CO₂ Injected into Multiple Wells

$$CO_{2I} = \sum_{u=1}^{U} CO_{2,u}$$

(Equation RR-6)

where:

- CO ₂₁ = Total annual CO₂ mass injected (metric tons) though all injection wells.
- $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.

u = Flow meter.

RR-7 for Calculating Mass of CO₂ Produced / Recycled from a Gas-Liquid Separator through Mass Flow Meters

$$CO_{2,w} = \sum_{p=1}^{4} Q_{p,w} * C_{CO_{2,p,w}}$$

(Equation RR-7)

where:

 $CO_{2,w}$ = Annual CO_2 mass produced (metric tons) through separator w.

- Q p,w = Quarterly gas mass flow rate measurement for separator w in quarter p (metric tons).
- $C_{CO2,p,w}$ = Quarterly CO₂ concentration measurement in flow for separator w in quarter p (wt. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.

w = Separator.

RR-8 for Calculating Mass of CO₂ Produced / Recycled from a Gas-Liquid Separator through Volumetric Flow Meters

$$CO_{2,w} = \sum_{p=1}^{4} Q_{p,w} * D * C_{CO_{2,p,w}}$$

(Equation RR-8)

where:

- $CO_{2,w}$ = Annual CO_2 mass produced (metric tons) through separator w.
- Q p,w = Quarterly gas volumetric flow rate measurement for separator w in quarter p (standard cubic meters).
- D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,w}$ = Quarterly CO₂ concentration measurement in flow for separator w in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- w = Separator.
RR-9 for Summation of Mass of CO₂ Produced / Recycled through Multiple Gas Liquid Separators

$$CO_{2P} = (1+X) \star \sum_{w=1}^{W} CO_{2,w}$$
 (Equation RR-9)

where:

- CO _{2P} = Total annual CO₂ mass produced (metric tons) though all separators in the reporting year.
- X = Entrained CO₂ in produced oil or other liquid divided by the CO₂ separated through all separators in the reporting year (wt. percent CO₂ expressed as a decimal fraction).
- CO _{2,w} = Annual CO₂ mass produced (metric tons) through separator w in the reporting year.

w = Separator.

RR-10 for Calculating Annual Mass of CO₂ Emitted by Surface Leakage

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$

(Equation RR-10)

where:

CO 2E = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year.

 $CO_{2,x}$ = Annual CO_2 mass emitted (metric tons) at leakage pathway x in the reporting year.

x = Leakage pathway.

RR-11 for Calculating Annual Mass of CO₂ Sequestered for Operators Actively Producing Oil or Natural Gas or Any Other Fluid

$$CO_2 = CO_{2I} - CO_{2P} - CO_{2E} - CO_{2FI} - CO_{2FP}$$

(Equation RR-11)

Where:

- CO 2 = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CO ₂₁ = Total annual CO₂ mass injected (metric tons) in the well or group of wells in the reporting year.
- CO_{2P} = Total annual CO_2 mass produced (metric tons) in the reporting year.
- CO_{2E} = Total annual CO_2 mass emitted (metric tons) by surface leakage in the reporting year.
- CO 2FI = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part.
- CO _{2FP} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the production wellhead and the flow meter used to measure production quantity, for which a calculation procedure is provided in subpart W of this part.

RR-12 for Calculating Annual Mass of CO₂ Sequestered for Operators NOT Actively Producing Oil or Natural Gas or Any Other Fluid

$$CO_2 = CO_{2I} - CO_{2E} - CO_{2FI}$$
 (Equation RR-12)

- CO 2 = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CO 21 = Total annual CO₂ mass injected (metric tons) in the well or group of wells in the reporting year.
- CO_{2E} = Total annual CO_2 mass emitted (metric tons) by surface leakage in the reporting year.
- CO _{2F1} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part.

Appendix 9 P&A Records

	UNITED STATE	s H	obbs, NM 88240	FORM APPROVED
1	DEPARTMENT OF THE BUREAU OF LAND MAN	INTERIOR		Expires: March 31, 2007
SUNDRY	NOTICES AND RE	PORTS ON	WELLS	3. Lease Senal No. NM-17446
Do not use ti abandoned w	his form for proposals (ell. Use Form 3160-3 (to drill or to APD) for su	o re-enter an ch proposais.	6. If Indian, Allottee or Tribe Name
SUBMIT IN TR	IPLICATE- Other inst	ructions on	reverse side.	7. If Unit or CA/Agreement, Name and/or N
1. Type of Well Oil Well	Gas Well Other		1977 - 19	
2. Name of Operator EOC Page				8. Well Name and No. Government "L" Com #1
la Address	ources, inc	3b. Phone No.	(include area code)	9. API Well No. 30-025-055777 25H
P.O. Box 2267, M	idland, TX, 79702	432-561-86	00	10. Field and Pool, or Exploratory Area
 Location of Well (Footage, Sec., L'ait Lotter C. 1980 ENL. 1 	T., R., M., or Survey Description)			Bell Lake, South Morrow 11. County or Parish. State
Section 18, Township 24-S,	Range 34-E			Lea, New Mexico
12. CHECK A	PPROPRIATE BOX(ES) TO	INDICATE	NATURE OF NOTICE,	REPORT, OR OTHER DATA
TYPE OF SUBMISSION			TYPE OF ACTION	
Notice of Intent	Acidize	Deepen Fracture Tre	Production (S Reclamation uction Recomplete	tart/Resume) Water Shut-Off Well Integrity Other
Final Abandonment Notice	Change Plans	Plug and Ab	andon Temporarily A	
following completion of the in- testing has been completed. Fi determined that the site is read-	volved operations. If the operation nal Abandonment Notices shall be v for final inspection)	results in a multip filed only after al	ble completion or recompletion requirements, including recla	in a new interval, a Form 3160-4 shall be filed or nation, have been completed, and the operator ha
	, to the inspection (
 Notified Jim McCorn Cut 3 1/2' thg at 1150 Circ hole w/MLF. Perf 4 holes at 9050, g Perf 4 holes at 7000, p Cut 10 3/4" esg at 545 Spot 753x, plug from Spot 150sx, plug from 9. Spot 20sx, plug from 10. Clean location. Instal 	tick w/BLM 24 hrs prior to M 0, spot 50xx CLass "H" emt, p press up to 2000 PSI, spot 75sx 50, L/D esg, spot 150sx, plug fr 1300-1200 (T-Salt) WOC Ta 650-450 (20" Shee) WOC Ta 30-Surf. II dry hole marker 12-30-04.	I and RU. olug from 11500 (, plug from 910 (, plug from 705 rom 5500-5350, at 1143. g at 423.	-11400, WOC Tag at 1138 0-8950, WOC Tag @ 8938 0-6900, WOC Tag at 6855 WOC Tag at 5336.	APPROVEL JAN 4 2005 CARY COURTEX PERPIFUM FOUND
 Notified Jim McCorn Cut 3 1/2' tbg at 1150 Circ hole w/MLF. Perf 4 holes at 9050, f Perf 4 holes at 7000, p Cut 10 3/4" esg at 545 Spot 753x, plug from Spot 1503x, plug from 3 Opot 1503x, plug from 3 Clean location. Instal 	nick w/BLM 24 hrs prior to M 0, spot 50xx CLass "H" emt, p press up to 2000 PSI, spot 75sx 50, L/D csg, spot 150sx, plug fr 1300-1200 (T-Salt) WOC Ta 650-450 (20" Shoe) WOC Ta 30-Surf. II dry hole marker 12-30-04.	I and RU. Jug from 11500 (, plug from 910 (, plug from 705 om 5500–5350, at 1143. g at 423. P&A Complet	1 1400, WOC Tag at 1 138 0-8950, WOC Tag @ 8938 0-6900, WOC Tag at 6855 WOC Tag at 5336. te 12-30-04	JAN 4 2005 JAN 4 2005 CARY COURTEX PEZPOJENA PAGINE JAN 4 2005
 Notified Jim McCorn Cut 3 1/2' tbg at 1150 Circ hole w/MLF. Perf 4 holes at 9050, f Perf 4 holes at 7000, p Cut 10 3/4" esg at 545 Spot 758x, plug from Spot 1598x, plug from 10. Clean location. Instal 	nick w/BLM 24 hrs prior to M 0, spot 50xx CLass "H" emt, p press up to 2000 PSI, spot 75xx 30, L/D esg, spot 150xx, plug fr 1300-1200 (T-Salt) WOC Ta 650-450 (20" Shee) WOC Ta 30-Surf. II dry hole marker 12-30-04.	I and RU. Jug from 11500 (, plug from 910 (, plug from 705 om 5500–5350, at 1143, g at 423, P&A Complet	-11400, WOC Tag at 1138 0-8950, WOC Tag @ 8938 0-6900, WOC Tag at 6855 WOC Tag at 5336. te 12-30-04	APPROVEL JAN 4 2005 GARY GOURTEX PEZROJEVA PROTINE JAN 4 2005 JAN 4 2005 PETROLEUM FINGINE
 Notified Jim McCorn Cut 3 1/2' tbg at 1150 Circ hole w/MLF. Perf 4 holes at 9050, f Perf 4 holes at 7000, f Cut 10 3/4" csg at 544 Spot 75sx, plug from Spot 20sx, plug from. Clean location. Instal 14. Thereby certify that the fore Name (Printed/Typed) JimptyBagley Signature	nick w/BLM 24 hrs prior to M 0, spot 50sx CLass "H" cmt, p press up to 2000 PSI, spot 75sx 50, L/D csg, spot 150sx, plug fr 1300-1200 (T-Salt) WOC Tag 650-450 (20" Shoe) WOC Ta 30-Surf. II dry hole marker 12-30-04.	I and RU. Jug from 11500 (, plug from 910 (, plug from 705 om 5500-5350, at 1143. g at 423. P&A Complet	-11400, WOC Tag at 1138 0-8950, WOC Tag @ 8938 0-6900, WOC Tag at 6855 WOC Tag at 5336. te 12-30-04 Title	APPROVEL JAN 4 2005 CARY COURTEY PEARD FUM PACINE JAN 4 2005 JAN 4 2005 Consultant
 Notified Jim McCorn Cut 3 1/2' tbg at 1150 Circ hole w/MLF. Perf 4 holes at 7000, p Cut 10 3/4" csg at 544 Spot 75ss, plug from Spot 20sx, plug from 10. Clean location. Instal 14. I hereby certify that the fore Name (Printed/Typed) Jimpor Bagley Signature	hick w/BLM 24 hrs prior to M 9, spot 50sx CLass "H" cmt, p press up to 2000 PSI, spot 75sx press up to 2000 PSI, spot 75sx, 0, L/D csg, spot 150sx, plug fr 1300-1200 (T-Salt) WOC Tag 0, 650-450 (20" Shee) WOC Ta 30-Surf. Il dry hole marker 12-30-04.	I and RU. Jug from 11500 (, plug from 910 (, plug from 705 rom 5500-5350, at 1143. g at 423. P&A Complet FEDERAL	-11400, WOC Tag at 1138 0-8950, WOC Tag @ 8938 0-6900, WOC Tag at 6855 WOC Tag at 5336. te 12-30-04 Title Date OR STATE OFFICE	APPROVEL JAN 4 2005 CARY GOURLEY JAN 4 2005 JAN 4 2005 JAN 4 2005 GARY GOURLEY PETROLEUM ENGINE 12/30/2004
Notified Jim McCorn Cut 3 1/2' tbg at 1150 Gire hole w/MLF. Perf 4 holes at 9050, f Perf 4 holes at 9050, f Cut 10 3/4" csg at 544 Spot 75sx, plug from Spot 20sx, plug from Ormer (Printed/Typed) JimpryBagley Signature Approved by Conditions of approval, if any, are:	nick w/BLM 24 hrs prior to M 0, spot 50sx CLass "H" cmt, p press up to 2000 PSI, spot 75sx 50, L/D csg, spot 150sx, plug fr 1300-1200 (T-Salt) WOC Tag 650-450 (20" Shoe) WOC Ta 30-Surf. Il dry hole marker 12-30-04.	I and RU. Jug from 11500 (, plug from 910 (, plug from 705 om 5500-5350, at 1143. g at 423. P&A Complet FEDERAL	-11400, WOC Tag at 1138 0-8950, WOC Tag @ 8938 0-6900, WOC Tag @ 8938 WOC Tag at 6855 WOC Tag at 5336. te 12-30-04 Title Date OR STATE OFFICE	APPROVEL JAN 4 2005 CARY COURTEY PEARDIENT PACINE JAN 4 2005 JAN 4 2005 Consultant 12/30/2004

P&A Record for Government Com 001, API #30-025-25604

GWW

P&A Records for API #30-025-26958

Submit 1 Copy To Appropriate District Office	State of New Me	exico	Form C-103
District I – (575) 393-6161 1625 N. French Dr., Hobbs, NM 88240 District II., (575) 748-1283	Energy, Minerals and Natu	iral Resources	WELL API NO.
811 S First St, Artesia, NM 88210	CENTER SERVATION	DIVISION	5Indicate Type of Lease
District III – (505) 334-6178 1000 Rio Brazos Rd , Aztec, NM 87410	I220 South St. Fran	ncis Dr.	STATE 🗍 FEE 🛛
District IV – (505) 476-3460 AUG 1220 S St Francis Dr , Santa Fc, NM 87505	16 2012 Santa Fe, NM 87	/505	6. State Oil & Gas Lease No. SCR-389
SUNDRY NOTICE (DO NOT USE THIS FORM FOR PROPOSAL DIFFERENT RESERVOIR USE "APPL	IS AND REPORTS ON WELLS S TO DRILL OR TO DEEPEN OR PLU ICATION FOR PERMIT" (FORM C-10	UG BACK TO A DI) FOR SUCH	7. Lease Name or Unit Agreement Name Sims
PROPOSALS)	as Well 🖂 Other		8. Well Number #1
2. Name of Operator: Agave Energy (Company		9. OGRID Number
3. Address of Operator		· · · · · · · · · · · · · · · · · · ·	147831 10. Pool name or Wildcat
104 S. Fourth St., Artesia NM 88210 ((575-748-4528)		Big Sinks Wolfcamp
4. Well Location			2
Unit LetterK:	_1980_feet from theN	line and	800feet from theEline
Section 13	Township 24S	Range 33E	NMPM Lea County
6	T. Elevation (Snow whether DR,	. KKB, KI, GK, elc.,	and the second
12. Check App	propriate Box to Indicate N	ature of Notice,	Report or Other Data
		REMEDIAL WOR	
TEMPORARILY ABANDON		COMMENCE DRI	
		CASING/CEMEN	гјов 🔲
OTHER:			lug to cement off Cherry Canyon per
 Describe proposed or complete of starting any proposed work) proposed completion or recom 	d operations. (Clearly state all p . SEE RULE 19.15.7.14 NMAC pletion	pertinent details, and C. For Multiple Cor	a give pertinent dates, including estimated date npletions: Attach wellbore diagram of
The remediation of the Sims #1 we demobilized. The plugging wa Whitaker and E.L. Gonzales of plugging diagram. When estal reservoir as it was taking 3bbl/	Il pursuant to NMOCC order wa is done pursuant to NMOCD req f the OCD District 1 office who is olishing a rate prior to squeezing (min on vacuum. This indicates writiented and the science con-	s completed on Aug uirements and all as approved the specif the Cherry Canyon that the predicted in ditions act to preven	gust 15, 2011 and all equipment has been spects of the effort were reported to Mark ics of the plugging as shown in the attached , it is clear that the reservoir is an excellent jection plume for the Red Hills AGI #1 in this training of injected acid account of the
intended and permitted injection	on zone by any nearby wellbores	including the Govta	#2, Govt#1 and Smith Federal #1 in addition to
the Sims#1. Please see attache	d wellbore sketch for plugging c	letails of all plugs s	et and amounts of cement squeezed for each
plug.			
	•		
· · · · ·			
I hereby certify that the information abo	ve is true and complete to the be	est of my knowledge	e and belief.
SIGNATURE	TITLE Cons	ultant to Agave En	arov Company DATE August 16 2012
	ITTEL_ CONS		'
Type or print nameAlberto A. Gutie For State Use Only	errez, RG E-mail address:a	aag@geolex.com	PHONE:505-842-8000
APPROVED BY	TIFTLE . N	st. Mas	- DATE 8-16-2017
Conditions of Approval (if any):		nor the	16 2012
			AUG

8/16/2012

P&A Records for API 30-025-08371

	n an	\sim				_)		
		4	IEW MEXI	CO OIL	CONSERV	ATION	COMMISSIC	M	FORM C-103 (Rev 3-55)
5. 5.1.0.00 5.1.0.00		(Subm	HISCEL	LANEO	US REP	0RTS 0	N WELLS	e 1706	
Name of Company	Byard	Bennett	<u>4.0000</u> 2.000	Add	ress 20	07 Vest	Third, Rosv	well,	New Mexico
Lease	Holla	nd	Well No.	Unit Lett H	er Section 13	Township 2	4 South	Rang	⁶ 33 East
Date Work Performe March 8, 19	d 1 61	Pool Wildee			1	County Le	a		
		THIS IS	AREPORT	OF: (Cbe	ck appropria	te block)			
Beginning Dril	ling Operations	ы <u>[]</u>]Са [] Ва	asing Test ar medial Work	nd Cement (ob] Other (F	ixplain):		
Top of Dela Cement Plu	ware Sand: gs set as fo 5375-542 340-390 Heavy m Job perfo Prior ver	5210', Toto Illows: 25 with 15 s with 20 sac ud (4 cc w ormed and w bal approval	al Depth: acks, 517 ks, 5 sac rtr. loss) ritnessed l l of plugg	5425', 25-5240 ks and m between by Mr. ging prog	Casing 8 with 20 s narker pij a all cem Pool, Poo gram from	5/8 set sacks, 13 pe set at nent plug of Drig C Mr. En	at 365', 875-1425 v surface. s. 20. gbrecht, N	Hole vith 2 ew M	size 6 3/4 0 sacks, exico O.C.C.
Location w	ill be clear Mr. Fred	Pool Fill IN BF	Pesition	Owner REMEDIAL	actical.	Company Po PORTS O	pol Drig C		
Location w Witnessed by D.F. Elev.	Mr. Fred	Pool FILL IN BE	Pesition LOW FOR I D HT	Owner Remediat	work RE	Company Po PORTS O Producing	DOI Drig C NLY	Co.	nipletion Date
Location w Witnessed by D.F. Elev. Tubing Diameter	Mr. Fred	Pool Fill IN BF	Pesition LOW FOR F ORIG	Owner REMEDIAT	work re - work re - bata	Company Po PORTS () Producing Ler	Dol Drlg C NLY Interval Oil Stri	Co.	mpletion Date
Location w Witnessed by D.F. Elev. Tubing Dismeter Perforsted Intervelf	Mr. Fred	Pool Fill IN BF	Pesition Pesition LOW FOR I ORIG P h T	Owner REMEDIAL INAL HEL	work re - work re - DATA	Company Po PORTS 0 Producing ter	Dol Drlg C NLY Interval	Co.	nupletion Date
Location w Witnessed by D.F. Elev. Tubing Diameter Perforated Interval Open Hole Interval	Mr. Fred	Pool Fill IN BF	Pesition LOW FOR I ORIG	Owner REMEDIAL INAL VEL	work re - work re - DATA String Diame	Company PORTS 0. Producing Ler tion(s)	Dol Drig C NLY Interval	Co.	nupletion Date
Location w Witneased by D.F. Elev, Tubing Diameter Perforated Interval Open Hole Interval	Mr. Fred	Pool Fill IN BF	Pesirian Pesirian LOW FOR F ORIG PET	Owner Remediat INAL WEL	work re vork re DATA	Company PC PORTS () Producing (er (tion(s)	ool Drig C NLY Interval	Co.	mpletion Date
Location w Witnessed by D.F. Elev. Tubing Diameter Perforated Interval Open Hole Interval Test Before Workover	Mr. Fred	Pool Fill IN BF Tuturg Depth	Pesition Pesition LOW FOR I ORIG PBT RESUL	Owner Con as provided and a provide	work re vork re DATA vorg Forma voring Forma	Company Ports () Producing (er stion(s) Production P ()	Ool Drlg C NLY Interval Oil Stri GOR Cubic tee:	Co. Co ing Depi Bbl	mpletion Date th Gas Well Potential MCFPD
Location w Witnessed by D.F. Elev. D.F. Elev. Tubing Dismeter Perforsted Interval Open Hole Interval Text Before Workover After Workover	Mr. Fred	Pool Fill IN BF Taburg Depth	Pesition LOW FOR I ORIG PET	Owner REMEDIAL INAL HEL OILS DITS OF WC	work re work re DATA String Diame weing Forma	Company PORTS 01 Producing (er tion(s) PD	OOL Drlg C NLY Interval Oil Stri GOR Cubia tee:	Co.	mpletion Date th Cas Well Potential MCFPD
Location w Witnessed by D F Elev. Tubing Dismeter Perforated Interval Open Hole Interval Test Before Workover After Workover	Mr. Fred Mr. Fred T.D s) Date of Test: L CONSERVAT	Pool FILL IN BE Tuburg Depth	Pesition Pesition LOW FOR I ORIG PET	Owner REMEDIAL INAL HEL OILS Director CST2D	work RE WORK RE DATA String Diame weing Forma RKOVER Rater P B RECOVER	Company PC PORTS () Producing ter tion(s) Production PD y that the is row knowled	Ool Drlg C NLY Interval Oil Stri Cubic fee:	Co. Co ing Dept Bbl	mpletion Date th Gas Well Potential MCFPD e is true and complete
Location w Witnessed by D F Elev. Tubing Diameter Perforated Interval Open Hole Interval Test Before Workover After Workover Of Approved by Title	Mr. Fred Mr. Fred T.D s) Date of Test: L CONSERVAT	Pool FILL IN BE Tutung Depth Coll Production BPD Ton COMMISSIC Clemit	Pesition Pesition LOW FOR I ORIG PHT RESUL A M A A A A A A A A A A A A A	Owner REMEDIAL INAL HEL OILS DIS TS OF WC TS OF WC TS OF WC Inclusion C 5 12 D	work RE WORK RE DATA String Diame weing Forma RKOVER Rater P B RKOVER B Rater P B B RKOVER B B B B B B B B B B B B B B B B B B B	Company PORTS 0 Producing ter tion(s) reduction PD y that the it m, knowled Company Producing	Dol Drlg C NLY Interval Oil Stri Cubic teet	Bbl	mpletion Date th (tas Well Potential MCEPD e is true and complete

Temporary Abandonment Record for RH AGI #2

Received by OCD: A	/17/2023_2:07:28 F	M Sta	ate of New Me	xico			Form C-103
<u>District I</u> – (575) 393 1625 N. French Dr., District II – (575) 74	-6161 Hobbs, NM 88240	Energy, Mi	nerals and Natu	ral Resources	WELL API N	O.	sed July 18, 2013
811 S. First St., Arte	8-1285 sia, NM 88210	OIL CON	SERVATION	DIVISION	5 Indicate Tr	me of Lease	
District III - (505) 3	34-6178	1220	South St. Fran	cis Dr.	STATE	FE FE	ΕM
<u>District IV</u> – (505) 4 1220 S. St. Francis I 87505	, Aztec, NM 87410 76-3460 Dr., Santa Fe, NM	Sa	nta Fe, NM 87	505	6. State Oil &	Gas Lease No).
(DO NOT USE THIS DIFFERENT RESEL	SUNDRY NOTIC S FORM FOR PROPOSA RVOIR. USE "APPLICA	ES AND REPOR LS TO DRILL OR T TION FOR PERMIT	RTS ON WELLS TO DEEPEN OR PLU T" (FORM C-101) FO	JG BACK TO A R SUCH	7. Lease Nam RED HILLS	e or Unit Agre AGI	eement Name
1. Type of Well	Oil Well 🗍 🖸	as Well 🖂 Ot	her Acid Gas Inj	ection	8. Well Numb	per 002	
2. Name of Ope TARGA NORTH	rator HERN DELAWARE	E, LLC			9. OGRID Nu 331548	umber	
3. Address of O	perator		_		10. Pool name	e or Wildcat	
110 W 7 ^{1H} STR	EET, SUITE 2300, 1	TULSA OK 7411	9				
4. Well Location	1			1450		-	
Unit Le	tter_1_:_1800fe	et from the SOU	THline	and 150fee	et from the EAS	I <u> </u>	_line
Section	13	10Wnsh	1p 24S	RANGE 33E	NMPM	LEA	County
		3575 GR	iow whether DIC,	KKD, KI, GK, elc.,	·		
N PERFORM REM	12. Check A ₁	propriate Box ENTION TO PLUG AND ABA	to Indicate Na : NDON 🗌	ature of Notice, SUB REMEDIAL WOR	Report or Otl SEQUENT F K	ner Data REPORT C] ALTERIN)F: GCASING □
TEMPORARILY PULL OR ALTER DOWNHOLE CO CLOSED-LOOP	ABANDON CASING MMINGLE SYSTEM	CHANGE PLAN MULTIPLE CON	S 🗌 IPL 🗌	COMMENCE DRI CASING/CEMEN	ILLING OPNS. TJOB] P AND A]	
OTHER:	TEMF	ORARY ABAND	ON 🛛	OTHER:			
13. Describe of startin proposed	proposed or comple g any proposed work completion or recor	ted operations. (k). SEE RULE 1 npletion.	Clearly state all p 9.15.7.14 NMAC	ertinent details, an 7. For Multiple Cor	d give pertinent mpletions: Attac	dates, includin ch wellbore dia	ng estimated date agram of
3/08/2023 Drilled 3/08-3/10 Regain 3/11 Rig up Hall 3/12 Drilled out 3/15 Rig up Hall	l out of 13 3/8" with ned partial circulatio iburton and squeeze cement squeeze and burton and set 150 s	12 ¼" bit. Drill n and drilled to 6 zone with 370 sa ran FIT test but ack balanced plu	ed to 6161'and lo 205'. acks of HalCem c would only hold g with Hal NEO (ost circulation. At ement . 11.5 lb/gal. CEM cement	tempt to regain v	with 3 heavy L	CM pills.
Decision has been Propose to TEMP	made to not attemp	t to drill into the N THE WELL B	Cherry Canyon Ir Y	njection zone due to	o not being able	to maintain m	ud weight.
RUN A CEMENT SET A 100' COR ACROSS THE C. PRESSURE TES' REMOVE THE B	BOND LOG INSI ROSION RESISTA ASING SHOE (1350 THE CASING TO OP AND INSTALL	DE THE 13 3/8" NT PLUG ON T O') AND 50' AB(500 PSI FOR 30 A BLIND FLAT	OP OF EXISTIN OVE THE RUST MINUTES	IG PLUG, SET A C LER (1260'). The	CEMENT PLUG plug would be t	FINSIDE THE from 1200' to	E 13 3/8" 1400'.
RIG DOWN ANI	MOVE THE RIG	OFF.			LELIE .		
Spud Date: 02	2/13/2023		Rig Release Da	te:			
I hereby certify th	at the information al	oove is true and c	omplete to the be	st of my knowledg	e and belief.		
SIGNATURE	Paul Ragsdale	TITLE	ENGINEER		DATE_	03/17/20	023
Type or print nam For State Use Or	e _PAUL RAGSDA I <u>ly</u>	LE	E-mail address:	_pragsdale3727@	gmail.com	PHONE:	575-626-7903_
APPROVED BY:	3/1/2023/2:46:5	8 PM	_TITLE			DATE	

Received by OCD: 3/17/2023 2:07:28 PM

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720
 District II
 811 S. First St., Artesia, NM 88210

 Phone:(575) 748-1283 Fax:(575) 748-9720

 District III

 1000 Rio Brazos Rd., Azlec, NM 87410

 Phone:(505) 334-6178 Fax:(505) 334-6170
 District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico **Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 2 of 2

CONDITIONS

Action 198393

CONDITIONS

Operator:	OGRID:	
Targa Northern Delaware, LLC.	331548	
110 W. 7th Street, Suite 2300	Action Number:	
Tulsa, OK 74119	198393	
	Action Type:	
	[C-103] Sub. General Sundry (C-103Z)	

CONDITIONS

Created	Condition	Condition
Dy		Date
pkautz	MUST CAP EXISTING PLUG WITH 100' CORROSION RESISTANT CEMENT	3/17/2023
pkautz	AFTER TA MUST PERFORM TA PRESSURE TEST	3/17/2023
pkautz	AFTER TA SUBMIT A WELLBORE SCHEMATIC	3/17/2023

Appendix B: Submissions and Responses to Requests for Additional Information

MONITORING, REPORTING, AND VERIFICATION PLAN

Red Hills AGI #1 and Red Hills AGI #3

Targa Northern Delaware, LLC (TND)

Version 1.0 July 23, 2024

Table of Contents

1	In	troduction	5
2	Fa	acility Information	7
	2.1	Reporter number	7
	2.2	UIC injection well identification numbers	7
	2.3	UIC permit class	7
3	Pr	roject Description	7
	3.1	General Geologic Setting / Surficial Geology	8
	3.2	Bedrock Geology	8
	3.	2.1 Basin Development	8
	3.	2.2 Stratigraphy	. 17
	3.	2.3 Faulting	. 22
	3.3	Lithologic and Reservoir Characteristics	. 22
	3.4	Formation Fluid Chemistry	. 25
	3.5	Groundwater Hydrology in the Vicinity of the Red Hills Gas Plant	. 25
	3.6	Historical Operations	. 26
	3.	6.1 Red Hills Site	. 26
	3.	.6.2 Operations within the MMA for the RH AGI Wells	. 29
	3.7	Description of Injection Process	. 31
	3.8	Reservoir Characterization Modeling	. 32
4	De	elineation of the Monitoring Areas	. 39
4	4.1	MMA – Maximum Monitoring Area	. 39
4	4.2	AMA – Active Monitoring Area	. 39
5	Id	lentification and Evaluation of Potential Leakage Pathways to the Surface	. 40
ļ	5.1	Potential Leakage from Surface Equipment	. 40
ļ	5.2	Potential Leakage from Approved, Not Yet Drilled Wells	. 41
	5.	2.1 Horizontal Wells	. 41
ļ	5.3	Potential Leakage from Existing Wells	. 41
	5.	3.1 Wells Completed in the Bell Canyon and Cherry Canyon Formations	. 41
	5.	3.2 Wells Completed in the Bone Spring / Wolfcamp Zones	. 42
	5.	3.3 Wells Completed in the Siluro-Devonian Zone	. 42
	5. 54	.3.4 Groundwater Wells	.42 43
	5.5	Potential Leakage due to Lateral Migration	رب. ۱2
	5.5	Potential Leakage due to Lateral Migration	.43 ЛЛ
	5.0		. 44
	o./	Potential Leakage due to Natural / Induced Seismicity	. 45
6	St	rategy for Detecting and Quantifying Surface Leakage of CO ₂	. 46
	0.1		. 47
(b.2	Leakage from Approved Not Yet Drilled Wells	.47
(6.3	Leakage from Existing Wells	. 48

	6.3	3.1 RH AGI Wells	48
	6.3	3.2 Other Existing Wells within the MMA	50
	6.4	Leakage through the Confining / Seal System	50
	6.5	Leakage due to Lateral Migration	50
	6.6	Leakage from Fractures and Faults	50
	6.7	Leakage due to Natural / Induced Seismicity	50
	6.8	Strategy for Quantifying CO ₂ Leakage and Response	51
	6.8	8.1 Leakage from Surface Equipment	51
	6.8	8.2 Subsurface Leakage	51
	6.8	8.3 Surface Leakage	51
7	Str	rategy for Establishing Expected Baselines for Monitoring CO ₂ Surface Leakage	52
	7.1	Visual Inspection	52
	7.2	Fixed In-Field, Handheld, and Personal H ₂ S Monitors	52
	7.2	2.1 Fixed In-Field H ₂ S Monitors	52
	7.2	2.2 Handheld and Personal H ₂ S Monitors	52
	7.3	CO ₂ Detection	52
	7.4	Continuous Parameter Monitoring	53
	7.5	Well Surveillance	53
	7.6	Seismic (Microseismic) Monitoring Stations	53
	7.7	Groundwater Monitoring	53
	7.8	Soil CO ₂ Flux Monitoring	54
8	Sit	te Specific Considerations for Determining the Mass of CO ₂ Sequestered	55
	8.1	CO ₂ Received	55
	8.2	CO ₂ Injected	56
	8.3	CO ₂ Produced / Recycled	57
	8.4	CO ₂ Lost through Surface Leakage	57
	8.5	CO ₂ Emitted from Equipment Leaks and Vented Emissions	58
	8.6	CO ₂ Sequestered	
9	Fst	timated Schedule for Implementation of MRV Plan	58
1() GF	HG Monitoring and Quality Assurance Program	
	10.1	GHG Monitoring	58
	10	0.1.1 General	59
	10	0.1.2 CO ₂ received	59
	10	0.1.3 CO ₂ injected	59
	10	0.1.4 CO ₂ produced	59
	10	0.1.5 CO ₂ emissions from equipment leaks and vented emissions of CO ₂ .	59
	10	0.1.6 Measurement devices	59
	10.2	QA/QC Procedures	60
	10.3	Estimating Missing Data	60
	10.4	Revisions of the MRV Plan	60

11 Record	s Retention	60
12 Append	dices	62
Appendix 1	TND Wells	63
Appendix 2	Referenced Regulations	67
Appendix 3	Water Wells	69
Appendix 4	Oil and Gas Wells within 2-mile Radius of the RH AGI Well Site	71
Appendix 5	References	74
Appendix 6	Abbreviations and Acronyms	77
Appendix 7	TND Red Hills AGI Wells - Subpart RR Equations for Calculating CO ₂ Geologic Sequestration	
Appendix 8	Subpart RR Equations for Calculating Annual Mass of CO ₂ Sequestered	79
Appendix 9	P&A Records	

1 Introduction

Targa Northern Delaware, LLC (TND) is currently authorized to inject treated acid gas (TAG) into the Red Hills Acid Gas Injection #1 well (RH AGI #1)(American Petroleum Institute (API) 30-025-40448) and the RH AGI #3 well (API # 30-025-51970) under the New Mexico Oil Conservation Commission (NMOCC) Orders R-13507 – 13507F and Order R-20916H, respectively, at the Red Hills Gas Plant located approximately 20 miles NNW of Jal in Lea County, New Mexico (**Figure 1-1**). Each well is approved to inject 13 million standard cubic feet per day (MMSCFD). However, although approved to inject 13 MMSCFD, RH AGI #1 is physically only capable of taking ~5 MMSCFD due to formation and surface pressure limitations.

RH AGI #1 was previously operated by Lucid Energy Delaware, LLC's ("Lucid"). TND acquired Lucid assets in 2022. Lucid received authorization to construct a redundant well, RH AGI #2 (API# 30-025-49474) under NMOCC Order R-20916-H, which is offset 200 ft to the north of RH AGI #1 and is currently temporarily abandoned in the Bell Canyon Formation.

TND recently received approval from NMOCC for its C-108 application to drill, complete and operate a third acid gas injection well (RH AGI #3) for which TND requested an injection volume of up to 13 MMSCFD. RH AGI #3 was spudded on 9/13/2023, completed on 9/27/2023, and injection commenced on 1/11/2024. Because RH AGI #1 does not have complete redundancy, having a greater permitted disposal volume will also increase operational reliability. RH AGI #3 is a vertical well with its surface location at approximately 3,116 ft from the north line (FNL) and 1,159 ft from the east line (FEL) of Section 13. The depth of the injection zone for this well is approximately 5,700 to 7,600 ft in the Bell Canyon and Cherry Canyon Formations (see As-Built schematic in **Figure Appendix 1-2**). Analysis of the reservoir characteristics of these units confirms that they act as excellent closed-system reservoirs that will accommodate the future needs of TND for disposal of treated acid gas (H₂S and CO₂) from the Red Hills Gas Plant.

TND has chosen to submit this Monitoring, Reporting, and Verification (MRV) plan to EPA for approval according to 40CFR98.440(c)(1), Subpart RR of the Greenhouse Gas Reporting Program (GHGRP) for the purpose of qualifying for the tax credit in section 45Q of the federal Internal Revenue Code. TND intends to inject CO₂ for another 30 years.

Figure 1-1: Location of the Red Hills Gas Plant and Wells – RH AGI #1, RH AGI #2 (temporarily abandoned), and RH AGI #3

This MRV Plan contains twelve sections:

Section 1 is this Introduction.

Section 2 contains facility information.

Section 3 contains the project description.

Section 4 contains the delineation of the maximum monitoring area (MMA) and the active monitoring area (AMA), both defined in 40CFR98.449, and as required by 40CFR98.448(a)(1), Subpart RR of the GHGRP.

Section 5 identifies the potential surface leakage pathways for CO_2 in the MMA and evaluates the likelihood, magnitude, and timing of surface leakage of CO_2 through these pathways as required by 40CFR98.448(a)(2), Subpart RR of the GHGRP.

Section 6 describes the detection, verification, and quantification of leakage from the identified potential sources of leakage as required by 40CFR98.448(a)(3).

Section 7 describes the strategy for establishing the expected baselines for monitoring CO_2 surface leakage as required by 40CFR98.448(a)(4), Subpart RR of the GHGRP.

Section 8 provides a summary of the considerations used to calculate site-specific variables for the mass balance equation as required by 40CFR98.448(a)(5), Subpart RR of the GHGRP.

Section 9 provides the estimated schedule for implementation of this MRV Plan as required by 40CFR98.448(a)(7).

Section 10 describes the quality assurance and quality control procedures that will be implemented for each technology applied in the leak detection and quantification process. This section also includes a discussion of the procedures for estimating missing data as detailed in 40CFR98.445.

Section 11 describes the records to be retained according to the requirements of 40CFR98.3(g) of Subpart A of the GHGRP and 40CFR98.447 of Subpart RR of the GRGRP.

Section 12 includes Appendices supporting the narrative of the MRV Plan, including information required by 40CFR98.448(a)(6).

2 Facility Information

2.1 Reporter number

Greenhouse Gas Reporting Program ID is 553798

2.2 UIC injection well identification numbers

This MRV plan is for RH AGI #1 and RH AGI #3 (**Appendix 1**). The details of the injection process are provided in Section 3.7.

2.3 UIC permit class

For injection wells that are the subject of this MRV plan, the New Mexico Oil Conservation Division (NMOCD) has issued Underground Injection Control (UIC) Class II acid gas injection (AGI) permits under its State Rule 19.15.26 NMAC (see **Appendix 2**). All oil- and gas-related wells around the RH AGI wells, including both injection and production wells, are regulated by the NMOCD, which has primacy to implement the UIC Class II program.

3 Project Description

The following project description was developed by the Petroleum Recovery Research Center (PRRC) at New Mexico Institute of Mining and Technology (NMT) and the Department of Geosciences at the University of Texas Permian Basin (UTPB).

3.1 General Geologic Setting / Surficial Geology

The TND Red Hills Gas Plant is located in T 24 S R 33 E, Section 13, in Lea County, New Mexico, immediately adjacent to the RH AGI wells. (Figure 3.1-1). The plant location is within a portion of the Pecos River basin referred to as the Querecho Plains reach (Nicholson & Clebsch, 1961). This area is relatively flat and largely covered by sand dunes underlain by a hard caliche surface. The dune sands are locally stabilized with shin oak, mesquite, and some burr-grass. There are no natural surface bodies of water within one mile of the plant and where drainages exist in interdunal areas, they are ephemeral, discontinuous, dry washes. The plant site is underlain by Quaternary alluvium overlying the Triassic red beds of the Santa Rosa Formation (Dockum Group), both of which are local sources of groundwater.

Figure 3.1-1: Map showing location of TND Red Hills Gas Plant and RH AGI Wells in Section 13, T 24 S, R 33 E

3.2 Bedrock Geology

3.2.1 Basin Development

The Red Hills Gas Plant and the RH AGI wells are located at the northern margin of the Delaware Basin, a sub-basin of the larger, encompassing Permian Basin (**Figure 3.2-1**), which covers a large area of southeastern New Mexico and west Texas.

Figure 3.2-1: Structural features of the Permian Basin during the Late Permian. Location of the RH AGI wells is shown by the black circle. (Modified from Ward, et al (1986))

Figure 3.2-2 is a generalized stratigraphic column showing the formations that underlie the Red Hills Gas Plant and RH AGI wells site. The thick sequences of Permian through Cambrian rocks are described below. A general description of the stratigraphy of the area is provided in this section. A more detailed discussion of the injection zone and the upper and lower confining zones is presented in Section 3.3 below.

The RH AGI wells are located in the Delaware Basin portion of the broader Permian Basin. Sediments in the area date back to the Cambrian Bliss Sandstone (Broadhead, 2017; **Figure 3.2-2**) and overlay Precambrian granites. These late Cambrian transgressive sandstones were the initial deposits from a shallow marine sea that covered most of North America and Greenland (**Figure 3.2-3**). With continued down warping and/or sea-level rise, a broad, relatively shallow marine basin formed. The Ellenburger Formation (0 - 1000 ft) is dominated by dolostones and limestones that were deposited on restricted carbonate shelves (Broadhead, 2017; Loucks and Kerans, 2019). Throughout this narrative, the numbers after the formations indicate the range in thickness for that unit. Tectonic activity near the end of Ellenburger deposition resulted in subaerial exposure and karstification of these carbonates which increased the unit's overall porosity and permeability.

AGE		CE	NTRAL BASIN PLATFORM- NORTHWEST SHELF		DELAWARE BASIN		
Cenozoic			Alluvium		Alluvium		
Triccolo			Chinle Formation		Chinle Formation		
Triassic		Santa Rosa Sandstone			Santa Rosa Sandstone		
	Loningian	[Dewey Lake Formation		Dewey Lake Formation		
	(Ochoan)	<u> </u>	Rustler Formation	Rustler Formation Salado Formation			
			Salado Formation		Castile Formation		
			Tansill Formation	d	Lamar Limestone		
		Loup	Yates Formation	Brou	Bell Canyon Formation		
	Guadalunian	ia G	Seven Rivers Formation	ain (Don ounjoir i onnadon		
	Guadalupian	rtes	Queen Formation	ount	Charme Conven Formation		
Demoiser		◄	Grayburg Formation	e Mo	Cherry Canyon Formation		
Permian			San Andres Formation	lawar	Brushy Canvon Formation		
	Cisuralian		Glorieta Formation	De			
	(Leonardian)	ő	Blinebry Mbr				
	(Leonardian)	Ϋ́ĕ	Tubb Sandstone Mbr.		Bana Sanian Farmatian		
			Drinkard Mbr.		Bone Spring Formation		
			Abo Formation				
	Wolfcampian	Hueco ("Wolfcamp") Fm.		Hueco ("Wolfcamp") Fm.			
	Virgilian	Cisco Formation			Cisco		
	Missourian	Canyon Formation			Canyon		
Pennsylvanian	Des Moinesian	Strawn Formation			Strawn		
	Atokan	Atoka Formation			Atoka		
	Morrowan	Morrow Formation		Morrow			
Mississinnian	Upper		Barnett Shale	Barnett Shale			
wississippian	Lower	"Ⅳ	lississippian limestone"	"Mississippian limestone"			
	Upper		Woodford Shale		Woodford Shale		
Devonian	Middle						
	Lower		Thirtyone Formation		Thirtyone Formation		
	Upper		Wristen Group		Wristen Group		
Silurian	Middle						
	Lower		Fusselman Formation		Fusselman Formation		
	Upper		Montoya Formation		Montoya Formation		
Ordovician	Middle		Simpson Group		Simpson Group		
ordoviolari	Lower	I	Ellenburger Formation		Ellenburger Formation		
Cambrian			Bliss Ss.		Bliss Ss.		
Precambrian		Miscellaneous igneous, metamorphic, volcanic rocks		Miscellaneous igneous, metamorphic, volcanic rocks			

Figure 3.2-2: Stratigraphic column for the Delaware basin, the Northwest Shelf and Central Basin Platform (modified from Broadhead, 2017).

During Middle to Upper Ordovician time, seas once again covered the area and deposited the carbonates, sandstones and shales of the Simpson Group (0 – 1000 ft) and then the Montoya Formation (0 – 600 ft). This is the period when the Tobosa Basin formed due to the Pedernal uplift and development of the Texas Arch (**Figure 3.2-4**; Harrington, 2019), which shed Precambrian crystalline clasts into the basin. Simpson reservoirs in New Mexico are typically within deposits of shoreline sandstones (Broadhead, 2017). A subaerial exposure and karstification event followed the deposition of the Simpson Group. The Montoya Formation marked a return to dominantly carbonate sedimentation with minor siliciclastic sedimentation within the Tobosa Basin (Broadhead, 2017; Harrington and Loucks, 2019). The Montoya Formation consists of sandstones and dolomites and has also undergone karstification.

Figure 3.2-3: A subsidence chart from Reeves County, Texas showing the timing of development of the Tobosa and Delaware basins during Paleozoic deposition (from Ewing, 2019)

Figure 3.2-4: Tectonic Development of the Tobosa and Permian Basins. A) Late Mississippian (Ewing, 2019). Note the lateral extent (pinchout) for the lower Paleozoic strata. B) Late Permian (Ruppel, 2019a).

Siluro-Devonian formations consist of the Upper Ordovician to Lower Silurian Fusselman Formation (0 – 1,500 ft), the Upper Silurian to Lower Devonian Wristen Group (0 – 1,400 ft), and the Lower Devonian Thirtyone Formation (0 – 250 ft). The Fusselman Formation is primarily shallow-marine platform deposits of dolostones and limestones (Broadhead, 2017; Ruppel, 2019b). Subaerial exposure and karstification associated with another unconformity at top of the Fusselman Formation as well as intraformational exposure events created brecciated fabrics, widespread dolomitization, and solution-enlarged pores and fractures (Broadhead, 2017). The overlying Wristen and Thirtyone units appear to be conformable. The Wristen Group consists of tidal to high-energy platform margin carbonate deposits of dolostones, limestones, and cherts with minor siliciclastics (Broadhead, 2017; Ruppel, 2020). The Thirtyone Formation is present in the southeastern corner of New Mexico and appears to be either removed by erosion or not deposited elsewhere in New Mexico (**Figure 3.2-5**). It is shelfal carbonate with varying amounts of chert nodules and represents the last carbonate deposition in the area during Devonian time (Ruppel et al., 2020a).

Figure 3.2-5: A subcrop map of the Thirtyone and Woodford formations. The Woodford (brown) lies unconformably on top of the Wristen Group where there are no Thirtyone sediments (yellow). Diagram is from Ruppel (2020).

The Siluro-Devonian units are saltwater injection zones within the Delaware Basin and are typically dolomitized, shallow marine limestones that have secondary porosity produced by subaerial exposure, karstification and later fracturing/faulting. These units will be discussed in more detail in Section 3.2.2.

The Devonian Woodford Shale, an un-named Mississippian limestone, and the Upper Mississippian Barnett Shale are seals for the underlying Siluro-Devonian strata. While the Mississippian recrystallized limestones

have minor porosity and permeability, the Woodford and Barnett shales have extremely low porosity and permeability and would be effective barriers to upward migration of acid gas out of the injection zone. The Woodford Shale (0 – 300 ft) ranges from organic–rich argillaceous mudstones with abundant siliceous microfossils to organic-poor argillaceous mudstones (Ruppel et al., 2020b). The Woodford sediments represent stratified deeper marine basinal deposits with their organic content being a function of the oxygenation within the bottom waters – the more anoxic the waters the higher the organic content.

The Mississippian strata within the Delaware Basin consists of an un-named carbonate member and the Barnett Shale and unconformably overlies the Woodford Shale. The lower Mississippian limestone (0 – 800 ft) are mostly carbonate mudstones with minor argillaceous mudstones and cherts. These units were deposited on a Mississippian ramp/shelf and have mostly been overlooked because of the reservoirs limited size. Where the units have undergone karstification, porosity may approach 4 to 9% (Broadhead, 2017), otherwise porosity is very low. The Barnett Shale (0 – 400 ft) unconformably overlies the Lower Mississippian carbonates and consists of Upper Mississippian carbonates deposited on a shelf to basinal siliciclastic deposits that make up the Barnett Shale.

Pennsylvanian sedimentation is dominated by glacio-eustatic sea-level cycles that produced shallowing upward cycles of sediments, ranging from deep marine siliciclastic and carbonate deposits to shallow-water limestones and siliciclastics, and capping terrestrial siliciclastic sediments and karsted limestones. Lower Pennsylvanian units consist of the Morrow and Atoka formations. The Morrow Formation (0 - 2,000 ft) within the northern Delaware Basin was deposited as part of a deepening upward cycle with depositional environments ranging from fluvial/deltaic deposits at the base, sourced from the crystalline rocks of the Pedernal Uplift to the northwest, to high-energy, near-shore coastal sandstones and deeper and/or low-energy mudstones (Broadhead, 2017; Wright, 2020). The Atoka Formation (0-500 ft) was deposited during another sea-level transgression within the area. Within the area, the Atoka sediments are dominated by siliciclastic sediments, and depositional environments range from fluvial/deltas, shoreline to near-shore coastal barrier bar systems to occasional shallow-marine carbonates (Broadhead, 2017; Wright, 2020).

Middle Pennsylvanian units consist of the Strawn group (an informal name used by industry). Strawn sediments (250 - 1,000 ft) within the area consist of marine sediments that range from ramp carbonates, containing patch reefs, and marine sandstone bars to deeper marine shales (Broadhead, 2017).

Upper Pennsylvanian Canyon (0 – 1,200 ft) and Cisco (0 – 500 ft) group deposits are dominated by marine, carbonate-ramp deposits and basinal, anoxic, organic-rich shales.

Deformation, folding and high-angle faulting, associated with the Upper Pennsylvanian/Early Permian Ouachita Orogeny, created the Permian Basin and its two sub-basins, the Midland and Delaware basins (Hills, 1984; King, 1948), the Northwest Shelf (NW Shelf), and the Central Basin Platform (CBP; **Figures 3.2-4**, **3.2-6**, **3.2-7**). The Permian "Wolfcamp" or Hueco Formation was deposited after the creation of the Permian Basin. The Wolfcampian sediments were the first sediments to fill in the structural relief (**Figure 3.2-6**). The Wolfcampian Hueco Group (~400 ft on the NW Shelf, >2,000 ft in the Delaware Basin) consists of shelf margin deposits ranging from barrier reefs and fore slope deposits, bioherms, shallow-water carbonate shoals, and basinal carbonate mudstones (Broadhead, 2017; Fu et al., 2020). Since deformation continued throughout the Permian, the Wolfcampian sediments were truncated in places like the Central Basin Platform (**Figure 3.2-6**).

Figure 3.2-6: Cross section through the western Central Basin Platform showing the structural relationship between the Pennsylvanian and older units and Permian strata (modified from Ward et al., 1986; from Scholle et al., 2007).

Figure 3.2-7: Reconstruction of southwestern United States about 278 million years ago. The Midland Basin (MB), Delaware Basin (DB) and Orogrande Basin (OB) were the main depositional centers at that time (Scholle et al., 2020).

Differential sedimentation, continual subsidence, and glacial eustasy impacted Permian sedimentation after Hueco deposition and produced carbonate shelves around the edges of deep sub-basins. Within the Delaware Basin, this subsidence resulted in deposition of roughly 12,000 ft of siliciclastics, carbonates, and evaporites (King, 1948). Eustatic sea-level changes and differential sedimentation played an important role in the distribution of sediments/facies within the Permian Basin (**Figure 3.2-2**). During sea-level lowstands, siliciclastic sediments largely bypassed the shelves and were deposited deeper in the basin. Scattered, thin sandstones and siltstones as well as fracture and pore filling sands found up on the shelves correlate to those lowstands. During sea-level highstands, thick sequences of carbonates were deposited by a "carbonate factory" on the shelf and shelf edge. Carbonate debris beds shedding off the shelf margin were transported into the basin (Wilson, 1972; Scholle et al., 2007). Individual debris flows thinned substantially from the margin to the basin center (from 100s feet to feet).

Unconformably overlying the Hueco Group is the Abo Formation (700 – 1,400 ft). Abo deposits range from carbonate grainstone banks and buildups along Northwest Shelf margin to shallow-marine, back-reef carbonates behind the shelf margin. Further back on the margin, the backreef sediments grade into intertidal carbonates to siliciclastic-rich sabkha red beds to eolian and fluvial deposits closer to the Sierra Grande and Uncompahgre uplifts (Broadhead, 2017, Ruppel, 2019a). Sediments basinward of the Abo margin are equivalent to the lower Bone Spring Formation. The Yeso Formation (1,500 – 2,500 ft), like the Abo Formation, consists of carbonate banks and buildups along the Abo margin. Unlike Abo sediments, the Yeso Formation contains more siliciclastic sediments associated with eolian, sabkha, and tidal flat facies (Ruppel, 2019a). The Yeso shelf sandstones are commonly subdivided into the Drinkard, Tubb, Blinebry, Paddock members (from base to top of section). The Yeso Formation is equivalent to the upper Bone Spring Formation. The Bone Spring Formation is a thick sequence of alternating carbonate and siliciclastic horizons that formed because of changes in sea level; the carbonates during highstands, and siliciclastics during lowstands. Overlying the Yeso, are the clean, white eolian sandstones of the Glorietta Formation, a key marker bed in the region, both on outcrop and in the subsurface. Within the basin, it is equivalent to the lowermost Brushy Canyon Formation of the Delaware Mountain Group.

The Guadalupian San Andres Formation (600 – 1,600 ft) and Artesia Group (<1,800 ft) reflect the change in the shelf margin from a distally steepened ramp to a well-developed barrier reef complex. The San Andres Formation consists of supratidal to sandy subtidal carbonates and banks deposited a distally steepened ramp. Within the San Andres Formation, several periods of subaerial exposure have been identified that have resulted in karstification and pervasive dolomitization of the unit. These exposure events/sea-level lowstands are correlated to sandstones/siltstones that moved out over the exposed shelf leaving minor traces of their presence on the shelf but formed thick sections of sandstones and siltstones in the basin. Within the Delaware Basin, the San Andres Formation is equivalent to the Brushy and lower Cherry Canyon Formations.

The Artesia Group (Grayburg, Queen, Seven Rivers, Yates, and Tansill formations, ascending order) is equivalent to Capitan Limestone, the Guadalupian barrier/fringing reef facies. Within the basin, the Artesia Group is equivalent to the upper Cherry and Bell Canyon formations, a series of relatively featureless sandstones and siltstones. The Queen and Yates formations contain more sandstones than the Grayburg, Seven Rivers, and Tansill formations. The Artesia units and the shelf edge equivalent Capitan reef sediments represent the period when the carbonate factory was at its greatest productivity with the shelf margin/Capitan reef prograding nearly 6 miles into the basin (Scholle et al., 2007). The Artesia Group sediments were deposited in back-reef, shallow marine to supratidal/evaporite environments. Like the San Andres Formation, the individual formations were periodically exposed during lowstands.

The final stage of Permian deposition on the Northwest Shelf consists of the Ochoan/Lopingian Salado Formation (<2,800 ft, Nance, 2020). Within the basin, the Castile formation, a thick sequence (total thickness ~1,800 ft, Scholle et al., 2007) of cyclic laminae of deep-water gypsum/anhydrite interbedded with calcite and organics, formed due to the restriction of marine waters flowing into the basin. Gypsum/anhydrite laminae precipitated during evaporative conditions, and the calcite and organic-rich horizons were a result of seasonal "freshening" of the basin waters by both marine and freshwaters. Unlike the Castile Formation, the Salado Formation is a relatively shallow water evaporite deposit. Halite, sylvite, anhydrite, gypsum, and numerous potash minerals were precipitated. The Rustler Formation (500 ft , Nance, 2020) consists of gypsum/anhydrite, a few magnesitic and dolomitic limestone horizons, and red beds. These are mostly shallow marginal marine deposits and represent the last Permian marine deposits in the Delaware Basin. The Rustler Formation was followed by terrestrial sabkha red beds of the Dewey Lake Formation (~350', Nance, 2020), ending Permian deposition in the area.

Beginning early in the Triassic, uplift and the breakup of Pangea resulted in another regional unconformity and the deposition of non-marine, alluvial Triassic sediments (Santa Rosa Sandstone and Chinle Formation). They are unconformably overlain by Cenozoic alluvium (which is present at the surface). Cenozoic Basin and Range tectonics resulted in the current configuration of the region and reactivated numerous Paleozoic faults.

3.2.2 Stratigraphy

The Permian rocks found in the Delaware Basin are divided into four series, the Ochoa (most recent, renamed Lopingian), Guadalupian, Leonardian (renamed Cisuralian), and Wolfcampian (oldest) (**Figure 3.2-2**). This sequence of shallow marine carbonates and thick, basinal siliciclastic deposits contains abundant oil and gas resources and are the main source of oil within New Mexico. In the area around the RH AGI wells, Permian strata are mainly basin deposits consisting of sandstones, siltstones, shales, and lesser amounts of carbonates. Besides production in the Delaware Mountain Group, there is also production, mainly gas, in the basin Bone Spring Formation, a sequence of carbonates and siliciclastics. The injection and confining zones for RH AGI #1 and RH AGI #3 are discussed below.

CONFINING/SEAL ROCKS

Permian Ochoa Series. The youngest of the Permian sediments, the Ochoan- or Lopingian-aged deposits, consists of evaporites, carbonates, and red beds. The Castile Formation is made of cyclic laminae of deepwater gypsum/anhydrite beds interlaminated with calcite and organics. This basin-occurring unit can be up to 1,800 ft thick. The Castile evaporites were followed by the Salado Formation (~1,500 ft thick). The Salado Formation is a shallow water evaporite deposit, when compared to the Castile Formation, and consists of halite, sylvite, anhydrite, gypsum, and numerous potash/bittern minerals. Salado deposits fill the basin and lap onto the older Permian shelf deposits. The Rustler Formation (up to 500 ft, Nance, 2020) consists of gypsum/anhydrite, a few magnesitic and dolomitic limestone horizons, and red beds. These are mostly shallow marginal marine deposits and represents the last Permian marine deposits in the Delaware Basin. The Ochoan evaporitic units are superb seals (usually <1% porosity and <0.01 mD permeability) and are the reason that the Permian Basin is such a hydrocarbon-rich region despite its less than promising total organic carbon (TOC) content.

INJECTION ZONE

Permian Guadalupe Series. Sediments in the underlying Delaware Mountain Group (descending, Bell Canyon, Cherry Canyon, and Brushy Canyon formations) are marine units that represent deposition controlled by eustacy and tectonics. Lowstand deposits are associated with submarine canyons that incised the carbonate platform margin surrounding the Delaware basin. Depositional environments consist of turbidite channels, splays, and levee/overbank deposits (**Figure 3.2-8**).

Additionally, debris flows formed by the failure of the carbonate margin and density currents also make up basin sediments. Isolated coarse-grained to boulder-sized carbonate debris flows and grain falls within the lowstand clastic sediments likely resulted from erosion and failure of the shelf margin during sea-level lowstands or slope failure to tectonic activity (earthquakes). Density current deposits resulted from stratified basin waters. The basal waters were likely stratified and so dense that turbidity flows containing sands, silts and clays were unable to displace those bottom waters and instead flowed out over the density interface (**Figure 3.2-9**). Eventually, the entrained sediments would settle out in a constant rain of sediment forming laminated deposits with little evidence of traction (bottom flowing) deposition.

Interbedded with the very thick lowstand sequences are thin, deep-water limestones and mudstones that represent highstand deposition. These deposits are thickest around the edge (toe-of-slope) of the basin and thin to the basin center (**Figure 3.2-10**). The limestones are dark, finely crystalline, radiolarian-rich micrites to biomicrites. These highstand deposits are a combination of suspension and pelagic sediments that also thin towards the basin center. These relatively thin units are time equivalent to the massive highstand carbonate deposits on the shelf.

Figure 3.2-8: A diagram of typical Delaware Mountain Group basinal siliciclastic deposition patterns (from Nance, 2020). The channel and splay sandstones have the best porosity, but some of the siltstones also have potential as injection zones.

Figure 3.2-9: Harms' (1974) density overflow model explains the deposition of laminated siliciclastic sediments in the Delaware Basin. Low density sand-bearing fluids flow over the top of dense, saline brines at the bottom of the basin. The sands gradually drop out as the flow loses velocity creating uniform, finely laminated deposits (from Scholle et al., 2007).

Figure 3.2-10: The impact of sea-level fluctuations (also known as reciprocal sedimentation) on the depositional systems within the Delaware Basin. A) A diagrammatic representation of sea-level variations impact on deposition. B) Model showing basin-wide depositional patterns during lowstand and highstand periods (from Scholle et al., 2007).

The top of the Guadalupian Series is the Lamar Limestone, which is the source of hydrocarbons found in underlying Delaware Sand (an upper member of the Bell Canyon Formation). The Bell Canyon Formation is roughly 1,000 ft thick in the Red Hills area and contains numerous turbidite input points around the basin margin (**Figures 3.2-10, 3.2-11**). During Bell Canyon deposition, the relative importance of discrete sand sources varied (Giesen and Scholle, 1990), creating a network of channel and levee deposits that also varied in their size and position within the basin. Based on well log analyses, the Bell Canyon 2 and 3 had the thickest sand deposits.

Figure 3.2-11: These maps of Bell Canyon Formation were created by measuring sandstone thicknesses on well logs in four regionally correlatable intervals (from Giesen and Scholle, 1990 and unpublished thesis research). The red circle on the last map surrounds the Red Hills area.

Like the Bell Canyon and Brushy Canyon formations, the Cherry Canyon Formation is approximately 1,300 ft thick and contains numerous turbidite source points. Unlike the Bell Canyon and Brushy Canyon deposits, the channel deposits are not as large (Giesen and Scholle, 1990), and the source of the sands appears to be dominantly from the eastern margin (**Figure 3.2-12**). Cherry Canyon 1 and 5 have the best channel development and the thickest sands. Overall, the Cherry Canyon Formation, on outcrop, is less influenced by traction current deposition than the rest of the Delaware Mountain Group deposits and is more influenced by sedimentation by density overflow currents (**Figure 3.2-9**). The Brushy Canyon has notably more discrete channel deposits and coarser sands than the Cherry Canyon and Bell Canyon. The Brushy Canyon Formation is approximately 1,500 ft thick.

Figure 3.2-12: These maps of Cherry Canyon Formation were created by measuring sandstone thicknesses on well logs in five regionally correlatable intervals (from Giesen and Scholle, 1990 and unpublished thesis research). Unlike the Bell Canyon sandstones, the Cherry Canyon sands are thinner and contain fewer channels. The red circle on the last map surrounds the Red Hills area.

Within the Delaware Mountain Group in the Red Hills area, the Bell Canyon and Cherry Canyon have better porosity (averaging 15 – 25 % within channel/splay sandstones) and permeability (averaging 2-13 mD) than the Brushy Canyon (~14% porosity, an <3 mD; Ge et al, 2022, Smye et al., 2021).

UNDERLYING CONFINING ZONE

Permian Leonard Series. The Leonardian/Cisuralian Series, located beneath the Guadalupian Series sediments, is represented by >3,000 ft of basin-deposited carbonate and siliciclastic sediments of the Bone Spring Formation. The Bone Spring Formation is more carbonate rich than the Delaware Mountain Group deposits, but the sea-level-driven cycles of sedimentation and the associated depositional environments are similar with debris flows, turbidites, and pelagic carbonate sediments. The Bone Spring Formation contains both conventional and unconventional fields within the Delaware Basin in both sandstone-rich and carbonate-rich facies. Most of these plays occur within toe-of-slope carbonate and siliciclastic deposits or the turbidite facies in the deeper sections of the basin (Nance and Hamlin, 2020). The upper most Bone Spring is usually dense carbonate mudstone with limited porosity and low porosity.

3.2.3 Faulting

In this immediate area of the Permian Basin, faulting is primarily confined to the lower Paleozoic section, where seismic data shows major faulting and ancillary fracturing-affected rocks only as high up as the base of the lower Wolfcamp strata (**Figures 3.2-6 and 5.6-1**). Faults that have been identified in the area are normal faults associated with Ouachita related movement along the western margin of the Central Platform to the east of the RH AGI facilities. The closest identified fault lies approximately 1.5 miles east of the Red Hills facilities and has approximately 1,000 ft of down-to-the-west structural relief. Because these faults are confined to the lower Paleozoic unit well below the injection zone for the RH AGI wells, they will not be discussed further (Horne et al., 2021). Within the area of the Red Hills site, no shallow faults within the Delaware Mountain Group have been identified by seismic data interpretation nor as reported by Horne et al., 2022).

3.3 Lithologic and Reservoir Characteristics

Based on the geologic analyses of the subsurface at the Red Hills Gas Plant, the uppermost portion of the Cherry Canyon Formation was chosen for acid gas injection and CO₂ sequestration for RH AGI #1 and the uppermost Delaware Mountain Group (the Bell Canyon and Cherry Canyon Formations) for RH AGI #3.

In the Red Hills area, the thickest sand within the Delaware Mountain Group is a sandstone within the Bell Canyon Formation that is informally and locally referred to as the Delaware Sand. The Delaware sand is productive, but it is not locally.

For RH AGI #1, this injection interval includes five high porosity sandstone units (sometimes referred to as the Manzanita) and has excellent caps above, below and between the individual sandstone units. There is no local production in the overlying Delaware Sands pool and there are no structural features or faults that would serve as potential vertical conduits. The high net porosity of the RH AGI #1 injection zone indicates that the injected H₂S and CO₂ will be easily contained close to the injection well.

For RH AGI #3, the injection interval has been expanded to include high porosity sandstones present within the Bell Canyon Formation in RH AGI #3 as well as the five high porosity zones in the Cherry Canyon Formation. Most of the sand bodies in the Bell Canyon and Cherry Canyon formations are surrounded by shales or limestones, forming caps for the injection zones. There are no structural features or faults that would serve as potential vertical conduits, and the overlying Ochoan evaporites form an excellent overall seal for the system. Even if undetected faulting existed, the evaporites (Castile and Salado) would self-seal and prevent vertical migration out of the Delaware Mountain Group.

3D seismic data, as well as geophysical logs for all wells penetrating the Bell Canyon and Cherry Canyon formations within a three-mile radius of the RH AGI wells were reviewed. There are no faults visible within the Delaware Mountain Group in the Red Hills area. Within the seismic review area, the units dip gently to the southeast with approximately 200 ft of relief across the area. Heterogeneities within both the Bell Canyon and Cherry Canyon sandstones, such as turbidite and debris flow channels, will exert a significant control over the porosity and permeability within the two units and fluid migration within those sandstones. In addition, these channels are frequently separated by low porosity and permeability siltstones and shales (Figure 3.2-8) as well as being encased by them. Based on regional studies (Giesen and Scholle, 1990 and Figures 3.2-11, 3.2-12), the preferred orientation of the channels, and hence the preferred fluid migration pathways, are roughly from the east to the west.

Porosity was evaluated using geophysical logs from nearby wells penetrating the Cherry Canyon Formation. **Figure 3.3-1** shows the Resistivity (Res) and Thermal Neutron Porosity (TNPH) logs from 5,050 ft to 6,650 ft and includes the injection interval. Five clean sands (>10% porosity and <60 API gamma units) are targets for injection within the Cherry Canyon formation and potentially another 5 sands with >10% porosity and <60 API gamma units were identified. Ten percent was the minimum cut-off considered for adequate porosity for injection. The sand units are separated by lime mudstone and shale beds with lateral continuity. The high porosity sand units exhibit an average porosity of about 18.9%; taken over the average thickness of the clean sand units within ½ mile of the RH AGI #1. There is an average of 177 ft with an irreducible water (S_{wir}) of 0.54 (see Table 1 of the RH AGI #1 permit application). Many of the sands are very porous (average porosity of > 22%) and it is anticipated that for these more porous sands, the S_{wir} may be too high. The effective porosity (Total Porosity – Clay Bound Water) would therefore also be higher. As a result, the estimated porosity ft (PhiH) of approximately 15.4 porosity-ft should be considered to be a minimum. The overlying Bell Canyon Formation has 900 ft of sands and intervening tight limestones, shales, and calcitic siltstones with porosities as low as 4%, but as mentioned above, there are at least 5 zones with a total thickness of approximately 460 ft and containing 18 to 20% porosity. The injection interval is located more than 2,650 ft above the Bone Spring Formation, which is the next production zone in the area.

Figure 3.3-1: Geophysical logs from the Bell Canyon and the Upper Cherry Canyon from the Government L Com #002 well, located 0.38 miles from the RH AGI #1 Well. The blue intervals are Bell Canyon porosity zones, and the yellow intervals are Cherry Canyon porosity zones.

3.4 Formation Fluid Chemistry

A chemical analysis (**Table 3.4-1**) of water from Federal 30 Well No. 2 (API 30-025-29069), approximately 3.9 miles away, indicates that the formation waters are highly saline (180,000 ppm NaCl) and compatible with the injection.

Sp. Gravity	1.125 @ 74°F	Resistivity	0.07 @ 74°F
рН	7	Sulfate	1,240
Iron	Good/Good	Bicarbonate	2,135
Hardness	45,000	Chloride	110,000
Calcium	12,000	NaCl	180,950
Magnesium	3,654	Sod. & Pot.	52,072

 Table 3.4-1:
 Formation fluid analysis for Cherry Canyon Formation from Federal 30 Well No. 2

Table extracted from C-108 Application to Inject by Ray Westall Associates with SWD-1067 – API 30-025-24676. Water analysis for formation water from Federal 30 #2 Well (API 30-025-29069), depth 7,335-7,345 ft, located 3.9 miles from RH AGI #1 well.

3.5 Groundwater Hydrology in the Vicinity of the Red Hills Gas Plant

Based on the New Mexico Water Rights Database from the New Mexico Office of the State Engineer, there are 15 freshwater wells located within a two-mile radius of the RH AGI wells, and only 2 water wells within one mile; the closest water well is located 0.31 miles away and has a total depth of 650 ft (**Figure 3.5-1; Appendix 3**). All water wells within the two-mile radius are shallow, collecting water from about 60 to 650 ft depth, in Alluvium and the Triassic redbeds. The shallow freshwater aquifer is protected by the surface and intermediate casings and cements in the RH AGI wells (**Figures Appendix 1-1 and Appendix 1.2**). While the casings and cements protect shallow freshwater aquifers, they also serve to prevent CO₂ leakage to the surface along the borehole.

Figure 3.5-1: Reported Water Wells within the MMA for the RH AGI Wells.

3.6 Historical Operations

3.6.1 Red Hills Site

On July 20, 2010, Agave Energy Company (Agave) filed an application with NMOCD to inject treated acid gas into an acid gas injection well. Agave built the Red Hills Gas Processing Plant and drilled RH AGI #1 in 2012-13. However, the well was never completed and never put into service because the plant was processing only sweet gas (no H₂S). Lucid purchased the plant from Agave in 2016 and completed the RH AGI #1 well. TND acquired Lucid's Red Hills assets in 2022. **Figure 3.6-1** shows the location of fixed H₂S and lower explosive limit (LEL) detectors in the immediate vicinity of the RH AGI wells. **Figure 3.6-2** shows a process block flow diagram.

Figure 3.6-1: Diagram showing the location of fixed H₂S and lower explosive limit (LEL) detectors in the immediate vicinity of the RH AGI wells. RH AGI #2 is temporarily abandoned.

Figure 3.6-2: Process Block Flow Diagram. RH AGI #2 is temporarily abandoned. M1 – M6: volumetric flow meters; C1 and C2: compressors; ST1 and ST2: sour treaters; and Sample Points (SP) for biweekly collection of data for determining the TAG stream concentration.

3.6.2 Operations within the MMA for the RH AGI Wells

NMOCD records identify a total of 22 oil- and gas-related wells within the MMA for the RH AGI wells (see **Appendix 4**). **Figure 3.6-3** shows the geometry of producing and injection wells within the MMA for the RH AGI wells. **Appendix 4** summarizes the relevant information for those wells. All active production in this area is targeted for the Bone Spring and Wolfcamp zones, at depths of 8,900 to 11,800 ft, the Strawn (11,800 to 12,100 ft) and the Morrow (12,700 to 13,500 ft). All of these productive zones lie at more than 2,000 ft below the RH AGI #1 and AGI #3 injection zone.

Figure 3.6-3: Location of all oil- and gas-related wells within the MMA for the RH AGI wells. Both the surface hole locations (SHL) and bottom hole locations (BHL) are labeled on the figure. For clarity, only the last five digits of the API numbers are used in labeling the wells.

3.7 Description of Injection Process

The Red Hills Gas Plant, including RH AGI #1 and RH AGI #3, is in operation and staffed 24-hours-a-day, 7-days-a week. The plant operations include gas compression, treating and processing. The plant gathers and processes produced natural gas from Lea and Eddy Counties in New Mexico. Once gathered at the plant, the produced natural gas is compressed, dehydrated to remove the water content, and processed to remove and recover natural gas liquids. The processed natural gas and recovered natural gas liquids are then sold and shipped to various customers. The inlet gathering lines and pipelines that bring gas into the plant are regulated by U.S. Department of Transportation (DOT), National Association of Corrosion Engineers (NACE) and other applicable standards which require that they be constructed and marked with appropriate warning signs along their respective rights-of-way. TAG from the plant's sweeteners will be routed to a central compressor facility, located west of the well head. Compressed TAG is then routed to the wells via high-pressure rated lines. **Figure 3.7-1** is a schematic of the AGI facilities.

The approximate composition of the TAG stream is: 80% CO₂, 20% H₂S, with trace components of C₁ – C₆ (methane – hexane) and Nitrogen. The anticipated duration of injection is 30 years.

3.8 Reservoir Characterization Modeling

The modeling and simulation focused on the Bell Canyon and Cherry Canyon Formations as the main injection target zone for acid gas storage. RH AGI #1 (API 30-025-40448) and RH AGI #3 (API 30-025-51970) are the approved injectors for treated acid gas injection by NMOCD and will serve as the injection wells in the model under the approved disposal timeframe and maximum allowable injection pressure. RH AGI #1 is completed in the Cherry Canyon Formation between 6,230 feet to 6,583 feet (MD). RH AGI #3 is completed in both the Bell Canyon and Cherry Canyon Formations between approximately 5,700 feet to 7,600 feet (MD).

Schlumberger's Petrel[®] (Version 2023.1) software was used to construct the geological models used in this work. Computer Modeling Group (CMG)'s CMG-GEM[®] (Version 2023.10) was used in the reservoir simulations presented in this MRV plan. CMG-WINPROP[®] (Version 2023.10) was used to perform PVT calculation through Equation of States and properties interactions among various compositions to feed the hydrodynamic modeling performed by CMG-GEM[®]. The hydrodynamical model considered aqueous, gaseous, and supercritical phases, and simulates the storage mechanisms including structural trapping, residual gas trapping, and solubility trapping. Injected TAG may exist in the aqueous phase in a dissolved state and the gaseous phase in a supercritical state. The model was validated through matching the historical injection data of RH AGI #1 and will be reevaluated periodically as required by the State permitting agency.

The static model is constructed with well tops and licensed 3D seismic data to interpret and delineate the structural surfaces of a layer within the caprock (Lamar Limestone) and its overlaying, underlying formations. The geologic model covers a 3.5-mile by 3.3-mile area. No distinctive geological structures such as faults have been identified within the geologic model boundary. The model is gridded with 182 x 167 x 18, totaling 547,092 cells. The average grid dimension of the active injection area is 100 square feet. **Figure 3.8-1** shows the simulation model in 3D view. The porosity and permeability of the model is populated through existing well logs. The range of the porosity is between 0.01 to 0.31. The initial permeability are interpolated between 0.02 to 155 millidarcy (mD), and the vertical permeability anisotropy was 0.1. **(Figure 3.8-2 and Figure 3.8-3)**. These values are validated and calibrated with the historical injection data of RH AGI #1 since 2018 as shown in **Figures 3.8-4, 3.8-5, and 3.8-6**.

The simulation model is calibrated with the injection history of RH AGI #1 since 2018. Simulation studies were further performed to estimate the reservoir responses when predicting TAG injection for 30 years through both RH AGI #1 (2018 – 2048) and RH AGI #3 (2024 - 2054). RH AGI #2 is temporarily abandoned as of the submission of this document. RH AGI #1 is simulated to inject with the average rate of the last 5 years, 1.2 MMSCF, in the prediction phase. RH AGI #3 is simulated to inject with permitted injection rate, 13 MMSCF, with 1,767 psi maximum surface injection pressure constraint approved by State agency. The simulation terminated in the year 2084, 30 years after the termination of all injection activities, to estimate the maximum impacted area during post injection phase.

During the calibration period (2018 – 2023), the historical injection rates were used as the primary injection control, and the maximum bottom hole pressures (BHP) are imposed on wells as the constraint, calculated based on the approved maximum injection pressure. This restriction is also estimated to be less than 90% of the formation fracture pressure calculated at the shallowest perforation depth of each well to ensure safe injection operations. The reservoir properties are tuned to match the historical injection until it was reasonably matched. **Figure 3.8-4** shows that the historical injection rates from RH AGI #1 in the Cherry Canyon Formation. **Figure 3.8-5** shows the BHP response of RH AGI #1 during the history matching phase.

During the forecasting period, linear cumulative injection behavior indicates that the Cherry Canyon and Bell Canyon Formations received the TAG stream freely. **Figure 3.8-6** shows the cumulative disposed H₂S and CO₂ of each RH AGI injector separately in gas mass. The modeling results indicate that the Cherry Canyon and Bell Canyon Formations are capable of safely storing and containing the gas volume without violating the permitted rate and pressure. **Figure 3.8-7** shows the gas saturation represented TAG plume at the end of 30-year forecasting in 3D view. **Figure 3.8-8** shows the extent of the plume migration in a map view at 4 key time steps. It can be observed that the size of the TAG plume is very limited and mainly stayed within Targa's Red Hills facility boundary at the end of injection. In the year 2084, after 30 years of monitoring, the injected gas remained trapped in the reservoir and there was no significant change in the observed TAG footprint as compared to that at the end of injection.

In summary, after careful reservoir engineering review and numerical simulation study, our analysis shows that the Bell Canyon and Cherry Canyon Formations can receive treated acid gas (TAG) at the injection rate and permitted maximum surface injection pressure permitted by NMOCC. The injection formations will safely contain the injected TAG volume within the injection and post-injection timeframe. The injection wells will allow for sequestration while preventing associated environmental impacts.

Figure 3.8-1: 3D view of the simulation model of RH AGI #1 and RH AGI #3, containing Salado-Castile Formation, Lamar Limestone, Bell Canyon Formation, and Cherry Canyon Formation. Color legends represents the elevation of layers.

Figure 3.8-2: Porosity estimation using available well data for the simulation domain.

Figure 3.8-3: Permeability estimation using available well data for simulation domain.

Figure 3.8-4: The historical injection rate and total gas injected from RH AGI #1 (2018 to 2023).

Figure 3.8-5: The historical bottom hole pressure response from RH AGI #1 (2018 to 2023)

Figure 3.8-6: Prediction of cumulative mass of injected CO₂ and H₂S for RH AGI #1 and RH AGI #3 (2018 to 2054).

Figure 3.8-7: Simulation model depicting the free phase TAG (represented by gas saturation) at the end of the 30-year post-injection monitoring period (2054) in 3D view.

Figure 3.8-8: Map view depicting the free phase TAG plume at years 2030, 2035, 2045, 2055 (1-year post injection).

4 Delineation of the Monitoring Areas

In determining the monitoring areas below, the extent of the TAG plume is equal to the superposition of plumes in any layer for any of the model scenarios described in Section 3.8.

4.1 MMA – Maximum Monitoring Area

As defined in Subpart RR, the maximum monitoring area (MMA) is equal to or greater than the area expected to contain the free phase CO_2 plume until the CO_2 plume has stabilized plus an all-around buffer zone of at least one-half mile. **Figures 4.1-1** shows the MMA as defined by the extent of the stabilized TAG plume at year 2059 plus a 1/2-mile buffer.

4.2 AMA – Active Monitoring Area

The Active Monitoring Area (AMA) is shown in **Figure 4.1-1**. The AMA is consistent with the requirements in 40 CFR 98.449 because it is the area projected: (1) to contain the free phase CO_2 plume for the duration of the project (year t, t = 2054), plus an all-around buffer zone of one-half mile. (2) to contain the free phase CO_2 plume for at least 5 years after injection ceases (year t + 5, t + 5 = 2059). Targa intends to define the active monitoring area (AMA) as the same area as the MMA. The purple cross-hatched polygon in **Figure 4.1-1** is the plume extent at the end of injection. The yellow polygon in **Figure 4.1-1** is the stabilized plume extent 5 years after injection ceases. The AMA/MMA shown as the red-filled polygon contains the CO_2 plume during the duration of the project and at the time the plume has stabilized.

Figure 4.1-1: Active monitoring area (AMA) for RH AGI #1, RH AGI #2 (temporarily abandoned) and RH AGI #3 at the end of injection (2054, purple polygon) and 5 years post-monitoring (2059, yellow polygon). Maximum monitoring area (MMA) is shown in red shaded area.

5 Identification and Evaluation of Potential Leakage Pathways to the Surface

Subpart RR at 40 CFR 448(a)(2) requires the identification of potential surface leakage pathways for CO_2 in the MMA and the evaluation of the likelihood, magnitude, and timing of surface leakage of CO_2 through these pathways.

Through the site characterization required by the NMOCD C-108 application process for Class II injection wells, the geologic characterization presented in Section 3, and the reservoir modeling described in Section 3.8, TND has identified and evaluated the potential CO_2 leakage pathways to the surface.

A qualitative evaluation of each of the potential leakage pathways is described in the following paragraphs. Risk estimates were made utilizing the National Risk Assessment Partnership (NRAP) tool, developed by five national laboratories: NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL). The NRAP collaborative research effort leveraged broad technical capabilities across the Department of Energy (DOE) to develop the integrated science base, computational tools, and protocols required to assess and manage environmental risks at geologic carbon storage sites. Utilizing the NRAP tool, TND conducted a risk assessment of CO₂ leakage through various potential pathways including surface equipment, existing and approved wellbores within MMA, faults and fractures, and confining zone formations.

5.1 Potential Leakage from Surface Equipment

Due to the corrosive nature of CO₂ and H₂S, there is a potential for leakage from surface equipment at sour gas facilities. Preventative risk mitigation includes adherence to relevant regulatory requirements and industry standards governing the construction, operation, and maintenance of gas plants. Specifically, NMAC 19.15.26.10 requires injection well operators to operate and maintain "surface facilities in such a manner as will confine the injected fluids to the interval or intervals approved and prevent surface damage or pollution resulting from leaks, breaks or spills."

Operational risk mitigation measures relevant to potential CO₂ emissions from surface equipment include a schedule for regular inspection and maintenance of surface equipment. Additionally, TND implements several methods for detecting gas leaks at the surface. Detection is followed up by immediate response. These methods are described in more detail in sections 6 and 7.

Although mitigative measures are in place to minimize CO_2 emissions from surface equipment, such emissions are possible. Any leaks from surface equipment would result in immediate (timing) emissions of CO_2 to the atmosphere the magnitude of which would depend on the duration of the leak and the operational conditions at the time and location of the leak.

The injection wells and the pipeline that carries CO_2 to them are the most likely surface components of the system to allow CO_2 to leak to the surface. The accumulation of wear and tear on the surface components, especially at the flanged connection points, is the most probable source of the leakage. Another possible source of leakage is the release of air through relief valves, which are designed to alleviate pipeline overpressure. Leakage can also occur when the surface components are damaged by an accident or natural disaster, which releases CO_2 . Therefore, TND infers that there is a potential for leakage via this route. Depending on the component's failure mode, the magnitude of the leak can vary greatly. For example, a rapid break or rupture could release thousands of pounds of CO_2 into the atmosphere almost instantly, while a slowly deteriorating seal at a flanged connection could release only a few pounds of CO_2 over several hours or days. Surface component leakage or venting is only a concern during the injection operation phase. Once the injection phase is complete, the surface components will no longer be able to store or transport CO_2 , eliminating any potential risk of leakage.

5.2 Potential Leakage from Approved, Not Yet Drilled Wells

The only wells within the MMA that are approved but not yet drilled are horizontal wells. These wells have a Well Status of "permitted" in **Appendix 4**. There are no vertical wells within the MMA with a Well Status of "permitted".

5.2.1 Horizontal Wells

The table in **Appendix 3** and **Figure 4.1-1** shows a number of horizontal wells in the area, many of which have approved permits to drill but which are not yet drilled. If any of these wells are drilled through the Bell Canyon and Cherry Canyon injection zones for RH AGI #3 and RH AGI #1, they will be required to take special precautions to prevent leakage of TAG minimizing the likelihood of CO₂ leakage to the surface. This requirement will be made by NMOCD in regulating applications for permit to drill (APD) and in ensuring that the operator and driller are aware that they are drilling through an H₂S injection zone in order to access their target production formation. NMAC 19.15.11 for Hydrogen Sulfide Gas includes standards for personnel and equipment safety and H₂S detection and monitoring during well drilling, completion, well workovers, and well servicing operations all of which apply for wells drilled through the RH AGI wells TAG plume.

Due to the safeguards described above, the fact there are no proposed wells for which the surface hole location (SHL) lies within the simulated TAG plume and, considering the NRAP risk analysis described here in Section 5, TND considers the likelihood of CO₂ emissions to the surface via these horizontal wells to be highly unlikely.

5.3 Potential Leakage from Existing Wells

Existing oil and gas wells within the MMA as delineated in Section 4 are shown in **Figure 3.6-3** and detailed in **Appendix 4**.

TND considered all wells completed and approved within the MMA in the NRAP risk assessment. Some of these wells penetrate the injection and/or confining zones while others do not. Even though the risk of CO_2 leakage through the wells that did not penetrate confining zones is highly unlikely, TND did not omit any potential source of leakage in the NRAP analysis. If leakage through wellbores happens, the worst-case scenario is predicted using the NRAP tool to quantitatively assess the amount of CO₂ leakage through existing and approved wellbores within the MMA. Thirty-nine existing and approved wells inside MMA were addressed in the NRAP analysis. The reservoir properties, well data, formation stratigraphy, and MMA area were incorporated into the NRAP tool to forecast the rate and mass of CO₂ leakage. The worst scenario is that all of the 39 wells were located right at the source of CO_2 – the injection wells' location. In this case, the maximum leakage rate of one well is approximately 7e-6 kg/s. This value is the maximum amount of CO_2 leakage, 220 kg/year, and occurs in the second year of injection, then gradually reduces to 180 kg at the end of year 30. Comparing the total amount of CO_2 injected (assuming 5 MMSCFD of supercritical CO_2 injected continuously for 30 years), the leakage mass amounts to 0.0054% of the total CO₂ injected. This leakage is considered negligible. Also, this worst-case scenario, where 39 wells are located right at the injection point, is impossible in reality. Therefore, CO₂ leakage to the surface via this potential leakage pathway can be considered improbable.

5.3.1 Wells Completed in the Bell Canyon and Cherry Canyon Formations

The only wells completed in the Bell Canyon and Cherry Canyon Formations within the MMA are RH AGI #1, RH AGI #2 (drilling stopped in the Bell Canyon), and RH AGI #3 and the 30-025-08371 well which was completed at a depth of 5,425 ft. This well is within the Red Hills facility boundary and is plugged and abandoned (see **Appendix 9** for plugging and abandonment (P&A) record).

Appendix 1 includes schematics of the RH AGI #1, RH AGI #2, and RH AGI #3 wells' construction showing multiple strings of casing all cemented to surface. Injection of TAG into RH AGI #1 and RH AGI #3 occurs through tubing with a permanent production packer set above the injection zone.

RH AGI #2 is located in close proximity to RH AGI #1 and is temporarily abandoned. Drilling of this well stopped at 6,205 ft due to concerns about high pressures by drilling into the Cherry Canyon Formation and therefore, did not penetrate the Cherry Canyon Formation. The cement plug was tagged at 5,960 feet which is above the injection zone for RH AGI #1 (see **Figure Appendix 1-3**).

Due to the robust construction of the RH AGI wells, the plugging of the well 30-025-08371 above the Bell Canyon, the plugging of RH AGI #2 above the Cherry Canyon Formation, and considering the NRAP analysis described above, TND considers that, while the likelihood of CO₂ emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.3.2 Wells Completed in the Bone Spring / Wolfcamp Zones

Several wells are completed in the Bone Spring and Wolfcamp oil and gas production zones as described in Section 3.6.2. These productive zones lie more than 2,000 ft below the RH AGI wells injection zone minimizing the likelihood of communication between the RH AGI well injection zones and the Bone Spring / Wolfcamp production zones. Construction of these wells includes surface casing set at 1,375 ft and cemented to surface and intermediate casing set at the top of the Bell Canyon at depths of from 5,100 to 5,200 ft and cemented through the Permian Ochoan evaporites, limestone and siltstone (**Figure 3.2-2**) providing zonal isolation preventing TAG injected into the Bell Canyon and Cherry Canyon formations through the RH AGI wells from leaking upward along the borehole in the event the TAG plume were to reach these wellbores. **Figure 4.1-1** shows that the modeled TAG plume extent after 30 years of injection and 5 years of post-injection stabilization does not extend to well boreholes completed in the Bone Spring / Wolfcamp production zones thereby indicating that these wells are not likely to be pathways for CO₂ leakage to the surface.

Due to the construction of these wells, the fact that the modeled TAG plume does not reach the SHL of these wells and considering the NRAP analysis described in the introductory paragraph of Section 5, TND considers that, while the likelihood of CO_2 emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.3.3 Wells Completed in the Siluro-Devonian Zone

One well penetrated the Devonian at the boundary of the MMA - EOG Resources, Government Com 001, API # 30-025-25604, TVD = 17,625 ft, 0.87 miles from RH AGI #3. This well was drilled to a total depth of 17,625 ft on March 5, 1978, but plugged back to 14,590 ft, just below the Morrow, in May of 1978. Subsequently, this well was permanently plugged and abandoned on December 30, 2004, and approved by NMOCD on January 4, 2005 (see **Appendix 9** for P&A records). The approved plugging provides zonal isolation for the Bell Canyon and Cherry Canyon injection zones minimizing the likelihood that this well will be a pathway for CO_2 emissions to the surface from either injection zone.

Due to the location of this well at the edge of the MMA and considering the NRAP analysis described in the introductory paragraph of Section 5, TND considers that, while the likelihood of CO₂ emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.3.4 Groundwater Wells

The table in Appendix 3 lists 15 water wells within a 2-mile radius of the RH AGI wells, only 2 of which are within a 1-mile radius of and within the MMA for the RH AGI wells (**Figure 3.5-1**). The deepest ground water well is 650 ft deep. The evaporite sequence of the Permian Ochoan Salado and Castile Formations (see

Section 3.2.2) provides an excellent seal between these groundwater wells and the Bell and Cherry Canyon injection zones of RH AGI #1and RH AGI #3. Therefore, it is unlikely that these two groundwater wells are a potential pathway of CO₂ leakage to the surface. Nevertheless, the CO₂ surface monitoring and groundwater monitoring described in Sections 6 and 7 will provide early detection of CO₂ leakage followed by immediate response thereby minimizing the magnitude of CO₂ leakage volume via this potential pathway.

Due to the shallow depth of the groundwater wells within the MMA relative to the depth of the RH AGI wells and considering the NRAP analysis described in the introductory paragraph in Section 5, TND considers that, while the likelihood of CO_2 emissions to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.4 Potential Leakage through the Confining / Seal System

The site characterization for the injection zone of the RH AGI wells described in Sections 3.2.2 and 3.3 indicates a thick sequence of Permian Ochoan evaporites, limestone, and siltstones (**Figure 3.2-2**) above the Bell Canyon and Cherry Canyon Formations and no evidence of faulting. Therefore, it is unlikely that TAG injected into the Bell Canyon and Cherry Canyon Formations will leak through this confining zone to the surface. Limiting the injection pressure to less than the fracture pressure of the confining zone will minimize the likelihood of CO_2 leakage through this potential pathway to the surface.

Leakage through a confining zone happens in low-permeability shale formations containing natural fractures. The injection zone for RH AGI #1 and RH AGI #3 is the Delaware Mountain Group Formation (Bell Canyon and Cherry Canyon), which underlie the very much lower permeability (<0.01 mD) Castile and Salado Formations that provide excellent seals. Still, TND took leakage through confining zones into consideration in the NRAP risk assessment. The worst-case scenario is defined as leakage through the seal happening right above the injection wells, where CO₂ saturation is highest. However, this worst-case scenario of leakage only shows that 0.0017% of total CO₂ injection in 30 years was leaked from the injection zone through the seals. As we go further from the source of CO₂, the likelihood of such an event will diminish proportionally with the distance from the source. Considering that this is the greatest amount of CO₂ leakage in this worst-case scenario, if the event happens, the leak must pass upward through the confining zone, the secondary confining strata that consists of additional low permeability geologic units, and other geologic units, TND concludes that the risk of leakage through this pathway is highly unlikely.

5.5 Potential Leakage due to Lateral Migration

The characterization of the sand layers in the Cherry Canyon Formation described in Section 3.3 states that these sands were deposited by turbidites in channels in submarine fan complexes; each sand is encased in low porosity and permeability fine-grained siliciclastics and mudstones with lateral continuity. Regional consideration of their depositional environment suggests a preferred orientation for fluid and gas flow would be south-to-north along the channel axis. However, locally the high net porosity of the RH AGI #1 and RH AGI #3 injection zones indicates adequate storage capacity such that the injected TAG will be easily contained close to the injection well, thus minimizing the likelihood of lateral migration of TAG outside the MMA due to a preferred regional depositional orientation.

Lateral migration of the injected TAG was addressed in detail in Section 3.3. Therein it states that the units dip gently to the southeast with approximately 200 ft of relief across the area. Heterogeneities within both the Bell Canyon and Cherry Canyon sandstones, such as turbidite and debris flow channels, will exert a significant control over the porosity and permeability within the two units and fluid migration within those sandstones. In addition, these channels are frequently separated by low porosity and permeability siltstones and shales as well as being encased by them.

Based on the discussion of the channeled sands in the injection zone, TND considers that the likelihood of CO₂ to migrate laterally along the channel axes is possible. However, the facts that the turbidite sands are encased in low porosity and permeability fine-grained siliciclastics and mudstones with lateral continuity and that the injectate is projected to be contained within the injection zone close to the injection wells minimizes the likelihood that CO₂ will migrate to a potential conduit to the surface.

5.6 Potential Leakage through Fractures and Faults

Prior to injection, a thorough geological characterization of the injection zone and surrounding formations was performed (see Section 3) to understand the geology as well as identify and understand the distribution of faults and fractures. **Figure 5.6-1** shows the fault traces in the vicinity of the Red Hills plant. The faults shown on **Figure 5.6-1** are confined to the Paleozoic section below the injection zone for the RH AGI wells. No faults were identified in the confining zone above the Bell Canyon and Cherry Canyon injection zone for the RH AGI wells.

No faults were identified within the MMA which could potentially serve as conduits for surface CO₂ emission. The closest identified fault lies approximately 1.5 miles east of the Red Hills site and has approximately 1,000 ft of down-to-the-west structural relief. Because this fault is confined to the lower Paleozoic unit more than 5,100 feet below the injection zone for the RH AGI wells, there is minimal chance it would be a potential leakage pathway. This inference is supported by the NRAP simulation result. Therefore, TND concludes that the CO₂ leakage rate through this fault is zero and that the risk of leakage through this potential leakage pathway is highly improbable.

Figure 5.6-1: New Mexico Tech Seismological Observatory (NMTSO) seismic network close to the operations, recent seismic events, and fault traces (2022-2023). Note: Fault traces are from Horne et al 2021 for deep seated faults in the lower Paleozoic. The fault traces shown close to the Red Hills facility die out at the base of the Wolfcamp formation at a depth of 12,600 feet, more than 5,100 feet below the bottom of the injection zone at 7,500 feet.

5.7 Potential Leakage due to Natural / Induced Seismicity

The New Mexico Tech Seismological Observatory (NMTSO) monitors seismic activity in the state of New Mexico. A search of the database shows no recent seismic events close to the Red Hills operations. The closest recent, as of 4 September 2023, seismic events are:

- 7.5 miles, 2022-09-03, Magnitude 3
- 8 miles, 2022-09-02, Magnitude 2.23
- 8.6 miles, 2022-10-29, Magnitude 2.1

Figure 5.6-1 shows the seismic stations and recent seismic events in the area around the Red Hills facility.

Due to the distance between the RH AGI wells and the recent seismic events, the magnitude of these events, and the fact that TND injects at pressures below fracture opening pressure, TND considers the likelihood of CO₂ emissions to the surface caused by seismicity to be improbable.

Monitoring of seismic events in the vicinity of the RH AGI wells is discussed in Section 6.7.

6 Strategy for Detecting and Quantifying Surface Leakage of CO₂

Subpart RR at 40 CFR 448(a)(3) requires a strategy for detecting and quantifying surface leakage of CO₂. TND will employ the following strategy for detecting, verifying, and quantifying CO₂ leakage to the surface through the potential pathways for CO₂ surface leakage identified in Section 5. TND considers H₂S to be a proxy for CO₂ leakage to the surface and as such will employ and expand upon methodologies detailed in their H₂S Contingency plan to detect, verify, and quantify CO₂ surface leakage. **Table 6-1** summarizes the leakage monitoring of the identified leakage pathways. Monitoring will occur for the duration of injection and the 5-year post-injection period.

Potential Leakage Pathway	Detection Monitoring				
Surface Equipment	 Distributed control system (DCS) surveillance of plant operations Visual inspections Inline inspections Fixed in-field gas monitors/CO₂ flux monitoring network Personal and hand-held gas monitors 				
Existing RH AGI Wells	 DCS surveillance of well operating parameters Visual inspections Mechanical integrity tests (MIT) Fixed in-field gas monitors/CO₂ flux monitoring network Personal and hand-held gas monitors In-well P/T sensors Groundwater monitoring 				
Fractures and Faults	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring 				
Confining Zone / Seal	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring 				
Natural / Induced Seismicity	DCS surveillance of well operating parametersSeismic monitoring				
Lateral Migration	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring 				
Additional Monitoring	Groundwater monitoringSoil flux monitoring				

Table 6-1: Summary of Leak Detection Monitoring

6.1 Leakage from Surface Equipment

TND implements several tiers of monitoring for surface leakage including frequent periodic visual inspection of surface equipment, use of fixed in-field and personal H₂S sensors, and continual monitoring of operational parameters.

Leaks from surface equipment are detected by TND field personnel, wearing personal H₂S monitors, following daily and weekly inspection protocols which include reporting and responding to any detected leakage events. TND also maintains in-field gas monitors to detect H₂S and CO₂. The in-field gas monitors are connected to the DCS housed in the onsite control room. If one of the gas detectors sets off an alarm, it would trigger an immediate response to address and characterize the situation.

The following description of the gas detection equipment at the Red Hills Gas Processing Plant was extracted from the H₂S Contingency Plan:

"Fixed Monitors

The Red Hills Plant has numerous ambient hydrogen sulfide detectors placed strategically throughout the Plant to detect possible leaks. Upon detection of hydrogen sulfide at 10 ppm at any detector, visible beacons are activated, and an alarm is sounded. Upon detection of hydrogen sulfide at 90 ppm at any detector, an evacuation alarm is sounded throughout the Plant at which time all personnel will proceed immediately to a designated evacuation area. The Plant utilizes fixed-point monitors to detect the presence of H₂S in ambient air. The sensors are connected to the Control Room alarm panel's Programmable Logic Controllers (PLCs), and then to the Distributed Control System (DCS). The monitors are equipped with amber beacons. The beacon is activated at 10 ppm. The plant and the RH AGI well horns are activated with a continuous warbling alarm at 10 ppm and a siren at 90 ppm. All monitoring equipment is Red Line brand. The Control Panel is a 24 Channel Monitor Box, and the fixed point H₂S Sensor Heads are model number RL-101.

The Plant will be able to monitor concentrations of H_2S via H_2S Analyzers in the following locations:

- Inlet gas of the combined stream from Winkler and Limestone
- Inlet sour liquid downstream of the slug catcher
- Outlet Sweet Gas to Red Hills 1
- Outlet Sweet Liquid to Red Hills Condensate Surge

The RH AGI system monitors can also be viewed on the PLC displays located at the Plant. These sensors are all shown on the plot plan (see **Figure 3.6-1**). This requires immediate action for any occurrence or malfunction. All H₂S sensors are calibrated monthly.

Personal and Handheld H₂S Monitors

All personnel working at the Plant wear personal H₂S monitors. The personal monitors are set to alarm and vibrate at 10 ppm. Handheld gas detection monitors are available at strategic locations around the Plant so that plant personnel can check specific areas and equipment prior to initiating maintenance or other work. The handheld gas detectors have sensors for oxygen, LEL (explosive hydrocarbon atmospheres), H₂S and carbon dioxide (CO₂)."

6.2 Leakage from Approved Not Yet Drilled Wells

Special precautions will be taken in the drilling of any new wells that will penetrate the injection zones including more frequent monitoring during drilling operations (see **Table 6-1**). This applies to TND and other operators drilling new wells through the RH AGI wells injection zones within the MMA.

6.3 Leakage from Existing Wells

6.3.1 RH AGI Wells

As part of ongoing operations, TND continuously monitors and collects flow, pressure, temperature, and gas composition data in the data collection system. These data are monitored continuously by qualified technicians who follow response and reporting protocols when the system delivers alerts that data is not within acceptable limits.

To monitor leakage and wellbore integrity, two pressure and temperature gauges as well as Distributed Temperature Sensing (DTS) were deployed in RH AGI #1. One gauge is designated to monitor the tubing ID (reservoir) pressure and temperature and the second gauge monitors the annular space between the tubing and the long string casing (**Figure 6.2-1**). A leak is indicated when both gauges start reading the same pressure. DTS is clamped to the tubing, and it monitors the temperature profiles of the annulus from 6,159 ft to surface. DTS can detect variation in the temperature profile events throughout the tubing and or casing. Temperature variation could be an indicator of leaks. Data from temperature and pressure gauges is recorded by an interrogator housed in an onsite control room. DTS (temperature) data is recorded by a separate interrogator that is also housed in the onsite control room. Data from both interrogators are transmitted to a remote location for daily real time or historical analysis.

As is described above for RH AGI #1, pressure and temperature gauges as well as DTS were deployed in RH AGI #3 (see **Figure Appendix 1-2** for location of PT gauges).

The temporarily abandoned RH AGI #2 well will be monitored by the fixed in-field gas monitors, handheld H_2S monitors, and CO_2 soil flux monitoring described in Sections 7.2 and 7.3.

If operational parameter monitoring, MIT failures, or surface gas monitoring indicate a CO_2 leak has occurred, TND will take actions to quantify the leak based on operating conditions at the time of the detection including pressure at the point of emission, flowrate at the point of emission, duration of the emission, and estimation of the size of the emission site.

HALLIBURTON Lucid								
Installation				Red Hills AGI 1 WSP - Troy Gillen / Michael Fo Lea County New Mexico Sales Rep - Lynn Talley (432) 63			orrier 31-4626	
			Longth	lte	2/3/21 - 2/28/21 Tool Specialists: Carey Lehmann, Jonathan Pl	nillips, Jose	Vargas	
2		18.50	18.50	015.	KB		10	
のためのない	20	22.90 64.05	4.40 41.15	1	20) Hanger Sub 3 1/2" 9.2# CRA VAMTOP x 7.7# VAM Ace Pin 19) 3 1/2" 7.7# VAM ACE 125K G3 Tubing (Slick Joint) Pan Eight Subs 8' 8' 6' 6' 4' 4' 2' 2'	7.000 3.500	3.000 3.035	
	■1 8	103.97	39 . 92		18) 3 1/2" 7.7# VAM ACE 125K G3 Spaceout Subs	3.500	3.035	
0.00	↓ 17	235.95	131.98	3	17) 3 1/2" 7.7# VAM ACE 125K G3 Tubing	3.500	3.035	
100 M	16	241.95	6.00		16) 6' x 3 1/2" 7.7# CRA VAM ACE Box x 9.2# VAMTOP Pin	3.540	2.959	
のため、彼	15	246.30	4.35		15) 3 1/2" NE HES SSSV Nickel Alloy 925 w/Alloy 825 Control Line 3 1/2" 9.2# VAMTOP Box x Pin	5.300	2.813	
	14	252.29	5.99		14) 6' x 3 1/2" 9.2# CRA VAMTOP Box x 7.7# VAM ACE Pin	3.540	2.959	
0.00	1	6,140.23	5,887.94	134	13) 3 1/2" 7.7# VAM ACE 125K G3 Tubing 12) 3 1/2" 7.7# VAM ACE Box x 9.2# VAMTOP Pin CRA Crossover	3.500 3.830	3.305 2.959	
Set 2	11				11) 2.813" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy 925	4.073	2.813	
の時代	10	6,153.72	13.49		10) 6' x 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy G3 Sub 13.49' Length Includes Line Items 10, 11 & 12	3.540	2.959	
10.00	9	6.159 Tubina 6.162.6 Annular	P/T P/T	H	9) Baker PT Sensor Mandrel 3 1/2" 9.2# VAMTOP Box x Pin 6' VAMTOP 9.2# CRA Tubing Sub Above & Below Gauge Mdl	5.200	2.992	
8-15-15-15-15-15-15-15-15-15-15-15-15-15-	8	6,161.23	7.51		8) 4.00" BWS Landed Seal Asmbly 9.2# VAM TOP Nickel Alloy 925 7.51' Length Includes Line Items 8 & 9	4.470	2.959	
West Law		6,164.55	3.32		7) 7" 26-32# x 4.00" BWS Packer Nickel Alloy 925 Casing Collar @ 6,160.6' WL Measurement	5.875	4.000	
たいのである	4 6	6,172.05	7.5		6) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5 .032	4.000	
50.03	5	6,172.88	0.83		5) 4.00" PBR Adapter x 9.2# VAMTOP BxP Nickel Alloy 925	5.68 0	2.959	
VE CO	4 4	6,181.19	8.31		4) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub Nickel Alloy G3	3.540	2.959	
12.00	3	6 ,182.52	1.33		3) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy 925 #102204262	4.073	2.562	
100.00	2	6,184.29	1.77		2) Straight Slot Locator Seal Assembly Above Top Of Packer	4.450	2.880	
S.Co.	3 - 1		6,186.06		1) BWD Permanent Packer. WL Measured Depth Previously 6189'	5.875	4.000	
10.00					1a) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5.660	2.965	
Set	1a				1b) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989	
					1c) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel,	2.920	2.562	
10.00					1d) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989	
読むの	↓ 1b				1e) 2.562" RN Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel	3.920	2.321	
1000	1c				1f) Re-Entry Guide / POP	3.950	3.000	
10.00	1d							
「日本の	1e							
State and	1 f							

Figure 6.2-1: Well Schematic for RH AGI #1 showing installation of P/T sensors

6.3.2 Other Existing Wells within the MMA

The CO₂ monitoring network described in Section 7.3 and well surveillance by other operators of existing wells will provide an indication of CO₂ leakage. Additionally, groundwater and soil CO₂ flux monitoring locations throughout the MMA will also provide an indication of CO₂ leakage to the surface. See Sections 7.7 and 7.8 for details.

6.4 Leakage through the Confining / Seal System

As discussed in Section 5, it is very unlikely that CO₂ leakage to the surface will occur through the confining zone. Continuous operational monitoring of the RH AGI wells, described in Sections 6.3 and 7.5, will provide an indicator if CO₂ leaks out of the injection zone. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO₂ leakage to the surface. See Sections 7.7 and 7.8 for details.

If changes in operating parameters or other monitoring listed in **Table 6-1** indicate leakage of CO₂ through the confining / seal system, TND will take actions to quantify the amount of CO₂ released and take mitigative action to stop it, including shutting in the well(s) (see Section 6.8).

6.5 Leakage due to Lateral Migration

Continuous operational monitoring of the RH AGI wells during and after the period of injection will provide an indication of the movement of the CO_2 plume migration in the injection zones. The CO_2 monitoring network described in Section 7.3, and routine well surveillance will provide an indicator if CO_2 leaks out of the injection zone. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO_2 leakage to the surface. See Sections 7.7 and 7.8 for details.

If monitoring of operational parameters or other monitoring methods listed in **Table 6-1** indicates that the CO₂ plume extends beyond the area modeled in Section 3.8 and presented in Section 4, TND will reassess the plume migration modeling for evidence that the plume may have intersected a pathway for CO₂ release to the surface. As this scenario would be considered a material change per 40CFR98.448(d)(1), TND will submit a revised MRV plan as required by 40CFR98.448(d). See Section 6.8 for additional information on quantification strategies.

6.6 Leakage from Fractures and Faults

As discussed in Section 5, it is very unlikely that CO_2 leakage to the surface will occur through faults. However, if monitoring of operational parameters and the fixed in-field gas monitors indicate possible CO_2 leakage to the surface, TND will identify which of the pathways listed in this section are responsible for the leak, including the possibility of heretofore unidentified faults or fractures within the MMA. TND will take measures to quantify the mass of CO_2 emitted based on the operational conditions that existed at the time of surface emission, including pressure at the point of emission, flowrate at the point of emission, duration of the emission, and estimation of the size of the emission site. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO_2 leakage to the surface. See Sections 7.7 and 7.8 for details. See Section 6.8 for additional information on quantification strategies.

6.7 Leakage due to Natural / Induced Seismicity

In order to monitor the influence of natural and/or induced seismicity, TND will use the established NMTSO seismic network. The network consists of seismic monitoring stations that detect and locate seismic events. Continuous monitoring helps differentiate between natural and induced seismicity. The network surrounding the Red Hills Gas Processing Plant has been mapped on **Figure 5.6-1**. The monitoring network records Helicorder data from UTC (coordinated universal time) all day long. The data are plotted daily at

5pm MST (mountain standard time). These plots can be browsed either by station or by day. The data are streamed continuously to the New Mexico Tech campus and archived at the Incorporated Research Institutions for Seismology Data Management Center (IRIS DMC).

If monitoring of the NMTSO seismic monitoring stations, the operational parameters and the fixed infield gas monitors indicates surface leakage of CO_2 linked to seismic events, TND will assess whether the CO_2 originated from the RH AGI wells and, if so, take measures to quantify the mass of CO_2 emitted to the surface based on operational conditions at the time the leak was detected. See Section 7.6 for details regarding seismic monitoring and analysis. See Section 6.8 for additional information on quantification strategies.

6.8 Strategy for Quantifying CO₂ Leakage and Response

6.8.1 Leakage from Surface Equipment

For normal operations, quantification of emissions of CO₂ from surface equipment will be assessed by employing the methods detailed in Subpart W according to the requirements of 98.444(d) of Subpart RR. Quantification of major leakage events from surface equipment as identified by the detection techniques listed in **Table 6-1** will be assessed by employing methods most appropriate for the site of the identified leak. Once a leak has been identified the leakage location will be isolated to prevent additional emissions to the atmosphere. Quantification will be based on the length of time of the leak and parameters that existed at the time of the leak such as pressure, temperature, composition of the gas stream, and size of the leakage point. TND has standard operating procedures to report and quantify all pipeline leaks in accordance with the NMOCD regulations (New Mexico administrative Code 19.15.28 Natural Gas Gathering Systems). TND will modify this procedure to quantify the mass of carbon dioxide from each leak discovered by TND or third parties. Additionally, TND may employ available leakage models for characterizing and predicting gas leakage from gas pipelines. In addition to the physical conditions listed above, these models are capable of incorporating the thermodynamic parameters relevant to the leak thereby increasing the accuracy of quantification.

6.8.2 Subsurface Leakage

Selection of a quantification strategy for leaks that occur in the subsurface will be based on the leak detection method (**Table 6-1**) that identifies the leak. Leaks associated with the point sources, such as the injection wells, and identified by failed MITs, variations of operational parameters outside acceptable ranges, and in-well P/T sensors can be addressed immediately after the injection well has been shut in. Quantification of the mass of CO₂ emitted during the leak will depend on characterization of the subsurface leak, operational conditions at the time of the leak, and knowledge of the geology and hydrogeology at the leakage site. Conservative estimates of the mass of CO₂ emitted to the surface will be made assuming that all CO₂ released during the leak will reach the surface. TND may choose to estimate the emissions to the surface more accurately by employing transport, geochemical, or reactive transport model simulations.

Other wells within the MMA will be monitored with the atmospheric and CO₂ flux monitoring network placed strategically in their vicinity.

Nonpoint sources of leaks such as through the confining zone, along faults or fractures, or which may be initiated by seismic events and as may be identified by variations of operational parameters outside acceptable ranges will require further investigation to determine the extent of leakage and may result in cessation of operations.

6.8.3 Surface Leakage

A recent review of risk and uncertainty assessment for geologic carbon storage (Xiao et al., 2024) discussed monitoring for sequestered CO₂ leaking back to the surface emphasizing the importance of monitoring

network design in detecting such leaks. Leaks detected by visual inspection, hand-held gas sensors, fixed infield gas sensors, atmospheric, and CO₂ flux monitoring will be assessed to determine if the leaks originate from surface equipment, in which case leaks will be quantified according to the strategies in Section 6.8.1, or from the subsurface. In the latter case, CO₂ flux monitoring methodologies, as described in Section 7.8, will be employed to quantify the surface leaks.

7 Strategy for Establishing Expected Baselines for Monitoring CO₂ Surface Leakage

TND uses the existing automatic distributed control system to continuously monitor operating parameters and to identify any excursions from normal operating conditions that may indicate leakage of CO_2 . TND considers H_2S to be a proxy for CO_2 leakage to the surface and as such will employ and expand upon methodologies detailed in their H_2S Contingency plan to establish baselines for monitoring CO_2 surface leakage. The following describes TND's strategy for collecting baseline information.

7.1 Visual Inspection

TND field personnel conduct frequent periodic inspections of all surface equipment providing opportunities to assess baseline concentrations of H_2S , a proxy for CO₂, at the Red Hills Gas Plant.

7.2 Fixed In-Field, Handheld, and Personal H₂S Monitors

Compositional analysis of TND's gas injectate at the Red Hills Gas Plant indicates an approximate H₂S concentration of 20% thus requiring TND to develop and maintain an H₂S Contingency Plan (Plan) according to the NMOCD Hydrogen Sulfide Gas Regulations, Rule 11 (19.15.11 NMAC). TND considers H₂S to be a proxy for CO₂ leaks at the plant. The Plan contains procedures to provide for an organized response to an unplanned release of H₂S from the plant or the associated RH AGI wells and documents procedures that would be followed in case of such an event.

7.2.1 Fixed In-Field H₂S Monitors

The Red Hills Gas Plant utilizes numerous fixed-point monitors, strategically located throughout the plant, to detect the presence of H₂S in ambient air. The sensors are connected to the Control Room alarm panel's Programmable Logic Controllers (PLCs), and then to the DCS. Upon detection of H₂S at 10 ppm at any detector, visible amber beacons are activated, and horns are activated with a continuous warbling alarm. Upon detection of hydrogen sulfide at 90 ppm at any monitor, an evacuation alarm is sounded throughout the plant at which time all personnel will proceed immediately to a designated evacuation area.

7.2.2 Handheld and Personal H₂S Monitors

Handheld gas detection monitors are available at strategic locations around the plant so that plant personnel can check specific areas and equipment prior to initiating maintenance or other work. The handheld gas detectors have sensors for oxygen, LEL (explosive hydrocarbon atmospheres), H₂S and CO₂.

All personnel, including contractors who perform operations, maintenance and/or repair work in sour gas areas within the plant must wear personal H₂S monitoring devices to assist them in detecting the presence of unsafe levels of H₂S. Personal monitoring devices will give an audible alarm and vibrate at 10 ppm.

7.3 CO₂ Detection

In addition to the handheld gas detection monitors described above, New Mexico Tech, through a DOE research grant (DE-FE0031837 – Carbon Utilization and Storage Project of the Western USA (CUSP)), will assist TND in setting up a monitoring network for CO_2 leakage detection in the AMA as defined in Section 4.2. The scope of work for the DOE project includes field sampling activities to monitor CO_2/H_2S at the two RH AGI wells. These activities include periodic well (groundwater and gas) and atmospheric sampling from an area of 10 - 15 square miles around the injection wells. Once the network is set up, TND will assume responsibility for monitoring, recording, and reporting data collected from the system for the duration of the project.

7.4 Continuous Parameter Monitoring

The DCS of the plant monitors injection rates, pressures, and composition on a continuous basis. High and low set points are programmed into the DCS, and engineering and operations are alerted if a parameter is outside the allowable window. If a parameter is outside the allowable window, this will trigger further investigation to determine if the issue poses a leak threat. Also, see Section 6.2 for continuous monitoring of P/T in the well.

7.5 Well Surveillance

TND adheres to the requirements of NMOCC Rule 26 governing the construction, operation and closing of an injection well under the Oil and Gas Act. Rule 26 also includes requirements for testing and monitoring of Class II injection wells to ensure they maintain mechanical integrity at all times. Furthermore, NMOCC includes special conditions regarding monitoring, reporting, and testing in the individual permits for each injection well, if they are deemed necessary. TND's Routine Operations and Maintenance Procedures for the RH AGI wells ensure frequent periodic inspection of the wells and opportunities to detect leaks and implement corrective action.

7.6 Seismic (Microseismic) Monitoring Stations

TND has Installed a model TCH120-1 Trillium Compact Horizon Seismometer and a model CTR4-3S Centaur Digital Recorder to monitor for and record data for any seismic event at the Red Hills Gas Plant (see **Figure 7-1**). The seismic station meets the requirements of the NMOCC Order No. R-20916-H to "install, operate, and monitor for the life of the [Class II AGI] permit a seismic monitoring station or stations as directed by the Manager of the New Mexico Tech Seismological Observatory ("state seismologist") at the New Mexico Bureau of Geology and Mineral Resources."

In addition, data that are recorded by the State of New Mexico deployed seismic network within a 10-mile radius of the Red Hills Gas Plant will be analyzed by the New Mexico Bureau of Geology (NMBGMR), see **Figure 5.6-1**, and made publicly available. The NMBGMR seismologist will create a report and map showing the magnitudes of recorded events from seismic activity. The data are being continuously recorded. By examining historical data, a seismic baseline prior to the start of TAG injection can be well established and used to verify anomalous events that occur during current and future injection activities. If necessary, a certain period of time can be extracted from the overall data set to identify anomalous events during that period.

7.7 Groundwater Monitoring

New Mexico Tech, through the same DOE research grant described in Section 7.3 above, will monitor groundwater wells for CO₂ leakage which are located within the AMA as defined in Section 4.2. Water samples will be collected and analyzed on a monthly basis for 12 months to establish baseline data. After establishing the water chemistry baseline, samples will be collected and analyzed bi-monthly for one year and then quarterly. Samples will be collected according to EPA methods for groundwater sampling (U.S. EPA, 2015).

The water analysis includes total dissolved solids (TDS), conductivity, pH, alkalinity, major cations, major anions, oxidation-reduction potentials (ORP), inorganic carbon (IC), and non-purgeable organic carbon (NPOC). Charge balance of ions will be completed as quality control of the collected groundwater samples. See **Table 7.7-1**. Baseline analyses will be compiled and compared with regional historical data to determine patterns of change in groundwater chemistry not related to injection processes at the Red Hills Gas Plant. A report of groundwater chemistry will be developed from this analysis. Any water quality samples not within the expected variation will be further investigated to determine if leakage has occurred from the injection zone.

Parameters
рН
Alkalinity as HCO3- (mg/L)
Chloride (mg/L)
Fluoride (F-) (mg/L)
Bromide (mg/L)
Nitrate (NO3-) (mg/L)
Phosphate (mg/L)
Sulfate (SO42-) (mg/L)
Lithium (Li) (mg/L)
Sodium (Na) (mg/L)
Potassium (K) (mg/L)
Magnesium (Mg) (mg/L)
Calcium (Ca) (mg/L)
TDS Calculation (mg/L)
Total cations (meq/L)
Total anions (meq/L)
Percent difference (%)
ORP (mV)
IC (ppm)
NPOC (ppm)

Table 7.7-1: Groundwater Monitoring Parameters

7.8 Soil CO₂ Flux Monitoring

A vital part of the monitoring program is to identify potential leakage of CO₂ and/or brine from the injection horizon into the overlying formations and to the surface. One method that will be deployed is to gather and analyze soil CO₂ flux data which serves as a means for assessing potential migration of CO₂ through the soil and its escape to the atmosphere. By taking CO₂ soil flux measurements at periodic intervals, TND can continuously characterize the interaction between the subsurface and surface to understand potential leakage pathways. Actionable recommendations can be made based on the collected data.

Soil CO₂ flux will be collected on a monthly basis for 12 months to establish the baseline and understand seasonal and other variation at the Red Hills Gas Plant. After the baseline is established, data will be collected bi-monthly for one year and then quarterly.

Soil CO₂ flux measurements will be taken using a LI-COR LI-8100A flux chamber, or similar instrument, at pre planned locations at the site. PVC soil collars (8cm diameter) will be installed in accordance with the LI-8100A specifications. Measurements will be subsequently made by placing the LI-8100A chamber on the soil collars and using the integrated iOS app to input relevant parameters, initialize measurement, and record the system's flux and coefficient of variation (CV) output. The soil collars will be left in place such that each subsequent measurement campaign will use the same locations and collars during data collection.

Figure 7-1: Red Hills monitoring network of 32 CO₂ flux locations, 2 groundwater wells, and a seismic station developed by New Mexico Tech and Targa Resources to detect leakage during injection.

8 Site Specific Considerations for Determining the Mass of CO₂ Sequestered

Appendix 7 summarizes the twelve Subpart RR equations used to calculate the mass of CO₂ sequestered annually. **Appendix 8** includes the twelve equations from Subpart RR. Not all of these equations apply to TND's current operations at the Red Hills Gas Plant but are included in the event TND's operations change in such a way that their use is required.

Figure 3.6-2 shows the location of all surface equipment and points of venting listed in 40CFR98.232(d) of Subpart W that will be used in the calculations listed below.

8.1 CO₂ Received

Currently, TND receives gas to its Red Hills Gas Plant through six pipelines: Gut Line, Winkler Discharge, Red Hills 24" Inlet Loop, Greyhound Discharge, Limestone Discharge, and the Plantview Loop. The gas is processed as described in Section 3.8 to produce compressed TAG which is then routed to the wellhead and pumped to injection pressure through NACE-rated (National Association of Corrosion Engineers) pipeline suitable for injection. TND will use Equation RR-2 for Pipelines to calculate the mass of CO₂ received through pipelines and measured through volumetric flow meters. The total annual mass of CO₂ received through these pipelines will be calculated using Equation RR-3. Receiving flow meter r in the following equations corresponds to meters M1 and M2 in **Figure 3.6-2**.

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$
(Equation RR-2 for Pipelines)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons).
- $Q_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r in quarter p at standard conditions (standard cubic meters).
- $S_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- *p* = Quarter of the year.
- *r* = Receiving flow meter.

$$CO_2 = \sum_{r=1}^R CO_{2T,r}$$

(Equation RR-3 for Pipelines)

where:

- CO 2 = Total net annual mass of CO₂ received (metric tons).
- $CO_{2T,r}$ = Net annual mass of CO_2 received (metric tons) as calculated in Equation RR-1 or RR-2 for flow meter r.
- r = Receiving flow meter.

Although TND does not currently receive CO_2 in containers for injection, they wish to include the flexibility in this MRV plan to receive gas from containers. When TND begins to receive CO_2 in containers, TND will use Equations RR-1 and RR-2 for Containers to calculate the mass of CO_2 received in containers. TND will adhere to the requirements in 40CFR98.444(a)(2) for determining the quarterly mass or volume of CO_2 received in containers.

If CO_2 received in containers results in a material change as described in 40CFR98.448(d)(1), TND will submit a revised MRV plan addressing the material change.

8.2 CO₂ Injected

TND injects CO_2 into RH AGI #1 and RH AGI #3. Equation RR-5 will be used to calculate CO_2 measured through volumetric flow meters before being injected into the wells. Equation RR-6 will be used to calculate the total annual mass of CO_2 injected into both wells. The calculated total annual CO_2 mass injected is the parameter CO_{21} in

Equation RR-12. Volumetric flow meter u in the following equations corresponds to meters M3 and M6 in **Figure 3.6-2**.

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$

(Equation RR-5)

where:

- $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.
- $Q_{p,u}$ = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter).
- D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,u} = CO_2$ concentration measurement in flow for flow meter u in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- *p* = Quarter of the year.

$$CO_{2I} = \sum_{u=1}^{U} CO_{2,u}$$

(Equation RR-6)

where:

CO ₂₁ = Total annual CO₂ mass injected (metric tons) though all injection wells.

 $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.

u = Flow meter.

8.3 CO₂ Produced / Recycled

TND does not produce oil or gas or any other liquid at its Red Hills Gas Plant so there is no CO_2 produced or recycled.

8.4 CO₂ Lost through Surface Leakage

Equation RR-10 will be used to calculate the annual mass of CO_2 lost due to surface leakage from the leakage pathways identified and evaluated in Section 5 above. The calculated total annual CO_2 mass emitted by surface leakage is the parameter CO_{2E} in Equation RR-12 addressed in Section 8.6 below. Quantification strategies for leaks from the identified potential leakage pathways is discussed in Section 6.8.

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$

(Equation RR-10)

where:

CO 2E = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year.

 $CO_{2,x}$ = Annual CO_2 mass emitted (metric tons) at leakage pathway x in the reporting year.

x = Leakage pathway.

8.5 CO₂ Emitted from Equipment Leaks and Vented Emissions

As required by 98.444(d) of Subpart RR, TND will assess leakage from the relevant surface equipment listed in Sections 98.233 and 98.234 of Subpart W. According to 98.233(r)(2) of Subpart W, the emissions factor listed in Table W-1A of Subpart W shall be used to estimate all streams of gases. Parameter CO_{2FI} in Equation RR-12 is the total annual CO_2 mass emitted or vented from equipment located between the flow meter for measuring injection quantity and the injection wellhead. A calculation procedure is provided in subpart W.

8.6 CO₂ Sequestered

(

Since TND does not actively produce oil or natural gas or any other fluid at its Red Hills Gas Plant, Equation RR-12 will be used to calculate the total annual CO₂ mass sequestered in subsurface geologic formations.

$$CO_2 = CO_{2I} - CO_{2E} - CO_{2FI}$$
 (Equation RR-12)

- CO ₂ = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CO_{2I} = Total annual CO_2 mass injected (metric tons) in the well or group of wells in the reporting year.
- CO_{2E} = Total annual CO_2 mass emitted (metric tons) by surface leakage in the reporting year.
- CO _{2FI} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part.

9 Estimated Schedule for Implementation of MRV Plan

The baseline monitoring and leakage detection and quantification strategies described herein have been established and data collected by TND and its predecessor, Lucid, for several years and continues to the present. TND will begin implementing this revised MRV plan as soon as it is approved by EPA.

10 GHG Monitoring and Quality Assurance Program

TND will meet the monitoring and QA/QC requirements of 40CFR98.444 of Subpart RR including those of Subpart W for emissions from surface equipment as required by 40CFR98.444(d).

10.1 GHG Monitoring

As required by 40CFR98.3(g)(5)(i), TND's internal documentation regarding the collection of emissions data includes the following:

- Identification of positions of responsibility (i.e., job titles) for collection of the emissions data
- Explanation of the processes and methods used to collect the necessary data for the GHG calculations

• Description of the procedures and methods that are used for quality assurance, maintenance, and repair of all continuous monitoring systems, flow meters, and other instrumentation used to provide data for the GHGs reported

10.1.1 General

<u>Measurement of CO_2 Concentration</u> – All measurements of CO_2 concentrations of any CO_2 quantity will be conducted according to an appropriate standard method published by a consensus-based standards organization or an industry standard practice such as the Gas Producers Association (GPA) standards. All measurements of CO_2 concentrations of CO_2 received will meet the requirements of 40CFR98.444(a)(3).

<u>Measurement of CO₂ Volume</u> – All measurements of CO₂ volumes will be converted to the following standard industry temperature and pressure conditions for use in Equations RR-2 and RR-5, of Subpart RR of the GHGRP: Standard cubic meters at a temperature of 60 degrees Fahrenheit and at an absolute pressure of 1 atmosphere. TND will adhere to the American Gas Association (AGA) Report #3 – Orifice Metering.

10.1.2 CO₂ received.

Daily CO₂ received is recorded by totalizers on the volumetric flow meters on each of the pipelines listed in Section 8 using accepted flow calculations for CO₂ according to the AGA Report #3.

10.1.3 CO₂ injected.

Daily CO₂ injected is recorded by totalizers on the volumetric flow meters on the pipelines to the RH AGI #1 and RH AGI #3 wells using accepted flow calculations for CO₂ according to the AGA Report #3.

10.1.4 CO₂ produced.

TND does not produce CO₂ at the Red Hills Gas Plant.

10.1.5 CO₂ emissions from equipment leaks and vented emissions of CO₂.

As required by 98.444(d), TND will follow the monitoring and QA/QC requirements specified in Subpart W of the GHGRP for equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead.

As required by 98.444(d) of Subpart RR, TND will assess leakage from the relevant surface equipment listed in Sections 98.233 and 98.234 of Subpart W. According to 98.233(r)(2) of Subpart W, the emissions factor listed in Table W-1A of Subpart W shall be used.

10.1.6 Measurement devices.

As required by 40CFR98.444(e), TND will ensure that:

- All flow meters are operated continuously except as necessary for maintenance and calibration
- All flow meters used to measure quantities reported are calibrated according to the calibration and accuracy requirements in 40CFR98.3(i) of Subpart A of the GHGRP.
- All measurement devices are operated according to an appropriate standard method published by a
 consensus-based standards organization or an industry standard practice. Consensus-based standards
 organizations include, but are not limited to, the following: ASTM International, the American National
 Standards Institute (ANSI), the American Gas Association (AGA), the Gas Producers Association (GPA),
 the American Society of Mechanical Engineers (ASME), the American Petroleum Institute (API), and the
 North American Energy Standards Board (NAESB).
- All flow meter calibrations performed are National Institute of Standards and Technology (NIST) traceable.

10.2 QA/QC Procedures

TND will adhere to all QA/QC requirements in Subparts A, RR, and W of the GHGRP, as required in the development of this MRV plan under Subpart RR. Any measurement devices used to acquire data will be operated and maintained according to the relevant industry standards.

10.3 Estimating Missing Data

TND will estimate any missing data according to the following procedures in 40CFR98.445 of Subpart RR of the GHGRP, as required.

- A quarterly flow rate of CO₂ received that is missing would be estimated using invoices, purchase statements, or using a representative flow rate value from the nearest previous time period.
- A quarterly CO₂ concentration of a CO₂ stream received that is missing would be estimated using invoices, purchase statements, or using a representative concentration value from the nearest previous time period.
- A quarterly quantity of CO₂ injected that is missing would be estimated using a representative quantity of CO₂ injected from the nearest previous period of time at a similar injection pressure.
- For any values associated with CO₂ emissions from equipment leaks and vented emissions of CO₂ from surface equipment at the facility that are reported in Subpart RR, missing data estimation procedures specified in subpart W of 40 CFR Part 98 would be followed.

10.4 Revisions of the MRV Plan

TND will revise the MRV plan as needed to reflect changes in monitoring instrumentation and quality assurance procedures; or to improve procedures for the maintenance and repair of monitoring systems to reduce the frequency of monitoring equipment downtime; or to address additional requirements as directed by the USEPA or the State of New Mexico. If any operational changes constitute a material change as described in 40CFR98.448(d)(1), TND will submit a revised MRV plan addressing the material change.

11 Records Retention

TND will meet the recordkeeping requirements of paragraph 40CFR98.3(g) of Subpart A of the GHGRP. As required by 40CFR98.3(g) and 40CFR98.447, TND will retain the following documents:

- (1) A list of all units, operations, processes, and activities for which GHG emissions were calculated.
- (2) The data used to calculate the GHG emissions for each unit, operation, process, and activity. These data include:
 - (i) The GHG emissions calculations and methods used
 - (ii) Analytical results for the development of site-specific emissions factors, if applicable
 - (iii) The results of all required analyses
 - (iv) Any facility operating data or process information used for the GHG emission calculations
- (3) The annual GHG reports.

(4) Missing data computations. For each missing data event, TND will retain a record of the cause of the event and the corrective actions taken to restore malfunctioning monitoring equipment.

(5) A copy of the most recent revision of this MRV Plan.

(6) The results of all required certification and quality assurance tests of continuous monitoring systems, fuel flow meters, and other instrumentation used to provide data for the GHGs reported.

(7) Maintenance records for all continuous monitoring systems, flow meters, and other instrumentation used to provide data for the GHGs reported.

(8) Quarterly records of CO₂ received, including mass flow rate of contents of container (mass or volumetric) at standard conditions and operating conditions, operating temperature and pressure, and concentration of these streams.

(9) Quarterly records of injected CO_2 including mass flow or volumetric flow at standard conditions and operating conditions, operating temperature and pressure, and concentration of these streams.

(10) Annual records of information used to calculate the CO₂ emitted by surface leakage from leakage pathways.

(11) Annual records of information used to calculate the CO_2 emitted from equipment leaks and vented emissions of CO_2 from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead.

(12) Any other records as specified for retention in this EPA-approved MRV plan.

12 Appendices

Appendix 1 TND Wells

Well Name	API #	Location	County	Spud Date	Total Depth	Packer
Red Hills AGI #1	30-025-40448	1,600 ft FSL, 150 ft FEL Sec. 13, T24S, R33E, NMPM	Lea, NM	10/23/2013	6,650 ft	6,170 ft
Red Hills AGI #2 (temporarily abandoned)	30-025-49474	150 ft FEL, 1,800 ft FSL Sec. 13, T24S, R33E, NMPM	Lea, NM		6,205 ft	
Red Hill AGI #3	30-025-51970	3,116 ft FNL, 1,159 ft FEL Sec. 13, T24S, R33E, NMPM	Lea, NM	9/13/2023	7,600 ft	5,700 ft

Figure Appendix 1-1: Schematic of RH AGI #1

Figure Appendix 1-2: As-built wellbore schematic for RH AGI #3

Note: Depths are not to scale.

Figure Appendix 1-3: As-built wellbore schematic for the RH AGI #2 Well (temporarily abandoned). The colored portion of the schematic below 6,205 ft was not completed.

Appendix 2 Referenced Regulations

U.S. Code > Title 26. INTERNAL REVENUE CODE > Subtitle A. Income Taxes > Chapter 1. NORMAL TAXES AND SURTAXES > Subchapter A. Determination of Tax Liability > Part IV. CREDITS AGAINST TAX > Subpart D. Business Related Credits > Section 45Q - Credit for carbon oxide sequestration

New Mexico Administrative Code (NMAC) > Title 19 – Natural resources > Chapter 15 – Oil and Gas

19.15.1 NMAC	GENERAL PROVISIONS AND DEFINITIONS [REPEALED]
19.15.2 NMAC	GENERAL PROVISIONS FOR OIL AND GAS OPERATIONS
19.15.3 NMAC	RULEMAKING
19.15.4 NMAC	ADJUDICATION
19.15.5 NMAC	ENFORCEMENT AND COMPLIANCE
19.15.6 NMAC	TAX INCENTIVES
19.15.7 NMAC	FORMS AND REPORTS
19.15.8 NMAC	FINANCIAL ASSURANCE
19.15.9 NMAC	WELL OPERATOR PROVISIONS
19.15.10 NMAC	SAFETY
19.15.11 NMAC	HYDROGEN SULFIDE GAS
19.15.12 NMAC	POOLS
19.15.13 NMAC	COMPULSORY POOLING
19.15.14 NMAC	DRILLING PERMITS
19.15.15 NMAC	WELL SPACING AND LOCATION
19.15.16 NMAC	DRILLING AND PRODUCTION
19.15.17 NMAC	PITS, CLOSED-LOOP SYSTEMS, BELOW-GRADE TANKS AND SUMPS
19.15.18 NMAC	PRODUCTION OPERATING PRACTICES
19.15.19 NMAC	NATURAL GAS PRODUCTION OPERATING PRACTICE
19.15.20 NMAC	OIL PRORATION AND ALLOCATION
19.15.21 NMAC	GAS PRORATION AND ALLOCATION
19.15.22 NMAC	HARDSHIP GAS WELLS
19.15.23 NMAC	OFF LEASE TRANSPORT OF CRUDE OIL OR CONTAMINANTS
19.15.24 NMAC	ILLEGAL SALE AND RATABLE TAKE
19.15.25 NMAC	PLUGGING AND ABANDONMENT OF WELLS
19.15.26 NMAC	INJECTION
19.15.27 - 28 NMAC	[RESERVED] PARTS 27 - 28
19.15.29 NMAC	RELEASES

CHAPTER 15 - OIL AND GAS

19.15.30 NMAC	REMEDIATION
19.15.31 - 33 NMAC	[RESERVED] PARTS 31 - 33
19.15.34 NMAC	PRODUCED WATER, DRILLING FLUIDS AND LIQUID OIL FIELD WASTE
19.15.35 NMAC	WASTE DISPOSAL
19.15.36 NMAC	SURFACE WASTE MANAGEMENT FACILITIES
19.15.37 NMAC	REFINING
19.15.38 NMAC	[RESERVED]
19.15.39 NMAC	SPECIAL RULES
19.15.40 NMAC	NEW MEXICO LIQUIFIED PETROLEUM GAS STANDARD
19.15.41 - 102 NMAC	[RESERVED] PARTS 41 - 102
19.15.103 NMAC	SPECIFICATIONS, TOLERANCES, AND OTHER TECHNICAL REQUIREMENTS FOR COMMERCIAL WEIGHING AND MEASURING DEVICES
19.15.104 NMAC	STANDARD SPECIFICATIONS/MODIFICATIONS FOR PETROLEUM PRODUCTS
19.15.105 NMAC	LABELING REQUIREMENTS FOR PETROLEUM PRODUCTS
19.15.106 NMAC	OCTANE POSTING REQUIREMENTS
19.15.107 NMAC	APPLYING ADMINISTRATIVE PENALTIES
19.15.108 NMAC	BONDING AND REGISTRATION OF SERVICE TECHNICIANS AND SERVICE ESTABLISHMENTS FOR COMMERCIAL WEIGHING OR MEASURING DEVICES
19.15.109 NMAC	NOT SEALED NOT LEGAL FOR TRADE
19.15.110 NMAC	BIODIESEL FUEL SPECIFICATION, DISPENSERS, AND DISPENSER LABELING REQUIREMENTS [REPEALED]
19.15.111 NMAC	E85 FUEL SPECIFICATION, DISPENSERS, AND DISPENSER LABELING REQUIREMENTS [REPEALED]
19.15.112 NMAC	RETAIL NATURAL GAS (CNG / LNG) REGULATIONS [REPEALED]

Appendix 3 Water Wells

Water wells identified by the New Mexico State Engineer's files within two miles of the RH AGI wells; water wells within one mile are highlighted in yellow.

POD Number	County	Sec	Tws	Rng	UTME	UTMN	Distance (mi)	Depth Well (ft)	Depth Water (ft)	Water Column (ft)
C 03666 POD1	LE	13	245	33E	639132	3565078	0.31	650	390	260
C 03917 POD1	LE	13	245	33E	638374	3565212	0.79	600	420	180
C 03601 POD1	LE	23	245	33E	638124	3563937	1.17			
C 02309	LE	25	245	33E	639638	3562994	1.29	60	30	30
C 03601 POD3	LE	24	245	33E	638142	3563413	1.38			
C 03932 POD8	LE	7	245	34E	641120	3566769	1.40	72		
C 03601 POD2	LE	23	245	33E	637846	3563588	1.44			
C 03662 POD1	LE	23	245	33E	637342	3564428	1.48	550	110	440
C 03601 POD5	LE	23	245	33E	637988	3563334	1.48			
C 03601 POD6	LE	23	245	33E	637834	3563338	1.55			
C 03601 POD7	LE	23	245	33E	637946	3563170	1.58			
C 03600 POD2	LE	25	245	33E	638824	3562329	1.78			
C 03602 POD2	LE	25	245	33E	638824	3562329	1.78			
C 03600 POD1	LE	26	245	33E	637275	3563023	1.94			
C 03600 POD3	LE	26	245	33E	637784	3562340	2.05			

Appendix 4 Oil and Gas Wells within 2-mile Radius of the RH AGI Well Site

Note – a completion status of "New" indicates that an Application for Permit to Drill has been filed and approved but the well has not yet been completed. Likewise, a spud date of 31-Dec-99 is actually 12-31-9999, a date used by NMOCD databases to indicate work not yet reported.

ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
30-025- 08371	COSSATOT E 002	PRE-ONGARD WELL OPERATOR	OIL	DELAWARE VERTICAL	P & A	VERTICAL	5425	Yes
30-025- 25604	GOVERNMENT L COM 001	EOG RESOURCES INC	GAS	DELAWARE VERTICAL	P & A	VERTICAL	17625	No
30-025- 26369	GOVERNMENT L COM 002	EOG RESOURCES INC	GAS	DELAWARE VERTICAL	P & A	VERTICAL	14698	Yes
30-025- 26958	SIMS 001	BOPCO, L.P.	GAS	DELAWARE VERTICAL	P & A	VERTICAL	15007	Yes
30-025- 27491	SMITH FEDERAL 001	PRE-ONGARD WELL OPERATOR	OIL	DELAWARE	P & A	VERTICAL	15120	No
30-025- 29008	MADERA RIDGE 24 001	EOG RESOURCES	GAS	DELAWARE	TA	VERTICAL	15600	No
30-025- 29008	MADERA RIDGE 24 001	EOG RESOURCES	GAS	DELAWARE	TA	VERTICAL	15600	No
30-025- 40448	RED HILLS AGI 001	TARGA NORTHERN DELAWARE, LLC.	INJECTOR	DELAWARE	INJECTING	VERTICAL	6650	Yes
30-025- 40914	DECKARD FEE 001H	COG OPERATING LLC	OIL		PRODUCING	VERTICAL	10997	No
30-025- 40914	DECKARD FEE 001H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11034	No
30-025- 41382	DECKARD FEDERAL COM 002H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11067	Yes
30-025- 41383	DECKARD FEDERAL COM 003H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11162	Yes
30-025- 41384	DECKARD FEDERAL COM 004H	COG OPERATING LLC	OIL	3RD BONE SPRING	PRODUCING	HORIZONTAL	11103	Yes
30-025- 41666	SEBASTIAN FEDERAL COM 002H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10927	Yes
30-025- 41687	SEBASTIAN FEDERAL COM 001H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10944	Yes
30-025- 41688	SEBASTIAN FEDERAL COM 003H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11055	No
30-025- 43532	LEO THORSNESS 13 24 33 211H	MATADOR PRODUCTION COMPANY	GAS	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12371	No
30-025- 44442	STRONG 14 24 33 AR 214H	MATADOR PRODUCTION COMPANY	GAS	WOLFCAMP A LOWER	PRODUCING	HORIZONTAL	12500	No
30-025- 46154	LEO THORSNESS 13 24 33 221H	MATADOR PRODUCTION COMPANY	OIL	WOLFCAMP B UPPER	PRODUCING	HORIZONTAL	12868	No
30-025- 46282	LEO THORSNESS 13 24 33 AR 135H	MATADOR PRODUCTION COMPANY	OIL	3RD BONE SPRING SAND	PRODUCING	HORIZONTAL	12103	No

ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
30-025- 46517	BROADSIDE 13 W FEDERAL COM 001H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12213	No
30-025- 46518	BROADSIDE 13 24 FEDERAL COM 002H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 46519	BROADSIDE 13 24 FEDERAL COM 003H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP A LOWER	PRODUCING	HORIZONTAL	12320	Yes
30-025- 46985	SEBASTIAN FEDERAL COM 703H	COG OPERATING LLC	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12123	No
30-025- 46988	SEBASTIAN FEDERAL COM 704H	COG OPERATING LLC	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12142	No
30-025- 47869	JUPITER 19 FEDERAL COM 501H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11175	Yes
30-025- 47870	JUPITER 19 FEDERAL COM 502H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11141	Yes
30-025- 47870	JUPITER 19 FEDERAL COM 502H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11141	Yes
30-025- 47872	JUPITER 19 FEDERAL COM 403H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PRODUCING	HORIZONTAL	10584	No
30-025- 47872	JUPITER 19 FEDERAL COM 403H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PRODUCING	HORIZONTAL	10584	No
30-025- 47873	JUPITER 19 FEDERAL COM 309H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10250	No
30-025- 47873	JUPITER 19 FEDERAL COM 309H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10250	No
30-025- 47874	JUPITER 19 FEDERAL COM 506H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10950	No
30-025- 47875	JUPITER 19 FEDERAL COM 507H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11150	No
30-025- 47875	JUPITER 19 FEDERAL COM 507H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11150	No
30-025- 47876	JUPITER 19 FEDERAL COM 508H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11143	No
30-025- 47876	JUPITER 19 FEDERAL COM 508H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11143	No
30-025- 47877	JUPITER 19 FEDERAL COM 509H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11156	No
30-025- 47878	JUPITER 19 FEDERAL COM 510H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11102	No
30-025- 47908	JUPITER 19 FEDERAL COM 601H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes

ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
30-025- 47910	JUPITER 19 FEDERAL COM 702H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	DUC	HORIZONTAL	0	Yes
30-025- 47911	JUPITER 19 FEDERAL COM 705H	EOG RESOURCES INC	OIL	WOLFCAMP A LOWER	PERMITTED	HORIZONTAL	12290	No
30-025- 47912	JUPITER 19 FEDERAL COM 707H	EOG RESOURCES INC	OIL	WOLFCAMP B UPPER	PERMITTED	HORIZONTAL	12515	No
30-025- 47913	JUPITER 19 FEDERAL COM 708H	EOG RESOURCES INC	OIL	WOLFCAMP A LOWER	PERMITTED	HORIZONTAL	12477	No
30-025- 48239	JUPITER 19 FEDERAL COM 306H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10270	No
30-025- 48889	JUPITER 19 FEDERAL COM 701H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 48890	JUPITER 19 FEDERAL COM 703H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 49262	BROADSIDE 13 24 FEDERAL COM 004H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP B UPPER	PRODUCING	HORIZONTAL	12531	Yes
30-025- 49263	BROADSIDE 13 24 FEDERAL COM 015H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP B LOWER	PRODUCING	HORIZONTAL	12746	Yes
30-025- 49264	BROADSIDE 13 24 FEDERAL COM 025H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	3RD BONE SPRING	PRODUCING	HORIZONTAL	11210	Yes
30-025- 49474	RED HILLS AGI 002	TARGA NORTHERN DELAWARE, LLC.	INJECTOR	DELAWARE VERTICAL	Temporarily Abandoned	VERTICAL	17600	Yes

Appendix 5 References

Application for Authorization to Inject via Proposed Red Hills AGI #1 Well, Agave Energy Red Hills Gas Plant, Lea County, New Mexico; July 20, 2011; prepared by Geolex, Inc. for Agave Energy Company

Application for a Redundant Class II AGI Well, Lucid Energy Delaware, LLC; Red Hills AGI #2; August 8, 2019, prepared by Geolex, Inc. for Lucid Energy Delaware, LLC

Boyle, T.B., Carroll, J.J., 2002. Study determines best methods for calculating acid-gas density. *Oil and Gas Journal* 100 (2): 45-53.

Broadhead, R.F., 2017. Energy and Mineral Resources of New Mexico: Petroleum Geology; Socorro, New Mexico Bureau of Geology and Mineral Resources: 104 p.

Case No. 20779, Notice Regarding Hearing Exhibits, Application of Lucid Energy Delaware, LLC for Authorization to Inject, Lea County, New Mexico

Giesen, J.H. and Scholle, P.A., 1990. Regional basinal sandstone depositional patterns during the Guadalupian (Late Permian), Delaware basin, west Texas-New Mexico [abs.]: The American Association of Petroleum Geologists Bulletin 74: 660-661.

Ewing, E., 2019. Tectonics of the West Texas (Permian) Basin—Origins, structural geology, subsidence, and later modification: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 63-96.

Ge, J., Nicot, J.P., Hennings, P.H., Smye, K.M., Hosseini, S.A., Gao, R.S., and Breton, C.L., 2022. Recent water disposal and pore pressure evolution in the Delaware Mountain Group, Delaware Basin, Southeast New Mexico and West Texas, USA: Journal of Hydrology: Regional Studies 40: 101041.

Fu, Q., Baumgardner, R.W., Jr., and Hamlin, H.S., 2020. Early Permian (Wolfcampian) succession in the Permian Basin: icehouse platform, slope carbonates, and basinal mudrocks: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 185-225.

H₂S Contingency Plan, Targa Northern Delaware, August 2023, Red Hills Gas Processing Plant, Lea County, NM

Harms, J.C., 1974. Brushy Canyon Formation, Texas: A deepwater density current deposit: Geological Society of America Bulletin 85: 1763-1784.

Harrington, R., 2019. The Middle–Upper Ordovician Simpson Group of the Permian Basin: stratigraphy, lithofacies, and reservoir development: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 331-352.

Harrington, R. and Ruppel, S., 2019. Patterns of Montoya Group (Middle Ordovician) deposition, diagenesis, and reservoir development in the Permian Basin: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 353-378.

Hills, J.M., 1984. Sedimentation, tectonism, and hydrocarbon generation in Delaware Basin, west Texas and southeastern New Mexico: The American Association of Petroleum Geologists Bulletin 68: 250-267.

Horne, E., Hennings, P., Zahm, C., 2021. Basement-rooted faults of the Delaware Basin and Central Basin Platform, Permian Basin, West Texas and southeastern New Mexico: O.A. Callahan, P. Eichhubl (eds.), The Geologic Basement of Texas: A Volume in Honor of Peter T. Flawn, Austin, The University of Texas, Bureau of Economic Geology: 1-37. Horne, E.A., Hennings, P.H., Smye, K.M., Staniewicz, S., Chen, J., Savvaidis, A., 2022. Structural characteristics of shallow faults in the Delaware Basin: Interpretation 10: T807-T835.

King, P.B., 1948. Geology of the southern Guadalupe Mountains, Texas: United States Geological Survey Professional Paper 215: 183 p.

Lambert, S.J., 1992. Geochemistry of the Waste Isolation Pilot Plant (WIPP) site, southeastern New Mexico, U.S.A. *Applied Geochemistry* 7: 513-531.

Loucks, R. and Kerans, C., 2019. A Geologic review of the Lower Ordovician Ellenburger Group of the Permian Basin, West Texas and southeast New Mexico: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 295-330.

Luo, Ming; Baker, Mark R.; and LeMone, David V.; 1994, *Distribution and Generation of the Overpressure System, Eastern Delaware Basin, Western Texas and Southern New Mexico*, AAPG Bulletin, V.78, No. 9 (September 1994) p. 1386-1405.

Madalyn S. Blondes, Kathleen D. Gans, James J. Thordsen, Mark E. Reidy, Burt Thomas, Mark A. Engle, Yousif K. Kharaka, and Elizabeth L. Rowan, 2014. U.S. Geological Survey National Produced Waters Geochemical Database v2.1,

http://energy.usgs.gov/EnvironmentalAspects/EnvironmentalAspectsofEnergyProductionandUse/ProducedWaters. aspx

Nance, H.S., 2020. Upper Permian Delaware Mountain Group: Record of highstand/lowstand platform: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 399-436.

Nance, H.S., Hamlin, H.S., 2020. The Bone Spring Formation (Leonardian) of the Delaware Basin: deepwater lithofacies and stratigraphy: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 321-348.

Nicholson, A., Jr., Clebsch, A., Jr., 1961. *Geology and ground-water conditions in southern Lea County, New Mexico*. New Mexico Bureau of Mines and Mineral Resources, Ground-Water Report 6, 123 pp., 2 Plates.

Powers, D.W., Lambert, S. J., Shafer, S., Hill, L. R. and Weart, W. D., 1978., *Geological Characteristic Report, Waste Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico (SAND78-1596)*, Department 4510, Waste Management Technology, Sandia Laboratories, Albuquerque, New Mexico

Ruppel, S., 2019a. Anatomy of a Paleozoic basin: the Permian Basin, USA: Introduction, overview, and evolution: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 1-27.

Ruppel, S., 2019b. The Fusselman of the Permian Basin: patterns in depositional and diagenetic facies development on a stable platform during the Late Ordovician–Early Silurian icehouse: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 379-399.

Ruppel, S., 2020. The Middle Silurian–Lower Devonian Wristen Group, Permian Basin: impact of tectonic subsidence on patterns of deposition, diagenesis, and reservoir development: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 1-36.

Ruppel, S., Hovorka, S., Barnaby, R., 2020a. Proximal shallow-water carbonates and distal biosiliceous cherts of the Lower Devonian Thirtyone Formation, Permian Basin: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 37-74.

Ruppel, S.C., Rowe, H., Reed, R., Barrick, J.E., James, E.W., Loucks, R.G., 2020b. The Woodford Formation of the Permian Basin: regional, Middle to Late Devonian transgression of the southern Midcontinent and accompanying global anoxia: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 75-124.

Scholle, P.A., Goldstein, R.H., Ulmer-Scholle, D.S., 2007. Classic Upper Paleozoic reefs and bioherms of West Texas and New Mexico: Field guide to the Guadalupe and Sacramento Mountains of West Texas and New Mexico. Socorro, New Mexico Bureau of Geology and Mineral Resources, Open-File Report 504: 178 p.

Scholle, P., Broadhead, R.F., McLemore, V., 2020. The Permian Basin: Scholle, P., Ulmer-Scholle, D., Cather, and S., Kelley, S. (eds.), The Geology of Southern New Mexico Parks, Monuments, and Public Lands: Socorro, New Mexico Bureau of Geology and Mineral Resources: 285-295.

Silver, B.A., Todd, R.G., 1969. Permian cyclic strata, northern Midland and Delaware Basins, west Texas and southeastern New Mexico, *The American Association of Petroleum Geologists Bulletin* 53: 2223- 2251.

Smye, K.D., Banerji, A., Eastwood, R., McDaid, G., and Hennings, P., 2021. Lithology and reservoir properties of the Delaware Mountain Group of the Delaware Basin and implications for saltwater disposal and induced seismicity: Journal of Sedimentary Research 91 (11): 1113–1132.

US EPA, O., 2015, *Procedures for Groundwater Sampling in the Laboratory Services and Applied Science Division*: https://www.epa.gov/quality/procedures-groundwater-sampling-laboratory-services-and-applied-science-division (accessed September 2023).

Walsh, R., Zoback, M.D., Pasi, D., Weingarten, M. and Tyrrell, T., 2017, FSP 1.0: A Program for Probabilistic Estimation of Fault Slip Potential Resulting from Fluid Injection, User Guide from the Stanford Center for Induced and Triggered Seismicity, available from SCITS.Stanford.edu/software

Ward, R.F., Kendall, C.G.St.C., Harris, P.M., 1986. Upper Permian (Guadalupian) facies and their association with hydrocarbons – Permian Basin, west Texas and New Mexico. *The American Association of Petroleum Geologists Bulletin* 70: 239-262.

Wilson, J.L., 1972. Cyclic and reciprocal sedimentation in Virgilian strata of southern New Mexico: J.G. Elam, S. Chuber (eds.), Cyclic Sedimentation in the Permian Basin (2nd edition), Midland, West Texas Geological Society: 82-99.

Wright, W., 2020. Pennsylvanian (upper Carboniferous) paleodepositional evolution of the greater Permian Basin, Texas and New Mexico: depositional systems and hydrocarbon reservoir: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 159-183.

Xiao, Ting et al. (2024). A review of risk and uncertainty assessment for geologic carbon storage. Renewable and Sustainable Energy Reviews 189 (2024) 113945

Appendix 6 Abbreviations and Acronyms

3D - 3 dimensional AGA – American Gas Association AMA – Active Monitoring Area AoR – Area of Review **API – American Petroleum Institute** CFR - Code of Federal Regulations C1 – methane C6 – hexane C7 - heptane CO₂ – carbon dioxide DCS - distributed control system EPA – US Environmental Protection Agency, also USEPA ft-foot (feet) GHGRP – Greenhouse Gas Reporting Program GPA – Gas Producers Association m - meter(s)md – millidarcy(ies) mg/I – milligrams per liter MIT – mechanical integrity test MMA – maximum monitoring area MSCFD- thousand standard cubic feet per day MMSCFD - million standard cubic feet per day MMstb - million stock tank barrels MRRW B – Morrow B MRV – Monitoring, Reporting, and Verification MT -- Metric tonne NIST - National Institute of Standards and Technology NMOCC - New Mexico Oil Conservation Commission NMOCD - New Mexico Oil Conservation Division PPM – Parts Per Million psia – pounds per square inch absolute QA/QC – quality assurance/quality control SCITS - Stanford Center for Induced and Triggered Seismicity Stb/d – stock tank barrel per day TAG – Treated Acid Gas TDS – Total Dissolved Solids TVD – True Vertical Depth **TVDSS** – True Vertical Depth Subsea UIC – Underground Injection Control USDW - Underground Source of Drinking Water

	Subpart RR Equation	Description of Calculations and Measurements [*]	Pipeline	Containers	Comments	
	RR-1	calculation of CO ₂ received and measurement of CO ₂ mass	through mass flow meter.	in containers. **		
CO ₂ Received	RR-2	calculation of CO ₂ received and measurement of CO ₂ volume	through volumetric flow meter.	in containers. ***		
	RR-3	summation of CO_2 mass received	through multiple meters.			
	RR-4	calculation of CO ₂ mass injected, mea	asured through mass flow me	ters.		
CO ₂ Injected	RR-5	calculation of CO ₂ mass injected, mea	asured through volumetric flo	ow meters.		
	RR-6	summation of CO2 mass injected, as	calculated in Equations RR-4 a	and/or RR-5.		
	RR-7	calculation of CO ₂ mass produced / r mass flow meters.	calculation of CO ₂ mass produced / recycled from gas-liquid separator, measured through mass flow meters.			
CO ₂ Produced / Recycled	RR-8	calculation of CO ₂ mass produced / revolumetric flow meters.	ecycled from gas-liquid separ	ator, measured through		
	RR-9	summation of CO ₂ mass produced / r in Equations RR-7 and/or RR8.	recycled from multiple gas-liq	uid separators, as calculated		
CO ₂ Lost to Leakage to the Surface	RR-10	calculation of annual CO ₂ mass emitt	ed by surface leakage			
CO₂ Sequestered	RR-11	calculation of annual CO ₂ mass seque any other fluid; includes terms for CO emitted from surface equipment bet emitted from surface equipment bet	calculation of annual CO ₂ mass sequestered for operators ACTIVELY producing oil or gas or any other fluid; includes terms for CO ₂ mass injected, produced, emitted by surface leakage, emitted from surface equipment between injection flow meter and injection well head, and emitted from surface equipment between production well head and production flow meter.			
	RR-12	calculation of annual CO ₂ mass seque or any other fluid; includes terms for from surface equipment between inj	estered for operators NOT AC CO ₂ mass injected, emitted b ection flow meter and injection	TIVELY producing oil or gas by surface leakage, emitted on well head.	Calculation procedures are provided in Subpart W of GHGRP for CO _{2FI} .	

Appendix 7 TND Red Hills AGI Wells - Subpart RR Equations for Calculating CO₂ Geologic Sequestration

* All measurements must be made in accordance with 40 CFR 98.444 – Monitoring and QA/QC Requirements.

** If you measure the mass of contents of containers summed quarterly using weigh bill, scales, or load cells (40 CFR 98.444(a)(2)(i)), use RR-1 for Containers to calculate CO₂ received in containers for injection.

*** If you determine the volume of contents of containers summed quarterly (40 CFR 98.444(a)(2)(ii)), use RR-2 for Containers to calculate CO₂ received in containers for injection.

Appendix 8 Subpart RR Equations for Calculating Annual Mass of CO₂ Sequestered RR-1 for Calculating Mass of CO₂ Received through Pipeline Mass Flow Meters

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * C_{CO_{2,p,r}}$$

(Equation RR-1 for Pipelines)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons).
- Q r,p = Quarterly mass flow through a receiving flow meter r in quarter p (metric tons).
- S_{r,p} = Quarterly mass flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (metric tons).
- $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (wt. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- r = Receiving flow meter.

RR-1 for Calculating Mass of CO₂ Received in Containers by Measuring Mass in Container

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * C_{CO_{2,p,r}}$$

(Equation RR-1 for Containers)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received in containers r (metric tons).
- $Q_{r,p}$ = Quarterly mass of contents in containers r in quarter p (metric tons).
- S r,p = Quarterly mass of contents in containers r redelivered to another facility without being injected into your well in quarter p (metric tons).
- C _{CO2,p,r} = Quarterly CO₂ concentration measurement of contents in containers r in quarter p (wt. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- r = Containers.

RR-2 for Calculating Mass of CO₂ Received through Pipeline Volumetric Flow Meters

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$
(Equation RR-2 for Pipelines)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons).
- Q r,p = Quarterly volumetric flow through a receiving flow meter r in quarter p at standard conditions (standard cubic meters).
- S r,p = Quarterly volumetric flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- r = Receiving flow meter.

RR-2 for Calculating Mass of CO₂ Received in Containers by Measuring Volume in Container

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$
(Equation RR-2 for Containers)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received in containers r (metric tons).
- Q r,p = Quarterly volume of contents in containers r in quarter p at standard conditions (standard cubic meters).
- S r,p = Quarterly volume of contents in containers r redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO₂ received in containers at standard conditions (metric tons per standard cubic meter): 0.0018682.

 $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement of contents in containers r in quarter p (vol. percent CO₂, expressed as a decimal fraction).

p = Quarter of the year.

RR-3 for Summation of Mass of CO2 Received through Multiple Flow Meters for Pipelines

$$CO_2 = \sum_{r=1}^{R} CO_{2T,r}$$

(Equation RR-3 for Pipelines)

where:

- CO₂ = Total net annual mass of CO₂ received (metric tons).
- $CO_{2T,r}$ = Net annual mass of CO_2 received (metric tons) as calculated in Equation RR-1 or RR-2 for flow meter r.
- r = Receiving flow meter.

RR-4 for Calculating Mass of CO₂ Injected through Mass Flow Meters into Injection Well

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * C_{CO_{2,p,u}}$$

(Equation RR-4)

where:

 $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.

 $Q_{p,u}$ = Quarterly mass flow rate measurement for flow meter u in quarter p (metric tons per quarter).

 $C_{CO2,p,u}$ = Quarterly CO₂ concentration measurement in flow for flow meter u in quarter p (wt. percent CO₂, expressed as a decimal fraction).

RR-5 for Calculating Mass of CO₂ Injected through Volumetric Flow Meters into Injection Well

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$
 (Equation RR-5)

where:

- $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.
- Q _{p,u} = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter).
- D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,u} = CO_2$ concentration measurement in flow for flow meter u in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.

u = Flow meter.

RR-6 for Summation of Mass of CO₂ Injected into Multiple Wells

$$CO_{2I} = \sum_{u=1}^{U} CO_{2,u}$$

(Equation RR-6)

where:

- CO ₂₁ = Total annual CO₂ mass injected (metric tons) though all injection wells.
- $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.

u = Flow meter.

RR-7 for Calculating Mass of CO₂ Produced / Recycled from a Gas-Liquid Separator through Mass Flow Meters

$$CO_{2,w} = \sum_{p=1}^{4} Q_{p,w} * C_{CO_{2,p,w}}$$

(Equation RR-7)

where:

 $CO_{2,w}$ = Annual CO_2 mass produced (metric tons) through separator w.

- Q p,w = Quarterly gas mass flow rate measurement for separator w in quarter p (metric tons).
- $C_{CO2,p,w}$ = Quarterly CO₂ concentration measurement in flow for separator w in quarter p (wt. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.

w = Separator.

RR-8 for Calculating Mass of CO₂ Produced / Recycled from a Gas-Liquid Separator through Volumetric Flow Meters

$$CO_{2,w} = \sum_{p=1}^{4} Q_{p,w} * D * C_{CO_{2,p,w}}$$

(Equation RR-8)

where:

- $CO_{2,w}$ = Annual CO_2 mass produced (metric tons) through separator w.
- Q p,w = Quarterly gas volumetric flow rate measurement for separator w in quarter p (standard cubic meters).
- D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,w}$ = Quarterly CO₂ concentration measurement in flow for separator w in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- w = Separator.

RR-9 for Summation of Mass of CO₂ Produced / Recycled through Multiple Gas Liquid Separators

$$CO_{2P} = (1+X) \star \sum_{w=1}^{W} CO_{2,w}$$
 (Equation RR-9)

where:

- CO _{2P} = Total annual CO₂ mass produced (metric tons) though all separators in the reporting year.
- X = Entrained CO₂ in produced oil or other liquid divided by the CO₂ separated through all separators in the reporting year (wt. percent CO₂ expressed as a decimal fraction).
- CO _{2,w} = Annual CO₂ mass produced (metric tons) through separator w in the reporting year.

w = Separator.

RR-10 for Calculating Annual Mass of CO₂ Emitted by Surface Leakage

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$

(Equation RR-10)

where:

CO 2E = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year.

 $CO_{2,x}$ = Annual CO_2 mass emitted (metric tons) at leakage pathway x in the reporting year.

x = Leakage pathway.

RR-11 for Calculating Annual Mass of CO₂ Sequestered for Operators Actively Producing Oil or Natural Gas or Any Other Fluid

$$CO_2 = CO_{2I} - CO_{2P} - CO_{2E} - CO_{2FI} - CO_{2FP}$$

(Equation RR-11)

Where:

- CO 2 = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CO ₂₁ = Total annual CO₂ mass injected (metric tons) in the well or group of wells in the reporting year.
- CO_{2P} = Total annual CO_2 mass produced (metric tons) in the reporting year.
- CO_{2E} = Total annual CO_2 mass emitted (metric tons) by surface leakage in the reporting year.
- CO 2FI = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part.
- CO _{2FP} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the production wellhead and the flow meter used to measure production quantity, for which a calculation procedure is provided in subpart W of this part.

RR-12 for Calculating Annual Mass of CO₂ Sequestered for Operators NOT Actively Producing Oil or Natural Gas or Any Other Fluid

$$CO_2 = CO_{2I} - CO_{2E} - CO_{2FI}$$
 (Equation RR-12)

- CO 2 = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CO 21 = Total annual CO₂ mass injected (metric tons) in the well or group of wells in the reporting year.
- CO_{2E} = Total annual CO_2 mass emitted (metric tons) by surface leakage in the reporting year.
- CO _{2F1} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part.

Appendix 9 P&A Records

Form 3160-5 April 2004) ,	UNITED STATES	s Ho	bbs, NM 88240	e	FORM APPROVED
•	DEPARTMENT OF THE BUREAU OF LAND MAN	INTERIOR AGEMENT		5 1	Expires: March 31, 2007
SUNDRY	NOTICES AND REI	PORTS ON	WELLS	 Lease Sena 	NM-17446
Do not use ti abandoned w	his form for proposals t ell. Use Form 3160-3 (o drill or to APD) for suc	re-enter an h proposais.	6. If Indian,	Allottee or Tribe Name
SUBMIT IN TR	IPLICATE- Other insti	ructions on I	everse side.	7. If Unit or	CA/Agreement, Name and/or N
1. Type of Well Oil Well	Gas Well Other			- -	, ,
2. Name of Operator FOC Pro-		· · · · · · · · · · · · · · · · · · ·		8. Well Nan Ge	ne and No. overnment "L" Com #1
a Address	ources, Inc	3b Phone No	(include gree code)	9. API We	II No. 30-025-0 49-07 - 25U
P.O. Box 2267, M	idland, TX, 79702	432-561-860	10	10. Field and	Pool, or Exploratory Area
4. Location of Well (Footage, Sec.,	T., R., M., or Survey Description)			Be 11 County of	II Lake, South Morrow
Unit Letter G, 1980 FNL, 1 Section 18, Township 24-S,	980 FEL Range 34-E			The county of	Lea. New Mexico
12. CHECK A	PPROPRIATE BOX(ES) TO	INDICATE N	ATURE OF NOTIOF	REPORT OR	OTHER DATA
TYPE OF SUBMISSION			TYPE OF ACTION		
	Acidize	Deepen	Production (S	tart/Resume)	Water Shut-Off
Notice of Intent	Alter Casing	Fracture Trea	t Reclamation		Well Integrity
Subsequent Report	Casing Repair	New Constru	ction Recomplete		Other
Final Abandonment Notice	Convert to Injection	Plug and Aba	ndon L Temporarily A	Abandon I	<u></u>
testing has been completed. Fi determined that the site is read	nal Abandonment Notices shall be y for final inspection.)	filed only after all	requirements, including recla	mation, have been	, a Form 3160-4 shall be filed or a completed, and the operator has
					APPROVE
 Notified Jim McCorn Cut 3 1/2' thr at 1150 	tick w/BLM 24 hrs prior to M	I and RU.	11400 11/00 7 1120	, [
3. Circ hole w/MLF.	o, spor Josa C Lass II CIII, p	aug 110m 11500-	11400, WOC 12g at 1138	y.	
 Perf 4 holes at 9050, p Perf 4 holes at 7000, p 	press up to 2000 PSI, spot 75sx press up to 2000 PSI, spot 75sx	, plug from 9100 , plug from 7050	-8950, WOC Tag @ 8938 -6900. WOC Tag at 6855	.	JAN 4 2005
 Cut 10 3/4" esg at 545 Spot 75sx, plug from 	50, L/D csg, spot 150sx, plug fr 1300-1200 (T-Salt) WOC Tag	om 5500-5350, V	VOC Tag at 5336.		
8. Spot 150sx, plug from	650-450 (20" Shoe) WOC Ta	g at 423.			- GARY GOURTEX
10. Clean location. Insta	ll dry hole marker 12-30-04.				APPROVE
		P&A Complete	12-30-04		-
				5	JAN 4 2005
				1	GARY GOURLEY
 14. Thereby certify that the fore Name (Printed/Typed) 	going is true and correct	1		P	
14. Thereby certify that the form Name (Printed/Typed) Jimpr Bagley	going is true and correct	т	itle	Consultant	ELOW ENGINE
14. Thereby certify that the fore Name (Printed/Typed) Jimpry Bagley Signature	going is true and correct	T	itle	Consultant	
14. Thereby certify that the for Name (Printed/Typed) Jimpry Bagley Signature	going is true and correct	T I FEDERAL C	itle Date DR STATE OFFICE	Consultant 12/30/2004 E USE	
14. Thereby certify that the fore Name (Printed/Typed) Jimpry Bagley Signature	going is true and correct	T I FEDERAL C	itle Date DR STATE OFFICE Title	Consultant 12/30/2004 E USE	ate
14. Thereby certify that the fore Name (Printed/Typed) Jimpry Bagley Signature Approved by Conditions of approval, if any, are	going is true and correct	T I FEDERAL C	itle Date DR STATE OFFICE	Consultant 12/30/2004 E USE	ate
14. Thereby certify that the fore Name (Printed/Typed) Jimprf Bagley Signature Approved by Conditions of approval, if any, are certify that the applicant holds lega which would entitle the applicant to	attached. Approval of this notice or equitable title to those rights is o conduct operations thereon.	T FEDERAL C does not warrant of the subject lease	itle bate DR STATE OFFICE Title office	Consultant 12/30/2004 E USE	ate

P&A Record for Government Com 001, API #30-025-25604

GWW

P&A Records for API #30-025-26958

Submit 1 Copy To Appropriate District Office	State of New Me	exico	Form C-103
District I – (575) 393-6161 1625 N. French Dr., Hobbs, NM 88240 District II., (575) 748-1283	Energy, Minerals and Natu	iral Resources	WELL API NO.
811 S First St, Artesia, NM 88210 REC	SERVED SERVATION	DIVISION	5Indicate Type of Lease
District III – (505) 334-6178 1000 Rio Brazos Rd , Aztec, NM 87410	1220 South St. Fran	ncis Dr.	STATE 🗍 FEE 🛛
District IV - (505) 476-3460 AUG 1220 S St Francis Dr , Santa Fe, NM 87505	6. State Oil & Gas Lease No. SCR-389		
SUNDRY NOTICE SUNDRY NOTICE (DO NOT USE THIS FORM FOR PROPOSAL DIFFERENT RESERVOIR USE "APPL	S AND REPORTS ON WELLS S TO DRILL OR TO DEEPEN OR PLU ICATION FOR PERMIT" (FORM C-10	G BACK TO A DI) FOR SUCH	7. Lease Name or Unit Agreement Name Sims
PROPOSALS)	s Well 🛛 Other		8. Well Number #1
2. Name of Operator: Agave Energy (Company		9. OGRID Number
3. Address of Operator			14/831 10. Pool name or Wildcat
104 S. Fourth St., Artesia NM 88210 (575-748-4528)		Big Sinks Wolfcamp
4. Well Location			3
Unit LetterK:	_1980feet from theN	line and	_800feet from theEline
Section 13	Township 24S	Range 33E	NMPM Lea County
	T. Elevation (bnow whether DR,		
12. Check App	propriate Box to Indicate N	ature of Notice,	Report or Other Data
		SUR	SEQUENT REPORT OF
PERFORM REMEDIAL WORK		REMEDIAL WOR	
	HANGE PLANS	COMMENCE DRI	
		CASING/CEMENT	ГЈОВ 🗌
OTHER:			lug to cement off Cherry Canyon per
 Describe proposed or complete of starting any proposed work) proposed completion or recom 	d operations. (Clearly state all p . SEE RULE 19.15.7.14 NMAC pletion	pertinent details, and C. For Multiple Cor	a give pertinent dates, including estimated date npletions: Attach wellbore diagram of
The remediation of the Sims #1 we demobilized. The plugging wa Whitaker and E.L. Gonzales of plugging diagram. When estab reservoir as it was taking 3bhl	I pursuant to NMOCC order wa is done pursuant to NMOCD req is the OCD District 1 office who is offishing a rate prior to squeezing min on vacuum. This indicates	is completed on Aug puirements and all as approved the specifi the Cherry Canyon that the predicted in	ust 15, 2011 and all equipment has been spects of the effort were reported to Mark ics of the plugging as shown in the attached , it is clear that the reservoir is an excellent jection plume for the Red Hills AGI #1 in this
reservoir will be smaller than a intended and permitted injection the Sims#1. Please see attache	nticipated and the reservoir cond in zone by any nearby wellbores d wellbore sketch for plugging c	ditions act to preven including the Govt details of all plugs so	t migration of injected acid gas out of the #2, Govt#1 and Smith Federal #1 in addition to et and amounts of cement squeezed for each
piùg.			
			· · · · · ·
· · · · · · · · ·	,		
hereby certify that the information abo	ve is true and complete to the by	et of my knowledge	and belief
incredy centry that the information abo	ve is true and complete to the be	est of my knowledge	
`			
SIGNATURE		sultant to Agave Ene	rgy Company DATE August 16, 2012
Type or print nameAlberto A. Gutie	errez, RG E-mail address:a	aag@geolex.com	PHONE:505-842-8000
For State Use Only	$) \land $		· · · · · · · · · · · · · · · · · · ·
APPROVED BY	THE DE	st. Maz	<u>=</u>
Conditions of Approval (if any):			1 6 2012
			AUD

8/16/2012

P&A Records for API 30-025-08371

a a k		\sim)		
		- • •	NEW MEXI	CO OIL C	ONSERV	ATION	COMMISSIC	M	FORM C-103 (Rev 3-55)
т. 1. 1. (р. ж. а. т. т. с.		(Subn	MISCEL	LANEO	LS REP		N WELLS	e 1706	
Name of Company	Byard	Bennett	<u>10 98 - 1</u>	Addr	20	7 West	Third, Rosv	well,	New Mexico
Lease	Hollar	nd	Well No.	Unit Lette H	section 13	Township 2	4 South	Rang	° 33 East
Date Work Performer March 8, 19	i i 61	^{vost} Wilde	Gt		(County Le	a		
		THIS	S A REPORT	OF: (Chec	k appropria	(e block)			
Beginning Dril	ling Operations	[_] C. [_] R	asing Test ar emedial Work	nd Cement Jo	b (]] Other (F	ixplain):		
Top of Dela Cement Plu	ware Sand: gs set as fo 5375-542 340-390 Heavy mu Job perfc	5210', Tote Hows: 5 with 15 s with 20 sac ud (2 cc w ormed and w	al Depth: sacks, 517 sks, 5 sac vtr. loss) vitnessed l	5425', (25-5240 w ks and m between by Mr. P	Casing 8 vith 20 s arker pip all cem ool, Poo	5/8 set acks, 13 be set at lent plug I Drlg C	at 365', 375-1425 v surface. s.	Hole vith 2	size 6 3/4 0 sacks,
Location w	Mr. Fred	Pool	Pesirion LOW FOR 1	oon as pro Owner REMEDIAL	an trom actical.	Mr. Eng Company PORTS OF	pol Drlg C	ew ///	
Location w Witnessed by D.F. Elev.	Mr. Fred	Pool	Pesition LOW FOR I FOR I	oon as progr Owner REMEDIAL INAL VELL	an trom actical.	Mr. Eng Company PORTS OF Producing	pol Drlg C NLY	ew M	mpletion Date
Location w Witnessed by D.F. Elev. Tubing Diameter	Mr. Fred	Pool FILL IN BE	Pesirian Desirian	Owner Owner REMEDIAL INAL WELC	work re DATA	Mr. Eng Company PC PORTS OF Producing er	pol Drlg C NLY Interval	ew M	mpletion Date
Location w Witnessed by D.F. Elev. Tubing Dismeter Perforsted Intervalf	Mr. Fred	Pool Fill IN BE	Pesition LOW FOR I ORIG	Owner REMEDIAL INAL VELL	work re ring Diame	Mr. Eng Company PC PORTS Of Producing	pol Drlg C NLY	ew M	mpletion Date
Location w Witnessed by D F Elev. Tubing Diameter Perforated Intervelf Open Hole Interval	Mr. Fred	Pool FILL IN BE	Pesition	Owner REMEDIAL INAL WELL ON SI	work re DATA ring Diame	Mr. Eng Company PORTS () Producing tion(s)	pol Drlg C NLY Interval	ew M	mpletion Date
Location w Witnessed by D.F. Elev. Tubing Dismeter Perforsted Interval Open Hole Interval	Mr. Fred	Pool FILL IN BE	Position Position LOW FOR I ORIG	Owner Owner REMEDIAL INAL VELC	work re DATA ring Diame	Mr. Eng Company Por PORTS O Producing er	pol Drlg C NLY Interval	ew M	nipletion Date
Location w Witnessed by D F Elev. Tubing Diameter Perforated Intervalf Open Hole Interval Test Before Workover	Mr. Fred	Pool FILL IN BE Luburg Depth	Pesition Pesition LOW FOR I ORIG IT IS T RESUL SO ANS M	Owner Owner REMEDIAL INAL VELC I Oit Si Drodu TS OF WOI C F / D	work re DATA ring Diamet Cing Forma KOVER	Mr. Eng Company PC PORTS OF Producing er tion(s)	pol Drlg C NLY Interval Oil Stri	ew M Co. Ing Dept	mpletion Date th Gas Well Potential MCEPD
Location w Witnessed by D F Elev. Tubing Dismeter Perforsted Intervelf Open Hole Interval Test Before Workover After Workover	Mr. Fred	Pool FILL IN BE Lature Depth	RESUL	Owner Council Counc	work re batical. work re DATA ring Diamed cing Forma KOVER Water P B	Mr. Eng Company PC PORTS OF Producing Producing cer	gbrecht, No pol Drlg C NLY Interval Oil Stri	ew M Co. Со Со Со Со Со	mpletion Date th Gas Well Potential MCEPD
Location w Witnessed by D F Elev. Tubing Diameter Perforated Interval Open Hole Interval Test Before Workover After Workover	Prior Veri ill be clear <u>Mr. Fred</u> T D g) Date of Test:	Pool FILL IN BE Laburg Depth	Pesirian Pesirian LOW FOR I ORIG PICT RESUL M	Owner Commer REMEDIAL INAL VELL INAL VEL	work re batta work re DATA ring Diamen cing Forma KOVER Water P B why certifier be best of	Mr. Eng Company PC PORTS Of Producing er tion(s) roduction PD	pol Drlg C NLY Interval Oil Stri Go R Cubic fee:	ew M Co. Co. Co. Bbl Bbl	mpletion Date th Gas Well Potential MC F PD c is frue and complete
Location w Witnessed by D F Elev, Tubing Diameter Perforated Interval Open Hole Interval Test Before Workover After Workover Of Approved by Title	Prior veri ill be clear <u>Mr. Fred</u> T D s) Date of Tes: CONSERVAT	Pool FILL IN BE Fature Depth Oil Production HPD ION COMMISSIO	Pesition Pesition LOW FOR I ORIG PICT RESUL N RESUL N A A A A A A A A A A A A A	Ownes Common as pro- Ownes REMEDIAL INAL VELL D Off Si Production CEPTD Chan Inal Production CEPTD	work re batta work re bata ting Diamen cong Forma cong	Mr. Eng Company PC PORTS () Producing er tion(s) roduction PD	pol Drlg C NLY Interval Oil Stri Cubic fee:	ew M Co. Ing Depu Bbl	mpletion Date th Gas Well Potential MC + PD th

Temporary Abandonment Record for RH AGI #2

Received by OCI	D- 3/17/2023 2:07:28 I To Appropriate District	PM Sta	te of New Me	xico			Form C-103
District I – (575) 1625 N. French District II. (57)) 393-6161 Dr., Hobbs, NM 88240	Energy, Minerals and Natural Resources		WELL API N	O.	sed July 18, 2013	
811 S. First St.,	Artesia, NM 88210	OIL CON	SERVATION	DIVISION	30-025-49474	ma of Lanca	
District III - (50	5) 334-6178	1220	South St. Fran	eis Dr.	STATE	FE OF Lease	E 🖂
<u>District IV</u> – (50 1220 S. St. Fran 87505	of Dr., Santa Fe, NM	Sa	Santa Fe, NM 87505			Gas Lease N	0.
(DO NOT USE DIFFERENT RI	SUNDRY NOTIO THIS FORM FOR PROPOS ESERVOIR. USE "APPLIC.	CES AND REPOR ALS TO DRILL OR T ATION FOR PERMIT	TS ON WELLS O DEEPEN OR PLU " (FORM C-101) FO	JG BACK TO A R SUCH	7. Lease Nam RED HILLS	e or Unit Agr AGI	eement Name
1. Type of V	Vell: Oil Well 🗍 🔘	Gas Well 🕅 Otl	ner Acid Gas Inj	ection	8. Well Numb	oer 002	
2. Name of C TARGA NO	of Operator NORTHERN DELAWARE, LLC				9. OGRID Nu 331548	umber	
3. Address o	f Operator		_		10. Pool name	e or Wildcat	
110 W 7 ^{1H} S	TREET, SUITE 2300,	TULSA OK 7411	9				
4. Well Loca	ation			1450		_	
Unit	Letter_1_:_1800f	eet from the SOU	IH line	and 150 fee	et from the EAS	I <u> </u>	_line
Sect	10n 13	11 Elevation (Si	p 24S	Range 33E	NMPM	LEA	County
		3575 GR	iow whether DR,	KKD, KI, GK, etc.)	,		
	12. Check A	ppropriate Box	to Indicate N	ature of Notice, SUB	Report or Oth	ner Data REPORT C	
TEMPORAR PULL OR AL DOWNHOLE CLOSED-LO	ILY ABANDON	CHANGE PLANS MULTIPLE COM	Book B B PL D	COMMENCE DRI CASING/CEMEN	ILLING OPNS.] P AND A	
OTHER:	TEM	PORARY ABAND		OTHER:			
 Descr of sta propo 	ribe proposed or comple rting any proposed wor osed completion or reco	eted operations. (k). SEE RULE 1 mpletion.	Clearly state all p 9.15.7.14 NMAC	ertinent details, and 2. For Multiple Cor	d give pertinent mpletions: Attac	dates, includir ch wellbore di	ng estimated date agram of
3/08/2023 Dr. 3/08-3/10 Re 3/11 Rig up I 3/12 Drilled 3/15 Rig up H Tagged plug a Decision has I	illed out of 13 3/8" with gained partial circulation Halliburton and squeeze out cement squeeze and Ialliburton and set 150 t 5960° and shut down	a 12 ¼" bit. Drill on and drilled to 6 e zone with 370 sa ran FIT test but sack balanced plug to wait on orders.	ed to 6161'and k 205'. cks of HalCem c would only hold g with Hal NEO (Cherry Canyon II	ost circulation. Att ement . 11.5 lb/gal. CEM cement niection zone due to	tempt to regain v	vith 3 heavy I	.CM pills.
Propose to TE RUN A CEMI SET A 100' C	MPORARY ABANDO ENT BOND LOG INSI CORROSION RESISTA	ON THE WELL B DE THE 13 3/8" ANT PLUG ON T 0') AND 50' AB(Y: OP OF EXISTIN	IG PLUG, SET A (CEMENT PLUG	INSIDE THI	E 13 3/8"
PRESSURE T REMOVE TH	EST THE CASING TO E BOP AND INSTAL	0 500 PSI FOR 30 L A BLIND FLAN	MINUTES NGE AND NIGH	ITCAP ON THE W	ELLHEAD.	10111200 10	
Spud Date:	02/13/2023		Rig Release Da	te:			
I hereby certif	y that the information a	bove is true and c	omplete to the be	st of my knowledg	e and belief.		
SIGNATURE	_Paul Ragsdale	TITLE	ENGINEER		DATE_	03/17/2	023
Type or print 1 For State Use	name _PAUL RAGSDA Only	ALE	E-mail address:	_pragsdale3727@	gmail.com	PHONE:	_575-626-7903_
APPROVED I	BY:	58 PM	_TITLE			DATE	

Received by OCD: 3/17/2023 2:07:28 PM

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720
 District II
 811 S. First St., Artesia, NM 88210

 Phone:(575) 748-1283 Fax:(575) 748-9720

 District III

 1000 Rio Brazos Rd., Azlec, NM 87410

 Phone:(505) 334-6178 Fax:(505) 334-6170
 District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico **Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 2 of 2

CONDITIONS

Action 198393

CONDITIONS

Operator:	OGRID:
Targa Northern Delaware, LLC.	331548
110 W. 7th Street, Suite 2300	Action Number:
Tulsa, OK 74119	198393
	Action Type:
	[C-103] Sub. General Sundry (C-103Z)

CONDITIONS

Created	Condition	Condition		
Dy		Date		
pkautz	MUST CAP EXISTING PLUG WITH 100' CORROSION RESISTANT CEMENT	3/17/2023		
pkautz	AFTER TA MUST PERFORM TA PRESSURE TEST	3/17/2023		
pkautz	AFTER TA SUBMIT A WELLBORE SCHEMATIC	3/17/2023		

Request for Additional Information: Red Hills Gas Processing Plant July 19, 2024

Instructions: Please enter responses into this table and make corresponding revisions to the MRV Plan as necessary. Any long responses, references, or supplemental information may be attached to the end of the table as an appendix. This table may be uploaded to the Electronic Greenhouse Gas Reporting Tool (e-GGRT) in addition to any MRV Plan resubmissions.

No.	MRV Plan		EPA Questions	Responses
	Section	Page		
1.	N/A	N/A	In the previous RFAI, we asked that you please ensure that the wording describing the status of the RH AGI #3 well is consistent throughout the MRV plan. While clarifying edits were made to certain text in your newest version of the MRV plan to address this issue, there are still instances of inconsistent descriptions regarding the status of RH AGI #3 well. Examples include: - "In the Bell Canyon Formation there are several potential high porosity sandstones, that if present in the well , would be excellent, injection zones similar to the depositional environments of the Cherry Canyon sandstones." (Section 3.3, page 22 of the MRV plan) - "Upon completion, TND will commence injection into RH AGI #3." (Section 8.2, page 56 of the MRV plan)	This issue has been addressed in the revised MRV plan.
			AGI #3 is consistent throughout the MRV plan.	

No.	MRV Plan		EPA Questions	Responses
	Section	Page		
2.	N/A	N/A	In the previous RFAI, we asked that you include a characterization of potential leakage through the RH AGI #2. While details were added to Section 5.3 ("Potential Leakage from Existing Wells") of your most recently submitted MRV plan, Section 6.3 ("Leakage from Existing Wells") was not adjusted to include a strategy for detecting CO ₂ leakage through the RH AGI #2.	This issue has been addressed in the revised MRV plan.
			Please ensure that all necessary adjustments have been made to sufficiently describe RH AGI #2 throughout the MRV plan.	

MONITORING, REPORTING, AND VERIFICATION PLAN

Red Hills AGI #1 and AGI #3

Targa Northern Delaware, LLC (TND)

Version 1.0 July 15, 2024

Table of Contents

1	Intro	duction	5			
2	Facili	Facility Information				
2.	1 Re	eporter number	7			
2.	2 UI	IC injection well identification numbers	7			
2.	3 UI	IC permit class	7			
3	Proje	ect Description	7			
3.	1 G	eneral Geologic Setting / Surficial Geology	8			
3.	2 Be	edrock Geology	8			
	3.2.1	Basin Development	8			
	3.2.2	Stratigraphy	17			
-	3.2.3	Faulting				
3.	3 Lit	thologic and Reservoir Characteristics				
3.	4 Fc	ormation Fluid Chemistry	25			
3.	5 Gi	roundwater Hydrology in the Vicinity of the Red Hills Gas Plant	25			
3.	6 Hi	istorical Operations	26			
	3.6.1	Red Hills Site	26			
	3.6.2	Operations within the MMA for the RH AGI Wells	29			
3.	7 De	escription of Injection Process				
3.	8 Re	eservoir Characterization Modeling				
4	Delin	neation of the Monitoring Areas	39			
4.	1 M	IMA – Maximum Monitoring Area	39			
4.	2 AI	MA – Active Monitoring Area	39			
5	Ident	tification and Evaluation of Potential Leakage Pathways to the Surface	40			
5.	1 Pc	otential Leakage from Surface Equipment	40			
5.	2 Pc	otential Leakage from Approved, Not Yet Drilled Wells	41			
	5.2.1	Horizontal Wells	41			
5.	3 Pc	otential Leakage from Existing Wells	41			
	5.3.1	Wells Completed in the Bell Canyon and Cherry Canyon Formations	41			
	5.3.2	Wells Completed in the Bone Spring / Wolfcamp Zones	42			
	5.3.3	Wells Completed in the Siluro-Devonian Zone				
5.	9.3.4 4 Pc	otential Leakage through the Confining / Seal System				
5	5 Pc	otential Leakage due to Lateral Migration	43			
5.	6 Pc	otential Leakage through Fractures and Faults	лл лл			
Б	7 00	atantial Loakage due to Natural / Induced Solismisity	بب			
э. с	/ PC					
ь 6	Strate	egy for Detecting and Quantifying Surface Leakage of CO2	46 7 ار			
0. C	т LC	Sakage from Approved Net Vet Drilled Wells				
ь.	Z LE					
6.	3 Le	eakage from Existing Wells	48			

	6.3 6.3	 3.1 RH AGI Wells 3.2 Other Existing Wells within the MMA 	
	6.4	Leakage through the Confining / Seal System	
	6.5	Leakage due to Lateral Migration	50
	6.6	Leakage from Fractures and Faults	50
	6.7	Leakage due to Natural / Induced Seismicity	50
	6.8	Strategy for Quantifying CO $_2$ Leakage and Response	51
	6.8	8.1 Leakage from Surface Equipment	51
	6.8	8.2 Subsurface Leakage	51
_	6.8	8.3 Surface Leakage	51
/	5tr 7.1	Visual Inspection	
	7.2	Fixed In-Field, Handheld, and Personal H ₂ S Monitors	52
	7.2	2.1 Fixed In-Field H ₂ S Monitors	52
	7.2	2.2 Handheld and Personal H ₂ S Monitors	52
	7.3	CO ₂ Detection	52
	7.4	Continuous Parameter Monitoring	53
	7.5	Well Surveillance	53
	7.6	Seismic (Microseismic) Monitoring Stations	53
	7.7	Groundwater Monitoring	53
	7.8	Soil CO ₂ Flux Monitoring	54
8	Sit	te Specific Considerations for Determining the Mass of CO_2 Sequestered	55
	8.1	CO ₂ Received	55
	8.2	CO ₂ Injected	56
	8.3	CO ₂ Produced / Recycled	57
	8.4	CO_2 Lost through Surface Leakage	57
	8.5	CO ₂ Emitted from Equipment Leaks and Vented Emissions	58
	8.6	CO ₂ Sequestered	58
9	Es	stimated Schedule for Implementation of MRV Plan	58
1() GH	HG Monitoring and Quality Assurance Program	58
	10.1	GHG Monitoring	58
	10	0.1.1 General	
	10 10	0.1.2 CO ₂ received	59 59
	10	0.1.4 CO ₂ produced	
	10	0.1.5 CO ₂ emissions from equipment leaks and vented emissions of CO ₂	
	10	0.1.6 Measurement devices	59
	10.2	QA/QC Procedures	60
	10.3	Estimating Missing Data	60
	10.4	Revisions of the MRV Plan	60

11 Record	s Retention	60
12 Append	dices	62
Appendix 1	TND Wells	63
Appendix 2	Referenced Regulations	67
Appendix 3	Water Wells	69
Appendix 4	Oil and Gas Wells within 2-mile Radius of the RH AGI Well Site	71
Appendix 5	References	74
Appendix 6	Abbreviations and Acronyms	77
Appendix 7	TND Red Hills AGI Wells - Subpart RR Equations for Calculating CO ₂ Geologic Sequestration	78
Appendix 8	Subpart RR Equations for Calculating Annual Mass of CO ₂ Sequestered	79
Appendix 9	P&A Records	

1 Introduction

Targa Northern Delaware, LLC (TND) is currently authorized to inject treated acid gas (TAG) into the Red Hills Acid Gas Injection #1 well (RH AGI #1)(American Petroleum Institute (API) 30-025-40448) and RH AGI #3 well (API # 30-025-51970) under the New Mexico Oil Conservation Commission (NMOCC) Orders R-13507 – 13507F and Order R-20916H, respectively, at the Red Hills Gas Plant located approximately 20 miles NNW of Jal in Lea County, New Mexico (**Figure 1-1**). Each well is approved to inject 13 million standard cubic feet per day (MMSCFD). However, although approved to inject 13 MMSCFD, RH AGI #1 is physically only capable of taking ~5 MMSCFD due to formation and surface pressure limitations.

The AGI wells were previously operated by Lucid Energy Delaware, LLC's ("Lucid"). TND acquired Lucid assets in 2022. Lucid received authorization to construct a redundant well, RH AGI #2 (API# 30-025-49474) under NMOCC Order R-20916-H, which is offset 200 ft to the north of RH AGI #1 and is currently temporarily abandoned in the Bell Canyon Formation.

TND recently received approval from NMOCC for its C-108 application to drill, complete and operate a third acid gas injection well (RH AGI #3) in which TND requested an injection volume of up to 13 MMSCFD. RH AGI #3 was spudded on 9/13/2023, completed on 9/27/2023, and injection commenced on 1/11/2024. Because RH AGI #1 does not have complete redundancy, having a greater permitted disposal volume will also increase operational reliability. RH AGI #3 is a vertical well with its surface location at approximately 3,116 ft from the north line (FNL) and 1,159 ft from the east line (FEL) of Section 13. The depth of the injection zone for this well is approximately 5,700 to 7,600 ft in the Bell Canyon and Cherry Canyon Formations (see As-Built schematic in **Figure Appendix 1-2**). Analysis of the reservoir characteristics of these units confirms that they act as excellent closed-system reservoirs that will accommodate the future needs of TND for disposal of treated acid gas (H₂S and CO₂) from the Red Hills Gas Plant.

TND has chosen to submit this Monitoring, Reporting, and Verification (MRV) plan to EPA for approval according to 40CFR98.440(c)(1), Subpart RR of the Greenhouse Gas Reporting Program (GHGRP) for the purpose of qualifying for the tax credit in section 45Q of the federal Internal Revenue Code. TND intends to inject CO₂ for another 30 years.

Figure 1-1: Location of the Red Hills Gas Plant and Wells – RH AGI #1, RH AGI #2 (temporarily abandoned), and RH AGI #3
This MRV Plan contains twelve sections:

Section 1 is this Introduction.

Section 2 contains facility information.

Section 3 contains the project description.

Section 4 contains the delineation of the maximum monitoring area (MMA) and the active monitoring area (AMA), both defined in 40CFR98.449, and as required by 40CFR98.448(a)(1), Subpart RR of the GHGRP.

Section 5 identifies the potential surface leakage pathways for CO_2 in the MMA and evaluates the likelihood, magnitude, and timing of surface leakage of CO_2 through these pathways as required by 40CFR98.448(a)(2), Subpart RR of the GHGRP.

Section 6 describes the detection, verification, and quantification of leakage from the identified potential sources of leakage as required by 40CFR98.448(a)(3).

Section 7 describes the strategy for establishing the expected baselines for monitoring CO_2 surface leakage as required by 40CFR98.448(a)(4), Subpart RR of the GHGRP.

Section 8 provides a summary of the considerations used to calculate site-specific variables for the mass balance equation as required by 40CFR98.448(a)(5), Subpart RR of the GHGRP.

Section 9 provides the estimated schedule for implementation of this MRV Plan as required by 40CFR98.448(a)(7).

Section 10 describes the quality assurance and quality control procedures that will be implemented for each technology applied in the leak detection and quantification process. This section also includes a discussion of the procedures for estimating missing data as detailed in 40CFR98.445.

Section 11 describes the records to be retained according to the requirements of 40CFR98.3(g) of Subpart A of the GHGRP and 40CFR98.447 of Subpart RR of the GRGRP.

Section 12 includes Appendices supporting the narrative of the MRV Plan, including information required by 40CFR98.448(a)(6).

2 Facility Information

2.1 Reporter number

Greenhouse Gas Reporting Program ID is 553798

2.2 UIC injection well identification numbers

This MRV plan is for RH AGI #1 and RH AGI #3 (**Appendix 1**). The details of the injection process are provided in Section 3.7.

2.3 UIC permit class

For injection wells that are the subject of this MRV plan, the New Mexico Oil Conservation Division (NMOCD) has issued Underground Injection Control (UIC) Class II acid gas injection (AGI) permits under its State Rule 19.15.26 NMAC (see **Appendix 2**). All oil- and gas-related wells around the RH AGI wells, including both injection and production wells, are regulated by the NMOCD, which has primacy to implement the UIC Class II program.

3 Project Description

The following project description was developed by the Petroleum Recovery Research Center (PRRC) at New Mexico Institute of Mining and Technology (NMT) and the Department of Geosciences at the University of Texas Permian Basin (UTPB).

3.1 General Geologic Setting / Surficial Geology

The TND Red Hills Gas Plant is located in T 24 S R 33 E, Section 13, in Lea County, New Mexico, immediately adjacent to the RH AGI wells. (Figure 3.1-1). The plant location is within a portion of the Pecos River basin referred to as the Querecho Plains reach (Nicholson & Clebsch, 1961). This area is relatively flat and largely covered by sand dunes underlain by a hard caliche surface. The dune sands are locally stabilized with shin oak, mesquite, and some burr-grass. There are no natural surface bodies of water or groundwater discharge sites within one mile of the plant and where drainages exist in interdunal areas, they are ephemeral, discontinuous, dry washes. The plant site is underlain by Quaternary alluvium overlying the Triassic red beds of the Santa Rosa Formation (Dockum Group), both of which are local sources of groundwater.

Figure 3.1-1: Map showing location of TND Red Hills Gas Plant and RH AGI Wells in Section 13, T 24 S, R 33 E

3.2 Bedrock Geology

3.2.1 Basin Development

The Red Hills Gas Plant and the RH AGI wells are located at the northern margin of the Delaware Basin, a sub-basin of the larger, encompassing Permian Basin (**Figure 3.2-1**), which covers a large area of southeastern New Mexico and west Texas.

Figure 3.2-1: Structural features of the Permian Basin during the Late Permian. Location of the TND RH AGI wells is shown by the black circle. (Modified from Ward, et al (1986))

Figure 3.2-2 is a generalized stratigraphic column showing the formations that underlie the Red Hills Gas Plant and RH AGI wells site. The thick sequences of Permian through Cambrian rocks are described below. A general description of the stratigraphy of the area is provided in this section. A more detailed discussion of the injection zone and the upper and lower confining zones is presented in Section 3.3 below.

The RH AGI wells are in the Delaware Basin portion of the broader Permian Basin. Sediments in the area date back to the Cambrian Bliss Sandstone (Broadhead, 2017; **Figure 3.2-2**) and overlay Precambrian granites. These late Cambrian transgressive sandstones were the initial deposits from a shallow marine sea that covered most of North America and Greenland (**Figure 3.2-3**). With continued down warping and/or sea-level rise, a broad, relatively shallow marine basin formed. The Ellenburger Formation (0 - 1000 ft) is dominated by dolostones and limestones that were deposited on restricted carbonate shelves (Broadhead, 2017; Loucks and Kerans, 2019). Throughout this narrative, the numbers after the formations indicate the range in thickness for that unit. Tectonic activity near the end of Ellenburger deposition resulted in subaerial exposure and karstification of these carbonates which increased the unit's overall porosity and permeability.

AGE		CENTRAL BASIN PLATFORM- NORTHWEST SHELF		DELAWARE BASIN		
Cenozoic		Alluvium		Alluvium		
Triccolo		Chinle Formation		Chinle Formation		
Triassic			Santa Rosa Sandstone		Santa Rosa Sandstone	
Permian	Lopingian (Ochoan)	[Dewey Lake Formation	Dewey Lake Formation		
		<u> </u>	Rustler Formation		Rustler Formation	
			Salado Formation		Castile Formation	
	Guadalupian	Artesia Group	Tansill Formation	d	Lamar Limestone	
			Yates Formation	laware Mountain Grou	Bell Canyon Formation	
			Seven Rivers Formation			
			Queen Formation		Cherry Canyon Formation	
			Grayburg Formation			
			San Andres Formation		Brushy Canyon Formation	
	0		Glorieta Formation	De		
	(Leonardian)	ő	Blinebry Mbr			
	(Leonardian)	Ϋ́ĕ	Tubb Sandstone Mbr.		Bone Spring Formation	
			Drinkard Mbr.			
	Wolfcampian		Abo Formation			
			Hueco ("Wolfcamp") Fm.		Hueco ("Wolfcamp") Fm.	
Pennsylvanian	Virgilian	Cisco Formation		Cisco		
	Missourian	Canyon Formation		Canyon		
	Des Moinesian		Strawn Formation		Strawn	
	Atokan		Atoka Formation		Atoka	
	Morrowan		Morrow Formation Morrow		Morrow	
Mississinnian	Upper		Barnett Shale		Barnett Shale	
mississippian	Lower	"Ⅳ	lississippian limestone"	an limestone" "Mississippian limesto		
Devonian	Upper	Woodford Shale		Woodford Shale		
	Middle					
	Lower	Thirtyone Formation			Thirtyone Formation	
Silurian	Upper	Wristen Group		Wristen Group		
	Middle					
	Lower		Fusselman Formation		Fusselman Formation	
Ordovician	Upper	Montoya Formation		Montoya Formation		
	Middle	Simpson Group		Simpson Group		
	Lower	Ellenburger Formation			Ellenburger Formation	
Cambrian		Bliss Ss.		Bliss Ss.		
Precambrian		me	Miscellaneous igneous, etamorphic, volcanic rocks		Miscellaneous igneous, metamorphic, volcanic rocks	

Figure 3.2-2: Stratigraphic column for the Delaware basin, the Northwest Shelf and Central Basin Platform (modified from Broadhead, 2017).

During Middle to Upper Ordovician time, the seas once again covered the area and deposited the carbonates, sandstones and shales of the Simpson Group (0 – 1000 ft) and then the Montoya Formation (0 – 600 ft). This is the period when the Tobosa Basin formed due to the Pedernal uplift and development of the Texas Arch (**Figure 3.2-4**; Harrington, 2019) shedding Precambrian crystalline clasts into the basin. Reservoirs in New Mexico are typically within deposits of shoreline sandstones (Broadhead, 2017). A subaerial exposure and karstification event followed the deposition of the Simpson Group. The Montoya Formation within the Tobosa Basin (Broadhead, 2017; Harrington and Loucks, 2019). The Montoya Formation consists of sandstones and dolomites and have also undergone karstification.

Figure 3.2-3: A subsidence chart from Reeves County, Texas showing the timing of development of the Tobosa and Delaware basins during Paleozoic deposition (from Ewing, 2019)

Figure 3.2-4: Tectonic Development of the Tobosa and Permian Basins. A) Late Mississippian (Ewing, 2019). Note the lateral extent (pinchout) for the lower Paleozoic strata. B) Late Permian (Ruppel, 2019a).

Siluro-Devonian formations consist of the Upper Ordovician to Lower Silurian Fusselman Formation (0 – 1,500 ft), the Upper Silurian to Lower Devonian Wristen Group (0 – 1,400 ft), and the Lower Devonian Thirtyone Formation (0 – 250 ft). The Fusselman Formation are shallow-marine platform deposits of dolostones and limestones (Broadhead, 2017; Ruppel, 2019b). Subaerial exposure and karstification associated with another unconformity at top of the Fusselman Formation as well as intraformational exposure events created brecciated fabrics, widespread dolomitization, and solution-enlarged pores and fractures (Broadhead, 2017). The Wristen and Thirtyone units appear to be conformable. The Wristen Group consists of tidal to high-energy platform margin carbonate deposits of dolostones, limestones, and cherts with minor siliciclastics (Broadhead, 2017; Ruppel, 2020). The Thirtyone Formation is present in the southeastern corner of New Mexico and appears to be either removed by erosion or not deposited elsewhere in New Mexico (**Figure 3.2-5**). It is shelfal carbonate with varying amounts of chert nodules and represents the last carbonate deposition in the area during Devonian time (Ruppel et al., 2020a).

Figure 3.2-5: A subcrop map of the Thirtyone and Woodford formations. The Woodford (brown) lies unconformably on top of the Wristen Group where there are no Thirtyone sediments (yellow). Diagram is from Ruppel (2020).

The Siluro-Devonian units are saltwater injection zones within the Delaware Basin and are typically dolomitized, shallow marine limestones that have secondary porosity produced by subaerial exposure, karstification and later fracturing/faulting. These units will be discussed in more detail in Section 3.2.2.

The Devonian Woodford Shale, an un-named Mississippian limestone, and the Upper Mississippian Barnett Shale are seals for the underlying Siluro-Devonian strata. While the Mississippian recrystallized limestones have minor porosity and permeability, the Woodford and Barnett shales have extremely low porosity and permeability and would be effective barriers to upward migration of acid gas out of the injection zone. The Woodford Shale (0 – 300 ft) ranges from organic–rich argillaceous mudstones with abundant siliceous microfossils to organic-poor argillaceous mudstones (Ruppel et al., 2020b). The Woodford sediments represent stratified deeper marine basinal deposits with their organic content being a function of the oxygenation within the bottom waters – the more anoxic the waters the higher the organic content.

The Mississippian strata within the Delaware Basin consists of an un-named carbonate member and the Barnett Shale and unconformably overlies the Woodford Shale. The lower Mississippian limestone (0 – 800 ft) are mostly carbonate mudstones with minor argillaceous mudstones and cherts. These units were deposited on a Mississippian ramp/shelf and have mostly been overlooked because of the reservoirs limited size. Where the units have undergone karstification, porosity may approach 4 to 9% (Broadhead, 2017), otherwise it is tight. The Barnett Shale (0 – 400 ft) unconformably overlies the Lower Mississippian carbonates and consists of Upper Mississippian carbonates deposited on a shelf to basinal, siliciclastic deposits (the Barnett Shale).

Pennsylvanian sedimentation in the area is influenced by glacio-eustatic sea-level cycles producing numerous shallowing upward cycles within the rock record; the intensity and number of cycles increase upward in the Pennsylvanian section. The cycles normally start with a sea-level rise that drowns the platform and deposits marine mudstones. As sea-level starts to fall, the platform is shallower and deposition switches to marine carbonates and coastal siliciclastic sediments. Finally, as the seas withdraw from the area, the platform is exposed causing subaerial diagenesis and the deposition terrestrial mudstones, siltstones, and sandstones in alluvial fan to fluvial deposits. This is followed by the next cycle of sea-level rise and drowning of the platform.

Pennsylvanian sedimentation is dominated by glacio-eustatic sea-level cycles that produced shallowing upward cycles of sediments, ranging from deep marine siliciclastic and carbonate deposits to shallow-water limestones and siliciclastics, and capping terrestrial siliciclastic sediments and karsted limestones. Lower Pennsylvanian units consist of the Morrow and Atoka formations. The Morrow Formation (0 - 2,000 ft) within the northern Delaware Basin was deposited as part of a deepening upward cycle with depositional environments ranging from fluvial/deltaic deposits at the base, sourced from the crystalline rocks of the Pedernal Uplift to the northwest, to high-energy, near-shore coastal sandstones and deeper and/or low-energy mudstones (Broadhead, 2017; Wright, 2020). The Atoka Formation (0-500 ft) was deposited during another sea-level transgression within the area. Within the area, the Atoka sediments are dominated by siliciclastic sediments, and depositional environments range from fluvial/deltas, shoreline to near-shore coastal barrier bar systems to occasional shallow-marine carbonates (Broadhead, 2017; Wright, 2020).

Middle Pennsylvanian units consist of the Strawn group (an informal name used by industry). Strawn sediments (250 - 1,000 ft) within the area consists of marine sediments that range from ramp carbonates, containing patch reefs, and marine sandstone bars to deeper marine shales (Broadhead, 2017).

Upper Pennsylvanian Canyon (0 – 1,200 ft) and Cisco (0 – 500 ft) group deposits are dominated by marine, carbonate-ramp deposits and basinal, anoxic, organic-rich shales.

Deformation, folding and high-angle faulting, associated with the Upper Pennsylvanian/Early Permian Ouachita Orogeny, created the Permian Basin and its two sub-basins, the Midland and Delaware basins (Hills, 1984; King, 1948), the Northwest Shelf (NW Shelf), and the Central Basin Platform (CBP; **Figures 3.2-4**, **3.2-6**, **3.2-7**). The Permian "Wolfcamp" or Hueco Formation was deposited after the creation of the Permian Basin. The Wolfcampian sediments were the first sediments to fill in the structural relief (**Figure 3.2-6**). The Wolfcampian Hueco Group (~400 ft on the NW Shelf, >2,000 ft in the Delaware Basin) consists of shelf margin deposits ranging from barrier reefs and fore slope deposits, bioherms, shallow-water carbonate shoals, and basinal carbonate mudstones (Broadhead, 2017; Fu et al., 2020). Since deformation continued throughout the Permian, the Wolfcampian sediments were truncated in places like the Central Basin Platform (Figure 3.2-6).

Figure 3.2-6: Cross section through the western Central Basin Platform showing the structural relationship between the Pennsylvanian and older units and Permian strata (modified from Ward et al., 1986; from Scholle et al., 2007).

Figure 3.2-7: Reconstruction of southwestern United States about 278 million years ago. The Midland Basin (MB), Delaware Basin (DB) and Orogrande Basin (OB) were the main depositional centers at that time (Scholle et al., 2020).

Differential sedimentation, continual subsidence, and glacial eustasy impacted Permian sedimentation after Hueco deposition and produced carbonate shelves around the edges of deep sub-basins. Within the Delaware Basin, this subsidence resulted in deposition of roughly 12,000 ft of siliciclastics, carbonates, and evaporites (King, 1948). Eustatic sea-level changes and differential sedimentation played an important role in the distribution of sediments/facies within the Permian Basin (**Figure 3.2-2**). During sea-level lowstands, thousands of feet of siliciclastic sediments bypassed the shelves and were deposited in the basin. Scattered, thin sandstones and siltstones as well as fracture and pore filling sands found up on the shelves correlate to those lowstands. During sea-level highstands, thick sequences of carbonates were deposited by a "carbonate factory" on the shelf and shelf edge. Carbonate debris beds shedding off the shelf margin were transported into the basin (Wilson, 1972; Scholle et al., 2007). Individual debris flows thinned substantially from the margin to the basin center (from 100s feet to feet).

Unconformably overlying the Hueco Group is the Abo Formation (700 – 1,400 ft). Abo deposits range from carbonate grainstone banks and buildups along Northwest Shelf margin to shallow-marine, back-reef carbonates behind the shelf margin. Further back on the margin, the backreef sediments grade into intertidal carbonates to siliciclastic-rich sabkha red beds to eolian and fluvial deposits closer to the Sierra Grande and Uncompahgre uplifts (Broadhead, 2017, Ruppel, 2019a). Sediments basinward of the Abo margin are equivalent to the lower Bone Spring Formation. The Yeso Formation (1,500 – 2,500 ft), like the Abo Formation, consists of carbonate banks and buildups along the Abo margin. Unlike Abo sediments, the Yeso Formation contains more siliciclastic sediments associated with eolian, sabkha, and tidal flat facies (Ruppel, 2019a). The Yeso shelf sandstones are commonly subdivided into the Drinkard, Tubb, Blinebry, Paddock members (from base to top of section). The Yeso Formation is equivalent to the upper Bone Spring Formation. The Bone Spring Formation is a thick sequence of alternating carbonate and siliciclastic horizons that formed because of changes in sea level; the carbonates during highstands, and siliciclastics during lowstands. Overlying the Yeso, are the clean, white eolian sandstones of the Glorietta Formation. It is a key marker bed in the region, both on outcrop and in the subsurface. Within the basin, it is equivalent to the lowermost Brushy Canyon Formation of the Delaware Mountain Group.

The Guadalupian San Andres Formation (600 – 1,600 ft) and Artesia Group (<1,800 ft) reflect the change in the shelf margin from a distally steepened ramp to a well-developed barrier reef complex. The San Andres Formation consists of supratidal to sandy subtidal carbonates and banks deposited a distally steepened ramp. Within the San Andres Formation, several periods of subaerial exposure have been identified that have resulted in karstification and pervasive dolomitization of the unit. These exposure events/sea-level lowstands are correlated to sandstones/siltstones that moved out over the exposed shelf leaving on minor traces of their presence on the shelf but formed thick sections of sandstones and siltstones in the basin. Within the Delaware Basin, the San Andres Formation is equivalent to the Brushy and lower Cherry Canyon Formations.

The Artesia Group (Grayburg, Queen, Seven Rivers, Yates, and Tansill formations, ascending order) is equivalent to Capitan Limestone, the Guadalupian barrier/fringing reef facies. Within the basin, the Artesia Group is equivalent to the upper Cherry and Bell Canyon formations, a series of relatively featureless sandstones and siltones. The Queen and Yates formations contain more sandstones than the Grayburg, Seven Rivers, and Tansill formations. The Artesia units and the shelf edge equivalent Capitan reef sediments represent the period when the carbonate factory was at its greatest productivity with the shelf margin/Capitan reef prograding nearly 6 miles into the basin (Scholle et al., 2007). The Artesia Group sediments were deposited in back-reef, shallow marine to supratidal/evaporite environments. Like the San Andres Formation, the individual formations were periodically exposed during lowstands.

The final stage of Permian deposition on the NW Shelf consists of the Ochoan/Lopingian Salado Formation (<2,800 ft, Nance, 2020). Within the basin, the Castile formation, a thick sequence (total thickness ~1,800 ft, Scholle et al., 2007) of cyclic laminae of deep-water gypsum/anhydrite interbedded with calcite and organics, formed due to the restriction of marine waters flowing into the basin. Gypsum/anhydrite laminae precipitated during evaporative conditions, and the calcite and organic-rich horizons were a result of seasonal "freshening" of the basin waters by both marine and freshwaters. Unlike the Castile Formation, the Salado Formation is a relatively shallow water evaporite deposit. Halite, sylvite, anhydrite, gypsum, and numerous potash minerals were precipitated. The Rustler Formation (500 ft , Nance, 2020) consists of gypsum/anhydrite, a few magnesitic and dolomitic limestone horizons, and red beds. These are mostly shallow marginal marine deposits and represents the last Permian marine deposits in the Delaware Basin.

The Rustler Formation was followed by terrestrial sabkha red beds of the Dewey Lake Formation (~350', Nance, 2020), ending Permian deposition in the area.

Beginning early in the Triassic, uplift and the breakup of Pangea resulted in another regional unconformity and the deposition of non-marine, alluvial Triassic sediments (Santa Rosa Sandstone and Chinle Formation). They are unconformably overlain by Cenozoic alluvium (which is present at the surface). Cenozoic Basin and Range tectonics resulted in the current configuration of the region and reactivated numerous Paleozoic faults.

3.2.2 Stratigraphy

The Permian rocks found in the Delaware Basin are divided into four series, the Ochoa (most recent, renamed Lopingian), Guadalupian, Leonardian (renamed Cisuralian), and Wolfcampian (oldest) (**Figure 3.2-2**). This sequence of shallow marine carbonates and thick, basinal siliciclastic deposits contains abundant oil and gas resources. The Delaware Basin high porosity sands are the main source of oil within New Mexico. In the area around the Red Hills AGI wells, Permian strata are mainly basin deposits consisting of sandstones, siltstones, shales, and lesser amounts of carbonates. Besides production in the Delaware Mountain Group, there is also production, mainly gas, in the basin Bone Spring Formation, a sequence of carbonates and siliciclastics. The injection and confining zones for RH AGI #1 and #3 are discussed below.

CONFINING/SEAL ROCKS

Permian Ochoa Series. The youngest of the Permian sediments, the Ochoan- or Lopingian-aged deposits, consists of evaporites, carbonates, and red beds. The Castile Formation is made of cyclic laminae of deepwater gypsum/anhydrite beds interlaminated with calcite and organics. This basin-occurring unit can be up to 1,800 ft thick. The Castile evaporites were followed by the Salado Formation (~1,500 ft thick). The Salado Formation is a shallow water evaporite deposit, when compared to the Castile Formation, and consists of halite, sylvite, anhydrite, gypsum, and numerous potash/bittern minerals. Salado deposits fill the basin and lap onto the older Permian shelf deposits. The Rustler Formation (up to 500 ft, Nance, 2020) consists of gypsum/anhydrite, a few magnesitic and dolomitic limestone horizons, and red beds. These are mostly shallow marginal marine deposits and represents the last Permian marine deposits in the Delaware Basin. The Ochoan evaporitic units are superb seals (usually <1% porosity and <0.01 mD permeability) and are the reason that the Permian Basin is such a hydrocarbon-rich region despite its less than promising total organic carbon (TOC) content.

INJECTION ZONE

Permian Guadalupe Series. Sediments in the underlying Delaware Mountain Group (descending, Bell Canyon, Cherry Canyon, and Brushy Canyon formations) are marine units that represent deposition controlled by eustacy and tectonics. Lowstand deposits are associated with submarine canyons incising the carbonate platform surround most of the Delaware Basin. Depositional environments include submarine fan complexes that encircle the Delaware Basin margin. These deposits are associated with submarine canyons incising the carbonate platform margin and turbidite channels, splays, and levee/overbank deposits (Figure 3.2-8). Additionally, debris flows formed by the failure of the carbonate margin and density currents also make up basin sediments. Isolated coarse-grained to boulder-sized carbonate debris flows and grain falls within the lowstand clastic sediments likely resulted from erosion and failure of the shelf margin during sealevel lowstands or slope failure to tectonic activity (earthquakes). Density current deposits resulted from stratified basin waters. The basal waters were likely stratified and so dense, that turbidity flows containing sands, silts and clays were unable to displace those bottom waters and instead flowed out over the density interface (Figure 3.2-9). Eventually, the entrained sediments would settle out in a constant rain of sediment forming laminated deposits with little evidence of traction (bottom flowing) deposition. Interbedded with the very thick lowstand sequences are thin, deep-water limestones and mudstones that represent highstand

deposition up on the platform. These deposits are thickest around the edge (toe-of-slope) of the basin and thin to the basin center (**Figure 3.2-10**). The limestones are dark, finely crystalline, radiolarian-rich micrites to biomicrites. These highstand deposits are a combination of suspension and pelagic sediments that also thin towards the basin center. These relatively thin units are time equivalent to the massive highstand carbonate deposits on the shelf.

Figure 3.2-8: A diagram of typical Delaware Mountain Group basinal siliciclastic deposition patterns (from Nance, 2020). The channel and splay sandstones have the best porosity, but some of the siltstones also have potential as injection zones.

Figure 3.2-9: Harms' (1974) density overflow model explains the deposition of laminated siliciclastic sediments in the Delaware Basin. Low density sand-bearing fluids flow over the top of dense, saline brines at the bottom of the basin. The sands gradually drop out as the flow loses velocity creating uniform, finely laminated deposits (from Scholle et al., 2007).

Figure 3.2-10: The impact of sea-level fluctuations (also known as reciprocal sedimentation) on the depositional systems within the Delaware Basin. A) A diagrammatic representation of sea-level variations impact on deposition. B) Model showing basin-wide depositional patterns during lowstand and highstand periods (from Scholle et al., 2007).

The top of the Guadalupian Series is the Lamar Limestone, which is the source of hydrocarbons found in underlying Delaware Sand (an upper member of the Bell Canyon Formation). The Bell Canyon Formation is roughly 1,000 ft thick in the Red Hills area and contains numerous turbidite input points around the basin margin (**Figures 3.2-10, 3.2-11**). During Bell Canyon deposition, the relative importance of discrete sand sources varied (Giesen and Scholle, 1990), creating network of channel and levee deposits that also varied in their size and position within the basin. Based on well log analyses, the Bell Canyon 2 and 3 had the thickest sand deposits.

Figure 3.2-11: These maps of Bell Canyon Formation were created by measuring sandstone thicknesses on well logs in four regionally correlatable intervals (from Giesen and Scholle, 1990 and unpublished thesis research). The red circle on the last map surrounds the Red Hills area.

Like the Bell Canyon and Brushy Canyon formations, the Cherry Canyon Formation is approximately 1,300 ft thick and contains numerous turbidite source points. Unlike the Bell Canyon and Brushy Canyon deposits, the channel deposits are not as large (Giesen and Scholle, 1990), and the source of the sands appears to be dominantly from the eastern margin (**Figure 3.2-12**). Cherry Canyon 1 and 5 have the best channel development and the thickest sands. Overall, the Cherry Canyon Formation, on outcrop, is less influenced by traction current deposition than the rest of the Delaware Mountain Group deposits and is more influenced by sedimentation by density overflow currents (**Figure 3.2-9**). The Brushy Canyon has notably more discrete channel deposits and coarser sands than the Cherry Canyon and Bell Canyon. The Brushy Canyon Formation is approximately 1,500 ft thick.

Figure 3.2-12: These maps of Cherry Canyon Formation were created by measuring sandstone thicknesses on well logs in five regionally correlatable intervals (from Giesen and Scholle, 1990 and unpublished thesis research). Unlike the Bell Canyon sandstones, the Cherry Canyon sands are thinner and contain fewer channels. The red circle on the last map surrounds the Red Hills area.

Within the Delaware Mountain Group in the Red Hills area, the Bell Canyon and Cherry Canyon have the best porosity (averaging 15 – 25 % within channel/splay sandstones) and permeability (averaging 2-13 mD) than the Brushy Canyon (~14% porosity, an <3 mD; Ge et al, 2022, Smye et al., 2021).

UNDERLYING CONFINING ZONE

Permian Leonard Series. The Leonardian/Cisuralian Series, located beneath the Guadalupian Series sediments, is characterized by >3,000 ft of basin-deposited carbonate and siliciclastic sediments of the Bone Spring Formation. The Bone Spring Formation is more carbonate rich than the Delaware Mountain Group deposits, but the sea-level-driven cycles of sedimentation and the associated depositional environments are similar with debris flows, turbidites, and pelagic carbonate sediments. The Bone Spring Formation contains both conventional and unconventional fields within the Delaware Basin in both the sandstone-rich and carbonate-rich facies. Most of these plays usually occur within toe-of-slope carbonate and siliciclastic deposits or the turbidite facies in the deeper sections of the basin (Nance and Hamlin, 2020). The upper most Bone Spring is usually dense carbonate mudstone with limited porosity and low porosity.

3.2.3 Faulting

In this immediate area of the Permian Basin, faulting is primarily confined to the lower Paleozoic section, where seismic data shows major faulting and ancillary fracturing-affected rocks only as high up as the base of the lower Wolfcamp strata (**Figures 3.2-6 and 5.6-1**). Faults that have been identified in the area are normal faults associated with Ouachita related movement along the western margin of the Central Platform to the east of the RH AGI well site. The closest identified fault lies approximately 1.5 miles east of the Red Hills site and has approximately 1,000 ft of down-to-the-west structural relief. Because these faults are confined to the lower Paleozoic unit well below the injection zone for the RH AGI wells, they will not be discussed further (Horne et al., 2021). Within the area of the Red Hills site, no shallow faults within the Delaware Mountain Group have been identified by seismic data interpretation nor as reported by Horne et al., 2022).

3.3 Lithologic and Reservoir Characteristics

Based on the geologic analyses of the subsurface at the Red Hills Gas Plant, the uppermost portion of the Cherry Canyon Formation was chosen for acid gas injection and CO₂ sequestration for RH AGI #1 and the uppermost Delaware Mountain Group (the Bell Canyon and Cherry Canyon Formations) for RH AGI #3.

For RH AGI #1, this interval includes five high porosity sandstone units (sometimes referred to as the Manzanita) and has excellent caps above, below and between the individual sandstone units. There is no local production in the overlying Delaware Sands pool of the Bell Canyon Formation. There are no structural features or faults that would serve as potential vertical conduits. The high net porosity of the RH AGI #1 injection zone indicates that the injected H₂S and CO₂ will be easily contained close to the injection well.

For RH AGI #3, this interval has been expanded to include the five porosity zones in the Cherry Canyon sandstone as well as the sandstone horizons in the overlying Bell Canyon Formation. In the Bell Canyon Formation there are several potential high porosity sandstones, that if present in the well, would be excellent, injection zones similar to the depositional environments of the Cherry Canyon sandstones. The thickest sand is commonly referred to as the Delaware Sand within the Delaware Basin. The Delaware sand is productive, but it is not locally. Most of the sand bodies in the Bell Canyon and Cherry Canyon formations are surrounded by shales or limestones, forming caps for the injection zones. There are no structural features or faults that would serve as potential vertical conduits, and the overlying Ochoan evaporites form an excellent overall seal for the system. Even if faulting existed, the evaporites (Castile and Salado) would self-seal and prevent vertical migration out of the Delaware Mountain Group.

The geophysical logs were examined for all wells penetrating the Bell Canyon and Cherry Canyon formations within a three-mile radius of the RH AGI wells as well as 3-D seismic data. There are no faults visible within the Delaware Mountain Group in the Red Hills area. Within the seismic area, the units dip gently to the southeast with approximately 200 ft of relief across the area. Heterogeneities within both the Bell Canyon and Cherry Canyon sandstones, such as turbidite and debris flow channels, will exert a significant control over the porosity and permeability within the two units and fluid migration within those sandstones. In addition, these channels are frequently separated by low porosity and permeability siltstones and shales (Figure 3.2-8) as well as being encased by them. Based on regional studies (Giesen and Scholle, 1990 and Figures 3.2-11, 3.2-12), the preferred orientation of the channels, and hence the preferred fluid migration pathways, are roughly from the east to the west.

The porosity was evaluated using geophysical logs from nearby wells penetrating the Cherry Canyon Formation. **Figure 3.3-1** shows the Resistivity (Res) and Thermal Neutron Porosity (TNPH) logs from 5,050 ft to 6,650 ft and includes the injection interval. Five clean sands (>10% porosity and <60 API gamma units) are targets for injection within the Cherry Canyon formation and potentially another 5 sands with >10% porosity and <60 API gamma units were identified. Ten percent was the minimum cut-off considered for adequate

porosity for injection. The sand units are separated by lime mudstone and shale beds with lateral continuity. The high porosity sand units exhibit an average porosity of about 18.9%; taken over the average thickness of the clean sand units within $\frac{1}{2}$ mile of the RH AGI #1. There is an average of 177 ft with an irreducible water (S_{wir}) of 0.54 (see Table 1 of the RH AGI #1 permit application). Many of the sands are very porous (average porosity of > 22%) and it is anticipated that for these more porous sands, the S_{wir} may be too high. The effective porosity (Total Porosity – Clay Bound Water) would therefore also be higher. As a result, the estimated porosity ft (PhiH) of approximately 15.4 porosity-ft should be considered to be a minimum. The overlying Bell Canyon Formation has 900 ft of sands and intervening tight limestones, shales, and calcitic siltstones with porosities as low as 4%, but as mentioned above, there are at least 5 zones with a total thickness of approximately 460 ft and containing 18 to 20% porosity. The injection interval is located more than 2,650 ft above the Bone Spring Formation, which is the next production zone in the area.

Figure 3.3-1: Geophysical logs from the Bell Canyon and the Upper Cherry Canyon from the Government L Com #002 well, located 0.38 miles from the RH AGI #1 Well. The blue intervals are Bell Canyon porosity zones, and the yellow intervals are Cherry Canyon porosity zones.

3.4 Formation Fluid Chemistry

A chemical analysis (**Table 3.4-1**) of water from Federal 30 Well No. 2 (API 30-025-29069), approximately 3.9 miles away, indicates that the formation waters are highly saline (180,000 ppm NaCl) and compatible with the injection.

Sp. Gravity	1.125 @ 74°F	Resistivity	0.07 @ 74°F
рН	7	Sulfate	1,240
Iron	Good/Good	Bicarbonate	2,135
Hardness	45,000	Chloride	110,000
Calcium	12,000	NaCl	180,950
Magnesium	3,654	Sod. & Pot.	52,072

 Table 3.4-1:
 Formation fluid analysis for Cherry Canyon Formation from Federal 30 Well No. 2

Table extracted from C-108 Application to Inject by Ray Westall Associated with SWD-1067 – API 30-025-24676. Water analysis for formation water from Federal 30 #2 Well (API 30-025-29069), depth 7,335-7,345 ft, located 3.9 miles from RH AGI #1 well.

3.5 Groundwater Hydrology in the Vicinity of the Red Hills Gas Plant

Based on the New Mexico Water Rights Database from the New Mexico Office of the State Engineer, there are 15 freshwater wells located within a two-mile radius of the RH AGI wells, and only 2 water wells within one mile; the closest water well is located 0.31 miles away and has a total depth of 650 ft (**Figure 3.5-1; Appendix 3**). All water wells within the two-mile radius are shallow, collecting water from about 60 to 650 ft depth, in Alluvium and the Triassic redbeds. The shallow freshwater aquifer is protected by the surface and intermediate casings and cements in the RH AGI wells (**Figures Appendix 1-1 and Appendix 1.2**). While the casings and cements protect shallow freshwater aquifers, they also serve to prevent CO₂ leakage to the surface along the borehole.

Figure 3.5-1: Reported Water Wells within the MMA for the RH AGI Wells.

3.6 Historical Operations

3.6.1 Red Hills Site

On July 20, 2010, Agave Energy Company (Agave) filed an application with NMOCD to inject treated acid gas into an acid gas injection well. Agave built the Red Hills Gas Processing Plant and drilled RH AGI #1 in 2012-13. However, the well was never completed and never put into service because the plant was processing only sweet gas (no H₂S). Lucid purchased the plant from Agave in 2016 and completed the RH AGI #1 well. TND acquired Lucid's Red Hills assets in 2022. **Figure 3.6-1** shows the location of fixed H₂S and lower explosive limit (LEL) detectors in the immediate vicinity of the RH AGI wells. **Figure 3.6-2** shows a process block flow diagram.

Figure 3.6-1: Diagram showing the location of fixed H₂S and lower explosive limit (LEL) detectors in the immediate vicinity of the RH AGI wells.

Figure 3.6-2: Process Block Flow Diagram. RH AGI #2 is temporarily abandoned. M1 – M6: volumetric flow meters; C1 and C2: compressors; ST1 and ST2: sour treaters; and Sample Points (SP) for biweekly collection of data for determining the TAG stream concentration.

3.6.2 Operations within the MMA for the RH AGI Wells

NMOCD records identify a total of 22 oil- and gas-related wells within the MMA for the RH AGI wells (see **Appendix 4**). **Figure 3.6-3** shows the geometry of producing and injection wells within the MMA for the RH AGI wells. **Appendix 4** summarizes the relevant information for those wells. All active production in this area is targeted for the Bone Spring and Wolfcamp zones, at depths of 8,900 to 11,800 ft, the Strawn (11,800 to 12,100 ft) and the Morrow (12,700 to 13,500 ft). All of these productive zones lie at more than 2,000 ft below the RH AGI #1 and AGI #3 injection zone.

Figure 3.6-3: Location of all oil- and gas-related wells within the MMA for the RH AGI wells. Both the surface hole locations (SHL) and bottom hole locations (BHL) are labeled on the figure. For clarity, only the last four digits of the API numbers are used in labeling the wells.

3.7 Description of Injection Process

The Red Hills Gas Plant, including the existing RH AGI #1 well, is in operation and staffed 24-hours-a-day, 7-days-a week. The plant operations include gas compression, treating and processing. The plant gathers and processes produced natural gas from Lea and Eddy Counties in New Mexico. Once gathered at the plant, the produced natural gas is compressed, dehydrated to remove the water content, and processed to remove and recover natural gas liquids. The processed natural gas and recovered natural gas liquids are then sold and shipped to various customers. The inlet gathering lines and pipelines that bring gas into the plant are regulated by U.S. Department of Transportation (DOT), National Association of Corrosion Engineers (NACE) and other applicable standards which require that they be constructed and marked with appropriate warning signs along their respective rights-of-way. TAG from the plant's sweeteners will be routed to a central compressor facility, located west of the well head. Compressed TAG is then routed to the wells via high-pressure rated lines. **Figure 3.7-1** is a schematic of the AGI facilities.

The approximate composition of the TAG stream is: 80% CO₂, 20% H_2S , with Trace Components of $C_1 - C_6$ (methane – hexane) and Nitrogen. The anticipated duration of injection is 30 years.

3.8 Reservoir Characterization Modeling

The modeling and simulation focused on the Bell Canyon and Cherry Canyon formations as the main injection target zone for acid gas storage. The RH AGI #1 well (API 30-025-40448) and the RH AGI #3 well (API 30-025-51970) are the approved injectors for treated acid gas injection by NMOCD and will serve as the injection wells in the model under approved disposal timeframe and maximum allowable injection pressure. RH AGI #1 well is completed in the Cherry Canyon formation between 6,230 feet to 6,583 feet (MD). The RH AGI #3 well is completed in both the Bell Canyon and Cherry Canyon formations between approximately 5,700 feet to 7,600 feet (MD).

Schlumberger's Petrel[®] (Version 2023.1) software was used to construct the geological models used in this work. Computer Modeling Group (CMG)'s CMG-GEM[®] (Version 2023.10) was used in the reservoir simulations presented in this MRV plan. CMG-WINPROP[®] (Version 2023.10) was used to perform PVT calculation through Equation of States and properties interactions among various compositions to feed the hydrodynamic modeling performed by CMG-GEM[®]. The hydrodynamical model considered aqueous, gaseous, and supercritical phases, and simulates the storage mechanisms including structural trapping, residual gas trapping, and solubility trapping. Injected TAG may exist in the aqueous phase as dissolved state and the gaseous phase as supercritical state. The model was validated through matching the historical injection data of RH AGI #1 well and will be reevaluated periodically as required by the State permitting agency.

The static model is constructed with well tops and licensed 3D seismic data to interpret and delineate the structural surfaces of a layer within the caprock (Lamar Limestone) and its overlaying, underlying formations. The geologic model covers a 3.5-mile by 3.3-mile area. No distinctive geological structures such as faults are identified within the geologic model boundary. The model is gridded with 182 x 167 x 18, totaling 547,092 cells. The average grid dimension of the active injection area is 100 feet square. **Figure 3.8-1** shows the simulation model in 3D view. The porosity and permeability of the model is populated through existing well logs. The range of the porosity is between 0.01 to 0.31. The initial permeability are interpolated between 0.02 to 155 millidarcy (mD), and the vertical permeability anisotropy was 0.1. **(Figure 3.8-2 and Figure 3.8-3)**. These values are validated and calibrated with the historical injection data of RH AGI #1 well since 2018 as shown in **Figures 3.8-4, 3.8-5, and 3.8-6**.

The simulation model is calibrated with the injection history of RH AGI #1 well since 2018. Simulation studies were further performed to estimate the reservoir responses when predicting TAG injection for 30 years through both RH AGI #1 well (2018 – 2048) and RH AGI #3 (2024 - 2054). RH AGI #2 well is temporarily abandoned as of the submission of this document. RH AGI #1 is simulated to inject with the average rate of the last 5 years, 1.2 MMSCF, in the prediction phase. RH AGI #3 is simulated to inject with permitted injection rate, 13 MMSCF, with 1,767 psi maximum surface injection pressure constraint approved by State agency. The simulation terminated at year 2084, 30 years after the termination of all injection activities, to estimate the maximum impacted area during post injection phase.

During the calibration period (2018 – 2023), the historical injection rates were used as the primary injection control, and the maximum bottom hole pressures (BHP) are imposed on wells as the constraint, calculated based on the approved maximum injection pressure. This restriction is also estimated to be less than 90% of the formation fracture pressure calculated at the shallowest perforation depth of each well to ensure safe injection operations. The reservoir properties are tuned to match the historical injection until it was reasonably matched. **Figure 3.8-4** shows that the historical injection rates from the RH AGI #1 well in the Cherry Canyon Formation. **Figure 3.8-5** shows the BHP response of RH AGI #1 during the history matching phase.

During the forecasting period, linear cumulative injection behavior indicates that the Cherry Canyon and Bell Canyon formations received the TAG stream freely. **Figure 3.8-6** shows the cumulative disposed H₂S and CO₂ of each AGI injectors separately in gas mass. The modeling results indicate that the Cherry Canyon and Bell Canyon formations are capable of safely storing and containing the gas volume without violating the permitted rate and

pressure. **Figure 3.8-7** shows the gas saturation represented TAG plume at the end of 30-year forecasting in 3D view. **Figure 3.8-8** shows the extent of the plume migration in a map view at 4 key time steps. It can be observed that the size of the TAG is very limited and mainly stayed within Targa's Red Hills facility at the end of injection. In the year 2084, after 30 years of monitoring, the injected gas remained trapped in the reservoir and there was no significant migration of TAG footprint observed, compared to that at the end of injection.

In summary, after careful reservoir engineering review and numerical simulation study, our analysis shows that the Bell Canyon and Cherry Canyon formations can receive treated acid gas (TAG) at the injection rate and permitted maximum surface injection pressure permitted by New Mexico Oil Conservation Committee. The formation will safely contain the injected TAG volume within the injection and post-injection timeframe. The injection well will allow for the sequestration while preventing associated environmental impacts.

Figure 3.8-1: 3D view of the simulation model of the Red Hills AGI #1 and #3 AGI wells, containing Salado-Castile formation, Lamar limestone, Bell Canyon, and Cherry Canyon formations. Color legends represents the elevation of layers.

Figure 3.8-2: Porosity estimation using available well data for the simulation domain.

Figure 3.8-3: Permeability estimation using available well data for simulation domain.

Figure 3.8-4: shows the historical injection rate and total gas injected from Red Hills AGI #1 well (2018 to 2023)

Figure 3.8-5: shows the historical bottom hole pressure response from Red Hills AGI #1 well (2018 to 2023)

Figure 3.8-6: shows the prediction of cumulative mass of injected CO₂ and H₂S of Red Hills AGI #1 and #3 wells (2018 to 2054).

Figure 3.8-7: shows the free phase TAG (represented by gas saturation) at the end of 30-year post-injection monitoring (2054) in 3D view.

Figure 3.8-8: shows the free phase TAG plume at year 2030, 2035, 2045, 2055 (1-year end of injection) in a map view.

4 Delineation of the Monitoring Areas

In determining the monitoring areas below, the extent of the TAG plume is equal to the superposition of plumes in any layer for any of the model scenarios described in Section 3.8.

4.1 MMA – Maximum Monitoring Area

As defined in Subpart RR, the maximum monitoring area (MMA) is equal to or greater than the area expected to contain the free phase CO_2 plume until the CO_2 plume has stabilized plus an all-around buffer zone of at least one-half mile. **Figures 4.1-1** shows the MMA as defined by the extent of the stabilized TAG plume at year 2059 plus a 1/2-mile buffer.

4.2 AMA – Active Monitoring Area

The Active Monitoring Area (AMA) is shown in **Figure 4.1-1**. The AMA is consistent with the requirements in 40 CFR 98.449 because it is the area projected: (1) to contain the free phase CO_2 plume for the duration of the project (year t, t = 2054), plus an all-around buffer zone of one-half mile. (2) to contain the free phase CO_2 plume for at least 5 years after injection ceases (year t + 5, t + 5 = 2059). Targa intends to define the active monitoring area (AMA) as the same area as the MMA. The purple cross-hatched polygon in **Figure 4.1-1** is the plume extent at the end of injection. The yellow polygon in **Figure 4.1-1** is the stabilized plume extent 5 years after injection ceases. The AMA/MMA shown as the red-filled polygon contains the CO_2 plume during the duration of the project and at the time the plume has stabilized.

Figure 4.1-1: Active monitoring area (AMA) for TND Red Hills AGI #1, #2 (temporarily abandoned) and #3 wells at the end of injection (2054, purple polygon) and 5 years post-monitoring (2059, yellow polygon). Maximum monitoring area (MMA) is shown in red shaded area.

5 Identification and Evaluation of Potential Leakage Pathways to the Surface

Subpart RR at 40 CFR 448(a)(2) requires the identification of potential surface leakage pathways for CO_2 in the MMA and the evaluation of the likelihood, magnitude, and timing of surface leakage of CO_2 through these pathways.

Through the site characterization required by the NMOCD C-108 application process for Class II injection wells, the geologic characterization presented in Section 3, and the reservoir modeling described in Section 3.8, TND has identified and evaluated the potential CO_2 leakage pathways to the surface.

A qualitative evaluation of each of the potential leakage pathways is described in the following paragraphs. Risk estimates were made utilizing the National Risk Assessment Partnership (NRAP) tool, developed by five national laboratories: NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL). The NRAP collaborative research effort leveraged broad technical capabilities across the Department of Energy (DOE) to develop the integrated science base, computational tools, and protocols required to assess and manage environmental risks at geologic carbon storage sites. Utilizing the NRAP tool, TND conducted a risk assessment of CO₂ leakage through various potential pathways including surface equipment, existing and approved wellbores within MMA, faults and fractures, and confining zone formations.

5.1 Potential Leakage from Surface Equipment

Due to the corrosive nature of CO₂ and H₂S, there is a potential for leakage from surface equipment at sour gas facilities. Preventative risk mitigation includes adherence to relevant regulatory requirements and industry standards governing the construction, operation, and maintenance of gas plants. Specifically, NMAC 19.15.26.10 requires injection well operators to operate and maintain "surface facilities in such a manner as will confine the injected fluids to the interval or intervals approved and prevent surface damage or pollution resulting from leaks, breaks or spills."

Operational risk mitigation measures relevant to potential CO₂ emissions from surface equipment include a schedule for regular inspection and maintenance of surface equipment. Additionally, TND implements several methods for detecting gas leaks at the surface. Detection is followed up by immediate response. These methods are described in more detail in sections 6 and 7.

Although mitigative measures are in place to minimize CO_2 emissions from surface equipment, such emissions are possible. Any leaks from surface equipment would result in immediate (timing) emissions of CO_2 to the atmosphere the magnitude of which would depend on the duration of the leak and the operational conditions at the time and location of the leak.

The injection well and the pipeline that carries CO₂ to it are the most likely surface components of the system to allow CO₂ to leak to the surface. The accumulation of wear and tear on the surface components, especially at the flanged connection points, is the most probable source of the leakage. Another possible source of leakage is the release of air through relief valves, which are designed to alleviate pipeline overpressure. Leakage can also occur when the surface components are damaged by an accident or natural disaster, which releases CO₂. Therefore, TND infers that there is a potential for leakage via this route. Depending on the component's failure mode, the magnitude of the leak can vary greatly. For example, a rapid break or rupture could release thousands of pounds of CO₂ into the atmosphere almost instantly, while a slowly deteriorating seal at a flanged connection could release only a few pounds of CO₂ over several hours or days. Surface component leakage or venting is only a concern during the injection operation phase. Once the injection phase is complete, the surface components will no longer be able to store or transport CO₂, eliminating any potential risk of leakage.

5.2 Potential Leakage from Approved, Not Yet Drilled Wells

The only wells within the MMA that are approved but not yet drilled are horizontal wells. These wells have a Well Status of "permitted" in **Appendix 4**. There are no vertical wells within the MMA with a Well Status of "permitted".

5.2.1 Horizontal Wells

The table in **Appendix 3** and **Figure 4.1-1** shows a number of horizontal wells in the area, many of which have approved permits to drill but which are not yet drilled. If any of these wells are drilled through the Bell Canyon and Cherry Canyon injection zones for RH AGI #3 and RH AGI #1, they will be required to take special precautions to prevent leakage of TAG minimizing the likelihood of CO₂ leakage to the surface. This requirement will be made by NMOCD in regulating applications for permit to drill (APD) and in ensuring that the operator and driller are aware that they are drilling through an H₂S injection zone in order to access their target production formation. NMAC 19.15.11 for Hydrogen Sulfide Gas includes standards for personnel and equipment safety and H₂S detection and monitoring during well drilling, completion, well workovers, and well servicing operations all of which apply for wells drilled through the RH AGI wells TAG plume.

Due to the safeguards described above, the fact there are no proposed wells for which the surface hole location (SHL) lies within the simulated TAG plume and considering the NRAP risk analysis described here in Section 5, TND considers the likelihood of CO₂ emissions to the surface via these horizontal wells to be highly unlikely.

5.3 Potential Leakage from Existing Wells

Existing oil and gas wells within the MMA as delineated in Section 4 are shown in **Figure 3.6-3** and detailed in **Appendix 4**.

TND considered all wells completed and approved within the MMA in the NRAP risk assessment. Some of these wells penetrate the injection and/or confining zones while others do not. Even though the risk of CO_2 leakage through the wells that did not penetrate confining zones is highly unlikely, TND did not omit any potential source of leakage in the NRAP analysis. If leakage through wellbores happens, the worst-case scenario is predicted using the NRAP tool to quantitatively assess the amount of CO₂ leakage through existing and approved wellbores within the MMA. Thirty-nine existing and approved wells inside MMA were addressed in the NRAP analysis. The reservoir properties, well data, formation stratigraphy, and MMA area were incorporated into the NRAP tool to forecast the rate and mass of CO₂ leakage. The worst scenario is that all of the 39 wells were located right at the source of CO_2 – the injection well's location. In this case, the maximum leakage rate of one well is approximately 7e-6 kg/s. This value is the maximum amount of CO_2 leakage, 220 kg/year, and occurs in the second year of injection, then gradually reduces to 180 kg at the end of year 30. Comparing the total amount of CO_2 injected (assuming 5 MMSCFD of supercritical CO_2 injected continuously for 30 years), the leakage mass amounts to 0.0054% of the total CO₂ injected. This leakage is considered negligible. Also, this worst-case scenario, where 39 wells are located right at the injection point, is impossible in reality. Therefore, CO₂ leakage to the surface via this potential leakage pathway can be considered improbable.

5.3.1 Wells Completed in the Bell Canyon and Cherry Canyon Formations

The only wells completed in the Bell Canyon and Cherry Canyon Formations within the MMA are the RH AGI #1, #2, and #3 wells and the 30-025-08371 well which was completed at a depth of 5,425 ft. This well is within the Red Hills facility boundary and is plugged and abandoned (see **Appendix 9** for plugging and abandonment (P&A) record).

Appendix 1 includes schematics of the RH AGI #1, #2,and #3 wells construction showing multiple strings of casing all cemented to surface. Injection of TAG into RH AGI #1 and #3 occurs through tubing with a permanent production packer set above the injection zone.

RH AGI #2 is located in close proximity to RH AGI #1 and is temporarily abandoned. Drilling of this well stopped at 6,205 ft due to concerns about high pressures by drilling into the Cherry Canyon Formation and therefore, did not penetrate the Cherry Canyon Formation. The cement plug was tagged at 5,960 feet which is above the injection zone for RH AGI #1 (see **Figure Appendix 1-3**).

Due to the robust construction of the RH AGI wells, the plugging of the well 30-025-08371 above the Bell Canyon, the plugging of RH AGI #2 above the Cherry Canyon Formation, and considering the NRAP analysis described above, TND considers that, while the likelihood of CO₂ emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.3.2 Wells Completed in the Bone Spring / Wolfcamp Zones

Several wells are completed in the Bone Spring and Wolfcamp oil and gas production zones as described in Section 3.6.2. These productive zones lie more than 2,000 ft below the RH AGI wells injection zone minimizing the likelihood of communication between the RH AGI well injection zones and the Bone Spring / Wolfcamp production zones. Construction of these wells includes surface casing set at 1,375 ft and cemented to surface and intermediate casing set at the top of the Bell Canyon at depths of from 5,100 to 5,200 ft and cemented through the Permian Ochoan evaporites, limestone and siltstone (**Figure 3.2-2**) providing zonal isolation preventing TAG injected into the Bell Canyon and Cherry Canyon formations through RH AGI wells from leaking upward along the borehole in the event the TAG plume were to reach these wellbores. **Figure 4.1-1** shows that the modeled TAG plume extent after 30 years of injection and 5 years of post-injection stabilization does not extend to well boreholes completed in the Bone Spring / Wolfcamp production zones thereby indicating that these wells are not likely to be pathways for CO₂ leakage to the surface.

Due to the construction of these wells, the fact that the modeled TAG plume does not reach the SHL of these wells and considering the NRAP analysis described in the introductory paragraph of Section 5, TND considers that, while the likelihood of CO_2 emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.3.3 Wells Completed in the Siluro-Devonian Zone

One well penetrated the Devonian at the boundary of the MMA - EOG Resources, Government Com 001, API # 30-025-25604, TVD = 17,625 ft, 0.87 miles from RH AGI #3. This well was drilled to a total depth of 17,625 ft on March 5, 1978, but plugged back to 14,590 ft, just below the Morrow, in May of 1978. Subsequently, this well was permanently plugged and abandoned on December 30, 2004, and approved by NMOCD on January 4, 2005 (see **Appendix 9** for P&A records). The approved plugging provides zonal isolation for the Bell Canyon and Cherry Canyon injection zones minimizing the likelihood that this well will be a pathway for CO₂ emissions to the surface from either injection zone.

Due to the location of this well at the edge of the MMA and considering the NRAP analysis described in the introductory paragraph of Section 5, TND considers that, while the likelihood of CO₂ emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.3.4 Groundwater Wells

The table in Appendix 3 lists 15 water wells within a 2-mile radius of the RH AGI wells, only 2 of which are within a 1-mile radius of and within the MMA for the RH AGI wells (**Figure 3.5-1**). The deepest ground water well is 650 ft deep The evaporite sequence of the Permian Ochoan Salado and Castile Formations (see
Section 3.2.2) provides an excellent seal between these groundwater wells and the Cherry Canyon injection zone of the RH AGI #1 well. Therefore, it is unlikely that these two groundwater wells are a potential pathway of CO_2 leakage to the surface. Nevertheless, the CO_2 surface monitoring and groundwater monitoring described in Sections 6 and 7 will provide early detection of CO_2 leakage followed by immediate response thereby minimizing the magnitude of CO_2 leakage volume via this potential pathway.

Due to the shallow depth of the groundwater wells within the MMA relative to the depth of the RH AGI wells and considering the NRAP analysis described in the introductory paragraph in Section 5, TND considers that, while the likelihood of CO_2 emissions to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.4 Potential Leakage through the Confining / Seal System

The site characterization for the injection zone of the RH AGI wells described in Sections 3.2.2 and 3.3 indicates a thick sequence of Permian Ochoan evaporites, limestone, and siltstones (**Figure 3.2-2**) above the Bell Canyon and Cherry Canyon Formations and no evidence of faulting. Therefore, it is unlikely that TAG injected into the Bell Canyon and Cherry Canyon Formations will leak through this confining zone to the surface. Limiting the injection pressure to less than the fracture pressure of the confining zone will minimize the likelihood of CO_2 leakage through this potential pathway to the surface.

Leakage through a confining zone happens at low-permeability shale formations containing natural fractures. The injection zone for the RH AGI #1 and #3 is the Delaware Group Formation (Bell Canyon and Cherry Canyon), which lies under the Castile and Salado formations with less than 0.01 mD permeability acting as the seals. Therefore, TND took leakage through confining zones into consideration in the NRAP risk assessment. The worst-case scenario is defined as leakage through the seal happening right above the injection wells, where CO₂ saturation is highest. However, this worst-case scenario of leakage only shows that 0.0017% of total CO₂ injection in 30 years was leaked from the injection zone through the seals. As we go further from the source of CO₂, the likelihood of such an event will diminish proportionally with the distance from the source. Considering that this is the greatest amount of CO₂ leakage in this worst-case scenario, if the event happens, the leak must pass upward through the confining zone, the secondary confining strata that consists of additional low permeability geologic units, and other geologic units, TND concludes that the risk of leakage through this pathway is highly unlikely.

5.5 Potential Leakage due to Lateral Migration

The characterization of the sand layers in the Cherry Canyon Formation described in Section 3.3 states that these sands were deposited by turbidites in channels in submarine fan complexes, each sand is encased in low porosity and permeability fine-grained siliciclastics and mudstones with lateral continuity. Regional consideration of their depositional environment suggests a preferred orientation for fluid and gas flow would be south-to-north along the channel axis. However, locally the high net porosity of the RH AGI #1 and #3 injection zones indicates adequate storage capacity such that the injected TAG will be easily contained close to the injection well, thus minimizing the likelihood of lateral migration of TAG outside the MMA due to a preferred regional depositional orientation.

Lateral migration of the injected TAG was addressed in detail in Section 3.3. Therein it states that the units dip gently to the southeast with approximately 200 ft of relief across the area. Heterogeneities within both the Bell Canyon and Cherry Canyon sandstones, such as turbidite and debris flow channels, will exert a significant control over the porosity and permeability within the two units and fluid migration within those sandstones. In addition, these channels are frequently separated by low porosity and permeability siltstones and shales as well as being encased by them.

Based on the discussion of the channeled sands in the injection zone, TND considers that the likelihood of CO_2 to migrate laterally along the channel axes is possible. However, that the turbidite sands are encased in low porosity and permeability fine-grained siliciclastics and mudstones with lateral continuity and that the injectate is projected to be contained within the injection zone close to the injection wells minimizes the likelihood that CO_2 will migrate to a potential conduit to the surface.

5.6 Potential Leakage through Fractures and Faults

Prior to injection, a thorough geological characterization of the injection zone and surrounding formations was performed (see Section 3) to understand the geology as well as identify and understand the distribution of faults and fractures. **Figure 5.6-1** shows the fault traces in the vicinity of the Red Hill plant. The faults shown on **Figure 5.6-1** are confined to the Paleozoic section below the injection zone for the RH AGI wells. No faults were identified in the confining zone above the Bell Canyon and Cherry Canyon injection zone for the RH AGI wells.

No faults were identified within the MMA which could potentially serve as conduits for surface CO₂ emission. The closest identified fault lies approximately 1.5 miles east of the Red Hills site and has approximately 1,000 ft of down-to-the-west structural relief. Because this fault is confined to the lower Paleozoic unit more than 5,100 feet below the injection zone for the RH AGI wells, there is minimal chance it would be a potential leakage pathway. This inference is supported by the NRAP simulation result. Therefore, TND concludes that the CO₂ leakage rate through this fault is zero and that the risk of leakage through this potential leakage pathway is highly improbable.

Figure 5.6-1: New Mexico Tech Seismological Observatory (NMTSO) seismic network close to the operations, recent seismic events, and fault traces (2022-2023). Note: Fault traces are from Horne et al 2021 for deep seated faults in the lower Paleozoic. The fault traces shown close to the Red Hills facility die out at the base of the Wolfcamp formation at a depth of 12,600 feet, more than 5,100 feet below the bottom of the injection zone at 7,500 feet.

5.7 Potential Leakage due to Natural / Induced Seismicity

The New Mexico Tech Seismological Observatory (NMTSO) monitors seismic activity in the state of New Mexico. A search of the database shows no recent seismic events close to the Red Hills operations. The closest recent, as of 4 September 2023, seismic events are:

- 7.5 miles, 2022-09-03, Magnitude 3
- 8 miles, 2022-09-02, Magnitude 2.23
- 8.6 miles, 2022-10-29, Magnitude 2.1

Figure 5.6-1 shows the seismic stations and recent seismic events in the area around the Red Hills site.

Due to the distance between the Red Hills AGI wells and the recent seismic events, the magnitude of these events, and the fact that TND injects at pressures below fracture opening pressure, TND considers the likelihood of CO₂ emissions to the surface caused by seismicity to be improbable.

Monitoring of seismic events in the vicinity of the Red Hills AGI wells is discussed in Section 6.7.

6 Strategy for Detecting and Quantifying Surface Leakage of CO₂

Subpart RR at 40 CFR 448(a)(3) requires a strategy for detecting and quantifying surface leakage of CO₂. TND will employ the following strategy for detecting, verifying, and quantifying CO₂ leakage to the surface through the potential pathways for CO₂ surface leakage identified in Section 5. TND considers H₂S to be a proxy for CO₂ leakage to the surface and as such will employ and expand upon methodologies detailed in their H₂S Contingency plan to detect, verify, and quantify CO₂ surface leakage. **Table 6-1** summarizes the leakage monitoring of the identified leakage pathways. Monitoring will occur for the duration of injection and the 5-year post-injection period.

Potential Leakage Pathway	Detection Monitoring
Surface Equipment	 Distributed control system (DCS) surveillance of plant operations Visual inspections Inline inspections Fixed in-field gas monitors/CO₂ flux monitoring network Personal and hand-held gas monitors
Existing RH AGI Wells	 DCS surveillance of well operating parameters Visual inspections Mechanical integrity tests (MIT) Fixed in-field gas monitors/CO₂ flux monitoring network Personal and hand-held gas monitors In-well P/T sensors Groundwater monitoring
Fractures and Faults	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring
Confining Zone / Seal	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring
Natural / Induced Seismicity	DCS surveillance of well operating parametersSeismic monitoring
Lateral Migration	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network

Table 6-1: Summary of Leak Detection Monitoring

Potential Leakage Pathway	Detection Monitoring				
	Groundwater monitoring				
Additional Monitoring	Groundwater monitoringSoil flux monitoring				

6.1 Leakage from Surface Equipment

TND implements several tiers of monitoring for surface leakage including frequent periodic visual inspection of surface equipment, use of fixed in-field and personal H₂S sensors, and continual monitoring of operational parameters.

Leaks from surface equipment are detected by TND field personnel, wearing personal H₂S monitors, following daily and weekly inspection protocols which include reporting and responding to any detected leakage events. TND also maintains in-field gas monitors to detect H₂S and CO₂. The in-field gas monitors are connected to the DCS housed in the onsite control room. If one of the gas detectors sets off an alarm, it would trigger an immediate response to address and characterize the situation.

The following description of the gas detection equipment at the Red Hills Gas Processing Plant was extracted from the H_2S Contingency Plan:

"Fixed Monitors

The Red Hills Plant has numerous ambient hydrogen sulfide detectors placed strategically throughout the Plant to detect possible leaks. Upon detection of hydrogen sulfide at 10 ppm at any detector, visible beacons are activated, and an alarm is sounded. Upon detection of hydrogen sulfide at 90 ppm at any detector, an evacuation alarm is sounded throughout the Plant at which time all personnel will proceed immediately to a designated evacuation area. The Plant utilizes fixed-point monitors to detect the presence of H₂S in ambient air. The sensors are connected to the Control Room alarm panel's Programmable Logic Controllers (PLCs), and then to the Distributed Control System (DCS). The monitors are equipped with amber beacons. The beacon is activated at 10 ppm. The plant and AGI well horns are activated with a continuous warbling alarm at 10 ppm and a siren at 90 ppm. All monitoring equipment is Red Line brand. The Control Panel is a 24 Channel Monitor Box, and the fixed point H₂S Sensor Heads are model number RL-101.

The Plant will be able to monitor concentrations of H_2S via H_2S Analyzers in the following locations:

- Inlet gas of the combined stream from Winkler and Limestone
- Inlet sour liquid downstream of the slug catcher
- Outlet Sweet Gas to Red Hills 1
- Outlet Sweet Liquid to Red Hills Condensate Surge

The AGI system monitors can also be viewed on the PLC displays located at the Plant. These sensors are all shown on the plot plan (see **Figure 3.6-1**). This requires immediate action for any occurrence or malfunction. All H_2S sensors are calibrated monthly.

Personal and Handheld H₂S Monitors

All personnel working at the Plant wear personal H₂S monitors. The personal monitors are set to alarm and vibrate at 10 ppm. Handheld gas detection monitors are available at strategic locations around the Plant so that plant personnel can check specific areas and equipment prior to initiating maintenance or other work. The handheld gas detectors have sensors for oxygen, LEL (explosive hydrocarbon atmospheres), H₂S and carbon dioxide (CO₂)."

6.2 Leakage from Approved Not Yet Drilled Wells

Special precautions will be taken in the drilling of any new wells that will penetrate the injection zones as described in Section 5.2.1 for RH AGI #3 including more frequent monitoring during drilling operations (see **Table 6-1**). This applies to TND and other operators drilling new wells through the RH AGI injection zone within the MMA.

6.3 Leakage from Existing Wells

6.3.1 RH AGI Wells

As part of ongoing operations, TND continuously monitors and collects flow, pressure, temperature, and gas composition data in the data collection system. These data are monitored continuously by qualified technicians who follow response and reporting protocols when the system delivers alerts that data is not within acceptable limits.

To monitor leakage and wellbore integrity, two pressure and temperature gauges as well as Distributed Temperature Sensing (DTS) were deployed in TND's RH AGI #1 well. One gauge is designated to monitor the tubing ID (reservoir) pressure and temperature and the second gauge monitors the annular space between the tubing and the long string casing (**Figure 6.2-1**). A leak is indicated when both gauges start reading the same pressure. DTS is clamped to the tubing, and it monitors the temperature profiles of the annulus from 6,159 ft to surface. DTS can detect variation in the temperature profile events throughout the tubing and or casing. Temperature variation could be an indicator of leaks. Data from temperature and pressure gauges is recorded by an interrogator housed in an onsite control room. DTS (temperature) data is recorded by a separate interrogator that is also housed in the onsite control room. Data from both interrogators are transmitted to a remote location for daily real time or historical analysis.

If operational parameter monitoring and MIT failures indicate a CO_2 leak has occurred, TND will take actions to quantify the leak based on operating conditions at the time of the detection including pressure at the point of emission, flowrate at the point of emission, duration of the emission, and estimation of the size of the emission site.

F	IALLIBU	RTON			Lucid Rod Hills AGI 1 WSP. Troy Gillon / Michael Ed	orrior	
	Installat	ion		Lea	County New Mexico Sales Rep - Lynn Talley (432) 63	1-4626	
	Installation	Donth	Longth	lte	2/3/21 - 2/28/21 Tool Specialists: Carey Lehmann, Jonathan Pl	nillips, Jose	Vargas
2		18.50	18.50	015.	KB		10
のためのない	20	22.90 64.05	4.40 41.15	1	20) Hanger Sub 3 1/2" 9.2# CRA VAMTOP x 7.7# VAM Ace Pin 19) 3 1/2" 7.7# VAM ACE 125K G3 Tubing (Slick Joint) Pan Eight Subs 8' 8' 6' 6' 4' 4' 2' 2'	7.000 3.500	3.000 3.035
	■1 8	103.97	39 . 92		18) 3 1/2" 7.7# VAM ACE 125K G3 Spaceout Subs	3.500	3.035
0.00	↓ 17	235.95	131.98	3	17) 3 1/2" 7.7# VAM ACE 125K G3 Tubing	3.500	3.035
100 M	16	241.95	6.00		16) 6' x 3 1/2" 7.7# CRA VAM ACE Box x 9.2# VAMTOP Pin	3.540	2.959
のため、彼	15	246.30	4.35		15) 3 1/2" NE HES SSSV Nickel Alloy 925 w/Alloy 825 Control Line 3 1/2" 9.2# VAMTOP Box x Pin	5.300	2.813
	14	252.29	5.99		14) 6' x 3 1/2" 9.2# CRA VAMTOP Box x 7.7# VAM ACE Pin	3.540	2.959
0.00	1	6,140.23	5,887.94	134	13) 3 1/2" 7.7# VAM ACE 125K G3 Tubing 12) 3 1/2" 7.7# VAM ACE Box x 9.2# VAMTOP Pin CRA Crossover	3.500 3.830	3.305 2.959
Set 2	11				11) 2.813" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy 925	4.073	2.813
の日本	10	6,153.72	13.49		10) 6' x 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy G3 Sub 13.49' Length Includes Line Items 10, 11 & 12	3.540	2.959
10.20	9	6.159 Tubina 6.162.6 Annular	P/T P/T	H	9) Baker PT Sensor Mandrel 3 1/2" 9.2# VAMTOP Box x Pin 6' VAMTOP 9.2# CRA Tubing Sub Above & Below Gauge Mdl	5.200	2.992
8-15-15-15-15-15-15-15-15-15-15-15-15-15-	8	6,161.23	7.51		8) 4.00" BWS Landed Seal Asmbly 9.2# VAM TOP Nickel Alloy 925 7.51' Length Includes Line Items 8 & 9	4.470	2.959
Notet Land		6,164.55	3.32		7) 7" 26-32# x 4.00" BWS Packer Nickel Alloy 925 Casing Collar @ 6,160.6' WL Measurement	5.875	4.000
たいのである	4 6	6,172.05	7.5		6) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5 .032	4.000
50.03	5	6,172.88	0.83		5) 4.00" PBR Adapter x 9.2# VAMTOP BxP Nickel Alloy 925	5.68 0	2.959
VE CO	4 4	6,181.19	8.31		4) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub Nickel Alloy G3	3.540	2.959
12.00	3	6 ,182.52	1.33		3) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy 925 #102204262	4.073	2.562
00.000	2	6,184.29	1.77		2) Straight Slot Locator Seal Assembly Above Top Of Packer	4.450	2.880
S.Co.H	3 - 1		6,186.06		1) BWD Permanent Packer. WL Measured Depth Previously 6189'	<mark>5.87</mark> 5	4.000
10.00					1a) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5.660	2.965
Set 3	1a				1b) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
					1c) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel,	2.920	2.562
10.00					1d) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
読むの	↓ 1b				1e) 2.562" RN Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel	3.920	2.321
1000	1c				1f) Re-Entry Guide / POP	3.950	3.000
10.00	1d						
の日本	1e						
State and	1 f						

Figure 6.2-1: Well Schematic for RH AGI #1 showing installation of P/T sensors

6.3.2 Other Existing Wells within the MMA

The CO₂ monitoring network described in Section 7.3 and well surveillance by other operators of existing wells will provide an indication of CO₂ leakage. Additionally, groundwater and soil CO₂ flux monitoring locations throughout the MMA will also provide an indication of CO₂ leakage to the surface. See Sections 7.7 and 7.8 for details.

6.4 Leakage through the Confining / Seal System

As discussed in Section 5, it is very unlikely that CO₂ leakage to the surface will occur through the confining zone. Continuous operational monitoring of the RH AGI wells, described in Sections 6.3 and 7.5, will provide an indicator if CO₂ leaks out of the injection zone. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO₂ leakage to the surface. See Sections 7.7 and 7.8 for details.

If changes in operating parameters or other monitoring listed in **Table 6-1** indicate leakage of CO₂ through the confining / seal system, TND will take actions to quantify the amount of CO₂ released and take mitigative action to stop it, including shutting in the well(s) (see Section 6.8).

6.5 Leakage due to Lateral Migration

Continuous operational monitoring of the RH AGI wells during and after the period of the injection will provide an indication of the movement of the CO_2 plume migration in the injection zones. The CO_2 monitoring network described in Section 7.3, and routine well surveillance will provide an indicator if CO_2 leaks out of the injection zone. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO_2 leakage to the surface. See Sections 7.7 and 7.8 for details.

If monitoring of operational parameters or other monitoring methods listed in Table 6-1 indicates that the CO_2 plume extends beyond the area modeled in Section 3.8 and presented in Section 4, TND will reassess the plume migration modeling for evidence that the plume may have intersected a pathway for CO_2 release to the surface. As this scenario would be considered a material change per 40CFR98.448(d)(1), TND will submit a revised MRV plan as required by 40CFR98.448(d). See Section 6.8 for additional information on quantification strategies.

6.6 Leakage from Fractures and Faults

As discussed in Section 5, it is very unlikely that CO_2 leakage to the surface will occur through faults. However, if monitoring of operational parameters and the fixed in-field gas monitors indicate possible CO_2 leakage to the surface, TND will identify which of the pathways listed in this section are responsible for the leak, including the possibility of heretofore unidentified faults or fractures within the MMA. TND will take measures to quantify the mass of CO_2 emitted based on the operational conditions that existed at the time of surface emission, including pressure at the point of emission, flowrate at the point of emission, duration of the emission, and estimation of the size of the emission site. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO_2 leakage to the surface. See Sections 7.7 and 7.8 for details. See Section 6.8 for additional information on quantification strategies.

6.7 Leakage due to Natural / Induced Seismicity

In order to monitor the influence of natural and/or induced seismicity, TND will use the established NMTSO seismic network. The network consists of seismic monitoring stations that detect and locate seismic events. Continuous monitoring helps differentiate between natural and induced seismicity. The network surrounding the Red Hills Gas Processing Plant has been mapped on **Figure 5.6-1**. The monitoring network records Helicorder data from UTC (coordinated universal time) all day long. The data are plotted daily at

5pm MST (mountain standard time). These plots can be browsed either by station or by day. The data are streamed continuously to the New Mexico Tech campus and archived at the Incorporated Research Institutions for Seismology Data Management Center (IRIS DMC).

If monitoring of the NMTSO seismic monitoring stations, the operational parameters and the fixed infield gas monitors indicates surface leakage of CO_2 linked to seismic events, TND will assess whether the CO_2 originated from the RH AGI wells and, if so, take measures to quantify the mass of CO_2 emitted to the surface based on operational conditions at the time the leak was detected. See Section 7.6 for details regarding seismic monitoring and analysis. See Section 6.8 for additional information on quantification strategies.

6.8 Strategy for Quantifying CO₂ Leakage and Response

6.8.1 Leakage from Surface Equipment

For normal operations, quantification of emissions of CO₂ from surface equipment will be assessed by employing the methods detailed in Subpart W according to the requirements of 98.444(d) of Subpart RR. Quantification of major leakage events from surface equipment as identified by the detection techniques listed in Table 6-1 will be assessed by employing methods most appropriate for the site of the identified leak. Once a leak has been identified the leakage location will be isolated to prevent additional emissions to the atmosphere. Quantification will be based on the length of time of the leak and parameters that existed at the time of the leak such as pressure, temperature, composition of the gas stream, and size of the leakage point. TND has standard operating procedures to report and quantify all pipeline leaks in accordance with the NMOCD regulations (New Mexico administrative Code 19.15.28 Natural Gas Gathering Systems). TND will modify this procedure to quantify the mass of carbon dioxide from each leak discovered by TND or third parties. Additionally, TND may employ available leakage models for characterizing and predicting gas leakage from gas pipelines. In addition to the physical conditions listed above, these models are capable of incorporating the thermodynamic parameters relevant to the leak thereby increasing the accuracy of quantification.

6.8.2 Subsurface Leakage

Selection of a quantification strategy for leaks that occur in the subsurface will be based on the leak detection method (Table 6-1) that identifies the leak. Leaks associated with the point sources, such as the injection wells, and identified by failed MITs, variations of operational parameters outside acceptable ranges, and in-well P/T sensors can be addressed immediately after the injection well has been shut in. Quantification of the mass of CO₂ emitted during the leak will depend on characterization of the subsurface leak, operational conditions at the time of the leak, and knowledge of the geology and hydrogeology at the leakage site. Conservative estimates of the mass of CO₂ emitted to the surface will be made assuming that all CO₂ released during the leak will reach the surface. TND may choose to estimate the emissions to the surface more accurately by employing transport, geochemical, or reactive transport model simulations.

Other wells within the MMA will be monitored with the atmospheric and CO₂ flux monitoring network placed strategically in their vicinity.

Nonpoint sources of leaks such as through the confining zone, along faults or fractures, or which may be initiated by seismic events and as may be identified by variations of operational parameters outside acceptable ranges will require further investigation to determine the extent of leakage and may result in cessation of operations.

6.8.3 Surface Leakage

A recent review of risk and uncertainty assessment for geologic carbon storage (Xiao et al., 2024) discussed monitoring for sequestered CO₂ leaking back to the surface emphasizing the importance of monitoring

network design in detecting such leaks. Leaks detected by visual inspection, hand-held gas sensors, fixed infield gas sensors, atmospheric, and CO₂ flux monitoring will be assessed to determine if the leaks originate from surface equipment, in which case leaks will be quantified according to the strategies in Section 6.8.1, or from the subsurface. In the latter case, CO₂ flux monitoring methodologies, as described in Section 7.8, will be employed to quantify the surface leaks.

7 Strategy for Establishing Expected Baselines for Monitoring CO₂ Surface Leakage

TND uses the existing automatic distributed control system to continuously monitor operating parameters and to identify any excursions from normal operating conditions that may indicate leakage of CO_2 . TND considers H_2S to be a proxy for CO_2 leakage to the surface and as such will employ and expand upon methodologies detailed in their H_2S Contingency plan to establish baselines for monitoring CO_2 surface leakage. The following describes TND's strategy for collecting baseline information.

7.1 Visual Inspection

TND field personnel conduct frequent periodic inspections of all surface equipment providing opportunities to assess baseline concentrations of H_2S , a proxy for CO₂, at the Red Hills Gas Plant.

7.2 Fixed In-Field, Handheld, and Personal H₂S Monitors

Compositional analysis of TND's gas injectate at the Red Hills Gas Plant indicates an approximate H₂S concentration of 20% thus requiring TND to develop and maintain an H₂S Contingency Plan (Plan) according to the NMOCD Hydrogen Sulfide Gas Regulations, Rule 11 (19.15.11 NMAC). TND considers H₂S to be a proxy for CO₂ leaks at the plant. The Plan contains procedures to provide for an organized response to an unplanned release of H₂S from the plant or the associated RH AGI Wells and documents procedures that would be followed in case of such an event.

7.2.1 Fixed In-Field H₂S Monitors

The Red Hills Gas Plant utilizes numerous fixed-point monitors, strategically located throughout the plant, to detect the presence of H₂S in ambient air. The sensors are connected to the Control Room alarm panel's Programmable Logic Controllers (PLCs), and then to the DCS. Upon detection of H₂S at 10 ppm at any detector, visible amber beacons are activated, and horns are activated with a continuous warbling alarm. Upon detection of hydrogen sulfide at 90 ppm at any monitor, an evacuation alarm is sounded throughout the plant at which time all personnel will proceed immediately to a designated evacuation area.

7.2.2 Handheld and Personal H₂S Monitors

Handheld gas detection monitors are available at strategic locations around the plant so that plant personnel can check specific areas and equipment prior to initiating maintenance or other work. The handheld gas detectors have sensors for oxygen, LEL (explosive hydrocarbon atmospheres), H₂S and CO₂.

All personnel, including contractors who perform operations, maintenance and/or repair work in sour gas areas within the plant must wear personal H₂S monitoring devices to assist them in detecting the presence of unsafe levels of H₂S. Personal monitoring devices will give an audible alarm and vibrate at 10 ppm.

7.3 CO₂ Detection

In addition to the handheld gas detection monitors described above, New Mexico Tech, through a DOE research grant (DE-FE0031837 – Carbon Utilization and Storage Project of the Western USA (CUSP)), will assist TND in setting up a monitoring network for CO_2 leakage detection in the AMA as defined in Section 4.2. The scope of work for the DOE project includes field sampling activities to monitor CO_2/H_2S at the two RH AGI wells. These activities include periodic well (groundwater and gas) and atmospheric sampling from an area of 10 - 15 square miles around the injection wells. Once the network is set up, TND will assume responsibility for monitoring, recording, and reporting data collected from the system for the duration of the project.

7.4 Continuous Parameter Monitoring

The DCS of the plant monitors injection rates, pressures, and composition on a continuous basis. High and low set points are programmed into the DCS, and engineering and operations are alerted if a parameter is outside the allowable window. If a parameter is outside the allowable window, this will trigger further investigation to determine if the issue poses a leak threat. Also, see Section 6.2 for continuous monitoring of P/T in the well.

7.5 Well Surveillance

TND adheres to the requirements of NMOCC Rule 26 governing the construction, operation and closing of an injection well under the Oil and Gas Act. Rule 26 also includes requirements for testing and monitoring of Class II injection wells to ensure they maintain mechanical integrity at all times. Furthermore, NMOCC includes special conditions regarding monitoring, reporting, and testing in the individual permits for each injection well, if they are deemed necessary. TND's Routine Operations and Maintenance Procedures for the RH AGI wells ensure frequent periodic inspection of the wells and opportunities to detect leaks and implement corrective action.

7.6 Seismic (Microseismic) Monitoring Stations

TND has Installed a model TCH120-1 Trillium Compact Horizon Seismometer and a model CTR4-3S Centaur Digital Recorder to monitor for and record data for any seismic event at the Red Hills Gas Plant (see **Figure 7-1**). The seismic station meets the requirements of the NMOCC Order No. R-20916-H to "install, operate, and monitor for the life of the [Class II AGI] permit a seismic monitoring station or stations as directed by the Manager of the New Mexico Tech Seismological Observatory ("state seismologist") at the New Mexico Bureau of Geology and Mineral Resources."

In addition, data that is recorded by the State of New Mexico deployed seismic network within a 10-mile radius of the Red Hills Gas Plant will be analyzed by the New Mexico Bureau of Geology (NMBGMR), see **Figure 5.6-1**, and made publicly available. The NMBGMR seismologist will create a report and map showing the magnitudes of recorded events from seismic activity. The data is being continuously recorded. By examining historical data, a seismic baseline prior to the start of TAG injection can be well established and used to verify anomalous events that occur during current and future injection activities. If necessary, a certain period of time can be extracted from the overall data set to identify anomalous events during that period.

7.7 Groundwater Monitoring

New Mexico Tech, through the same DOE research grant described in Section 7.3 above, will monitor groundwater wells for CO₂ leakage which are located within the AMA as defined in Section 4.2. Water samples will be collected and analyzed on a monthly basis for 12 months to establish baseline data. After establishing the water chemistry baseline, samples will be collected and analyzed bi-monthly for one year and then quarterly. Samples will be collected according to EPA methods for groundwater sampling (U.S. EPA, 2015).

The water analysis includes total dissolved solids (TDS), conductivity, pH, alkalinity, major cations, major anions, oxidation-reduction potentials (ORP), inorganic carbon (IC), and non-purgeable organic carbon (NPOC). Charge balance of ions will be completed as quality control of the collected groundwater samples. See **Table 7.7-1**. Baseline analyses will be compiled and compared with regional historical data to determine patterns of change in groundwater chemistry not related to injection processes at the Red Hills Gas Plant. A report of groundwater chemistry will be developed from this analysis. Any water quality samples not within the expected variation will be further investigated to determine if leakage has occurred from the injection zone.

Parameters
рН
Alkalinity as HCO3- (mg/L)
Chloride (mg/L)
Fluoride (F-) (mg/L)
Bromide (mg/L)
Nitrate (NO3-) (mg/L)
Phosphate (mg/L)
Sulfate (SO42-) (mg/L)
Lithium (Li) (mg/L)
Sodium (Na) (mg/L)
Potassium (K) (mg/L)
Magnesium (Mg) (mg/L)
Calcium (Ca) (mg/L)
TDS Calculation (mg/L)
Total cations (meq/L)
Total anions (meq/L)
Percent difference (%)
ORP (mV)
IC (ppm)
NPOC (ppm)

Table 7.7-1: Groundwater Monitoring Parameters

7.8 Soil CO₂ Flux Monitoring

A vital part of the monitoring program is to identify potential leakage of CO₂ and/or brine from the injection horizon into the overlying formations and to the surface. One method that will be deployed is to gather and analyze soil CO₂ flux data which serves as a means for assessing potential migration of CO₂ through the soil and its escape to the atmosphere. By taking CO₂ soil flux measurements at periodic intervals, TND can continuously characterize the interaction between the subsurface and surface to understand potential leakage pathways. Actionable recommendations can be made based on the collected data.

Soil CO₂ flux will be collected on a monthly basis for 12 months to establish the baseline and understand seasonal and other variation at the Red Hills Gas Plant. After the baseline is established, data will be collected bi-monthly for one year and then quarterly.

Soil CO₂ flux measurements will be taken using a LI-COR LI-8100A flux chamber, or similar instrument, at pre planned locations at the site. PVC soil collars (8cm diameter) will be installed in accordance with the LI-8100A specifications. Measurements will be subsequently made by placing the LI-8100A chamber on the soil collars and using the integrated iOS app to input relevant parameters, initialize measurement, and record the system's flux and coefficient of variation (CV) output. The soil collars will be left in place such that each subsequent measurement campaign will use the same locations and collars during data collection.

Figure 7-1: Red Hills monitoring network of 32 CO₂ flux locations, 2 groundwater wells, and a seismic station developed by New Mexico Tech and Targa Resources to detect leakage during injection.

8 Site Specific Considerations for Determining the Mass of CO₂ Sequestered

Appendix 7 summarizes the twelve Subpart RR equations used to calculate the mass of CO₂ sequestered annually. **Appendix 8** includes the twelve equations from Subpart RR. Not all of these equations apply to TND's current operations at the Red Hills Gas Plant but are included in the event TND's operations change in such a way that their use is required.

Figure 3.6-2 shows the location of all surface equipment and points of venting listed in 40CFR98.232(d) of Subpart W that will be used in the calculations listed below.

8.1 CO₂ Received

Currently, TND receives gas to its Red Hills Gas Plant through six pipelines: Gut Line, Winkler Discharge, Red Hills 24" Inlet Loop, Greyhound Discharge, Limestone Discharge, and the Plantview Loop. The gas is processed as described in Section 3.8 to produce compressed TAG which is then routed to the wellhead and pumped to injection pressure through NACE-rated (National Association of Corrosion Engineers) pipeline suitable for injection. TND will use Equation RR-2 for Pipelines to calculate the mass of CO₂ received through pipelines and measured through volumetric flow meters. The total annual mass of CO₂ received through these pipelines will be calculated using Equation RR-3. Receiving flow meter r in the following equations corresponds to meters M1 and M2 in **Figure 3.6-2**.

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$
(Equation RR-2 for Pipelines)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons).
- $Q_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r in quarter p at standard conditions (standard cubic meters).
- $S_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- *p* = Quarter of the year.
- *r* = Receiving flow meter.

$$CO_2 = \sum_{r=1}^R CO_{2T,r}$$

(Equation RR-3 for Pipelines)

where:

- CO₂ = Total net annual mass of CO₂ received (metric tons).
- CO 2T,r = Net annual mass of CO₂ received (metric tons) as calculated in Equation RR-1 or RR-2 for flow meter r.
- r = Receiving flow meter.

Although TND does not currently receive CO_2 in containers for injection, they wish to include the flexibility in this MRV plan to receive gas from containers. When TND begins to receive CO_2 in containers, TND will use Equations RR-1 and RR-2 for Containers to calculate the mass of CO_2 received in containers. TND will adhere to the requirements in 40CFR98.444(a)(2) for determining the quarterly mass or volume of CO_2 received in containers.

If CO₂ received in containers results in a material change as described in 40CFR98.448(d)(1), TND will submit a revised MRV plan addressing the material change.

8.2 CO₂ Injected

TND injects CO_2 into the existing RH AGI #1. Upon completion, TND will commence injection into RH AGI #3. Equation RR-5 will be used to calculate CO_2 measured through volumetric flow meters before being injected into the wells. Equation RR-6 will be used to calculate the total annual mass of CO_2 injected into both wells. The calculated total annual CO₂ mass injected is the parameter CO₂₁ in Equation RR-12. Volumetric flow meter u in the following equations corresponds to meters M3 and M6 in **Figure 3.6-2**.

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$
 (Equation RR-5)

where:

- $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.
- $Q_{p,u}$ = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter).
- D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,u} = CO_2$ concentration measurement in flow for flow meter u in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- *p* = Quarter of the year.

$$CO_{2I} = \sum_{u=1}^{U} CO_{2,u}$$

(Equation RR-6)

where:

CO ₂₁ = Total annual CO₂ mass injected (metric tons) though all injection wells.

 $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.

u = Flow meter.

8.3 CO₂ Produced / Recycled

TND does not produce oil or gas or any other liquid at its Red Hills Gas Plant so there is no CO_2 produced or recycled.

8.4 CO₂ Lost through Surface Leakage

Equation RR-10 will be used to calculate the annual mass of CO_2 lost due to surface leakage from the leakage pathways identified and evaluated in Section 5 above. The calculated total annual CO_2 mass emitted by surface leakage is the parameter CO_{2E} in Equation RR-12 addressed in Section 8.6 below. Quantification strategies for leaks from the identified potential leakage pathways is discussed in Section 6.8.

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$

(Equation RR-10)

where:

CO 2E = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year.

 $CO_{2,x}$ = Annual CO_2 mass emitted (metric tons) at leakage pathway x in the reporting year.

x = Leakage pathway.

8.5 CO₂ Emitted from Equipment Leaks and Vented Emissions

As required by 98.444(d) of Subpart RR, TND will assess leakage from the relevant surface equipment listed in Sections 98.233 and 98.234 of Subpart W. According to 98.233(r)(2) of Subpart W, the emissions factor listed in Table W-1A of Subpart W shall be used to estimate all streams of gases. Parameter CO_{2FI} in Equation RR-12 is the total annual CO_2 mass emitted or vented from equipment located between the flow meter for measuring injection quantity and the injection wellhead. A calculation procedure is provided in subpart W.

8.6 CO₂ Sequestered

(

Since TND does not actively produce oil or natural gas or any other fluid at its Red Hills Gas Plant, Equation RR-12 will be used to calculate the total annual CO₂ mass sequestered in subsurface geologic formations.

$$CO_2 = CO_{2I} - CO_{2E} - CO_{2FI}$$
 (Equation RR-12)

- CO ₂ = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CO_{2I} = Total annual CO_2 mass injected (metric tons) in the well or group of wells in the reporting year.
- CO_{2E} = Total annual CO_2 mass emitted (metric tons) by surface leakage in the reporting year.
- CO _{2FI} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part.

9 Estimated Schedule for Implementation of MRV Plan

The baseline monitoring and leakage detection and quantification strategies described herein have been established and data collected by TND and its predecessor, Lucid, for several years and continues to the present. TND will begin implementing this revised MRV plan as soon as it is approved by EPA.

10 GHG Monitoring and Quality Assurance Program

TND will meet the monitoring and QA/QC requirements of 40CFR98.444 of Subpart RR including those of Subpart W for emissions from surface equipment as required by 40CFR98.444(d).

10.1 GHG Monitoring

As required by 40CFR98.3(g)(5)(i), TND's internal documentation regarding the collection of emissions data includes the following:

- Identification of positions of responsibility (i.e., job titles) for collection of the emissions data
- Explanation of the processes and methods used to collect the necessary data for the GHG calculations

• Description of the procedures and methods that are used for quality assurance, maintenance, and repair of all continuous monitoring systems, flow meters, and other instrumentation used to provide data for the GHGs reported

10.1.1 General

<u>Measurement of CO_2 Concentration</u> – All measurements of CO_2 concentrations of any CO_2 quantity will be conducted according to an appropriate standard method published by a consensus-based standards organization or an industry standard practice such as the Gas Producers Association (GPA) standards. All measurements of CO_2 concentrations of CO_2 received will meet the requirements of 40CFR98.444(a)(3).

<u>Measurement of CO₂ Volume</u> – All measurements of CO₂ volumes will be converted to the following standard industry temperature and pressure conditions for use in Equations RR-2 and RR-5, of Subpart RR of the GHGRP: Standard cubic meters at a temperature of 60 degrees Fahrenheit and at an absolute pressure of 1 atmosphere. TND will adhere to the American Gas Association (AGA) Report #3 – Orifice Metering.

10.1.2 CO₂ received.

Daily CO₂ received is recorded by totalizers on the volumetric flow meters on each of the pipelines listed in Section 8 using accepted flow calculations for CO₂ according to the AGA Report #3.

10.1.3 CO₂ injected.

Daily CO₂ injected is recorded by totalizers on the volumetric flow meters on the pipelines to the RH AGI #1 and #3 wells using accepted flow calculations for CO₂ according to the AGA Report #3.

10.1.4 CO₂ produced.

TND does not produce CO₂ at the Red Hills Gas Plant.

10.1.5 CO₂ emissions from equipment leaks and vented emissions of CO₂.

As required by 98.444(d), TND will follow the monitoring and QA/QC requirements specified in Subpart W of the GHGRP for equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead.

As required by 98.444(d) of Subpart RR, TND will assess leakage from the relevant surface equipment listed in Sections 98.233 and 98.234 of Subpart W. According to 98.233(r)(2) of Subpart W, the emissions factor listed in Table W-1A of Subpart W shall be used.

10.1.6 Measurement devices.

As required by 40CFR98.444(e), TND will ensure that:

- All flow meters are operated continuously except as necessary for maintenance and calibration
- All flow meters used to measure quantities reported are calibrated according to the calibration and accuracy requirements in 40CFR98.3(i) of Subpart A of the GHGRP.
- All measurement devices are operated according to an appropriate standard method published by a
 consensus-based standards organization or an industry standard practice. Consensus-based standards
 organizations include, but are not limited to, the following: ASTM International, the American National
 Standards Institute (ANSI), the American Gas Association (AGA), the Gas Producers Association (GPA),
 the American Society of Mechanical Engineers (ASME), the American Petroleum Institute (API), and the
 North American Energy Standards Board (NAESB).
- All flow meter calibrations performed are National Institute of Standards and Technology (NIST) traceable.

10.2 QA/QC Procedures

TND will adhere to all QA/QC requirements in Subparts A, RR, and W of the GHGRP, as required in the development of this MRV plan under Subpart RR. Any measurement devices used to acquire data will be operated and maintained according to the relevant industry standards.

10.3 Estimating Missing Data

TND will estimate any missing data according to the following procedures in 40CFR98.445 of Subpart RR of the GHGRP, as required.

- A quarterly flow rate of CO₂ received that is missing would be estimated using invoices, purchase statements, or using a representative flow rate value from the nearest previous time period.
- A quarterly CO₂ concentration of a CO₂ stream received that is missing would be estimated using invoices, purchase statements, or using a representative concentration value from the nearest previous time period.
- A quarterly quantity of CO₂ injected that is missing would be estimated using a representative quantity of CO₂ injected from the nearest previous period of time at a similar injection pressure.
- For any values associated with CO₂ emissions from equipment leaks and vented emissions of CO₂ from surface equipment at the facility that are reported in Subpart RR, missing data estimation procedures specified in subpart W of 40 CFR Part 98 would be followed.

10.4 Revisions of the MRV Plan

TND will revise the MRV plan as needed to reflect changes in monitoring instrumentation and quality assurance procedures; or to improve procedures for the maintenance and repair of monitoring systems to reduce the frequency of monitoring equipment downtime; or to address additional requirements as directed by the USEPA or the State of New Mexico. If any operational changes constitute a material change as described in 40CFR98.448(d)(1), TND will submit a revised MRV plan addressing the material change.

11 Records Retention

TND will meet the recordkeeping requirements of paragraph 40CFR98.3(g) of Subpart A of the GHGRP. As required by 40CFR98.3(g) and 40CFR98.447, TND will retain the following documents:

- (1) A list of all units, operations, processes, and activities for which GHG emissions were calculated.
- (2) The data used to calculate the GHG emissions for each unit, operation, process, and activity. These data include:
 - (i) The GHG emissions calculations and methods used
 - (ii) Analytical results for the development of site-specific emissions factors, if applicable
 - (iii) The results of all required analyses
 - (iv) Any facility operating data or process information used for the GHG emission calculations
- (3) The annual GHG reports.

(4) Missing data computations. For each missing data event, TND will retain a record of the cause of the event and the corrective actions taken to restore malfunctioning monitoring equipment.

(5) A copy of the most recent revision of this MRV Plan.

(6) The results of all required certification and quality assurance tests of continuous monitoring systems, fuel flow meters, and other instrumentation used to provide data for the GHGs reported.

(7) Maintenance records for all continuous monitoring systems, flow meters, and other instrumentation used to provide data for the GHGs reported.

(8) Quarterly records of CO₂ received, including mass flow rate of contents of container (mass or volumetric) at standard conditions and operating conditions, operating temperature and pressure, and concentration of these streams.

(9) Quarterly records of injected CO_2 including mass flow or volumetric flow at standard conditions and operating conditions, operating temperature and pressure, and concentration of these streams.

(10) Annual records of information used to calculate the CO₂ emitted by surface leakage from leakage pathways.

(11) Annual records of information used to calculate the CO_2 emitted from equipment leaks and vented emissions of CO_2 from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead.

(12) Any other records as specified for retention in this EPA-approved MRV plan.

12 Appendices

Appendix 1 TND Wells

Well Name	API #	Location	County	Spud Date	Total Depth	Packer
Red Hills AGI #1	30-025-40448	1,600 ft FSL, 150 ft FEL Sec. 13, T24S, R33E, NMPM	Lea, NM	10/23/2013	6,650 ft	6,170 ft
Red Hills AGI #2 (temporarily abandoned)	30-025-49474	150 ft FEL, 1,800 ft FSL Sec. 13, T24S, R33E, NMPM	Lea, NM		6,205 ft	
Red Hill AGI #3	30-025-51970	3,116 ft FNL, 1,159 ft FEL Sec. 13, T24S, R33E, NMPM	Lea, NM	9/13/2023	7,600 ft	5,700 ft

Figure Appendix 1-1: Schematic of TND RH AGI #1 Well

Figure Appendix 1-2: As-built wellbore schematic for the TND RH AGI #3 Well

Note: Depths are not to scale.

Figure Appendix 1-3: As-built wellbore schematic for the TND RH AGI #2 Well (temporarily abandoned). The colored portion of the schematic below 6,205 ft was not completed.

Appendix 2 Referenced Regulations

U.S. Code > Title 26. INTERNAL REVENUE CODE > Subtitle A. Income Taxes > Chapter 1. NORMAL TAXES AND SURTAXES > Subchapter A. Determination of Tax Liability > Part IV. CREDITS AGAINST TAX > Subpart D. Business Related Credits > Section 45Q - Credit for carbon oxide sequestration

New Mexico Administrative Code (NMAC) > Title 19 – Natural resources > Chapter 15 – Oil and Gas

19.15.1 NMAC	GENERAL PROVISIONS AND DEFINITIONS [REPEALED]
19.15.2 NMAC	GENERAL PROVISIONS FOR OIL AND GAS OPERATIONS
19.15.3 NMAC	RULEMAKING
19.15.4 NMAC	ADJUDICATION
19.15.5 NMAC	ENFORCEMENT AND COMPLIANCE
19.15.6 NMAC	TAX INCENTIVES
19.15.7 NMAC	FORMS AND REPORTS
19.15.8 NMAC	FINANCIAL ASSURANCE
19.15.9 NMAC	WELL OPERATOR PROVISIONS
19.15.10 NMAC	SAFETY
19.15.11 NMAC	HYDROGEN SULFIDE GAS
19.15.12 NMAC	POOLS
19.15.13 NMAC	COMPULSORY POOLING
19.15.14 NMAC	DRILLING PERMITS
19.15.15 NMAC	WELL SPACING AND LOCATION
19.15.16 NMAC	DRILLING AND PRODUCTION
19.15.17 NMAC	PITS, CLOSED-LOOP SYSTEMS, BELOW-GRADE TANKS AND SUMPS
19.15.18 NMAC	PRODUCTION OPERATING PRACTICES
19.15.19 NMAC	NATURAL GAS PRODUCTION OPERATING PRACTICE
19.15.20 NMAC	OIL PRORATION AND ALLOCATION
19.15.21 NMAC	GAS PRORATION AND ALLOCATION
19.15.22 NMAC	HARDSHIP GAS WELLS
19.15.23 NMAC	OFF LEASE TRANSPORT OF CRUDE OIL OR CONTAMINANTS
19.15.24 NMAC	ILLEGAL SALE AND RATABLE TAKE
19.15.25 NMAC	PLUGGING AND ABANDONMENT OF WELLS
19.15.26 NMAC	INJECTION
19.15.27 - 28 NMAC	[RESERVED] PARTS 27 - 28
19.15.29 NMAC	RELEASES

CHAPTER 15 - OIL AND GAS

19.15.30 NMAC	REMEDIATION
19.15.31 - 33 NMAC	[RESERVED] PARTS 31 - 33
19.15.34 NMAC	PRODUCED WATER, DRILLING FLUIDS AND LIQUID OIL FIELD WASTE
19.15.35 NMAC	WASTE DISPOSAL
19.15.36 NMAC	SURFACE WASTE MANAGEMENT FACILITIES
19.15.37 NMAC	REFINING
19.15.38 NMAC	[RESERVED]
19.15.39 NMAC	SPECIAL RULES
19.15.40 NMAC	NEW MEXICO LIQUIFIED PETROLEUM GAS STANDARD
19.15.41 - 102 NMAC	[RESERVED] PARTS 41 - 102
19.15.103 NMAC	SPECIFICATIONS, TOLERANCES, AND OTHER TECHNICAL REQUIREMENTS FOR COMMERCIAL WEIGHING AND MEASURING DEVICES
19.15.104 NMAC	STANDARD SPECIFICATIONS/MODIFICATIONS FOR PETROLEUM PRODUCTS
19.15.105 NMAC	LABELING REQUIREMENTS FOR PETROLEUM PRODUCTS
19.15.106 NMAC	OCTANE POSTING REQUIREMENTS
19.15.107 NMAC	APPLYING ADMINISTRATIVE PENALTIES
19.15.108 NMAC	BONDING AND REGISTRATION OF SERVICE TECHNICIANS AND SERVICE ESTABLISHMENTS FOR COMMERCIAL WEIGHING OR MEASURING DEVICES
19.15.109 NMAC	NOT SEALED NOT LEGAL FOR TRADE
19.15.110 NMAC	BIODIESEL FUEL SPECIFICATION, DISPENSERS, AND DISPENSER LABELING REQUIREMENTS [REPEALED]
19.15.111 NMAC	E85 FUEL SPECIFICATION, DISPENSERS, AND DISPENSER LABELING REQUIREMENTS [REPEALED]
19.15.112 NMAC	RETAIL NATURAL GAS (CNG / LNG) REGULATIONS [REPEALED]

Appendix 3 Water Wells

Water wells identified by the New Mexico State Engineer's files within two miles of the RH AGI wells; water wells within one mile are highlighted in yellow.

POD Number	County	Sec	Tws	Rng	UTME	UTMN	Distance (mi)	Depth Well (ft)	Depth Water (ft)	Water Column (ft)
C 03666 POD1	LE	13	245	33E	639132	3565078	0.31	650	390	260
C 03917 POD1	LE	13	245	33E	638374	3565212	0.79	600	420	180
C 03601 POD1	LE	23	245	33E	638124	3563937	1.17			
C 02309	LE	25	245	33E	639638	3562994	1.29	60	30	30
C 03601 POD3	LE	24	245	33E	638142	3563413	1.38			
C 03932 POD8	LE	7	245	34E	641120	3566769	1.40	72		
C 03601 POD2	LE	23	245	33E	637846	3563588	1.44			
C 03662 POD1	LE	23	245	33E	637342	3564428	1.48	550	110	440
C 03601 POD5	LE	23	245	33E	637988	3563334	1.48			
C 03601 POD6	LE	23	245	33E	637834	3563338	1.55			
C 03601 POD7	LE	23	245	33E	637946	3563170	1.58			
C 03600 POD2	LE	25	245	33E	638824	3562329	1.78			
C 03602 POD2	LE	25	245	33E	638824	3562329	1.78			
C 03600 POD1	LE	26	245	33E	637275	3563023	1.94			
C 03600 POD3	LE	26	245	33E	637784	3562340	2.05			

Appendix 4 Oil and Gas Wells within 2-mile Radius of the RH AGI Well Site

Note – a completion status of "New" indicates that an Application for Permit to Drill has been filed and approved but the well has not yet been completed. Likewise, a spud date of 31-Dec-99 is actually 12-31-9999, a date used by NMOCD databases to indicate work not yet reported.

ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
30-025- 08371	COSSATOT E 002	PRE-ONGARD WELL OPERATOR	OIL	DELAWARE VERTICAL	P & A	VERTICAL	5425	Yes
30-025- 25604	GOVERNMENT L COM 001	EOG RESOURCES INC	GAS	DELAWARE VERTICAL	P & A	VERTICAL	17625	No
30-025- 26369	GOVERNMENT L COM 002	EOG RESOURCES INC	GAS	DELAWARE VERTICAL	P & A	VERTICAL	14698	Yes
30-025- 26958	SIMS 001	BOPCO, L.P.	GAS	DELAWARE VERTICAL	P & A	VERTICAL	15007	Yes
30-025- 27491	SMITH FEDERAL 001	PRE-ONGARD WELL OPERATOR	OIL	DELAWARE	P & A	VERTICAL	15120	No
30-025- 29008	MADERA RIDGE 24 001	EOG RESOURCES	GAS	DELAWARE	TA	VERTICAL	15600	No
30-025- 29008	MADERA RIDGE 24 001	EOG RESOURCES	GAS	DELAWARE	TA	VERTICAL	15600	No
30-025- 40448	RED HILLS AGI 001	TARGA NORTHERN DELAWARE, LLC.	INJECTOR	DELAWARE	INJECTING	VERTICAL	6650	Yes
30-025- 40914	DECKARD FEE 001H	COG OPERATING LLC	OIL		PRODUCING	VERTICAL	10997	No
30-025- 40914	DECKARD FEE 001H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11034	No
30-025- 41382	DECKARD FEDERAL COM 002H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11067	Yes
30-025- 41383	DECKARD FEDERAL COM 003H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11162	Yes
30-025- 41384	DECKARD FEDERAL COM 004H	COG OPERATING LLC	OIL	3RD BONE SPRING	PRODUCING	HORIZONTAL	11103	Yes
30-025- 41666	SEBASTIAN FEDERAL COM 002H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10927	Yes
30-025- 41687	SEBASTIAN FEDERAL COM 001H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10944	Yes
30-025- 41688	SEBASTIAN FEDERAL COM 003H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11055	No
30-025- 43532	LEO THORSNESS 13 24 33 211H	MATADOR PRODUCTION COMPANY	GAS	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12371	No
30-025- 44442	STRONG 14 24 33 AR 214H	MATADOR PRODUCTION COMPANY	GAS	WOLFCAMP A LOWER	PRODUCING	HORIZONTAL	12500	No
30-025- 46154	LEO THORSNESS 13 24 33 221H	MATADOR PRODUCTION COMPANY	OIL	WOLFCAMP B UPPER	PRODUCING	HORIZONTAL	12868	No
30-025- 46282	LEO THORSNESS 13 24 33 AR 135H	MATADOR PRODUCTION COMPANY	OIL	3RD BONE SPRING SAND	PRODUCING	HORIZONTAL	12103	No

ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
30-025- 46517	BROADSIDE 13 W FEDERAL COM 001H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12213	No
30-025- 46518	BROADSIDE 13 24 FEDERAL COM 002H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 46519	BROADSIDE 13 24 FEDERAL COM 003H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP A LOWER	PRODUCING	HORIZONTAL	12320	Yes
30-025- 46985	SEBASTIAN FEDERAL COM 703H	COG OPERATING LLC	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12123	No
30-025- 46988	SEBASTIAN FEDERAL COM 704H	COG OPERATING LLC	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12142	No
30-025- 47869	JUPITER 19 FEDERAL COM 501H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11175	Yes
30-025- 47870	JUPITER 19 FEDERAL COM 502H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11141	Yes
30-025- 47870	JUPITER 19 FEDERAL COM 502H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11141	Yes
30-025- 47872	JUPITER 19 FEDERAL COM 403H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PRODUCING	HORIZONTAL	10584	No
30-025- 47872	JUPITER 19 FEDERAL COM 403H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PRODUCING	HORIZONTAL	10584	No
30-025- 47873	JUPITER 19 FEDERAL COM 309H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10250	No
30-025- 47873	JUPITER 19 FEDERAL COM 309H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10250	No
30-025- 47874	JUPITER 19 FEDERAL COM 506H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10950	No
30-025- 47875	JUPITER 19 FEDERAL COM 507H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11150	No
30-025- 47875	JUPITER 19 FEDERAL COM 507H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11150	No
30-025- 47876	JUPITER 19 FEDERAL COM 508H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11143	No
30-025- 47876	JUPITER 19 FEDERAL COM 508H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11143	No
30-025- 47877	JUPITER 19 FEDERAL COM 509H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11156	No
30-025- 47878	JUPITER 19 FEDERAL COM 510H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11102	No
30-025- 47908	JUPITER 19 FEDERAL COM 601H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes

ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
30-025- 47910	JUPITER 19 FEDERAL COM 702H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	DUC	HORIZONTAL	0	Yes
30-025- 47911	JUPITER 19 FEDERAL COM 705H	EOG RESOURCES INC	OIL	WOLFCAMP A LOWER	PERMITTED	HORIZONTAL	12290	No
30-025- 47912	JUPITER 19 FEDERAL COM 707H	EOG RESOURCES INC	OIL	WOLFCAMP B UPPER	PERMITTED	HORIZONTAL	12515	No
30-025- 47913	JUPITER 19 FEDERAL COM 708H	EOG RESOURCES INC	OIL	WOLFCAMP A LOWER	PERMITTED	HORIZONTAL	12477	No
30-025- 48239	JUPITER 19 FEDERAL COM 306H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10270	No
30-025- 48889	JUPITER 19 FEDERAL COM 701H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 48890	JUPITER 19 FEDERAL COM 703H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 49262	BROADSIDE 13 24 FEDERAL COM 004H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP B UPPER	PRODUCING	HORIZONTAL	12531	Yes
30-025- 49263	BROADSIDE 13 24 FEDERAL COM 015H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP B LOWER	PRODUCING	HORIZONTAL	12746	Yes
30-025- 49264	BROADSIDE 13 24 FEDERAL COM 025H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	3RD BONE SPRING	PRODUCING	HORIZONTAL	11210	Yes
30-025- 49474	RED HILLS AGI 002	TARGA NORTHERN DELAWARE, LLC.	INJECTOR	DELAWARE VERTICAL	Temporarily Abandoned	VERTICAL	17600	Yes

Appendix 5 References

Application for Authorization to Inject via Proposed Red Hills AGI #1 Well, Agave Energy Red Hills Gas Plant, Lea County, New Mexico; July 20, 2011; prepared by Geolex, Inc. for Agave Energy Company

Application for a Redundant Class II AGI Well, Lucid Energy Delaware, LLC; Red Hills AGI #2; August 8, 2019, prepared by Geolex, Inc. for Lucid Energy Delaware, LLC

Boyle, T.B., Carroll, J.J., 2002. Study determines best methods for calculating acid-gas density. *Oil and Gas Journal* 100 (2): 45-53.

Broadhead, R.F., 2017. Energy and Mineral Resources of New Mexico: Petroleum Geology; Socorro, New Mexico Bureau of Geology and Mineral Resources: 104 p.

Case No. 20779, Notice Regarding Hearing Exhibits, Application of Lucid Energy Delaware, LLC for Authorization to Inject, Lea County, New Mexico

Giesen, J.H. and Scholle, P.A., 1990. Regional basinal sandstone depositional patterns during the Guadalupian (Late Permian), Delaware basin, west Texas-New Mexico [abs.]: The American Association of Petroleum Geologists Bulletin 74: 660-661.

Ewing, E., 2019. Tectonics of the West Texas (Permian) Basin—Origins, structural geology, subsidence, and later modification: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 63-96.

Ge, J., Nicot, J.P., Hennings, P.H., Smye, K.M., Hosseini, S.A., Gao, R.S., and Breton, C.L., 2022. Recent water disposal and pore pressure evolution in the Delaware Mountain Group, Delaware Basin, Southeast New Mexico and West Texas, USA: Journal of Hydrology: Regional Studies 40: 101041.

Fu, Q., Baumgardner, R.W., Jr., and Hamlin, H.S., 2020. Early Permian (Wolfcampian) succession in the Permian Basin: icehouse platform, slope carbonates, and basinal mudrocks: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 185-225.

H₂S Contingency Plan, Targa Northern Delaware, August 2023, Red Hills Gas Processing Plant, Lea County, NM

Harms, J.C., 1974. Brushy Canyon Formation, Texas: A deepwater density current deposit: Geological Society of America Bulletin 85: 1763-1784.

Harrington, R., 2019. The Middle–Upper Ordovician Simpson Group of the Permian Basin: stratigraphy, lithofacies, and reservoir development: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 331-352.

Harrington, R. and Ruppel, S., 2019. Patterns of Montoya Group (Middle Ordovician) deposition, diagenesis, and reservoir development in the Permian Basin: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 353-378.

Hills, J.M., 1984. Sedimentation, tectonism, and hydrocarbon generation in Delaware Basin, west Texas and southeastern New Mexico: The American Association of Petroleum Geologists Bulletin 68: 250-267.

Horne, E., Hennings, P., Zahm, C., 2021. Basement-rooted faults of the Delaware Basin and Central Basin Platform, Permian Basin, West Texas and southeastern New Mexico: O.A. Callahan, P. Eichhubl (eds.), The Geologic Basement of Texas: A Volume in Honor of Peter T. Flawn, Austin, The University of Texas, Bureau of Economic Geology: 1-37. Horne, E.A., Hennings, P.H., Smye, K.M., Staniewicz, S., Chen, J., Savvaidis, A., 2022. Structural characteristics of shallow faults in the Delaware Basin: Interpretation 10: T807-T835.

King, P.B., 1948. Geology of the southern Guadalupe Mountains, Texas: United States Geological Survey Professional Paper 215: 183 p.

Lambert, S.J., 1992. Geochemistry of the Waste Isolation Pilot Plant (WIPP) site, southeastern New Mexico, U.S.A. *Applied Geochemistry* 7: 513-531.

Loucks, R. and Kerans, C., 2019. A Geologic review of the Lower Ordovician Ellenburger Group of the Permian Basin, West Texas and southeast New Mexico: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 295-330.

Luo, Ming; Baker, Mark R.; and LeMone, David V.; 1994, *Distribution and Generation of the Overpressure System, Eastern Delaware Basin, Western Texas and Southern New Mexico*, AAPG Bulletin, V.78, No. 9 (September 1994) p. 1386-1405.

Madalyn S. Blondes, Kathleen D. Gans, James J. Thordsen, Mark E. Reidy, Burt Thomas, Mark A. Engle, Yousif K. Kharaka, and Elizabeth L. Rowan, 2014. U.S. Geological Survey National Produced Waters Geochemical Database v2.1,

http://energy.usgs.gov/EnvironmentalAspects/EnvironmentalAspectsofEnergyProductionandUse/ProducedWaters. aspx

Nance, H.S., 2020. Upper Permian Delaware Mountain Group: Record of highstand/lowstand platform: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 399-436.

Nance, H.S., Hamlin, H.S., 2020. The Bone Spring Formation (Leonardian) of the Delaware Basin: deepwater lithofacies and stratigraphy: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 321-348.

Nicholson, A., Jr., Clebsch, A., Jr., 1961. *Geology and ground-water conditions in southern Lea County, New Mexico*. New Mexico Bureau of Mines and Mineral Resources, Ground-Water Report 6, 123 pp., 2 Plates.

Powers, D.W., Lambert, S. J., Shafer, S., Hill, L. R. and Weart, W. D., 1978., *Geological Characteristic Report, Waste Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico (SAND78-1596)*, Department 4510, Waste Management Technology, Sandia Laboratories, Albuquerque, New Mexico

Ruppel, S., 2019a. Anatomy of a Paleozoic basin: the Permian Basin, USA: Introduction, overview, and evolution: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 1-27.

Ruppel, S., 2019b. The Fusselman of the Permian Basin: patterns in depositional and diagenetic facies development on a stable platform during the Late Ordovician–Early Silurian icehouse: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 379-399.

Ruppel, S., 2020. The Middle Silurian–Lower Devonian Wristen Group, Permian Basin: impact of tectonic subsidence on patterns of deposition, diagenesis, and reservoir development: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 1-36.

Ruppel, S., Hovorka, S., Barnaby, R., 2020a. Proximal shallow-water carbonates and distal biosiliceous cherts of the Lower Devonian Thirtyone Formation, Permian Basin: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 37-74.

Ruppel, S.C., Rowe, H., Reed, R., Barrick, J.E., James, E.W., Loucks, R.G., 2020b. The Woodford Formation of the Permian Basin: regional, Middle to Late Devonian transgression of the southern Midcontinent and accompanying global anoxia: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 75-124.

Scholle, P.A., Goldstein, R.H., Ulmer-Scholle, D.S., 2007. Classic Upper Paleozoic reefs and bioherms of West Texas and New Mexico: Field guide to the Guadalupe and Sacramento Mountains of West Texas and New Mexico. Socorro, New Mexico Bureau of Geology and Mineral Resources, Open-File Report 504: 178 p.

Scholle, P., Broadhead, R.F., McLemore, V., 2020. The Permian Basin: Scholle, P., Ulmer-Scholle, D., Cather, and S., Kelley, S. (eds.), The Geology of Southern New Mexico Parks, Monuments, and Public Lands: Socorro, New Mexico Bureau of Geology and Mineral Resources: 285-295.

Silver, B.A., Todd, R.G., 1969. Permian cyclic strata, northern Midland and Delaware Basins, west Texas and southeastern New Mexico, *The American Association of Petroleum Geologists Bulletin* 53: 2223- 2251.

Smye, K.D., Banerji, A., Eastwood, R., McDaid, G., and Hennings, P., 2021. Lithology and reservoir properties of the Delaware Mountain Group of the Delaware Basin and implications for saltwater disposal and induced seismicity: Journal of Sedimentary Research 91 (11): 1113–1132.

US EPA, O., 2015, *Procedures for Groundwater Sampling in the Laboratory Services and Applied Science Division*: https://www.epa.gov/quality/procedures-groundwater-sampling-laboratory-services-and-applied-science-division (accessed September 2023).

Walsh, R., Zoback, M.D., Pasi, D., Weingarten, M. and Tyrrell, T., 2017, FSP 1.0: A Program for Probabilistic Estimation of Fault Slip Potential Resulting from Fluid Injection, User Guide from the Stanford Center for Induced and Triggered Seismicity, available from SCITS.Stanford.edu/software

Ward, R.F., Kendall, C.G.St.C., Harris, P.M., 1986. Upper Permian (Guadalupian) facies and their association with hydrocarbons – Permian Basin, west Texas and New Mexico. *The American Association of Petroleum Geologists Bulletin* 70: 239-262.

Wilson, J.L., 1972. Cyclic and reciprocal sedimentation in Virgilian strata of southern New Mexico: J.G. Elam, S. Chuber (eds.), Cyclic Sedimentation in the Permian Basin (2nd edition), Midland, West Texas Geological Society: 82-99.

Wright, W., 2020. Pennsylvanian (upper Carboniferous) paleodepositional evolution of the greater Permian Basin, Texas and New Mexico: depositional systems and hydrocarbon reservoir: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 159-183.

Xiao, Ting et al. (2024). A review of risk and uncertainty assessment for geologic carbon storage. Renewable and Sustainable Energy Reviews 189 (2024) 113945

Appendix 6 Abbreviations and Acronyms

3D - 3 dimensional AGA – American Gas Association AMA – Active Monitoring Area AoR – Area of Review **API – American Petroleum Institute** CFR - Code of Federal Regulations C1 – methane C6 – hexane C7 - heptane CO₂ – carbon dioxide DCS - distributed control system EPA – US Environmental Protection Agency, also USEPA ft-foot (feet) GHGRP – Greenhouse Gas Reporting Program GPA – Gas Producers Association m - meter(s)md – millidarcy(ies) mg/I – milligrams per liter MIT – mechanical integrity test MMA – maximum monitoring area MSCFD- thousand standard cubic feet per day MMSCFD - million standard cubic feet per day MMstb - million stock tank barrels MRRW B – Morrow B MRV – Monitoring, Reporting, and Verification MT -- Metric tonne NIST - National Institute of Standards and Technology NMOCC - New Mexico Oil Conservation Commission NMOCD - New Mexico Oil Conservation Division PPM – Parts Per Million psia – pounds per square inch absolute QA/QC – quality assurance/quality control SCITS - Stanford Center for Induced and Triggered Seismicity Stb/d – stock tank barrel per day TAG – Treated Acid Gas TDS – Total Dissolved Solids TVD – True Vertical Depth **TVDSS** – True Vertical Depth Subsea UIC – Underground Injection Control USDW - Underground Source of Drinking Water

	Subpart RR Equation	Description of Calculations and Measurements [*]	Pipeline	Containers	Comments			
	RR-1	calculation of CO ₂ received and measurement of CO ₂ mass	through mass flow meter.	in containers. **				
CO ₂ Received	RR-2	calculation of CO ₂ received and measurement of CO ₂ volume	through volumetric flow meter.	in containers. ***				
	RR-3	summation of CO_2 mass received	through multiple meters.					
	RR-4	calculation of CO ₂ mass injected, mea	asured through mass flow me	ters.				
CO ₂ Injected	RR-5	calculation of CO ₂ mass injected, mea	asured through volumetric flo	ow meters.				
	RR-6 summation of CO ₂ mass injected, as calculated in Equations RR-4 and/or RR-5.							
	RR-7	calculation of CO ₂ mass produced / r mass flow meters.						
CO ₂ Produced / Recycled	RR-8	calculation of CO ₂ mass produced / revolumetric flow meters.						
	RR-9	summation of CO ₂ mass produced / r in Equations RR-7 and/or RR8.						
CO ₂ Lost to Leakage to the Surface	RR-10	calculation of annual CO ₂ mass emitt	calculation of annual CO $_2$ mass emitted by surface leakage					
CO₂ Sequestered	RR-11	calculation of annual CO ₂ mass sequestered for operators ACTIVELY producing oil or gas or any other fluid; includes terms for CO ₂ mass injected, produced, emitted by surface leakage, emitted from surface equipment between injection flow meter and injection well head, and emitted from surface equipment between production well head and production flow meter.			Calculation procedures are provided in Subpart W of GHGRP for CO _{2FI} .			
	RR-12	calculation of annual CO ₂ mass seque or any other fluid; includes terms for from surface equipment between inj	Calculation procedures are provided in Subpart W of GHGRP for CO _{2FI} .					

Appendix 7 TND Red Hills AGI Wells - Subpart RR Equations for Calculating CO₂ Geologic Sequestration

* All measurements must be made in accordance with 40 CFR 98.444 – Monitoring and QA/QC Requirements.

** If you measure the mass of contents of containers summed quarterly using weigh bill, scales, or load cells (40 CFR 98.444(a)(2)(i)), use RR-1 for Containers to calculate CO₂ received in containers for injection.

*** If you determine the volume of contents of containers summed quarterly (40 CFR 98.444(a)(2)(ii)), use RR-2 for Containers to calculate CO₂ received in containers for injection.
Appendix 8 Subpart RR Equations for Calculating Annual Mass of CO₂ Sequestered RR-1 for Calculating Mass of CO₂ Received through Pipeline Mass Flow Meters

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * C_{CO_{2,p,r}}$$

(Equation RR-1 for Pipelines)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons).
- Q r,p = Quarterly mass flow through a receiving flow meter r in quarter p (metric tons).
- S_{r,p} = Quarterly mass flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (metric tons).
- $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (wt. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- r = Receiving flow meter.

RR-1 for Calculating Mass of CO₂ Received in Containers by Measuring Mass in Container

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * C_{CO_{2,p,r}}$$

(Equation RR-1 for Containers)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received in containers r (metric tons).
- $Q_{r,p}$ = Quarterly mass of contents in containers r in quarter p (metric tons).
- S r,p = Quarterly mass of contents in containers r redelivered to another facility without being injected into your well in quarter p (metric tons).
- C _{CO2,p,r} = Quarterly CO₂ concentration measurement of contents in containers r in quarter p (wt. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- r = Containers.

RR-2 for Calculating Mass of CO₂ Received through Pipeline Volumetric Flow Meters

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$
(Equation RR-2 for Pipelines)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons).
- Q r,p = Quarterly volumetric flow through a receiving flow meter r in quarter p at standard conditions (standard cubic meters).
- S r,p = Quarterly volumetric flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- r = Receiving flow meter.

RR-2 for Calculating Mass of CO₂ Received in Containers by Measuring Volume in Container

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$
(Equation RR-2 for Containers)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received in containers r (metric tons).
- Q r,p = Quarterly volume of contents in containers r in quarter p at standard conditions (standard cubic meters).
- S r,p = Quarterly volume of contents in containers r redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO₂ received in containers at standard conditions (metric tons per standard cubic meter): 0.0018682.

 $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement of contents in containers r in quarter p (vol. percent CO₂, expressed as a decimal fraction).

p = Quarter of the year.

RR-3 for Summation of Mass of CO2 Received through Multiple Flow Meters for Pipelines

$$CO_2 = \sum_{r=1}^{R} CO_{2T,r}$$

(Equation RR-3 for Pipelines)

where:

- CO₂ = Total net annual mass of CO₂ received (metric tons).
- $CO_{2T,r}$ = Net annual mass of CO_2 received (metric tons) as calculated in Equation RR-1 or RR-2 for flow meter r.
- r = Receiving flow meter.

RR-4 for Calculating Mass of CO₂ Injected through Mass Flow Meters into Injection Well

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * C_{CO_{2,p,u}}$$

(Equation RR-4)

where:

 $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.

 $Q_{p,u}$ = Quarterly mass flow rate measurement for flow meter u in quarter p (metric tons per quarter).

 $C_{CO2,p,u}$ = Quarterly CO₂ concentration measurement in flow for flow meter u in quarter p (wt. percent CO₂, expressed as a decimal fraction).

RR-5 for Calculating Mass of CO₂ Injected through Volumetric Flow Meters into Injection Well

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$
 (Equation RR-5)

where:

- $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.
- Q _{p,u} = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter).
- D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,u} = CO_2$ concentration measurement in flow for flow meter u in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.

u = Flow meter.

RR-6 for Summation of Mass of CO₂ Injected into Multiple Wells

$$CO_{2I} = \sum_{u=1}^{U} CO_{2,u}$$

(Equation RR-6)

where:

- CO ₂₁ = Total annual CO₂ mass injected (metric tons) though all injection wells.
- $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.

u = Flow meter.

RR-7 for Calculating Mass of CO₂ Produced / Recycled from a Gas-Liquid Separator through Mass Flow Meters

$$CO_{2,w} = \sum_{p=1}^{4} Q_{p,w} * C_{CO_{2,p,w}}$$

(Equation RR-7)

where:

 $CO_{2,w}$ = Annual CO_2 mass produced (metric tons) through separator w.

- Q p,w = Quarterly gas mass flow rate measurement for separator w in quarter p (metric tons).
- $C_{CO2,p,w}$ = Quarterly CO₂ concentration measurement in flow for separator w in quarter p (wt. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.

w = Separator.

RR-8 for Calculating Mass of CO₂ Produced / Recycled from a Gas-Liquid Separator through Volumetric Flow Meters

$$CO_{2,w} = \sum_{p=1}^{4} Q_{p,w} * D * C_{CO_{2,p,w}}$$

(Equation RR-8)

where:

- $CO_{2,w}$ = Annual CO_2 mass produced (metric tons) through separator w.
- Q p,w = Quarterly gas volumetric flow rate measurement for separator w in quarter p (standard cubic meters).
- D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,w}$ = Quarterly CO₂ concentration measurement in flow for separator w in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- w = Separator.

RR-9 for Summation of Mass of CO₂ Produced / Recycled through Multiple Gas Liquid Separators

$$CO_{2P} = (1+X) \star \sum_{w=1}^{W} CO_{2,w}$$
 (Equation RR-9)

where:

- CO _{2P} = Total annual CO₂ mass produced (metric tons) though all separators in the reporting year.
- X = Entrained CO₂ in produced oil or other liquid divided by the CO₂ separated through all separators in the reporting year (wt. percent CO₂ expressed as a decimal fraction).
- $CO_{2,w}$ = Annual CO_2 mass produced (metric tons) through separator w in the reporting year.

w = Separator.

RR-10 for Calculating Annual Mass of CO₂ Emitted by Surface Leakage

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$

(Equation RR-10)

where:

CO 2E = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year.

 $CO_{2,x}$ = Annual CO_2 mass emitted (metric tons) at leakage pathway x in the reporting year.

x = Leakage pathway.

RR-11 for Calculating Annual Mass of CO₂ Sequestered for Operators Actively Producing Oil or Natural Gas or Any Other Fluid

$$CO_2 = CO_{2I} - CO_{2P} - CO_{2E} - CO_{2FI} - CO_{2FP}$$

(Equation RR-11)

Where:

- CO 2 = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CO ₂₁ = Total annual CO₂ mass injected (metric tons) in the well or group of wells in the reporting year.
- CO_{2P} = Total annual CO_2 mass produced (metric tons) in the reporting year.
- CO_{2E} = Total annual CO_2 mass emitted (metric tons) by surface leakage in the reporting year.
- CO 2FI = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part.
- CO _{2FP} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the production wellhead and the flow meter used to measure production quantity, for which a calculation procedure is provided in subpart W of this part.

RR-12 for Calculating Annual Mass of CO₂ Sequestered for Operators NOT Actively Producing Oil or Natural Gas or Any Other Fluid

$$CO_2 = CO_{2I} - CO_{2E} - CO_{2FI}$$
 (Equation RR-12)

- CO 2 = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CO 21 = Total annual CO₂ mass injected (metric tons) in the well or group of wells in the reporting year.
- CO 2E = Total annual CO₂ mass emitted (metric tons) by surface leakage in the reporting year.
- CO _{2F1} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part.

Appendix 9 P&A Records

Form 3160-5 April 2004) ,	UNITED STATES	s Ho	bbs, NM 88240	e	FORM APPROVED
•	DEPARTMENT OF THE BUREAU OF LAND MAN	INTERIOR AGEMENT		5 1	Expires: March 31, 2007
SUNDRY	NOTICES AND REI	PORTS ON	WELLS	 Lease Sena 	NM-17446
Do not use ti abandoned w	his form for proposals t ell. Use Form 3160-3 (o drill or to APD) for suc	re-enter an h proposais.	6. If Indian,	Allottee or Tribe Name
SUBMIT IN TRIPLICATE- Other instructions on reverse side.					CA/Agreement, Name and/or N
1. Type of Well Oil Well	Gas Well Other			- -	, ,
2. Name of Operator FOC Pro-		· · · · · · · · · · · · · · · · · · ·		8. Well Nan Ge	ne and No. overnment "L" Com #1
a Address	ources, Inc	3b Phone No	(include gree code)	9. API We	II No. 30-025-0 49-07 - 25U
P.O. Box 2267, M	idland, TX, 79702	432-561-860	10	10. Field and	Pool, or Exploratory Area
4. Location of Well (Footage, Sec.,	T., R., M., or Survey Description)			Be 11 County of	II Lake, South Morrow
Unit Letter G, 1980 FNL, 1 Section 18, Township 24-S,	980 FEL Range 34-E			The county of	Lea. New Mexico
12. CHECK A	PPROPRIATE BOX(ES) TO	INDICATE N	ATURE OF NOTIOF	REPORT OR	OTHER DATA
TYPE OF SUBMISSION			TYPE OF ACTION		
	Acidize	Deepen	Production (S	tart/Resume)	Water Shut-Off
Notice of Intent	Alter Casing	Fracture Trea	t Reclamation		Well Integrity
Subsequent Report	Casing Repair	New Constru	ction Recomplete		Other
Final Abandonment Notice	Convert to Injection	Plug and Aba	ndon L Temporarily A	Abandon I	<u></u>
testing has been completed. Fi determined that the site is read	nal Abandonment Notices shall be y for final inspection.)	filed only after all	requirements, including recla	mation, have been	, a Form 3160-4 shall be filed or a completed, and the operator has
					APPROVE
 Notified Jim McCorn Cut 3 1/2' thr at 1150 	tick w/BLM 24 hrs prior to M	I and RU.	11400 11/00 7 1120	, [
3. Circ hole w/MLF.	o, spor Josa C Lass II CIII, p	aug 110m 11500-	11400, WOC 12g at 1138	y.	
 Perf 4 holes at 9050, p Perf 4 holes at 7000, p 	press up to 2000 PSI, spot 75sx press up to 2000 PSI, spot 75sx	, plug from 9100 , plug from 7050	-8950, WOC Tag @ 8938 -6900. WOC Tag at 6855	.	JAN 4 2005
 Cut 10 3/4" esg at 545 Spot 75sx, plug from 	50, L/D csg, spot 150sx, plug fr 1300-1200 (T-Salt) WOC Tag	om 5500-5350, V	VOC Tag at 5336.		
8. Spot 150sx, plug from	650-450 (20" Shoe) WOC Ta	g at 423.			- GARY GOURTEX
10. Clean location. Insta	ll dry hole marker 12-30-04.				APPROVE
		P&A Complete	12-30-04		-
				5	JAN 4 2005
				1	GARY GOURLEY
 14. Thereby certify that the fore Name (Printed/Typed) 	going is true and correct	1		P	
14. Thereby certify that the form Name (Printed/Typed) Jimpr Bagley	going is true and correct	т	itle	Consultant	ELOW ENGINE
14. Thereby certify that the fore Name (Printed/Typed) Jimpry Bagley Signature	going is true and correct	T	itle	Consultant	
14. Thereby certify that the for Name (Printed/Typed) Jimpry Bagley Signature	going is true and correct	T I FEDERAL C	itle Date DR STATE OFFICE	Consultant 12/30/2004 E USE	
14. Thereby certify that the fore Name (Printed/Typed) Jimpry Bagley Signature	going is true and correct	T I FEDERAL C	itle Date DR STATE OFFICE Title	Consultant 12/30/2004 E USE	ate
14. Thereby certify that the fore Name (Printed/Typed) Jimpry Bagley Signature Approved by Conditions of approval, if any, are	going is true and correct	T I FEDERAL C	itle Date DR STATE OFFICE	Consultant 12/30/2004 E USE	ate
14. Thereby certify that the fore Name (Printed/Typed) Jimprf Bagley Signature Approved by Conditions of approval, if any, are certify that the applicant holds lega which would entitle the applicant to	attached. Approval of this notice or equitable title to those rights is o conduct operations thereon.	T FEDERAL C does not warrant of n the subject lease	itle bate DR STATE OFFICE Title office	Consultant 12/30/2004 E USE	ate

P&A Record for Government Com 001, API #30-025-25604

GWW 2

P&A Records for API #30-025-26958

Submit 1 Copy To Appropriate District Office	State of New Me	exico	Form C-103
District I – (575) 393-6161 1625 N. French Dr., Hobbs, NM 88240 District II., (575) 748-1283	Energy, Minerals and Natu	iral Resources	WELL API NO.
811 S First St, Artesia, NM 88210 REC	SERVED SERVATION	DIVISION	5Indicate Type of Lease
District III – (505) 334-6178 1000 Rio Brazos Rd , Aztec, NM 87410	1220 South St. Fran	ncis Dr.	STATE 🗍 FEE 🛛
District IV - (505) 476-3460 AUG 1220 S St Francis Dr , Santa Fe, NM 87505	16 2012 Santa Fe, NM 87	/505	6. State Oil & Gas Lease No. SCR-389
SUNDRY NOTICE SUNDRY NOTICE (DO NOT USE THIS FORM FOR PROPOSAL DIFFERENT RESERVOIR USE "APPL	S AND REPORTS ON WELLS S TO DRILL OR TO DEEPEN OR PLU ICATION FOR PERMIT" (FORM C-10	G BACK TO A DI) FOR SUCH	7. Lease Name or Unit Agreement Name Sims
PROPOSALS)	s Well 🛛 Other		8. Well Number #1
2. Name of Operator: Agave Energy (Company		9. OGRID Number
3. Address of Operator			14/831 10. Pool name or Wildcat
104 S. Fourth St., Artesia NM 88210 (575-748-4528)		Big Sinks Wolfcamp
4. Well Location			3
Unit LetterK:	_1980feet from theN	line and	_800feet from theEline
Section 13	Township 24S	Range 33E	NMPM Lea County
	T. Elevation (bnow whether DR,		
12. Check App	propriate Box to Indicate N	ature of Notice,	Report or Other Data
		SUR	SEQUENT REPORT OF
PERFORM REMEDIAL WORK		REMEDIAL WOR	
	HANGE PLANS	COMMENCE DRI	
		CASING/CEMENT	ГЈОВ 🗌
OTHER:			lug to cement off Cherry Canyon per
 Describe proposed or complete of starting any proposed work) proposed completion or recom 	d operations. (Clearly state all p . SEE RULE 19.15.7.14 NMAC pletion	pertinent details, and C. For Multiple Cor	a give pertinent dates, including estimated date npletions: Attach wellbore diagram of
The remediation of the Sims #1 we demobilized. The plugging wa Whitaker and E.L. Gonzales of plugging diagram. When estab reservoir as it was taking 3bh/	I pursuant to NMOCC order wa is done pursuant to NMOCD req is the OCD District 1 office who is offishing a rate prior to squeezing min on vacuum. This indicates	is completed on Aug juirements and all as approved the specifi the Cherry Canyon that the predicted in	ust 15, 2011 and all equipment has been spects of the effort were reported to Mark ics of the plugging as shown in the attached , it is clear that the reservoir is an excellent jection plume for the Red Hills AGI #1 in this
reservoir will be smaller than a intended and permitted injection the Sims#1. Please see attache	nticipated and the reservoir cond in zone by any nearby wellbores d wellbore sketch for plugging c	ditions act to preven including the Govt details of all plugs so	t migration of injected acid gas out of the #2, Govt#1 and Smith Federal #1 in addition to et and amounts of cement squeezed for each
piùg.			
			· · · · · ·
· · · · · · · · ·	,		
hereby certify that the information abo	ve is true and complete to the by	et of my knowledge	and belief
incredy centry that the information abo	ve is true and complete to the be	est of my knowledge	
`			
SIGNATURE		sultant to Agave Ene	rgy Company DATE August 16, 2012
Type or print nameAlberto A. Gutie	errez, RG E-mail address:a	aag@geolex.com	PHONE:505-842-8000
For State Use Only	$) \land $		· · · · · · · · · · · · · · · · · · ·
APPROVED BY	THE DE	st. Maz	<u>=</u>
Conditions of Approval (if any):			1 6 2012
			AUD

8/16/2012

P&A Records for API 30-025-08371

a a k		\sim)		
		 	NEW MEXI	CO OIL C	ONSERV	ATION	COMMISSIC	M	FORM C-103 (Rev 3-55)
т. 1948 1949 - ОР		(Subn	MISCEL	LANEO	LS REP		N WELLS	e 1706	
Name of Company	Byard	Bennett	<u>10 98 - 1</u>	Addr	20	7 West	Third, Rosv	well,	New Mexico
Lease	Hollar	nd	Well No.	Unit Lette H	section 13	Township 2	4 South	Rang	° 33 East
Date Work Performer March 8, 19	i i 61	^{vost} Wilde	Gt	anan Bulan Jacobian Badhanan ay kata an isan	(County Le	a		
		THIS	S A REPORT	OF: (Chec	k appropria	(e block)			
Beginning Dril	ling Operations	[_] C. [_] R	asing Test ar emedial Work	nd Cement Jo	b (]] Other (F	ixplain):		
Top of Dela Cement Plu	ware Sand: gs set as fo 5375-542 340-390 Heavy mu Job perfc	5210', Tote Hows: 5 with 15 s with 20 sac ud (2 cc w ormed and w	al Depth: sacks, 517 sks, 5 sac vtr. loss) vitnessed l	5425', (25-5240 w ks and m between by Mr. P	Casing 8 vith 20 s arker pip all cem ool, Poo	5/8 set acks, 13 be set at lent plug I Drlg C	at 365', 375-1425 v surface. s.	Hole vith 2	size 6 3/4 0 sacks,
Location w	Mr. Fred	Pool	Pesirion LOW FOR 1	oon as pro Owner REMEDIAL	an trom actical.	Mr. Eng Company PORTS OF	pol Drlg C	ew ///	
Location w Witnessed by D.F. Elev.	Mr. Fred	Pool	Pesition LOW FOR I FOR I	oon as progr Owner REMEDIAL INAL VELL	an trom actical.	Mr. Eng Company PORTS OF Producing	pol Drlg C NLY	ew M	mpletion Date
Location w Witnessed by D.F. Elev. Tubing Diameter	Mr. Fred	Pool FILL IN BE	Pesirian Desirian	Owner Owner REMEDIAL INAL WELC	work re DATA	Mr. Eng Company PC PORTS OF Producing er	pol Drlg C NLY Interval	ew M	mpletion Date
Location w Witnessed by D.F. Elev. Tubing Dismeter Perforsted Intervalf	Mr. Fred	Pool Fill IN BE	Pesition LOW FOR I ORIG	Owner REMEDIAL INAL VELL	work re ring Diame	Mr. Eng Company PC PORTS Of Producing	pol Drlg C NLY	ew M	mpletion Date
Location w Witnessed by D F Elev. Tubing Diameter Perforated Interval Open Hole Interval	Mr. Fred	Pool FILL IN BE	Pesition	Owner Cowner REMEDIAL INAL WELL INAL WELL INAL WELL INAL WELL INAL WELL INAL WELL	work re DATA ring Diame	Mr. Eng Company PORTS () Producing tion(s)	pol Drlg C NLY Interval	ew M	mpletion Date
Location w Witnessed by D.F. Elev. Tubing Dismeter Perforsted Interval Open Hole Interval	Mr. Fred	Pool FILL IN BE	Position Position LOW FOR I ORIG	Owner Owner REMEDIAL INAL VELC	work re DATA ring Diame	Mr. Eng Company Por PORTS O Producing er	pol Drlg C NLY Interval	ew M	nipletion Date
Location w Witnessed by D F Elev. Tubing Diameter Perforated Intervalf Open Hole Interval Test Before Workover	Mr. Fred	Pool FILL IN BE Luburg Depth	Pesition Pesition LOW FOR I ORIG IT IS T RESUL SO ANS M	Owner Owner REMEDIAL INAL VELC I Oit Si Drodu TS OF WOI C F / D	work re DATA ring Diamet Cing Forma KOVER	Mr. Eng Company PC PORTS OF Producing er tion(s)	pol Drlg C NLY Interval Oil Stri	ew M Co. Ing Dept	mpletion Date th Gas Well Potential MCEPD
Location w Witnessed by D F Elev. Tubing Dismeter Perforsted Intervelf Open Hole Interval Test Before Workover After Workover	Mr. Fred	Pool FILL IN BE Lature Depth	RESUL	Owner Council Counc	work re batical. work re DATA ring Diamed cing Forma KOVER Water P B	Mr. Eng Company PC PORTS OF Producing Producing cer	gbrecht, No pol Drlg C NLY Interval Oil Stri	ew M Co. Со Со Со Со Со	mpletion Date th Gas Well Potential MCEPD
Location w Witnessed by D F Elev. Tubing Diameter Perforated Interval Open Hole Interval Test Before Workover After Workover	Prior Veri ill be clear <u>Mr. Fred</u> T D g) Date of Test:	Pool FILL IN BE Laburg Depth	Pesirian Pesirian LOW FOR I ORIG PICT RESUL M	Owner Commer REMEDIAL INAL VELC INAL VEL	work re batta work re DATA ring Diamen cing Forma KOVER Water P B why certifier be best of	Mr. Eng Company PC PORTS Of Producing er tion(s) roduction PD	pol Drlg C NLY Interval Oil Stri Go R Cubic fee:	ew M Co. Co. Co. Bbl Bbl	mpletion Date th Gas Well Potential MC F PD c is frue and complete
Location w Witnessed by D F Elev, Tubing Diameter Perforated Interval Open Hole Interval Test Before Workover After Workover Of Approved by Title	Prior veri ill be clear <u>Mr. Fred</u> T D s) Date of Tes: CONSERVAT	Pool FILL IN BE Fature Depth Oil Production HPD ION COMMISSIO	Pesition Pesition LOW FOR I ORIG PICT RESUL N RESUL N A A A A A A A A A A A A A	Ownes Common as pro- Ownes REMEDIAL INAL VELL D Opt St Production CEPTD Chan Inal Production CEPTD	work re batta work re bata ting Diamen cong Forma cong	Mr. Eng Company PC PORTS () Producing er tion(s) roduction PD	pol Drlg C NLY Interval Oil Stri Cubic fee:	ew M Co. Ing Depu Bbl	mpletion Date th Gas Well Potential MC + PD th

Temporary Abandonment Record for RH AGI #2

Received by OCI	D- 3/17/2023 2:07:28 I To Appropriate District	PM Sta	te of New Me	xico			Form C-103
District I – (575) 1625 N. French District II. (57)	<u>District I</u> – (575) 393-6161 Effergy, M 1625 N. French Dr., Hobbs, NM 88240 District II – (575) 748-1283			ral Resources	WELL API NO. 30.025-49474		
811 S. First St.,	Artesia, NM 88210	OIL CON	SERVATION	DIVISION	5 Indicate Type of Lease		
District III - (50	5) 334-6178	1220	South St. Fran	eis Dr.	STATE	FE OF Lease	E 🖂
<u>District IV</u> – (50 1220 S. St. Fran 87505	of Dr., Santa Fe, NM	Sa	nta Fe, NM 87	505	6. State Oil &	Gas Lease N	0.
(DO NOT USE DIFFERENT RI	SUNDRY NOTIO THIS FORM FOR PROPOS ESERVOIR. USE "APPLIC.	CES AND REPOR ALS TO DRILL OR T ATION FOR PERMIT	TS ON WELLS O DEEPEN OR PLU " (FORM C-101) FO	JG BACK TO A R SUCH	7. Lease Nam RED HILLS	e or Unit Agr AGI	eement Name
1. Type of V	Vell: Oil Well 🗍 🔘	Gas Well 🕅 Otl	ner Acid Gas Inj	ection	8. Well Numb	oer 002	
2. Name of C TARGA NO	Operator RTHERN DELAWAR	E, LLC			9. OGRID Nu 331548	umber	
3. Address o	f Operator		_		10. Pool name	e or Wildcat	
110 W 7 ^{1H} S	TREET, SUITE 2300,	TULSA OK 7411	9				
4. Well Loca	ation			1450		_	
Unit	Letter_1_:_1800f	eet from the SOU	IH line	and 150 fee	et from the EAS	I <u> </u>	_line
Sect	10n 13	11 Elevation (Si	p 24S	Range 33E	NMPM	LEA	County
		3575 GR	iow whether DR,	KKD, KI, GK, etc.)	,		
	12. Check A	ppropriate Box	to Indicate N	ature of Notice, SUB	Report or Oth	ner Data REPORT C	
TEMPORAR PULL OR AL DOWNHOLE CLOSED-LO	ILY ABANDON	CHANGE PLANS MULTIPLE COM	Book B B PL D	COMMENCE DRI CASING/CEMEN	ILLING OPNS.] P AND A	
OTHER:	TEM	PORARY ABAND		OTHER:			
 Descr of sta propo 	ribe proposed or comple rting any proposed wor osed completion or reco	eted operations. (k). SEE RULE 1 mpletion.	Clearly state all p 9.15.7.14 NMAC	ertinent details, and 2. For Multiple Cor	d give pertinent mpletions: Attac	dates, includir ch wellbore di	ng estimated date agram of
3/08/2023 Dr. 3/08-3/10 Re 3/11 Rig up I 3/12 Drilled 3/15 Rig up H Tagged plug a Decision has I	illed out of 13 3/8" with gained partial circulation Halliburton and squeeze out cement squeeze and Ialliburton and set 150 t 5960° and shut down	a 12 ¼" bit. Drill on and drilled to 6 e zone with 370 sa ran FIT test but sack balanced plug to wait on orders.	ed to 6161'and k 205'. cks of HalCem c would only hold g with Hal NEO (Cherry Canyon II	ost circulation. Att ement . 11.5 lb/gal. CEM cement viection zone due to	tempt to regain v	vith 3 heavy I	.CM pills.
Propose to TE RUN A CEMI SET A 100' C	MPORARY ABANDO ENT BOND LOG INSI CORROSION RESISTA	ON THE WELL B DE THE 13 3/8" ANT PLUG ON T 0') AND 50' AB(Y: OP OF EXISTIN	IG PLUG, SET A (CEMENT PLUG	INSIDE THI	E 13 3/8"
PRESSURE T REMOVE TH	EST THE CASING TO E BOP AND INSTAL	0 500 PSI FOR 30 L A BLIND FLAN	MINUTES NGE AND NIGH	ITCAP ON THE W	ELLHEAD.	10111200 10	
Spud Date:	02/13/2023		Rig Release Da	te:			
I hereby certif	y that the information a	bove is true and c	omplete to the be	st of my knowledg	e and belief.		
SIGNATURE	_Paul Ragsdale	TITLE	ENGINEER		DATE_	03/17/2	023
Type or print 1 For State Use	name _PAUL RAGSDA Only	ALE	E-mail address:	_pragsdale3727@	gmail.com	PHONE:	_575-626-7903_
APPROVED I	BY:	58 PM	_TITLE			DATE	

Received by OCD: 3/17/2023 2:07:28 PM

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720
 District II
 811 S. First St., Artesia, NM 88210

 Phone:(575) 748-1283 Fax:(575) 748-9720

 District III

 1000 Rio Brazos Rd., Azlec, NM 87410

 Phone:(505) 334-6178 Fax:(505) 334-6170
 District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico **Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 2 of 2

CONDITIONS

Action 198393

CONDITIONS

Operator:	OGRID:	
Targa Northern Delaware, LLC.	331548	
110 W. 7th Street, Suite 2300	Action Number:	
Tulsa, OK 74119	198393	
	Action Type:	
	[C-103] Sub. General Sundry (C-103Z)	

CONDITIONS

Created	Condition	Condition					
Dy		Date					
pkautz	MUST CAP EXISTING PLUG WITH 100' CORROSION RESISTANT CEMENT	3/17/2023					
pkautz	AFTER TA MUST PERFORM TA PRESSURE TEST	3/17/2023					
pkautz	AFTER TA SUBMIT A WELLBORE SCHEMATIC	3/17/2023					

Request for Additional Information: Red Hills Gas Processing Plant July 11, 2024

Instructions: Please enter responses into this table and make corresponding revisions to the MRV Plan as necessary. Any long responses, references, or supplemental information may be attached to the end of the table as an appendix. This table may be uploaded to the Electronic Greenhouse Gas Reporting Tool (e-GGRT) in addition to any MRV Plan resubmissions.

No.	. MRV Plan		EPA Questions	Responses			
	Section	Page					
1.	N/A	N/A	 The description of the status of RH AGI #3 is inconsistent in the MRV plan. In some places, the RH AGI #3 is described as already drilled. However, in other places, the RH AGI #3 well is described as not being drilled. For example, page 41 of the MRV states: "RH AGI #3 very recently began injecting in January 2024." "TND is began drilling the RH AGI #3 well in September 2023 and began injection in January 2024." "TND realizes that when they drill the RH AGI #3, they will be drilling into a reservoir" 	The status of RH AGI #3 has been updated in the revised MRV plan. The well was spudded on 9/13/2023, completed on 9/27/2023, and injection commenced on 1/11/2024.			
			Please ensure that the wording describing the status of RH AGI #3 is consistent throughout the MRV plan.				

No.	MRV Plan		MRV Plan		EPA Questions	Responses			
	Section	Page							
2.	2. 5.3		Page 5 of the MRV plan states, "Lucid received authorization to construct a redundant well, RH AGI #2 (API# 30-025-49474) under NMOCC Order R-20916-H, which is offset 200 ft to the north of RH AGI #1 and is currently temporarily abandoned in the Bell Canyon Formation."	The revised MRV plan has been edited to include a discussion of the potential for leakage through RH AGI #2.					
			However, Section 5.3.1 ("Wells Completed in the Bell Canyon and Cherry Canyon Formations") of the MRV plan does not include a characterization of potential leakage through the RH AGI #2 well. Please update the MRV plan to include this discussion as necessary.						

MONITORING, REPORTING, AND VERIFICATION PLAN

Red Hills AGI #1 and AGI #3

Targa Northern Delaware, LLC (TND)

Version 1.0 May 1, 2024

Table of Contents

1	In	itroduction	5
2	Fa	acility Information	7
2			/
2	2	UIC Injection well identification numbers	/
2	.3	UIC permit class	7
3 3	Pr 1.1	roject Description General Geologic Setting / Surficial Geology	7 8
3	.2	Bedrock Geology	8
	3.	2.1 Basin Development	8
	3.	2.2 Stratigraphy	17
2	3.	2.3 Faulting	22
3	.5		22
3	.4	Formation Fluid Chemistry	25
3	.5	Groundwater Hydrology in the Vicinity of the Red Hills Gas Plant	25
3	.6	Historical Operations	26
	3.	6.1 Red Hills Site	26
2	3. 7	.6.2 Operations within the MMA for the RH AGI Wells	29 21
נ ר	./	Description of injection Process	27
ک •	.ŏ	Reservoir Characterization Modeling	32
4 л	De 1	elineation of the Monitoring Areas	39
-	.⊥ ∟ ว		20
- 4	·.Z		23
5 5	10) 1	Potential Leakage from Surface Equipment	40 40
5	. <u>-</u>	Potential Leakage from PH AGI #2 and Approved Not Vet Drilled Wells	ло Л1
J	.2 E		ч т л1
	5. 5.	2.2 Horizontal Wells	41 41
5	.3	Potential Leakage from Existing Wells	42
	5.	3.1 Wells Completed in the Bell Canyon and Cherry Canyon Formations	42
	5.	3.2 Wells Completed in the Bone Spring / Wolfcamp Zones	42
	5.	3.3 Wells Completed in the Siluro-Devonian Zone	43
5	5 : 1	.3.4 Groundwater Wells	43 12
5	 . E	Potential Leakage due to Lateral Migration	
5	.5		44
5	.b	Potential Leakage through Fractures and Faults	44
5	.7	Potential Leakage due to Natural / Induced Seismicity	45
6	St	crategy for Detecting and Quantifying Surface Leakage of CO ₂	46
0	.1		4/
6	.2	Leakage from Approved Not Yet Drilled Wells	48

	6.3	Leakage from Existing Wells	. 48
	6.3	3.1 RH AGI Wells	. 48
	6.3	3.2 Other Existing Wells within the MMA	. 50
	6.4	Leakage through the Confining / Seal System	. 50
	6.5	Leakage due to Lateral Migration	. 51
	6.6	Leakage from Fractures and Faults	. 51
	6.7	Leakage due to Natural / Induced Seismicity	. 51
	6.8	Strategy for Quantifying CO ₂ Leakage and Response	. 51
	6.8	8.1 Leakage from Surface Equipment	. 51
	6.8	8.2 Subsurface Leakage	. 52
	6.8	8.3 Surface Leakage	. 52
7	St	rategy for Establishing Expected Baselines for Monitoring CO ₂ Surface Leakage	. 52
	7.1	Visual Inspection	. 52
	7.2	Fixed In-Field, Handheld, and Personal H ₂ S Monitors	. 53
	7.2	2.1 Fixed In-Field H ₂ S Monitors	. 53
	7.	2.2 Handheld and Personal H ₂ S Monitors	. 53
	7.3	CO ₂ Detection	. 53
	7.4	Continuous Parameter Monitoring	. 53
	7.5	Well Surveillance	. 53
	7.6	Seismic (Microseismic) Monitoring Stations	. 54
	7.7	Groundwater Monitoring	. 54
	7.8	Soil CO ₂ Flux Monitoring	. 55
8	Sit	te Specific Considerations for Determining the Mass of CO ₂ Sequestered	. 56
	8.1	CO ₂ Received	. 56
	8.2	CO ₂ Injected	. 57
	8.3	CO ₂ Produced / Recycled	. 58
	8.4	CO ₂ Lost through Surface Leakage	. 58
	8.5	CO ₂ Emitted from Equipment Leaks and Vented Emissions	. 59
	8.6	CO ₂ Sequestered	. 59
9	Es	timated Schedule for Implementation of MRV Plan	. 59
10) Gł	HG Monitoring and Quality Assurance Program	. 59
	10.1	GHG Monitoring	. 59
	10	0.1.1 General	. 60
	10	0.1.2 CO ₂ received	. 60
	10	0.1.3 CO ₂ injected.	. 60
	10	0.1.4 CO ₂ produced	. 60
	10	0.1.5 CO ₂ emissions from equipment leaks and vented emissions of CO ₂ .	. 60
	10	0.1.6 Measurement devices	. 60
	10.2	QA/QC Procedures	. 61
	10.3	Estimating Missing Data	.61

10.4 Rev	isions of the MRV Plan	61
11 Record	s Retention	
Appendix 1	TND Wells	
Appendix 2	Referenced Regulations	67
Appendix 3	Water Wells	69
Appendix 4	Oil and Gas Wells within 2-mile Radius of the RH AGI Well Site	71
Appendix 5	References	74
Appendix 6	Abbreviations and Acronyms	77
Appendix 7	TND Red Hills AGI Wells - Subpart RR Equations for Calculating CO2 Geologic Sequestration	78
Appendix 8	Subpart RR Equations for Calculating Annual Mass of CO ₂ Sequestered	79
Appendix 9	P&A Records	86

1 Introduction

Targa Northern Delaware, LLC (TND) is currently authorized to inject treated acid gas (TAG) into the Red Hills Acid Gas Injection #1 well (RH AGI #1)(American Petroleum Institute (API) 30-025-40448) and RH AGI #3 well (API # 30-025-51970) under the New Mexico Oil Conservation Commission (NMOCC) Orders R-13507 – 13507F and Order R-20916H, respectively, at the Red Hills Gas Plant located approximately 20 miles NNW of Jal in Lea County, New Mexico (**Figure 1-1**). Each well is approved to inject 13 million standard cubic feet per day (MMSCFD). However, although approved to inject 13 MMSCFD, RH AGI #1 is physically only capable of taking ~5 MMSCFD due to formation and surface pressure limitations.

The AGI wells were previously operated by Lucid Energy Delaware, LLC's ("Lucid"). TND acquired Lucid assets in 2022. Lucid received authorization to construct a redundant well, RH AGI #2 (API# 30-025-49474) under NMOCC Order R-20916-H, which is offset 200 ft to the north of RH AGI #1 and is currently temporarily abandoned in the Bell Canyon Formation.

TND recently received approval from NMOCC for its C-108 application to drill, complete and operate a third acid gas injection well (RH AGI #3) in which TND requested an injection volume of up to 13 MMSCFD.RH AGI #3 was recently completed and placed into service in January 2024. Because AGI #1 does not have complete redundancy, having a greater permitted disposal volume will also increase operational reliability. The RH AGI #3 well is a vertical well with its surface location at approximately 3,116 ft from the north line (FNL) and 1,159 ft from the east line (FEL) of Section 13. The depth of the injection zone for this well is approximately 5,600 to 7,200 ft in the Bell Canyon and Cherry Canyon Formations. Analysis of the reservoir characteristics of these units confirms that they act as excellent closed-system reservoirs that will accommodate the future needs of TND for disposal of treated acid gas (H₂S and CO₂) from the Red Hills Gas Plant.

TND has chosen to submit this Monitoring, Reporting, and Verification (MRV) plan to EPA for approval according to 40CFR98.440(c)(1), Subpart RR of the Greenhouse Gas Reporting Program (GHGRP) for the purpose of qualifying for the tax credit in section 45Q of the federal Internal Revenue Code. TND intends to inject CO₂ for another 30 years.

Figure 1-1: Location of the Red Hills Gas Plant and Wells – RH AGI #1, RH AGI #2 (temporarily abandoned), and RH AGI #3

This MRV Plan contains twelve sections:

Section 1 is this Introduction.

Section 2 contains facility information.

Section 3 contains the project description.

Section 4 contains the delineation of the maximum monitoring area (MMA) and the active monitoring area (AMA), both defined in 40CFR98.449, and as required by 40CFR98.448(a)(1), Subpart RR of the GHGRP.

Section 5 identifies the potential surface leakage pathways for CO_2 in the MMA and evaluates the likelihood, magnitude, and timing of surface leakage of CO_2 through these pathways as required by 40CFR98.448(a)(2), Subpart RR of the GHGRP.

Section 6 describes the detection, verification, and quantification of leakage from the identified potential sources of leakage as required by 40CFR98.448(a)(3).

Section 7 describes the strategy for establishing the expected baselines for monitoring CO_2 surface leakage as required by 40CFR98.448(a)(4), Subpart RR of the GHGRP.

Section 8 provides a summary of the considerations used to calculate site-specific variables for the mass balance equation as required by 40CFR98.448(a)(5), Subpart RR of the GHGRP.

Section 9 provides the estimated schedule for implementation of this MRV Plan as required by 40CFR98.448(a)(7).

Section 10 describes the quality assurance and quality control procedures that will be implemented for each technology applied in the leak detection and quantification process. This section also includes a discussion of the procedures for estimating missing data as detailed in 40CFR98.445.

Section 11 describes the records to be retained according to the requirements of 40CFR98.3(g) of Subpart A of the GHGRP and 40CFR98.447 of Subpart RR of the GRGRP.

Section 12 includes Appendices supporting the narrative of the MRV Plan, including information required by 40CFR98.448(a)(6).

2 Facility Information

2.1 Reporter number

Greenhouse Gas Reporting Program ID is 553798

2.2 UIC injection well identification numbers

This MRV plan is for RH AGI #1 and RH AGI #3 (**Appendix 1**). The details of the injection process are provided in Section 3.7.

2.3 UIC permit class

For injection wells that are the subject of this MRV plan, the New Mexico Oil Conservation Division (NMOCD) has issued Underground Injection Control (UIC) Class II acid gas injection (AGI) permits under its State Rule 19.15.26 NMAC (see **Appendix 2**). All oil- and gas-related wells around the RH AGI wells, including both injection and production wells, are regulated by the NMOCD, which has primacy to implement the UIC Class II program.

3 Project Description

The following project description was developed by the Petroleum Recovery Research Center (PRRC) at New Mexico Institute of Mining and Technology (NMT) and the Department of Geosciences at the University of Texas Permian Basin (UTPB).

3.1 General Geologic Setting / Surficial Geology

The TND Red Hills Gas Plant is located in T 24 S R 33 E, Section 13, in Lea County, New Mexico, immediately adjacent to the RH AGI wells. (Figure 3.1-1). The plant location is within a portion of the Pecos River basin referred to as the Querecho Plains reach (Nicholson & Clebsch, 1961). This area is relatively flat and largely covered by sand dunes underlain by a hard caliche surface. The dune sands are locally stabilized with shin oak, mesquite, and some burr-grass. There are no natural surface bodies of water or groundwater discharge sites within one mile of the plant and where drainages exist in interdunal areas, they are ephemeral, discontinuous, dry washes. The plant site is underlain by Quaternary alluvium overlying the Triassic red beds of the Santa Rosa Formation (Dockum Group), both of which are local sources of groundwater.

Figure 3.1-1: Map showing location of TND Red Hills Gas Plant and RH AGI Wells in Section 13, T 24 S, R 33 E

3.2 Bedrock Geology

3.2.1 Basin Development

The Red Hills Gas Plant and the RH AGI wells are located at the northern margin of the Delaware Basin, a sub-basin of the larger, encompassing Permian Basin (**Figure 3.2-1**), which covers a large area of southeastern New Mexico and west Texas.

Figure 3.2-1: Structural features of the Permian Basin during the Late Permian. Location of the TND RH AGI wells is shown by the black circle. (Modified from Ward, et al (1986))

Figure 3.2-2 is a generalized stratigraphic column showing the formations that underlie the Red Hills Gas Plant and RH AGI wells site. The thick sequences of Permian through Cambrian rocks are described below. A general description of the stratigraphy of the area is provided in this section. A more detailed discussion of the injection zone and the upper and lower confining zones is presented in Section 3.3 below.

The RH AGI wells are in the Delaware Basin portion of the broader Permian Basin. Sediments in the area date back to the Cambrian Bliss Sandstone (Broadhead, 2017; **Figure 3.2-2**) and overlay Precambrian granites. These late Cambrian transgressive sandstones were the initial deposits from a shallow marine sea that covered most of North America and Greenland (**Figure 3.2-3**). With continued down warping and/or sea-level rise, a broad, relatively shallow marine basin formed. The Ellenburger Formation (0 - 1000 ft) is dominated by dolostones and limestones that were deposited on restricted carbonate shelves (Broadhead, 2017; Loucks and Kerans, 2019). Throughout this narrative, the numbers after the formations indicate the range in thickness for that unit. Tectonic activity near the end of Ellenburger deposition resulted in subaerial exposure and karstification of these carbonates which increased the unit's overall porosity and permeability.

AGE		CENTRAL BASIN PLATFORM- NORTHWEST SHELF		DELAWARE BASIN			
Cenozoic		Alluvium			Alluvium		
Triccolo			Chinle Formation		Chinle Formation		
Triassic			Santa Rosa Sandstone		Santa Rosa Sandstone		
	Loningian	[Dewey Lake Formation		Dewey Lake Formation		
	(Ochoan)	<u> </u>	Rustler Formation		Rustler Formation		
	(,		Salado Formation		Castile Formation		
			Tansill Formation	d	Lamar Limestone		
		roup	Yates Formation	Grou	Bell Canvon Formation		
	Guadalunian	ia G	Seven Rivers Formation	ain (
	Guadalupian	rtes	Queen Formation	ount	Charry Convon Formation		
Dormion		◄	Grayburg Formation	e Mo	Cherry Canyon Formation		
Permian			San Andres Formation	lawar	Brushy Canvon Formation		
	Giouralian		Glorieta Formation	De			
	(Leonardian)	ő	Blinebry Mbr				
		Ύe	Tubb Sandstone Mbr.		Pone Spring Formation		
			Drinkard Mbr.		Bolle Spring Formation		
	14/-16		Abo Formation				
	woircampian	Hueco ("Wolfcamp") Fm.			Hueco ("Wolfcamp") Fm.		
	Virgilian	Cisco Formation			Cisco		
	Missourian	Canyon Formation			Canyon		
Pennsylvanian	Des Moinesian	n Strawn Formation		Strawn			
	Atokan	Atoka Formation			Atoka		
	Morrowan	Morrow Formation		Morrow			
Mississinnian	Upper	Barnett Shale		Barnett Shale			
wississippian	Lower	"Ⅳ	lississippian limestone"	"Mississippian limestone"			
	Upper		Woodford Shale	Woodford Shale			
Devonian	Middle						
	Lower		Thirtyone Formation		Thirtyone Formation		
	Upper		Wristen Group		Wristen Group		
Silurian	Middle						
	Lower		Fusselman Formation		Fusselman Formation		
	Upper		Montoya Formation		Montoya Formation		
Ordovician	Middle		Simpson Group		Simpson Group		
Craotiolan	Lower	I	Ellenburger Formation		Ellenburger Formation		
Cambrian			Bliss Ss.		Bliss Ss.		
Precambrian		me	Miscellaneous igneous, etamorphic, volcanic rocks		Miscellaneous igneous, metamorphic, volcanic rocks		

Figure 3.2-2: Stratigraphic column for the Delaware basin, the Northwest Shelf and Central Basin Platform (modified from Broadhead, 2017).

During Middle to Upper Ordovician time, the seas once again covered the area and deposited the carbonates, sandstones and shales of the Simpson Group (0 – 1000 ft) and then the Montoya Formation (0 – 600 ft). This is the period when the Tobosa Basin formed due to the Pedernal uplift and development of the Texas Arch (**Figure 3.2-4**; Harrington, 2019) shedding Precambrian crystalline clasts into the basin. Reservoirs in New Mexico are typically within deposits of shoreline sandstones (Broadhead, 2017). A subaerial exposure and karstification event followed the deposition of the Simpson Group. The Montoya Formation within the Tobosa Basin (Broadhead, 2017; Harrington and Loucks, 2019). The Montoya Formation consists of sandstones and dolomites and have also undergone karstification.

Figure 3.2-3: A subsidence chart from Reeves County, Texas showing the timing of development of the Tobosa and Delaware basins during Paleozoic deposition (from Ewing, 2019)

Figure 3.2-4: Tectonic Development of the Tobosa and Permian Basins. A) Late Mississippian (Ewing, 2019). Note the lateral extent (pinchout) for the lower Paleozoic strata. B) Late Permian (Ruppel, 2019a).

Siluro-Devonian formations consist of the Upper Ordovician to Lower Silurian Fusselman Formation (0 – 1,500 ft), the Upper Silurian to Lower Devonian Wristen Group (0 – 1,400 ft), and the Lower Devonian Thirtyone Formation (0 – 250 ft). The Fusselman Formation are shallow-marine platform deposits of dolostones and limestones (Broadhead, 2017; Ruppel, 2019b). Subaerial exposure and karstification associated with another unconformity at top of the Fusselman Formation as well as intraformational exposure events created brecciated fabrics, widespread dolomitization, and solution-enlarged pores and fractures (Broadhead, 2017). The Wristen and Thirtyone units appear to be conformable. The Wristen Group consists of tidal to high-energy platform margin carbonate deposits of dolostones, limestones, and cherts with minor siliciclastics (Broadhead, 2017; Ruppel, 2020). The Thirtyone Formation is present in the southeastern corner of New Mexico and appears to be either removed by erosion or not deposited elsewhere in New Mexico (**Figure 3.2-5**). It is shelfal carbonate with varying amounts of chert nodules and represents the last carbonate deposition in the area during Devonian time (Ruppel et al., 2020a).

Figure 3.2-5 -- A subcrop map of the Thirtyone and Woodford formations. The Woodford (brown) lies unconformably on top of the Wristen Group where there are no Thirtyone sediments (yellow). Diagram is from Ruppel (2020).

The Siluro-Devonian units are saltwater injection zones within the Delaware Basin and are typically dolomitized, shallow marine limestones that have secondary porosity produced by subaerial exposure, karstification and later fracturing/faulting. These units will be discussed in more detail in Section 3.2.2.

The Devonian Woodford Shale, an un-named Mississippian limestone, and the Upper Mississippian Barnett Shale are seals for the underlying Siluro-Devonian strata. While the Mississippian recrystallized limestones have minor porosity and permeability, the Woodford and Barnett shales have extremely low porosity and permeability and would be effective barriers to upward migration of acid gas out of the injection zone. The Woodford Shale (0 – 300 ft) ranges from organic–rich argillaceous mudstones with abundant siliceous microfossils to organic-poor argillaceous mudstones (Ruppel et al., 2020b). The Woodford sediments represent stratified deeper marine basinal deposits with their organic content being a function of the oxygenation within the bottom waters – the more anoxic the waters the higher the organic content.

The Mississippian strata within the Delaware Basin consists of an un-named carbonate member and the Barnett Shale and unconformably overlies the Woodford Shale. The lower Mississippian limestone (0 – 800 ft) are mostly carbonate mudstones with minor argillaceous mudstones and cherts. These units were deposited on a Mississippian ramp/shelf and have mostly been overlooked because of the reservoirs limited size. Where the units have undergone karstification, porosity may approach 4 to 9% (Broadhead, 2017), otherwise it is tight. The Barnett Shale (0 – 400 ft) unconformably overlies the Lower Mississippian carbonates and consists of Upper Mississippian carbonates deposited on a shelf to basinal, siliciclastic deposits (the Barnett Shale).

Pennsylvanian sedimentation in the area is influenced by glacio-eustatic sea-level cycles producing numerous shallowing upward cycles within the rock record; the intensity and number of cycles increase upward in the Pennsylvanian section. The cycles normally start with a sea-level rise that drowns the platform and deposits marine mudstones. As sea-level starts to fall, the platform is shallower and deposition switches to marine carbonates and coastal siliciclastic sediments. Finally, as the seas withdraw from the area, the platform is exposed causing subaerial diagenesis and the deposition terrestrial mudstones, siltstones, and sandstones in alluvial fan to fluvial deposits. This is followed by the next cycle of sea-level rise and drowning of the platform.

Pennsylvanian sedimentation is dominated by glacio-eustatic sea-level cycles that produced shallowing upward cycles of sediments, ranging from deep marine siliciclastic and carbonate deposits to shallow-water limestones and siliciclastics, and capping terrestrial siliciclastic sediments and karsted limestones. Lower Pennsylvanian units consist of the Morrow and Atoka formations. The Morrow Formation (0 - 2,000 ft) within the northern Delaware Basin was deposited as part of a deepening upward cycle with depositional environments ranging from fluvial/deltaic deposits at the base, sourced from the crystalline rocks of the Pedernal Uplift to the northwest, to high-energy, near-shore coastal sandstones and deeper and/or low-energy mudstones (Broadhead, 2017; Wright, 2020). The Atoka Formation (0-500 ft) was deposited during another sea-level transgression within the area. Within the area, the Atoka sediments are dominated by siliciclastic sediments, and depositional environments range from fluvial/deltas, shoreline to near-shore coastal barrier bar systems to occasional shallow-marine carbonates (Broadhead, 2017; Wright, 2020).

Middle Pennsylvanian units consist of the Strawn group (an informal name used by industry). Strawn sediments (250 - 1,000 ft) within the area consists of marine sediments that range from ramp carbonates, containing patch reefs, and marine sandstone bars to deeper marine shales (Broadhead, 2017).

Upper Pennsylvanian Canyon (0 – 1,200 ft) and Cisco (0 – 500 ft) group deposits are dominated by marine, carbonate-ramp deposits and basinal, anoxic, organic-rich shales.

Deformation, folding and high-angle faulting, associated with the Upper Pennsylvanian/Early Permian Ouachita Orogeny, created the Permian Basin and its two sub-basins, the Midland and Delaware basins (Hills, 1984; King, 1948), the Northwest Shelf (NW Shelf), and the Central Basin Platform (CBP; **Figures 3.2-4**, **3.2-6**, **3.2-7**). The Permian "Wolfcamp" or Hueco Formation was deposited after the creation of the Permian Basin. The Wolfcampian sediments were the first sediments to fill in the structural relief (**Figure 3.2-6**). The Wolfcampian Hueco Group (~400 ft on the NW Shelf, >2,000 ft in the Delaware Basin) consists of shelf margin deposits ranging from barrier reefs and fore slope deposits, bioherms, shallow-water carbonate shoals, and basinal carbonate mudstones (Broadhead, 2017; Fu et al., 2020). Since deformation continued throughout the Permian, the Wolfcampian sediments were truncated in places like the Central Basin Platform (Figure 3.2-6).

Figure 3.2-6 -- Cross section through the western Central Basin Platform showing the structural relationship between the Pennsylvanian and older units and Permian strata (modified from Ward et al., 1986; from Scholle et al., 2007).

Figure 3.2-7 -- Reconstruction of southwestern United States about 278 million years ago. The Midland Basin (MB), Delaware Basin (DB) and Orogrande Basin (OB) were the main depositional centers at that time (Scholle et al., 2020).

Differential sedimentation, continual subsidence, and glacial eustasy impacted Permian sedimentation after Hueco deposition and produced carbonate shelves around the edges of deep sub-basins. Within the Delaware Basin, this subsidence resulted in deposition of roughly 12,000 ft of siliciclastics, carbonates, and evaporites (King, 1948). Eustatic sea-level changes and differential sedimentation played an important role in the distribution of sediments/facies within the Permian Basin (**Figure 3.2-2**). During sea-level lowstands, thousands of feet of siliciclastic sediments bypassed the shelves and were deposited in the basin. Scattered, thin sandstones and siltstones as well as fracture and pore filling sands found up on the shelves correlate to those lowstands. During sea-level highstands, thick sequences of carbonates were deposited by a "carbonate factory" on the shelf and shelf edge. Carbonate debris beds shedding off the shelf margin were transported into the basin (Wilson, 1972; Scholle et al., 2007). Individual debris flows thinned substantially from the margin to the basin center (from 100s feet to feet).

Unconformably overlying the Hueco Group is the Abo Formation (700 – 1,400 ft). Abo deposits range from carbonate grainstone banks and buildups along Northwest Shelf margin to shallow-marine, back-reef carbonates behind the shelf margin. Further back on the margin, the backreef sediments grade into intertidal carbonates to siliciclastic-rich sabkha red beds to eolian and fluvial deposits closer to the Sierra Grande and Uncompahgre uplifts (Broadhead, 2017, Ruppel, 2019a). Sediments basinward of the Abo margin are equivalent to the lower Bone Spring Formation. The Yeso Formation (1,500 – 2,500 ft), like the Abo Formation, consists of carbonate banks and buildups along the Abo margin. Unlike Abo sediments, the Yeso Formation contains more siliciclastic sediments associated with eolian, sabkha, and tidal flat facies (Ruppel, 2019a). The Yeso shelf sandstones are commonly subdivided into the Drinkard, Tubb, Blinebry, Paddock members (from base to top of section). The Yeso Formation is equivalent to the upper Bone Spring Formation. The Bone Spring Formation is a thick sequence of alternating carbonate and siliciclastic horizons that formed because of changes in sea level; the carbonates during highstands, and siliciclastics during lowstands. Overlying the Yeso, are the clean, white eolian sandstones of the Glorietta Formation. It is a key marker bed in the region, both on outcrop and in the subsurface. Within the basin, it is equivalent to the lowermost Brushy Canyon Formation of the Delaware Mountain Group.

The Guadalupian San Andres Formation (600 – 1,600 ft) and Artesia Group (<1,800 ft) reflect the change in the shelf margin from a distally steepened ramp to a well-developed barrier reef complex. The San Andres Formation consists of supratidal to sandy subtidal carbonates and banks deposited a distally steepened ramp. Within the San Andres Formation, several periods of subaerial exposure have been identified that have resulted in karstification and pervasive dolomitization of the unit. These exposure events/sea-level lowstands are correlated to sandstones/siltstones that moved out over the exposed shelf leaving on minor traces of their presence on the shelf but formed thick sections of sandstones and siltstones in the basin. Within the Delaware Basin, the San Andres Formation is equivalent to the Brushy and lower Cherry Canyon Formations.

The Artesia Group (Grayburg, Queen, Seven Rivers, Yates, and Tansill formations, ascending order) is equivalent to Capitan Limestone, the Guadalupian barrier/fringing reef facies. Within the basin, the Artesia Group is equivalent to the upper Cherry and Bell Canyon formations, a series of relatively featureless sandstones and siltones. The Queen and Yates formations contain more sandstones than the Grayburg, Seven Rivers, and Tansill formations. The Artesia units and the shelf edge equivalent Capitan reef sediments represent the period when the carbonate factory was at its greatest productivity with the shelf margin/Capitan reef prograding nearly 6 miles into the basin (Scholle et al., 2007). The Artesia Group sediments were deposited in back-reef, shallow marine to supratidal/evaporite environments. Like the San Andres Formation, the individual formations were periodically exposed during lowstands.

The final stage of Permian deposition on the NW Shelf consists of the Ochoan/Lopingian Salado Formation (<2,800 ft, Nance, 2020). Within the basin, the Castile formation, a thick sequence (total thickness ~1,800 ft, Scholle et al., 2007) of cyclic laminae of deep-water gypsum/anhydrite interbedded with calcite and organics, formed due to the restriction of marine waters flowing into the basin. Gypsum/anhydrite laminae precipitated during evaporative conditions, and the calcite and organic-rich horizons were a result of seasonal "freshening" of the basin waters by both marine and freshwaters. Unlike the Castile Formation, the Salado Formation is a relatively shallow water evaporite deposit. Halite, sylvite, anhydrite, gypsum, and numerous potash minerals were precipitated. The Rustler Formation (500 ft , Nance, 2020) consists of gypsum/anhydrite, a few magnesitic and dolomitic limestone horizons, and red beds. These are mostly shallow marginal marine deposits and represents the last Permian marine deposits in the Delaware Basin.

The Rustler Formation was followed by terrestrial sabkha red beds of the Dewey Lake Formation (~350', Nance, 2020), ending Permian deposition in the area.

Beginning early in the Triassic, uplift and the breakup of Pangea resulted in another regional unconformity and the deposition of non-marine, alluvial Triassic sediments (Santa Rosa Sandstone and Chinle Formation). They are unconformably overlain by Cenozoic alluvium (which is present at the surface). Cenozoic Basin and Range tectonics resulted in the current configuration of the region and reactivated numerous Paleozoic faults.

3.2.2 Stratigraphy

The Permian rocks found in the Delaware Basin are divided into four series, the Ochoa (most recent, renamed Lopingian), Guadalupian, Leonardian (renamed Cisuralian), and Wolfcampian (oldest) (Figure 3.2-2). This sequence of shallow marine carbonates and thick, basinal siliciclastic deposits contains abundant oil and gas resources. The Delaware Basin high porosity sands are the main source of oil within New Mexico. In the area around the Red Hills AGI wells, Permian strata are mainly basin deposits consisting of sandstones, siltstones, shales, and lesser amounts of carbonates. Besides production in the Delaware Mountain Group, there is also production, mainly gas, in the basin Bone Spring Formation, a sequence of carbonates and siliciclastics. The injection and confining zones for RH AGI #1 and #3 are discussed below.

CONFINING/SEAL ROCKS

Permian Ochoa Series. The youngest of the Permian sediments, the Ochoan- or Lopingian-aged deposits, consists of evaporites, carbonates, and red beds. The Castile Formation is made of cyclic laminae of deepwater gypsum/anhydrite beds interlaminated with calcite and organics. This basin-occurring unit can be up to 1,800 ft thick. The Castile evaporites were followed by the Salado Formation (~1,500 ft thick). The Salado Formation is a shallow water evaporite deposit, when compared to the Castile Formation, and consists of halite, sylvite, anhydrite, gypsum, and numerous potash/bittern minerals. Salado deposits fill the basin and lap onto the older Permian shelf deposits. The Rustler Formation (up to 500 ft, Nance, 2020) consists of gypsum/anhydrite, a few magnesitic and dolomitic limestone horizons, and red beds. These are mostly shallow marginal marine deposits and represents the last Permian marine deposits in the Delaware Basin. The Ochoan evaporitic units are superb seals (usually <1% porosity and <0.01 mD permeability) and are the reason that the Permian Basin is such a hydrocarbon-rich region despite its less than promising total organic carbon (TOC) content.

INJECTION ZONE

Permian Guadalupe Series. Sediments in the underlying Delaware Mountain Group (descending, Bell Canyon, Cherry Canyon, and Brushy Canyon formations) are marine units that represent deposition controlled by eustacy and tectonics. Lowstand deposits are associated with submarine canyons incising the carbonate platform surround most of the Delaware Basin. Depositional environments include submarine fan complexes that encircle the Delaware Basin margin. These deposits are associated with submarine canyons incising the carbonate platform margin and turbidite channels, splays, and levee/overbank deposits (Figure **3.2-8**). Additionally, debris flows formed by the failure of the carbonate margin and density currents also make up basin sediments. Isolated coarse-grained to boulder-sized carbonate debris flows and grain falls within the lowstand clastic sediments likely resulted from erosion and failure of the shelf margin during sealevel lowstands or slope failure to tectonic activity (earthquakes). Density current deposits resulted from stratified basin waters. The basal waters were likely stratified and so dense, that turbidity flows containing sands, silts and clays were unable to displace those bottom waters and instead flowed out over the density interface (Figure **3.2-9**). Eventually, the entrained sediments would settle out in a constant rain of sediment forming laminated deposits with little evidence of traction (bottom flowing) deposition. Interbedded with the very thick lowstand sequences are thin, deep-water limestones and mudstones that represent highstand deposition up on the platform. These deposits are thickest around the edge (toe-of-slope) of the basin and thin to the basin center (**Figure 3.2-10**). The limestones are dark, finely crystalline, radiolarian-rich micrites to biomicrites. These highstand deposits are a combination of suspension and pelagic sediments that also thin towards the basin center. These relatively thin units are time equivalent to the massive highstand carbonate deposits on the shelf.

Figure 3.2-8 – A diagram of typical Delaware Mountain Group basinal siliciclastic deposition patterns (from Nance, 2020). The channel and splay sandstones have the best porosity, but some of the siltstones also have potential as injection zones.

Figure 3.2-9 – Harms' (1974) density overflow model explains the deposition of laminated siliciclastic sediments in the Delaware Basin. Low density sand-bearing fluids flow over the top of dense, saline brines at the bottom of the basin. The sands gradually drop out as the flow loses velocity creating uniform, finely laminated deposits (from Scholle et al., 2007).

Figure 3.2-10 – The impact of sea-level fluctuations (also known as reciprocal sedimentation) on the depositional systems within the Delaware Basin. A) A diagrammatic representation of sea-level variations impact on deposition. B) Model showing basin-wide depositional patterns during lowstand and highstand periods (from Scholle et al., 2007).

The top of the Guadalupian Series is the Lamar Limestone, which is the source of hydrocarbons found in underlying Delaware Sand (an upper member of the Bell Canyon Formation). The Bell Canyon Formation is roughly 1,000 ft thick in the Red Hills area and contains numerous turbidite input points around the basin margin (**Figures 3.2-10, 3.2-11**). During Bell Canyon deposition, the relative importance of discrete sand sources varied (Giesen and Scholle, 1990), creating network of channel and levee deposits that also varied in their size and position within the basin. Based on well log analyses, the Bell Canyon 2 and 3 had the thickest sand deposits.

Figure 3.2-11 – These maps of Bell Canyon Formation were created by measuring sandstone thicknesses on well logs in four regionally correlatable intervals (from Giesen and Scholle, 1990 and unpublished thesis research). The red circle on the last map surrounds the Red Hills area.

Like the Bell Canyon and Brushy Canyon formations, the Cherry Canyon Formation is approximately 1,300 ft thick and contains numerous turbidite source points. Unlike the Bell Canyon and Brushy Canyon deposits, the channel deposits are not as large (Giesen and Scholle, 1990), and the source of the sands appears to be dominantly from the eastern margin (**Figure 3.2-12**). Cherry Canyon 1 and 5 have the best channel development and the thickest sands. Overall, the Cherry Canyon Formation, on outcrop, is less influenced by traction current deposition than the rest of the Delaware Mountain Group deposits and is more influenced by sedimentation by density overflow currents (**Figure 3.2-9**). The Brushy Canyon has notably more discrete channel deposits and coarser sands than the Cherry Canyon and Bell Canyon. The Brushy Canyon Formation is approximately 1,500 ft thick.

Figure 3.2-12– These maps of Cherry Canyon Formation were created by measuring sandstone thicknesses on well logs in five regionally correlatable intervals (from Giesen and Scholle, 1990 and unpublished thesis research). Unlike the Bell Canyon sandstones, the Cherry Canyon sands are thinner and contain fewer channels. The red circle on the last map surrounds the Red Hills area.

Within the Delaware Mountain Group in the Red Hills area, the Bell Canyon and Cherry Canyon have the best porosity (averaging 15 – 25 % within channel/splay sandstones) and permeability (averaging 2-13 mD) than the Brushy Canyon (~14% porosity, an <3 mD; Ge et al, 2022, Smye et al., 2021).

UNDERLYING CONFINING ZONE

Permian Leonard Series. The Leonardian/Cisuralian Series, located beneath the Guadalupian Series sediments, is characterized by >3,000 ft of basin-deposited carbonate and siliciclastic sediments of the Bone Spring Formation. The Bone Spring Formation is more carbonate rich than the Delaware Mountain Group deposits, but the sea-level-driven cycles of sedimentation and the associated depositional environments are similar with debris flows, turbidites, and pelagic carbonate sediments. The Bone Spring Formation contains both conventional and unconventional fields within the Delaware Basin in both the sandstone-rich and carbonate-rich facies. Most of these plays usually occur within toe-of-slope carbonate and siliciclastic deposits or the turbidite facies in the deeper sections of the basin (Nance and Hamlin, 2020). The upper most Bone Spring is usually dense carbonate mudstone with limited porosity and low porosity.
3.2.3 Faulting

In this immediate area of the Permian Basin, faulting is primarily confined to the lower Paleozoic section, where seismic data shows major faulting and ancillary fracturing-affected rocks only as high up as the base of the lower Wolfcamp strata (**Figures 3.2-6 and 5.6-1**). Faults that have been identified in the area are normal faults associated with Ouachita related movement along the western margin of the Central Platform to the east of the RH AGI well site. The closest identified fault lies approximately 1.5 miles east of the Red Hills site and has approximately 1,000 ft of down-to-the-west structural relief. Because these faults are confined to the lower Paleozoic unit well below the injection zone for the RH AGI wells, they will not be discussed further (Horne et al., 2021). Within the area of the Red Hills site, no shallow faults within the Delaware Mountain Group have been identified by seismic data interpretation nor as reported by Horne et al., 2022).

3.3 Lithologic and Reservoir Characteristics

Based on the geologic analyses of the subsurface at the Red Hills Gas Plant, the uppermost portion of the Cherry Canyon Formation was chosen for acid gas injection and CO₂ sequestration for RH AGI #1 and the uppermost Delaware Mountain Group (the Bell Canyon and Cherry Canyon Formations) for RH AGI #3.

For RH AGI #1, this interval includes five high porosity sandstone units (sometimes referred to as the Manzanita) and has excellent caps above, below and between the individual sandstone units. There is no local production in the overlying Delaware Sands pool of the Bell Canyon Formation. There are no structural features or faults that would serve as potential vertical conduits. The high net porosity of the RH AGI #1 injection zone indicates that the injected H₂S and CO₂ will be easily contained close to the injection well.

For RH AGI #3, this interval has been expanded to include the five porosity zones in the Cherry Canyon sandstone as well as the sandstone horizons in the overlying Bell Canyon Formation. In the Bell Canyon Formation there are several potential high porosity sandstones, that if present in the well, would be excellent, injection zones similar to the depositional environments of the Cherry Canyon sandstones. The thickest sand is commonly referred to as the Delaware Sand within the Delaware Basin. The Delaware sand is productive, but it is not locally. Most of the sand bodies in the Bell Canyon and Cherry Canyon formations are surrounded by shales or limestones, forming caps for the injection zones. There are no structural features or faults that would serve as potential vertical conduits, and the overlying Ochoan evaporites form an excellent overall seal for the system. Even if faulting existed, the evaporites (Castile and Salado) would self-seal and prevent vertical migration out of the Delaware Mountain Group.

The geophysical logs were examined for all wells penetrating the Bell Canyon and Cherry Canyon formations within a three-mile radius of the RH AGI wells as well as 3-D seismic data. There are no faults visible within the Delaware Mountain Group in the Red Hills area. Within the seismic area, the units dip gently to the southeast with approximately 200 ft of relief across the area. Heterogeneities within both the Bell Canyon and Cherry Canyon sandstones, such as turbidite and debris flow channels, will exert a significant control over the porosity and permeability within the two units and fluid migration within those sandstones. In addition, these channels are frequently separated by low porosity and permeability siltstones and shales (Figure 3.2-8) as well as being encased by them. Based on regional studies (Giesen and Scholle, 1990 and Figures 3.2-11, 3.2-12), the preferred orientation of the channels, and hence the preferred fluid migration pathways, are roughly from the east to the west.

The porosity was evaluated using geophysical logs from nearby wells penetrating the Cherry Canyon Formation. **Figure 3.3-1** shows the Resistivity (Res) and Thermal Neutron Porosity (TNPH) logs from 5,050 ft to 6,650 ft and includes the injection interval. Five clean sands (>10% porosity and <60 API gamma units) are targets for injection within the Cherry Canyon formation and potentially another 5 sands with >10% porosity and <60 API gamma units were identified. Ten percent was the minimum cut-off considered for adequate porosity for injection. The sand units are separated by lime mudstone and shale beds with lateral continuity. The high porosity sand units exhibit an average porosity of about 18.9%; taken over the average thickness of the clean sand units within $\frac{1}{2}$ mile of the RH AGI #1. There is an average of 177 ft with an irreducible water (S_{wir}) of 0.54 (see Table 1 of the RH AGI #1 permit application). Many of the sands are very porous (average porosity of > 22%) and it is anticipated that for these more porous sands, the S_{wir} may be too high. The effective porosity (Total Porosity – Clay Bound Water) would therefore also be higher. As a result, the estimated porosity ft (PhiH) of approximately 15.4 porosity-ft should be considered to be a minimum. The overlying Bell Canyon Formation has 900 ft of sands and intervening tight limestones, shales, and calcitic siltstones with porosities as low as 4%, but as mentioned above, there are at least 5 zones with a total thickness of approximately 460 ft and containing 18 to 20% porosity. The injection interval is located more than 2,650 ft above the Bone Spring Formation, which is the next production zone in the area.

Figure 3.3-1: Geophysical logs from the Bell Canyon and the Upper Cherry Canyon from the Government L Com #002 well, located 0.38 miles from the RH AGI #1 Well. The blue intervals are Bell Canyon porosity zones, and the yellow intervals are Cherry Canyon porosity zones.

3.4 Formation Fluid Chemistry

A chemical analysis (**Table 3.4-1**) of water from Federal 30 Well No. 2 (API 30-025-29069), approximately 3.9 miles away, indicates that the formation waters are highly saline (180,000 ppm NaCl) and compatible with the injection.

Sp. Gravity	1.125 @ 74°F	Resistivity	0.07 @ 74°F
рН	7	Sulfate	1,240
Iron	Good/Good	Bicarbonate	2,135
Hardness	45,000	Chloride	110,000
Calcium	12,000	NaCl	180,950
Magnesium	3,654	Sod. & Pot.	52,072

 Table 3.4-1:
 Formation fluid analysis for Cherry Canyon Formation from Federal 30 Well No. 2

Table extracted from C-108 Application to Inject by Ray Westall Associated with SWD-1067 – API 30-025-24676. Water analysis for formation water from Federal 30 #2 Well (API 30-025-29069), depth 7,335-7,345 ft, located 3.9 miles from RH AGI #1 well.

3.5 Groundwater Hydrology in the Vicinity of the Red Hills Gas Plant

Based on the New Mexico Water Rights Database from the New Mexico Office of the State Engineer, there are 15 freshwater wells located within a two-mile radius of the RH AGI wells, and only 2 water wells within one mile; the closest water well is located 0.31 miles away and has a total depth of 650 ft (**Figure 3.5-1; Appendix 3**). All water wells within the two-mile radius are shallow, collecting water from about 60 to 650 ft depth, in Alluvium and the Triassic redbeds. The shallow freshwater aquifer is protected by the surface and intermediate casings and cements in the RH AGI wells (**Figures Appendix 1-1 and Appendix 1.2**). While the casings and cements protect shallow freshwater aquifers, they also serve to prevent CO₂ leakage to the surface along the borehole.

Figure 3.5-1: Reported Water Wells within the MMA for the RH AGI Wells.

3.6 Historical Operations

3.6.1 Red Hills Site

On July 20, 2010, Agave Energy Company (Agave) filed an application with NMOCD to inject treated acid gas into an acid gas injection well. Agave built the Red Hills Gas Processing Plant and drilled RH AGI #1 in 2012-13. However, the well was never completed and never put into service because the plant was processing only sweet gas (no H₂S). Lucid purchased the plant from Agave in 2016 and completed the RH AGI #1 well. TND acquired Lucid's Red Hills assets in 2022. **Figure 3.6-1** shows the location of fixed H₂S and lower explosive limit (LEL) detectors in the immediate vicinity of the RH AGI wells. **Figure 3.6-2** shows a process block flow diagram.

Figure 3.6-1: Diagram showing the location of fixed H₂S and lower explosive limit (LEL) detectors in the immediate vicinity of the RH AGI wells.

Figure 3.6-2: Process Block Flow Diagram. RH AGI #2 is temporarily abandoned. M1 – M6: volumetric flow meters; C1 and C2: compressors; ST1 and ST2: sour treaters; and Sample Points (SP) for biweekly collection of data for determining the TAG stream concentration.

3.6.2 Operations within the MMA for the RH AGI Wells

NMOCD records identify a total of 22 oil- and gas-related wells within the MMA for the RH AGI wells (see **Appendix 4**). **Figure 3.6-3** shows the geometry of producing and injection wells within the MMA for the RH AGI wells. **Appendix 4** summarizes the relevant information for those wells. All active production in this area is targeted for the Bone Spring and Wolfcamp zones, at depths of 8,900 to 11,800 ft, the Strawn (11,800 to 12,100 ft) and the Morrow (12,700 to 13,500 ft). All of these productive zones lie at more than 2,000 ft below the RH AGI #1 and AGI #3 injection zone.

Figure 3.6-3: Location of all oil- and gas-related wells within the MMA for the RH AGI wells. Both the surface hole locations (SHL) and bottom hole locations (BHL) are labeled on the figure. For clarity, only the last four digits of the API numbers are used in labeling the wells.

3.7 Description of Injection Process

The Red Hills Gas Plant, including the existing RH AGI #1 well, is in operation and staffed 24-hours-a-day, 7-days-a week. The plant operations include gas compression, treating and processing. The plant gathers and processes produced natural gas from Lea and Eddy Counties in New Mexico. Once gathered at the plant, the produced natural gas is compressed, dehydrated to remove the water content, and processed to remove and recover natural gas liquids. The processed natural gas and recovered natural gas liquids are then sold and shipped to various customers. The inlet gathering lines and pipelines that bring gas into the plant are regulated by U.S. Department of Transportation (DOT), National Association of Corrosion Engineers (NACE) and other applicable standards which require that they be constructed and marked with appropriate warning signs along their respective rights-of-way. TAG from the plant's sweeteners will be routed to a central compressor facility, located west of the well head. Compressed TAG is then routed to the wells via high-pressure rated lines. **Figure 3.7-1** is a schematic of the AGI facilities.

The approximate composition of the TAG stream is: 80% CO₂, 20% H_2S , with Trace Components of $C_1 - C_6$ (methane – hexane) and Nitrogen. The anticipated duration of injection is 30 years.

3.8 Reservoir Characterization Modeling

The modeling and simulation focused on the Bell Canyon and Cherry Canyon formations as the main injection target zone for acid gas storage. The RH AGI #1 well (API 30-025-40448) and the RH AGI #3 well (API 30-025-51970) are the approved injectors for treated acid gas injection by NMOCD and will serve as the injection wells in the model under approved disposal timeframe and maximum allowable injection pressure. RH AGI #1 well is completed in the Cherry Canyon formation between 6,230 feet to 6,583 feet (MD). The RH AGI #3 well will be completed in both the Bell Canyon and Cherry Canyon formations between approximately 5,245 feet to 6,645 feet (MD).

Schlumberger's Petrel[®] (Version 2023.1) software was used to construct the geological models used in this work. Computer Modeling Group (CMG)'s CMG-GEM[®] (Version 2023.10) was used in the reservoir simulations presented in this MRV plan. CMG-WINPROP[®] (Version 2023.10) was used to perform PVT calculation through Equation of States and properties interactions among various compositions to feed the hydrodynamic modeling performed by CMG-GEM[®]. The hydrodynamical model considered aqueous, gaseous, and supercritical phases, and simulates the storage mechanisms including structural trapping, residual gas trapping, and solubility trapping. Injected TAG may exist in the aqueous phase as dissolved state and the gaseous phase as supercritical state. The model was validated through matching the historical injection data of RH AGI #1 well and will be reevaluated periodically as required by the State permitting agency.

The static model is constructed with well tops and licensed 3D seismic data to interpret and delineate the structural surfaces of a layer within the caprock (Lamar Limestone) and its overlaying, underlying formations. The geologic model covers a 3.5-mile by 3.3-mile area. No distinctive geological structures such as faults are identified within the geologic model boundary. The model is gridded with 182 x 167 x 18, totaling 547,092 cells. The average grid dimension of the active injection area is 100 feet square. **Figure 3.8-1** shows the simulation model in 3D view. The porosity and permeability of the model is populated through existing well logs. The range of the porosity is between 0.01 to 0.31. The initial permeability are interpolated between 0.02 to 155 millidarcy (mD), and the vertical permeability anisotropy was 0.1. **(Figure 3.8-2 and Figure 3.8-3)**. These values are validated and calibrated with the historical injection data of RH AGI #1 well since 2018 as shown in **Figures 3.8-4, 3.8-5, and 3.8-6**.

The simulation model is calibrated with the injection history of RH AGI #1 well since 2018. Simulation studies were further performed to estimate the reservoir responses when predicting TAG injection for 30 years through both RH AGI #1 well (2018 – 2048) and RH AGI #3 (2024 - 2054). RH AGI #2 well is temporarily abandoned as of the submission of this document. RH AGI #1 is simulated to inject with the average rate of the last 5 years, 1.2 MMSCF, in the prediction phase. RH AGI #3 is simulated to inject with permitted injection rate, 13 MMSCF, with 1,767 psi maximum surface injection pressure constraint approved by State agency. The simulation terminated at year 2084, 30 years after the termination of all injection activities, to estimate the maximum impacted area during post injection phase.

During the calibration period (2018 – 2023), the historical injection rates were used as the primary injection control, and the maximum bottom hole pressures (BHP) are imposed on wells as the constraint, calculated based on the approved maximum injection pressure. This restriction is also estimated to be less than 90% of the formation fracture pressure calculated at the shallowest perforation depth of each well to ensure safe injection operations. The reservoir properties are tuned to match the historical injection until it was reasonably matched. **Figure 3.8-4** shows that the historical injection rates from the RH AGI #1 well in the Cherry Canyon Formation. **Figure 3.8-5** shows the BHP response of RH AGI #1 during the history matching phase.

During the forecasting period, linear cumulative injection behavior indicates that the Cherry Canyon and Bell Canyon formations received the TAG stream freely. **Figure 3.8-6** shows the cumulative disposed H₂S and CO₂ of each AGI injectors separately in gas mass. The modeling results indicate that the Cherry Canyon and Bell Canyon formations are capable of safely storing and containing the gas volume without violating the permitted rate and

pressure. **Figure 3.8-7** shows the gas saturation represented TAG plume at the end of 30-year forecasting in 3D view. **Figure 3.8-8** shows the extent of the plume migration in a map view at 4 key time steps. It can be observed that the size of the TAG is very limited and mainly stayed within Targa's Red Hills facility at the end of injection. In the year 2084, after 30 years of monitoring, the injected gas remained trapped in the reservoir and there was no significant migration of TAG footprint observed, compared to that at the end of injection.

In summary, after careful reservoir engineering review and numerical simulation study, our analysis shows that the Bell Canyon and Cherry Canyon formations can receive treated acid gas (TAG) at the injection rate and permitted maximum surface injection pressure permitted by New Mexico Oil Conservation Committee. The formation will safely contain the injected TAG volume within the injection and post-injection timeframe. The injection well will allow for the sequestration while preventing associated environmental impacts.

Figure 3.8-1: 3D view of the simulation model of the Red Hills AGI #1 and #3 AGI wells, containing Salado-Castile formation, Lamar limestone, Bell Canyon, and Cherry Canyon formations. Color legends represents the elevation of layers.

Figure 3.8-2: Porosity estimation using available well data for the simulation domain.

Figure 3.8-3: Permeability estimation using available well data for simulation domain.

Figure 3.8-4: shows the historical injection rate and total gas injected from Red Hills AGI #1 well (2018 to 2023)

Figure 3.8-5: shows the historical bottom hole pressure response from Red Hills AGI #1 well (2018 to 2023)

Figure 3.8-6: shows the prediction of cumulative mass of injected CO₂ and H₂S of Red Hills AGI #1 and #3 wells (2018 to 2054).

Figure 3.8-7: shows the free phase TAG (represented by gas saturation) at the end of 30-year post-injection monitoring (2054) in 3D view.

Figure 3.8-8: shows the free phase TAG plume at year 2030, 2035, 2045, 2055 (1-year end of injection) in a map view.

4 Delineation of the Monitoring Areas

In determining the monitoring areas below, the extent of the TAG plume is equal to the superposition of plumes in any layer for any of the model scenarios described in Section 3.8.

4.1 MMA – Maximum Monitoring Area

As defined in Subpart RR, the maximum monitoring area (MMA) is equal to or greater than the area expected to contain the free phase CO_2 plume until the CO_2 plume has stabilized plus an all-around buffer zone of at least one-half mile. **Figures 4.1-1** shows the MMA as defined by the extent of the stabilized TAG plume at year 2059 plus a 1/2-mile buffer.

4.2 AMA – Active Monitoring Area

The Active Monitoring Area (AMA) is shown in **Figure 4.1-1**. The AMA is consistent with the requirements in 40 CFR 98.449 because it is the area projected: (1) to contain the free phase CO_2 plume for the duration of the project (year t, t = 2054), plus an all-around buffer zone of one-half mile. (2) to contain the free phase CO_2 plume for at least 5 years after injection ceases (year t + 5, t + 5 = 2059). Targa intends to define the active monitoring area (AMA) as the same area as the MMA. The purple cross-hatched polygon in **Figure 4.1-1** is the plume extent at the end of injection. The yellow polygon in **Figure 4.1-1** is the stabilized plume extent 5 years after injection ceases. The AMA/MMA shown as the red-filled polygon contains the CO_2 plume during the duration of the project and at the time the plume has stabilized.

Figure 4.1-1: Active monitoring area (AMA) for TND Red Hills AGI #1, #2 (temporarily abandoned) and #3 wells at the end of injection (2054, purple polygon) and 5 years post-monitoring (2059, yellow polygon). Maximum monitoring area (MMA) is shown in red shaded area.

5 Identification and Evaluation of Potential Leakage Pathways to the Surface

Subpart RR at 40 CFR 448(a)(2) requires the identification of potential surface leakage pathways for CO_2 in the MMA and the evaluation of the likelihood, magnitude, and timing of surface leakage of CO_2 through these pathways.

Through the site characterization required by the NMOCD C-108 application process for Class II injection wells, the geologic characterization presented in Section 3, and the reservoir modeling described in Section 3.8, TND has identified and evaluated the potential CO_2 leakage pathways to the surface.

A qualitative evaluation of each of the potential leakage pathways is described in the following paragraphs. Risk estimates were made utilizing the National Risk Assessment Partnership (NRAP) tool, developed by five national laboratories: NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL). The NRAP collaborative research effort leveraged broad technical capabilities across the Department of Energy (DOE) to develop the integrated science base, computational tools, and protocols required to assess and manage environmental risks at geologic carbon storage sites. Utilizing the NRAP tool, TND conducted a risk assessment of CO₂ leakage through various potential pathways including surface equipment, existing and approved wellbores within MMA, faults and fractures, and confining zone formations.

5.1 Potential Leakage from Surface Equipment

Due to the corrosive nature of CO₂ and H₂S, there is a potential for leakage from surface equipment at sour gas facilities. Preventative risk mitigation includes adherence to relevant regulatory requirements and industry standards governing the construction, operation, and maintenance of gas plants. Specifically, NMAC 19.15.26.10 requires injection well operators to operate and maintain "surface facilities in such a manner as will confine the injected fluids to the interval or intervals approved and prevent surface damage or pollution resulting from leaks, breaks or spills."

Operational risk mitigation measures relevant to potential CO₂ emissions from surface equipment include a schedule for regular inspection and maintenance of surface equipment. Additionally, TND implements several methods for detecting gas leaks at the surface. Detection is followed up by immediate response. These methods are described in more detail in sections 6 and 7.

Although mitigative measures are in place to minimize CO_2 emissions from surface equipment, such emissions are possible. Any leaks from surface equipment would result in immediate (timing) emissions of CO_2 to the atmosphere the magnitude of which would depend on the duration of the leak and the operational conditions at the time and location of the leak.

The injection well and the pipeline that carries CO₂ to it are the most likely surface components of the system to allow CO₂ to leak to the surface. The accumulation of wear and tear on the surface components, especially at the flanged connection points, is the most probable source of the leakage. Another possible source of leakage is the release of air through relief valves, which are designed to alleviate pipeline overpressure. Leakage can also occur when the surface components are damaged by an accident or natural disaster, which releases CO₂. Therefore, TND infers that there is a potential for leakage via this route. Depending on the component's failure mode, the magnitude of the leak can vary greatly. For example, a rapid break or rupture could release thousands of pounds of CO₂ into the atmosphere almost instantly, while a slowly deteriorating seal at a flanged connection could release only a few pounds of CO₂ over several hours or days. Surface component leakage or venting is only a concern during the injection operation phase. Once the injection phase is complete, the surface components will no longer be able to store or transport CO₂, eliminating any potential risk of leakage.

5.2 Potential Leakage from RH AGI #3 and Approved, Not Yet Drilled Wells

RH AGI #3 very recently began injecting in January 2024. The only wells within the MMA that are approved but not yet drilled are horizontal wells. These wells have a Well Status of "permitted" in Appendix 4. There are no vertical wells within the MMA with a Well Status of "permitted".

5.2.1 RH AGI #3

TND is began drilling the RH AGI #3 well in September 2023 and began injection in January 2024. To minimize the likelihood of leaks from new wells, NMAC 19.15.26.9 regarding the casing and cementing of injection wells requires operators to case injection wells "with safe and adequate casing or tubing so as to prevent leakage and set and cement the casing or tubing to prevent the movement of formation or injected fluid from the injection zone into another injection zone or to the surface around the outside of the casing string." To minimize the magnitude and duration (timing) of CO₂ leakage to the surface, NMAC 19.15.16.12 requires the use of "blowout preventers in areas of high pressure at or above the projected depth of the well." These requirements apply to any other new well drilled within the MMA for this MRV plan.

TND realizes that when they drill the RH AGI #3, they will be drilling into a reservoir in which they have been injecting H₂S and CO₂ for many years. Therefore, for safety purposes, they will be implementing enhanced safety protocols to ensure that no H₂S or CO₂ escapes to the surface during the drilling of RH AGI #3. Enhanced measures include:

- Using managed pressure drilling equipment and techniques thereby minimizing the chance of any gas from entering the wellbore
- Using LCM (loss control material) at a higher-than-normal rate to fill in the pockets of the wellbore thereby minimizing the chance of gas from entering the wellbore while drilling
- Monitoring H₂S at surface at many points to assure operators that we are successfully keeping any possible gas pressures from impacting the drilling operation
- Employing a high level of caution and care while drilling through a known H₂S injection zone, including use of slower drilling processes and more vigilant mud level monitoring in the returns while drilling into the RH AGI #1 injection zone

By drilling through a zone containing pressurized TAG there is a possibility of CO₂ emission to the surface from the pressurized zone. The emission would be nearly immediate. The magnitude of such an emission would be estimated based on field conditions at the time of the detected leak. The safety protocols described above are in place to prevent or minimize the magnitude of such a leak should one occur.

Due to these safeguards and the continuous monitoring of Red Hills well's operating parameters by the distributed control system (DCS), TND considers that while the likelihood of surface emission of CO_2 is possible, the magnitude of such a leak would be minimal as detection of the leak would be nearly instantaneous followed by immediately shutting in the well and remediation.

5.2.2 Horizontal Wells

The table in **Appendix 3** and **Figure 4.1-1** shows a number of horizontal wells in the area, many of which have approved permits to drill but which are not yet drilled. If any of these wells are drilled through the Bell Canyon injection zone for RH AGI #3 and the Cherry Canyon injection zone for RH AGI #1, they will be required to take special precautions to prevent leakage of TAG minimizing the likelihood of CO₂ leakage to the surface. This requirement will be made by NMOCD in regulating applications for permit to drill (APD) and in ensuring that the operator and driller are aware that they are drilling through an H₂S injection zone in order to access their target production formation. NMAC 19.15.11 for Hydrogen Sulfide Gas includes standards for personnel and equipment safety and H₂S detection and monitoring during well drilling, completion, well workovers, and well servicing operations all of which apply for wells drilled through the RH AGI wells TAG plume.

Due to the safeguards described above, the fact there are no proposed wells for which the surface hole location (SHL) lies within the simulated TAG plume and considering the NRAP risk analysis described here in Section 5, TND considers the likelihood of CO₂ emissions to the surface via these horizontal wells to be highly unlikely.

5.3 Potential Leakage from Existing Wells

Existing oil and gas wells within the MMA as delineated in Section 4 are shown in **Figure 3.6-3** and detailed in **Appendix 4**.

TND considered all wells completed and approved within the MMA in the NRAP risk assessment. Some of these wells penetrate the injection and/or confining zones while others do not. Even though the risk of CO₂ leakage through the wells that did not penetrate confining zones is highly unlikely. TND did not omit any potential source of leakage in the NRAP analysis. If leakage through wellbores happens, the worst-case scenario is predicted using the NRAP tool to quantitatively assess the amount of CO₂ leakage through existing and approved wellbores within the MMA. Thirty-nine existing and approved wells inside MMA were addressed in the NRAP analysis. The reservoir properties, well data, formation stratigraphy, and MMA area were incorporated into the NRAP tool to forecast the rate and mass of CO_2 leakage. The worst scenario is that all of the 39 wells were located right at the source of CO_2 – the injection well's location. In this case, the maximum leakage rate of one well is approximately 7e-6 kg/s. This value is the maximum amount of CO_2 leakage, 220 kg/year, and occurs in the second year of injection, then gradually reduces to 180 kg at the end of year 30. Comparing the total amount of CO₂ injected (assuming 5 MMSCFD of supercritical CO₂ injected continuously for 30 years), the leakage mass amounts to 0.0054% of the total CO₂ injected. This leakage is considered negligible. Also, this worst-case scenario, where 39 wells are located right at the injection point, is impossible in reality. Therefore, CO₂ leakage to the surface via this potential leakage pathway can be considered improbable.

5.3.1 Wells Completed in the Bell Canyon and Cherry Canyon Formations

The only wells completed in the Bell Canyon and Cherry Canyon Formations within the MMA are the RH AGI #1 and #3 wells and the 30-025-08371 well which was completed at a depth of 5,425 ft. This well is within the Red Hills facility boundary and is plugged and abandoned (see **Appendix 9** for plugging and abandonment (P&A) record). **Appendix 1** includes schematics of the RH AGI wells construction showing multiple strings of casing all cemented to surface. Injection of TAG occurs through tubing with a permanent production packer set above the injection zone.

Due to the robust construction of the RH AGI wells, the plugging of the well 30-025-08371 above the Bell Canyon, and considering the NRAP analysis described above, TND considers that, while the likelihood of CO₂ emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.3.2 Wells Completed in the Bone Spring / Wolfcamp Zones

Several wells are completed in the Bone Spring and Wolfcamp oil and gas production zones as described in Section 3.6.2. These productive zones lie more than 2,000 ft below the RH AGI wells injection zone minimizing the likelihood of communication between the RH AGI well injection zones and the Bone Spring / Wolfcamp production zones. Construction of these wells includes surface casing set at 1,375 ft and cemented to surface and intermediate casing set at the top of the Bell Canyon at depths of from 5,100 to 5,200 ft and cemented through the Permian Ochoan evaporites, limestone and siltstone (**Figure 3.2-2**) providing zonal isolation preventing TAG injected into the Bell Canyon and Cherry Canyon formations through RH AGI wells from leaking upward along the borehole in the event the TAG plume were to reach these wellbores. **Figure 4.1-1** shows that the modeled TAG plume extent after 30 years of injection and 5

years of post-injection stabilization does not extend to well boreholes completed in the Bone Spring / Wolfcamp production zones thereby indicating that these wells are not likely to be pathways for CO_2 leakage to the surface.

Due to the construction of these wells, the fact that the modeled TAG plume does not reach the SHL of these wells and considering the NRAP analysis described in the introductory paragraph of Section 5, TND considers that, while the likelihood of CO₂ emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.3.3 Wells Completed in the Siluro-Devonian Zone

One well penetrated the Devonian at the boundary of the MMA - EOG Resources, Government Com 001, API # 30-025-25604, TVD = 17,625 ft, 0.87 miles from RH AGI #3. This well was drilled to a total depth of 17,625 ft on March 5, 1978, but plugged back to 14,590 ft, just below the Morrow, in May of 1978. Subsequently, this well was permanently plugged and abandoned on December 30, 2004, and approved by NMOCD on January 4, 2005 (see **Appendix 9** for P&A records). The approved plugging provides zonal isolation for the Bell Canyon and Cherry Canyon injection zones minimizing the likelihood that this well will be a pathway for CO_2 emissions to the surface from either injection zone.

Due to the location of this well at the edge of the MMA and considering the NRAP analysis described in the introductory paragraph of Section 5, TND considers that, while the likelihood of CO_2 emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.3.4 Groundwater Wells

The table in Appendix 3 lists 15 water wells within a 2-mile radius of the RH AGI wells, only 2 of which are within a 1-mile radius of and within the MMA for the RH AGI wells (**Figure 3.5-1**). The deepest ground water well is 650 ft deep The evaporite sequence of the Permian Ochoan Salado and Castile Formations (see Section 3.2.2) provides an excellent seal between these groundwater wells and the Cherry Canyon injection zone of the RH AGI #1 well. Therefore, it is unlikely that these two groundwater wells are a potential pathway of CO₂ leakage to the surface. Nevertheless, the CO₂ surface monitoring and groundwater mediate response thereby minimizing the magnitude of CO₂ leakage volume via this potential pathway.

Due to the shallow depth of the groundwater wells within the MMA relative to the depth of the RH AGI wells and considering the NRAP analysis described in the introductory paragraph in Section 5, TND considers that, while the likelihood of CO₂ emissions to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.4 Potential Leakage through the Confining / Seal System

The site characterization for the injection zone of the RH AGI wells described in Sections 3.2.2 and 3.3 indicates a thick sequence of Permian Ochoan evaporites, limestone, and siltstones (**Figure 3.2-2**) above the Bell Canyon and Cherry Canyon Formations and no evidence of faulting. Therefore, it is unlikely that TAG injected into the Bell Canyon and Cherry Canyon Formations will leak through this confining zone to the surface. Limiting the injection pressure to less than the fracture pressure of the confining zone will minimize the likelihood of CO_2 leakage through this potential pathway to the surface.

Leakage through a confining zone happens at low-permeability shale formations containing natural fractures. The injection zone for the RH AGI #1 and #3 is the Delaware Group Formation (Bell Canyon and Cherry Canyon), which lies under the Castile and Salado formations with less than 0.01 mD permeability acting as the seals. Therefore, TND took leakage through confining zones into consideration in the NRAP risk assessment. The worst-case scenario is defined as leakage through the seal happening right above the

injection wells, where CO_2 saturation is highest. However, this worst-case scenario of leakage only shows that 0.0017% of total CO_2 injection in 30 years was leaked from the injection zone through the seals. As we go further from the source of CO_2 , the likelihood of such an event will diminish proportionally with the distance from the source. Considering that this is the greatest amount of CO_2 leakage in this worst-case scenario, if the event happens, the leak must pass upward through the confining zone, the secondary confining strata that consists of additional low permeability geologic units, and other geologic units, TND concludes that the risk of leakage through this pathway is highly unlikely.

5.5 Potential Leakage due to Lateral Migration

The characterization of the sand layers in the Cherry Canyon Formation described in Section 3.3 states that these sands were deposited by turbidites in channels in submarine fan complexes, each sand is encased in low porosity and permeability fine-grained siliciclastics and mudstones with lateral continuity. Regional consideration of their depositional environment suggests a preferred orientation for fluid and gas flow would be south-to-north along the channel axis. However, locally the high net porosity of the RH AGI #1 and #3 injection zones indicates adequate storage capacity such that the injected TAG will be easily contained close to the injection well, thus minimizing the likelihood of lateral migration of TAG outside the MMA due to a preferred regional depositional orientation.

Lateral migration of the injected TAG was addressed in detail in Section 3.3. Therein it states that the units dip gently to the southeast with approximately 200 ft of relief across the area. Heterogeneities within both the Bell Canyon and Cherry Canyon sandstones, such as turbidite and debris flow channels, will exert a significant control over the porosity and permeability within the two units and fluid migration within those sandstones. In addition, these channels are frequently separated by low porosity and permeability siltstones and shales as well as being encased by them.

Based on the discussion of the channeled sands in the injection zone, TND considers that the likelihood of CO₂ to migrate laterally along the channel axes is possible. However, that the turbidite sands are encased in low porosity and permeability fine-grained siliciclastics and mudstones with lateral continuity and that the injectate is projected to be contained within the injection zone close to the injection wells minimizes the likelihood that CO₂ will migrate to a potential conduit to the surface.

5.6 Potential Leakage through Fractures and Faults

Prior to injection, a thorough geological characterization of the injection zone and surrounding formations was performed (see Section 3) to understand the geology as well as identify and understand the distribution of faults and fractures. **Figure 5.6-1** shows the fault traces in the vicinity of the Red Hill plant. The faults shown on **Figure 5.6-1** are confined to the Paleozoic section below the injection zone for the RH AGI wells. No faults were identified in the confining zone above the Bell Canyon and Cherry Canyon injection zone for the RH AGI wells.

No faults were identified within the MMA which could potentially serve as conduits for surface CO₂ emission. The closest identified fault lies approximately 1.5 miles east of the Red Hills site and has approximately 1,000 ft of down-to-the-west structural relief. Because this fault is confined to the lower Paleozoic unit more than 5,100 feet below the injection zone for the RH AGI wells, there is minimal chance it would be a potential leakage pathway. This inference is supported by the NRAP simulation result. Therefore, TND concludes that the CO₂ leakage rate through this fault is zero and that the risk of leakage through this potential leakage pathway is highly improbable.

5.7 Potential Leakage due to Natural / Induced Seismicity

The New Mexico Tech Seismological Observatory (NMTSO) monitors seismic activity in the state of New Mexico. A search of the database shows no recent seismic events close to the Red Hills operations. The closest recent, as of 4 September 2023, seismic events are:

- 7.5 miles, 2022-09-03, Magnitude 3
- 8 miles, 2022-09-02, Magnitude 2.23
- 8.6 miles, 2022-10-29, Magnitude 2.1

Figure 5.6-1 shows the seismic stations and recent seismic events in the area around the Red Hills site.

Due to the distance between the Red Hills AGI wells and the recent seismic events, the magnitude of these events, and the fact that TND injects at pressures below fracture opening pressure, TND considers the likelihood of CO₂ emissions to the surface caused by seismicity to be improbable.

Monitoring of seismic events in the vicinity of the Red Hills AGI wells is discussed in Section 6.7.

6 Strategy for Detecting and Quantifying Surface Leakage of CO₂

Subpart RR at 40 CFR 448(a)(3) requires a strategy for detecting and quantifying surface leakage of CO₂. TND will employ the following strategy for detecting, verifying, and quantifying CO₂ leakage to the surface through the potential pathways for CO₂ surface leakage identified in Section 5. TND considers H₂S to be a proxy for CO₂ leakage to the surface and as such will employ and expand upon methodologies detailed in their H₂S Contingency plan to detect, verify, and quantify CO₂ surface leakage. **Table 6-1** summarizes the leakage monitoring of the identified leakage pathways. Monitoring will occur for the duration of injection and the 5-year post-injection period.

Potential Leakage Pathway	Detection Monitoring		
Surface Equipment	 Distributed control system (DCS) surveillance of plant operations Visual inspections Inline inspections Fixed in-field gas monitors/CO₂ flux monitoring network Personal and hand-held gas monitors 		
Existing RH AGI Wells	 DCS surveillance of well operating parameters Visual inspections Mechanical integrity tests (MIT) Fixed in-field gas monitors/CO₂ flux monitoring network Personal and hand-held gas monitors In-well P/T sensors Groundwater monitoring 		
Fractures and Faults	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring 		
Confining Zone / Seal	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring 		
Natural / Induced Seismicity	DCS surveillance of well operating parametersSeismic monitoring		
Lateral Migration	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring 		

Table 6-1: Summary of Leak Detection Monitoring

Potential Leakage Pathway	Detection Monitoring		
Additional Monitoring	Groundwater monitoringSoil flux monitoring		

6.1 Leakage from Surface Equipment

TND implements several tiers of monitoring for surface leakage including frequent periodic visual inspection of surface equipment, use of fixed in-field and personal H₂S sensors, and continual monitoring of operational parameters.

Leaks from surface equipment are detected by TND field personnel, wearing personal H₂S monitors, following daily and weekly inspection protocols which include reporting and responding to any detected leakage events. TND also maintains in-field gas monitors to detect H₂S and CO₂. The in-field gas monitors are connected to the DCS housed in the onsite control room. If one of the gas detectors sets off an alarm, it would trigger an immediate response to address and characterize the situation.

The following description of the gas detection equipment at the Red Hills Gas Processing Plant was extracted from the H_2S Contingency Plan:

"Fixed Monitors

The Red Hills Plant has numerous ambient hydrogen sulfide detectors placed strategically throughout the Plant to detect possible leaks. Upon detection of hydrogen sulfide at 10 ppm at any detector, visible beacons are activated, and an alarm is sounded. Upon detection of hydrogen sulfide at 90 ppm at any detector, an evacuation alarm is sounded throughout the Plant at which time all personnel will proceed immediately to a designated evacuation area. The Plant utilizes fixed-point monitors to detect the presence of H₂S in ambient air. The sensors are connected to the Control Room alarm panel's Programmable Logic Controllers (PLCs), and then to the Distributed Control System (DCS). The monitors are equipped with amber beacons. The beacon is activated at 10 ppm. The plant and AGI well horns are activated with a continuous warbling alarm at 10 ppm and a siren at 90 ppm. All monitoring equipment is Red Line brand. The Control Panel is a 24 Channel Monitor Box, and the fixed point H₂S Sensor Heads are model number RL-101.

The Plant will be able to monitor concentrations of H_2S via H_2S Analyzers in the following locations:

- Inlet gas of the combined stream from Winkler and Limestone
- Inlet sour liquid downstream of the slug catcher
- Outlet Sweet Gas to Red Hills 1
- Outlet Sweet Liquid to Red Hills Condensate Surge

The AGI system monitors can also be viewed on the PLC displays located at the Plant. These sensors are all shown on the plot plan (see **Figure 3.6-1**). This requires immediate action for any occurrence or malfunction. All H₂S sensors are calibrated monthly.

Personal and Handheld H₂S Monitors

All personnel working at the Plant wear personal H₂S monitors. The personal monitors are set to alarm and vibrate at 10 ppm. Handheld gas detection monitors are available at strategic locations around the Plant so that plant personnel can check specific areas and equipment prior to initiating maintenance or other work. The handheld gas detectors have sensors for oxygen, LEL (explosive hydrocarbon atmospheres), H₂S and carbon dioxide (CO₂)."

6.2 Leakage from Approved Not Yet Drilled Wells

Special precautions will be taken in the drilling of any new wells that will penetrate the injection zones as described in Section 5.2.1 for RH AGI #3 including more frequent monitoring during drilling operations (see **Table 6-1**). This applies to TND and other operators drilling new wells through the RH AGI injection zone within the MMA.

6.3 Leakage from Existing Wells

6.3.1 RH AGI Wells

As part of ongoing operations, TND continuously monitors and collects flow, pressure, temperature, and gas composition data in the data collection system. These data are monitored continuously by qualified technicians who follow response and reporting protocols when the system delivers alerts that data is not within acceptable limits.

To monitor leakage and wellbore integrity, two pressure and temperature gauges as well as Distributed Temperature Sensing (DTS) were deployed in TND's RH AGI #1 well. One gauge is designated to monitor the tubing ID (reservoir) pressure and temperature and the second gauge monitors the annular space between the tubing and the long string casing (**Figure 6.2-1**). A leak is indicated when both gauges start reading the same pressure. DTS is clamped to the tubing, and it monitors the temperature profiles of the annulus from 6,159 ft to surface. DTS can detect variation in the temperature profile events throughout the tubing and or casing. Temperature variation could be an indicator of leaks. Data from temperature and pressure gauges is recorded by an interrogator housed in an onsite control room. DTS (temperature) data is recorded by a separate interrogator that is also housed in the onsite control room. Data from both interrogators are transmitted to a remote location for daily real time or historical analysis.

If operational parameter monitoring and MIT failures indicate a CO_2 leak has occurred, TND will take actions to quantify the leak based on operating conditions at the time of the detection including pressure at the point of emission, flowrate at the point of emission, duration of the emission, and estimation of the size of the emission site.

F	HALLIBURTON Lucid						
Installation			Lea	County New Mexico Sales Rep - Lynn Talley (432) 63	1-4626		
Installation Donth		Longth	lte	2/3/21 - 2/28/21 Tool Specialists: Carey Lehmann, Jonathan Pl	nillips, Jose	Vargas	
2		18.50	18.50	015.	KB		10
のためのない	20	22.90 64.05	4.40 41.15	1	20) Hanger Sub 3 1/2" 9.2# CRA VAMTOP x 7.7# VAM Ace Pin 19) 3 1/2" 7.7# VAM ACE 125K G3 Tubing (Slick Joint) Pan Eight Subs 8' 8' 6' 6' 4' 4' 2' 2'	7.000 3.500	3.000 3.035
	■1 8	103.97	39 . 92		18) 3 1/2" 7.7# VAM ACE 125K G3 Spaceout Subs	3.500	3.035
0.00	↓ 17	235.95	131.98	3	17) 3 1/2" 7.7# VAM ACE 125K G3 Tubing	3.500	3.035
100 M	16	241.95	6.00		16) 6' x 3 1/2" 7.7# CRA VAM ACE Box x 9.2# VAMTOP Pin	3.540	2.959
のため、彼	15	246.30	4.35		15) 3 1/2" NE HES SSSV Nickel Alloy 925 w/Alloy 825 Control Line 3 1/2" 9.2# VAMTOP Box x Pin	5.300	2.813
	14	252.29	5.99		14) 6' x 3 1/2" 9.2# CRA VAMTOP Box x 7.7# VAM ACE Pin	3.540	2.959
0.00	1	6,140.23	5,887.94	134	13) 3 1/2" 7.7# VAM ACE 125K G3 Tubing 12) 3 1/2" 7.7# VAM ACE Box x 9.2# VAMTOP Pin CRA Crossover	3.500 3.830	3.305 2.959
Set 2	11				11) 2.813" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy 925	4.073	2.813
の時代	10	6,153.72	13.49		10) 6' x 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy G3 Sub 13.49' Length Includes Line Items 10, 11 & 12	3.540	2.959
10.00	9	6.159 Tubina 6.162.6 Annular	P/T P/T	H	9) Baker PT Sensor Mandrel 3 1/2" 9.2# VAMTOP Box x Pin 6' VAMTOP 9.2# CRA Tubing Sub Above & Below Gauge Mdl	5.200	2.992
8-15-15-15-15-15-15-15-15-15-15-15-15-15-	8	6,161.23	7.51		8) 4.00" BWS Landed Seal Asmbly 9.2# VAM TOP Nickel Alloy 925 7.51' Length Includes Line Items 8 & 9	4.470	2.959
West Law		6,164.55	3.32		7) 7" 26-32# x 4.00" BWS Packer Nickel Alloy 925 Casing Collar @ 6,160.6' WL Measurement	5.875	4.000
たいのである	4 6	6,172.05	7.5		6) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5 .032	4.000
50.03	5	6,172.88	0.83		5) 4.00" PBR Adapter x 9.2# VAMTOP BxP Nickel Alloy 925	5.68 0	2.959
VE CO	4 4	6,181.19	8.31		4) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub Nickel Alloy G3	3.540	2.959
12.00	3	6 ,182.52	1.33		3) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy 925 #102204262	4.073	2.562
100.00	2	6,184.29	1.77		2) Straight Slot Locator Seal Assembly Above Top Of Packer	4.450	2.880
S.Co.	3 - 1		6,186.06		1) BWD Permanent Packer. WL Measured Depth Previously 6189'	5.875	4.000
10.00					1a) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5.660	2.965
Set	1a				1b) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
					1c) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel,	2.920	2.562
10.00					1d) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
読むの	↓ 1b				1e) 2.562" RN Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel	3.920	2.321
1000	1c				1f) Re-Entry Guide / POP	3.950	3.000
10.00	1d						
の日本	1e						
State and	■						

Figure 6.2-1: Well Schematic for RH AGI #1 showing installation of P/T sensors

	8	6,161.23	7.51	8) 4.00" BWS Landed Seal Asmbly 9.2# VAM TOP Nickel Alloy 925 7.51' Length Includes Line Items 8 & 9	4.470	2.959
	7	6,164.55	3.32	7) 7" 26-32# x 4.00" BWS Packer Nickel Alloy 925 Casing Collar @ 6,160.6' WL Measurement	5.875	4.000
64.002	• 6	6,172.05	7.5	6) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5.032	4.000
	- 5	6,172.88	0.83	5) 4.00" PBR Adapter x 9.2# VAMTOP BxP Nickel Alloy 925	5.680	2.959
P.B.V.	- 4	6,181.19	8.31	4) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub Nickel Alloy G3	3.540	2.959
N. T. P.	3	6,182.52	1.33	3) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy 925 #102204262	4.073	2.562
	2 2	6,184.29	1.77	2) Straight Slot Locator Seal Assembly Above Top Of Packer	4.450	2.880
	1	_	6,186.06	1) BWD Permanent Packer. WL Measured Depth Previously 6189'	5.875	4.000
ĝ.	N.			1a) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5.660	2.965
10120				1b) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
	<∎1a			1c) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel,	2.920	2.562
	1704			1d) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
	a da			1e) 2.562" RN Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel	3.920	2.321
	1b			1f) Re-Entry Guide / POP	3.950	3.000
	↓ 1c					
2000	<1d					
	↓ 1e					
	↓ 1f					

Figure 6.2-2: Well Schematic for RH AGI #3 showing intended installation of P/T sensors

6.3.2 Other Existing Wells within the MMA

The CO₂ monitoring network described in Section 7.3 and well surveillance by other operators of existing wells will provide an indication of CO₂ leakage. Additionally, groundwater and soil CO₂ flux monitoring locations throughout the MMA will also provide an indication of CO₂ leakage to the surface. See Sections 7.7 and 7.8 for details.

6.4 Leakage through the Confining / Seal System

As discussed in Section 5, it is very unlikely that CO_2 leakage to the surface will occur through the confining zone. Continuous operational monitoring of the RH AGI wells, described in Sections 6.3 and 7.5, will provide an indicator if CO_2 leaks out of the injection zone. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO_2 leakage to the surface. See Sections 7.7 and 7.8 for details.

If changes in operating parameters or other monitoring listed in **Table 6-1** indicate leakage of CO_2 through the confining / seal system, TND will take actions to quantify the amount of CO_2 released and take mitigative action to stop it, including shutting in the well(s) (see Section 6.8).

6.5 Leakage due to Lateral Migration

Continuous operational monitoring of the RH AGI wells during and after the period of the injection will provide an indication of the movement of the CO_2 plume migration in the injection zones. The CO_2 monitoring network described in Section 7.3, and routine well surveillance will provide an indicator if CO_2 leaks out of the injection zone. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO_2 leakage to the surface. See Sections 7.7 and 7.8 for details.

If monitoring of operational parameters or other monitoring methods listed in Table 6-1 indicates that the CO₂ plume extends beyond the area modeled in Section 3.8 and presented in Section 4, TND will reassess the plume migration modeling for evidence that the plume may have intersected a pathway for CO₂ release to the surface. As this scenario would be considered a material change per 40CFR98.448(d)(1), TND will submit a revised MRV plan as required by 40CFR98.448(d). See Section 6.8 for additional information on quantification strategies.

6.6 Leakage from Fractures and Faults

As discussed in Section 5, it is very unlikely that CO_2 leakage to the surface will occur through faults. However, if monitoring of operational parameters and the fixed in-field gas monitors indicate possible CO_2 leakage to the surface, TND will identify which of the pathways listed in this section are responsible for the leak, including the possibility of heretofore unidentified faults or fractures within the MMA. TND will take measures to quantify the mass of CO_2 emitted based on the operational conditions that existed at the time of surface emission, including pressure at the point of emission, flowrate at the point of emission, duration of the emission, and estimation of the size of the emission site. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO_2 leakage to the surface. See Sections 7.7 and 7.8 for details. See Section 6.8 for additional information on quantification strategies.

6.7 Leakage due to Natural / Induced Seismicity

In order to monitor the influence of natural and/or induced seismicity, TND will use the established NMTSO seismic network. The network consists of seismic monitoring stations that detect and locate seismic events. Continuous monitoring helps differentiate between natural and induced seismicity. The network surrounding the Red Hills Gas Processing Plant has been mapped on **Figure 5.6-1**. The monitoring network records Helicorder data from UTC (coordinated universal time) all day long. The data are plotted daily at 5pm MST (mountain standard time). These plots can be browsed either by station or by day. The data are streamed continuously to the New Mexico Tech campus and archived at the Incorporated Research Institutions for Seismology Data Management Center (IRIS DMC).

If monitoring of the NMTSO seismic monitoring stations, the operational parameters and the fixed infield gas monitors indicates surface leakage of CO_2 linked to seismic events, TND will assess whether the CO_2 originated from the RH AGI wells and, if so, take measures to quantify the mass of CO_2 emitted to the surface based on operational conditions at the time the leak was detected. See Section 7.6 for details regarding seismic monitoring and analysis. See Section 6.8 for additional information on quantification strategies.

6.8 Strategy for Quantifying CO₂ Leakage and Response

6.8.1 Leakage from Surface Equipment

For normal operations, quantification of emissions of CO₂ from surface equipment will be assessed by employing the methods detailed in Subpart W according to the requirements of 98.444(d) of Subpart RR. Quantification of major leakage events from surface equipment as identified by the detection techniques listed in Table 6-1 will be assessed by employing methods most appropriate for the site of the identified leak. Once a leak has been identified the leakage location will be isolated to prevent additional emissions to

the atmosphere. Quantification will be based on the length of time of the leak and parameters that existed at the time of the leak such as pressure, temperature, composition of the gas stream, and size of the leakage point. TND has standard operating procedures to report and quantify all pipeline leaks in accordance with the NMOCD regulations (New Mexico administrative Code 19.15.28 Natural Gas Gathering Systems). TND will modify this procedure to quantify the mass of carbon dioxide from each leak discovered by TND or third parties. Additionally, TND may employ available leakage models for characterizing and predicting gas leakage from gas pipelines. In addition to the physical conditions listed above, these models are capable of incorporating the thermodynamic parameters relevant to the leak thereby increasing the accuracy of quantification.

6.8.2 Subsurface Leakage

Selection of a quantification strategy for leaks that occur in the subsurface will be based on the leak detection method (Table 6-1) that identifies the leak. Leaks associated with the point sources, such as the injection wells, and identified by failed MITs, variations of operational parameters outside acceptable ranges, and in-well P/T sensors can be addressed immediately after the injection well has been shut in. Quantification of the mass of CO₂ emitted during the leak will depend on characterization of the subsurface leak, operational conditions at the time of the leak, and knowledge of the geology and hydrogeology at the leakage site. Conservative estimates of the mass of CO₂ emitted to the surface will be made assuming that all CO₂ released during the leak will reach the surface. TND may choose to estimate the emissions to the surface more accurately by employing transport, geochemical, or reactive transport model simulations.

Other wells within the MMA will be monitored with the atmospheric and CO_2 flux monitoring network placed strategically in their vicinity.

Nonpoint sources of leaks such as through the confining zone, along faults or fractures, or which may be initiated by seismic events and as may be identified by variations of operational parameters outside acceptable ranges will require further investigation to determine the extent of leakage and may result in cessation of operations.

6.8.3 Surface Leakage

A recent review of risk and uncertainty assessment for geologic carbon storage (Xiao et al., 2024) discussed monitoring for sequestered CO₂ leaking back to the surface emphasizing the importance of monitoring network design in detecting such leaks. Leaks detected by visual inspection, hand-held gas sensors, fixed infield gas sensors, atmospheric, and CO₂ flux monitoring will be assessed to determine if the leaks originate from surface equipment, in which case leaks will be quantified according to the strategies in Section 6.8.1, or from the subsurface. In the latter case, CO₂ flux monitoring methodologies, as described in Section 7.8, will be employed to quantify the surface leaks.

7 Strategy for Establishing Expected Baselines for Monitoring CO₂ Surface Leakage

TND uses the existing automatic distributed control system to continuously monitor operating parameters and to identify any excursions from normal operating conditions that may indicate leakage of CO₂. TND considers H₂S to be a proxy for CO₂ leakage to the surface and as such will employ and expand upon methodologies detailed in their H₂S Contingency plan to establish baselines for monitoring CO₂ surface leakage. The following describes TND's strategy for collecting baseline information.

7.1 Visual Inspection

TND field personnel conduct frequent periodic inspections of all surface equipment providing opportunities to assess baseline concentrations of H_2S , a proxy for CO_2 , at the Red Hills Gas Plant.

7.2 Fixed In-Field, Handheld, and Personal H₂S Monitors

Compositional analysis of TND's gas injectate at the Red Hills Gas Plant indicates an approximate H₂S concentration of 20% thus requiring TND to develop and maintain an H₂S Contingency Plan (Plan) according to the NMOCD Hydrogen Sulfide Gas Regulations, Rule 11 (19.15.11 NMAC). TND considers H₂S to be a proxy for CO₂ leaks at the plant. The Plan contains procedures to provide for an organized response to an unplanned release of H₂S from the plant or the associated RH AGI Wells and documents procedures that would be followed in case of such an event.

7.2.1 Fixed In-Field H₂S Monitors

The Red Hills Gas Plant utilizes numerous fixed-point monitors, strategically located throughout the plant, to detect the presence of H₂S in ambient air. The sensors are connected to the Control Room alarm panel's Programmable Logic Controllers (PLCs), and then to the DCS. Upon detection of H₂S at 10 ppm at any detector, visible amber beacons are activated, and horns are activated with a continuous warbling alarm. Upon detection of hydrogen sulfide at 90 ppm at any monitor, an evacuation alarm is sounded throughout the plant at which time all personnel will proceed immediately to a designated evacuation area.

7.2.2 Handheld and Personal H₂S Monitors

Handheld gas detection monitors are available at strategic locations around the plant so that plant personnel can check specific areas and equipment prior to initiating maintenance or other work. The handheld gas detectors have sensors for oxygen, LEL (explosive hydrocarbon atmospheres), H₂S and CO₂.

All personnel, including contractors who perform operations, maintenance and/or repair work in sour gas areas within the plant must wear personal H₂S monitoring devices to assist them in detecting the presence of unsafe levels of H₂S. Personal monitoring devices will give an audible alarm and vibrate at 10 ppm.

7.3 CO₂ Detection

In addition to the handheld gas detection monitors described above, New Mexico Tech, through a DOE research grant (DE-FE0031837 – Carbon Utilization and Storage Project of the Western USA (CUSP)), will assist TND in setting up a monitoring network for CO_2 leakage detection in the AMA as defined in Section 4.2. The scope of work for the DOE project includes field sampling activities to monitor CO_2/H_2S at the two RH AGI wells. These activities include periodic well (groundwater and gas) and atmospheric sampling from an area of 10 - 15 square miles around the injection wells. Once the network is set up, TND will assume responsibility for monitoring, recording, and reporting data collected from the system for the duration of the project.

7.4 Continuous Parameter Monitoring

The DCS of the plant monitors injection rates, pressures, and composition on a continuous basis. High and low set points are programmed into the DCS, and engineering and operations are alerted if a parameter is outside the allowable window. If a parameter is outside the allowable window, this will trigger further investigation to determine if the issue poses a leak threat. Also, see Section 6.2 for continuous monitoring of P/T in the well.

7.5 Well Surveillance

TND adheres to the requirements of NMOCC Rule 26 governing the construction, operation and closing of an injection well under the Oil and Gas Act. Rule 26 also includes requirements for testing and monitoring of Class II injection wells to ensure they maintain mechanical integrity at all times. Furthermore, NMOCC includes special conditions regarding monitoring, reporting, and testing in the individual permits for each injection well, if they are deemed necessary. TND's Routine Operations and Maintenance Procedures for the RH AGI wells ensure frequent periodic inspection of the wells and opportunities to detect leaks and implement corrective action.

7.6 Seismic (Microseismic) Monitoring Stations

TND has Installed a model TCH120-1 Trillium Compact Horizon Seismometer and a model CTR4-3S Centaur Digital Recorder to monitor for and record data for any seismic event at the Red Hills Gas Plant (see **Figure 7-1**). The seismic station meets the requirements of the NMOCC Order No. R-20916-H to "install, operate, and monitor for the life of the [Class II AGI] permit a seismic monitoring station or stations as directed by the Manager of the New Mexico Tech Seismological Observatory ("state seismologist") at the New Mexico Bureau of Geology and Mineral Resources."

In addition, data that is recorded by the State of New Mexico deployed seismic network within a 10-mile radius of the Red Hills Gas Plant will be analyzed by the New Mexico Bureau of Geology (NMBGMR), see **Figure 5.6-1**, and made publicly available. The NMBGMR seismologist will create a report and map showing the magnitudes of recorded events from seismic activity. The data is being continuously recorded. By examining historical data, a seismic baseline prior to the start of TAG injection can be well established and used to verify anomalous events that occur during current and future injection activities. If necessary, a certain period of time can be extracted from the overall data set to identify anomalous events during that period.

7.7 Groundwater Monitoring

New Mexico Tech, through the same DOE research grant described in Section 7.3 above, will monitor groundwater wells for CO₂ leakage which are located within the AMA as defined in Section 4.2. Water samples will be collected and analyzed on a monthly basis for 12 months to establish baseline data. After establishing the water chemistry baseline, samples will be collected and analyzed bi-monthly for one year and then quarterly. Samples will be collected according to EPA methods for groundwater sampling (U.S. EPA, 2015).

The water analysis includes total dissolved solids (TDS), conductivity, pH, alkalinity, major cations, major anions, oxidation-reduction potentials (ORP), inorganic carbon (IC), and non-purgeable organic carbon (NPOC). Charge balance of ions will be completed as quality control of the collected groundwater samples. See **Table 7.7-1**. Baseline analyses will be compiled and compared with regional historical data to determine patterns of change in groundwater chemistry not related to injection processes at the Red Hills Gas Plant. A report of groundwater chemistry will be developed from this analysis. Any water quality samples not within the expected variation will be further investigated to determine if leakage has occurred from the injection zone.

Parameters
рН
Alkalinity as HCO3- (mg/L)
Chloride (mg/L)
Fluoride (F-) (mg/L)
Bromide (mg/L)
Nitrate (NO3-) (mg/L)
Phosphate (mg/L)
Sulfate (SO42-) (mg/L)
Lithium (Li) (mg/L)
Sodium (Na) (mg/L)
Potassium (K) (mg/L)
Magnesium (Mg) (mg/L)
Calcium (Ca) (mg/L)
TDS Calculation (mg/L)
Total cations (meq/L)
Total anions (meq/L)
Percent difference (%)
ORP (mV)
IC (ppm)
NPOC (ppm)

Table 7.7-1: Groundwater Monitoring Parameters

7.8 Soil CO₂ Flux Monitoring

A vital part of the monitoring program is to identify potential leakage of CO₂ and/or brine from the injection horizon into the overlying formations and to the surface. One method that will be deployed is to gather and analyze soil CO₂ flux data which serves as a means for assessing potential migration of CO₂ through the soil and its escape to the atmosphere. By taking CO₂ soil flux measurements at periodic intervals, TND can continuously characterize the interaction between the subsurface and surface to understand potential leakage pathways. Actionable recommendations can be made based on the collected data.

Soil CO₂ flux will be collected on a monthly basis for 12 months to establish the baseline and understand seasonal and other variation at the Red Hills Gas Plant. After the baseline is established, data will be collected bi-monthly for one year and then quarterly.

Soil CO₂ flux measurements will be taken using a LI-COR LI-8100A flux chamber, or similar instrument, at pre planned locations at the site. PVC soil collars (8cm diameter) will be installed in accordance with the LI-8100A specifications. Measurements will be subsequently made by placing the LI-8100A chamber on the soil collars and using the integrated iOS app to input relevant parameters, initialize measurement, and record the system's flux and coefficient of variation (CV) output. The soil collars will be left in place such that each subsequent measurement campaign will use the same locations and collars during data collection.

Figure 7-1: Red Hills monitoring network of 32 CO₂ flux locations, 2 groundwater wells, and a seismic station developed by New Mexico Tech and Targa Resources to detect leakage during injection.

8 Site Specific Considerations for Determining the Mass of CO₂ Sequestered

Appendix 7 summarizes the twelve Subpart RR equations used to calculate the mass of CO₂ sequestered annually. **Appendix 8** includes the twelve equations from Subpart RR. Not all of these equations apply to TND's current operations at the Red Hills Gas Plant but are included in the event TND's operations change in such a way that their use is required.

Figure 3.6-2 shows the location of all surface equipment and points of venting listed in 40CFR98.232(d) of Subpart W that will be used in the calculations listed below.

8.1 CO₂ Received

Currently, TND receives gas to its Red Hills Gas Plant through six pipelines: Gut Line, Winkler Discharge, Red Hills 24" Inlet Loop, Greyhound Discharge, Limestone Discharge, and the Plantview Loop. The gas is processed as described in Section 3.8 to produce compressed TAG which is then routed to the wellhead and pumped to injection pressure through NACE-rated (National Association of Corrosion Engineers) pipeline suitable for injection. TND will use Equation RR-2 for Pipelines to calculate the mass of CO₂ received through pipelines and measured through volumetric flow meters. The total annual mass of CO₂ received through these pipelines will be calculated using Equation RR-3. Receiving flow meter r in the following equations corresponds to meters M1 and M2 in **Figure 3.6-2**.

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$
(Equation RR-2 for Pipelines)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons).
- $Q_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r in quarter p at standard conditions (standard cubic meters).
- $S_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- *p* = Quarter of the year.
- *r* = Receiving flow meter.

$$CO_2 = \sum_{r=1}^R CO_{2T,r}$$

(Equation RR-3 for Pipelines)

where:

- CO 2 = Total net annual mass of CO₂ received (metric tons).
- $CO_{2T,r}$ = Net annual mass of CO_2 received (metric tons) as calculated in Equation RR-1 or RR-2 for flow meter r.
- r = Receiving flow meter.

Although TND does not currently receive CO₂ in containers for injection, they wish to include the flexibility in this MRV plan to receive gas from containers. When TND begins to receive CO₂ in containers, TND will use Equations RR-1 and RR-2 for Containers to calculate the mass of CO₂ received in containers. TND will adhere to the requirements in 40CFR98.444(a)(2) for determining the quarterly mass or volume of CO₂ received in containers.

If CO₂ received in containers results in a material change as described in 40CFR98.448(d)(1), TND will submit a revised MRV plan addressing the material change.

8.2 CO₂ Injected

TND injects CO_2 into the existing RH AGI #1. Upon completion, TND will commence injection into RH AGI #3. Equation RR-5 will be used to calculate CO_2 measured through volumetric flow meters before being injected into the wells. Equation RR-6 will be used to calculate the total annual mass of CO_2 injected into both wells. The
calculated total annual CO₂ mass injected is the parameter CO₂₁ in Equation RR-12. Volumetric flow meter u in the following equations corresponds to meters M3 and M6 in **Figure 3.6-2**.

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$
 (Equation RR-5)

where:

- $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.
- $Q_{p,u}$ = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter).
- D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,u} = CO_2$ concentration measurement in flow for flow meter u in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- *p* = Quarter of the year.

$$CO_{2I} = \sum_{u=1}^{U} CO_{2,u}$$

(Equation RR-6)

where:

CO ₂₁ = Total annual CO₂ mass injected (metric tons) though all injection wells.

 $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.

u = Flow meter.

8.3 CO₂ Produced / Recycled

TND does not produce oil or gas or any other liquid at its Red Hills Gas Plant so there is no CO_2 produced or recycled.

8.4 CO₂ Lost through Surface Leakage

Equation RR-10 will be used to calculate the annual mass of CO_2 lost due to surface leakage from the leakage pathways identified and evaluated in Section 5 above. The calculated total annual CO_2 mass emitted by surface leakage is the parameter CO_{2E} in Equation RR-12 addressed in Section 8.6 below. Quantification strategies for leaks from the identified potential leakage pathways is discussed in Section 6.8.

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$

(Equation RR-10)

where:

CO 2E = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year.

 $CO_{2,x}$ = Annual CO_2 mass emitted (metric tons) at leakage pathway x in the reporting year.

x = Leakage pathway.

8.5 CO₂ Emitted from Equipment Leaks and Vented Emissions

As required by 98.444(d) of Subpart RR, TND will assess leakage from the relevant surface equipment listed in Sections 98.233 and 98.234 of Subpart W. According to 98.233(r)(2) of Subpart W, the emissions factor listed in Table W-1A of Subpart W shall be used to estimate all streams of gases. Parameter CO_{2FI} in Equation RR-12 is the total annual CO_2 mass emitted or vented from equipment located between the flow meter for measuring injection quantity and the injection wellhead. A calculation procedure is provided in subpart W.

8.6 CO₂ Sequestered

(

Since TND does not actively produce oil or natural gas or any other fluid at its Red Hills Gas Plant, Equation RR-12 will be used to calculate the total annual CO₂ mass sequestered in subsurface geologic formations.

$$CO_2 = CO_{2I} - CO_{2E} - CO_{2FI}$$
 (Equation RR-12)

- CO ₂ = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CO_{2I} = Total annual CO_2 mass injected (metric tons) in the well or group of wells in the reporting year.
- CO 2E = Total annual CO₂ mass emitted (metric tons) by surface leakage in the reporting year.
- CO _{2FI} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part.

9 Estimated Schedule for Implementation of MRV Plan

The baseline monitoring and leakage detection and quantification strategies described herein have been established and data collected by TND and its predecessor, Lucid, for several years and continues to the present. TND will begin implementing this revised MRV plan as soon as it is approved by EPA. After RH AGI #3 is drilled, TND will reevaluate the MRV plan and if any modifications are a material change per 40CFR98.448(d)(1), TND will submit a revised MRV plan as required by 40CFR98.448(d).

10 GHG Monitoring and Quality Assurance Program

TND will meet the monitoring and QA/QC requirements of 40CFR98.444 of Subpart RR including those of Subpart W for emissions from surface equipment as required by 40CFR98.444(d).

10.1 GHG Monitoring

As required by 40CFR98.3(g)(5)(i), TND's internal documentation regarding the collection of emissions data includes the following:

• Identification of positions of responsibility (i.e., job titles) for collection of the emissions data

- Explanation of the processes and methods used to collect the necessary data for the GHG calculations
- Description of the procedures and methods that are used for quality assurance, maintenance, and repair of all continuous monitoring systems, flow meters, and other instrumentation used to provide data for the GHGs reported

10.1.1 General

<u>Measurement of CO_2 Concentration</u> – All measurements of CO_2 concentrations of any CO_2 quantity will be conducted according to an appropriate standard method published by a consensus-based standards organization or an industry standard practice such as the Gas Producers Association (GPA) standards. All measurements of CO_2 concentrations of CO_2 received will meet the requirements of 40CFR98.444(a)(3).

<u>Measurement of CO₂ Volume</u> – All measurements of CO₂ volumes will be converted to the following standard industry temperature and pressure conditions for use in Equations RR-2 and RR-5, of Subpart RR of the GHGRP: Standard cubic meters at a temperature of 60 degrees Fahrenheit and at an absolute pressure of 1 atmosphere. TND will adhere to the American Gas Association (AGA) Report #3 – Orifice Metering.

10.1.2 CO₂ received.

Daily CO₂ received is recorded by totalizers on the volumetric flow meters on each of the pipelines listed in Section 8 using accepted flow calculations for CO₂ according to the AGA Report #3.

10.1.3 CO₂ injected.

Daily CO₂ injected is recorded by totalizers on the volumetric flow meters on the pipelines to the RH AGI #1 and #3 wells using accepted flow calculations for CO₂ according to the AGA Report #3.

10.1.4 CO₂ produced.

TND does not produce CO₂ at the Red Hills Gas Plant.

10.1.5 CO₂ emissions from equipment leaks and vented emissions of CO₂.

As required by 98.444(d), TND will follow the monitoring and QA/QC requirements specified in Subpart W of the GHGRP for equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead.

As required by 98.444(d) of Subpart RR, TND will assess leakage from the relevant surface equipment listed in Sections 98.233 and 98.234 of Subpart W. According to 98.233(r)(2) of Subpart W, the emissions factor listed in Table W-1A of Subpart W shall be used.

10.1.6 Measurement devices.

As required by 40CFR98.444(e), TND will ensure that:

- All flow meters are operated continuously except as necessary for maintenance and calibration
- All flow meters used to measure quantities reported are calibrated according to the calibration and accuracy requirements in 40CFR98.3(i) of Subpart A of the GHGRP.
- All measurement devices are operated according to an appropriate standard method published by a consensus-based standards organization or an industry standard practice. Consensus-based standards organizations include, but are not limited to, the following: ASTM International, the American National Standards Institute (ANSI), the American Gas Association (AGA), the Gas Producers Association (GPA), the American Society of Mechanical Engineers (ASME), the American Petroleum Institute (API), and the North American Energy Standards Board (NAESB).

• All flow meter calibrations performed are National Institute of Standards and Technology (NIST) traceable.

10.2 QA/QC Procedures

TND will adhere to all QA/QC requirements in Subparts A, RR, and W of the GHGRP, as required in the development of this MRV plan under Subpart RR. Any measurement devices used to acquire data will be operated and maintained according to the relevant industry standards.

10.3 Estimating Missing Data

TND will estimate any missing data according to the following procedures in 40CFR98.445 of Subpart RR of the GHGRP, as required.

- A quarterly flow rate of CO₂ received that is missing would be estimated using invoices, purchase statements, or using a representative flow rate value from the nearest previous time period.
- A quarterly CO₂ concentration of a CO₂ stream received that is missing would be estimated using invoices, purchase statements, or using a representative concentration value from the nearest previous time period.
- A quarterly quantity of CO₂ injected that is missing would be estimated using a representative quantity of CO₂ injected from the nearest previous period of time at a similar injection pressure.
- For any values associated with CO₂ emissions from equipment leaks and vented emissions of CO₂ from surface equipment at the facility that are reported in Subpart RR, missing data estimation procedures specified in subpart W of 40 CFR Part 98 would be followed.

10.4 Revisions of the MRV Plan

TND will revise the MRV plan as needed to reflect changes in monitoring instrumentation and quality assurance procedures; or to improve procedures for the maintenance and repair of monitoring systems to reduce the frequency of monitoring equipment downtime; or to address additional requirements as directed by the USEPA or the State of New Mexico. If any operational changes constitute a material change as described in 40CFR98.448(d)(1), TND will submit a revised MRV plan addressing the material change. TND intends to update the MRV plan after RH AGI #3 has been drilled and characterized.

11 Records Retention

TND will meet the recordkeeping requirements of paragraph 40CFR98.3(g) of Subpart A of the GHGRP. As required by 40CFR98.3(g) and 40CFR98.447, TND will retain the following documents:

- (1) A list of all units, operations, processes, and activities for which GHG emissions were calculated.
- (2) The data used to calculate the GHG emissions for each unit, operation, process, and activity. These data include:
 - (i) The GHG emissions calculations and methods used
 - (ii) Analytical results for the development of site-specific emissions factors, if applicable
 - (iii) The results of all required analyses
 - (iv) Any facility operating data or process information used for the GHG emission calculations
- (3) The annual GHG reports.

(4) Missing data computations. For each missing data event, TND will retain a record of the cause of the event and the corrective actions taken to restore malfunctioning monitoring equipment.

(5) A copy of the most recent revision of this MRV Plan.

(6) The results of all required certification and quality assurance tests of continuous monitoring systems, fuel flow meters, and other instrumentation used to provide data for the GHGs reported.

(7) Maintenance records for all continuous monitoring systems, flow meters, and other instrumentation used to provide data for the GHGs reported.

(8) Quarterly records of CO₂ received, including mass flow rate of contents of container (mass or volumetric) at standard conditions and operating conditions, operating temperature and pressure, and concentration of these streams.

(9) Quarterly records of injected CO₂ including mass flow or volumetric flow at standard conditions and operating conditions, operating temperature and pressure, and concentration of these streams.

(10) Annual records of information used to calculate the CO₂ emitted by surface leakage from leakage pathways.

(11) Annual records of information used to calculate the CO_2 emitted from equipment leaks and vented emissions of CO_2 from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead.

(12) Any other records as specified for retention in this EPA-approved MRV plan.

12 Appendices

Appendix 1 TND Wells

Well Name	API #	Location	County	Spud Date	Total Depth	Packer
Red Hills AGI #1	30-025-40448	1,600 ft FSL, 150 ft FEL Sec. 13, T24S, R33E, NMPM	Lea, NM	10/23/2013	6,650 ft	6,170 ft
Red Hill AGI #3	30-025-51970	3,116 ft FNL, 1,159 ft FEL Sec. 13, T24S, R33E, NMPM	Lea, NM	9/13/2023	6,650 ft	5,700 ft

Figure Appendix 1-1: Schematic of TND RH AGI #1 Well

Figure Appendix 1-2: As-built wellbore schematic for the TND RH AGI #3 Well

Appendix 2 Referenced Regulations

U.S. Code > Title 26. INTERNAL REVENUE CODE > Subtitle A. Income Taxes > Chapter 1. NORMAL TAXES AND SURTAXES > Subchapter A. Determination of Tax Liability > Part IV. CREDITS AGAINST TAX > Subpart D. Business Related Credits > Section 45Q - Credit for carbon oxide sequestration

New Mexico Administrative Code (NMAC) > Title 19 – Natural resources > Chapter 15 – Oil and Gas

19.15.1 NMAC	GENERAL PROVISIONS AND DEFINITIONS [REPEALED]
19.15.2 NMAC	GENERAL PROVISIONS FOR OIL AND GAS OPERATIONS
19.15.3 NMAC	RULEMAKING
19.15.4 NMAC	ADJUDICATION
19.15.5 NMAC	ENFORCEMENT AND COMPLIANCE
19.15.6 NMAC	TAX INCENTIVES
19.15.7 NMAC	FORMS AND REPORTS
19.15.8 NMAC	FINANCIAL ASSURANCE
19.15.9 NMAC	WELL OPERATOR PROVISIONS
19.15.10 NMAC	SAFETY
19.15.11 NMAC	HYDROGEN SULFIDE GAS
19.15.12 NMAC	POOLS
19.15.13 NMAC	COMPULSORY POOLING
19.15.14 NMAC	DRILLING PERMITS
19.15.15 NMAC	WELL SPACING AND LOCATION
19.15.16 NMAC	DRILLING AND PRODUCTION
19.15.17 NMAC	PITS, CLOSED-LOOP SYSTEMS, BELOW-GRADE TANKS AND SUMPS
19.15.18 NMAC	PRODUCTION OPERATING PRACTICES
19.15.19 NMAC	NATURAL GAS PRODUCTION OPERATING PRACTICE
19.15.20 NMAC	OIL PRORATION AND ALLOCATION
19.15.21 NMAC	GAS PRORATION AND ALLOCATION
19.15.22 NMAC	HARDSHIP GAS WELLS
19.15.23 NMAC	OFF LEASE TRANSPORT OF CRUDE OIL OR CONTAMINANTS
19.15.24 NMAC	ILLEGAL SALE AND RATABLE TAKE
19.15.25 NMAC	PLUGGING AND ABANDONMENT OF WELLS
19.15.26 NMAC	INJECTION
19.15.27 - 28 NMAC	[RESERVED] PARTS 27 - 28
19.15.29 NMAC	RELEASES

CHAPTER 15 - OIL AND GAS

19.15.30 NMAC	REMEDIATION
19.15.31 - 33 NMAC	[RESERVED] PARTS 31 - 33
19.15.34 NMAC	PRODUCED WATER, DRILLING FLUIDS AND LIQUID OIL FIELD WASTE
19.15.35 NMAC	WASTE DISPOSAL
19.15.36 NMAC	SURFACE WASTE MANAGEMENT FACILITIES
19.15.37 NMAC	REFINING
19.15.38 NMAC	[RESERVED]
19.15.39 NMAC	SPECIAL RULES
19.15.40 NMAC	NEW MEXICO LIQUIFIED PETROLEUM GAS STANDARD
19.15.41 - 102 NMAC	[RESERVED] PARTS 41 - 102
19.15.103 NMAC	SPECIFICATIONS, TOLERANCES, AND OTHER TECHNICAL REQUIREMENTS FOR COMMERCIAL WEIGHING AND MEASURING DEVICES
19.15.104 NMAC	STANDARD SPECIFICATIONS/MODIFICATIONS FOR PETROLEUM PRODUCTS
19.15.105 NMAC	LABELING REQUIREMENTS FOR PETROLEUM PRODUCTS
19.15.106 NMAC	OCTANE POSTING REQUIREMENTS
19.15.107 NMAC	APPLYING ADMINISTRATIVE PENALTIES
19.15.108 NMAC	BONDING AND REGISTRATION OF SERVICE TECHNICIANS AND SERVICE ESTABLISHMENTS FOR COMMERCIAL WEIGHING OR MEASURING DEVICES
19.15.109 NMAC	NOT SEALED NOT LEGAL FOR TRADE
19.15.110 NMAC	BIODIESEL FUEL SPECIFICATION, DISPENSERS, AND DISPENSER LABELING REQUIREMENTS [REPEALED]
19.15.111 NMAC	E85 FUEL SPECIFICATION, DISPENSERS, AND DISPENSER LABELING REQUIREMENTS [REPEALED]
19.15.112 NMAC	RETAIL NATURAL GAS (CNG / LNG) REGULATIONS [REPEALED]

Appendix 3 Water Wells

Water wells identified by the New Mexico State Engineer's files within two miles of the RH AGI wells; water wells within one mile are highlighted in yellow.

POD Number	County	Sec	Tws	Rng	UTME	UTMN	Distance (mi)	Depth Well (ft)	Depth Water (ft)	Water Column (ft)
C 03666 POD1	LE	13	245	33E	639132	3565078	0.31	650	390	260
C 03917 POD1	LE	13	245	33E	638374	3565212	0.79	600	420	180
C 03601 POD1	LE	23	245	33E	638124	3563937	1.17			
C 02309	LE	25	245	33E	639638	3562994	1.29	60	30	30
C 03601 POD3	LE	24	245	33E	638142	3563413	1.38			
C 03932 POD8	LE	7	245	34E	641120	3566769	1.40	72		
C 03601 POD2	LE	23	245	33E	637846	3563588	1.44			
C 03662 POD1	LE	23	245	33E	637342	3564428	1.48	550	110	440
C 03601 POD5	LE	23	245	33E	637988	3563334	1.48			
C 03601 POD6	LE	23	245	33E	637834	3563338	1.55			
C 03601 POD7	LE	23	245	33E	637946	3563170	1.58			
C 03600 POD2	LE	25	245	33E	638824	3562329	1.78			
C 03602 POD2	LE	25	245	33E	638824	3562329	1.78			
C 03600 POD1	LE	26	245	33E	637275	3563023	1.94			
C 03600 POD3	LE	26	245	33E	637784	3562340	2.05			

Appendix 4 Oil and Gas Wells within 2-mile Radius of the RH AGI Well Site

Note – a completion status of "New" indicates that an Application for Permit to Drill has been filed and approved but the well has not yet been completed. Likewise, a spud date of 31-Dec-99 is actually 12-31-9999, a date used by NMOCD databases to indicate work not yet reported.

ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
30-025- 08371	COSSATOT E 002	PRE-ONGARD WELL OPERATOR	OIL	DELAWARE VERTICAL	P & A	VERTICAL	5425	Yes
30-025- 25604	GOVERNMENT L COM 001	EOG RESOURCES INC	GAS	DELAWARE VERTICAL	P & A	VERTICAL	17625	No
30-025- 26369	GOVERNMENT L COM 002	EOG RESOURCES INC	GAS	DELAWARE VERTICAL	P & A	VERTICAL	14698	Yes
30-025- 26958	SIMS 001	BOPCO, L.P.	GAS	DELAWARE VERTICAL	P & A	VERTICAL	15007	Yes
30-025- 27491	SMITH FEDERAL 001	PRE-ONGARD WELL OPERATOR	OIL	DELAWARE	P & A	VERTICAL	15120	No
30-025- 29008	MADERA RIDGE 24 001	EOG RESOURCES	GAS	DELAWARE	TA	VERTICAL	15600	No
30-025- 29008	MADERA RIDGE 24 001	EOG RESOURCES	GAS	DELAWARE	ТА	VERTICAL	15600	No
30-025- 40448	RED HILLS AGI 001	TARGA NORTHERN DELAWARE, LLC.	INJECTOR	DELAWARE	INJECTING	VERTICAL	6650	Yes
30-025- 40914	DECKARD FEE 001H	COG OPERATING LLC	OIL		PRODUCING	VERTICAL	10997	No
30-025- 40914	DECKARD FEE 001H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11034	No
30-025- 41382	DECKARD FEDERAL COM 002H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11067	Yes
30-025- 41383	DECKARD FEDERAL COM 003H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11162	Yes
30-025- 41384	DECKARD FEDERAL COM 004H	COG OPERATING LLC	OIL	3RD BONE SPRING	PRODUCING	HORIZONTAL	11103	Yes
30-025- 41666	SEBASTIAN FEDERAL COM 002H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10927	Yes
30-025- 41687	SEBASTIAN FEDERAL COM 001H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10944	Yes
30-025- 41688	SEBASTIAN FEDERAL COM 003H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11055	No
30-025- 43532	LEO THORSNESS 13 24 33 211H	MATADOR PRODUCTION COMPANY	GAS	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12371	No
30-025- 44442	STRONG 14 24 33 AR 214H	MATADOR PRODUCTION COMPANY	GAS	WOLFCAMP A LOWER	PRODUCING	HORIZONTAL	12500	No
30-025- 46154	LEO THORSNESS 13 24 33 221H	MATADOR PRODUCTION COMPANY	OIL	WOLFCAMP B UPPER	PRODUCING	HORIZONTAL	12868	No
30-025- 46282	LEO THORSNESS 13 24 33 AR 135H	MATADOR PRODUCTION COMPANY	OIL	3RD BONE SPRING SAND	PRODUCING	HORIZONTAL	12103	No

ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
30-025- 46517	BROADSIDE 13 W FEDERAL COM 001H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12213	No
30-025- 46518	BROADSIDE 13 24 FEDERAL COM 002H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 46519	BROADSIDE 13 24 FEDERAL COM 003H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP A LOWER	PRODUCING	HORIZONTAL	12320	Yes
30-025- 46985	SEBASTIAN FEDERAL COM 703H	COG OPERATING LLC	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12123	No
30-025- 46988	SEBASTIAN FEDERAL COM 704H	COG OPERATING LLC	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12142	No
30-025- 47869	JUPITER 19 FEDERAL COM 501H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11175	Yes
30-025- 47870	JUPITER 19 FEDERAL COM 502H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11141	Yes
30-025- 47870	JUPITER 19 FEDERAL COM 502H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11141	Yes
30-025- 47872	JUPITER 19 FEDERAL COM 403H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PRODUCING	HORIZONTAL	10584	No
30-025- 47872	JUPITER 19 FEDERAL COM 403H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PRODUCING	HORIZONTAL	10584	No
30-025- 47873	JUPITER 19 FEDERAL COM 309H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10250	No
30-025- 47873	JUPITER 19 FEDERAL COM 309H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10250	No
30-025- 47874	JUPITER 19 FEDERAL COM 506H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10950	No
30-025- 47875	JUPITER 19 FEDERAL COM 507H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11150	No
30-025- 47875	JUPITER 19 FEDERAL COM 507H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11150	No
30-025- 47876	JUPITER 19 FEDERAL COM 508H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11143	No
30-025- 47876	JUPITER 19 FEDERAL COM 508H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11143	No
30-025- 47877	JUPITER 19 FEDERAL COM 509H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11156	No
30-025- 47878	JUPITER 19 FEDERAL COM 510H	1 EOG RESOURCES OIL 2ND BONE SPRING SAND		PRODUCING	HORIZONTAL	11102	No	
30-025- 47908	JUPITER 19 FEDERAL COM 601H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes

ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
30-025- 47910	- JUPITER 19 EOG RESOURCES OIL 2NI FEDERAL COM INC SPRII 702H		2ND BONE SPRING SAND	DUC	HORIZONTAL	0	Yes	
30-025- 47911	JUPITER 19 FEDERAL COM 705H	EOG RESOURCES INC	OIL	WOLFCAMP A LOWER	PERMITTED	HORIZONTAL	12290	No
30-025- 47912	JUPITER 19 FEDERAL COM 707H	EOG RESOURCES INC	OIL	WOLFCAMP B UPPER	PERMITTED	HORIZONTAL	12515	No
30-025- 47913	JUPITER 19 FEDERAL COM 708H	EOG RESOURCES INC	OIL	WOLFCAMP A LOWER	PERMITTED	HORIZONTAL	12477	No
30-025- 48239	JUPITER 19 FEDERAL COM 306H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10270	No
30-025- 48889	JUPITER 19 FEDERAL COM 701H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 48890	JUPITER 19 FEDERAL COM 703H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 49262	BROADSIDE 13 24 FEDERAL COM 004H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP B UPPER	PRODUCING	HORIZONTAL	12531	Yes
30-025- 49263	BROADSIDE 13 24 FEDERAL COM 015H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP B LOWER	PRODUCING	HORIZONTAL	12746	Yes
30-025- 49264	BROADSIDE 13 24 FEDERAL COM 025H	4 DEVON ENERGY OIL 3RD BONE PRODUCTION SPRING COMPANY, I P		3RD BONE SPRING	PRODUCING	HORIZONTAL	11210	Yes
30-025- 49474	- RED HILLS AGI TARGA INJECTOR DELAWARE 002 NORTHERN VERTICAL		Temporarily Abandoned	VERTICAL	17600	Yes		

Appendix 5 References

Application for Authorization to Inject via Proposed Red Hills AGI #1 Well, Agave Energy Red Hills Gas Plant, Lea County, New Mexico; July 20, 2011; prepared by Geolex, Inc. for Agave Energy Company

Application for a Redundant Class II AGI Well, Lucid Energy Delaware, LLC; Red Hills AGI #2; August 8, 2019, prepared by Geolex, Inc. for Lucid Energy Delaware, LLC

Boyle, T.B., Carroll, J.J., 2002. Study determines best methods for calculating acid-gas density. *Oil and Gas Journal* 100 (2): 45-53.

Broadhead, R.F., 2017. Energy and Mineral Resources of New Mexico: Petroleum Geology; Socorro, New Mexico Bureau of Geology and Mineral Resources: 104 p.

Case No. 20779, Notice Regarding Hearing Exhibits, Application of Lucid Energy Delaware, LLC for Authorization to Inject, Lea County, New Mexico

Giesen, J.H. and Scholle, P.A., 1990. Regional basinal sandstone depositional patterns during the Guadalupian (Late Permian), Delaware basin, west Texas-New Mexico [abs.]: The American Association of Petroleum Geologists Bulletin 74: 660-661.

Ewing, E., 2019. Tectonics of the West Texas (Permian) Basin—Origins, structural geology, subsidence, and later modification: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 63-96.

Ge, J., Nicot, J.P., Hennings, P.H., Smye, K.M., Hosseini, S.A., Gao, R.S., and Breton, C.L., 2022. Recent water disposal and pore pressure evolution in the Delaware Mountain Group, Delaware Basin, Southeast New Mexico and West Texas, USA: Journal of Hydrology: Regional Studies 40: 101041.

Fu, Q., Baumgardner, R.W., Jr., and Hamlin, H.S., 2020. Early Permian (Wolfcampian) succession in the Permian Basin: icehouse platform, slope carbonates, and basinal mudrocks: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 185-225.

H₂S Contingency Plan, Targa Northern Delaware, August 2023, Red Hills Gas Processing Plant, Lea County, NM

Harms, J.C., 1974. Brushy Canyon Formation, Texas: A deepwater density current deposit: Geological Society of America Bulletin 85: 1763-1784.

Harrington, R., 2019. The Middle–Upper Ordovician Simpson Group of the Permian Basin: stratigraphy, lithofacies, and reservoir development: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 331-352.

Harrington, R. and Ruppel, S., 2019. Patterns of Montoya Group (Middle Ordovician) deposition, diagenesis, and reservoir development in the Permian Basin: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 353-378.

Hills, J.M., 1984. Sedimentation, tectonism, and hydrocarbon generation in Delaware Basin, west Texas and southeastern New Mexico: The American Association of Petroleum Geologists Bulletin 68: 250-267.

Horne, E., Hennings, P., Zahm, C., 2021. Basement-rooted faults of the Delaware Basin and Central Basin Platform, Permian Basin, West Texas and southeastern New Mexico: O.A. Callahan, P. Eichhubl (eds.), The Geologic Basement of Texas: A Volume in Honor of Peter T. Flawn, Austin, The University of Texas, Bureau of Economic Geology: 1-37. Horne, E.A., Hennings, P.H., Smye, K.M., Staniewicz, S., Chen, J., Savvaidis, A., 2022. Structural characteristics of shallow faults in the Delaware Basin: Interpretation 10: T807-T835.

King, P.B., 1948. Geology of the southern Guadalupe Mountains, Texas: United States Geological Survey Professional Paper 215: 183 p.

Lambert, S.J., 1992. Geochemistry of the Waste Isolation Pilot Plant (WIPP) site, southeastern New Mexico, U.S.A. *Applied Geochemistry* 7: 513-531.

Loucks, R. and Kerans, C., 2019. A Geologic review of the Lower Ordovician Ellenburger Group of the Permian Basin, West Texas and southeast New Mexico: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 295-330.

Luo, Ming; Baker, Mark R.; and LeMone, David V.; 1994, *Distribution and Generation of the Overpressure System, Eastern Delaware Basin, Western Texas and Southern New Mexico*, AAPG Bulletin, V.78, No. 9 (September 1994) p. 1386-1405.

Madalyn S. Blondes, Kathleen D. Gans, James J. Thordsen, Mark E. Reidy, Burt Thomas, Mark A. Engle, Yousif K. Kharaka, and Elizabeth L. Rowan, 2014. U.S. Geological Survey National Produced Waters Geochemical Database v2.1,

http://energy.usgs.gov/EnvironmentalAspects/EnvironmentalAspectsofEnergyProductionandUse/ProducedWaters. aspx

Nance, H.S., 2020. Upper Permian Delaware Mountain Group: Record of highstand/lowstand platform: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 399-436.

Nance, H.S., Hamlin, H.S., 2020. The Bone Spring Formation (Leonardian) of the Delaware Basin: deepwater lithofacies and stratigraphy: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 321-348.

Nicholson, A., Jr., Clebsch, A., Jr., 1961. *Geology and ground-water conditions in southern Lea County, New Mexico*. New Mexico Bureau of Mines and Mineral Resources, Ground-Water Report 6, 123 pp., 2 Plates.

Powers, D.W., Lambert, S. J., Shafer, S., Hill, L. R. and Weart, W. D., 1978., *Geological Characteristic Report, Waste Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico (SAND78-1596)*, Department 4510, Waste Management Technology, Sandia Laboratories, Albuquerque, New Mexico

Ruppel, S., 2019a. Anatomy of a Paleozoic basin: the Permian Basin, USA: Introduction, overview, and evolution: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 1-27.

Ruppel, S., 2019b. The Fusselman of the Permian Basin: patterns in depositional and diagenetic facies development on a stable platform during the Late Ordovician–Early Silurian icehouse: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 379-399.

Ruppel, S., 2020. The Middle Silurian–Lower Devonian Wristen Group, Permian Basin: impact of tectonic subsidence on patterns of deposition, diagenesis, and reservoir development: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 1-36.

Ruppel, S., Hovorka, S., Barnaby, R., 2020a. Proximal shallow-water carbonates and distal biosiliceous cherts of the Lower Devonian Thirtyone Formation, Permian Basin: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 37-74.

Ruppel, S.C., Rowe, H., Reed, R., Barrick, J.E., James, E.W., Loucks, R.G., 2020b. The Woodford Formation of the Permian Basin: regional, Middle to Late Devonian transgression of the southern Midcontinent and accompanying global anoxia: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 75-124.

Scholle, P.A., Goldstein, R.H., Ulmer-Scholle, D.S., 2007. Classic Upper Paleozoic reefs and bioherms of West Texas and New Mexico: Field guide to the Guadalupe and Sacramento Mountains of West Texas and New Mexico. Socorro, New Mexico Bureau of Geology and Mineral Resources, Open-File Report 504: 178 p.

Scholle, P., Broadhead, R.F., McLemore, V., 2020. The Permian Basin: Scholle, P., Ulmer-Scholle, D., Cather, and S., Kelley, S. (eds.), The Geology of Southern New Mexico Parks, Monuments, and Public Lands: Socorro, New Mexico Bureau of Geology and Mineral Resources: 285-295.

Silver, B.A., Todd, R.G., 1969. Permian cyclic strata, northern Midland and Delaware Basins, west Texas and southeastern New Mexico, *The American Association of Petroleum Geologists Bulletin* 53: 2223- 2251.

Smye, K.D., Banerji, A., Eastwood, R., McDaid, G., and Hennings, P., 2021. Lithology and reservoir properties of the Delaware Mountain Group of the Delaware Basin and implications for saltwater disposal and induced seismicity: Journal of Sedimentary Research 91 (11): 1113–1132.

US EPA, O., 2015, *Procedures for Groundwater Sampling in the Laboratory Services and Applied Science Division*: https://www.epa.gov/quality/procedures-groundwater-sampling-laboratory-services-and-applied-science-division (accessed September 2023).

Walsh, R., Zoback, M.D., Pasi, D., Weingarten, M. and Tyrrell, T., 2017, FSP 1.0: A Program for Probabilistic Estimation of Fault Slip Potential Resulting from Fluid Injection, User Guide from the Stanford Center for Induced and Triggered Seismicity, available from SCITS.Stanford.edu/software

Ward, R.F., Kendall, C.G.St.C., Harris, P.M., 1986. Upper Permian (Guadalupian) facies and their association with hydrocarbons – Permian Basin, west Texas and New Mexico. *The American Association of Petroleum Geologists Bulletin* 70: 239-262.

Wilson, J.L., 1972. Cyclic and reciprocal sedimentation in Virgilian strata of southern New Mexico: J.G. Elam, S. Chuber (eds.), Cyclic Sedimentation in the Permian Basin (2nd edition), Midland, West Texas Geological Society: 82-99.

Wright, W., 2020. Pennsylvanian (upper Carboniferous) paleodepositional evolution of the greater Permian Basin, Texas and New Mexico: depositional systems and hydrocarbon reservoir: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 159-183.

Xiao, Ting et al. (2024). A review of risk and uncertainty assessment for geologic carbon storage. Renewable and Sustainable Energy Reviews 189 (2024) 113945

Appendix 6 Abbreviations and Acronyms

3D - 3 dimensional AGA – American Gas Association AMA – Active Monitoring Area AoR – Area of Review **API – American Petroleum Institute** CFR - Code of Federal Regulations C1 – methane C6 – hexane C7 - heptane CO₂ – carbon dioxide DCS - distributed control system EPA – US Environmental Protection Agency, also USEPA ft-foot (feet) GHGRP – Greenhouse Gas Reporting Program GPA – Gas Producers Association m - meter(s)md – millidarcy(ies) mg/I – milligrams per liter MIT – mechanical integrity test MMA – maximum monitoring area MSCFD- thousand standard cubic feet per day MMSCFD - million standard cubic feet per day MMstb - million stock tank barrels MRRW B – Morrow B MRV – Monitoring, Reporting, and Verification MT -- Metric tonne NIST - National Institute of Standards and Technology NMOCC - New Mexico Oil Conservation Commission NMOCD - New Mexico Oil Conservation Division PPM – Parts Per Million psia – pounds per square inch absolute QA/QC – quality assurance/quality control SCITS - Stanford Center for Induced and Triggered Seismicity Stb/d – stock tank barrel per day TAG – Treated Acid Gas TDS – Total Dissolved Solids TVD – True Vertical Depth **TVDSS** – True Vertical Depth Subsea UIC – Underground Injection Control USDW - Underground Source of Drinking Water

	Subpart RR Equation	Description of Calculations and Measurements [*]	Pipeline	Containers	Comments	
	RR-1	calculation of CO ₂ received and measurement of CO ₂ mass	through mass flow meter.	in containers. **		
CO ₂ Received	RR-2	calculation of CO ₂ received and measurement of CO ₂ volume	through volumetric flow meter.	in containers. ***		
	RR-3	summation of CO_2 mass received	through multiple meters.			
	RR-4	calculation of CO ₂ mass injected, mea	asured through mass flow me	ters.		
CO ₂ Injected	RR-5	calculation of CO ₂ mass injected, mea	asured through volumetric flo	ow meters.		
	RR-6 summation of CO ₂ mass injected, as calculated in Equations RR-4 and/or RR-5.					
	RR-7	calculation of CO ₂ mass produced / r mass flow meters.				
CO ₂ Produced / Recycled	RR-8	calculation of CO ₂ mass produced / revolumetric flow meters.				
	RR-9	summation of CO ₂ mass produced / r in Equations RR-7 and/or RR8.				
CO ₂ Lost to Leakage to the Surface	RR-10	calculation of annual CO ₂ mass emitt	ed by surface leakage			
CO₂ Sequestered	RR-11	calculation of annual CO ₂ mass seque any other fluid; includes terms for CO emitted from surface equipment bet emitted from surface equipment bet	Calculation procedures are provided in Subpart W of GHGRP for CO _{2FI} .			
	RR-12	calculation of annual CO ₂ mass seque or any other fluid; includes terms for from surface equipment between inj	tered for operators NOT ACTIVELY producing oil or gas O2 mass injected, emitted by surface leakage, emitted tion flow meter and injection well head.		Calculation procedures are provided in Subpart W of GHGRP for CO _{2FI} .	

Appendix 7 TND Red Hills AGI Wells - Subpart RR Equations for Calculating CO₂ Geologic Sequestration

* All measurements must be made in accordance with 40 CFR 98.444 – Monitoring and QA/QC Requirements.

** If you measure the mass of contents of containers summed quarterly using weigh bill, scales, or load cells (40 CFR 98.444(a)(2)(i)), use RR-1 for Containers to calculate CO₂ received in containers for injection.

*** If you determine the volume of contents of containers summed quarterly (40 CFR 98.444(a)(2)(ii)), use RR-2 for Containers to calculate CO₂ received in containers for injection.

Appendix 8 Subpart RR Equations for Calculating Annual Mass of CO₂ Sequestered RR-1 for Calculating Mass of CO₂ Received through Pipeline Mass Flow Meters

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * C_{CO_{2,p,r}}$$

(Equation RR-1 for Pipelines)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons).
- Q r,p = Quarterly mass flow through a receiving flow meter r in quarter p (metric tons).
- S r,p = Quarterly mass flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (metric tons).
- $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (wt. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- r = Receiving flow meter.

RR-1 for Calculating Mass of CO₂ Received in Containers by Measuring Mass in Container

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * C_{CO_{2,p,r}}$$

(Equation RR-1 for Containers)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received in containers r (metric tons).
- $Q_{r,p}$ = Quarterly mass of contents in containers r in quarter p (metric tons).
- S r,p = Quarterly mass of contents in containers r redelivered to another facility without being injected into your well in quarter p (metric tons).
- C _{CO2,p,r} = Quarterly CO₂ concentration measurement of contents in containers r in quarter p (wt. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- r = Containers.

RR-2 for Calculating Mass of CO₂ Received through Pipeline Volumetric Flow Meters

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$
(Equation RR-2 for Pipelines)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons).
- Q r,p = Quarterly volumetric flow through a receiving flow meter r in quarter p at standard conditions (standard cubic meters).
- S r,p = Quarterly volumetric flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- r = Receiving flow meter.

RR-2 for Calculating Mass of CO₂ Received in Containers by Measuring Volume in Container

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$
(Equation RR-2 for Containers)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received in containers r (metric tons).
- Q r,p = Quarterly volume of contents in containers r in quarter p at standard conditions (standard cubic meters).
- S r,p = Quarterly volume of contents in containers r redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO₂ received in containers at standard conditions (metric tons per standard cubic meter): 0.0018682.

 $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement of contents in containers r in quarter p (vol. percent CO₂, expressed as a decimal fraction).

p = Quarter of the year.

RR-3 for Summation of Mass of CO2 Received through Multiple Flow Meters for Pipelines

$$CO_2 = \sum_{r=1}^{R} CO_{2T,r}$$

(Equation RR-3 for Pipelines)

where:

- CO₂ = Total net annual mass of CO₂ received (metric tons).
- $CO_{2T,r}$ = Net annual mass of CO_2 received (metric tons) as calculated in Equation RR-1 or RR-2 for flow meter r.
- r = Receiving flow meter.

RR-4 for Calculating Mass of CO₂ Injected through Mass Flow Meters into Injection Well

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * C_{CO_{2,p,u}}$$

(Equation RR-4)

where:

 $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.

 $Q_{p,u}$ = Quarterly mass flow rate measurement for flow meter u in quarter p (metric tons per quarter).

 $C_{CO2,p,u}$ = Quarterly CO₂ concentration measurement in flow for flow meter u in quarter p (wt. percent CO₂, expressed as a decimal fraction).

RR-5 for Calculating Mass of CO₂ Injected through Volumetric Flow Meters into Injection Well

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$
 (Equation RR-5)

where:

- $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.
- Q _{p,u} = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter).
- D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,u} = CO_2$ concentration measurement in flow for flow meter u in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.

u = Flow meter.

RR-6 for Summation of Mass of CO₂ Injected into Multiple Wells

$$CO_{2I} = \sum_{u=1}^{U} CO_{2,u}$$

(Equation RR-6)

where:

- CO ₂₁ = Total annual CO₂ mass injected (metric tons) though all injection wells.
- $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.

u = Flow meter.

RR-7 for Calculating Mass of CO₂ Produced / Recycled from a Gas-Liquid Separator through Mass Flow Meters

$$CO_{2,w} = \sum_{p=1}^{4} Q_{p,w} * C_{CO_{2,p,w}}$$

(Equation RR-7)

where:

 $CO_{2,w}$ = Annual CO_2 mass produced (metric tons) through separator w.

- Q p,w = Quarterly gas mass flow rate measurement for separator w in quarter p (metric tons).
- $C_{CO2,p,w}$ = Quarterly CO₂ concentration measurement in flow for separator w in quarter p (wt. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.

w = Separator.

RR-8 for Calculating Mass of CO₂ Produced / Recycled from a Gas-Liquid Separator through Volumetric Flow Meters

$$CO_{2,w} = \sum_{p=1}^{4} Q_{p,w} * D * C_{CO_{2,p,w}}$$

(Equation RR-8)

where:

- $CO_{2,w}$ = Annual CO_2 mass produced (metric tons) through separator w.
- Q p,w = Quarterly gas volumetric flow rate measurement for separator w in quarter p (standard cubic meters).
- D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,w}$ = Quarterly CO₂ concentration measurement in flow for separator w in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- w = Separator.

RR-9 for Summation of Mass of CO₂ Produced / Recycled through Multiple Gas Liquid Separators

$$CO_{2P} = (1+X) \star \sum_{w=1}^{W} CO_{2,w}$$
 (Equation RR-9)

where:

- CO _{2P} = Total annual CO₂ mass produced (metric tons) though all separators in the reporting year.
- X = Entrained CO₂ in produced oil or other liquid divided by the CO₂ separated through all separators in the reporting year (wt. percent CO₂ expressed as a decimal fraction).
- $CO_{2,w}$ = Annual CO_2 mass produced (metric tons) through separator w in the reporting year.

w = Separator.

RR-10 for Calculating Annual Mass of CO₂ Emitted by Surface Leakage

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$

(Equation RR-10)

where:

CO 2E = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year.

 $CO_{2,x}$ = Annual CO_2 mass emitted (metric tons) at leakage pathway x in the reporting year.

x = Leakage pathway.

RR-11 for Calculating Annual Mass of CO₂ Sequestered for Operators Actively Producing Oil or Natural Gas or Any Other Fluid

$$CO_2 = CO_{2I} - CO_{2P} - CO_{2E} - CO_{2FI} - CO_{2FP}$$

(Equation RR-11)

Where:

- CO 2 = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CO ₂₁ = Total annual CO₂ mass injected (metric tons) in the well or group of wells in the reporting year.
- CO_{2P} = Total annual CO_2 mass produced (metric tons) in the reporting year.
- CO_{2E} = Total annual CO_2 mass emitted (metric tons) by surface leakage in the reporting year.
- CO 2FI = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part.
- CO _{2FP} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the production wellhead and the flow meter used to measure production quantity, for which a calculation procedure is provided in subpart W of this part.

RR-12 for Calculating Annual Mass of CO₂ Sequestered for Operators NOT Actively Producing Oil or Natural Gas or Any Other Fluid

$$CO_2 = CO_{2I} - CO_{2E} - CO_{2FI}$$
 (Equation RR-12)

- CO 2 = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CO 21 = Total annual CO₂ mass injected (metric tons) in the well or group of wells in the reporting year.
- CO 2E = Total annual CO₂ mass emitted (metric tons) by surface leakage in the reporting year.
- CO _{2F1} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part.

Appendix 9 P&A Records

Form 3160-5 April 2004) ,	UNITED STATES	s Ho	bbs, NM 88240	e	FORM APPROVED
•	DEPARTMENT OF THE BUREAU OF LAND MAN	INTERIOR AGEMENT		5 1	Expires: March 31, 2007
SUNDRY	NOTICES AND REI	PORTS ON	WELLS	 Lease Sena 	NM-17446
Do not use ti abandoned w	6. If Indian,	Allottee or Tribe Name			
SUBMIT IN TR	IPLICATE- Other insti	ructions on I	everse side.	7. If Unit or	CA/Agreement, Name and/or N
1. Type of Well Oil Well	Gas Well Other			- -	, ,
2. Name of Operator FOC Pro-	8. Well Nan Ge	ne and No. overnment "L" Com #1			
a Address	ources, Inc	3b Phone No	(include gree code)	9. API We	11 No. 30-025-0 49-07 - 25U
P.O. Box 2267, M	idland, TX, 79702	432-561-860	10	10. Field and	Pool, or Exploratory Area
4. Location of Well (Footage, Sec.,	T., R., M., or Survey Description)			Be 11 County of	II Lake, South Morrow
Unit Letter G, 1980 FNL, 1 Section 18, Township 24-S,	980 FEL Range 34-E			The county of	Lea. New Mexico
12. CHECK A	PPROPRIATE BOX(ES) TO	INDICATE N	ATURE OF NOTIOF	REPORT OR	OTHER DATA
TYPE OF SUBMISSION			TYPE OF ACTION		
	Acidize	Deepen	Production (S	tart/Resume)	Water Shut-Off
Notice of Intent	Alter Casing	Fracture Trea	t Reclamation		Well Integrity
Subsequent Report	Casing Repair	New Constru	ction Recomplete		Other
Final Abandonment Notice	Convert to Injection	Plug and Aba	ndon L Temporarily A	Abandon I	<u></u>
testing has been completed. Fi determined that the site is read	nal Abandonment Notices shall be y for final inspection.)	filed only after all	requirements, including recla	mation, have been	, a Form 3160-4 shall be filed or a completed, and the operator has
					APPROVE
 Notified Jim McCorn Cut 3 1/2' thr at 1150 	tick w/BLM 24 hrs prior to M	I and RU.	11400 11/00 7 1120	, [
3. Circ hole w/MLF.	o, spor Josa C Lass II CIII, p	aug 110m 11500-	11400, WOC 12g at 1138	y.	
 Perf 4 holes at 9050, p Perf 4 holes at 7000, p 	press up to 2000 PSI, spot 75sx press up to 2000 PSI, spot 75sx	, plug from 9100 , plug from 7050	-8950, WOC Tag @ 8938 -6900. WOC Tag at 6855	.	JAN 4 2005
 Cut 10 3/4" esg at 545 Spot 75sx, plug from 	50, L/D csg, spot 150sx, plug fr 1300-1200 (T-Salt) WOC Tag	om 5500-5350, V	VOC Tag at 5336.		
8. Spot 150sx, plug from	650-450 (20" Shoe) WOC Ta	g at 423.			- GARY GOURTEX
10. Clean location. Insta	ll dry hole marker 12-30-04.				APPROVE
		P&A Complete	12-30-04		-
				5	JAN 4 2005
				1	GARY GOURLEY
 14. Thereby certify that the fore Name (Printed/Typed) 	going is true and correct	1		P	
14. Thereby certify that the form Name (Printed/Typed) Jimpr Bagley	going is true and correct	т	itle	Consultant	ELOW ENGINE
14. Thereby certify that the fore Name (Printed/Typed) Jimpry Bagley Signature	going is true and correct	T	itle	Consultant	
14. Thereby certify that the for Name (Printed/Typed) Jimpry Bagley Signature	going is true and correct	T I FEDERAL C	itle Date DR STATE OFFICE	Consultant 12/30/2004 E USE	
14. Thereby certify that the fore Name (Printed/Typed) Jimpry Bagley Signature	going is true and correct	T I FEDERAL C	itle Date DR STATE OFFICE Title	Consultant 12/30/2004 E USE	ate
14. Thereby certify that the fore Name (Printed/Typed) Jimpry Bagley Signature Approved by Conditions of approval, if any, are	going is true and correct	T I FEDERAL C	itle Date DR STATE OFFICE	Consultant 12/30/2004 E USE	ate
14. Thereby certify that the fore Name (Printed/Typed) Jimprf Bagley Signature Approved by Conditions of approval, if any, are certify that the applicant holds lega which would entitle the applicant to	attached. Approval of this notice or equitable title to those rights is o conduct operations thereon.	T FEDERAL C does not warrant of the subject lease	itle bate DR STATE OFFICE Title office	Consultant 12/30/2004 E USE	ate

P&A Record for Government Com 001, API #30-025-25604

GWW 2

P&A Records for API #30-025-26958

Submit 1 Copy To Appropriate District Office	State of New Me	exico	Form C-103
District I – (575) 393-6161 1625 N. French Dr., Hobbs, NM 88240 District II., (575) 748-1283	Energy, Minerals and Natu	iral Resources	WELL API NO.
811 S First St, Artesia, NM 88210 REC	SERVED SERVATION	DIVISION	5Indicate Type of Lease
District III – (505) 334-6178 1000 Rio Brazos Rd , Aztec, NM 87410	1220 South St. Fran	ncis Dr.	STATE 🗍 FEE 🛛
District IV - (505) 476-3460 AUG 1220 S St Francis Dr , Santa Fe, NM 87505	16 2012 Santa Fe, NM 87	/505	6. State Oil & Gas Lease No. SCR-389
SUNDRY NOTICE SUNDRY NOTICE (DO NOT USE THIS FORM FOR PROPOSAL DIFFERENT RESERVOIR USE "APPL	S AND REPORTS ON WELLS S TO DRILL OR TO DEEPEN OR PLU ICATION FOR PERMIT" (FORM C-10	G BACK TO A DI) FOR SUCH	7. Lease Name or Unit Agreement Name Sims
PROPOSALS)	s Well 🛛 Other		8. Well Number #1
2. Name of Operator: Agave Energy (Company		9. OGRID Number
3. Address of Operator			14/831 10. Pool name or Wildcat
104 S. Fourth St., Artesia NM 88210 (575-748-4528)		Big Sinks Wolfcamp
4. Well Location			3
Unit LetterK:	_1980feet from theN	line and	_800feet from theEline
Section 13	Township 24S	Range 33E	NMPM Lea County
	T. Elevation (bnow whether DR,		
12. Check App	propriate Box to Indicate N	ature of Notice,	Report or Other Data
		SUR	SEQUENT REPORT OF
PERFORM REMEDIAL WORK		REMEDIAL WOR	
	HANGE PLANS	COMMENCE DRI	
		CASING/CEMENT	ГЈОВ 🗌
OTHER:			lug to cement off Cherry Canyon per
 Describe proposed or complete of starting any proposed work) proposed completion or recom 	d operations. (Clearly state all p . SEE RULE 19.15.7.14 NMAC pletion	pertinent details, and C. For Multiple Cor	a give pertinent dates, including estimated date npletions: Attach wellbore diagram of
The remediation of the Sims #1 we demobilized. The plugging wa Whitaker and E.L. Gonzales of plugging diagram. When estab reservoir as it was taking 3bhl	I pursuant to NMOCC order wa is done pursuant to NMOCD req is the OCD District 1 office who is offishing a rate prior to squeezing min on vacuum. This indicates	is completed on Aug puirements and all as approved the specifi the Cherry Canyon that the predicted in	ust 15, 2011 and all equipment has been spects of the effort were reported to Mark ics of the plugging as shown in the attached , it is clear that the reservoir is an excellent jection plume for the Red Hills AGI #1 in this
reservoir will be smaller than a intended and permitted injection the Sims#1. Please see attache	nticipated and the reservoir cond in zone by any nearby wellbores d wellbore sketch for plugging c	ditions act to preven including the Govt details of all plugs so	t migration of injected acid gas out of the #2, Govt#1 and Smith Federal #1 in addition to et and amounts of cement squeezed for each
piùg.			
			· · · · · ·
· · · · · · · · ·	,		
hereby certify that the information abo	ve is true and complete to the by	et of my knowledge	and belief
incredy centry that the information abo	ve is true and complete to the be	est of my knowledge	
`			
SIGNATURE		sultant to Agave Ene	rgy Company DATE August 16, 2012
Type or print nameAlberto A. Gutie	errez, RG E-mail address:a	aag@geolex.com	PHONE:505-842-8000
For State Use Only	$) \land $		
APPROVED BY	THE DE	st. Maz	<u>=</u>
Conditions of Approval (if any):			1 6 2012
			AUD

8/16/2012

P&A Records for API 30-025-08371

a a k		\sim)		
		- +	NEW MEXI	CO OIL C	ONSERV	ATION	COMMISSIC	M	FORM C-103 (Rev 3-55)
т. 1948 1949 - ОР		(Subn	MISCEL	LANEO	LS REP		N WELLS	e 1706	
Name of Company	Byard	Bennett	<u>10 98 - 1</u>	Addr	20	7 West	Third, Rosv	well,	New Mexico
Lease	Hollar	nd	Well No.	Unit Lette H	section 13	Township 2	4 South	Rang	° 33 East
Date Work Performer March 8, 19	i i 61	^{vost} Wilde	Gt	anan Bulan Jacobian Badhanan ay kata an isan	(County Le	a		
		THIS	S A REPORT	OF: (Chec	k appropria	(e block)			
Beginning Dril	ling Operations	[_] C. [_] R	asing Test ar emedial Work	nd Cement Jo	b (]] Other (F	ixplain):		
Top of Dela Cement Plu	ware Sand: gs set as fo 5375-542 340-390 Heavy mu Job perfc	5210', Tote Hows: 5 with 15 s with 20 sac ud (2 cc w ormed and w	al Depth: sacks, 517 sks, 5 sac vtr. loss) vitnessed l	5425', (25-5240 w ks and m between by Mr. P	Casing 8 vith 20 s arker pip all cem ool, Poo	5/8 set acks, 13 be set at lent plug I Drlg C	at 365', 375-1425 v surface. s.	Hole vith 2	size 6 3/4 0 sacks,
Location w	Mr. Fred	Pool	Pesirion LOW FOR 1	oon as pro Owner REMEDIAL	an trom actical.	Mr. Eng Company PORTS OF	pol Drlg C	ew ///	
Location w Witnessed by D.F. Elev.	Mr. Fred	Pool	Pesition LOW FOR I FOR I	oon as progr Owner REMEDIAL INAL VELL	an trom actical.	Mr. Eng Company PORTS OF Producing	pol Drlg C NLY	ew M	mpletion Date
Location w Witnessed by D.F. Elev. Tubing Diameter	Mr. Fred	Pool FILL IN BE	Pesirian Desirian	Owner Owner REMEDIAL INAL WELC	work re DATA	Mr. Eng Company PC PORTS OF Producing er	pol Drlg C NLY Interval	ew M	mpletion Date
Location w Witnessed by D.F. Elev. Tubing Dismeter Perforsted Intervalf	Mr. Fred	Pool Fill IN BE	Pesition LOW FOR I ORIG	Owner REMEDIAL INAL VELL	work re ring Diame	Mr. Eng Company PC PORTS Of Producing	pol Drlg C NLY	ew M	mpletion Date
Location w Witnessed by D F Elev. Tubing Diameter Perforated Interval Open Hole Interval	Mr. Fred	Pool FILL IN BE	Pesition	Owner Cowner REMEDIAL INAL WELL INAL WELL INAL WELL INAL WELL INAL WELL INAL WELL	work re DATA ring Diame	Mr. Eng Company PORTS () Producing tion(s)	pol Drlg C NLY Interval	ew M	mpletion Date
Location w Witnessed by D.F. Elev. Tubing Dismeter Perforsted Interval Open Hole Interval	Mr. Fred	Pool FILL IN BE	Position Position LOW FOR I ORIG	Owner Owner REMEDIAL INAL VELC	work re DATA ring Diame	Mr. Eng Company Por PORTS O Producing er	pol Drlg C NLY Interval	ew M	nipletion Date
Location w Witnessed by D F Elev. Tubing Diameter Perforated Intervalf Open Hole Interval Texr Before Workover	Mr. Fred	Pool FILL IN BE Luburg Depth	Pesition Pesition LOW FOR I ORIG IT IS T RESUL SO ANS M	Owner Owner REMEDIAL INAL VELC I Oit Si Drodu TS OF WOI C F / D	work re DATA ring Diamet Cing Forma	Mr. Eng Company PC PORTS OF Producing er tion(s)	pol Drlg C NLY Interval Oil Stri	ew M Co. Ing Dept	mpletion Date th Gas Well Potential MCEPD
Location w Witnessed by D F Elev. Tubing Dismeter Perforsted Intervelf Open Hole Intervelf Open Hole Intervelf Desr Before Workover After Workover	Mr. Fred	Pool FILL IN BE Lature Depth	RESUL	Owner Council Counc	work re DATA ring Diamed Cing Forma KOVER Water P B	Mr. Eng Company PC PORTS OF Producing Producing cer	gbrecht, No pol Drlg C NLY Interval Oil Stri	ew M Co. Со Со Со Со Со	mpletion Date th Gas Well Potential MCEPD
Location w Witnessed by D F Elev. Tubing Diameter Perforated Interval Open Hole Interval Test Before Workover After Workover	Prior veri ill be clear <u>Mr. Fred</u> T D g) Date of Test:	Pool FILL IN BE Laburg Depth	Pesirian Pesirian LOW FOR I ORIG PICT RESUL M	Owner Commer REMEDIAL INAL VELC INAL VEL	work re batta ing Diame cing Forma KOVER	Mr. Eng Company PC PORTS Of Producing er tion(s) roduction PD	pol Drlg C NLY Interval Oil Stri Go R Cubic fee:	ew M Co. Co. Co. Bbl Bbl	mpletion Date th Gas Well Potential MC F PD c is frue and complete
Location w Witnessed by D F Elev, Tubing Diameter Perforated Interval Open Hole Interval Test Before Workover After Workover Of Approved by Title	Prior veri ill be clear <u>Mr. Fred</u> T D s) Date of Tes: CONSERVAT	Pool FILL IN BE Fature Depth Oil Production HPD ION COMMISSIO	Pesition Pesition LOW FOR I ORIG PICT RESUL N RESUL N A A A A A A A A A A A A A	Ownes Common as pro- Ownes REMEDIAL INAL VELL D Opt St Production CEPTD Chan Inal Production CEPTD	work re batta work re bata ting Diamen cong Forma cong	Mr. Eng Company PC PORTS () Producing er tion(s) roduction PD	pol Drlg C NLY Interval Oil Stri Cubic fee:	ew M	mpletion Date th Gas Well Potential MC + PD th

Request for Additional Information: Red Hills Gas Processing Plant April 22, 2024

Instructions: Please enter responses into this table and make corresponding revisions to the MRV Plan as necessary. Any long responses, references, or supplemental information may be attached to the end of the table as an appendix. This table may be uploaded to the Electronic Greenhouse Gas Reporting Tool (e-GGRT) in addition to any MRV Plan resubmissions.

No.	MRV Plan		EPA Questions	Responses
	Section	Page		
1.	5.6	44-45	"No faults were identified within the MMA which could potentially serve as conduits for surface CO ₂ emission. The closest identified fault lies approximately 1.5 miles east of the Red Hills site and has approximately 1,000 ft of down-to-the-west structural relief." However, Figure 5.6-1 only displays the location of faults with relation to the RH_Plant outline. Figure 5.6-1 displays a fault line within close proximity to the RH_Plant outline that might intersect the MMA/AMA boundary. We recommend including an outline of the MMA/AMA in Figure 5.6-1 to clearly display the relation of this fault to the MMA/AMA or clarifying its proximity in the text.	Figure 5.6-1 of the revised MRV plan has been modified to include the MMA/AMA boundary.
2.	8.1	57	"r = Receiving volumetric flow meter." In Equation RR-2, this variable is "r = receiving flow meter." Equations and variables cannot be modified from the regulations. Please revise this section and ensure that all equation listed are consistent with the text in 40 CFR 98.443 .	All narrative accompanying the equations in Section 8.1 and in Appendix 8 have been edited in the revised MRV plan to match the text in 40 CFR 98.443.

No.	MRV Plan		EPA Questions	Responses
	Section	Page		
3.	8.2	58	 u = Volumetric flow meter. In Equation RR-5, this variable is "u = flow meter." Equations and variables cannot be modified from the regulations. Please revise this section and ensure that all equation listed are consistent with the text in 40 CFR 98.443. 	All narrative accompanying the equations in Section 8.1 and in Appendix 8 have been edited in the revised MRV plan to match the text in 40 CFR 98.443.

4.	8.2	58	For CO ₂ injected, 40 CFR 98.444(b) requires that:	That is correct. The injection meter to AGI #1 is M3 NOT M5. The revised MRV plan has been modified to reflect this correction.
			"(1) You must select a point or points of measurement at which the CO ₂ stream(s) is representative of the CO ₂ stream(s) being injected. You may use as the point or points of measurement the location(s) of the flow meter(s) used to comply with the flow monitoring and reporting provisions in your Underground Injection Control permit.	Figure 3.6-2 of the revised MRV plan has been modified to include sampling points between the sour treaters ST1 and ST2 and the corresponding compressors. The CO ₂ analyzer and H ₂ S analyzer between compressor C1 and RH AGI #1 are not currently operational. The flow line where the flow meter M5 is located is only used to divert flow from one AGI well to the other when one of
			and collect the flow rate quarterly.	the wells is being worked over. The sampling points are samples bimonthly.
			(3) You must sample the injected CO_2 stream at least once per quarter immediately upstream or downstream of the flow meter used to measure flow rate of that CO_2 stream and measure the CO_2 concentration of the sample."	
			The MRV plan states that "TND injects CO_2 into the existing RH AGI #1. Upon completion, TND will commence injection into RH AGI #3. Equation RR-5 will be used to calculate CO_2 measured through volumetric flow meters before being injected into the wells. Equation RR-6 will be used to calculate the total annual mass of CO_2 injected into both wells. The calculated total annual CO_2 mass injected is the parameter CO_{21} in Equation RR-12. Volumetric flow meter u in the following equations corresponds to meters M5 and M6 in Figure 3.6-2."	
			In Figure 3.6-2, meter M5 is located between the flowlines for RH AGI #1 and RH AGI #3. Based on this process flow diagram, it appears that the volumetric flow from meter M1 into RH AGI #1 would be determined by meter M3 prior to compression, not meter M5. Overall, please revise and/or clarify the text or flow diagram to ensure that all descriptions for metering locations are consistent for the subpart RR regulations.	
MONITORING, REPORTING, AND VERIFICATION PLAN

Red Hills AGI #1 and AGI #3

Targa Northern Delaware, LLC (TND)

Table of Contents

1	Ir	ntroduction	5
2	Fa	Facility Information	7
	2.1	Reporter number	7
	2.2	UIC injection well identification numbers	7
	2.3	UIC permit class	7
3	Р	Project Description	7
	3.1	General Geologic Setting / Surficial Geology	8
	3.2	Bedrock Geology	8
	3	3.2.1 Basin Development	8
	3	3.2.2 Stratigraphy	17
	3	3.2.3 Faulting	22
	3.3	Lithologic and Reservoir Characteristics	22
	3.4	Formation Fluid Chemistry	25
	3.5	Groundwater Hydrology in the Vicinity of the Red Hills Gas Plant	25
	3.6	Historical Operations	26
	3	3.6.1 Red Hills Site	
	3	3.6.2 Operations within the MMA for the RH AGI Wells	29
	3.7	Description of Injection Process	
	3.8	Reservoir Characterization Modeling	32
4	D	Delineation of the Monitoring Areas	39
	4.1	MMA – Maximum Monitoring Area	39
	4.2	AMA – Active Monitoring Area	39
5	lc	dentification and Evaluation of Potential Leakage Pathways to the Surface	40
	5.1	Potential Leakage from Surface Equipment	40
	5.2	Potential Leakage from RH AGI #3 and Approved, Not Yet Drilled Wells	41
	5	5.2.1 RH AGI #3	41
	5	5.2.2 Horizontal Wells	41
	5.3	Potential Leakage from Existing Wells	42
	5	5.3.1 Wells Completed in the Bell Canyon and Cherry Canyon Formations	42
	5	5.3.2 Wells Completed in the Bone Spring / Wolfcamp Zones	
	5	5.3.4 Groundwater Wells	
	5.4	Potential Leakage through the Confining / Seal System	
	5.5	Potential Leakage due to Lateral Migration	44
	5.6	Potential Leakage through Eractures and Faults	лл
	5.0	Potential Leakage due to Natural / Induced Seismicity	+4
~	5.7	Fotential Leakage due to Natural / Induced Seismicity	
6	51 6 1	strategy for Detecting and Quantifying Surface Leakage of CO_2	46 17
	о.1 с р	Leakage from Approved Net Vet Drilled Wells	/+
	0.2	Leakage nom Approved Not fet Drilled weils	

	6.3	Leakage from Existing Wells	48
	6.3	3.1 RH AGI Wells	48
	6.3	3.2 Other Existing Wells within the MMA	50
	6.4	Leakage through the Confining / Seal System	50
	6.5	Leakage due to Lateral Migration	51
	6.6	Leakage from Fractures and Faults	51
	6.7	Leakage due to Natural / Induced Seismicity	51
	6.8	Strategy for Quantifying CO_2 Leakage and Response	51
	6.8	8.1 Leakage from Surface Equipment	51
	6.8	8.2 Subsurface Leakage	52
	6.8	8.3 Surface Leakage	52
7	Sti	rategy for Establishing Expected Baselines for Monitoring CO ₂ Surface Leakage	52
	7.1	Visual Inspection	52
	7.2	Fixed In-Field, Handheld, and Personal H ₂ S Monitors	53
	7.2	2.1 Fixed In-Field H ₂ S Monitors	53
	7.2	2.2 Handheld and Personal H ₂ S Monitors	53
	7.3	CO ₂ Detection	53
	7.4	Continuous Parameter Monitoring	53
	7.5	Well Surveillance	53
	7.6	Seismic (Microseismic) Monitoring Stations	54
	7.7	Groundwater Monitoring	54
	7.8	Soil CO ₂ Flux Monitoring	55
8	Sit	e Specific Considerations for Determining the Mass of CO ₂ Sequestered	56
	8.1	CO ₂ Received	56
	8.2	CO ₂ Injected	57
	8.3	CO ₂ Produced / Recycled	58
	8.4	CO ₂ Lost through Surface Leakage	58
	8.5	CO ₂ Emitted from Equipment Leaks and Vented Emissions	59
	8.6	CO ₂ Sequestered	59
ი			
3	Es	timated Schedule for Implementation of MRV Plan	59
פ 10	Es [.]) Gł	timated Schedule for Implementation of MRV Plan IG Monitoring and Quality Assurance Program	59 59
9 1(Es) GH 10.1	timated Schedule for Implementation of MRV Plan IG Monitoring and Quality Assurance Program GHG Monitoring	59 59 60
9 10	Es GH 10.1 10	timated Schedule for Implementation of MRV Plan IG Monitoring and Quality Assurance Program GHG Monitoring 0.1.1 General	59 59 60 60
9 10	Es) GH 10.1 10 10	timated Schedule for Implementation of MRV Plan IG Monitoring and Quality Assurance Program GHG Monitoring 0.1.1 General 0.1.2 CO ₂ received	59 59 60 60 60
9 10	Es) GH 10.1 10 10 10	timated Schedule for Implementation of MRV Plan IG Monitoring and Quality Assurance Program GHG Monitoring 0.1.1 General 0.1.2 CO ₂ received 0.1.3 CO ₂ injected	59 59 60 60 60 60
9 10	Es) GH 10.1 10 10 10 10	timated Schedule for Implementation of MRV Plan HG Monitoring and Quality Assurance Program GHG Monitoring 0.1.1 General 0.1.2 CO ₂ received 0.1.3 CO ₂ injected 0.1.4 CO ₂ produced	59 59 60 60 60 60 60
9 10	Es) GH 10.1 10 10 10 10 10	timated Schedule for Implementation of MRV Plan IG Monitoring and Quality Assurance Program GHG Monitoring 0.1.1 General 0.1.2 CO ₂ received 0.1.3 CO ₂ injected 0.1.4 CO ₂ produced 0.1.5 CO ₂ emissions from equipment leaks and vented emissions of CO ₂ .	59 59 60 60 60 60 60
9 10	Es) GH 10.1 10 10 10 10 10 10	timated Schedule for Implementation of MRV Plan HG Monitoring and Quality Assurance Program GHG Monitoring 0.1.1 General 0.1.2 CO ₂ received 0.1.3 CO ₂ injected 0.1.3 CO ₂ injected 0.1.4 CO ₂ produced 0.1.5 CO ₂ emissions from equipment leaks and vented emissions of CO ₂ .	59 59 60 60 60 60 60 60 60
9 10	Es) GH 10.1 10 10 10 10 10 10 10.2	timated Schedule for Implementation of MRV Plan HG Monitoring and Quality Assurance Program GHG Monitoring 0.1.1 General 0.1.2 CO ₂ received 0.1.3 CO ₂ injected 0.1.4 CO ₂ produced 0.1.5 CO ₂ emissions from equipment leaks and vented emissions of CO ₂ . 0.1.6 Measurement devices QA/QC Procedures	59 59 60 60 60 60 60 60 60 61

10.4 Rev	isions of the MRV Plan	61
11 Record	s Retention	
Appendix 1	TND Wells	
Appendix 2	Referenced Regulations	
Appendix 3	Water Wells	
Appendix 4	Oil and Gas Wells within 2-mile Radius of the RH AGI Well Site	71
Appendix 5	References	74
Appendix 6	Abbreviations and Acronyms	77
Appendix 7	TND Red Hills AGI Wells - Subpart RR Equations for Calculating CO2 Geologic Sequestration	78
Appendix 8	Subpart RR Equations for Calculating Annual Mass of CO ₂ Sequestered	79
Appendix 9	P&A Records	

1 Introduction

Targa Northern Delaware, LLC (TND) is currently authorized to inject treated acid gas (TAG) into the Red Hills Acid Gas Injection #1 well (RH AGI #1)(American Petroleum Institute (API) 30-025-40448) and RH AGI #3 well (API # 30-025-51970) under the New Mexico Oil Conservation Commission (NMOCC) Orders R-13507 – 13507F and Order R-20916H, respectively, at the Red Hills Gas Plant located approximately 20 miles NNW of Jal in Lea County, New Mexico (**Figure 1-1**). Each well is approved to inject 13 million standard cubic feet per day (MMSCFD). However, although approved to inject 13 MMSCFD, RH AGI #1 is physically only capable of taking ~5 MMSCFD due to formation and surface pressure limitations.

The AGI wells were previously operated by Lucid Energy Delaware, LLC's ("Lucid"). TND acquired Lucid assets in 2022. Lucid received authorization to construct a redundant well, RH AGI #2 (API# 30-025-49474) under NMOCC Order R-20916-H, which is offset 200 ft to the north of RH AGI #1 and is currently temporarily abandoned in the Bell Canyon Formation.

TND recently received approval from NMOCC for its C-108 application to drill, complete and operate a third acid gas injection well (RH AGI #3) in which TND requested an injection volume of up to 13 MMSCFD.RH AGI #3 was recently completed and placed into service in January 2024. Because AGI #1 does not have complete redundancy, having a greater permitted disposal volume will also increase operational reliability. The RH AGI #3 well is a vertical well with its surface location at approximately 3,116 ft from the north line (FNL) and 1,159 ft from the east line (FEL) of Section 13. The depth of the injection zone for this well is approximately 5,600 to 7,200 ft in the Bell Canyon and Cherry Canyon Formations. Analysis of the reservoir characteristics of these units confirms that they act as excellent closed-system reservoirs that will accommodate the future needs of TND for disposal of treated acid gas (H₂S and CO₂) from the Red Hills Gas Plant.

TND has chosen to submit this Monitoring, Reporting, and Verification (MRV) plan to EPA for approval according to 40CFR98.440(c)(1), Subpart RR of the Greenhouse Gas Reporting Program (GHGRP) for the purpose of qualifying for the tax credit in section 45Q of the federal Internal Revenue Code. TND intends to inject CO₂ for another 30 years.

Figure 1-1: Location of the Red Hills Gas Plant and Wells – RH AGI #1, RH AGI #2 (temporarily abandoned), and RH AGI #3

This MRV Plan contains twelve sections:

Section 1 is this Introduction.

Section 2 contains facility information.

Section 3 contains the project description.

Section 4 contains the delineation of the maximum monitoring area (MMA) and the active monitoring area (AMA), both defined in 40CFR98.449, and as required by 40CFR98.448(a)(1), Subpart RR of the GHGRP.

Section 5 identifies the potential surface leakage pathways for CO_2 in the MMA and evaluates the likelihood, magnitude, and timing of surface leakage of CO_2 through these pathways as required by 40CFR98.448(a)(2), Subpart RR of the GHGRP.

Section 6 describes the detection, verification, and quantification of leakage from the identified potential sources of leakage as required by 40CFR98.448(a)(3).

Section 7 describes the strategy for establishing the expected baselines for monitoring CO_2 surface leakage as required by 40CFR98.448(a)(4), Subpart RR of the GHGRP.

Section 8 provides a summary of the considerations used to calculate site-specific variables for the mass balance equation as required by 40CFR98.448(a)(5), Subpart RR of the GHGRP.

Section 9 provides the estimated schedule for implementation of this MRV Plan as required by 40CFR98.448(a)(7).

Section 10 describes the quality assurance and quality control procedures that will be implemented for each technology applied in the leak detection and quantification process. This section also includes a discussion of the procedures for estimating missing data as detailed in 40CFR98.445.

Section 11 describes the records to be retained according to the requirements of 40CFR98.3(g) of Subpart A of the GHGRP and 40CFR98.447 of Subpart RR of the GRGRP.

Section 12 includes Appendices supporting the narrative of the MRV Plan, including information required by 40CFR98.448(a)(6).

2 Facility Information

2.1 Reporter number

Greenhouse Gas Reporting Program ID is 553798

2.2 UIC injection well identification numbers

This MRV plan is for RH AGI #1 and RH AGI #3 (**Appendix 1**). The details of the injection process are provided in Section 3.7.

2.3 UIC permit class

For injection wells that are the subject of this MRV plan, the New Mexico Oil Conservation Division (NMOCD) has issued Underground Injection Control (UIC) Class II acid gas injection (AGI) permits under its State Rule 19.15.26 NMAC (see **Appendix 2**). All oil- and gas-related wells around the RH AGI wells, including both injection and production wells, are regulated by the NMOCD, which has primacy to implement the UIC Class II program.

3 Project Description

The following project description was developed by the Petroleum Recovery Research Center (PRRC) at New Mexico Institute of Mining and Technology (NMT) and the Department of Geosciences at the University of Texas Permian Basin (UTPB).

3.1 General Geologic Setting / Surficial Geology

The TND Red Hills Gas Plant is located in T 24 S R 33 E, Section 13, in Lea County, New Mexico, immediately adjacent to the RH AGI wells. (Figure 3.1-1). The plant location is within a portion of the Pecos River basin referred to as the Querecho Plains reach (Nicholson & Clebsch, 1961). This area is relatively flat and largely covered by sand dunes underlain by a hard caliche surface. The dune sands are locally stabilized with shin oak, mesquite, and some burr-grass. There are no natural surface bodies of water or groundwater discharge sites within one mile of the plant and where drainages exist in interdunal areas, they are ephemeral, discontinuous, dry washes. The plant site is underlain by Quaternary alluvium overlying the Triassic red beds of the Santa Rosa Formation (Dockum Group), both of which are local sources of groundwater.

Figure 3.1-1: Map showing location of TND Red Hills Gas Plant and RH AGI Wells in Section 13, T 24 S, R 33 E

3.2 Bedrock Geology

3.2.1 Basin Development

The Red Hills Gas Plant and the RH AGI wells are located at the northern margin of the Delaware Basin, a sub-basin of the larger, encompassing Permian Basin (**Figure 3.2-1**), which covers a large area of southeastern New Mexico and west Texas.

Figure 3.2-1: Structural features of the Permian Basin during the Late Permian. Location of the TND RH AGI wells is shown by the black circle. (Modified from Ward, et al (1986))

Figure 3.2-2 is a generalized stratigraphic column showing the formations that underlie the Red Hills Gas Plant and RH AGI wells site. The thick sequences of Permian through Cambrian rocks are described below. A general description of the stratigraphy of the area is provided in this section. A more detailed discussion of the injection zone and the upper and lower confining zones is presented in Section 3.3 below.

The RH AGI wells are in the Delaware Basin portion of the broader Permian Basin. Sediments in the area date back to the Cambrian Bliss Sandstone (Broadhead, 2017; **Figure 3.2-2**) and overlay Precambrian granites. These late Cambrian transgressive sandstones were the initial deposits from a shallow marine sea that covered most of North America and Greenland (**Figure 3.2-3**). With continued down warping and/or sea-level rise, a broad, relatively shallow marine basin formed. The Ellenburger Formation (0 – 1000 ft) is dominated by dolostones and limestones that were deposited on restricted carbonate shelves (Broadhead, 2017; Loucks and Kerans, 2019). Throughout this narrative, the numbers after the formations indicate the range in thickness for that unit. Tectonic activity near the end of Ellenburger deposition resulted in subaerial exposure and karstification of these carbonates which increased the unit's overall porosity and permeability.

AGE			CENTRAL BASIN PLATFORM- NORTHWEST SHELF		DELAWARE BASIN	
Cenozoic	Cenozoic		Alluvium		Alluvium	
Triccolo		Chinle Formation		Chinle Formation		
Triassic			Santa Rosa Sandstone		Santa Rosa Sandstone	
	Loningian	[Dewey Lake Formation	Dewey Lake Formation		
	(Ochoan)	<u> </u>	Rustler Formation		Rustler Formation	
			Salado Formation		Castile Formation	
		Artesia Group	Tansill Formation	d	Lamar Limestone	
	Guadalupian		Yates Formation	Grou	Bell Canyon Formation	
			Seven Rivers Formation	ain (Don ounjoir i onnadon	
			Queen Formation	ount	Charme Conven Formation	
Demoiser			Grayburg Formation	e Mo	Cherry Canyon Formation	
Permian			San Andres Formation	lawar	Brushy Canvon Formation	
	Cisuralian		Glorieta Formation	De		
	(Leonardian)	ő	Blinebry Mbr			
	(Leonardian)	Tubb Sandstone Mbr.		Bana Sanian Farmatian		
			Drinkard Mbr.		Bone Spring Formation	
	Wolfcampian		Abo Formation			
			Hueco ("Wolfcamp") Fm.		Hueco ("Wolfcamp") Fm.	
	Virgilian	Cisco Formation		Cisco		
	Missourian	Canyon Formation		Canyon		
Pennsylvanian	Des Moinesian	Strawn Formation			Strawn	
	Atokan	Atoka Formation		Atoka		
	Morrowan		Morrow Formation		Morrow	
Mississinnian	Upper		Barnett Shale		Barnett Shale	
wississippian	Lower	"Ⅳ	lississippian limestone"		"Mississippian limestone"	
	Upper		Woodford Shale		Woodford Shale	
Devonian	Middle					
	Lower		Thirtyone Formation		Thirtyone Formation	
	Upper		Wristen Group		Wristen Group	
Silurian	Middle					
	Lower		Fusselman Formation		Fusselman Formation	
	Upper		Montoya Formation		Montoya Formation	
Ordovician	Middle	Simpson Group			Simpson Group	
ordoviolari	Lower	I	Ellenburger Formation		Ellenburger Formation	
Cambrian			Bliss Ss.		Bliss Ss.	
Precambrian		me	Miscellaneous igneous, etamorphic, volcanic rocks		Miscellaneous igneous, metamorphic, volcanic rocks	

Figure 3.2-2: Stratigraphic column for the Delaware basin, the Northwest Shelf and Central Basin Platform (modified from Broadhead, 2017).

During Middle to Upper Ordovician time, the seas once again covered the area and deposited the carbonates, sandstones and shales of the Simpson Group (0 – 1000 ft) and then the Montoya Formation (0 – 600 ft). This is the period when the Tobosa Basin formed due to the Pedernal uplift and development of the Texas Arch (**Figure 3.2-4**; Harrington, 2019) shedding Precambrian crystalline clasts into the basin. Reservoirs in New Mexico are typically within deposits of shoreline sandstones (Broadhead, 2017). A subaerial exposure and karstification event followed the deposition of the Simpson Group. The Montoya Formation within the Tobosa Basin (Broadhead, 2017; Harrington and Loucks, 2019). The Montoya Formation consists of sandstones and dolomites and have also undergone karstification.

Figure 3.2-3: A subsidence chart from Reeves County, Texas showing the timing of development of the Tobosa and Delaware basins during Paleozoic deposition (from Ewing, 2019)

Figure 3.2-4: Tectonic Development of the Tobosa and Permian Basins. A) Late Mississippian (Ewing, 2019). Note the lateral extent (pinchout) for the lower Paleozoic strata. B) Late Permian (Ruppel, 2019a).

Siluro-Devonian formations consist of the Upper Ordovician to Lower Silurian Fusselman Formation (0 – 1,500 ft), the Upper Silurian to Lower Devonian Wristen Group (0 – 1,400 ft), and the Lower Devonian Thirtyone Formation (0 – 250 ft). The Fusselman Formation are shallow-marine platform deposits of dolostones and limestones (Broadhead, 2017; Ruppel, 2019b). Subaerial exposure and karstification associated with another unconformity at top of the Fusselman Formation as well as intraformational exposure events created brecciated fabrics, widespread dolomitization, and solution-enlarged pores and fractures (Broadhead, 2017). The Wristen and Thirtyone units appear to be conformable. The Wristen Group consists of tidal to high-energy platform margin carbonate deposits of dolostones, limestones, and cherts with minor siliciclastics (Broadhead, 2017; Ruppel, 2020). The Thirtyone Formation is present in the southeastern corner of New Mexico and appears to be either removed by erosion or not deposited elsewhere in New Mexico (**Figure 3.2-5**). It is shelfal carbonate with varying amounts of chert nodules and represents the last carbonate deposition in the area during Devonian time (Ruppel et al., 2020a).

Figure 3.2-5 -- A subcrop map of the Thirtyone and Woodford formations. The Woodford (brown) lies unconformably on top of the Wristen Group where there are no Thirtyone sediments (yellow). Diagram is from Ruppel (2020).

The Siluro-Devonian units are saltwater injection zones within the Delaware Basin and are typically dolomitized, shallow marine limestones that have secondary porosity produced by subaerial exposure, karstification and later fracturing/faulting. These units will be discussed in more detail in Section 3.2.2.

The Devonian Woodford Shale, an un-named Mississippian limestone, and the Upper Mississippian Barnett Shale are seals for the underlying Siluro-Devonian strata. While the Mississippian recrystallized limestones have minor porosity and permeability, the Woodford and Barnett shales have extremely low porosity and permeability and would be effective barriers to upward migration of acid gas out of the injection zone. The Woodford Shale (0 – 300 ft) ranges from organic–rich argillaceous mudstones with abundant siliceous microfossils to organic-poor argillaceous mudstones (Ruppel et al., 2020b). The Woodford sediments represent stratified deeper marine basinal deposits with their organic content being a function of the oxygenation within the bottom waters – the more anoxic the waters the higher the organic content.

The Mississippian strata within the Delaware Basin consists of an un-named carbonate member and the Barnett Shale and unconformably overlies the Woodford Shale. The lower Mississippian limestone (0 – 800 ft) are mostly carbonate mudstones with minor argillaceous mudstones and cherts. These units were deposited on a Mississippian ramp/shelf and have mostly been overlooked because of the reservoirs limited size. Where the units have undergone karstification, porosity may approach 4 to 9% (Broadhead, 2017), otherwise it is tight. The Barnett Shale (0 – 400 ft) unconformably overlies the Lower Mississippian carbonates and consists of Upper Mississippian carbonates deposited on a shelf to basinal, siliciclastic deposits (the Barnett Shale).

Pennsylvanian sedimentation in the area is influenced by glacio-eustatic sea-level cycles producing numerous shallowing upward cycles within the rock record; the intensity and number of cycles increase upward in the Pennsylvanian section. The cycles normally start with a sea-level rise that drowns the platform and deposits marine mudstones. As sea-level starts to fall, the platform is shallower and deposition switches to marine carbonates and coastal siliciclastic sediments. Finally, as the seas withdraw from the area, the platform is exposed causing subaerial diagenesis and the deposition terrestrial mudstones, siltstones, and sandstones in alluvial fan to fluvial deposits. This is followed by the next cycle of sea-level rise and drowning of the platform.

Pennsylvanian sedimentation is dominated by glacio-eustatic sea-level cycles that produced shallowing upward cycles of sediments, ranging from deep marine siliciclastic and carbonate deposits to shallow-water limestones and siliciclastics, and capping terrestrial siliciclastic sediments and karsted limestones. Lower Pennsylvanian units consist of the Morrow and Atoka formations. The Morrow Formation (0 - 2,000 ft) within the northern Delaware Basin was deposited as part of a deepening upward cycle with depositional environments ranging from fluvial/deltaic deposits at the base, sourced from the crystalline rocks of the Pedernal Uplift to the northwest, to high-energy, near-shore coastal sandstones and deeper and/or low-energy mudstones (Broadhead, 2017; Wright, 2020). The Atoka Formation (0-500 ft) was deposited during another sea-level transgression within the area. Within the area, the Atoka sediments are dominated by siliciclastic sediments, and depositional environments range from fluvial/deltas, shoreline to near-shore coastal barrier bar systems to occasional shallow-marine carbonates (Broadhead, 2017; Wright, 2020).

Middle Pennsylvanian units consist of the Strawn group (an informal name used by industry). Strawn sediments (250 - 1,000 ft) within the area consists of marine sediments that range from ramp carbonates, containing patch reefs, and marine sandstone bars to deeper marine shales (Broadhead, 2017).

Upper Pennsylvanian Canyon (0 – 1,200 ft) and Cisco (0 – 500 ft) group deposits are dominated by marine, carbonate-ramp deposits and basinal, anoxic, organic-rich shales.

Deformation, folding and high-angle faulting, associated with the Upper Pennsylvanian/Early Permian Ouachita Orogeny, created the Permian Basin and its two sub-basins, the Midland and Delaware basins (Hills, 1984; King, 1948), the Northwest Shelf (NW Shelf), and the Central Basin Platform (CBP; **Figures 3.2-4**, **3.2-6**, **3.2-7**). The Permian "Wolfcamp" or Hueco Formation was deposited after the creation of the Permian Basin. The Wolfcampian sediments were the first sediments to fill in the structural relief (**Figure 3.2-6**). The Wolfcampian Hueco Group (~400 ft on the NW Shelf, >2,000 ft in the Delaware Basin) consists of shelf margin deposits ranging from barrier reefs and fore slope deposits, bioherms, shallow-water carbonate shoals, and basinal carbonate mudstones (Broadhead, 2017; Fu et al., 2020). Since deformation continued throughout the Permian, the Wolfcampian sediments were truncated in places like the Central Basin Platform (Figure 3.2-6).

Figure 3.2-6 -- Cross section through the western Central Basin Platform showing the structural relationship between the Pennsylvanian and older units and Permian strata (modified from Ward et al., 1986; from Scholle et al., 2007).

Figure 3.2-7 -- Reconstruction of southwestern United States about 278 million years ago. The Midland Basin (MB), Delaware Basin (DB) and Orogrande Basin (OB) were the main depositional centers at that time (Scholle et al., 2020).

Differential sedimentation, continual subsidence, and glacial eustasy impacted Permian sedimentation after Hueco deposition and produced carbonate shelves around the edges of deep sub-basins. Within the Delaware Basin, this subsidence resulted in deposition of roughly 12,000 ft of siliciclastics, carbonates, and evaporites (King, 1948). Eustatic sea-level changes and differential sedimentation played an important role in the distribution of sediments/facies within the Permian Basin (**Figure 3.2-2**). During sea-level lowstands, thousands of feet of siliciclastic sediments bypassed the shelves and were deposited in the basin. Scattered, thin sandstones and siltstones as well as fracture and pore filling sands found up on the shelves correlate to those lowstands. During sea-level highstands, thick sequences of carbonates were deposited by a "carbonate factory" on the shelf and shelf edge. Carbonate debris beds shedding off the shelf margin were transported into the basin (Wilson, 1972; Scholle et al., 2007). Individual debris flows thinned substantially from the margin to the basin center (from 100s feet to feet).

Unconformably overlying the Hueco Group is the Abo Formation (700 – 1,400 ft). Abo deposits range from carbonate grainstone banks and buildups along Northwest Shelf margin to shallow-marine, back-reef carbonates behind the shelf margin. Further back on the margin, the backreef sediments grade into intertidal carbonates to siliciclastic-rich sabkha red beds to eolian and fluvial deposits closer to the Sierra Grande and Uncompahgre uplifts (Broadhead, 2017, Ruppel, 2019a). Sediments basinward of the Abo margin are equivalent to the lower Bone Spring Formation. The Yeso Formation (1,500 – 2,500 ft), like the Abo Formation, consists of carbonate banks and buildups along the Abo margin. Unlike Abo sediments, the Yeso Formation contains more siliciclastic sediments associated with eolian, sabkha, and tidal flat facies (Ruppel, 2019a). The Yeso shelf sandstones are commonly subdivided into the Drinkard, Tubb, Blinebry, Paddock members (from base to top of section). The Yeso Formation is equivalent to the upper Bone Spring Formation. The Seo Formation and siliciclastic horizons that formed because of changes in sea level; the carbonates during highstands, and siliciclastics during lowstands. Overlying the Yeso, are the clean, white eolian sandstones of the Glorietta Formation. It is a key marker bed in the region, both on outcrop and in the subsurface. Within the basin, it is equivalent to the lowermost Brushy Canyon Formation of the Delaware Mountain Group.

The Guadalupian San Andres Formation (600 – 1,600 ft) and Artesia Group (<1,800 ft) reflect the change in the shelf margin from a distally steepened ramp to a well-developed barrier reef complex. The San Andres Formation consists of supratidal to sandy subtidal carbonates and banks deposited a distally steepened ramp. Within the San Andres Formation, several periods of subaerial exposure have been identified that have resulted in karstification and pervasive dolomitization of the unit. These exposure events/sea-level lowstands are correlated to sandstones/siltstones that moved out over the exposed shelf leaving on minor traces of their presence on the shelf but formed thick sections of sandstones and siltstones in the basin. Within the Delaware Basin, the San Andres Formation is equivalent to the Brushy and lower Cherry Canyon Formations.

The Artesia Group (Grayburg, Queen, Seven Rivers, Yates, and Tansill formations, ascending order) is equivalent to Capitan Limestone, the Guadalupian barrier/fringing reef facies. Within the basin, the Artesia Group is equivalent to the upper Cherry and Bell Canyon formations, a series of relatively featureless sandstones and siltones. The Queen and Yates formations contain more sandstones than the Grayburg, Seven Rivers, and Tansill formations. The Artesia units and the shelf edge equivalent Capitan reef sediments represent the period when the carbonate factory was at its greatest productivity with the shelf margin/Capitan reef prograding nearly 6 miles into the basin (Scholle et al., 2007). The Artesia Group sediments were deposited in back-reef, shallow marine to supratidal/evaporite environments. Like the San Andres Formation, the individual formations were periodically exposed during lowstands.

The final stage of Permian deposition on the NW Shelf consists of the Ochoan/Lopingian Salado Formation (<2,800 ft, Nance, 2020). Within the basin, the Castile formation, a thick sequence (total thickness ~1,800 ft, Scholle et al., 2007) of cyclic laminae of deep-water gypsum/anhydrite interbedded with calcite and organics, formed due to the restriction of marine waters flowing into the basin. Gypsum/anhydrite laminae precipitated during evaporative conditions, and the calcite and organic-rich horizons were a result of seasonal "freshening" of the basin waters by both marine and freshwaters. Unlike the Castile Formation, the Salado Formation is a relatively shallow water evaporite deposit. Halite, sylvite, anhydrite, gypsum, and numerous potash minerals were precipitated. The Rustler Formation (500 ft , Nance, 2020) consists of gypsum/anhydrite, a few magnesitic and dolomitic limestone horizons, and red beds. These are mostly shallow marginal marine deposits and represents the last Permian marine deposits in the Delaware Basin.

The Rustler Formation was followed by terrestrial sabkha red beds of the Dewey Lake Formation (~350', Nance, 2020), ending Permian deposition in the area.

Beginning early in the Triassic, uplift and the breakup of Pangea resulted in another regional unconformity and the deposition of non-marine, alluvial Triassic sediments (Santa Rosa Sandstone and Chinle Formation). They are unconformably overlain by Cenozoic alluvium (which is present at the surface). Cenozoic Basin and Range tectonics resulted in the current configuration of the region and reactivated numerous Paleozoic faults.

3.2.2 Stratigraphy

The Permian rocks found in the Delaware Basin are divided into four series, the Ochoa (most recent, renamed Lopingian), Guadalupian, Leonardian (renamed Cisuralian), and Wolfcampian (oldest) (Figure 3.2-2). This sequence of shallow marine carbonates and thick, basinal siliciclastic deposits contains abundant oil and gas resources. The Delaware Basin high porosity sands are the main source of oil within New Mexico. In the area around the Red Hills AGI wells, Permian strata are mainly basin deposits consisting of sandstones, siltstones, shales, and lesser amounts of carbonates. Besides production in the Delaware Mountain Group, there is also production, mainly gas, in the basin Bone Spring Formation, a sequence of carbonates and siliciclastics. The injection and confining zones for RH AGI #1 and #3 are discussed below.

CONFINING/SEAL ROCKS

Permian Ochoa Series. The youngest of the Permian sediments, the Ochoan- or Lopingian-aged deposits, consists of evaporites, carbonates, and red beds. The Castile Formation is made of cyclic laminae of deepwater gypsum/anhydrite beds interlaminated with calcite and organics. This basin-occurring unit can be up to 1,800 ft thick. The Castile evaporites were followed by the Salado Formation (~1,500 ft thick). The Salado Formation is a shallow water evaporite deposit, when compared to the Castile Formation, and consists of halite, sylvite, anhydrite, gypsum, and numerous potash/bittern minerals. Salado deposits fill the basin and lap onto the older Permian shelf deposits. The Rustler Formation (up to 500 ft, Nance, 2020) consists of gypsum/anhydrite, a few magnesitic and dolomitic limestone horizons, and red beds. These are mostly shallow marginal marine deposits and represents the last Permian marine deposits in the Delaware Basin. The Ochoan evaporitic units are superb seals (usually <1% porosity and <0.01 mD permeability) and are the reason that the Permian Basin is such a hydrocarbon-rich region despite its less than promising total organic carbon (TOC) content.

INJECTION ZONE

Permian Guadalupe Series. Sediments in the underlying Delaware Mountain Group (descending, Bell Canyon, Cherry Canyon, and Brushy Canyon formations) are marine units that represent deposition controlled by eustacy and tectonics. Lowstand deposits are associated with submarine canyons incising the carbonate platform surround most of the Delaware Basin. Depositional environments include submarine fan complexes that encircle the Delaware Basin margin. These deposits are associated with submarine canyons incising the carbonate platform margin and turbidite channels, splays, and levee/overbank deposits (Figure 3.2-8). Additionally, debris flows formed by the failure of the carbonate margin and density currents also make up basin sediments. Isolated coarse-grained to boulder-sized carbonate debris flows and grain falls within the lowstand clastic sediments likely resulted from erosion and failure of the shelf margin during sealevel lowstands or slope failure to tectonic activity (earthquakes). Density current deposits resulted from stratified basin waters. The basal waters were likely stratified and so dense, that turbidity flows containing sands, silts and clays were unable to displace those bottom waters and instead flowed out over the density interface (Figure 3.2-9). Eventually, the entrained sediments would settle out in a constant rain of sediment forming laminated deposits with little evidence of traction (bottom flowing) deposition. Interbedded with the very thick lowstand sequences are thin, deep-water limestones and mudstones that represent highstand

deposition up on the platform. These deposits are thickest around the edge (toe-of-slope) of the basin and thin to the basin center (**Figure 3.2-10**). The limestones are dark, finely crystalline, radiolarian-rich micrites to biomicrites. These highstand deposits are a combination of suspension and pelagic sediments that also thin towards the basin center. These relatively thin units are time equivalent to the massive highstand carbonate deposits on the shelf.

Figure 3.2-8 – A diagram of typical Delaware Mountain Group basinal siliciclastic deposition patterns (from Nance, 2020). The channel and splay sandstones have the best porosity, but some of the siltstones also have potential as injection zones.

Figure 3.2-9 – Harms' (1974) density overflow model explains the deposition of laminated siliciclastic sediments in the Delaware Basin. Low density sand-bearing fluids flow over the top of dense, saline brines at the bottom of the basin. The sands gradually drop out as the flow loses velocity creating uniform, finely laminated deposits (from Scholle et al., 2007).

Figure 3.2-10 – The impact of sea-level fluctuations (also known as reciprocal sedimentation) on the depositional systems within the Delaware Basin. A) A diagrammatic representation of sea-level variations impact on deposition. B) Model showing basin-wide depositional patterns during lowstand and highstand periods (from Scholle et al., 2007).

The top of the Guadalupian Series is the Lamar Limestone, which is the source of hydrocarbons found in underlying Delaware Sand (an upper member of the Bell Canyon Formation). The Bell Canyon Formation is roughly 1,000 ft thick in the Red Hills area and contains numerous turbidite input points around the basin margin (**Figures 3.2-10, 3.2-11**). During Bell Canyon deposition, the relative importance of discrete sand sources varied (Giesen and Scholle, 1990), creating network of channel and levee deposits that also varied in their size and position within the basin. Based on well log analyses, the Bell Canyon 2 and 3 had the thickest sand deposits.

Figure 3.2-11 – These maps of Bell Canyon Formation were created by measuring sandstone thicknesses on well logs in four regionally correlatable intervals (from Giesen and Scholle, 1990 and unpublished thesis research). The red circle on the last map surrounds the Red Hills area.

Like the Bell Canyon and Brushy Canyon formations, the Cherry Canyon Formation is approximately 1,300 ft thick and contains numerous turbidite source points. Unlike the Bell Canyon and Brushy Canyon deposits, the channel deposits are not as large (Giesen and Scholle, 1990), and the source of the sands appears to be dominantly from the eastern margin (**Figure 3.2-12**). Cherry Canyon 1 and 5 have the best channel development and the thickest sands. Overall, the Cherry Canyon Formation, on outcrop, is less influenced by traction current deposition than the rest of the Delaware Mountain Group deposits and is more influenced by sedimentation by density overflow currents (**Figure 3.2-9**). The Brushy Canyon has notably more discrete channel deposits and coarser sands than the Cherry Canyon and Bell Canyon. The Brushy Canyon Formation is approximately 1,500 ft thick.

Figure 3.2-12– These maps of Cherry Canyon Formation were created by measuring sandstone thicknesses on well logs in five regionally correlatable intervals (from Giesen and Scholle, 1990 and unpublished thesis research). Unlike the Bell Canyon sandstones, the Cherry Canyon sands are thinner and contain fewer channels. The red circle on the last map surrounds the Red Hills area.

Within the Delaware Mountain Group in the Red Hills area, the Bell Canyon and Cherry Canyon have the best porosity (averaging 15 – 25 % within channel/splay sandstones) and permeability (averaging 2-13 mD) than the Brushy Canyon (~14% porosity, an <3 mD; Ge et al, 2022, Smye et al., 2021).

UNDERLYING CONFINING ZONE

Permian Leonard Series. The Leonardian/Cisuralian Series, located beneath the Guadalupian Series sediments, is characterized by >3,000 ft of basin-deposited carbonate and siliciclastic sediments of the Bone Spring Formation. The Bone Spring Formation is more carbonate rich than the Delaware Mountain Group deposits, but the sea-level-driven cycles of sedimentation and the associated depositional environments are similar with debris flows, turbidites, and pelagic carbonate sediments. The Bone Spring Formation contains both conventional and unconventional fields within the Delaware Basin in both the sandstone-rich and carbonate-rich facies. Most of these plays usually occur within toe-of-slope carbonate and siliciclastic deposits or the turbidite facies in the deeper sections of the basin (Nance and Hamlin, 2020). The upper most Bone Spring is usually dense carbonate mudstone with limited porosity and low porosity.

3.2.3 Faulting

In this immediate area of the Permian Basin, faulting is primarily confined to the lower Paleozoic section, where seismic data shows major faulting and ancillary fracturing-affected rocks only as high up as the base of the lower Wolfcamp strata (**Figures 3.2-6 and 5.6-1**). Faults that have been identified in the area are normal faults associated with Ouachita related movement along the western margin of the Central Platform to the east of the RH AGI well site. The closest identified fault lies approximately 1.5 miles east of the Red Hills site and has approximately 1,000 ft of down-to-the-west structural relief. Because these faults are confined to the lower Paleozoic unit well below the injection zone for the RH AGI wells, they will not be discussed further (Horne et al., 2021). Within the area of the Red Hills site, no shallow faults within the Delaware Mountain Group have been identified by seismic data interpretation nor as reported by Horne et al., 2022).

3.3 Lithologic and Reservoir Characteristics

Based on the geologic analyses of the subsurface at the Red Hills Gas Plant, the uppermost portion of the Cherry Canyon Formation was chosen for acid gas injection and CO₂ sequestration for RH AGI #1 and the uppermost Delaware Mountain Group (the Bell Canyon and Cherry Canyon Formations) for RH AGI #3.

For RH AGI #1, this interval includes five high porosity sandstone units (sometimes referred to as the Manzanita) and has excellent caps above, below and between the individual sandstone units. There is no local production in the overlying Delaware Sands pool of the Bell Canyon Formation. There are no structural features or faults that would serve as potential vertical conduits. The high net porosity of the RH AGI #1 injection zone indicates that the injected H₂S and CO₂ will be easily contained close to the injection well.

For RH AGI #3, this interval has been expanded to include the five porosity zones in the Cherry Canyon sandstone as well as the sandstone horizons in the overlying Bell Canyon Formation. In the Bell Canyon Formation there are several potential high porosity sandstones, that if present in the well, would be excellent , injection zones similar to the depositional environments of the Cherry Canyon sandstones. The thickest sand is commonly referred to as the Delaware Sand within the Delaware Basin. The Delaware sand is productive, but it is not locally. Most of the sand bodies in the Bell Canyon and Cherry Canyon formations are surrounded by shales or limestones, forming caps for the injection zones. There are no structural features or faults that would serve as potential vertical conduits, and the overlying Ochoan evaporites form an excellent overall seal for the system. Even if faulting existed, the evaporites (Castile and Salado) would self-seal and prevent vertical migration out of the Delaware Mountain Group.

The geophysical logs were examined for all wells penetrating the Bell Canyon and Cherry Canyon formations within a three-mile radius of the RH AGI wells as well as 3-D seismic data. There are no faults visible within the Delaware Mountain Group in the Red Hills area. Within the seismic area, the units dip gently to the southeast with approximately 200 ft of relief across the area. Heterogeneities within both the Bell Canyon and Cherry Canyon sandstones, such as turbidite and debris flow channels, will exert a significant control over the porosity and permeability within the two units and fluid migration within those sandstones. In addition, these channels are frequently separated by low porosity and permeability siltstones and shales (Figure 3.2-8) as well as being encased by them. Based on regional studies (Giesen and Scholle, 1990 and Figures 3.2-11, 3.2-12), the preferred orientation of the channels, and hence the preferred fluid migration pathways, are roughly from the east to the west.

The porosity was evaluated using geophysical logs from nearby wells penetrating the Cherry Canyon Formation. **Figure 3.3-1** shows the Resistivity (Res) and Thermal Neutron Porosity (TNPH) logs from 5,050 ft to 6,650 ft and includes the injection interval. Five clean sands (>10% porosity and <60 API gamma units) are targets for injection within the Cherry Canyon formation and potentially another 5 sands with >10% porosity and <60 API gamma units were identified. Ten percent was the minimum cut-off considered for adequate porosity for injection. The sand units are separated by lime mudstone and shale beds with lateral continuity. The high porosity sand units exhibit an average porosity of about 18.9%; taken over the average thickness of the clean sand units within $\frac{1}{2}$ mile of the RH AGI #1. There is an average of 177 ft with an irreducible water (S_{wir}) of 0.54 (see Table 1 of the RH AGI #1 permit application). Many of the sands are very porous (average porosity of > 22%) and it is anticipated that for these more porous sands, the S_{wir} may be too high. The effective porosity (Total Porosity – Clay Bound Water) would therefore also be higher. As a result, the estimated porosity ft (PhiH) of approximately 15.4 porosity-ft should be considered to be a minimum. The overlying Bell Canyon Formation has 900 ft of sands and intervening tight limestones, shales, and calcitic siltstones with porosities as low as 4%, but as mentioned above, there are at least 5 zones with a total thickness of approximately 460 ft and containing 18 to 20% porosity. The injection interval is located more than 2,650 ft above the Bone Spring Formation, which is the next production zone in the area.

Figure 3.3-1: Geophysical logs from the Bell Canyon and the Upper Cherry Canyon from the Government L Com #002 well, located 0.38 miles from the RH AGI #1 Well. The blue intervals are Bell Canyon porosity zones, and the yellow intervals are Cherry Canyon porosity zones.

3.4 Formation Fluid Chemistry

A chemical analysis (**Table 3.4-1**) of water from Federal 30 Well No. 2 (API 30-025-29069), approximately 3.9 miles away, indicates that the formation waters are highly saline (180,000 ppm NaCl) and compatible with the injection.

Sp. Gravity	1.125 @ 74°F	Resistivity	0.07 @ 74°F
рН	7	Sulfate	1,240
Iron	Good/Good	Bicarbonate	2,135
Hardness	45,000	Chloride	110,000
Calcium	12,000	NaCl	180,950
Magnesium	3,654	Sod. & Pot.	52,072

 Table 3.4-1:
 Formation fluid analysis for Cherry Canyon Formation from Federal 30 Well No. 2

Table extracted from C-108 Application to Inject by Ray Westall Associated with SWD-1067 – API 30-025-24676. Water analysis for formation water from Federal 30 #2 Well (API 30-025-29069), depth 7,335-7,345 ft, located 3.9 miles from RH AGI #1 well.

3.5 Groundwater Hydrology in the Vicinity of the Red Hills Gas Plant

Based on the New Mexico Water Rights Database from the New Mexico Office of the State Engineer, there are 15 freshwater wells located within a two-mile radius of the RH AGI wells, and only 2 water wells within one mile; the closest water well is located 0.31 miles away and has a total depth of 650 ft (**Figure 3.5-1; Appendix 3**). All water wells within the two-mile radius are shallow, collecting water from about 60 to 650 ft depth, in Alluvium and the Triassic redbeds. The shallow freshwater aquifer is protected by the surface and intermediate casings and cements in the RH AGI wells (**Figures Appendix 1-1 and Appendix 1.2**). While the casings and cements protect shallow freshwater aquifers, they also serve to prevent CO₂ leakage to the surface along the borehole.

Figure 3.5-1: Reported Water Wells within the MMA for the RH AGI Wells.

3.6 Historical Operations

3.6.1 Red Hills Site

On July 20, 2010, Agave Energy Company (Agave) filed an application with NMOCD to inject treated acid gas into an acid gas injection well. Agave built the Red Hills Gas Processing Plant and drilled RH AGI #1 in 2012-13. However, the well was never completed and never put into service because the plant was processing only sweet gas (no H₂S). Lucid purchased the plant from Agave in 2016 and completed the RH AGI #1 well. TND acquired Lucid's Red Hills assets in 2022. **Figure 3.6-1** shows the location of fixed H₂S and lower explosive limit (LEL) detectors in the immediate vicinity of the RH AGI wells. **Figure 3.6-2** shows a process block flow diagram.

Figure 3.6-1: Diagram showing the location of fixed H₂S and lower explosive limit (LEL) detectors in the immediate vicinity of the RH AGI wells.

Figure 3.6-2: Process Block Flow Diagram. RH AGI #2 is temporarily abandoned. M1 – M6: volumetric flow meters; C1 and C2: compressors; ST1 and ST2: sour treaters

3.6.2 Operations within the MMA for the RH AGI Wells

NMOCD records identify a total of 22 oil- and gas-related wells within the MMA for the RH AGI wells (see **Appendix 4**). **Figure 3.6-3** shows the geometry of producing and injection wells within the MMA for the RH AGI wells. **Appendix 4** summarizes the relevant information for those wells. All active production in this area is targeted for the Bone Spring and Wolfcamp zones, at depths of 8,900 to 11,800 ft, the Strawn (11,800 to 12,100 ft) and the Morrow (12,700 to 13,500 ft). All of these productive zones lie at more than 2,000 ft below the RH AGI #1 and AGI #3 injection zone.

Figure 3.6-3: Location of all oil- and gas-related wells within the MMA for the RH AGI wells. Both the surface hole locations (SHL) and bottom hole locations (BHL) are labeled on the figure. For clarity, only the last four digits of the API numbers are used in labeling the wells.

3.7 Description of Injection Process

The Red Hills Gas Plant, including the existing RH AGI #1 well, is in operation and staffed 24-hours-a-day, 7-days-a week. The plant operations include gas compression, treating and processing. The plant gathers and processes produced natural gas from Lea and Eddy Counties in New Mexico. Once gathered at the plant, the produced natural gas is compressed, dehydrated to remove the water content, and processed to remove and recover natural gas liquids. The processed natural gas and recovered natural gas liquids are then sold and shipped to various customers. The inlet gathering lines and pipelines that bring gas into the plant are regulated by U.S. Department of Transportation (DOT), National Association of Corrosion Engineers (NACE) and other applicable standards which require that they be constructed and marked with appropriate warning signs along their respective rights-of-way. TAG from the plant's sweeteners will be routed to a central compressor facility, located west of the well head. Compressed TAG is then routed to the wells via high-pressure rated lines. **Figure 3.7-1** is a schematic of the AGI facilities.

The approximate composition of the TAG stream is: 80% CO₂, 20% H_2S , with Trace Components of $C_1 - C_6$ (methane – hexane) and Nitrogen. The anticipated duration of injection is 30 years.

3.8 Reservoir Characterization Modeling

The modeling and simulation focused on the Bell Canyon and Cherry Canyon formations as the main injection target zone for acid gas storage. The RH AGI #1 well (API 30-025-40448) and the RH AGI #3 well (API 30-025-51970) are the approved injectors for treated acid gas injection by NMOCD and will serve as the injection wells in the model under approved disposal timeframe and maximum allowable injection pressure. RH AGI #1 well is completed in the Cherry Canyon formation between 6,230 feet to 6,583 feet (MD). The RH AGI #3 well will be completed in both the Bell Canyon and Cherry Canyon formations between approximately 5,245 feet to 6,645 feet (MD).

Schlumberger's Petrel[®] (Version 2023.1) software was used to construct the geological models used in this work. Computer Modeling Group (CMG)'s CMG-GEM[®] (Version 2023.10) was used in the reservoir simulations presented in this MRV plan. CMG-WINPROP[®] (Version 2023.10) was used to perform PVT calculation through Equation of States and properties interactions among various compositions to feed the hydrodynamic modeling performed by CMG-GEM[®]. The hydrodynamical model considered aqueous, gaseous, and supercritical phases, and simulates the storage mechanisms including structural trapping, residual gas trapping, and solubility trapping. Injected TAG may exist in the aqueous phase as dissolved state and the gaseous phase as supercritical state. The model was validated through matching the historical injection data of RH AGI #1 well and will be reevaluated periodically as required by the State permitting agency.

The static model is constructed with well tops and licensed 3D seismic data to interpret and delineate the structural surfaces of a layer within the caprock (Lamar Limestone) and its overlaying, underlying formations. The geologic model covers a 3.5-mile by 3.3-mile area. No distinctive geological structures such as faults are identified within the geologic model boundary. The model is gridded with 182 x 167 x 18, totaling 547,092 cells. The average grid dimension of the active injection area is 100 feet square. **Figure 3.8-1** shows the simulation model in 3D view. The porosity and permeability of the model is populated through existing well logs. The range of the porosity is between 0.01 to 0.31. The initial permeability are interpolated between 0.02 to 155 millidarcy (mD), and the vertical permeability anisotropy was 0.1. **(Figure 3.8-2 and Figure 3.8-3)**. These values are validated and calibrated with the historical injection data of RH AGI #1 well since 2018 as shown in **Figures 3.8-4, 3.8-5, and 3.8-6**.

The simulation model is calibrated with the injection history of RH AGI #1 well since 2018. Simulation studies were further performed to estimate the reservoir responses when predicting TAG injection for 30 years through both RH AGI #1 well (2018 – 2048) and RH AGI #3 (2024 - 2054). RH AGI #2 well is temporarily abandoned as of the submission of this document. RH AGI #1 is simulated to inject with the average rate of the last 5 years, 1.2 MMSCF, in the prediction phase. RH AGI #3 is simulated to inject with permitted injection rate, 13 MMSCF, with 1,767 psi maximum surface injection pressure constraint approved by State agency. The simulation terminated at year 2084, 30 years after the termination of all injection activities, to estimate the maximum impacted area during post injection phase.

During the calibration period (2018 – 2023), the historical injection rates were used as the primary injection control, and the maximum bottom hole pressures (BHP) are imposed on wells as the constraint, calculated based on the approved maximum injection pressure. This restriction is also estimated to be less than 90% of the formation fracture pressure calculated at the shallowest perforation depth of each well to ensure safe injection operations. The reservoir properties are tuned to match the historical injection until it was reasonably matched. **Figure 3.8-4** shows that the historical injection rates from the RH AGI #1 well in the Cherry Canyon Formation. **Figure 3.8-5** shows the BHP response of RH AGI #1 during the history matching phase.

During the forecasting period, linear cumulative injection behavior indicates that the Cherry Canyon and Bell Canyon formations received the TAG stream freely. **Figure 3.8-6** shows the cumulative disposed H₂S and CO₂ of each AGI injectors separately in gas mass. The modeling results indicate that the Cherry Canyon and Bell Canyon formations are capable of safely storing and containing the gas volume without violating the permitted rate and

pressure. **Figure 3.8-7** shows the gas saturation represented TAG plume at the end of 30-year forecasting in 3D view. **Figure 3.8-8** shows the extent of the plume migration in a map view at 4 key time steps. It can be observed that the size of the TAG is very limited and mainly stayed within Targa's Red Hills facility at the end of injection. In the year 2084, after 30 years of monitoring, the injected gas remained trapped in the reservoir and there was no significant migration of TAG footprint observed, compared to that at the end of injection.

In summary, after careful reservoir engineering review and numerical simulation study, our analysis shows that the Bell Canyon and Cherry Canyon formations can receive treated acid gas (TAG) at the injection rate and permitted maximum surface injection pressure permitted by New Mexico Oil Conservation Committee. The formation will safely contain the injected TAG volume within the injection and post-injection timeframe. The injection well will allow for the sequestration while preventing associated environmental impacts.

Figure 3.8-1: 3D view of the simulation model of the Red Hills AGI #1 and #3 AGI wells, containing Salado-Castile formation, Lamar limestone, Bell Canyon, and Cherry Canyon formations. Color legends represents the elevation of layers.

Figure 3.8-2: Porosity estimation using available well data for the simulation domain.

Figure 3.8-3: Permeability estimation using available well data for simulation domain.

Figure 3.8-4: shows the historical injection rate and total gas injected from Red Hills AGI #1 well (2018 to 2023)

Figure 3.8-5: shows the historical bottom hole pressure response from Red Hills AGI #1 well (2018 to 2023)

Figure 3.8-6: shows the prediction of cumulative mass of injected CO₂ and H₂S of Red Hills AGI #1 and #3 wells (2018 to 2054).

Figure 3.8-7: shows the free phase TAG (represented by gas saturation) at the end of 30-year post-injection monitoring (2054) in 3D view.

Figure 3.8-8: shows the free phase TAG plume at year 2030, 2035, 2045, 2055 (1-year end of injection) in a map view.

4 Delineation of the Monitoring Areas

In determining the monitoring areas below, the extent of the TAG plume is equal to the superposition of plumes in any layer for any of the model scenarios described in Section 3.8.

4.1 MMA – Maximum Monitoring Area

As defined in Subpart RR, the maximum monitoring area (MMA) is equal to or greater than the area expected to contain the free phase CO_2 plume until the CO_2 plume has stabilized plus an all-around buffer zone of at least one-half mile. **Figures 4.1-1** shows the MMA as defined by the extent of the stabilized TAG plume at year 2059 plus a 1/2-mile buffer.

4.2 AMA – Active Monitoring Area

The Active Monitoring Area (AMA) is shown in **Figure 4.1-1**. The AMA is consistent with the requirements in 40 CFR 98.449 because it is the area projected: (1) to contain the free phase CO_2 plume for the duration of the project (year t, t = 2054), plus an all-around buffer zone of one-half mile. (2) to contain the free phase CO_2 plume for at least 5 years after injection ceases (year t + 5, t + 5 = 2059). Targa intends to define the active monitoring area (AMA) as the same area as the MMA. The purple cross-hatched polygon in **Figure 4.1-1** is the plume extent at the end of injection. The yellow polygon in **Figure 4.1-1** is the stabilized plume extent 5 years after injection ceases. The AMA/MMA shown as the red-filled polygon contains the CO_2 plume during the duration of the project and at the time the plume has stabilized.

Figure 4.1-1: Active monitoring area (AMA) for TND Red Hills AGI #1, #2 (temporarily abandoned) and #3 wells at the end of injection (2054, purple polygon) and 5 years post-monitoring (2059, yellow polygon). Maximum monitoring area (MMA) is shown in red shaded area.

5 Identification and Evaluation of Potential Leakage Pathways to the Surface

Subpart RR at 40 CFR 448(a)(2) requires the identification of potential surface leakage pathways for CO_2 in the MMA and the evaluation of the likelihood, magnitude, and timing of surface leakage of CO_2 through these pathways.

Through the site characterization required by the NMOCD C-108 application process for Class II injection wells, the geologic characterization presented in Section 3, and the reservoir modeling described in Section 3.8, TND has identified and evaluated the potential CO_2 leakage pathways to the surface.

A qualitative evaluation of each of the potential leakage pathways is described in the following paragraphs. Risk estimates were made utilizing the National Risk Assessment Partnership (NRAP) tool, developed by five national laboratories: NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL). The NRAP collaborative research effort leveraged broad technical capabilities across the Department of Energy (DOE) to develop the integrated science base, computational tools, and protocols required to assess and manage environmental risks at geologic carbon storage sites. Utilizing the NRAP tool, TND conducted a risk assessment of CO₂ leakage through various potential pathways including surface equipment, existing and approved wellbores within MMA, faults and fractures, and confining zone formations.

5.1 Potential Leakage from Surface Equipment

Due to the corrosive nature of CO₂ and H₂S, there is a potential for leakage from surface equipment at sour gas facilities. Preventative risk mitigation includes adherence to relevant regulatory requirements and industry standards governing the construction, operation, and maintenance of gas plants. Specifically, NMAC 19.15.26.10 requires injection well operators to operate and maintain "surface facilities in such a manner as will confine the injected fluids to the interval or intervals approved and prevent surface damage or pollution resulting from leaks, breaks or spills."

Operational risk mitigation measures relevant to potential CO₂ emissions from surface equipment include a schedule for regular inspection and maintenance of surface equipment. Additionally, TND implements several methods for detecting gas leaks at the surface. Detection is followed up by immediate response. These methods are described in more detail in sections 6 and 7.

Although mitigative measures are in place to minimize CO_2 emissions from surface equipment, such emissions are possible. Any leaks from surface equipment would result in immediate (timing) emissions of CO_2 to the atmosphere the magnitude of which would depend on the duration of the leak and the operational conditions at the time and location of the leak.

The injection well and the pipeline that carries CO_2 to it are the most likely surface components of the system to allow CO_2 to leak to the surface. The accumulation of wear and tear on the surface components, especially at the flanged connection points, is the most probable source of the leakage. Another possible source of leakage is the release of air through relief valves, which are designed to alleviate pipeline overpressure. Leakage can also occur when the surface components are damaged by an accident or natural disaster, which releases CO_2 . Therefore, TND infers that there is a potential for leakage via this route. Depending on the component's failure mode, the magnitude of the leak can vary greatly. For example, a rapid break or rupture could release thousands of pounds of CO_2 into the atmosphere almost instantly, while a slowly deteriorating seal at a flanged connection could release only a few pounds of CO_2 over several hours or days. Surface component leakage or venting is only a concern during the injection operation phase. Once the injection phase is complete, the surface components will no longer be able to store or transport CO_2 , eliminating any potential risk of leakage.

5.2 Potential Leakage from RH AGI #3 and Approved, Not Yet Drilled Wells

RH AGI #3 very recently began injecting in January 2024. The only wells within the MMA that are approved but not yet drilled are horizontal wells. These wells have a Well Status of "permitted" in Appendix 4. There are no vertical wells within the MMA with a Well Status of "permitted".

5.2.1 RH AGI #3

TND is began drilling the RH AGI #3 well in September 2023 and began injection in January 2024. To minimize the likelihood of leaks from new wells, NMAC 19.15.26.9 regarding the casing and cementing of injection wells requires operators to case injection wells "with safe and adequate casing or tubing so as to prevent leakage and set and cement the casing or tubing to prevent the movement of formation or injected fluid from the injection zone into another injection zone or to the surface around the outside of the casing string." To minimize the magnitude and duration (timing) of CO₂ leakage to the surface, NMAC 19.15.16.12 requires the use of "blowout preventers in areas of high pressure at or above the projected depth of the well." These requirements apply to any other new well drilled within the MMA for this MRV plan.

TND realizes that when they drill the RH AGI #3, they will be drilling into a reservoir in which they have been injecting H_2S and CO_2 for many years. Therefore, for safety purposes, they will be implementing enhanced safety protocols to ensure that no H_2S or CO_2 escapes to the surface during the drilling of RH AGI #3. Enhanced measures include:

- Using managed pressure drilling equipment and techniques thereby minimizing the chance of any gas from entering the wellbore
- Using LCM (loss control material) at a higher-than-normal rate to fill in the pockets of the wellbore thereby minimizing the chance of gas from entering the wellbore while drilling
- Monitoring H₂S at surface at many points to assure operators that we are successfully keeping any possible gas pressures from impacting the drilling operation
- Employing a high level of caution and care while drilling through a known H₂S injection zone, including use of slower drilling processes and more vigilant mud level monitoring in the returns while drilling into the RH AGI #1 injection zone

By drilling through a zone containing pressurized TAG there is a possibility of CO₂ emission to the surface from the pressurized zone. The emission would be nearly immediate. The magnitude of such an emission would be estimated based on field conditions at the time of the detected leak. The safety protocols described above are in place to prevent or minimize the magnitude of such a leak should one occur.

Due to these safeguards and the continuous monitoring of Red Hills well's operating parameters by the distributed control system (DCS), TND considers that while the likelihood of surface emission of CO₂ is possible, the magnitude of such a leak would be minimal as detection of the leak would be nearly instantaneous followed by immediately shutting in the well and remediation.

5.2.2 Horizontal Wells

The table in **Appendix 3** and **Figure 4.1-1** shows a number of horizontal wells in the area, many of which have approved permits to drill but which are not yet drilled. If any of these wells are drilled through the Bell Canyon injection zone for RH AGI #3 and the Cherry Canyon injection zone for RH AGI #1, they will be required to take special precautions to prevent leakage of TAG minimizing the likelihood of CO₂ leakage to the surface. This requirement will be made by NMOCD in regulating applications for permit to drill (APD) and in ensuring that the operator and driller are aware that they are drilling through an H₂S injection zone in order to access their target production formation. NMAC 19.15.11 for Hydrogen Sulfide Gas includes standards for personnel and equipment safety and H₂S detection and monitoring during well drilling, completion, well workovers, and well servicing operations all of which apply for wells drilled through the RH AGI wells TAG plume.

Due to the safeguards described above, the fact there are no proposed wells for which the surface hole location (SHL) lies within the simulated TAG plume and considering the NRAP risk analysis described here in Section 5, TND considers the likelihood of CO₂ emissions to the surface via these horizontal wells to be highly improbable to impossible.

5.3 Potential Leakage from Existing Wells

Existing oil and gas wells within the MMA as delineated in Section 4 are shown in **Figure 3.6-3** and detailed in **Appendix 4**.

TND considered all wells completed and approved within the MMA in the NRAP risk assessment. Some of these wells penetrate the injection and/or confining zones while others do not. Even though the risk of CO₂ leakage through the wells that did not penetrate confining zones is most likely impossible, TND did not omit any potential source of leakage in the NRAP analysis. If leakage through wellbores happens, the worst-case scenario is predicted using the NRAP tool to quantitatively assess the amount of CO₂ leakage through existing and approved wellbores within the MMA. Thirty-nine existing and approved wells inside MMA were addressed in the NRAP analysis. The reservoir properties, well data, formation stratigraphy, and MMA area were incorporated into the NRAP tool to forecast the rate and mass of CO₂ leakage. The worst scenario is that all of the 39 wells were located right at the source of CO_2 – the injection well's location. In this case, the maximum leakage rate of one well is approximately 7e-6 kg/s. This value is the maximum amount of CO_2 leakage, 220 kg/year, and occurs in the second year of injection, then gradually reduces to 180 kg at the end of year 30. Comparing the total amount of CO_2 injected (assuming 5 MMSCFD of supercritical CO_2 injected continuously for 30 years), the leakage mass amounts to 0.0054% of the total CO₂ injected. This leakage can be considered safely negligible. Also, this worst-case scenario, where 39 wells are located right at the injection point, is impossible in reality. Therefore, CO₂ leakage to the surface via this potential leakage pathway can be considered improbable.

5.3.1 Wells Completed in the Bell Canyon and Cherry Canyon Formations

The only wells completed in the Bell Canyon and Cherry Canyon Formations within the MMA are the RH AGI #1 and #3 wells and the 30-025-08371 well which was completed at a depth of 5,425 ft. This well is within the Red Hills facility boundary and is plugged and abandoned (see **Appendix 9** for plugging and abandonment (P&A) record). **Appendix 1** includes schematics of the RH AGI wells construction showing multiple strings of casing all cemented to surface. Injection of TAG occurs through tubing with a permanent production packer set above the injection zone.

Due to the robust construction of the RH AGI wells, the plugging of the well 30-025-08371 above the Bell Canyon, and considering the NRAP analysis described above, TND considers that, while the likelihood of CO₂ emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.3.2 Wells Completed in the Bone Spring / Wolfcamp Zones

Several wells are completed in the Bone Spring and Wolfcamp oil and gas production zones as described in Section 3.6.2. These productive zones lie more than 2,000 ft below the RH AGI wells injection zone minimizing the likelihood of communication between the RH AGI well injection zones and the Bone Spring / Wolfcamp production zones. Construction of these wells includes surface casing set at 1,375 ft and cemented to surface and intermediate casing set at the top of the Bell Canyon at depths of from 5,100 to 5,200 ft and cemented through the Permian Ochoan evaporites, limestone and siltstone (**Figure 3.2-2**) providing zonal isolation preventing TAG injected into the Bell Canyon and Cherry Canyon formations through RH AGI wells from leaking upward along the borehole in the event the TAG plume were to reach these wellbores. **Figure 4.1-1** shows that the modeled TAG plume extent after 30 years of injection and 5

years of post-injection stabilization does not extend to well boreholes completed in the Bone Spring / Wolfcamp production zones thereby indicating that these wells are not likely to be pathways for CO₂ leakage to the surface.

Due to the construction of these wells, the fact that the modeled TAG plume does not reach the SHL of these wells and considering the NRAP analysis described in the introductory paragraph of Section 5, TND considers that, while the likelihood of CO₂ emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.3.3 Wells Completed in the Siluro-Devonian Zone

One well penetrated the Devonian at the boundary of the MMA - EOG Resources, Government Com 001, API # 30-025-25604, TVD = 17,625 ft, 0.87 miles from RH AGI #3. This well was drilled to a total depth of 17,625 ft on March 5, 1978, but plugged back to 14,590 ft, just below the Morrow, in May of 1978. Subsequently, this well was permanently plugged and abandoned on December 30, 2004, and approved by NMOCD on January 4, 2005 (see **Appendix 9** for P&A records). The approved plugging provides zonal isolation for the Bell Canyon and Cherry Canyon injection zones minimizing the likelihood that this well will be a pathway for CO_2 emissions to the surface from either injection zone.

Due to the location of this well at the edge of the MMA and considering the NRAP analysis described in the introductory paragraph of Section 5, TND considers that, while the likelihood of CO_2 emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.3.4 Groundwater Wells

The table in Appendix 3 lists 15 water wells within a 2-mile radius of the RH AGI wells, only 2 of which are within a 1-mile radius of and within the MMA for the RH AGI wells (**Figure 3.5-1**). The deepest ground water well is 650 ft deep The evaporite sequence of the Permian Ochoan Salado and Castile Formations (see Section 3.2.2) provides an excellent seal between these groundwater wells and the Cherry Canyon injection zone of the RH AGI #1 well. Therefore, it is unlikely that these two groundwater wells are a potential pathway of CO₂ leakage to the surface. Nevertheless, the CO₂ surface monitoring and groundwater mediate response thereby minimizing the magnitude of CO₂ leakage volume via this potential pathway.

Due to the shallow depth of the groundwater wells within the MMA relative to the depth of the RH AGI wells and considering the NRAP analysis described in the introductory paragraph in Section 5, TND considers that, while the likelihood of CO_2 emissions to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.4 Potential Leakage through the Confining / Seal System

The site characterization for the injection zone of the RH AGI wells described in Sections 3.2.2 and 3.3 indicates a thick sequence of Permian Ochoan evaporites, limestone, and siltstones (**Figure 3.2-2**) above the Bell Canyon and Cherry Canyon Formations and no evidence of faulting. Therefore, it is unlikely that TAG injected into the Bell Canyon and Cherry Canyon Formations will leak through this confining zone to the surface. Limiting the injection pressure to less than the fracture pressure of the confining zone will minimize the likelihood of CO_2 leakage through this potential pathway to the surface.

Leakage through a confining zone happens at low-permeability shale formations containing natural fractures. The injection zone for the RH AGI #1 and #3 is the Delaware Group Formation (Bell Canyon and Cherry Canyon), which lies under the Castile and Salado formations with less than 0.01 mD permeability acting as the seals. Therefore, TND took leakage through confining zones into consideration in the NRAP risk assessment. The worst-case scenario is defined as leakage through the seal happening right above the

injection wells, where CO_2 saturation is highest. However, this worst-case scenario of leakage only shows that 0.0017% of total CO_2 injection in 30 years was leaked from the injection zone through the seals. As we go further from the source of CO_2 , the likelihood of such an event will diminish proportionally with the distance from the source. Considering that this is the greatest amount of CO_2 leakage in this worst-case scenario, if the event happens, the leak must pass upward through the confining zone, the secondary confining strata that consists of additional low permeability geologic units, and other geologic units, TND concludes that the risk of leakage through this pathway is highly improbable to nearly impossible.

5.5 Potential Leakage due to Lateral Migration

The characterization of the sand layers in the Cherry Canyon Formation described in Section 3.3 states that these sands were deposited by turbidites in channels in submarine fan complexes, each sand is encased in low porosity and permeability fine-grained siliciclastics and mudstones with lateral continuity. Regional consideration of their depositional environment suggests a preferred orientation for fluid and gas flow would be south-to-north along the channel axis. However, locally the high net porosity of the RH AGI #1 and #3 injection zones indicates adequate storage capacity such that the injected TAG will be easily contained close to the injection well, thus minimizing the likelihood of lateral migration of TAG outside the MMA due to a preferred regional depositional orientation.

Lateral migration of the injected TAG was addressed in detail in Section 3.3. Therein it states that the units dip gently to the southeast with approximately 200 ft of relief across the area. Heterogeneities within both the Bell Canyon and Cherry Canyon sandstones, such as turbidite and debris flow channels, will exert a significant control over the porosity and permeability within the two units and fluid migration within those sandstones. In addition, these channels are frequently separated by low porosity and permeability siltstones and shales as well as being encased by them.

Based on the discussion of the channeled sands in the injection zone, TND considers that the likelihood of CO_2 to migrate laterally along the channel axes is possible. However, that the turbidite sands are encased in low porosity and permeability fine-grained siliciclastics and mudstones with lateral continuity and that the injectate is projected to be contained within the injection zone close to the injection wells minimizes the likelihood that CO_2 will migrate to a potential conduit to the surface.

5.6 Potential Leakage through Fractures and Faults

Prior to injection, a thorough geological characterization of the injection zone and surrounding formations was performed (see Section 3) to understand the geology as well as identify and understand the distribution of faults and fractures. **Figure 5.6-1** shows the fault traces in the vicinity of the Red Hill plant. The faults shown on **Figure 5.6-1** are confined to the Paleozoic section below the injection zone for the RH AGI wells. No faults were identified in the confining zone above the Bell Canyon and Cherry Canyon injection zone for the RH AGI wells.

No faults were identified within the MMA which could potentially serve as conduits for surface CO₂ emission. The closest identified fault lies approximately 1.5 miles east of the Red Hills site and has approximately 1,000 ft of down-to-the-west structural relief. Because this fault is confined to the lower Paleozoic unit more than 5,100 feet below the injection zone for the RH AGI wells, there is minimal chance it would be a potential leakage pathway. This inference is supported by the NRAP simulation result. Therefore, TND concludes that the CO₂ leakage rate through this fault is zero and that the risk of leakage through this potential leakage pathway is highly improbable.

Figure 5.6-1: New Mexico Tech Seismological Observatory (NMTSO) seismic network close to the operations, recent seismic events, and fault traces (2022-2023). Note: Fault traces are from Horne et al 2021 for deep seated faults in the lower Paleozoic. The fault traces shown close to the Red Hills facility die out at the base of the Wolfcamp formation at a depth of 12,600 feet, more than 5,100 feet below the bottom of the injection zone at 7,500 feet.

5.7 Potential Leakage due to Natural / Induced Seismicity

The New Mexico Tech Seismological Observatory (NMTSO) monitors seismic activity in the state of New Mexico. A search of the database shows no recent seismic events close to the Red Hills operations. The closest recent, as of 4 September 2023, seismic events are:

- 7.5 miles, 2022-09-03, Magnitude 3
- 8 miles, 2022-09-02, Magnitude 2.23
- 8.6 miles, 2022-10-29, Magnitude 2.1

Figure 5.6-1 shows the seismic stations and recent seismic events in the area around the Red Hills site.

Due to the distance between the Red Hills AGI wells and the recent seismic events, the magnitude of these events, and the fact that TND injects at pressures below fracture opening pressure, TND considers the likelihood of CO₂ emissions to the surface caused by seismicity to be improbable.

Monitoring of seismic events in the vicinity of the Red Hills AGI wells is discussed in Section 6.7.

6 Strategy for Detecting and Quantifying Surface Leakage of CO₂

Subpart RR at 40 CFR 448(a)(3) requires a strategy for detecting and quantifying surface leakage of CO₂. TND will employ the following strategy for detecting, verifying, and quantifying CO₂ leakage to the surface through the potential pathways for CO₂ surface leakage identified in Section 5. TND considers H₂S to be a proxy for CO₂ leakage to the surface and as such will employ and expand upon methodologies detailed in their H₂S Contingency plan to detect, verify, and quantify CO₂ surface leakage. **Table 6-1** summarizes the leakage monitoring of the identified leakage pathways. Monitoring will occur for the duration of injection and the 5-year post-injection period.

Potential Leakage Pathway	Detection Monitoring
Surface Equipment	 Distributed control system (DCS) surveillance of plant operations Visual inspections Inline inspections Fixed in-field gas monitors/CO₂ flux monitoring network Personal and hand-held gas monitors
Existing RH AGI Wells	 DCS surveillance of well operating parameters Visual inspections Mechanical integrity tests (MIT) Fixed in-field gas monitors/CO₂ flux monitoring network Personal and hand-held gas monitors In-well P/T sensors Groundwater monitoring
Fractures and Faults	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring
Confining Zone / Seal	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring
Natural / Induced Seismicity	DCS surveillance of well operating parametersSeismic monitoring
Lateral Migration	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring

Table 6-1: Summary of Leak Detection Monitoring

Additional	•	Groundwater monitoring
Monitoring	•	Soil flux monitoring

6.1 Leakage from Surface Equipment

TND implements several tiers of monitoring for surface leakage including frequent periodic visual inspection of surface equipment, use of fixed in-field and personal H₂S sensors, and continual monitoring of operational parameters.

Leaks from surface equipment are detected by TND field personnel, wearing personal H₂S monitors, following daily and weekly inspection protocols which include reporting and responding to any detected leakage events. TND also maintains in-field gas monitors to detect H₂S and CO₂. The in-field gas monitors are connected to the DCS housed in the onsite control room. If one of the gas detectors sets off an alarm, it would trigger an immediate response to address and characterize the situation.

The following description of the gas detection equipment at the Red Hills Gas Processing Plant was extracted from the H₂S Contingency Plan:

"Fixed Monitors

The Red Hills Plant has numerous ambient hydrogen sulfide detectors placed strategically throughout the Plant to detect possible leaks. Upon detection of hydrogen sulfide at 10 ppm at any detector, visible beacons are activated, and an alarm is sounded. Upon detection of hydrogen sulfide at 90 ppm at any detector, an evacuation alarm is sounded throughout the Plant at which time all personnel will proceed immediately to a designated evacuation area. The Plant utilizes fixed-point monitors to detect the presence of H₂S in ambient air. The sensors are connected to the Control Room alarm panel's Programmable Logic Controllers (PLCs), and then to the Distributed Control System (DCS). The monitors are equipped with amber beacons. The beacon is activated at 10 ppm. The plant and AGI well horns are activated with a continuous warbling alarm at 10 ppm and a siren at 90 ppm. All monitoring equipment is Red Line brand. The Control Panel is a 24 Channel Monitor Box, and the fixed point H₂S Sensor Heads are model number RL-101.

The Plant will be able to monitor concentrations of H_2S via H_2S Analyzers in the following locations:

- Inlet gas of the combined stream from Winkler and Limestone
- Inlet sour liquid downstream of the slug catcher
- Outlet Sweet Gas to Red Hills 1
- Outlet Sweet Liquid to Red Hills Condensate Surge

The AGI system monitors can also be viewed on the PLC displays located at the Plant. These sensors are all shown on the plot plan (see **Figure 3.6-1**). This requires immediate action for any occurrence or malfunction. All H₂S sensors are calibrated monthly.

Personal and Handheld H₂S Monitors

All personnel working at the Plant wear personal H₂S monitors. The personal monitors are set to alarm and vibrate at 10 ppm. Handheld gas detection monitors are available at strategic locations around the Plant so that plant personnel can check specific areas and equipment prior to initiating maintenance or other work. The handheld gas detectors have sensors for oxygen, LEL (explosive hydrocarbon atmospheres), H₂S and carbon dioxide (CO₂)."

6.2 Leakage from Approved Not Yet Drilled Wells

Special precautions will be taken in the drilling of any new wells that will penetrate the injection zones as described in Section 5.2.1 for RH AGI #3 including more frequent monitoring during drilling operations (see **Table 6-1**). This applies to TND and other operators drilling new wells through the RH AGI injection zone within the MMA.

6.3 Leakage from Existing Wells

6.3.1 RH AGI Wells

As part of ongoing operations, TND continuously monitors and collects flow, pressure, temperature, and gas composition data in the data collection system. These data are monitored continuously by qualified technicians who follow response and reporting protocols when the system delivers alerts that data is not within acceptable limits.

To monitor leakage and wellbore integrity, two pressure and temperature gauges as well as Distributed Temperature Sensing (DTS) were deployed in TND's RH AGI #1 well. One gauge is designated to monitor the tubing ID (reservoir) pressure and temperature and the second gauge monitors the annular space between the tubing and the long string casing (**Figure 6.2-1**). A leak is indicated when both gauges start reading the same pressure. DTS is clamped to the tubing, and it monitors the temperature profiles of the annulus from 6,159 ft to surface. DTS can detect variation in the temperature profile events throughout the tubing and or casing. Temperature variation could be an indicator of leaks. Data from temperature and pressure gauges is recorded by an interrogator housed in an onsite control room. DTS (temperature) data is recorded by a separate interrogator that is also housed in the onsite control room. Data from both interrogators are transmitted to a remote location for daily real time or historical analysis.

If operational parameter monitoring and MIT failures indicate a CO_2 leak has occurred, TND will take actions to quantify the leak based on operating conditions at the time of the detection including pressure at the point of emission, flowrate at the point of emission, duration of the emission, and estimation of the size of the emission site.

Н	ALLIBU	RTON			Lucid		
	Installat	lion		Lea	County New Mexico Sales Rep - Lynn Talley (432) 63	orrier 31-4626	
	Installation	lion	Longth	Ito	2/3/21 - 2/28/21 Tool Specialists: Carey Lehmann, Jonathan Pl	nillips, Jose	Vargas
8	Installation	18.50	18.50	Jts.	KB	00	U
目れたの	20	22.90 64.05	4.40 41.15	1	20) Hanger Sub 3 1/2" 9.2# CRA VAMTOP x 7.7# VAM Ace Pin 19) 3 1/2" 7.7# VAM ACE 125K G3 Tubing (Slick Joint)	7.000 3.500	3.000 3.035
2000	■ • 18	103.97	39.92		tan Eignt Subs 6, 6, 6, 6, 4, 4, 2, 2 18) 3 1/2" 7.7# VAM ACE 125K G3 Spaceout Subs	3.500	3.035
6. At	4 −−17	235.95	131.98	3	17) 3 1/2" 7.7# VAM ACE 125K G3 Tubing	3.500	3.035
的形式	16	241.95	6.00		16) 6' x 3 1/2" 7.7# CRA VAM ACE Box x 9.2# VAMTOP Pin	3.540	2.959
のために	15	246.30	4.35		15) 3 1/2" NE HES SSSV Nickel Alloy 925 w/Alloy 825 Control Line 3 1/2" 9.2# VAMTOP Box x Pin	5.300	2.813
	— •——14	252.29	5.99		14) 6' x 3 1/2" 9.2# CRA VAMTOP Box x 7.7# VAM ACE Pin	3.540	2.959
A DA	13 ■ 13 ■ 12	6,140.23	5,887.94	134	13) 3 1/2" 7.7# VAM ACE 125K G3 Tubing 12) 3 1/2" 7.7# VAM ACE Box x 9.2# VAMTOP Pin CRA Crossover	3.500 3.830	3.305 2.959
1.13		0 450 70			11) 2.813" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy 925	4.073	2.813
の目的		6,153.72	13.49 P/T		10) 6' x 3 1/2" 9.2# VAM IOP BOX x Pin Nickel Alloy G3 Sub 13.49' Length Includes Line Items 10, 11 & 12 9) Baker PT Sensor Mandrel 3 1/2" 9 24' VAMTOP Box x Pin	3.540 5.200	2.959
1.44		6,162.6 Annular	P/T	E	6' VAMTOP 9.2# CRA Tubing Sub Above & Below Gauge Mdl	5.200	2.552
12/22/20	8	6,161.23	7.51		8) 4.00" BWS Landed Seal Asmbly 9.2# VAM TOP Nickel Alloy 925 7.51' Length Includes Line Items 8 & 9	4.470	2.959
化计算机的	7	6,164.55	3.32		7) 7" 26-32# x 4.00" BWS Packer Nickel Alloy 925 Casing Collar @ 6,160.6' WL Measurement	5.875	4.000
たいのである	↓ 6	6,172.05	7.5		6) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5.032	4.000
1000	5	6,172.88	0.83		5) 4.00" PBR Adapter x 9.2# VAMTOP BxP Nickel Alloy 925	5.680	2.959
STATE OF	4	6,181.19	8.31		4) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub Nickel Alloy G3	3.540	2.959
10 M C	3	6,182.52	1.33		3) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy 925 #102204262	4.073	2.562
10.10	2	6,184.29	1.77		2) Straight Slot Locator Seal Assembly Above Top Of Packer	4.450	2.880
2000	s 💷 🙀 — 1		6,186.06		1) BWD Permanent Packer. WL Measured Depth Previously 6189'	5.875	4.000
					1a) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5.660	2.965
	1a				1b) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
る田均	1000				1c) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel,	2.920	2.562
S. F. S. S.					1d) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
	4 −−1b				1e) 2.562" RN Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel	3.920	2.321
に言いた	1 c				T) Re-Entry Guide / POP	3.950	3.000
1000	1d						
のための	1e						
12000	 1f						

Figure 6.2-1: Well Schematic for RH AGI #1 showing installation of P/T sensors

	8	6,161.23	7.51	8) 4.00" BWS Landed Seal Asmbly 9.2# VAM TOP Nickel Alloy 925 7.51' Length Includes Line Items 8 & 9	4.470	2.959
	7	6,164.55	3.32	7) 7" 26-32# x 4.00" BWS Packer Nickel Alloy 925 Casing Collar @ 6,160.6' WL Measurement	5.875	4.000
64.002	• 6	6,172.05	7.5	6) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5.032	4.000
	- 5	6,172.88	0.83	5) 4.00" PBR Adapter x 9.2# VAMTOP BxP Nickel Alloy 925	5.680	2.959
P.B.V.	- 4	6,181.19	8.31	4) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub Nickel Alloy G3	3.540	2.959
N. T. P.	3	6,182.52	1.33	3) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy 925 #102204262	4.073	2.562
	2 2	6,184.29	1.77	2) Straight Slot Locator Seal Assembly Above Top Of Packer	4.450	2.880
	1	_	6,186.06	1) BWD Permanent Packer. WL Measured Depth Previously 6189'	5.875	4.000
ĝ.	N.			1a) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5.660	2.965
10126				1b) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
	<∎1a			1c) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel,	2.920	2.562
	1704			1d) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
	a da			1e) 2.562" RN Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel	3.920	2.321
	1b			1f) Re-Entry Guide / POP	3.950	3.000
	↓ 1c					
2000	<1d					
	↓ 1e					
	↓ 1f					

Figure 6.2-2: Well Schematic for RH AGI #3 showing intended installation of P/T sensors

6.3.2 Other Existing Wells within the MMA

The CO₂ monitoring network described in Section 7.3 and well surveillance by other operators of existing wells will provide an indication of CO₂ leakage. Additionally, groundwater and soil CO₂ flux monitoring locations throughout the MMA will also provide an indication of CO₂ leakage to the surface. See Sections 7.7 and 7.8 for details.

6.4 Leakage through the Confining / Seal System

As discussed in Section 5, it is very unlikely that CO_2 leakage to the surface will occur through the confining zone. Continuous operational monitoring of the RH AGI wells, described in Sections 6.3 and 7.5, will provide an indicator if CO_2 leaks out of the injection zone. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO_2 leakage to the surface. See Sections 7.7 and 7.8 for details.

If changes in operating parameters or other monitoring listed in **Table 6-1** indicate leakage of CO_2 through the confining / seal system, TND will take actions to quantify the amount of CO_2 released and take mitigative action to stop it, including shutting in the well(s) (see Section 6.8).

6.5 Leakage due to Lateral Migration

Continuous operational monitoring of the RH AGI wells during and after the period of the injection will provide an indication of the movement of the CO_2 plume migration in the injection zones. The CO_2 monitoring network described in Section 7.3, and routine well surveillance will provide an indicator if CO_2 leaks out of the injection zone. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO_2 leakage to the surface. See Sections 7.7 and 7.8 for details.

If monitoring of operational parameters or other monitoring methods listed in Table 6-1 indicates that the CO₂ plume extends beyond the area modeled in Section 3.8 and presented in Section 4, TND will reassess the plume migration modeling for evidence that the plume may have intersected a pathway for CO₂ release to the surface. As this scenario would be considered a material change per 40CFR98.448(d)(1), TND will submit a revised MRV plan as required by 40CFR98.448(d). See Section 6.8 for additional information on quantification strategies.

6.6 Leakage from Fractures and Faults

As discussed in Section 5, it is very unlikely that CO_2 leakage to the surface will occur through faults. However, if monitoring of operational parameters and the fixed in-field gas monitors indicate possible CO_2 leakage to the surface, TND will identify which of the pathways listed in this section are responsible for the leak, including the possibility of heretofore unidentified faults or fractures within the MMA. TND will take measures to quantify the mass of CO_2 emitted based on the operational conditions that existed at the time of surface emission, including pressure at the point of emission, flowrate at the point of emission, duration of the emission, and estimation of the size of the emission site. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO_2 leakage to the surface. See Sections 7.7 and 7.8 for details. See Section 6.8 for additional information on quantification strategies.

6.7 Leakage due to Natural / Induced Seismicity

In order to monitor the influence of natural and/or induced seismicity, TND will use the established NMTSO seismic network. The network consists of seismic monitoring stations that detect and locate seismic events. Continuous monitoring helps differentiate between natural and induced seismicity. The network surrounding the Red Hills Gas Processing Plant has been mapped on **Figure 5.6-1**. The monitoring network records Helicorder data from UTC (coordinated universal time) all day long. The data are plotted daily at 5pm MST (mountain standard time). These plots can be browsed either by station or by day. The data are streamed continuously to the New Mexico Tech campus and archived at the Incorporated Research Institutions for Seismology Data Management Center (IRIS DMC).

If monitoring of the NMTSO seismic monitoring stations, the operational parameters and the fixed infield gas monitors indicates surface leakage of CO₂ linked to seismic events, TND will assess whether the CO₂ originated from the RH AGI wells and, if so, take measures to quantify the mass of CO₂ emitted to the surface based on operational conditions at the time the leak was detected. See Section 7.6 for details regarding seismic monitoring and analysis. See Section 6.8 for additional information on quantification strategies.

6.8 Strategy for Quantifying CO₂ Leakage and Response

6.8.1 Leakage from Surface Equipment

For normal operations, quantification of emissions of CO₂ from surface equipment will be assessed by employing the methods detailed in Subpart W according to the requirements of 98.444(d) of Subpart RR. Quantification of major leakage events from surface equipment as identified by the detection techniques listed in Table 6-1 will be assessed by employing methods most appropriate for the site of the identified leak. Once a leak has been identified the leakage location will be isolated to prevent additional emissions to

the atmosphere. Quantification will be based on the length of time of the leak and parameters that existed at the time of the leak such as pressure, temperature, composition of the gas stream, and size of the leakage point. TND has standard operating procedures to report and quantify all pipeline leaks in accordance with the NMOCD regulations (New Mexico administrative Code 19.15.28 Natural Gas Gathering Systems). TND will modify this procedure to quantify the mass of carbon dioxide from each leak discovered by TND or third parties. Additionally, TND may employ available leakage models for characterizing and predicting gas leakage from gas pipelines. In addition to the physical conditions listed above, these models are capable of incorporating the thermodynamic parameters relevant to the leak thereby increasing the accuracy of quantification.

6.8.2 Subsurface Leakage

Selection of a quantification strategy for leaks that occur in the subsurface will be based on the leak detection method (Table 6-1) that identifies the leak. Leaks associated with the point sources, such as the injection wells, and identified by failed MITs, variations of operational parameters outside acceptable ranges, and in-well P/T sensors can be addressed immediately after the injection well has been shut in. Quantification of the mass of CO₂ emitted during the leak will depend on characterization of the subsurface leak, operational conditions at the time of the leak, and knowledge of the geology and hydrogeology at the leakage site. Conservative estimates of the mass of CO₂ emitted to the surface will be made assuming that all CO₂ released during the leak will reach the surface. TND may choose to estimate the emissions to the surface more accurately by employing transport, geochemical, or reactive transport model simulations.

Other wells within the MMA will be monitored with the atmospheric and CO_2 flux monitoring network placed strategically in their vicinity.

Nonpoint sources of leaks such as through the confining zone, along faults or fractures, or which may be initiated by seismic events and as may be identified by variations of operational parameters outside acceptable ranges will require further investigation to determine the extent of leakage and may result in cessation of operations.

6.8.3 Surface Leakage

A recent review of risk and uncertainty assessment for geologic carbon storage (Xiao et al., 2024) discussed monitoring for sequestered CO₂ leaking back to the surface emphasizing the importance of monitoring network design in detecting such leaks. Leaks detected by visual inspection, hand-held gas sensors, fixed infield gas sensors, atmospheric, and CO₂ flux monitoring will be assessed to determine if the leaks originate from surface equipment, in which case leaks will be quantified according to the strategies in Section 6.8.1, or from the subsurface. In the latter case, CO₂ flux monitoring methodologies, as described in Section 7.8, will be employed to quantify the surface leaks.

7 Strategy for Establishing Expected Baselines for Monitoring CO₂ Surface Leakage

TND uses the existing automatic distributed control system to continuously monitor operating parameters and to identify any excursions from normal operating conditions that may indicate leakage of CO₂. TND considers H₂S to be a proxy for CO₂ leakage to the surface and as such will employ and expand upon methodologies detailed in their H₂S Contingency plan to establish baselines for monitoring CO₂ surface leakage. The following describes TND's strategy for collecting baseline information.

7.1 Visual Inspection

TND field personnel conduct frequent periodic inspections of all surface equipment providing opportunities to assess baseline concentrations of H_2S , a proxy for CO_2 , at the Red Hills Gas Plant.

7.2 Fixed In-Field, Handheld, and Personal H₂S Monitors

Compositional analysis of TND's gas injectate at the Red Hills Gas Plant indicates an approximate H₂S concentration of 20% thus requiring TND to develop and maintain an H₂S Contingency Plan (Plan) according to the NMOCD Hydrogen Sulfide Gas Regulations, Rule 11 (19.15.11 NMAC). TND considers H₂S to be a proxy for CO₂ leaks at the plant. The Plan contains procedures to provide for an organized response to an unplanned release of H₂S from the plant or the associated RH AGI Wells and documents procedures that would be followed in case of such an event.

7.2.1 Fixed In-Field H₂S Monitors

The Red Hills Gas Plant utilizes numerous fixed-point monitors, strategically located throughout the plant, to detect the presence of H₂S in ambient air. The sensors are connected to the Control Room alarm panel's Programmable Logic Controllers (PLCs), and then to the DCS. Upon detection of H₂S at 10 ppm at any detector, visible amber beacons are activated, and horns are activated with a continuous warbling alarm. Upon detection of hydrogen sulfide at 90 ppm at any monitor, an evacuation alarm is sounded throughout the plant at which time all personnel will proceed immediately to a designated evacuation area.

7.2.2 Handheld and Personal H₂S Monitors

Handheld gas detection monitors are available at strategic locations around the plant so that plant personnel can check specific areas and equipment prior to initiating maintenance or other work. The handheld gas detectors have sensors for oxygen, LEL (explosive hydrocarbon atmospheres), H₂S and CO₂.

All personnel, including contractors who perform operations, maintenance and/or repair work in sour gas areas within the plant must wear personal H₂S monitoring devices to assist them in detecting the presence of unsafe levels of H₂S. Personal monitoring devices will give an audible alarm and vibrate at 10 ppm.

7.3 CO₂ Detection

In addition to the handheld gas detection monitors described above, New Mexico Tech, through a DOE research grant (DE-FE0031837 – Carbon Utilization and Storage Project of the Western USA (CUSP)), will assist TND in setting up a monitoring network for CO_2 leakage detection in the AMA as defined in Section 4.2. The scope of work for the DOE project includes field sampling activities to monitor CO_2/H_2S at the two RH AGI wells. These activities include periodic well (groundwater and gas) and atmospheric sampling from an area of 10 - 15 square miles around the injection wells. Once the network is set up, TND will assume responsibility for monitoring, recording, and reporting data collected from the system for the duration of the project.

7.4 Continuous Parameter Monitoring

The DCS of the plant monitors injection rates, pressures, and composition on a continuous basis. High and low set points are programmed into the DCS, and engineering and operations are alerted if a parameter is outside the allowable window. If a parameter is outside the allowable window, this will trigger further investigation to determine if the issue poses a leak threat. Also, see Section 6.2 for continuous monitoring of P/T in the well.

7.5 Well Surveillance

TND adheres to the requirements of NMOCC Rule 26 governing the construction, operation and closing of an injection well under the Oil and Gas Act. Rule 26 also includes requirements for testing and monitoring of Class II injection wells to ensure they maintain mechanical integrity at all times. Furthermore, NMOCC includes special conditions regarding monitoring, reporting, and testing in the individual permits for each injection well, if they are deemed necessary. TND's Routine Operations and Maintenance Procedures for the RH AGI wells ensure frequent periodic inspection of the wells and opportunities to detect leaks and implement corrective action.

7.6 Seismic (Microseismic) Monitoring Stations

TND has Installed a model TCH120-1 Trillium Compact Horizon Seismometer and a model CTR4-3S Centaur Digital Recorder to monitor for and record data for any seismic event at the Red Hills Gas Plant (see **Figure 7-1**). The seismic station meets the requirements of the NMOCC Order No. R-20916-H to "install, operate, and monitor for the life of the [Class II AGI] permit a seismic monitoring station or stations as directed by the Manager of the New Mexico Tech Seismological Observatory ("state seismologist") at the New Mexico Bureau of Geology and Mineral Resources."

In addition, data that is recorded by the State of New Mexico deployed seismic network within a 10-mile radius of the Red Hills Gas Plant will be analyzed by the New Mexico Bureau of Geology (NMBGMR), see **Figure 5.6-1**, and made publicly available. The NMBGMR seismologist will create a report and map showing the magnitudes of recorded events from seismic activity. The data is being continuously recorded. By examining historical data, a seismic baseline prior to the start of TAG injection can be well established and used to verify anomalous events that occur during current and future injection activities. If necessary, a certain period of time can be extracted from the overall data set to identify anomalous events during that period.

7.7 Groundwater Monitoring

New Mexico Tech, through the same DOE research grant described in Section 7.3 above, will monitor groundwater wells for CO₂ leakage which are located within the AMA as defined in Section 4.2. Water samples will be collected and analyzed on a monthly basis for 12 months to establish baseline data. After establishing the water chemistry baseline, samples will be collected and analyzed bi-monthly for one year and then quarterly. Samples will be collected according to EPA methods for groundwater sampling (U.S. EPA, 2015).

The water analysis includes total dissolved solids (TDS), conductivity, pH, alkalinity, major cations, major anions, oxidation-reduction potentials (ORP), inorganic carbon (IC), and non-purgeable organic carbon (NPOC). Charge balance of ions will be completed as quality control of the collected groundwater samples. See **Table 7.7-1**. Baseline analyses will be compiled and compared with regional historical data to determine patterns of change in groundwater chemistry not related to injection processes at the Red Hills Gas Plant. A report of groundwater chemistry will be developed from this analysis. Any water quality samples not within the expected variation will be further investigated to determine if leakage has occurred from the injection zone.

Parameters
рН
Alkalinity as HCO3- (mg/L)
Chloride (mg/L)
Fluoride (F-) (mg/L)
Bromide (mg/L)
Nitrate (NO3-) (mg/L)
Phosphate (mg/L)
Sulfate (SO42-) (mg/L)
Lithium (Li) (mg/L)
Sodium (Na) (mg/L)
Potassium (K) (mg/L)
Magnesium (Mg) (mg/L)
Calcium (Ca) (mg/L)
TDS Calculation (mg/L)
Total cations (meq/L)
Total anions (meq/L)
Percent difference (%)
ORP (mV)
IC (ppm)
NPOC (ppm)

Table 7.7-1: Groundwater Monitoring Parameters

7.8 Soil CO₂ Flux Monitoring

A vital part of the monitoring program is to identify potential leakage of CO₂ and/or brine from the injection horizon into the overlying formations and to the surface. One method that will be deployed is to gather and analyze soil CO₂ flux data which serves as a means for assessing potential migration of CO₂ through the soil and its escape to the atmosphere. By taking CO₂ soil flux measurements at periodic intervals, TND can continuously characterize the interaction between the subsurface and surface to understand potential leakage pathways. Actionable recommendations can be made based on the collected data.

Soil CO_2 flux will be collected on a monthly basis for 12 months to establish the baseline and understand seasonal and other variation at the Red Hills Gas Plant. After the baseline is established, data will be collected bi-monthly for one year and then quarterly.

Soil CO₂ flux measurements will be taken using a LI-COR LI-8100A flux chamber, or similar instrument, at pre planned locations at the site. PVC soil collars (8cm diameter) will be installed in accordance with the LI-8100A specifications. Measurements will be subsequently made by placing the LI-8100A chamber on the soil collars and using the integrated iOS app to input relevant parameters, initialize measurement, and record the system's flux and coefficient of variation (CV) output. The soil collars will be left in place such that each subsequent measurement campaign will use the same locations and collars during data collection.

Figure 7-1: Red Hills monitoring network of 32 CO₂ flux locations, 2 groundwater wells, and a seismic station developed by New Mexico Tech and Targa Resources to detect leakage during injection.

8 Site Specific Considerations for Determining the Mass of CO₂ Sequestered

Appendix 7 summarizes the twelve Subpart RR equations used to calculate the mass of CO₂ sequestered annually. **Appendix 8** includes the twelve equations from Subpart RR. Not all of these equations apply to TND's current operations at the Red Hills Gas Plant but are included in the event TND's operations change in such a way that their use is required.

Figure 3.6-2 shows the location of all surface equipment and points of venting listed in 40CFR98.232(d) of Subpart W that will be used in the calculations listed below.

8.1 CO₂ Received

Currently, TND receives gas to its Red Hills Gas Plant through six pipelines: Gut Line, Winkler Discharge, Red Hills 24" Inlet Loop, Greyhound Discharge, Limestone Discharge, and the Plantview Loop. The gas is processed as described in Section 3.8 to produce compressed TAG which is then routed to the wellhead and pumped to injection pressure through NACE-rated (National Association of Corrosion Engineers) pipeline suitable for injection. TND will use Equation RR-2 for Pipelines to calculate the mass of CO₂ received through pipelines and measured through volumetric flow meters. The total annual mass of CO₂ received through these pipelines will be calculated using Equation RR-3. Receiving flow meter r in the following equations corresponds to meters M1 and M2 in **Figure 3.6-2**.

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$
(Equation RR-2 for Pipelines)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons).
- $Q_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r in quarter p at standard conditions (standard cubic meters).
- $S_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- *p* = Quarter of the year.
- *r* = Receiving volumetric flow meter.

$$CO_2 = \sum_{r=1}^R CO_{2T,r}$$

(Equation RR-3 for Pipelines)

where:

- CO_2 = Total net annual mass of CO_2 received (metric tons).
- $CO_{2T,r}$ = Net annual mass of CO_2 received (metric tons) as calculated in Equation RR-1 or RR-2 for flow meter r.
- r = Receiving flow meter.

Although TND does not currently receive CO_2 in containers for injection, they wish to include the flexibility in this MRV plan to receive gas from containers. When TND begins to receive CO_2 in containers, TND will use Equations RR-1 and RR-2 for Containers to calculate the mass of CO_2 received in containers. TND will adhere to the requirements in 40CFR98.444(a)(2) for determining the quarterly mass or volume of CO_2 received in containers.

If CO₂ received in containers results in a material change as described in 40CFR98.448(d)(1), TND will submit a revised MRV plan addressing the material change.

8.2 CO₂ Injected

TND injects CO_2 into the existing RH AGI #1. Upon completion, TND will commence injection into RH AGI #3. Equation RR-5 will be used to calculate CO_2 measured through volumetric flow meters before being injected into the wells. Equation RR-6 will be used to calculate the total annual mass of CO_2 injected into both wells. The calculated total annual CO₂ mass injected is the parameter CO₂₁ in Equation RR-12. Volumetric flow meter u in the following equations corresponds to meters M5 and M6 in **Figure 3.6-2**.

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$
 (Equation RR-5)

where:

 $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.

 $Q_{p,u}$ = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter).

D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682.

- $C_{CO2,p,u} = CO_2$ concentration measurement in flow for flow meter u in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- *p* = Quarter of the year.

$$CO_{2I} = \sum_{u=1}^{U} CO_{2,u}$$

(Equation RR-6)

where:

CO ₂₁ = Total annual CO₂ mass injected (metric tons) though all injection wells.

 $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u. *

u = Flow meter.

*Refer to RR-4 or RR-5 for the calculation of CO 2,u

8.3 CO₂ Produced / Recycled

TND does not produce oil or gas or any other liquid at its Red Hills Gas Plant so there is no CO₂ produced or recycled.

8.4 CO₂ Lost through Surface Leakage

Equation RR-10 will be used to calculate the annual mass of CO₂ lost due to surface leakage from the leakage pathways identified and evaluated in Section 5 above. The calculated total annual CO₂ mass emitted by surface leakage is the parameter CO_{2E} in Equation RR-12 addressed in Section 8.6 below. Quantification strategies for leaks from the identified potential leakage pathways is discussed in Section 6.8.

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$

(Equation RR-10)

where:

CO 2E = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year.

 $CO_{2,x}$ = Annual CO_2 mass emitted (metric tons) at leakage pathway x in the reporting year.

x = Leakage pathway.

8.5 CO₂ Emitted from Equipment Leaks and Vented Emissions

As required by 98.444(d) of Subpart RR, TND will assess leakage from the relevant surface equipment listed in Sections 98.233 and 98.234 of Subpart W. According to 98.233(r)(2) of Subpart W, the emissions factor listed in Table W-1A of Subpart W shall be used to estimate all streams of gases. Parameter CO_{2FI} in Equation RR-12 is the total annual CO_2 mass emitted or vented from equipment located between the flow meter for measuring injection quantity and the injection wellhead. A calculation procedure is provided in subpart W.

8.6 CO₂ Sequestered

Since TND does not actively produce oil or natural gas or any other fluid at its Red Hills Gas Plant, Equation RR-12 will be used to calculate the total annual CO₂ mass sequestered in subsurface geologic formations.

$$CO_2 = CO_{2I} - CO_{2E} - CO_{2FI}$$

(Equation RR-12)

- CO 2 = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CO ₂₁ = Total annual CO₂ mass injected (metric tons) in the well or group of wells in the reporting year.
- CO_{2E} = Total annual CO_2 mass emitted (metric tons) by surface leakage in the reporting year.
- CO 2FI = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of the GHGRP.

9 Estimated Schedule for Implementation of MRV Plan

The baseline monitoring and leakage detection and quantification strategies described herein have been established and data collected by TND and its predecessor, Lucid, for several years and continues to the present. TND will begin implementing this revised MRV plan as soon as it is approved by EPA. After RH AGI #3 is drilled, TND will reevaluate the MRV plan and if any modifications are a material change per 40CFR98.448(d)(1), TND will submit a revised MRV plan as required by 40CFR98.448(d).

10 GHG Monitoring and Quality Assurance Program

TND will meet the monitoring and QA/QC requirements of 40CFR98.444 of Subpart RR including those of Subpart W for emissions from surface equipment as required by 40CFR98.444(d).

10.1 GHG Monitoring

As required by 40CFR98.3(g)(5)(i), TND's internal documentation regarding the collection of emissions data includes the following:

- Identification of positions of responsibility (i.e., job titles) for collection of the emissions data
- Explanation of the processes and methods used to collect the necessary data for the GHG calculations
- Description of the procedures and methods that are used for quality assurance, maintenance, and repair of all continuous monitoring systems, flow meters, and other instrumentation used to provide data for the GHGs reported

10.1.1 General

<u>Measurement of CO_2 Concentration</u> – All measurements of CO_2 concentrations of any CO_2 quantity will be conducted according to an appropriate standard method published by a consensus-based standards organization or an industry standard practice such as the Gas Producers Association (GPA) standards. All measurements of CO_2 concentrations of CO_2 received will meet the requirements of 40CFR98.444(a)(3).

<u>Measurement of CO₂ Volume</u> – All measurements of CO₂ volumes will be converted to the following standard industry temperature and pressure conditions for use in Equations RR-2 and RR-5, of Subpart RR of the GHGRP: Standard cubic meters at a temperature of 60 degrees Fahrenheit and at an absolute pressure of 1 atmosphere. TND will adhere to the American Gas Association (AGA) Report #3 – Orifice Metering.

10.1.2 CO₂ received.

Daily CO₂ received is recorded by totalizers on the volumetric flow meters on each of the pipelines listed in Section 8 using accepted flow calculations for CO₂ according to the AGA Report #3.

10.1.3 CO₂ injected.

Daily CO₂ injected is recorded by totalizers on the volumetric flow meters on the pipelines to the RH AGI #1 and #3 wells using accepted flow calculations for CO₂ according to the AGA Report #3.

10.1.4 CO₂ produced.

TND does not produce CO₂ at the Red Hills Gas Plant.

10.1.5 CO₂ emissions from equipment leaks and vented emissions of CO₂.

As required by 98.444(d), TND will follow the monitoring and QA/QC requirements specified in Subpart W of the GHGRP for equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead.

As required by 98.444(d) of Subpart RR, TND will assess leakage from the relevant surface equipment listed in Sections 98.233 and 98.234 of Subpart W. According to 98.233(r)(2) of Subpart W, the emissions factor listed in Table W-1A of Subpart W shall be used.

10.1.6 Measurement devices.

As required by 40CFR98.444(e), TND will ensure that:

- All flow meters are operated continuously except as necessary for maintenance and calibration
- All flow meters used to measure quantities reported are calibrated according to the calibration and accuracy requirements in 40CFR98.3(i) of Subpart A of the GHGRP.
- All measurement devices are operated according to an appropriate standard method published by a consensus-based standards organization or an industry standard practice. Consensus-based standards

organizations include, but are not limited to, the following: ASTM International, the American National Standards Institute (ANSI), the American Gas Association (AGA), the Gas Producers Association (GPA), the American Society of Mechanical Engineers (ASME), the American Petroleum Institute (API), and the North American Energy Standards Board (NAESB).

• All flow meter calibrations performed are National Institute of Standards and Technology (NIST) traceable.

10.2 QA/QC Procedures

TND will adhere to all QA/QC requirements in Subparts A, RR, and W of the GHGRP, as required in the development of this MRV plan under Subpart RR. Any measurement devices used to acquire data will be operated and maintained according to the relevant industry standards.

10.3 Estimating Missing Data

TND will estimate any missing data according to the following procedures in 40CFR98.445 of Subpart RR of the GHGRP, as required.

- A quarterly flow rate of CO₂ received that is missing would be estimated using invoices, purchase statements, or using a representative flow rate value from the nearest previous time period.
- A quarterly CO₂ concentration of a CO₂ stream received that is missing would be estimated using invoices, purchase statements, or using a representative concentration value from the nearest previous time period.
- A quarterly quantity of CO₂ injected that is missing would be estimated using a representative quantity of CO₂ injected from the nearest previous period of time at a similar injection pressure.
- For any values associated with CO₂ emissions from equipment leaks and vented emissions of CO₂ from surface equipment at the facility that are reported in Subpart RR, missing data estimation procedures specified in subpart W of 40 CFR Part 98 would be followed.

10.4 Revisions of the MRV Plan

TND will revise the MRV plan as needed to reflect changes in monitoring instrumentation and quality assurance procedures; or to improve procedures for the maintenance and repair of monitoring systems to reduce the frequency of monitoring equipment downtime; or to address additional requirements as directed by the USEPA or the State of New Mexico. If any operational changes constitute a material change as described in 40CFR98.448(d)(1), TND will submit a revised MRV plan addressing the material change. TND intends to update the MRV plan after RH AGI #3 has been drilled and characterized.

11 Records Retention

TND will meet the recordkeeping requirements of paragraph 40CFR98.3(g) of Subpart A of the GHGRP. As required by 40CFR98.3(g) and 40CFR98.447, TND will retain the following documents:

- (1) A list of all units, operations, processes, and activities for which GHG emissions were calculated.
- (2) The data used to calculate the GHG emissions for each unit, operation, process, and activity. These data include:
 - (i) The GHG emissions calculations and methods used
 - (ii) Analytical results for the development of site-specific emissions factors, if applicable
 - (iii) The results of all required analyses

(iv) Any facility operating data or process information used for the GHG emission calculations

(3) The annual GHG reports.

(4) Missing data computations. For each missing data event, TND will retain a record of the cause of the event and the corrective actions taken to restore malfunctioning monitoring equipment.

(5) A copy of the most recent revision of this MRV Plan.

(6) The results of all required certification and quality assurance tests of continuous monitoring systems, fuel flow meters, and other instrumentation used to provide data for the GHGs reported.

(7) Maintenance records for all continuous monitoring systems, flow meters, and other instrumentation used to provide data for the GHGs reported.

(8) Quarterly records of CO₂ received, including mass flow rate of contents of container (mass or volumetric) at standard conditions and operating conditions, operating temperature and pressure, and concentration of these streams.

(9) Quarterly records of injected CO₂ including mass flow or volumetric flow at standard conditions and operating conditions, operating temperature and pressure, and concentration of these streams.

(10) Annual records of information used to calculate the CO₂ emitted by surface leakage from leakage pathways.

(11) Annual records of information used to calculate the CO_2 emitted from equipment leaks and vented emissions of CO_2 from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead.

(12) Any other records as specified for retention in this EPA-approved MRV plan.

12 Appendices

Appendix 1 TND Wells

Well Name	API #	Location	County	Spud Date	Total Depth	Packer
Red Hills AGI #1	30-025-40448	1,600 ft FSL, 150 ft FEL Sec. 13, T24S, R33E, NMPM	Lea, NM	10/23/2013	6,650 ft	6,170 ft
Red Hill AGI #3	30-025-51970	3,116 ft FNL, 1,159 ft FEL Sec. 13, T24S, R33E, NMPM	Lea, NM	9/13/2023	6,650 ft	5,700 ft

Figure Appendix 1-1: Schematic of TND RH AGI #1 Well

Figure Appendix 1-2: As-built wellbore schematic for the TND RH AGI #3 Well

Appendix 2 Referenced Regulations

U.S. Code > Title 26. INTERNAL REVENUE CODE > Subtitle A. Income Taxes > Chapter 1. NORMAL TAXES AND SURTAXES > Subchapter A. Determination of Tax Liability > Part IV. CREDITS AGAINST TAX > Subpart D. Business Related Credits > Section 45Q - Credit for carbon oxide sequestration

New Mexico Administrative Code (NMAC) > Title 19 – Natural resources > Chapter 15 – Oil and Gas

19.15.1 NMAC	GENERAL PROVISIONS AND DEFINITIONS [REPEALED]
19.15.2 NMAC	GENERAL PROVISIONS FOR OIL AND GAS OPERATIONS
19.15.3 NMAC	RULEMAKING
19.15.4 NMAC	ADJUDICATION
19.15.5 NMAC	ENFORCEMENT AND COMPLIANCE
19.15.6 NMAC	TAX INCENTIVES
19.15.7 NMAC	FORMS AND REPORTS
19.15.8 NMAC	FINANCIAL ASSURANCE
19.15.9 NMAC	WELL OPERATOR PROVISIONS
19.15.10 NMAC	SAFETY
19.15.11 NMAC	HYDROGEN SULFIDE GAS
19.15.12 NMAC	POOLS
19.15.13 NMAC	COMPULSORY POOLING
19.15.14 NMAC	DRILLING PERMITS
19.15.15 NMAC	WELL SPACING AND LOCATION
19.15.16 NMAC	DRILLING AND PRODUCTION
19.15.17 NMAC	PITS, CLOSED-LOOP SYSTEMS, BELOW-GRADE TANKS AND SUMPS
19.15.18 NMAC	PRODUCTION OPERATING PRACTICES
19.15.19 NMAC	NATURAL GAS PRODUCTION OPERATING PRACTICE
19.15.20 NMAC	OIL PRORATION AND ALLOCATION
19.15.21 NMAC	GAS PRORATION AND ALLOCATION
19.15.22 NMAC	HARDSHIP GAS WELLS
19.15.23 NMAC	OFF LEASE TRANSPORT OF CRUDE OIL OR CONTAMINANTS
19.15.24 NMAC	ILLEGAL SALE AND RATABLE TAKE
19.15.25 NMAC	PLUGGING AND ABANDONMENT OF WELLS
19.15.26 NMAC	INJECTION
19.15.27 - 28 NMAC	[RESERVED] PARTS 27 - 28
19 15 29 NMAC	RELEASES

CHAPTER 15 - OIL AND GAS

19.15.30 NMAC	REMEDIATION
19.15.31 - 33 NMAC	[RESERVED] PARTS 31 - 33
19.15.34 NMAC	PRODUCED WATER, DRILLING FLUIDS AND LIQUID OIL FIELD WASTE
19.15.35 NMAC	WASTE DISPOSAL
19.15.36 NMAC	SURFACE WASTE MANAGEMENT FACILITIES
19.15.37 NMAC	REFINING
19.15.38 NMAC	[RESERVED]
19.15.39 NMAC	SPECIAL RULES
19.15.40 NMAC	NEW MEXICO LIQUIFIED PETROLEUM GAS STANDARD
19.15.41 - 102 NMAC	[RESERVED] PARTS 41 - 102
19.15.103 NMAC	SPECIFICATIONS, TOLERANCES, AND OTHER TECHNICAL REQUIREMENTS FOR COMMERCIAL WEIGHING AND MEASURING DEVICES
19.15.104 NMAC	STANDARD SPECIFICATIONS/MODIFICATIONS FOR PETROLEUM PRODUCTS
19.15.105 NMAC	LABELING REQUIREMENTS FOR PETROLEUM PRODUCTS
19.15.106 NMAC	OCTANE POSTING REQUIREMENTS
19.15.107 NMAC	APPLYING ADMINISTRATIVE PENALTIES
19.15.108 NMAC	BONDING AND REGISTRATION OF SERVICE TECHNICIANS AND SERVICE ESTABLISHMENTS FOR COMMERCIAL WEIGHING OR MEASURING DEVICES
19.15.109 NMAC	NOT SEALED NOT LEGAL FOR TRADE
19.15.110 NMAC	BIODIESEL FUEL SPECIFICATION, DISPENSERS, AND DISPENSER LABELING REQUIREMENTS [REPEALED]
19.15.111 NMAC	E85 FUEL SPECIFICATION, DISPENSERS, AND DISPENSER LABELING REQUIREMENTS [REPEALED]
19.15.112 NMAC	RETAIL NATURAL GAS (CNG / LNG) REGULATIONS [REPEALED]

Appendix 3 Water Wells

Water wells identified by the New Mexico State Engineer's files within two miles of the RH AGI wells; water wells within one mile are highlighted in yellow.

POD Number	County	Sec	Tws	Rng	UTME	UTMN	Distance (mi)	Depth Well (ft)	Depth Water (ft)	Water Column (ft)
C 03666 POD1	LE	13	245	33E	639132	3565078	0.31	650	390	260
C 03917 POD1	LE	13	245	33E	638374	3565212	0.79	600	420	180
C 03601 POD1	LE	23	245	33E	638124	3563937	1.17			
C 02309	LE	25	245	33E	639638	3562994	1.29	60	30	30
C 03601 POD3	LE	24	245	33E	638142	3563413	1.38			
C 03932 POD8	LE	7	245	34E	641120	3566769	1.40	72		
C 03601 POD2	LE	23	245	33E	637846	3563588	1.44			
C 03662 POD1	LE	23	245	33E	637342	3564428	1.48	550	110	440
C 03601 POD5	LE	23	245	33E	637988	3563334	1.48			
C 03601 POD6	LE	23	245	33E	637834	3563338	1.55			
C 03601 POD7	LE	23	245	33E	637946	3563170	1.58			
C 03600 POD2	LE	25	245	33E	638824	3562329	1.78			
C 03602 POD2	LE	25	245	33E	638824	3562329	1.78			
C 03600 POD1	LE	26	245	33E	637275	3563023	1.94			
C 03600 POD3	LE	26	245	33E	637784	3562340	2.05			

Appendix 4 Oil and Gas Wells within 2-mile Radius of the RH AGI Well Site

Note – a completion status of "New" indicates that an Application for Permit to Drill has been filed and approved but the well has not yet been completed. Likewise, a spud date of 31-Dec-99 is actually 12-31-9999, a date used by NMOCD databases to indicate work not yet reported.

ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
30-025- 08371	COSSATOT E 002	PRE-ONGARD WELL OPERATOR	OIL	DELAWARE VERTICAL	P & A	VERTICAL	5425	Yes
30-025- 25604	GOVERNMENT L COM 001	EOG RESOURCES	GAS	DELAWARE VERTICAL	P & A	VERTICAL	17625	No
30-025- 26369	GOVERNMENT L COM 002	EOG RESOURCES	GAS	DELAWARE	P & A	VERTICAL	14698	Yes
30-025- 26958	SIMS 001	BOPCO, L.P.	GAS	DELAWARE VERTICAL	P & A	VERTICAL	15007	Yes
30-025- 27491	SMITH FEDERAL 001	PRE-ONGARD WELL OPERATOR	OIL	DELAWARE VERTICAL	P & A	VERTICAL	15120	No
30-025- 29008	MADERA RIDGE 24 001	EOG RESOURCES INC	GAS	DELAWARE VERTICAL	ТА	VERTICAL	15600	No
30-025- 29008	MADERA RIDGE 24 001	EOG RESOURCES INC	GAS	DELAWARE VERTICAL	TA	VERTICAL	15600	No
30-025- 40448	RED HILLS AGI 001	TARGA NORTHERN DELAWARE, LLC.	INJECTOR	DELAWARE VERTICAL	INJECTING	VERTICAL	6650	Yes
30-025- 40914	DECKARD FEE 001H	COG OPERATING LLC	OIL		PRODUCING	VERTICAL	10997	No
30-025- 40914	DECKARD FEE 001H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11034	No
30-025- 41382	DECKARD FEDERAL COM 002H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11067	Yes
30-025- 41383	DECKARD FEDERAL COM 003H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11162	Yes
30-025- 41384	DECKARD FEDERAL COM 004H	COG OPERATING LLC	OIL	3RD BONE SPRING	PRODUCING	HORIZONTAL	11103	Yes
30-025- 41666	SEBASTIAN FEDERAL COM 002H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10927	Yes
30-025- 41687	SEBASTIAN FEDERAL COM 001H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10944	Yes
30-025- 41688	SEBASTIAN FEDERAL COM 003H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11055	No
30-025- 43532	LEO THORSNESS 13 24 33 211H	MATADOR PRODUCTION COMPANY	GAS	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12371	No
30-025- 44442	STRONG 14 24 33 AR 214H	MATADOR PRODUCTION COMPANY	GAS	WOLFCAMP A LOWER	PRODUCING	HORIZONTAL	12500	No
30-025- 46154	LEO THORSNESS 13 24 33 221H	MATADOR PRODUCTION COMPANY	OIL	WOLFCAMP B UPPER	PRODUCING	HORIZONTAL	12868	No
30-025- 46282	LEO THORSNESS 13 24 33 AR 135H	MATADOR PRODUCTION COMPANY	OIL	3RD BONE SPRING SAND	PRODUCING	HORIZONTAL	12103	No

ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
30-025- 46517	BROADSIDE 13 W FEDERAL COM 001H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12213	No
30-025- 46518	BROADSIDE 13 24 FEDERAL COM 002H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 46519	BROADSIDE 13 24 FEDERAL COM 003H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP A LOWER	PRODUCING	HORIZONTAL	12320	Yes
30-025- 46985	SEBASTIAN FEDERAL COM 703H	COG OPERATING LLC	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12123	No
30-025- 46988	SEBASTIAN FEDERAL COM 704H	COG OPERATING LLC	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12142	No
30-025- 47869	JUPITER 19 FEDERAL COM 501H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11175	Yes
30-025- 47870	JUPITER 19 FEDERAL COM 502H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11141	Yes
30-025- 47870	JUPITER 19 FEDERAL COM 502H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11141	Yes
30-025- 47872	JUPITER 19 FEDERAL COM 403H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PRODUCING	HORIZONTAL	10584	No
30-025- 47872	JUPITER 19 FEDERAL COM 403H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PRODUCING	HORIZONTAL	10584	No
30-025- 47873	JUPITER 19 FEDERAL COM 309H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10250	No
30-025- 47873	JUPITER 19 FEDERAL COM 309H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10250	No
30-025- 47874	JUPITER 19 FEDERAL COM 506H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10950	No
30-025- 47875	JUPITER 19 FEDERAL COM 507H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11150	No
30-025- 47875	JUPITER 19 FEDERAL COM 507H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11150	No
30-025- 47876	JUPITER 19 FEDERAL COM 508H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11143	No
30-025- 47876	JUPITER 19 FEDERAL COM 508H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11143	No
30-025- 47877	JUPITER 19 FEDERAL COM 509H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11156	No
30-025- 47878	JUPITER 19 FEDERAL COM 510H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11102	No
30-025- 47908	JUPITER 19 FEDERAL COM 601H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
------------------	--	---	-----------	-------------------------	--------------------------	------------	-------------	---------------
30-025-	JUPITER 19	EOG RESOURCES	OIL	2ND BONE	DUC	HORIZONTAL	0	Yes
47910	FEDERAL COM 702H	INC		SPRING SAND				
30-025- 47911	JUPITER 19 FEDERAL COM 705H	EOG RESOURCES INC	OIL	WOLFCAMP A LOWER	PERMITTED	HORIZONTAL	12290	No
30-025- 47912	JUPITER 19 FEDERAL COM 707H	EOG RESOURCES INC	OIL	WOLFCAMP B UPPER	PERMITTED	HORIZONTAL	12515	No
30-025- 47913	JUPITER 19 FEDERAL COM 708H	EOG RESOURCES INC	OIL	WOLFCAMP A LOWER	PERMITTED	HORIZONTAL	12477	No
30-025- 48239	JUPITER 19 FEDERAL COM 306H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10270	No
30-025- 48889	JUPITER 19 FEDERAL COM 701H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 48890	JUPITER 19 FEDERAL COM 703H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 49262	BROADSIDE 13 24 FEDERAL COM 004H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP B UPPER	PRODUCING	HORIZONTAL	12531	Yes
30-025- 49263	BROADSIDE 13 24 FEDERAL COM 015H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP B LOWER	PRODUCING	HORIZONTAL	12746	Yes
30-025- 49264	BROADSIDE 13 24 FEDERAL COM 025H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	3RD BONE SPRING	PRODUCING	HORIZONTAL	11210	Yes
30-025- 49474	RED HILLS AGI 002	TARGA NORTHERN DELAWARE, LLC.	INJECTOR	DELAWARE VERTICAL	Temporarily Abandoned	VERTICAL	17600	Yes

Appendix 5 References

Application for Authorization to Inject via Proposed Red Hills AGI #1 Well, Agave Energy Red Hills Gas Plant, Lea County, New Mexico; July 20, 2011; prepared by Geolex, Inc. for Agave Energy Company

Application for a Redundant Class II AGI Well, Lucid Energy Delaware, LLC; Red Hills AGI #2; August 8, 2019, prepared by Geolex, Inc. for Lucid Energy Delaware, LLC

Boyle, T.B., Carroll, J.J., 2002. Study determines best methods for calculating acid-gas density. *Oil and Gas Journal* 100 (2): 45-53.

Broadhead, R.F., 2017. Energy and Mineral Resources of New Mexico: Petroleum Geology; Socorro, New Mexico Bureau of Geology and Mineral Resources: 104 p.

Case No. 20779, Notice Regarding Hearing Exhibits, Application of Lucid Energy Delaware, LLC for Authorization to Inject, Lea County, New Mexico

Giesen, J.H. and Scholle, P.A., 1990. Regional basinal sandstone depositional patterns during the Guadalupian (Late Permian), Delaware basin, west Texas-New Mexico [abs.]: The American Association of Petroleum Geologists Bulletin 74: 660-661.

Ewing, E., 2019. Tectonics of the West Texas (Permian) Basin—Origins, structural geology, subsidence, and later modification: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 63-96.

Ge, J., Nicot, J.P., Hennings, P.H., Smye, K.M., Hosseini, S.A., Gao, R.S., and Breton, C.L., 2022. Recent water disposal and pore pressure evolution in the Delaware Mountain Group, Delaware Basin, Southeast New Mexico and West Texas, USA: Journal of Hydrology: Regional Studies 40: 101041.

Fu, Q., Baumgardner, R.W., Jr., and Hamlin, H.S., 2020. Early Permian (Wolfcampian) succession in the Permian Basin: icehouse platform, slope carbonates, and basinal mudrocks: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 185-225.

H₂S Contingency Plan, Targa Northern Delaware, August 2023, Red Hills Gas Processing Plant, Lea County, NM

Harms, J.C., 1974. Brushy Canyon Formation, Texas: A deepwater density current deposit: Geological Society of America Bulletin 85: 1763-1784.

Harrington, R., 2019. The Middle–Upper Ordovician Simpson Group of the Permian Basin: stratigraphy, lithofacies, and reservoir development: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 331-352.

Harrington, R. and Ruppel, S., 2019. Patterns of Montoya Group (Middle Ordovician) deposition, diagenesis, and reservoir development in the Permian Basin: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 353-378.

Hills, J.M., 1984. Sedimentation, tectonism, and hydrocarbon generation in Delaware Basin, west Texas and southeastern New Mexico: The American Association of Petroleum Geologists Bulletin 68: 250-267.

Horne, E., Hennings, P., Zahm, C., 2021. Basement-rooted faults of the Delaware Basin and Central Basin Platform, Permian Basin, West Texas and southeastern New Mexico: O.A. Callahan, P. Eichhubl (eds.), The Geologic Basement of Texas: A Volume in Honor of Peter T. Flawn, Austin, The University of Texas, Bureau of Economic Geology: 1-37. Horne, E.A., Hennings, P.H., Smye, K.M., Staniewicz, S., Chen, J., Savvaidis, A., 2022. Structural characteristics of shallow faults in the Delaware Basin: Interpretation 10: T807-T835.

King, P.B., 1948. Geology of the southern Guadalupe Mountains, Texas: United States Geological Survey Professional Paper 215: 183 p.

Lambert, S.J., 1992. Geochemistry of the Waste Isolation Pilot Plant (WIPP) site, southeastern New Mexico, U.S.A. *Applied Geochemistry* 7: 513-531.

Loucks, R. and Kerans, C., 2019. A Geologic review of the Lower Ordovician Ellenburger Group of the Permian Basin, West Texas and southeast New Mexico: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 295-330.

Luo, Ming; Baker, Mark R.; and LeMone, David V.; 1994, *Distribution and Generation of the Overpressure System, Eastern Delaware Basin, Western Texas and Southern New Mexico*, AAPG Bulletin, V.78, No. 9 (September 1994) p. 1386-1405.

Madalyn S. Blondes, Kathleen D. Gans, James J. Thordsen, Mark E. Reidy, Burt Thomas, Mark A. Engle, Yousif K. Kharaka, and Elizabeth L. Rowan, 2014. U.S. Geological Survey National Produced Waters Geochemical Database v2.1,

http://energy.usgs.gov/EnvironmentalAspects/EnvironmentalAspectsofEnergyProductionandUse/ProducedWaters. aspx

Nance, H.S., 2020. Upper Permian Delaware Mountain Group: Record of highstand/lowstand platform: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 399-436.

Nance, H.S., Hamlin, H.S., 2020. The Bone Spring Formation (Leonardian) of the Delaware Basin: deepwater lithofacies and stratigraphy: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 321-348.

Nicholson, A., Jr., Clebsch, A., Jr., 1961. *Geology and ground-water conditions in southern Lea County, New Mexico*. New Mexico Bureau of Mines and Mineral Resources, Ground-Water Report 6, 123 pp., 2 Plates.

Powers, D.W., Lambert, S. J., Shafer, S., Hill, L. R. and Weart, W. D., 1978., *Geological Characteristic Report, Waste Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico (SAND78-1596)*, Department 4510, Waste Management Technology, Sandia Laboratories, Albuquerque, New Mexico

Ruppel, S., 2019a. Anatomy of a Paleozoic basin: the Permian Basin, USA: Introduction, overview, and evolution: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 1-27.

Ruppel, S., 2019b. The Fusselman of the Permian Basin: patterns in depositional and diagenetic facies development on a stable platform during the Late Ordovician–Early Silurian icehouse: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 1), Austin, The University of Texas at Austin, Bureau of Economic Geology: 379-399.

Ruppel, S., 2020. The Middle Silurian–Lower Devonian Wristen Group, Permian Basin: impact of tectonic subsidence on patterns of deposition, diagenesis, and reservoir development: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 1-36.

Ruppel, S., Hovorka, S., Barnaby, R., 2020a. Proximal shallow-water carbonates and distal biosiliceous cherts of the Lower Devonian Thirtyone Formation, Permian Basin: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 37-74.

Ruppel, S.C., Rowe, H., Reed, R., Barrick, J.E., James, E.W., Loucks, R.G., 2020b. The Woodford Formation of the Permian Basin: regional, Middle to Late Devonian transgression of the southern Midcontinent and accompanying global anoxia: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 75-124.

Scholle, P.A., Goldstein, R.H., Ulmer-Scholle, D.S., 2007. Classic Upper Paleozoic reefs and bioherms of West Texas and New Mexico: Field guide to the Guadalupe and Sacramento Mountains of West Texas and New Mexico. Socorro, New Mexico Bureau of Geology and Mineral Resources, Open-File Report 504: 178 p.

Scholle, P., Broadhead, R.F., McLemore, V., 2020. The Permian Basin: Scholle, P., Ulmer-Scholle, D., Cather, and S., Kelley, S. (eds.), The Geology of Southern New Mexico Parks, Monuments, and Public Lands: Socorro, New Mexico Bureau of Geology and Mineral Resources: 285-295.

Silver, B.A., Todd, R.G., 1969. Permian cyclic strata, northern Midland and Delaware Basins, west Texas and southeastern New Mexico, *The American Association of Petroleum Geologists Bulletin* 53: 2223- 2251.

Smye, K.D., Banerji, A., Eastwood, R., McDaid, G., and Hennings, P., 2021. Lithology and reservoir properties of the Delaware Mountain Group of the Delaware Basin and implications for saltwater disposal and induced seismicity: Journal of Sedimentary Research 91 (11): 1113–1132.

US EPA, O., 2015, *Procedures for Groundwater Sampling in the Laboratory Services and Applied Science Division*: https://www.epa.gov/quality/procedures-groundwater-sampling-laboratory-services-and-applied-science-division (accessed September 2023).

Walsh, R., Zoback, M.D., Pasi, D., Weingarten, M. and Tyrrell, T., 2017, FSP 1.0: A Program for Probabilistic Estimation of Fault Slip Potential Resulting from Fluid Injection, User Guide from the Stanford Center for Induced and Triggered Seismicity, available from SCITS.Stanford.edu/software

Ward, R.F., Kendall, C.G.St.C., Harris, P.M., 1986. Upper Permian (Guadalupian) facies and their association with hydrocarbons – Permian Basin, west Texas and New Mexico. *The American Association of Petroleum Geologists Bulletin* 70: 239-262.

Wilson, J.L., 1972. Cyclic and reciprocal sedimentation in Virgilian strata of southern New Mexico: J.G. Elam, S. Chuber (eds.), Cyclic Sedimentation in the Permian Basin (2nd edition), Midland, West Texas Geological Society: 82-99.

Wright, W., 2020. Pennsylvanian (upper Carboniferous) paleodepositional evolution of the greater Permian Basin, Texas and New Mexico: depositional systems and hydrocarbon reservoir: S. Ruppel (ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (v. 2), Austin, The University of Texas at Austin, Bureau of Economic Geology: 159-183.

Xiao, Ting et al. (2024). A review of risk and uncertainty assessment for geologic carbon storage. Renewable and Sustainable Energy Reviews 189 (2024) 113945

Appendix 6 Abbreviations and Acronyms

3D - 3 dimensional AGA – American Gas Association AMA – Active Monitoring Area AoR – Area of Review **API – American Petroleum Institute** CFR - Code of Federal Regulations C1 – methane C6 – hexane C7 - heptane CO₂ – carbon dioxide DCS - distributed control system EPA – US Environmental Protection Agency, also USEPA ft - foot (feet) GHGRP – Greenhouse Gas Reporting Program **GPA** – Gas Producers Association m - meter(s)md – millidarcy(ies) mg/I – milligrams per liter MIT - mechanical integrity test MMA – maximum monitoring area MSCFD- thousand standard cubic feet per day MMSCFD - million standard cubic feet per day MMstb - million stock tank barrels MRRW B – Morrow B MRV – Monitoring, Reporting, and Verification MT -- Metric tonne NIST - National Institute of Standards and Technology NMOCC - New Mexico Oil Conservation Commission NMOCD - New Mexico Oil Conservation Division PPM – Parts Per Million psia – pounds per square inch absolute QA/QC – quality assurance/quality control SCITS - Stanford Center for Induced and Triggered Seismicity Stb/d – stock tank barrel per day TAG – Treated Acid Gas TDS – Total Dissolved Solids TVD – True Vertical Depth **TVDSS** – True Vertical Depth Subsea UIC – Underground Injection Control USDW - Underground Source of Drinking Water

	Subpart RR Equation	Description of Calculations and Measurements [*]	Pipeline	Containers	Comments		
	RR-1	calculation of CO ₂ received and measurement of CO ₂ mass	through mass flow meter.	in containers. **			
CO ₂ Received	RR-2	calculation of CO_2 received and measurement of CO_2 volume	through volumetric flow meter.	in containers. ***			
	RR-3	summation of CO ₂ mass received	through multiple meters.				
	RR-4	calculation of CO ₂ mass injected, mea	asured through mass flow me	eters.			
CO ₂ Injected	RR-5	calculation of CO ₂ mass injected, mea	asured through volumetric flo	ow meters.			
	RR-6	summation of CO ₂ mass injected, as					
	RR-7	calculation of CO ₂ mass produced / r mass flow meters.					
CO₂ Produced / Recycled	RR-8	calculation of CO ₂ mass produced / revolumetric flow meters.					
	RR-9	summation of CO₂ mass produced / r in Equations RR-7 and/or RR8.					
CO ₂ Lost to Leakage to the Surface	RR-10	calculation of annual CO ₂ mass emitt	calculation of annual CO ₂ mass emitted by surface leakage				
CO₂ Sequestered	RR-11	calculation of annual CO ₂ mass sequestered for operators ACTIVELY producing oil or gas or any other fluid; includes terms for CO ₂ mass injected, produced, emitted by surface leakage, emitted from surface equipment between injection flow meter and injection well head, and emitted from surface equipment between production well head and production flow meter.			Calculation procedures are provided in Subpart W of GHGRP for CO _{2FI} .		
	RR-12	calculation of annual CO_2 mass sequestered for operators NOT ACTIVELY producing oil or gas or any other fluid; includes terms for CO_2 mass injected, emitted by surface leakage, emitted from surface equipment between injection flow meter and injection well head.			Calculation procedures are provided in Subpart W of GHGRP for CO_{2FI} .		

Appendix 7 TND Red Hills AGI Wells - Subpart RR Equations for Calculating CO₂ Geologic Sequestration

* All measurements must be made in accordance with 40 CFR 98.444 – Monitoring and QA/QC Requirements.

** If you measure the mass of contents of containers summed quarterly using weigh bill, scales, or load cells (40 CFR 98.444(a)(2)(i)), use RR-1 for Containers to calculate CO₂ received in containers for injection.

*** If you determine the volume of contents of containers summed quarterly (40 CFR 98.444(a)(2)(ii)), use RR-2 for Containers to calculate CO₂ received in containers for injection.

Appendix 8 Subpart RR Equations for Calculating Annual Mass of CO₂ Sequestered RR-1 for Calculating Mass of CO₂ Received through Pipeline Mass Flow Meters

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * C_{CO_{2,p,r}}$$

(Equation RR-1 for Pipelines)

(Equation RR-1 for Containers)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons).
- $Q_{r,p}$ = Quarterly mass flow through a receiving flow meter r in quarter p (metric tons).
- S_{r,p} = Quarterly mass flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (metric tons).
- $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (wt. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- r = Receiving mass flow meter.

RR-1 for Calculating Mass of CO₂ Received in Containers by Measuring Mass in Container

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * C_{CO_{2,p,r}}$$

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received in containers r (metric tons).
- $Q_{r,p}$ = Quarterly mass of contents in containers r in quarter p (metric tons).
- S r,p = Quarterly mass of contents in containers r redelivered to another facility without being injected into your well in quarter p (metric tons).
- $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement of contents in containers r in quarter p (wt. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- r = Containers.

RR-2 for Calculating Mass of CO₂ Received through Pipeline Volumetric Flow Meters

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$
(Equation RR-2 for Pipelines)

where:

 $CO_{2T,r}$ = Net annual mass of CO_2 received through flow meter r (metric tons).

- Q r,p = Quarterly volumetric flow through a receiving flow meter r in quarter p at standard conditions (standard cubic meters).
- S r,p = Quarterly volumetric flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (vol. percent CO₂, expressed as a decimal fraction).

p = Quarter of the year.

r = Receiving volumetric flow meter.

RR-2 for Calculating Mass of CO₂ Received in Containers by Measuring Volume in Container

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$
(Equation RR-2 for Containers)

where:

- $CO_{2T,r}$ = Net annual mass of CO_2 received in containers r (metric tons).
- Q r,p = Quarterly volume of contents in containers r in quarter p at standard conditions (standard cubic meters).
- S r,p = Quarterly volume of contents in containers r redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO₂ received in containers at standard conditions (metric tons per standard cubic meter): 0.0018682.

 $C_{CO2,p,r}$ = Quarterly CO₂ concentration measurement of contents in containers r in quarter p (vol. percent CO₂, expressed as a decimal fraction).

p = Quarter of the year.

RR-3 for Summation of Mass of CO₂ Received through Multiple Flow Meters for Pipelines

$$CO_2 = \sum_{r=1}^R CO_{2T,r}$$

(Equation RR-3 for Pipelines)

where:

- CO_2 = Total net annual mass of CO_2 received (metric tons).
- $CO_{2T,r}$ = Net annual mass of CO_2 received (metric tons) as calculated in Equation RR-1 or RR-2 for flow meter r.
- r = Receiving flow meter.

RR-4 for Calculating Mass of CO₂ Injected through Mass Flow Meters into Injection Well

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * C_{CO_{2,p,u}}$$

(Equation RR-4)

where:

 $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.

 $Q_{p,u}$ = Quarterly mass flow rate measurement for flow meter u in quarter p (metric tons per quarter).

 $C_{CO2,p,u}$ = Quarterly CO₂ concentration measurement in flow for flow meter u in quarter p (wt. percent CO₂, expressed as a decimal fraction).

RR-5 for Calculating Mass of CO₂ Injected through Volumetric Flow Meters into Injection Well

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$
 (Equation RR-5)

where:

- $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u.
- Q p,u = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter).
- D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,u} = CO_2$ concentration measurement in flow for flow meter u in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- u = Volumetric flow meter.

RR-6 for Summation of Mass of CO₂ Injected into Multiple Wells

$$CO_{2I} = \sum_{u=1}^{U} CO_{2,u}$$

(Equation RR-6)

where:

CO ₂₁ = Total annual CO₂ mass injected (metric tons) though all injection wells.

 $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u. *

u = Flow meter.

*Refer to RR-4 or RR-5 for the calculation of CO 2,u

RR-7 for Calculating Mass of CO₂ Produced / Recycled from a Gas-Liquid Separator through Mass Flow Meters

$$CO_{2,w} = \sum_{p=1}^{4} Q_{p,w} * C_{CO_{2,p,w}}$$

(Equation RR-7)

where:

 $CO_{2,w}$ = Annual CO_2 mass produced (metric tons) through separator w.

- Q _{p,w} = Quarterly gas mass flow rate measurement for separator w in quarter p (metric tons).
- $C_{CO2,p,w}$ = Quarterly CO₂ concentration measurement in flow for separator w in quarter p (wt. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- w = Gas / Liquid Separator.

RR-8 for Calculating Mass of CO₂ Produced / Recycled from a Gas-Liquid Separator through Volumetric Flow Meters

$$CO_{2,w} = \sum_{p=1}^{4} Q_{p,w} * D * C_{CO_{2,p,w}}$$

(Equation RR-8)

where:

- $CO_{2,w}$ = Annual CO_2 mass produced (metric tons) through separator w.
- Q p,w = Quarterly gas volumetric flow rate measurement for separator w in quarter p (standard cubic meters).
- D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO2,p,w}$ = Quarterly CO₂ concentration measurement in flow for separator w in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- w = Gas / Liquid Separator.

RR-9 for Summation of Mass of CO₂ Produced / Recycled through Multiple Gas Liquid Separators

$$CO_{2P} = (1+X) \star \sum_{w=1}^{W} CO_{2,w}$$
 (Equation RR-9)

where:

- CO_{2P} = Total annual CO_2 mass produced (metric tons) though all separators in the reporting year.
- X = Entrained CO₂ in produced oil or other liquid divided by the CO₂ separated through all separators in the reporting year (wt. percent CO₂ expressed as a decimal fraction).
- CO _{2,w} = Annual CO₂ mass produced (metric tons) through separator w in the reporting year as calculated in Equation RR-7 or RR-8.

w = Flow meter.

RR-10 for Calculating Annual Mass of CO₂ Emitted by Surface Leakage

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$

(Equation RR-10)

where:

CO _{2E} = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year.

 $CO_{2,x}$ = Annual CO_2 mass emitted (metric tons) at leakage pathway x in the reporting year.

x = Leakage pathway.

RR-11 for Calculating Annual Mass of CO₂ Sequestered for Operators Actively Producing Oil or Natural Gas or Any Other Fluid

$$CO_2 = CO_{2I} - CO_{2P} - CO_{2E} - CO_{2FI} - CO_{2FP}$$

(Equation RR-11)

Where:

- CO 2 = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CO 21 = Total annual CO₂ mass injected (metric tons) in the well or group of wells in the reporting year.
- CO_{2P} = Total annual CO_2 mass produced (metric tons) in the reporting year.
- CO_{2E} = Total annual CO_2 mass emitted (metric tons) by surface leakage in the reporting year.
- CO _{2FI} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of the GHGRP.
- CO _{2FP} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the production wellhead and the flow meter used to measure production quantity, for which a calculation procedure is provided in subpart W of the GHGRP.

RR-12 for Calculating Annual Mass of CO₂ Sequestered for Operators NOT Actively Producing Oil or Natural Gas or Any Other Fluid

$$CO_2 = CO_{2I} - CO_{2E} - CO_{2FI}$$
 (Equation RR-12)

- CO 2 = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CO_{21} = Total annual CO_2 mass injected (metric tons) in the well or group of wells in the reporting year.
- CO_{2E} = Total annual CO_2 mass emitted (metric tons) by surface leakage in the reporting year.
- CO 2FI = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of the GHGRP.

Appendix 9 P&A Records

1 3 644 4	UNITED STATE	s Ha	the NIA DAG	7 4	FORM APPROVED
April 2004)	DEPARTMENT OF THE	INTERIOR	555, INIM 88246	•	OM B No. 1004-0137 Expires: March 31, 2007
CLINIDDA	BUREAU OF LAND MAN	AGEMENT	WELLO	5. Lease Ser	al No.
Do not use t abandoned w	his form for proposals vell. Use Form 3160-3 (to drill or to APD) for suc	WELLS re-enter an h proposais.	6. If India	1, Allottee or Tribe Name
SUBMIT IN TR	RIPLICATE- Other inst	ructions on	reverse side.	7. If Unit	r CA/Agreement, Name and/or N
1. Type of Well Oil Well	√] Gas Well ☐ Other		1		, ,
2. Name of Operator			·····	8. Well N	me and No. Sovernment "L" Com #1
20 Address	sources, Inc	The Disease Mar	· · · · · · · · · · · · · · · · · · ·	9. API W	ell No. 30-025-04755 25/1
P.O. Box 2267, M	lidland, TX, 79702	432-561-86	(incluae area code) 10	10. Field a	nd Pool, or Exploratory Area
4. Location of Well (Footage, Sec.	, T., R., M., or Survey Description)				ell Lake, South Morrow
Unit Letter G, 1980 FNL, 1 Section 18, Township 24-S,	1980 FEL , Range 34-E				Les New Merice
12 CHECK A	PPROPRIATE BOX(ES) TO	INDICATE N	ATURE OF MOTOR		
TYPE OF SUBMISSION	BOALES TO		TYPE OF ACTION	ALFORI, U	
	Acidize	Deenen		Start/Resume)	Water Shut-Off
Notice of Intent	Alter Casing	Fracture Trea	t Reclamation	Sui dicesuite)	Well Integrity
Subsequent Report	Casing Repair	New Constru	iction Recomplete		Other
Final Abandonment Notice	Change Plans	Plug and Aba	ndon Temporarily	Abandon	<u></u>
testing has been completed. F determined that the site is read	inal Abandonment Notices shall be by for final inspection.)	filed only after all	requirements, including recl	in in a new interv amation, have be	al, a Form 3160-4 shall be filed or en completed, and the operator ha
	•				· · · · · · · · · · · · · · · · · · ·
 Notified Jim McCorri Cut 3 1/2' tbg at 1150 Circ hole w/MLF. Perf 4 holes at 9050, Perf 4 holes at 7000, Cut 10 3/4' esg at 54 Spot 75sx, plug from Spot 20sx, plug from Clean location. Insta 	nick w/BLM 24 hrs prior to M 10, spot 50sx CLass "H" emt, p press up to 2000 PSI, spot 75sx press up to 2000 PSI, spot 75sx, 05, L/D csg, spot 150sx, plug fr 1300-1200 (T-Salt) WOC Ta a0-Surf. a0-Surf. Il dry hole marker 12-30-04.	II and RU, olug from 11500- t, plug from 910(t, plug from 705(rom 5500-5350, 1 at 1143, g at 423.	11400, WOC Tag at 113 -8950, WOC Tag @ 893 -6900, WOC Tag at 685 VOC Tag at 5336.	89. 8. 5.	APPROVEL JAN 4 2005 GARY GOURTEX PERPENDENCE
 Notified Jim McCorri Cut 3 1/2' tbg at 1150 Circ hole w/MLF. Perf 4 holes at 7000, Perf 4 holes at 7000, Cut 10 3/4" esg at 54 Spot 75xx, plug from Spot 159xx, plug from Spot 159xx, plug from Clean location. Insta 	nick w/BLM 24 hrs prior to M 10, spot 50sx CLass "H" cmt, p press up to 2000 PSI, spot 75sx 50, L/D csg, spot 150sx, plug fr 1300-1200 (T-Salt) WOC Tag a 650-450 (20" Shoe) WOC Ta 30-Surf. Il dry hole marker 12-30-04.	II and RU. olug from 11500- t, plug from 9106 trom 7050 tom 5500-5350, V at 1143. g at 423. P&A Complete	11400, WOC Tag at 113 1-8950, WOC Tag @ 893 1-6900, WOC Tag at 685 VOC Tag at 5336. 2-12-30-04	89. 8. 5.	APPROVEL JÁN 4 2005 CARY GOURTEY PERPERIONNEL JAN 4 2005
 Notified Jim McCorr Cut 3 1/2' tbg at 1156 Circ hole w/MLF. Perf 4 holes at 9050, Perf 4 holes at 7000, Cut 10 3/4" csg at 54 Spot 150sx, plug from Spot 20sx, plug from Clean location. Insta 14. Thereby certify that the for Name (Printed/Typed)	nick w/BLM 24 hrs prior to M 10, spot 50sx CLass "H" cmt, p press up to 2000 PSI, spot 75sx 50, L/D csg, spot 150sx, plug fr 1300-1200 (T-Salt) WOC Tag a 650-450 (20" Shee) WOC Ta 30-Surf. III dry hole marker 12-30-04.	II and RU, olug from 11500- t, plug from 705(rom 5500-5350, 1 at 1143, g at 423. P&A Complete	11400, WOC Tag at 113 -8950, WOC Tag @ 893 -6900, WOC Tag at 685 VOC Tag at 5336. 2 12-30-04	89. 8. 5.	APPROVEL JAN 4 2005 CARY GOURLEY JAN 4 2005 JAN 4 2005
 Notified Jim McCorri Cut 3 1/2' tbg at 1150 Circ hole w/MLF. Perf 4 holes at 9050, Perf 4 holes at 7000, Cut 10 3/4" csg at 54 Spot 759x, plug from Spot 159sx, plug from Spot 10 20x, plug from Clean location. Insta 14. I hereby certify that the form Name (Printed/Typed) Jimper/Bagley	nick w/BLM 24 hrs prior to M 10, spot 50sx CLass "H" cmt, p press up to 2000 PSI, spot 75sx 50, L/D csg, spot 150sx, plug fr 1300-1200 (T-Salt) WOC Tag a 650-450 (20" Shoe) WOC Ta 30-Surf. III dry hole marker 12-30-04.	II and RU. olug from 11500- t, plug from 910(t, plug from 705(com 5500-5350, 1 at 1143. g at 423. P&A Complete	11400, WOC Tag at 113 +8950, WOC Tag @ 893 -6900, WOC Tag at 685 VOC Tag at 5336. 12-30-04 itle	89. 8. 5. Consultant	APPROVEL JAN 4 2005 CARY GOURLEY PEAR OF A 2005 JAN 4 2005
 Notified Jim McCorri Cut 3 1/2' tbg at 1150 Circ hole w/MLF. Perf 4 holes at 7000, Perf 4 holes at 7000, Cut 10 3/4" esg at 54 Spot 758x, plug from Spot 1598x, plug from Spot 20sx, plug from Clean location. Insta 14. I hereby certify that the for Name (Printed Typed) Jimpre Bagley Signature	nick w/BLM 24 hrs prior to M 10, spot 50sx CLass "H" cmt, p press up to 2000 PSI, spot 75sx 50, L/D csg, spot 150sx, plug fr 1300-1200 (T-Salt) WOC Tag a 650-450 (20" Shee) WOC Ta 30-Surf. III dry hole marker 12-30-04.	II and RU. olug from 11500- t, plug from 1150 rom 5500-5350, V at 1143. g at 423. P&A Complete T	11400, WOC Tag at 113 -8950, WOC Tag @ 893 -6900, WOC Tag at 685 VOC Tag at 5336. : 12-30-04 : 11e	89. 8. 5. Consultant 12/30/2004	APPROVEL JAN 4 2005 CARY GOURLEY PEROLEUM ENGINEI
 Notified Jim McCorri Cut 3 1/2' tbg at 1156 Circ hole w/MLF. Perf 4 holes at 9050, Perf 4 holes at 9050, Cut 10 3/4" csg at 54 Spot 150sx, plug from Spot 20sx, plug from Clean location. Insta 14. Thereby certify that the for Name (Printed/Typed) Jimpry Bagley Signature	nick w/BLM 24 hrs prior to M 10, spot 50sx CLass "H" cmt, p press up to 2000 PSI, spot 75sx 50, L/D csg, spot 150sx, plug fr 1300-1200 (T-Salt) WOC Ta a 650-450 (20" Shoe) WOC Ta 30-Surf. III dry hole marker 12-30-04.	II and RU, olug from 11500- t, plug from 705(rom 5500-5350, V at 1143, g at 423. P&A Complete T FEDERAL C	11400, WOC Tag at 113 -8950, WOC Tag @ 893 -6900, WOC Tag at 685 VOC Tag at 5336. 2 12-30-04 itle DR STATE OFFIC	89. 8. 5. Consultant 12/30/2004 E USE	APPROVEL JAN 4 2005 CARY GOURLEY PETROLEUM ENGINEI
 Notified Jim McCorri Cut 3 1/2' tbg at 1150 Circ hole w/MLF. Perf 4 holes at 9050, Perf 4 holes at 9050, Cut 10 3/4" csg at 54 Spot 759x, plug from Spot 159sx, plug from Spot 10 20 x, plug from Clean location. Insta 14. I hereby certify that the for Name (Printed/Typed) Jimpri Bagley Signature Approved by	nick w/BLM 24 hrs prior to M 10, spot 50sx CLass "H" cmt, p press up to 2000 PSI, spot 75sx 50, L/D csg, spot 150sx, plug fr 1300-1200 (T-Salt) WOC Tag a 650-450 (20" Shoe) WOC Ta 30-Surf. III dry hole marker 12-30-04.	II and RU. olug from 11500- t, plug from 11500- t, plug from 7050 tom 5500-5350, Y at 1143. g at 423. P&A Complete T FEDERAL C	11400, WOC Tag at 113 +8950, WOC Tag @ 893 +6900, WOC Tag at 685 VOC Tag at 5336. = 12-30-04 ittle DR STATE OFFIC Tittle	89. 8. 5. Consultant 12/30/2004 E USE	APPROVEL JAN 4 2005 CARY GOURLEY PEARDENA POUR JAN 4 2005 GARY GOURLEY PETROLEUM ENGINEL
1. Notified Jim McCorr 2. Cut 3 1/2' tbg at 1150 3. Circ hole w/MLF. 4. Perf 4 holes at 7000, 5. Perf 4 holes at 7000, 6. Cut 10 3/4" esg at 54 7. Spot 759x, plug from 8. Spot 1598x, plug from 9. Spot 1598x, plug from 10. Clean location. Insta 14. I hereby certify that the for Name (<i>Printed/Typed</i>) Jimpr/Bagley Signature Approved by Conditions of approval, if any, are certify that the applicant holds legg which would entitle the applicant to	nick w/BLM 24 hrs prior to M 10, spot 50sx CLass "H" cmt, p press up to 2000 PSI, spot 75sx 50, L/D csg, spot 150sx, plug fr 1300-1200 (T-Sali) WOC Tag o 650-450 (20" Shoe) WOC Ta 30-Surf. Il dry hole marker 12-30-04.	II and RU. olug from 11500- c, plug from 7060 (r, plug from 7050- assessed from 7050- assessed from 5300- assessed from 5300- assessed from 5300- g at 423. P&A Complete B&A Complete T T FEDERAL C does not warrant of in the subject lease	11400, WOC Tag at 113 	89. 8. 5. Consultant 12/30/2004 <u>E USE</u>	APPROVEL JAN 4 2005 CARY GOURTEY PERPENDENT JAN 4 2005 CARY GOURTEY PETROLEUM ENGINE Date

P&A Record for Government Com 001, API #30-025-25604

GWW 2

P&A Records for API #30-025-26958

Benergy, Minerals and Natural Resources Revised August 1, 2011 WELL 2014 WELL 2014 WELL 2015 Sease, MMS220 Sease, MMS22	Submit 1 Copy To Appropriate District	State of New M	exico	Form C-103
The A means the state in the state in the state in the information above is three and complete of the state in the s	Office <u>District I</u> – (575) 393-6161	Energy, Minerals and Nati	ural Resources	Revised August 1, 201
A. Aresia, A. Marsia, A. M. Marshall, M. C. CET VIZO South St. Francis Dr. S. Haracis A. M. Marshall, A. M. M. M. C. 16 (20): Sonta Fe, NM 87505 Batter, U. (409) 15:3460 M. G. 16 (20): Sonta Fe, NM 87505 BY S. Hamedo, Y. MOTICIS AND REPORTS ON WELLS S. Lake Nume or Unit Agreement Name DYNOR OF UNCONCOMENTS TO RELLONG NET SON WELLS S. Lake Nume or Unit Agreement Name DYNOR OF WORK OF MOREON TO REPORT OF DEPENS ON PLUG BACK TO A S. Media C. Marshall, S. M. Marshall, S. M.	1625 N. French Dr., Hobbs, NM 88240 <u>District II</u> ~ (575) 748-1283	∾ ROM KATION		3002526958
1000 Reb Brenz Rd, Arte: MN 87310 AUG 16 2012 Santa Fe, NM 87505 6. State Of R 2 Gal Lease No. 1228 DESIGNED Construction of the State Provided State P	811 S. First St., Artesia, NM 88210 <u>District III</u> – (505) 334-6178	1220 South St. Fra	ncis Dr.	5. Indicate Type of Lease
2793 SUNDRY NOTICES AND REPORTS ON WELLS ON THE PROMADY OF MEDIALS OF TO DEPORTS ON WELLS ON THE PROMADY OF MEDIALS OF TO DEPORT OF THE REALT FORMATY CONTROL FOR TO CONTROL OF THE STATE PROMADY. 7. Lease Name or Unit Agreement Name Sims 1. Type of Well: Oil Well Gas Well Other 8. Well Number #1 2. Name of Operator 9. OGRID Number 147831 3. Address of Operator 9. OGRID Number 147831 4. Well Location 11. Elevation (Show whether DR, RKB, RT, GR, etc.) 11. Elevation (Show whether DR, RKB, RT, GR, etc.) 11. Elevation (Show whether DR, RKB, RT, GR, etc.) 12. Check Appropriate Box to Indicate Nature of Notice, Report or Other Data NOTICE OF INTENTION TO: SUBSEQUENT REPORT OF: PERFORM REMEDIAL WORK PLUG AND ABADDON OUND LE COMINGLE OTHER SReplug to cement off Cherry Canyon per INDICE ADD REPORT OF: 7. DESCRIPTION TO: SUBSEQUENT REPORT OF: PERFORM REMEDIAL WORK PLUG AND ABADDON 0. OTHER CASING (CANNE) MULTIPLE COMPL 0. OTHER CASING (CANNE) OTHER SREPLICE OF INTENTION TO: SUBSEQUENT REPORT OF: PANDA 0. CANNE CE COMINGLE MULTIPLE COMPL 0. OTHER CASING (CANNE) MULTIPLE COMPL 0. THE mendiation of the Sims #1 well pursuant to NMOCC corder was completion of Linking (Orber	1000 Rio Brazos Rd , Aztec, NM 87410 <u>District IV</u> – (505) 476-3460 1220 S. St. Francis Dr , Santa Fe, NM	16 2012 Santa Fe, NM 8	7505	6. State Oil & Gas Lease No. SCR-389
DOWNED Sims Sims Sims Different RESERVOR USE SERVICE INSERVICE INSERVICE INSERVICE (PROMISE) FOR SUCH PROPOSALS Sims 1. Type of Veil: Oil Weil: Cass Well Cass OF OPENIT* (FORM C-10) FOR SUCH PROPOSALS S. Well Number #1 2. Name of Operator: Agave Energy Company 9. OGRID Number 147831 3. Address of Operator B3210 (575-748-4528) 4. Well Location Init Letter K.: 1980 feet from the Nine and800feet from the County 11. Elevation (Show whether DR, RKB, RT, GR, etc.) Init Letter 12. Check Appropriate Box to Indicate Nature of Notice, Report or Other Data NOTICE OF INTENTION TO: NOTICE OF INTENTION TO: NOTICE OF INTENTION TO: COMMENCE DRILLING OFINS	87505 HOB SUNDRY NOTICE	S AND REPORTS ON WELLS	s	7. Lease Name or Unit Agreement Name
1. Type of Well: Oil Well	(DO NOT USE THIS FORM FOR PROPOSAI DIFFERENT RESERVOIR USE "APPL PROPOSALS.)	S TO DRILL OR TO DEEPEN OR PL JCATION FOR PERMIT" (FORM C-1	UG BACK TO A 01) FOR SUCH	Sims
2. Name of Operator: Agave Energy Company 9. OGRID Number 3. Address of Operator 10. Pool name or Wildeat Big Sinks Wolfcamp Big Sinks Wolfcamp 4. Well Location 10. Pool name or Wildeat Unit Letter K:	1. Type of Well: Oil Well Ga	as Well 🛛 Other		8. Well Number #1
3. Address of Operator 10. Pool name or Wildeat DMS. Fourth St., Artesian M 88210 (575-748-4528) 10. Pool name or Wildeat Big Sinks WolfRamp 4. Well Location Unit Letter K:	2. Name of Operator: Agave Energy	Company		9. OGRID Number
4. Well Location	 Address of Operator 104 S. Fourth St., Artesia NM 88210 	(575-748-4528)		10. Pool name or Wildcat Big Sinks Wolfcamp
Unit Letter K: 1980 feet from the N line and 800 feet from the E line Section 13 Township 24S Range 33E NMPM Lea County 11. Elevation (Show whether DR, RKB, RT, GR, etc.) II. Elevation (Show whether DR, RKB, RT, GR, etc.) III. Elevation (Show whether DR, RKB, RT, GR, etc.) III. Elevation (Show whether DR, RKB, RT, GR, etc.) PERFORM REMEDIAL WORK PLUG AND ABANDON PERFORM REMEDIAL WORK PLUG AND ABANDON COMMENCE ORILLING OPNS - ALTERING CASING DVULL OR ALTER CASING MULTIPLE COMPL COMMENCE ORILLING OPNS - ALTERING CASING DOWNHOLE COMMINGLE MULTIPLE COMPL CHANSE CHANSE - ALTERING CASING DTHER MULTIPLE COMPL OTHER Replug to cement off Cherry Canyon per NMOCC R-13807 - ALTERING CASING 13. Describe proposed or completed operations. (Clearly state all pertinent details, and give pertinent dates, including estimated date of starting any proposed work). SEE RULE 19.15.7.14 NMAC. For Multiple Completions: Attach wellbore diagram of proposed completion on recompletion on recompletion on treeompletion on the specifics of the plugging as shown in the attached plugging dagram. When establishing a rate prior to squeezing the Cherry Canyon, it is cleart that the reservoir is an excellent reservoir as it w	4. Well Location			2
Section 13 Township 24S Range 33E NMPM Lea County I1. Elevation (Show whether DR, RKB, RT, GR, etc.) I1. Elevation (Show whether DR, RKB, RT, GR, etc.) II. Elevation (Show whether DR, RKB, RT, GR, etc.) II. Elevation (Show whether DR, RKB, RT, GR, etc.) I2. Check Appropriate Box to Indicate Nature of Notice, Report or Other Data NOTICE OF INTENTION TO: SUBSEQUENT REPORT OF: PERFORM REMEDIAL WORK PLUG AND ABANDON Change PLANS ALTERING CASING ALTERING CASING DOWNHOLE COMMINGLE MULTIPLE COMPL CASING/CEMENT J0B PANDA CASING/CEMENT J0B DOWNHOLE COMMINGLE MULTIPLE COMPL CHANGE PLANS COMMENCE DRILLING OPNS PANDA CASING/CEMENT J0B DOWNHOLE COMMINGLE MULTIPLE COMPL CHANGE PLANS COMMENCE DRILLING OPNS PANDA CASING/CEMENT J0B 31. Describe proposed or completed operations. (Clearly state all periment details, and give periment dates, including estimated date of starting any proposed work). SEE RULE 19.15.7.14 NMAC. For Multiple Completions: Attach wellbore diagram of proposed completion or recompletion Nter remediation of the Sims #1 well pursuant to NMOCC requirements and all aspects of the effort were reported to Mark Whitaker and EL, Gonzales of the OCD District 1 office who approved the specifies of the effort where H11 hto fill in this reservoir will be smaller than anticipated and t	Unit LetterK:	_1980feet from theN	I line and	_800feet from theEline
ITERVALUME (SMUW WHETHE DA, NO, AL, ON, etc.) 12. Check Appropriate Box to Indicate Nature of Notice, Report or Other Data NOTICE OF INTENTION TO: PERFORM REMEDIAL WORK PLUG AND ABANDON CHANGE PLANS COMMENCE DRILLING OPNS PULL OR ALTER CASING MULTIPLE COMPL COMMENCE DRILLING OPNS PAND'A CASING/CEMENT JOB COMMENCE DRILLING OPNS OTHER OTHER CASING give periment dates, including estimated data of starting any proposed or completed operations. (Clearly state all pertiment dates), and give pertiment dates, including estimated data of starting any proposed or completed operations. (Clearly state all pertiment date), and give pertiment dates, including estimated data of starting any proposed or completed operations. (Clearly state all pertiment date), and give pertiment dates, including estimated data of starting any proposed or completed operations. (Clearly state all pertiment date), and give pertiment dates, including estimated data of starting any proposed or completed operations. (Clearly state all pertiment date), and give pertiment dates, including estimated data of starting any proposed or completed operations. (Clearly state all pertiment date), and give pertiment dates, including estimated data of starting any proposed or completed operations. Clearly and Simit date) plugging diagram. When establishing a r	Section 13	Township 24S	Range 33E	NMPM Lea County
12. Check Appropriate Box to Indicate Nature of Notice, Report or Other Data NOTICE OF INTENTION TO: PERFORM REMEDIAL WORK PLUG AND ABANDON CHANGE PLANS COMMENCE DRILLING GENS PULL OR ALTER CASING MULTIPLE COMPL ODWNHOLE COMMINGLE OTHER CHANGE PLANS COMMENCE DRILLING GENS PULL OR ALTER CASING MULTIPLE COMPL OTHER: OTHER III Describe proposed or completed operations. (Clearly state all pertinent details, and give perinent dates, including estimated date of starting any proposed work). SEE RULE 19.15.7.14 NMAC. For Multiple Completions: Attach wellbore diagram of proposed completion or recompletion The remediation of the Sims #1 well pursuant to NMOCC order was completed on August 15, 2011 and all equipment has been demobilized. The plugging was done pursuant to NMOCC requirements and all aspects of the effort were reported to Mark Whitaker and E.L. Gonzales of the OCD District 1 office who approved the specifies of the plugging as shown in the attached plugging diagram. When establishing a rate prior to squeezing the Cherry Canyon , it is clear that the reservoir as it was taking 3bbl/min on vacuum. This indicates that the predicted injection plume for the Red Hills AGI #1 in this reservoir as it was taking 3bbl/min on vacuum. This indicates that the predicted acid gas out of the intended and permitted injection zone by any nearby wellbores including the Govt#2, Govt#1 and Smith Federal #1 in addition to the Sims#1. Please see attached wellbore sketch for plugging details of all plugs set and amounts of cement squeezed for each pl		1. Elevation (Snow whether Dr	(, KKB, KI, GR, elc.)	
NOTICE OF INTENTION TO: SUBSEQUENT REPORT OF: PERFORM REMEDIAL WORK PLUG AND ABANDON CHANGE PLANS OUL OR ALTER CASING MULTIPLE COMPL COMMENCE DRILLING OPNS PANDA DOWNHOLE COMMINGLE OTHER CASING/CEMENT JOB PANDA DOWNHOLE COMMINGLE OTHER CASING/CEMENT JOB COMMENCE DRILLING OPNS PANDA DTHER: OTHER OTHER Replug to cement off Cherry Canyon per INMOCC R-13507 13. Describe proposed or completed operations. (Clearly state all pertinent datails, and give pertinent dates, including estimated date of starting any proposed work). SEE RULE 19.15.7.14 NMAC. For Multiple Completions: Attach wellbore diagram of proposed completion or recompletion The remediation of the Sims #1 well pursuant to NMOCC order was completed on August 15, 2011 and all equipment has been demobilized. The plugging diagram. When establishing arate prior to squeezing the Cherry Canyon, it is clear that the reservoir is an excellent reservoir will be smaller than anticipated and the reservoir conditions act to prevent migration of injected acid gas out of the intended and permitted injection zone by any nearby wellbores including the Govt#2, Govt#1 and Smith Federal #1 in addition to the Sims#1. Please see attached wellbore sketch for plugging details of all plugs set and amounts of cement squeezed for each plug. GNATURE	12. Check Ap	propriate Box to Indicate N	Nature of Notice, I	Report or Other Data
PERFORM REMEDIAL WORK PLUG AND ABANDON REMEDIAL WORK ALTERNIG CASING TEMPORARILY ABANDON CHANGE PLANS COMMENCE DRILLING OPNS PANDA DULL OR ALTER CASING MULTIPLE COMPL CASING/CEMENT JOB CASING/CEMENT JOB DOWNHOLE COMMINGLE OTHER Replug to cement off Cherry Canyon per NMOCC R-13507 13. Describe proposed or completed operations. (Clearly state all pertinent details, and give pertinent dates, including estimated date of starting any proposed work). SEE RULE 19.15.7.14 NMAC. For Multiple Completions: Attach wellbore diagram of proposed completion or recompletion The remediation of the Sim SH well pursuant to NMOCC order was completed on August 15, 2011 and all equipment has been demobilized. The plugging was done pursuant to NMOCD requirements and all aspects of the effort were reported to Mark Whitaker and E.L. Gonzales of the OCD District 1 office who approved the specifics of the plugging as shown in the attached plugging diagram. When establishing a rate prior to squeezing the Cherry Canyon, it is clear that the reservoir is an excellent reservoir will be smaller than anticipated and the reservoir conditions act to prevent migration of nicetaed all gas out of the intended and permited injection ore by any nearby wellbores including the Govt#2, Govt#1 and Smith Federal #1 in addition t the Sims#1. Please see attached wellbore sketch for plugging details of all plugs set and amounts of cement squeezed for each plug. GNATURE	NOTICE OF INTE	ENTION TO:	SUBS	SEQUENT REPORT OF
TEMPORARILY ABANDON CHANGE PLANS COMMENCE DRILLING OPNS. PAND:A PULL OR ALTER CASING MULTIPLE COMPL CASING/CEMENT JOB OTHER: OTHER CASING/CEMENT JOB OTHER: OTHER OTHER & Replug to cement off Cherry Canyon per NMOCC R-13507 13. Describe proposed or completed operations. (Clearly state all pertinent details, and give pertinent dates, including estimated dat of starting any proposed work). SEE RULE 19.15.7.14 NMAC. For Multiple Completions: Attach wellbore diagram of proposed ompletion or recompletion The remediation of the Sims #1 well pursuant to NMOCD requirements and all aspects of the effort were reported to Mark Whitaker and E.L. Gonzales of the OCD District 1 office who approved the specifics of the plugging as shown in the attached plugging diagram. When establishing a rate prior to squeezing the Cherry Canyon, it is clear that the reservoir is an excellent reservoir will be smaller than anticipated and the reservoir conditions act to prevent migration of injected acid gas out of the intended and permitted injection one by any nearby wellbores including the Govt#2, Govt#1 and Smith Federal #1 in addition the Sims#1. Please see attached wellbore sketch for plugging details of all plugs set and amounts of cement squeezed for each plug. GNATURE		LUG AND ABANDON	REMEDIAL WORK	
PULL OR ALTER CASING MULTIPLE COMPL CASING/CEMENT JOB DOWNHOLE COMMINGLE OTHER OTHER OTHER OTHER Image: Completed operations. (Clearly state all pertinent details, and give pertinent dates, including estimated date of starting any proposed work). SEE RULE 19.15.7.14 NMAC. For Multiple Completions: Attach wellbore diagram of proposed completion or recompletion The remediation of the Sims #1 well pursuant to NMOCC order was completed on August 15, 2011 and all equipment has been demobilized. The plugging was done pursuant to NMOCO requirements and all aspects of the effort were reported to Mark Whitaker and EL. Consults of the OCD District 1 office who approved the specifics of the plugging ashown in the attached plugging diagram. When establishing a rate prior to squeezing the Cherry Canyon, it is clear that the reservoir will be smaller than anticipated and the reservoir conditions act to prevent migration of injected acid gas out of the intended and permitted injection zone by any nearby wellbores including the Govt#2, Govt#1 and Smith Federal #1 in addition the Sims#1. Please see attached wellbore sketch for plugging details of all plugs set and amounts of cement squeezed for each plug. GNATURE		HANGE PLANS	COMMENCE DRIL	
DTHER ☐ OTHER ☐ Replug to cement off Cherry Canyon per NMOCC R-13507 13. Describe proposed or completed operations. (Clearly state all pertinent details, and give pertinent dates, including estimated dat of starting any proposed work). SEE RULE 19.15.7.14 NMAC. For Multiple Completions: Attach wellbore diagram of proposed completion or recompletion The remediation of the Sims #1 well pursuant to NMOCC order was completed on August 15, 2011 and all equipment has been demobilized. The plugging was done pursuant to NMOCD requirements and all aspects of the effort were reported to Mark Whitaker and E.L. Gonzales of the OCD District 1 office who approved the specifics of the plugging as shown in the attached plugging diagram. When establishing a rate prior to squeezing the Cherry Canyon, it is clear that the reservoir is an excellent reservoir as it was taking 3bb/min on vacuum. This indicates that the predicted injection plume for the Red Hills AGI #1 in this reservoir will be smaller than anticipated and the reservoir conditions act to prevent migration of injected acid gas out of the intended and permitted injection zone by any nearby wellbores including the Govt#2, Govt#1 and Smith Federal #1 in addition t the Sims#1. Please see attached wellbore sketch for plugging details of all plugs set and amounts of cement squeezed for each plug. GNATURE	PULL OR ALTER CASING L		CASING/CEMENT	JOB 🗌
 13. Describe proposed or completed operations. (Clearly state all pertinent details, and give pertinent dates, including estimated date of starting any proposed work). SEE RULE 19.15.7.14 NMAC. For Multiple Completions: Attach wellbore diagram of proposed completion or recompletion The remediation of the Sims #1 well pursuant to NMOCC order was completed on August 15, 2011 and all equipment has been demobilized. The plugging was done pursuant to NMOCD requirements and all aspects of the effort were reported to Mark Whitaker and E.L. Gonzales of the OCD District 1 office who approved the specifics of the plugging as shown in the attached plugging diagram. When establishing a rate prior to squeezing the Cherry Canyon, it is clear that the reservoir is an excellent reservoir as it was taking 3bbl/min on vacuum. This indicates that the predicted injection plume for the Red Hills AGI #1 in this reservoir will be smaller than anticipated and the reservoir conditions act to prevent migration of injected acid gas out of the intended and permitted injection zone by any nearby wellbores including the Govt#2, Govt#1 and Smith Federal #1 in addition t the Sims#1. Please see attached wellbore sketch for plugging details of all plugs set and amounts of cement squeezed for each plug. 	DTHER:			lug to cement off Cherry Canyon per
The reinculation of the Sins # refer pulsation to NMOCC brequipments and all aspects of the affert were reported to Mark Whitaker and E.L. Gonzales of the OCD District 1 office who approved the specifics of the plugging as shown in the attached plugging diagram. When establishing a rate prior to squeezing the Cherry Canyon , it is clear that the reservoir is an excellent reservoir as it was taking 3bbl/min on vacuum. This indicates that the predicted injection plume for the Red Hills AGI #1 in this reservoir will be smaller than anticipated and the reservoir conditions act to prevent migration of injected acid gas out of the intended and permitted injection zone by any nearby wellbores including the Govt#2, Govt#1 and Smith Federal #1 in addition to the Sims#1. Please see attached wellbore sketch for plugging details of all plugs set and amounts of cement squeezed for each plug. Preventify that the information above is true and complete to the best of my knowledge and belief. GNATURE	 Describe proposed or complete of starting any proposed work) proposed completion or recom 	d operations. (Clearly state all SEE RULE 19.15.7.14 NMA pletion	pertinent details, and C. For Multiple Corr	give pertinent dates, including estimated da pletions: Attach wellbore diagram of
Interded and permitted injection zone by any nearby wellbores including the Govt#2, Govt#1 and Smith Federal #1 in addition t the Sims#1. Please see attached wellbore sketch for plugging details of all plugs set and amounts of cement squeezed for each plug. Hereby certify that the information above is true and complete to the best of my knowledge and belief. GNATURE	demobilized. The plugging wa Whitaker and E.L. Gonzales o plugging diagram. When estal reservoir as it was taking 3bbl/	is done pursuant to NMOCC order was so done pursuant to NMOCD rea f the OCD District 1 office who plishing a rate prior to squeezing (min on vacuum. This indicates	quirements and all as approved the specific g the Cherry Canyon that the predicted inj	pects of the effort were reported to Mark cs of the plugging as shown in the attached , it is clear that the reservoir is an excellent ection plume for the Red Hills AGI #1 in thi
the Sims#1. Please see attached wellbore sketch for plugging details of all plugs set and amounts of cement squeezed for each plug. hereby certify that the information above is true and complete to the best of my knowledge and belief. GNATURE	intended and permitted injection	inticipated and the reservoir con	s including the Govt#	2. Govt#1 and Smith Federal #1 in addition
And the information above is true and complete to the best of my knowledge and belief. GNATURE	the Sims#1. Please see attache plug.	d wellbore sketch for plugging	details of all plugs se	t and amounts of cement squeezed for each
And the information above is true and complete to the best of my knowledge and belief. GNATURE				<i>i</i>
And the information above is true and complete to the best of my knowledge and belief. GNATURE	,	۰.		
And the information above is true and complete to the best of my knowledge and belief. GNATURE				
GNATURE	nereby certify that the information abo	ove is true and complete to the b	est of my knowledge	and belief.
GNATURE		·	, ,	
IGNATURE				•
GNATURETITLE_Consultant to Agave Energy Company _DATE August 16, 2012 ype or print nameAlberto A. Gutierrez, RG E-mail address:aag@geolex.com PHONE:505-842-8000 <u>or State Use Only</u> PPROVED BY:				
pe or print nameAlberto A. Gutierrez, RG E-mail address:aag@geolex.comPHONE:505-842-8000 <u>or State Use Only</u> PPROVED BY	GNATURE_	TITLE_ Con	sultant to Agave Ener	rgy Company _DATE August 16, 2012
PPROVED BY DATE 8-16-2012 proved BY Date 8-16-2012	/pe or print nameAlberto A. Gution or State Use Only	errez, RG E-mail address:	_aag@geolex.com	PHONE:505-842-8000
onditions of Approval Granvi: // // // ///////////////////////////				
)el ma-	- DATE R-11-201

8/16/2012

P&A Records for API 30-025-08371

1.1		H C	EW MEXI	CO OIL C	ONSERV	ATION () COMMISSIO	M	FORM C-103
1 (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	1)	(Submi	MISCEL	LANEOU	S REPO		N WELLS	1106;	(Rev 3-55)
Name of Company	, Byard	Bennett	11.12	Addre	55 20	7 West	Third, Rosw	vell, I	New Mexico
Lease	Hollar	nd	Vell No. 1	Unit Letter H	Section 3	Township 2	4 South	Range	33 East
Date Work Perform	med 1961	Post Wildes				Le	a		
		THIS IS	A REPORT	OF: (Check	appropriat	e block)			
Beginning E	Filling Operations	[_] C.a.	ing Test an	nd Cement Jo	b]] Other (F	Explain):		
Cement P Location	lugs set as fo 5375-542 340-390 Heavy m Job perfo Prior ver will be clear	Ilows: 5 with 15 sc with 20 sack ud (4 cc with ormed and with bal approval ned and leve	cks, 517 s, 5 sac r. loss) tnessed k of plugg led as sc	75-5240 w ks and ma between by Mr. Pa by Mr. Pa ping progra pon as pra	ith 20 s irker pip all cem bol, Poo am from ctical.	acks, 13 be set at ent plug I Drlg C Mr. Eng	875–1425 w surface. s. Co. gbrecht, Ne	rith 20 ew Me) sac ks, xico O.C.C.
Witnessed by	Mr. Fred	Pool	Pesirion	Owner	(Company Po	ool Drlg Co	0.	
Witnessed by	Mr. Fred	Pool FILL IN BEI	Pesirion OW FOR F	Owner Remedial	WORK RE	Company Po PORTS ()	ool Drlg Co NLY	o.	
Witnessed by	Mr. Fred	Pool FILL IN BEL	Position OW FOR F ORIG	Owner Remedial INAL WELL	WORK RE	Ports ()	Dol Drlg Co NLY	O.	spletion Date
Witnessed by) F Elev. Tubing Diameter	Mr. Fred	Pool FILL IN BFI Tubing Depth	Position OW FOR F ORIG	Owner REMEDIAL INAL HELL	WORK RE DATA	Ports Of Ports Of Producing	Dol Drlg Co NLY Interval Oil Strie	O. Con ng Depti	pletion Date
Witnessed by D.F. Elev. Tubing Diameter Perforated Interv	Mr. Fred	Pool FILL IN BEI Faling Depth	Position OW FOR F ORIG	Owner REMEDIAL INAL HELL OJI SIT	WORK RE DATA ing Diamet	Company PC PORTS Of Producing er	Dol Drlg Co NLY Interval Oil Strin	Con I Con	upletion Date
Witnessed by D.F. Elev. Tubing Dismeter Perforsted Interv Open Hole Interv	Mr. Fred	Pool FILL IN BEL Euting Depth	Pesirion OW FOR F ORIG	Owner REMEDIAL INAL HELL Oil Str Droduc	WORK RE DATA ing Diamet	PORTS OF PORTS OF Producing er	OOI Drlg Co NLY Interval Oil Strin	Con Con ng Depth	pletion Date
Witnessed by D.F. Elev. Tubing Dismeter Perforsted Interv Open Hole Interv	Mr. Fred	Pool FILL IN BEI Tubing Depth	Pesirian OW FOR F ORIG	Owner REMEDIAL INAL HELL OIL Str Droduc TS OF WCR	WORK RE DATA ing Diamet ing Format KOVER	Company PC PORTS () Producing er er	Dol Drlg Co NLY Interval Oil Strin	Con Con ng Dept	spletion Date
Witnessed by D.F. Elev, Cubing Diameter Perforated Intervi Open Hole Intervi Test	Mr. Fred TD el(s) al	Pool FILL IN BEL Eubing Depth Cui Production BPD	Pesirion OW FOR F ORIG I + + 1 RESUL	Owner REMEDIAL INAL HELL OIT SIT Production CEPPD	ing Diamet ing Format KOVER	PORTS OF PORTS OF Producing er tion(s)	OOI Drlg Co NLY Interval Oil Strin Go R Cubic teet	Con Gong Depth Bbl	Oas Well Potential MCEPD
Witnessed by D.F. Elev, Tubing Diameter Perforated Intervi Open Hole Intervi Tear Before Workover	Mr. Fred	Pool FILL IN BEI Euting Depth Euting Depth	Pesirion OW FOR F ORIG IPHT RESUL	Owner REMEDIAL INAL HELL OIT SIT OIT SIT Production TS OF WOR Production CEPTD	ing Diamet	PORTS OF PORTS OF Producing er er tion(s)	OOI Drlg Co NLY Interval Oil Strin GOR Cubic feet	Con JCon ng Depti	Gas Well Potential MCEPD
Witnessed by D.F. Elev. Tubing Dismeter Perforated Intervi Open Hole Intervi Test Before Workover After Workover	Mr. Fred TD al(s) al	Pool FILL IN BEI Tubing Depth	Pesition OW FOR F ORIG [1:4:T] RESUL Stass M	Owner REMEDIAL INAL WELL Off Str Off Str Disolation TS OF WOR Production CEPD	work re DATA ing Diamet ing Format KOVER 3 ater P B	PORTS OF PORTS OF Producing er er cion(s)	Dol Drlg Co NLY Interval Oil Strin Go R Cubic teet	Con ng Depth	Oas Well Potential MCEPD
Witnessed by D.F. Elev. Tubing Dismeter Perforsted Intervi Open Hole Intervi Defore Workover After Workover	Mr. Fred	Pool FILL IN BEI Euting Depth OI Production BPD	Pesirion OW FOR F ORIG I + + T RESUL M	Owner REMEDIAL INAL HELL OILSIN OILSIN Production CEPPD	WORK RE DATA ing Diamet ing Format KOVER Xater Ph B B B B B B B B B B B B B B B B B B B	PORTS OF PORTS OF Producing er er tion(s) PD that the it ny knowled	Oil Drlg Co NLY Interval Oil Strin GOR Cubic feet	Con I Con ng Depti Bbi	opletion Date Cas Well Potential MCFPD
Witnessed by D.F. Elev. Tubing Dismeter Perforsted Intervi Open Hole Intervi Defore Workover After Workover Approved by Title	Mr. Fred TD all(s) al Date of Tes: OIL CONSERVAT	Pool FILL IN BEI Euting Depth OIL Production BPD ION COMMISSION	Pesirion OW FOR F ORIG	Owner REMEDIAL INAL HELL OILSIT Doubte TS OF WOR Production CEPPD	work re DATA ing Diamet ing Format KOVER Water Ph B Water Ph B B B B B B B B B B B B B B B B B B B	PORTS OF PORTS OF Producing er tion(s) that the it ny knowled	Dol Drlg Co NLY Interval Oil Strin Cubic feet	Con ng Depti Bbi	opletion Date

Request for Additional Information: Red Hills Gas Processing Plant March 4, 2024

Instructions: Please enter responses into this table and make corresponding revisions to the MRV Plan as necessary. Any long responses, references, or supplemental information may be attached to the end of the table as an appendix. This table may be uploaded to the Electronic Greenhouse Gas Reporting Tool (e-GGRT) in addition to any MRV Plan resubmissions.

No.	MRV Plan		EPA Questions	Responses		
	Section	Page				
1.	N/A	N/A	The previous RFAI asked for clarification regarding the status of RH AGI #2. Please check whether Figure 3.7-1 on page 31 of the MRV plan requires similar updates.	The figures and narrative of the revised MRV plan have been edited to indicate that RH AGI #2 is temporarily abandoned and that RH AGI #3 is actively injecting as of January 2024. Figure 3.7-1 on page 31 has been updated.		
2.	N/A	N/A	Please review the figures included in the MRV plan to ensure that all figure numbering is in order and properly referenced within the text. For example, page 14 of the MRV plan references "Figures 3.2-4B", but a corresponding figure is not found within the MRV plan.	Figure 3.2-4 is a two-part figure. The reference to this figure on pages 11 and 14 has been changed in the revised MRV plan to remove the "A" and "B", respectively.		
3.	3.6	28	We recommend ensuring that Figure 3.6.1-2 is consistent and accurate with regard to its listed components. For example, M5 has an associated CO ₂ analyzer and H ₂ S analyzer. However, M6 does not have either of these.	Figure 3.6.1-2, which has been renumbered 3.6-2 in the revised MRV plan, is consistent and accurate as drawn.		

No.	MRV Plan		EPA Questions	Responses
	Section	Page		
4.	4.1	39	"As defined in Subpart RR, the maximum monitoring area (MMA) is equal to or greater than the area expected to contain the free phase CO ₂ plume until the CO ₂ plume has stabilized plus an all- around buffer zone of at least one-half mile. Figures 4.1-1 shows the MMA as defined by the most conservative extent of the TAG plume at year 2054 plus a 1/2-mile buffer." Based on Figure 4.1-1, it appears that the plume boundary for the year 2059 is larger than the plume boundary for the year 2054. Please clarify at what point the plume is expected to stabilize and/or update the MMA as necessary.	This statement has been edited in the revised MRV plan as follows: "Figure 4.1-1 shows the MMA as defined by the extent of the stabilized TAG plume at year 2059 plus a ½ mile buffer." The simulation was run for year 2059, 5 years after injection ceased, and for year 2060. The simulation for year 2060 was the same as that for year 2059. Therefore, the plume extent at year 2059 is the stabilized plume extent.
5.	4.2	39	 The plan states both of the following: "The Active Monitoring Area (AMA) is shown in Figure 4.1- The AMA is consistent with the requirements in 40 CFR 98.449 because it is the area projected: (1) to contain the free phase CO2 plume for the duration of the project (year t, t = 2054), plus an all-around buffer zone of one-half mile. (2) to contain the free phase CO2 plume for at least 5 years after injection ceases (year t + 5, t + 5 = 2059)." "Targa intends to define the active monitoring area (AMA) as the same area as the MMA." Please clarify whether the yellow and purple polygons represent the AMA for this project or if the AMA is equivalent to the MMA. Also note that the definition of AMA includes the area projected "to contain the free phase CO2 plume for the duration of the project (year t, t = 2054), plus an all-around buffer zone of one-half mile". Please clarify whether the identified AMA accounts for this half-mile buffer.	This has been addressed in the revised MRV plan.

No.	MRV Plan		EPA Questions	Responses
	Section	Page		
6.	4.2	41	Section 4.2 of the MRV plan discusses "RH AGI #3" and "horizontal wells". Please clarify whether there are other approved, not yet drilled wells such as vertical wells.	Section 5.2, not Section 4.2, of the revised MRV plan has been edited to clearly state that the only wells that are permitted but not yet drilled are horizontal wells. RH AGI #3 was very recently completed and placed into operation. Appendix 4 shows that wells within the MMA with the status of "permitted" are only horizontal wells.
7.	5.3	42	"The wells may or may not penetrate the confining zone and storage reservoir." In the MRV plan, please elaborate what is meant by this statement as it relates to existing wells. Is there not clear information indicating the depth of the existing wells?	This statement has been rewritten in the revised MRV plan to clarify that some of the wells within the MMA penetrate the injection and/or confining zones but others do not. The depths of the wells within the MMA are listed in Appendix 4 and were taken into consideration in the NRAP analysis.
8.	5.6	44	"The closest identified fault lies approximately 1.5 miles east of the Red Hills site and has approximately 1,000 ft of down-to-the-west structural relief." Please clarify whether this fault is identified in Figure 5.6-1.	The narrative regarding faulting has been edited in the revised MRV plan to clarify that the faults shown in Figure 5.6-1 are deep seated faults in the lower Paleozoic and die out at depths more than 5,000 feet below the injection zone for the RH AGI wells.
9.	5.6	44	"The CO ₂ leakage rate through the aforementioned fault is zero, which is understandable."	This statement has been edited in the revised MRV plan.
			Please clarify what is meant by the above statement and/or update the MRV plan as necessary.	

No.	MRV Plan		EPA Questions	Responses	
	Section	Page			
10.	8	56-59	The equations listed in Section 8 of the MRV plan are difficult to read due to formatting. We recommend ensuring that all equations are legible.	The original MS Word document, from which the pdf was generated, has been modified so that the equations are not corrupted during conversion to pdf. The equations have been edited in the Appendices and Section 8 to address this issue associated with conversion.	
11.	8.2	58	" $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as calculated in Equation RR-4 or RR-5 for flow meter u." In Equation RR-6, this variable is " $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u." Equations and variables cannot be modified from the regulations. Please revise this section and ensure that all equation listed are consistent with the text in 40 CFR 98.443.	"as calculated in Equation RR-4 or RR-5 for" was added to clarify that the parameter CO $_{2,u}$ is a calculated value using either RR-4 or RR-5. Our intention was not to change the regulatory equation but rather to add clarity for the operator. However, the equation has been edited in the revised MRV plan to be consistent with the equation in 40 CFR 98.443. A foot note has been added in Section 8 and Appendix 8 of the revised MRV plan referencing equations RR - 4 or RR-5.	

MONITORING, REPORTING, AND VERIFICATION PLAN

Red Hills AGI #1 and AGI #3

Targa Northern Delaware, LLC (TND)

Version 2.0 January, 2024

Table of Contents

1 2	lr F	ntroduction acility Information	5 7
	2.1	Reporter number	7
	2.2	UIC injection well identification numbers	7
	2.3	UIC permit class	7
3	Р	Project Description	7
	3.1	General Geologic Setting / Surficial Geology	8
	3.2	Bedrock Geology	8
	3	8.2.1 Basin Development	8
	3	3.2.2 Stratigraphy	17
	3	3.2.3 Faulting	22
	3.3	Lithologic and Reservoir Characteristics	22
	3.4	Formation Fluid Chemistry	25
	3.5	Groundwater Hydrology in the Vicinity of the Red Hills Gas Plant	25
	3.6	Historical Operations	26
	3	8.6.1 Red Hills Site	26
	3	8.6.2 Operations within the MMA for the RH AGI Wells	29
	3.7	Description of injection Process	
	3.8	Reservoir Characterization Modeling	32
4	D	Delineation of the Monitoring Areas	39
	4.1		39
_	4.2	AMA – Active Monitoring Area	39
5	ار 5 1	dentification and Evaluation of Potential Leakage Pathways to the Surface Potential Leakage from Surface Equipment	40
	J.1	Potential Leakage from Approved Net Vet Drilled Wells	40
	5.2	Potential Leakage from Approved, Not Yet Drilled Wells	41
	5	5.2.1 RH AGI #3	41 41
	5.3	Potential Leakage from Existing Wells	42
	5	.3.1 Wells Completed in the Bell Canyon and Cherry Canyon Formations	42
	5	.3.2 Wells Completed in the Bone Spring / Wolfcamp Zones	42
	5	.3.3 Wells Completed in the Siluro-Devonian Zone	43
	5	5.3.4 Groundwater Wells	43
	5.4	Potential Leakage through the Comming / Sear System	45
	5.5	Potential Leakage due to Lateral Migration	44
	5.6	Potential Leakage through Fractures and Faults	44
	5.7	Potential Leakage due to Natural / Induced Seismicity	45
6	St	trategy for Detecting and Quantifying Surface Leakage of CO ₂	46
	6.1		47
	6.2	Leakage from Approved Not Yet Drilled Wells	48

	6.3	Leakage from Existing Wells	48
	6.3	3.1 RH AGI Wells	48
	6.3	3.2 Other Existing Wells within the MMA	50
	6.4	Leakage through the Confining / Seal System	50
	6.5	Leakage due to Lateral Migration	51
	6.6	Leakage from Fractures and Faults	51
	6.7	Leakage due to Natural / Induced Seismicity	51
	6.8	Strategy for Quantifying CO_2 Leakage and Response	51
	6.8	8.1 Leakage from Surface Equipment	51
	6.8	8.2 Subsurface Leakage	52
	6.8	8.3 Surface Leakage	52
7	Sti	rategy for Establishing Expected Baselines for Monitoring CO ₂ Surface Leakage	52
	/.1		52
	7.2	Fixed In-Field, Handheld, and Personal H ₂ S Monitors	53
	7.2	2.1 Fixed In-Field H ₂ S Monitors	53
	7.2	2.2 Handheld and Personal H ₂ S Monitors	53
	7.3	CO ₂ Detection	53
	7.4	Continuous Parameter Monitoring	53
	7.5	Well Surveillance	53
	7.6	Seismic (Microseismic) Monitoring Stations	54
	7.7	Groundwater Monitoring	54
	7.8	Soil CO ₂ Flux Monitoring	55
8	Sit	e Specific Considerations for Determining the Mass of CO ₂ Sequestered	56
	8.1	CO ₂ Received	56
	8.2	CO ₂ Injected	57
	8.3	CO ₂ Produced / Recycled	58
	8.4	CO ₂ Lost through Surface Leakage	58
	8.5	CO2 Emitted from Equipment Leaks and Vented Emissions	58
	8.6	CO ₂ Sequestered	58
9	Es	timated Schedule for Implementation of MRV Plan	59
10) GH	IG Monitoring and Quality Assurance Program	59
	10.1	GHG Monitoring	59
	10	0.1.1 General	59
	10	0.1.2 CO ₂ received	59
	10	0.1.3 CO ₂ injected	59
	10	0.1.4 CO ₂ produced.	59
	10	0.1.5 CO ₂ emissions from equipment leaks and vented emissions of CO ₂	60
	10 10 2	0.1.6 IVIeasurement devices	6U
	10.2		00
	10.3	Estimating Missing Data	60

10.4 Rev	isions of the MRV Plan	60
11 Record	s Retention	61
Appendix 1	TND Wells	
Appendix 2	Referenced Regulations	65
Appendix 3	Water Wells	67
Appendix 4	Oil and Gas Wells within 2-mile Radius of the RH AGI Well Site	68
Appendix 5	References	71
Appendix 6	Abbreviations and Acronyms	72
Appendix 7	TND Red Hills AGI Wells - Subpart RR Equations for Calculating CO ₂ Geologic Sequestration	73
Appendix 8	Subpart RR Equations for Calculating Annual Mass of CO ₂ Sequestered	74
Appendix 9	P&A Records	

1 Introduction

Targa Northern Delaware, LLC (TND) is currently authorized to inject treated acid gas (TAG) into the Red Hills Acid Gas Injection #1 well (RH AGI #1)(American Petroleum Institute (API) 30-025-40448) and RH AGI #3 well (API # 30-025-51970) under the New Mexico Oil Conservation Commission (NMOCC) Orders R-13507 – 13507F and Order R-20916H, respectively, at the Red Hills Gas Plant located approximately 20 miles NNW of Jal in Lea County, New Mexico (**Figure 1**). Each well is approved to inject 13 million standard cubic feet per day (MMSCFD). However, although approved to inject 13 MMSCFD, RH AGI #1 is physically only capable of taking ~5 MMSCFD due to formation and surface pressure limitations.

The AGI wells were previously operated by Lucid Energy Delaware, LLC's ("Lucid"). TND acquired Lucid assets in 2022. Lucid received authorization to construct a redundant well, RH AGI #2 (API# 30-025-49474) under NMOCC Order R-20916-H, which is offset 200 ft to the north of RH AGI #1 and is currently temporarily abandoned in the Bell Canyon Formation.

TND recently received approval from NMOCC for its C-108 application to drill, complete and operate a third acid gas injection well (RH AGI #3) in which TND requested an injection volume of up to 13 MMSCFD. Because AGI #1 does not have complete redundancy, having a greater permitted disposal volume will also increase operational reliability. The RH AGI #3 well is currently being drilled as a vertical well with its surface location at approximately 3,116 ft from the north line (FNL) and 1,159 ft from the east line (FEL) of Section 13. The depth of the proposed injection zones for this well are approximately 5,600 to 7,200 ft in the Bell Canyon and Cherry Canyon Formations. Analysis of the reservoir characteristics of these units confirms that they act as excellent closed-system reservoirs that will accommodate the future needs of TND for disposal of treated acid gas (H₂S and CO₂) from the Red Hills Gas Plant.

TND has chosen to submit this Monitoring, Reporting, and Verification (MRV) plan to EPA for approval according to 40CFR98.440(c)(1), Subpart RR of the Greenhouse Gas Reporting Program (GHGRP) for the purpose of qualifying for the tax credit in section 45Q of the federal Internal Revenue Code. TND intends to inject CO₂ for another 30 years.

Figure 1: Location of the Red Hills Gas Plant and Wells – RH AGI #1, RH AGI #2 (temporarily abandoned), and RH AGI #3

This MRV Plan contains twelve sections:

Section 1 is this Introduction.

Section 2 contains facility information.

Section 3 contains the project description.

Section 4 contains the delineation of the maximum monitoring area (MMA) and the active monitoring area (AMA), both defined in 40CFR98.449, and as required by 40CFR98.448(a)(1), Subpart RR of the GHGRP.

Section 5 identifies the potential surface leakage pathways for CO_2 in the MMA and evaluates the likelihood, magnitude, and timing of surface leakage of CO_2 through these pathways as required by 40CFR98.448(a)(2), Subpart RR of the GHGRP.

Section 6 describes the detection, verification, and quantification of leakage from the identified potential sources of leakage as required by 40CFR98.448(a)(3).

Section 7 describes the strategy for establishing the expected baselines for monitoring CO_2 surface leakage as required by 40CFR98.448(a)(4), Subpart RR of the GHGRP.

Section 8 provides a summary of the considerations used to calculate site-specific variables for the mass balance equation as required by 40CFR98.448(a)(5), Subpart RR of the GHGRP.

Section 9 provides the estimated schedule for implementation of this MRV Plan as required by 40CFR98.448(a)(7).

Section 10 describes the quality assurance and quality control procedures that will be implemented for each technology applied in the leak detection and quantification process. This section also includes a discussion of the procedures for estimating missing data as detailed in 40CFR98.445.

Section 11 describes the records to be retained according to the requirements of 40CFR98.3(g) of Subpart A of the GHGRP and 40CFR98.447 of Subpart RR of the GRGRP.

Section 12 includes Appendices supporting the narrative of the MRV Plan, including information required by 40CFR98.448(a)(6).

2 Facility Information

2.1 Reporter number

Greenhouse Gas Reporting Program ID is 553798

2.2 UIC injection well identification numbers

This MRV plan is for RH AGI #1 and RH AGI #3 (**Appendix 1**). The details of the injection process are provided in Section 3.7.

2.3 UIC permit class

For injection wells that are the subject of this MRV plan, the New Mexico Oil Conservation Division (NMOCD) has issued Underground Injection Control (UIC) Class II acid gas injection (AGI) permits under its State Rule 19.15.26 NMAC (see **Appendix 2**). All oil- and gas-related wells around the RH AGI wells, including both injection and production wells, are regulated by the NMOCD, which has primacy to implement the UIC Class II program.

3 Project Description

The following project description was developed by the Petroleum Recovery Research Center (PRRC) at New Mexico Institute of Mining and Technology (NMT) and the Department of Geosciences at the University of Texas Permian Basin (UTPB).

3.1 General Geologic Setting / Surficial Geology

The TND Red Hills Gas Plant is located in T 24 S R 33 E, Section 13, in Lea County, New Mexico, immediately adjacent to the RH AGI wells. (Figure 3.1). The plant location is within a portion of the Pecos River basin referred to as the Querecho Plains reach (Nicholson & Clebsch, 1961). This area is relatively flat and largely covered by sand dunes underlain by a hard caliche surface. The dune sands are locally stabilized with shin oak, mesquite, and some burr-grass. There are no natural surface bodies of water or groundwater discharge sites within one mile of the plant and where drainages exist in interdunal areas, they are ephemeral, discontinuous, dry washes. The plant site is underlain by Quaternary alluvium overlying the Triassic red beds of the Santa Rosa Formation (Dockum Group), both of which are local sources of groundwater.

Figure 3.1: Map showing location of TND Red Hills Gas Plant and RH AGI Wells in Section 13, T 24 S, R 33 E

3.2 Bedrock Geology

3.2.1 Basin Development

The Red Hills Gas Plant and the RH AGI wells are located at the northern margin of the Delaware Basin, a sub-basin of the larger, encompassing Permian Basin (**Figure 3.2-1**), which covers a large area of southeastern New Mexico and west Texas.

Figure 3.2-1: Structural features of the Permian Basin during the Late Permian. Location of the TND RH AGI wells is shown by the black circle. (Modified from Ward, et al (1986))

Figure 3.2-2 is a generalized stratigraphic column showing the formations that underlie the Red Hills Gas Plant and RH AGI wells site. The thick sequences of Permian through Cambrian rocks are described below. A general description of the stratigraphy of the area is provided in this section. A more detailed discussion of the injection zone and the upper and lower confining zones is presented in Section 3.3 below.

The RH AGI wells are in the Delaware Basin portion of the broader Permian Basin. Sediments in the area date back to the Cambrian Bliss Sandstone (Broadhead, 2017; **Figure 3.2-2**) and overlay Precambrian granites. These late Cambrian transgressive sandstones were the initial deposits from a shallow marine sea that covered most of North America and Greenland (**Figure 3.2-3**). With continued down warping and/or sea-level rise, a broad, relatively shallow marine basin formed. The Ellenburger Formation (0 - 1000 ft) is dominated by dolostones and limestones that were deposited on restricted carbonate shelves (Broadhead, 2017; Loucks and Kerans, 2019). Throughout this narrative, the numbers after the formations indicate the range in thickness for that unit. Tectonic activity near the end of Ellenburger deposition resulted in subaerial exposure and karstification of these carbonates which increased the unit's overall porosity and permeability.

AGE		CENTRAL BASIN PLATFORM-		DELAWARE BASIN		
Cenozoic			Alluvium		Alluvium	
		Chinle Formation		Chinle Formation		
Triassic		Santa Rosa Sandstone		Santa Rosa Sandstone		
Permian	Lopingian (Ochoan)	Dewey Lake Formation		Dewey Lake Formation		
		Rustler Formation		Rustler Formation		
		Salado Formation		Salado Formation		
					Castile Formation	
	Guadalupian	Artesia Group	Tansill Formation	dne	Lamar Limestone	
			Yates Formation	Gro	Bell Canyon Formation	
			Seven Rivers Formation	e Mountain		
			Queen Formation		Cherry Canyon Formation	
			Grayburg Formation			
		San Andres Formation Glorieta Formation		lawa	Brushy Canyon Formation	
	Cisuralian (Leonardian)			De		
		0	Blinebry Mbr		Bone Spring Formation	
		Yes	Tubb Sandstone Mbr.			
			Drinkard Mbr.			
	Wolfcampian		Abo Formation			
			Hueco ("Wolfcamp") Fm.		Hueco ("Wolfcamp") Fm.	
Pennsylvanian	Virgilian	Cisco Formation		Cisco		
	Missourian	Canyon Formation		Canyon		
	Des Moinesian		Strawn Formation		Strawn	
	Atokan		Atoka Formation		Atoka	
	Morrowan	Morrow Formation		Morrow		
Mississippian	Upper		Barnett Shale		Barnett Shale	
	Lower	"N	"Mississippian limestone" "Missis		"Mississippian limestone"	
Devonian	Upper		Woodford Shale		Woodford Shale	
	Middle					
	Lower		Thirtyone Formation		Thirtyone Formation	
Silurian	Upper		Wristen Group		Wristen Group	
	Middle					
	Lower		Fusselman Formation		Fusselman Formation	
Ordovician	Upper	Montoya Formation		Montoya Formation		
	Middle	Simpson Group		Simpson Group		
	Lower	1	Ellenburger Formation		Ellenburger Formation	
Cambrian		Bliss Ss.		Bliss Ss.		
Precambrian		me	Miscellaneous igneous, etamorphic, volcanic rocks		Miscellaneous igneous, metamorphic, volcanic rocks	

Figure 3.2-2: Stratigraphic column for the Delaware basin, the Northwest Shelf and Central Basin Platform (modified from Broadhead, 2017).

During Middle to Upper Ordovician time, the seas once again covered the area and deposited the carbonates, sandstones and shales of the Simpson Group (0 – 1000 ft) and then the Montoya Formation (0 – 600 ft). This is the period when the Tobosa Basin formed due to the Pedernal uplift and development of the Texas Arch (**Figure 3.2-4A**; Harrington, 2019) shedding Precambrian crystalline clasts into the basin. Reservoirs in New Mexico are typically within deposits of shoreline sandstones (Broadhead, 2017). A subaerial exposure and karstification event followed the deposition of the Simpson Group. The Montoya Formation within the Tobosa Basin (Broadhead, 2017; Harrington and Loucks, 2019). The Montoya Formation consists of sandstones and dolomites and have also undergone karstification.

Figure 3.2-3: A subsidence chart from Reeves County, Texas showing the timing of development of the Tobosa and Delaware basins during Paleozoic deposition (from Ewing, 2019)

Figure 3.2-4: Tectonic Development of the Tobosa and Permian Basins. A) Late Mississippian (Ewing, 2019). Note the lateral extent (pinchout) for the lower Paleozoic strata. B) Late Permian (Ruppel, 2019a).

Siluro-Devonian formations consist of the Upper Ordovician to Lower Silurian Fusselman Formation (0 – 1,500 ft), the Upper Silurian to Lower Devonian Wristen Group (0 – 1,400 ft), and the Lower Devonian Thirtyone Formation (0 – 250 ft). The Fusselman Formation are shallow-marine platform deposits of dolostones and limestones (Broadhead, 2017; Ruppel, 2019b). Subaerial exposure and karstification associated with another unconformity at top of the Fusselman Formation as well as intraformational exposure events created brecciated fabrics, widespread dolomitization, and solution-enlarged pores and fractures (Broadhead, 2017). The Wristen and Thirtyone units appear to be conformable. The Wristen Group consists of tidal to high-energy platform margin carbonate deposits of dolostones, limestones, and cherts with minor siliciclastics (Broadhead, 2017; Ruppel, 2020a). The Thirtyone Formation is present in the southeastern corner of New Mexico and appears to be either removed by erosion or not deposited elsewhere in New Mexico (**Figure 3.2-5**). It is shelfal carbonate with varying amounts of chert nodules and represents the last carbonate deposition in the area during Devonian time (Ruppel et al., 2020a).

Figure 3.2-5 -- A subcrop map of the Thirtyone and Woodford formations. The Woodford (brown) lies unconformably on top of the Wristen Group where there is no Thirtyone sediments (yellow). Diagram is from Ruppel (2020).

The Siluro-Devonian units are saltwater injection zones within the Delaware Basin and are typically dolomitized, shallow marine limestones that have secondary porosity produced by subaerial exposure, karstification and later fracturing/faulting. These units will be discussed in more detail in Section 3.2.2.

The Devonian Woodford Shale, an un-named Mississippian limestone, and the Upper Mississippian Barnett Shale are seals for the underlying Siluro-Devonian strata. While the Mississippian recrystallized limestones have minor porosity and permeability, the Woodford and Barnett shales have extremely low porosity and permeability and would be effective barriers to upward migration of acid gas out of the injection zone. The Woodford Shale (0 – 300 ft) ranges from organic–rich argillaceous mudstones with abundant siliceous microfossils to organic-poor argillaceous mudstones (Ruppel et al., 2020c). The Woodford sediments represent stratified deeper marine basinal deposits with their organic content being a function of the oxygenation within the bottom waters – the more anoxic the waters the higher the organic content.

The Mississippian strata within the Delaware Basin consists of an un-named carbonate member and the Barnett Shale and unconformably overlies the Woodford Shale. The lower Mississippian limestone (0 – 800 ft) are mostly carbonate mudstones with minor argillaceous mudstones and cherts. These units were deposited on a Mississippian ramp/shelf and have mostly been overlooked because of the reservoirs limited size. Where the units have undergone karstification, porosity may approach 4 to 9% (Broadhead, 2017), otherwise it is tight. The Barnett Shale (0 – 400 ft) unconformably overlies the Lower Mississippian carbonates and consists of Upper Mississippian carbonates deposited on a shelf to basinal, siliciclastic deposits (the Barnett Shale).

Pennsylvanian sedimentation in the area is influenced by glacio-eustatic sea-level cycles producing numerous shallowing upward cycles within the rock record; the intensity and number of cycles increase upward in the Pennsylvanian section. The cycles normally start with a sea-level rise that drowns the platform and deposits marine mudstones. As sea-level starts to fall, the platform is shallower and deposition switches to marine carbonates and coastal siliciclastic sediments. Finally, as the seas withdraw from the area, the platform is exposed causing subaerial diagenesis and the deposition terrestrial mudstones, siltstones, and sandstones in alluvial fan to fluvial deposits. This is followed by the next cycle of sea-level rise and drowning of the platform.

Pennsylvanian sedimentation is dominated by glacio-eustatic sea-level cycles that produced shallowing upward cycles of sediments, ranging from deep marine siliciclastic and carbonate deposits to shallow-water limestones and siliciclastics, and capping terrestrial siliciclastic sediments and karsted limestones. Lower Pennsylvanian units consist of the Morrow and Atoka formations. The Morrow Formation (0 - 2,000 ft) within the northern Delaware Basin was deposited as part of a deepening upward cycle with depositional environments ranging from fluvial/deltaic deposits at the base, sourced from the crystalline rocks of the Pedernal Uplift to the northwest, to high-energy, near-shore coastal sandstones and deeper and/or low-energy mudstones (Broadhead, 2017; Wright, 2020). The Atoka Formation (0-500 ft) was deposited during another sea-level transgression within the area. Within the area, the Atoka sediments are dominated by siliciclastic sediments, and depositional environments range from fluvial/deltas, shoreline to near-shore coastal barrier bar systems to occasional shallow-marine carbonates (Broadhead, 2017; Wright, 2020).

Middle Pennsylvanian units consist of the Strawn group (an informal name used by industry). Strawn sediments (250 - 1,000 ft) within the area consists of marine sediments that range from ramp carbonates, containing patch reefs, and marine sandstone bars to deeper marine shales (Broadhead, 2017).

Upper Pennsylvanian Canyon (0 – 1,200 ft) and Cisco (0 – 500 ft) group deposits are dominated by marine, carbonate-ramp deposits and basinal, anoxic, organic-rich shales.

Deformation, folding and high-angle faulting, associated with the Upper Pennsylvanian/Early Permian Ouachita Orogeny, created the Permian Basin and its two sub-basins, the Midland and Delaware basins (Hills, 1984; King, 1948), the Northwest Shelf (NW Shelf), and the Central Basin Platform (CBP; **Figures 3.2-4B**, **3.2-6**, **3.2-7**). The Permian "Wolfcamp" or Hueco Formation was deposited after the creation of the Permian Basin. The Wolfcampian sediments were the first sediments to fill in the structural relief (**Figure 3.2-6**). The Wolfcampian Hueco Group (~400 ft on the NW Shelf, >2,000 ft in the Delaware Basin) consists of shelf margin deposits ranging from barrier reefs and fore slope deposits, bioherms, shallow-water carbonate shoals, and basinal carbonate mudstones (Broadhead, 2017; Fu et al., 2020). Since deformation continued throughout the Permian, the Wolfcampian sediments were truncated in places like the Central Basin Platform (Figure 3.2-6).

Figure 3.2-6 -- Cross section through the western Central Basin Platform showing the structural relationship between the Pennsylvanian and older units and Permian strata (modified from Ward et al., 1986; from Scholle et al., 2007).

Figure 3.2-7 -- Reconstruction of southwestern United States about 278 million years ago. The Midland Basin (MB), Delaware Basin (DB) and Orogrande Basin (OB) were the main depositional centers at that time (Scholle et al., 2020).

Differential sedimentation, continual subsidence, and glacial eustasy impacted Permian sedimentation after Hueco deposition and produced carbonate shelves around the edges of deep sub-basins. Within the Delaware Basin, this subsidence resulted in deposition of roughly 12,000 ft of siliciclastics, carbonates, and evaporites (King, 1948). Eustatic sea-level changes and differential sedimentation played an important role in the distribution of sediments/facies within the Permian Basin (**Figure 3.2-2**). During sea-level lowstands, thousands of feet of siliciclastic sediments bypassed the shelves and were deposited in the basin. Scattered, thin sandstones and siltstones as well as fracture and pore filling sands found up on the shelves correlate to those lowstands. During sea-level highstands, thick sequences of carbonates were deposited by a
"carbonate factory" on the shelf and shelf edge. Carbonate debris beds shedding off the shelf margin were transported into the basin (Wilson, 1977; Scholle et al., 2007). Individual debris flows thinned substantially from the margin to the basin center (from 100s feet to feet).

Unconformably overlying the Hueco Group is the Abo Formation (700 – 1,400 ft). Abo deposits range from carbonate grainstone banks and buildups along Northwest Shelf margin to shallow-marine, back-reef carbonates behind the shelf margin. Further back on the margin, the backreef sediments grade into intertidal carbonates to siliciclastic-rich sabkha red beds to eolian and fluvial deposits closer to the Sierra Grande and Uncompahgre uplifts (Broadhead, 2017, Ruppel, 2020b). Sediments basinward of the Abo margin are equivalent to the lower Bone Spring Formation. The Yeso Formation (1,500 – 2,500 ft), like the Abo Formation, consists of carbonate banks and buildups along the Abo margin. Unlike Abo sediments, the Yeso Formation contains more siliciclastic sediments associated with eolian, sabkha, and tidal flat facies (Ruppel, 2020b). The Yeso shelf sandstones are commonly subdivided into the Drinkard, Tubb, Blinebry, Paddock members (from base to top of section). The Yeso Formation is equivalent to the upper Bone Spring Formation. The Bone Spring Formation is a thick sequence of alternating carbonate and siliciclastic horizons that formed because of changes in sea level; the carbonates during highstands, and siliciclastics during lowstands. Overlying the Yeso, are the clean, white eolian sandstones of the Glorietta Formation. It is a key marker bed in the region, both on outcrop and in the subsurface. Within the basin, it is equivalent to the lowermost Brushy Canyon Formation of the Delaware Mountain Group.

The Guadalupian San Andres Formation (600 – 1,600 ft) and Artesia Group (<1,800 ft) reflect the change in the shelf margin from a distally steepened ramp to a well-developed barrier reef complex. The San Andres Formation consists of supratidal to sandy subtidal carbonates and banks deposited a distally steepened ramp. Within the San Andres Formation, several periods of subaerial exposure have been identified that have resulted in karstification and pervasive dolomitization of the unit. These exposure events/sea-level lowstands are correlated to sandstones/siltstones that moved out over the exposed shelf leaving on minor traces of their presence on the shelf but formed thick sections of sandstones and siltstones in the basin. Within the Delaware Basin, the San Andres Formation is equivalent to the Brushy and lower Cherry Canyon Formations.

The Artesia Group (Grayburg, Queen, Seven Rivers, Yates, and Tansill formations, ascending order) is equivalent to Capitan Limestone, the Guadalupian barrier/fringing reef facies. Within the basin, the Artesia Group is equivalent to the upper Cherry and Bell Canyon formations, a series of relatively featureless sandstones and siltones. The Queen and Yates formations contain more sandstones than the Grayburg, Seven Rivers, and Tansill formations. The Artesia units and the shelf edge equivalent Capitan reef sediments represent the period when the carbonate factory was at its greatest productivity with the shelf margin/Capitan reef prograding nearly 6 miles into the basin (Scholle et al., 2007). The Artesia Group sediments were deposited in back-reef, shallow marine to supratidal/evaporite environments. Like the San Andres Formation, the individual formations were periodically exposed during lowstands.

The final stage of Permian deposition on the NW Shelf consists of the Ochoan/Lopingian Salado Formation (<2,800 ft, Nance, 2020). Within the basin, the Castile formation, a thick sequence (total thickness ~1,800 ft, Scholle et al., 2007) of cyclic laminae of deep-water gypsum/anhydrite interbedded with calcite and organics, formed due to the restriction of marine waters flowing into the basin. Gypsum/anhydrite laminae precipitated during evaporative conditions, and the calcite and organic-rich horizons were a result of seasonal "freshening" of the basin waters by both marine and freshwaters. Unlike the Castile Formation, the Salado Formation is a relatively shallow water evaporite deposit. Halite, sylvite, anhydrite, gypsum, and numerous potash minerals were precipitated. The Rustler Formation (500 ft , Nance, 2020) consists of gypsum/anhydrite, a few magnesitic and dolomitic limestone horizons, and red beds. These are mostly shallow marginal marine deposits and represents the last Permian marine deposits in the Delaware Basin.

The Rustler Formation was followed by terrestrial sabkha red beds of the Dewey Lake Formation (~350', Nance, 2020), ending Permian deposition in the area.

Beginning early in the Triassic, uplift and the breakup of Pangea resulted in another regional unconformity and the deposition of non-marine, alluvial Triassic sediments (Santa Rosa Sandstone and Chinle Formation). They are unconformably overlain by Cenozoic alluvium (which is present at the surface). Cenozoic Basin and Range tectonics resulted in the current configuration of the region and reactivated numerous Paleozoic faults.

3.2.2 Stratigraphy

The Permian rocks found in the Delaware Basin are divided into four series, the Ochoa (most recent, renamed Lopingian), Guadalupian, Leonardian (renamed Cisuralian), and Wolfcampian (oldest) (**Figure 3.2-2**). This sequence of shallow marine carbonates and thick, basinal siliciclastic deposits contains abundant oil and gas resources. The Delaware Basin high porosity sands are the main source of oil within New Mexico. In the area around the Red Hills AGI wells, Permian strata are mainly basin deposits consisting of sandstones, siltstones, shales, and lesser amounts of carbonates. Besides production in the Delaware Mountain Group, there is also production, mainly gas, in the basin Bone Spring Formation, a sequence of carbonates and siliciclastics. The injection and confining zones for RH AGI #1 and #3 are discussed below.

CONFINING/SEAL ROCKS

Permian Ochoa Series. The youngest of the Permian sediments, the Ochoan- or Lopingian-aged deposits, consists of evaporites, carbonates, and red beds. The Castile Formation is made of cyclic laminae of deepwater gypsum/anhydrite beds interlaminated with calcite and organics. This basin-occurring unit can be up to 1,800 ft thick. The Castile evaporites were followed by the Salado Formation (~1,500 ft thick). The Salado Formation is a shallow water evaporite deposit, when compared to the Castile Formation, and consists of halite, sylvite, anhydrite, gypsum, and numerous potash/bittern minerals. Salado deposits fill the basin and lap onto the older Permian shelf deposits. The Rustler Formation (up to 500 ft, Nance, 2020) consists of gypsum/anhydrite, a few magnesitic and dolomitic limestone horizons, and red beds. These are mostly shallow marginal marine deposits and represents the last Permian marine deposits in the Delaware Basin. The Ochoan evaporitic units are superb seals (usually <1% porosity and <0.01 mD permeability) and are the reason that the Permian Basin is such a hydrocarbon-rich region despite its less than promising total organic carbon (TOC) content.

INJECTION ZONE

Permian Guadalupe Series. Sediments in the underlying Delaware Mountain Group (descending, Bell Canyon, Cherry Canyon, and Brushy Canyon formations) are marine units that represent deposition controlled by eustacy and tectonics. Lowstand deposits are associated with submarine canyons incising the carbonate platform surround most of the Delaware Basin. Depositional environments include submarine fan complexes that encircle the Delaware Basin margin. These deposits are associated with submarine canyons incising the carbonate platform margin and turbidite channels, splays, and levee/overbank deposits (Figure 3.2.2-1). Additionally, debris flows formed by the failure of the carbonate margin and density currents also make up basin sediments. Isolated coarse-grained to boulder-sized carbonate debris flows and grain falls within the lowstand clastic sediments likely resulted from erosion and failure of the shelf margin during sea-level lowstands or slope failure to tectonic activity (earthquakes). Density current deposits resulted from stratified basin waters. The basal waters were likely stratified and so dense, that turbidity flows containing sands, silts and clays were unable to displace those bottom waters and instead flowed out over the density interface (Figure 3.2.2-2). Eventually, the entrained sediments would settle out in a constant rain of sediment forming laminated deposits with little evidence of traction (bottom flowing) deposition. Interbedded with the very thick lowstand sequences are thin, deep-water limestones and mudstones that represent highstand deposition up on the platform. These deposits are thickest around the edge (toe-of-slope) of the basin and thin to the basin center (Figure 3.2.2-3). The limestones are dark, finely crystalline, radiolarian-rich micrites to biomicrites. These highstand deposits are a combination of suspension and pelagic sediments that also thin towards the basin center. These relatively thin units are time equivalent to the massive highstand carbonate deposits on the shelf.

Figure 3.2.2-1 – A diagram of typical Delaware Mountain Group basinal siliciclastic deposition patterns (from Nance, 2020). The channel and splay sandstones have the best porosity, but some of the siltstones also have potential as injection zones.

Figure 3.2.2-2 – Harms' (1974) density overflow model explains the deposition of laminated siliciclastic sediments in the Delaware Basin. Low density sand-bearing fluids flow over the top of dense, saline brines at the bottom of the basin. The sands gradually drop out as the flow loses velocity creating uniform, finely laminated deposits (from Scholle et al., 2007).

Figure 3.2.2-3 – The impact of sea-level fluctuations (also known as reciprocal sedimentation) on the depositional systems within the Delaware Basin. A) A diagrammatic representation of sea-level variations impact on deposition. B) Model showing basin-wide depositional patterns during lowstand and highstand periods (from Scholle et al., 2007).

The top of the Guadalupian Series is the Lamar Limestone, which is the source of hydrocarbons found in underlying Delaware Sand (an upper member of the Bell Canyon Formation). The Bell Canyon Formation is roughly 1,000 ft thick in the Red Hills area and contains numerous turbidite input points around the basin margin (**Figures 3.2.2-3, 3.2.2-4**). During Bell Canyon deposition, the relative importance of discrete sand sources varied (Giesen and Scholle, 1990), creating network of channel and levee deposits that also varied in their size and position within the basin. Based on well log analyses, the Bell Canyon 2 and 3 had the thickest sand deposits.

Figure 3.2.2-4 – These maps of Bell Canyon Formation were created by measuring sandstone thicknesses on well logs in four regionally correlatable intervals (from Giesen and Scholle, 1990 and unpublished thesis research). The red circle on the last map surrounds the Red Hills area.

Like the Bell Canyon and Brushy Canyon formations, the Cherry Canyon Formation is approximately 1,300 ft thick and contains numerous turbidite source points. Unlike the Bell Canyon and Brushy Canyon deposits, the channel deposits are not as large (Giesen and Scholle, 1990), and the source of the sands appears to be dominantly from the eastern margin (**Figure 3.2.2-5**). Cherry Canyon 1 and 5 have the best channel development and the thickest sands. Overall, the Cherry Canyon Formation, on outcrop, is less influenced by traction current deposition than the rest of the Delaware Mountain Group deposits and is more influenced by sedimentation by density overflow currents (**Figure 3.2.2-2**). The Brushy Canyon has notably more discrete channel deposits (**Figure 3.2.2-6**) and coarser sands than the Cherry Canyon and Bell Canyon. The Brushy Canyon Formation is approximately 1,500 ft thick.

Figure 3.2.2-5— These maps of Cherry Canyon Formation were created by measuring sandstone thicknesses on well logs in five regionally correlatable intervals (from Giesen and Scholle, 1990 and unpublished thesis research). Unlike the Bell Canyon sandstones, the Cherry Canyon sands are thinner and contain fewer channels. The red circle on the last map surrounds the Red Hills area.

Within the Delaware Mountain Group in the Red Hills area, the Bell Canyon and Cherry Canyon have the best porosity (averaging 15 – 25 % within channel/splay sandstones) and permeability (averaging 2-13 mD) than the Brushy Canyon (~14% porosity, an <3 mD).

UNDERLYING CONFINING ZONE

Permian Leonard Series. The Leonardian/Cisuralian Series, located beneath the Guadalupian Series sediments, is characterized by >3,000 ft of basin-deposited carbonate and siliciclastic sediments of the Bone Spring Formation. The Bone Spring Formation is more carbonate rich than the Delaware Mountain Group deposits, but the sea-level-driven cycles of sedimentation and the associated depositional environments are similar with debris flows, turbidites, and pelagic carbonate sediments. The Bone Spring Formation contains both convential and unconventional fields within the Delaware Basin in both the sandstone-rich and carbonate-rich facies. Most of these plays usually occur within toe-of-slope carbonate and siliciclastic deposits or the turbidite facies in the deeper sections of the basin (Nance and Hamlin, 2020). The upper most Bone Spring is usually dense carbonate mudstone with limited porosity and low porosity.

3.2.3 Faulting

In this immediate area of the Permian Basin, faulting is primarily confined to the lower Paleozoic section, where seismic data shows major faulting and ancillary fracturing-affected rocks only as high up as the base of the lower Woodford Shale (**Figures 3.2-4 and 3.2-5**). Faults that have been identified in the area are normal faults associated with Ouachita related movement along the western margin of the Central Platform to the east of the RH AGI well site. The closest identified fault lies approximately 1.5 miles east of the Red Hills site and has approximately 1,000 ft of down-to-the-west structural relief. Because these faults are confined to the lower Paleozoic unit well below the injection zone for the RH AGI wells, they will not be discussed further.

3.3 Lithologic and Reservoir Characteristics

Based on the geologic analyses of the subsurface at the Red Hills Gas Plant, the uppermost portion of the Cherry Canyon Formation was chosen for acid gas injection and CO₂ sequestration for RH AGI #1 and the uppermost Delaware Mountain Group (the Bell Canyon and Cherry Canyon Formations) for RH AGI #3.

For RH AGI #1, this interval includes five high porosity sandstone units (sometimes referred to as the Manzanita) and has excellent caps above, below and between the individual sandstone units. There is no local production in the overlying Delaware Sands pool of the Bell Canyon Formation. There are no structural features or faults that would serve as potential vertical conduits. The high net porosity of the RH AGI #1 injection zone indicates that the injected H₂S and CO₂ will be easily contained close to the injection well.

For RH AGI #3, this interval has been expanded to include the five porosity zones in the Cherry Canyon sandstone as well as the sandstone horizons in the overlying Bell Canyon Formation. In the Bell Canyon Formation there are several potential high porosity sandstones, that if present in the well, would be excellent, injection zones similar to the depositional environments of the Cherry Canyon sandstones. The thickest sand is commonly referred to as the Delaware Sand within the Delaware Basin. The Delaware sand is productive, but it is not locally. Most of the sand bodies in the Bell Canyon and Cherry Canyon formations are surrounded by shales or limestones, forming caps for the injection zones. There are no structural features or faults that would serve as potential vertical conduits, and the overlying Ochoan evaporites form an excellent overall seal for the system. Even if faulting existed, the evaporites (Castile and Salado) would self-seal and prevent vertical migration out of the Delaware Mountain Group.

The geophysical logs were examined for all wells penetrating the Bell Canyon and Cherry Canyon formations within a three-mile radius of the RH AGI wells as well as 3-D seismic data. There are no faults visible within the Delaware Mountain Group in the Red Hills area. Within the seismic area, the units dip gently to the southeast with approximately 200 ft of relief across the area. Heterogeneities within both the Bell Canyon and Cherry Canyon sandstones, such as turbidite and debris flow channels, will exert a significant control over the porosity and permeability within the two units and fluid migration within those sandstones. In addition, these channels are frequently separated by low porosity and permeability siltstones and shales (Figure 3.2.2-1) as well as being encased by them. Based on regional studies (Giesen and Scholle, 1990 and Figures 3.2.2-4, 3.2.2-5), the preferred orientation of the channels, and hence the preferred fluid migration pathways, are roughly from the east to the west.

The porosity was evaluated using geophysical logs from nearby wells penetrating the Cherry Canyon Formation. **Figure 3.3-1** shows the Resistivity (Res) and Thermal Neutron Porosity (TNPH) logs from 5,050 ft to 6,650 ft and includes the proposed injection interval. Five clean sands (>10% porosity and <60 API gamma units) are targets for injection within the Cherry Canyon formation and potentially another 5 sands with >10% porosity and <60 API gamma units were identified. Ten percent was the minimum cut-off considered for adequate porosity for injection. The sand units are separated by lime mudstone and shale beds with lateral continuity. The high porosity sand units exhibit an average porosity of about 18.9%; taken over the average thickness of the clean sand units within ½ mile of the RH AGI #1. There is an average of 177 ft with an irreducible water (S_{wir}) of 0.54 (see Table 1 of the RH AGI #1 permit application). Many of the sands are very porous (average porosity of > 22%) and it is anticipated that for these more porous sands, the S_{wir} may be too high. The effective porosity (Total Porosity – Clay Bound Water) would therefore also be higher. As a result, the estimated porosity ft (PhiH) of approximately 15.4 porosity-ft should be considered to be a minimum. The overlying Bell Canyon Formation has 900 ft of sands and intervening tight limestones, shales, and calcitic siltstones with porosities as low as 4%, but as mentioned above, there are at least 5 zones with a total thickness of approximately 460 ft and containing 18 to 20% porosity. The proposed injection interval is located more than 2,650 ft above the Bone Spring Formation, which is the next production zone in the area.

Figure 3.3-1: Geophysical logs from the Bell Canyon and the Upper Cherry Canyon from the Government L Com #002 well, located 0.38 miles from the RH AGI #1 Well. The blue intervals are Bell Canyon porosity zones, and the yellow intervals are Cherry Canyon porosity zones.

3.4 Formation Fluid Chemistry

A chemical analysis (**Table 3.4-1**) of water from Federal 30 Well No. 2 (API 30-025-29069), approximately 3.9 miles away, indicates that the formation waters are highly saline (180,000 ppm NaCl) and compatible with the proposed injection.

Sp. Gravity	1.125 @ 74°F	Resistivity	0.07 @ 74°F
рН	7	Sulfate	1,240
Iron	Good/Good	Bicarbonate	2,135
Hardness	45,000	Chloride	110,000
Calcium	12,000	NaCl	180,950
Magnesium	3,654	Sod. & Pot.	52,072

Table 3.4-1: Formation fluid analysis for Cherry Canyon Formation from Federal 30 Well No. 2

Table extracted from C-108 Application to Inject by Ray Westall Associated with SWD-1067 – API 30-025-24676. Water analysis for formation water from Federal 30 #2 Well (API 30-025-29069), depth 7,335-7,345 ft, located 3.9 miles from RH AGI #1 well.

3.5 Groundwater Hydrology in the Vicinity of the Red Hills Gas Plant

Based on the New Mexico Water Rights Database from the New Mexico Office of the State Engineer, there are 15 freshwater wells located within a two-mile radius of the RH AGI wells, and only 2 water wells within one mile; the closest water well is located 0.31 miles away and has a total depth of 650 ft (**Figure 3.5-1; Appendix 3**). All water wells within the two-mile radius are shallow, collecting water from about 60 to 650 ft depth, in Alluvium and the Triassic redbeds. The shallow freshwater aquifer is protected by the surface and intermediate casings and cements in the RH AGI wells (**Figures Appendix 1-1 and Appendix 1.2**). While the casings and cements protect shallow freshwater aquifers, they also serve to prevent CO₂ leakage to the surface along the borehole.

Figure 3.5-1: Reported Water Wells within the MMA for the RH AGI Wells.

3.6 Historical Operations

3.6.1 Red Hills Site

On July 20, 2010, Agave Energy Company (Agave) filed an application with NMOCD to inject treated acid gas into an acid gas injection well. Agave built the Red Hills Gas Processing Plant and drilled RH AGI #1 in 2012-13. However, the well was never completed and never put into service because the plant was processing only sweet gas (no H₂S). Lucid purchased the plant from Agave in 2016 and completed the RH AGI #1 well. TND acquired Lucid's Red Hills assets in 2022. **Figure 3.6.1-1** shows the location of fixed H₂S and lower explosive limit (LEL) detectors in the immediate vicinity of the RH AGI wells. **Figure 3.6.1-2** shows a process block flow diagram.

Figure 3.6.1-1: Diagram showing the location of fixed H₂S and lower explosive limit (LEL) detectors in the immediate vicinity of the RH AGI wells.

Figure 3.6.1-2: Process Block Flow Diagram. RH AGI #2 is temporarily abandoned. M1 – M6: volumetric flow meters; C1 and C2: compressors; ST1 and ST2: sour treaters

3.6.2 Operations within the MMA for the RH AGI Wells

NMOCD records identify a total of 22 oil- and gas-related wells within the MMA for the RH AGI wells (see **Appendix 4**). **Figure 3.6.2-1** shows the geometry of producing and injection wells within the MMA for the RH AGI wells. **Appendix 4** summarizes the relevant information for those wells. All active production in this area is targeted for the Bone Spring and Wolfcamp zones, at depths of 8,900 to 11,800 ft, the Strawn (11,800 to 12,100 ft) and the Morrow (12,700 to 13,500 ft). All of these productive zones lie at more than 2,000 ft below the RH AGI #1 and AGI #3 injection zone.

Figure 3.6.2-1: Location of all oil- and gas-related wells within the MMA for the RH AGI wells. Both the surface hole locations (SHL) and bottom hole locations (BHL) are labeled on the figure. For clarity, only the last four digits of the API numbers are used in labeling the wells.

3.7 Description of Injection Process

The Red Hills Gas Plant, including the existing RH AGI #1 well, is in operation and staffed 24-hours-a-day, 7-days-a week. The plant operations include gas compression, treating and processing. The plant gathers and processes produced natural gas from Lea and Eddy Counties in New Mexico. Once gathered at the plant, the produced natural gas is compressed, dehydrated to remove the water content, and processed to remove and recover natural gas liquids. The processed natural gas and recovered natural gas liquids are then sold and shipped to various customers. The inlet gathering lines and pipelines that bring gas into the plant are regulated by U.S. Department of Transportation (DOT), National Association of Corrosion Engineers (NACE) and other applicable standards which require that they be constructed and marked with appropriate warning signs along their respective rights-of-way. TAG from the plant's sweeteners will be routed to a central compressor facility, located west of the well head. Compressed TAG is then routed to the wells via high-pressure rated lines. **Figure 3.7-1** is a schematic of the AGI facilities.

The approximate composition of the TAG stream is: 80% CO₂, 20% H_2S , with Trace Components of $C_1 - C_6$ (methane – hexane) and Nitrogen. The anticipated duration of injection is 30 years.

Figure 3.7-1: Schematic of surface facilities and RH AGI wells at the Red Hills Gas Processing Plant

3.8 Reservoir Characterization Modeling

The modeling and simulation focused on the Bell Canyon and Cherry Canyon formations as the main injection target zone for acid gas storage. The RH AGI #1 well (API 30-025-40448) and the RH AGI #3 well (API 30-025-51970) are the approved injectors for treated acid gas injection by NMOCD and will serve as the injection wells in the model under approved disposal timeframe and maximum allowable injection pressure. RH AGI #1 well is completed in the Cherry Canyon formation between 6,230 feet to 6,583 feet (MD). The RH AGI #3 well will be completed in both the Bell Canyon and Cherry Canyon formations between approximately 5,245 feet to 6,645 feet (MD).

Schlumberger's Petrel[®] (Version 2023.1) software was used to construct the geological models used in this work. Computer Modeling Group (CMG)'s CMG-GEM[®] (Version 2023.10) was used in the reservoir simulations presented in this MRV plan. CMG-WINPROP[®] (Version 2023.10) was used to perform PVT calculation through Equation of States and properties interactions among various compositions to feed the hydrodynamic modeling performed by CMG-GEM[®]. The hydrodynamical model considered aqueous, gaseous, and supercritical phases, and simulates the storage mechanisms including structural trapping, residual gas trapping, and solubility trapping. Injected TAG may exist in the aqueous phase as dissolved state and the gaseous phase as supercritical state. The model was validated through matching the historical injection data of RH AGI #1 well and will be reevaluated periodically as required by the State permitting agency.

The static model is constructed with well tops and licensed 3D seismic data to interpret and delineate the structural surfaces of a layer within the caprock (Lamar Limestone) and its overlaying, underlying formations. The geologic model covers a 3.5-mile by 3.3-mile area. No distinctive geological structures such as faults are identified within the geologic model boundary. The model is gridded with 182 x 167 x 18, totaling 547,092 cells. The average grid dimension of the active injection area is 100 feet square. **Figure 3.8-1** shows the simulation model in 3D view. The porosity and permeability of the model is populated through existing well logs. The range of the porosity is between 0.01 to 0.31. The initial permeability are interpolated between 0.02 to 155 millidarcy (mD), and the vertical permeability anisotropy was 0.1. (**Figure 3.8-2 and Figure 3.8-3**). These values are validated and calibrated with the historical injection data of RH AGI #1 well since 2018 as shown in **Figures 3.8-4**, **3.8-5**, **and 3.8-6**.

The simulation model is calibrated with the injection history of RH AGI #1 well since 2018. Simulation studies were further performed to estimate the reservoir responses when predicting TAG injection for 30 years through both RH AGI #1 well (2018 – 2048) and RH AGI #3 (2024 - 2054). RH AGI #2 well is temporarily abandoned as of the submission of this document. RH AGI #1 is simulated to inject with the average rate of the last 5 years, 1.2 MMSCF, in the prediction phase. RH AGI #3 is simulated to inject with permitted injection rate, 13 MMSCF, with 1,767 psi maximum surface injection pressure constraint approved by State agency. The simulation terminated at year 2084, 30 years after the termination of all injection activities, to estimate the maximum impacted area during post injection phase.

During the calibration period (2018 – 2023), the historical injection rates were used as the primary injection control, and the maximum bottom hole pressures (BHP) are imposed on wells as the constraint, calculated based on the approved maximum injection pressure. This restriction is also estimated to be less than 90% of the formation fracture pressure calculated at the shallowest perforation depth of each well to ensure safe injection operations. The reservoir properties are tuned to match the historical injection until it was reasonably matched. **Figure 3.8-4** shows that the historical injection rates from the RH AGI #1 well in the Cherry Canyon Formation. **Figure 3.8-5** shows the BHP response of RH AGI #1 during the history matching phase.

During the forecasting period, linear cumulative injection behavior indicates that the Cherry Canyon and Bell Canyon formations received the TAG stream freely. **Figure 3.8-6** shows the cumulative disposed H₂S and CO₂ of each AGI injectors separately in gas mass. The modeling results indicate that the Cherry Canyon and Bell Canyon formations are capable of safely storing and containing the proposed gas volume without violating the permitted

rate and pressure. **Figure 3.8-7** shows the gas saturation represented TAG plume at the end of 30-year forecasting in 3D view. **Figure 3.8-8** shows the extent of the plume migration in a map view at 4 key time steps. It can be observed that the size of the TAG is very limited and mainly stayed within Targa's Red Hills facility at the end of injection. In the year 2084, after 30 years of monitoring, the injected gas remained trapped in the reservoir and there was no significant migration of TAG footprint observed, compared to that at the end of injection.

In summary, after careful reservoir engineering review and numerical simulation study, our analysis shows that the Bell Canyon and Cherry Canyon formations can receive treated acid gas (TAG) at the proposed injection rate and permitted maximum surface injection pressure permitted by New Mexico Oil Conservation Committee. The formation will safely contain the injected TAG volume within the proposed injection and post-injection timeframe. The proposed injection well will allow for the sequestration while preventing associated environmental impacts.

Figure 3.8-1: 3D view of the simulation model of the Red Hills AGI #1 and #3 AGI wells, containing Salado-Castile formation, Lamar limestone, Bell Canyon, and Cherry Canyon formations. Color legends represents the elevation of layers.

Figure 3.8-2: Porosity estimation using available well data for the simulation domain.

Figure 3.8-3: Permeability estimation using available well data for simulation domain.

Figure 3.8-4: shows the historical injection rate and total gas injected from Red Hills AGI #1 well (2018 to 2023)

Figure 3.8-5: shows the historical bottom hole pressure response from Red Hills AGI #1 well (2018 to 2023)

Figure 3.8-6: shows the prediction of cumulative mass of injected CO₂ and H₂S of Red Hills AGI #1 and #3 wells (2018 to 2054).

Figure 3.8-7: shows the free phase TAG (represented by gas saturation) at the end of 30-year post-injection monitoring (2054) in 3D view.

Figure 3.8-8: shows the free phase TAG plume at year 2030, 2035, 2045, 2055 (1-year end of injection) in a map view.

4 Delineation of the Monitoring Areas

In determining the monitoring areas below, the extent of the TAG plume is equal to the superposition of plumes in any layer for any of the model scenarios described in Section 3.8.

4.1 MMA – Maximum Monitoring Area

As defined in Subpart RR, the maximum monitoring area (MMA) is equal to or greater than the area expected to contain the free phase CO₂ plume until the CO₂ plume has stabilized plus an all-around buffer zone of at least one-half mile. **Figures 4.1-1** shows the MMA as defined by the most conservative extent of the TAG plume at year 2054 plus a 1/2-mile buffer.

Targa intends to define the active monitoring area (AMA) as the same area as the MMA.

4.2 AMA – Active Monitoring Area

The Active Monitoring Area (AMA) is shown in **Figure 4.1-1**. The AMA is consistent with the requirements in 40 CFR 98.449 because it is the area projected: (1) to contain the free phase CO_2 plume for the duration of the project (year t, t = 2054), plus an all-around buffer zone of one-half mile. (2) to contain the free phase CO_2 plume for at least 5 years after injection ceases (year t + 5, t + 5 = 2059).

Figure 4.1-1: Active monitoring area (AMA) for TND Red Hills AGI #1, #2 (temporarily abandoned) and #3 wells at the end of injection (2054, purple polygon) and 5 years post-monitoring (2059, yellow polygon). Maximum monitoring area (MMA) is shown in red shaded area.

5 Identification and Evaluation of Potential Leakage Pathways to the Surface

Subpart RR at 40 CFR 448(a)(2) requires the identification of potential surface leakage pathways for CO_2 in the MMA and the evaluation of the likelihood, magnitude, and timing of surface leakage of CO_2 through these pathways.

Through the site characterization required by the NMOCD C-108 application process for Class II injection wells, the geologic characterization presented in Section 3, and the reservoir modeling described in Section 3.8, TND has identified and evaluated the potential CO_2 leakage pathways to the surface.

A qualitative evaluation of each of the potential leakage pathways is described in the following paragraphs. Risk estimates were made utilizing the National Risk Assessment Partnership (NRAP) tool, developed by five national laboratories: NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL). The NRAP collaborative research effort leveraged broad technical capabilities across the Department of Energy (DOE) to develop the integrated science base, computational tools, and protocols required to assess and manage environmental risks at geologic carbon storage sites. Utilizing the NRAP tool, TND conducted a risk assessment of CO₂ leakage through various potential pathways including surface equipment, existing and approved wellbores within MMA, faults and fractures, and confining zone formations.

5.1 Potential Leakage from Surface Equipment

Due to the corrosive nature of CO₂ and H₂S, there is a potential for leakage from surface equipment at sour gas facilities. Preventative risk mitigation includes adherence to relevant regulatory requirements and industry standards governing the construction, operation, and maintenance of gas plants. Specifically, NMAC 19.15.26.10 requires injection well operators to operate and maintain "surface facilities in such a manner as will confine the injected fluids to the interval or intervals approved and prevent surface damage or pollution resulting from leaks, breaks or spills."

Operational risk mitigation measures relevant to potential CO₂ emissions from surface equipment include a schedule for regular inspection and maintenance of surface equipment. Additionally, TND implements several methods for detecting gas leaks at the surface. Detection is followed up by immediate response. These methods are described in more detail in sections 6 and 7.

Although mitigative measures are in place to minimize CO_2 emissions from surface equipment, such emissions are possible. Any leaks from surface equipment would result in immediate (timing) emissions of CO_2 to the atmosphere the magnitude of which would depend on the duration of the leak and the operational conditions at the time and location of the leak.

The injection well and the pipeline that carries CO_2 to it are the most likely surface components of the system to allow CO_2 to leak to the surface. The accumulation of wear and tear on the surface components, especially at the flanged connection points, is the most probable source of the leakage. Another possible source of leakage is the release of air through relief valves, which are designed to alleviate pipeline overpressure. Leakage can also occur when the surface components are damaged by an accident or natural disaster, which releases CO_2 . Therefore, TND infers that there is a potential for leakage via this route. Depending on the component's failure mode, the magnitude of the leak can vary greatly. For example, a rapid break or rupture could release thousands of pounds of CO_2 into the atmosphere almost instantly, while a slowly deteriorating seal at a flanged connection could release only a few pounds of CO_2 over several hours or days. Surface component leakage or venting is only a concern during the injection operation phase. Once the injection phase is complete, the surface components will no longer be able to store or transport CO_2 , eliminating any potential risk of leakage.

5.2 Potential Leakage from Approved, Not Yet Drilled Wells

5.2.1 RH AGI #3

TND is currently drilling the RH AGI #3 well within the MMA. To minimize the likelihood of leaks from new wells, NMAC 19.15.26.9 regarding the casing and cementing of injection wells requires operators to case injection wells "with safe and adequate casing or tubing so as to prevent leakage and set and cement the casing or tubing to prevent the movement of formation or injected fluid from the injection zone into another injection zone or to the surface around the outside of the casing string." To minimize the magnitude and duration (timing) of CO₂ leakage to the surface, NMAC 19.15.16.12 requires the use of "blowout preventers in areas of high pressure at or above the projected depth of the well." These requirements apply to any other new well drilled within the MMA for this MRV plan.

TND realizes that when they drill the RH AGI #3, they will be drilling into a reservoir in which they have been injecting H₂S and CO₂ for many years. Therefore, for safety purposes, they will be implementing enhanced safety protocols to ensure that no H₂S or CO₂ escapes to the surface during the drilling of RH AGI #3. Enhanced measures include:

- Using managed pressure drilling equipment and techniques thereby minimizing the chance of any gas from entering the wellbore
- Using LCM (loss control material) at a higher-than-normal rate to fill in the pockets of the wellbore thereby minimizing the chance of gas from entering the wellbore while drilling
- Monitoring H₂S at surface at many points to assure operators that we are successfully keeping any possible gas pressures from impacting the drilling operation
- Employing a high level of caution and care while drilling through a known H₂S injection zone, including use of slower drilling processes and more vigilant mud level monitoring in the returns while drilling into the RH AGI #1 injection zone

By drilling through a zone containing pressurized TAG there is a possibility of CO₂ emission to the surface from the pressurized zone. The emission would be nearly immediate. The magnitude of such an emission would be estimated based on field conditions at the time of the detected leak. The safety protocols described above are in place to prevent or minimize the magnitude of such a leak should one occur.

Due to these safeguards and the continuous monitoring of Red Hills well's operating parameters by the distributed control system (DCS), TND considers that while the likelihood of surface emission of CO_2 is possible, the magnitude of such a leak would be minimal as detection of the leak would be nearly instantaneous followed by immediately shutting in the well and remediation.

5.2.2 Horizontal Wells

The table in **Appendix 3** and **Figure 4.1-1** shows a number of horizontal wells in the area, many of which have approved permits to drill but which are not yet drilled. If any of these wells are drilled through the Bell Canyon injection zone for RH AGI #3 and the Cherry Canyon injection zone for RH AGI #1, they will be required to take special precautions to prevent leakage of TAG minimizing the likelihood of CO₂ leakage to the surface. This requirement will be made by NMOCD in regulating applications for permit to drill (APD) and in ensuring that the operator and driller are aware that they are drilling through an H₂S injection zone in order to access their target production formation. NMAC 19.15.11 for Hydrogen Sulfide Gas includes standards for personnel and equipment safety and H₂S detection and monitoring during well drilling, completion, well workovers, and well servicing operations all of which apply for wells drilled through the RH AGI wells TAG plume.

Due to the safeguards described above, the fact there are no proposed wells for which the surface hole location (SHL) lies within the simulated TAG plume and considering the NRAP risk analysis described here in

Section 5, TND considers the likelihood of CO_2 emissions to the surface via these horizontal wells to be highly improbable to impossible.

5.3 Potential Leakage from Existing Wells

Existing oil and gas wells within the MMA as delineated in Section 4 are shown in **Figure 3.6.2-1** and detailed in **Appendix 4**.

TND considered all wells completed and approved within the MMA in the NRAP risk assessment. The wells may or may not penetrate the confining zone and storage reservoir. Even though the risk of CO_2 leakage through the wells that did not penetrate confining zones is most likely impossible, TND did not omit any potential source of leakage in the NRAP analysis. If leakage through wellbores happens, the worst-case scenario is predicted using the NRAP tool to quantitatively assess the amount of CO_2 leakage through existing and approved wellbores inside the MMA. Thirty-nine existing and approved wells inside MMA were identified and located in the model. The reservoir properties, well data, formation stratigraphy, and MMA area were incorporated into the NRAP tool to forecast the rate and mass of CO_2 leakage. The worst scenario is that all of the 39 wells were located right at the source of $CO_2 -$ the injection well's location. In this case, the maximum leakage rate of one well is approximately 7e-6 kg/s. This value is the maximum amount of CO_2 leakage, 220 kg/year, and occurs in the second year of injection, then gradually reduces to 180 kg at the end of year 30. Comparing the total amount of CO_2 injected (assuming 5 MMSCFD of supercritical CO_2 injected continuously for 30 years), the leakage mass amounts to 0.0054% of the total CO_2 injected. This leakage can be considered safely negligible. Also, this worst-case scenario, where 39 wells are located right at the injection point, is impossible in reality. Therefore, this leakage pathway can be considered improbable.

5.3.1 Wells Completed in the Bell Canyon and Cherry Canyon Formations

The only wells completed in the Bell Canyon and Cherry Canyon Formations within the MMA are the RH AGI #1 and #3 wells and the 30-025-08371 well which was completed at a depth of 5,425 ft. This well is within the Red Hills facility boundary and is plugged and abandoned (see **Appendix 9** for plugging and abandonment (P&A) record). **Appendix 1** includes schematics of the RH AGI wells construction showing multiple strings of casing all cemented to surface. Injection of TAG occurs through tubing with a permanent production packer set above the injection zone.

Due to the robust construction of the RH AGI wells, the plugging of the well 30-025-08371 above the Bell Canyon, and considering the NRAP analysis described above, TND considers that, while the likelihood of CO₂ emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.3.2 Wells Completed in the Bone Spring / Wolfcamp Zones

Several wells are completed in the Bone Spring and Wolfcamp oil and gas production zones as described in Section 3.6.2. These productive zones lie more than 2,000 ft below the RH AGI wells injection zone minimizing the likelihood of communication between the RH AGI well injection zones and the Bone Spring / Wolfcamp production zones. Construction of these wells includes surface casing set at 1,375 ft and cemented to surface and intermediate casing set at the top of the Bell Canyon at depths of from 5,100 to 5,200 ft and cemented through the Permian Ochoan evaporites, limestone and siltstone (**Figure 3.2-2**) providing zonal isolation preventing TAG injected into the Bell Canyon and Cherry Canyon formations through RH AGI wells from leaking upward along the borehole in the event the TAG plume were to reach these wellbores. **Figure 4.1-1** shows that the modeled TAG plume extent after 30 years of injection and 5 years of post-injection stabilization does not extend to well boreholes completed in the Bone Spring / Wolfcamp production zones thereby indicating that these wells are not likely to be pathways for CO₂ leakage to the surface. Due to the construction of these wells, the fact that the modeled TAG plume does not reach the SHL of these wells and considering the NRAP analysis described in the introductory paragraph of Section 5, TND considers that, while the likelihood of CO₂ emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.3.3 Wells Completed in the Siluro-Devonian Zone

One well penetrated the Devonian at the boundary of the MMA - EOG Resources, Government Com 001, API # 30-025-25604, TVD = 17,625 ft, 0.87 miles from RH AGI #3. This well was drilled to a total depth of 17,625 ft on March 5, 1978, but plugged back to 14,590 ft, just below the Morrow, in May of 1978. Subsequently, this well was permanently plugged and abandoned on December 30, 2004, and approved by NMOCD on January 4, 2005 (see **Appendix 9** for P&A records). The approved plugging provides zonal isolation for the Bell Canyon and Cherry Canyon injection zones minimizing the likelihood that this well will be a pathway for CO_2 emissions to the surface from either injection zone.

Due to the location of this well at the edge of the MMA and considering the NRAP analysis described in the introductory paragraph of Section 5, TND considers that, while the likelihood of CO₂ emission to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.3.4 Groundwater Wells

The table in Appendix 3 lists 15 water wells within a 2-mile radius of the RH AGI wells, only 2 of which are within a 1-mile radius of and within the MMA for the RH AGI wells (**Figure 3.5-1**). The deepest ground water well is 650 ft deep The evaporite sequence of the Permian Ochoan Salado and Castile Formations (see Section 3.2.2) provides an excellent seal between these groundwater wells and the Cherry Canyon injection zone of the RH AGI #1 well. Therefore, it is unlikely that these two groundwater wells are a potential pathway of CO₂ leakage to the surface. Nevertheless, the CO₂ surface monitoring and groundwater mediate response thereby minimizing the magnitude of CO₂ leakage volume via this potential pathway.

Due to the shallow depth of the groundwater wells within the MMA relative to the depth of the RH AGI wells and considering the NRAP analysis described in the introductory paragraph in Section 5, TND considers that, while the likelihood of CO_2 emissions to the surface via this potential leakage pathway is possible to improbable, the magnitude of such a leak to be minimal.

5.4 Potential Leakage through the Confining / Seal System

The site characterization for the injection zone of the RH AGI wells described in Sections 3.2.2 and 3.3 indicates a thick sequence of Permian Ochoan evaporites, limestone, and siltstones (**Figure 3.2-2**) above the Bell Canyon and Cherry Canyon Formations and no evidence of faulting. Therefore, it is unlikely that TAG injected into the Bell Canyon and Cherry Canyon Formations will leak through this confining zone to the surface. Limiting the injection pressure to less than the fracture pressure of the confining zone will minimize the likelihood of CO_2 leakage through this potential pathway to the surface.

Leakage through a confining zone happens at low-permeability shale formations containing natural fractures. The injection zone for the RH AGI #1 and #3 is the Delaware Group Formation (Bell Canyon and Cherry Canyon), which lies under the Castile and Salado formations with less than 0.01 mD permeability acting as the seals. Therefore, TND took leakage through confining zones into consideration in the NRAP risk assessment. The worst-case scenario is defined as leakage through the seal happening right above the injection wells, where CO_2 saturation is highest. However, this worst-case scenario of leakage only shows that 0.0017% of total CO_2 injection in 30 years was leaked from the injection zone through the seals. As we go further from the source of CO_2 , the likelihood of such an event will diminish proportionally with the distance from the source. Considering that this is the greatest amount of CO_2 leakage in this worst-case

scenario, if the event happens, the leak must pass upward through the confining zone, the secondary confining strata that consists of additional low permeability geologic units, and other geologic units, TND concludes that the risk of leakage through this pathway is highly improbable to nearly impossible.

5.5 Potential Leakage due to Lateral Migration

The characterization of the sand layers in the Cherry Canyon Formation described in Section 3.3 states that these sands were deposited by turbidites in channels in submarine fan complexes, each sand is encased in low porosity and permeability fine-grained siliciclastics and mudstones with lateral continuity. Regional consideration of their depositional environment suggests a preferred orientation for fluid and gas flow would be south-to-north along the channel axis. However, locally the high net porosity of the RH AGI #1 and #3 injection zones indicates adequate storage capacity such that the injected TAG will be easily contained close to the injection well, thus minimizing the likelihood of lateral migration of TAG outside the MMA due to a preferred regional depositional orientation.

Lateral migration of the injected TAG was addressed in detail in Section 3.3. Therein it states that the units dip gently to the southeast with approximately 200 ft of relief across the area. Heterogeneities within both the Bell Canyon and Cherry Canyon sandstones, such as turbidite and debris flow channels, will exert a significant control over the porosity and permeability within the two units and fluid migration within those sandstones. In addition, these channels are frequently separated by low porosity and permeability siltstones and shales as well as being encased by them.

Based on the discussion of the channeled sands in the injection zone, TND considers that the likelihood of CO₂ to migrate laterally along the channel axes is possible. However, that the turbidite sands are encased in low porosity and permeability fine-grained siliciclastics and mudstones with lateral continuity and that the injectate is projected to be contained within the injection zone close to the injection wells minimizes the likelihood that CO₂ will migrate to a potential conduit to the surface.

5.6 Potential Leakage through Fractures and Faults

Prior to injection, a thorough geological characterization of the injection zone and surrounding formations was performed (see Section 3) to understand the geology as well as identify and understand the distribution of faults and fractures. **Figure 5.6-1** shows the fault traces in the vicinity of the Red Hill plant. The faults shown on **Figure 5.6-1** are confined to the Paleozoic section below the injection zone for the RH AGI wells. No faults were identified in the confining zone above the Bell Canyon and Cherry Canyon injection zone for the RH AGI wells.

No faults were identified within the MMA which could potentially serve as conduits for surface CO₂ emission. The closest identified fault lies approximately 1.5 miles east of the Red Hills site and has approximately 1,000 ft of down-to-the-west structural relief. Because this fault is confined to the lower Paleozoic unit well below the injection zone for the RH AGI wells, there is minimal chance it would be a potential leakage pathway. This inference is supported by the NRAP simulation result. The CO₂ leakage rate through the aforementioned fault is zero, which is understandable. Therefore, TND concludes that the risk of leakage through this pathway is highly improbable.

Figure 5.6-1: New Mexico Tech Seismological Observatory (NMTSO) seismic network close to the operations, recent seismic events, and fault traces (2022-2023). Note: Fault traces are from Horne et al 2021 for faults in the Paleozoic.

5.7 Potential Leakage due to Natural / Induced Seismicity

The New Mexico Tech Seismological Observatory (NMTSO) monitors seismic activity in the state of New Mexico. A search of the database shows no recent seismic events close to the Red Hills operations. The closest recent, as of 4 September 2023, seismic events are:

- 7.5 miles, 2022-09-03, Magnitude 3
- 8 miles, 2022-09-02, Magnitude 2.23
- 8.6 miles, 2022-10-29, Magnitude 2.1

Figure 5.6-1 shows the seismic stations and recent seismic events in the area around the Red Hills site.

Due to the distance between the Red Hills AGI wells and the recent seismic events, the magnitude of these events, and the fact that TND injects at pressures below fracture opening pressure, TND considers the likelihood of CO₂ emissions to the surface caused by seismicity to be improbable.

Monitoring of seismic events in the vicinity of the Red Hills AGI wells is discussed in Section 6.7.

6 Strategy for Detecting and Quantifying Surface Leakage of CO₂

Subpart RR at 40 CFR 448(a)(3) requires a strategy for detecting and quantifying surface leakage of CO₂. TND will employ the following strategy for detecting, verifying, and quantifying CO₂ leakage to the surface through the potential pathways for CO₂ surface leakage identified in Section 5. TND considers H₂S to be a proxy for CO₂ leakage to the surface and as such will employ and expand upon methodologies detailed in their H₂S Contingency plan to detect, verify, and quantify CO₂ surface leakage. **Table 6-1** summarizes the leakage monitoring of the identified leakage pathways. Monitoring will occur for the duration of injection and the 5-year post-injection period.

Potential Leakage Pathway	Detection Monitoring
Surface Equipment	 Distributed control system (DCS) surveillance of plant operations Visual inspections Inline inspections Fixed in-field gas monitors/CO₂ flux monitoring network Personal and hand-held gas monitors
Drilling of new RH AGI #3 well	 Vigilant monitoring of fluid returns during drilling Multiple gas monitoring points around drilling operations – personal and hand-held gas monitors
Existing RH AGI Well	 DCS surveillance of well operating parameters Visual inspections Mechanical integrity tests (MIT) Fixed in-field gas monitors/CO₂ flux monitoring network Personal and hand-held gas monitors In-well P/T sensors Groundwater monitoring
Fractures and Faults	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring
Confining Zone / Seal	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring
Natural / Induced Seismicity	DCS surveillance of well operating parametersSeismic monitoring

Table 6-1: Summary of Leak Detection Monitoring

Lateral Migration	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring
Additional Monitoring	Groundwater monitoringSoil flux monitoring

6.1 Leakage from Surface Equipment

TND implements several tiers of monitoring for surface leakage including frequent periodic visual inspection of surface equipment, use of fixed in-field and personal H₂S sensors, and continual monitoring of operational parameters.

Leaks from surface equipment are detected by TND field personnel, wearing personal H₂S monitors, following daily and weekly inspection protocols which include reporting and responding to any detected leakage events. TND also maintains in-field gas monitors to detect H₂S and CO₂. The in-field gas monitors are connected to the DCS housed in the onsite control room. If one of the gas detectors sets off an alarm, it would trigger an immediate response to address and characterize the situation.

The following description of the gas detection equipment at the Red Hills Gas Processing Plant was extracted from the H₂S Contingency Plan:

"Fixed Monitors

The Red Hills Plant has numerous ambient hydrogen sulfide detectors placed strategically throughout the Plant to detect possible leaks. Upon detection of hydrogen sulfide at 10 ppm at any detector, visible beacons are activated, and an alarm is sounded. Upon detection of hydrogen sulfide at 90 ppm at any detector, an evacuation alarm is sounded throughout the Plant at which time all personnel will proceed immediately to a designated evacuation area. The Plant utilizes fixed-point monitors to detect the presence of H₂S in ambient air. The sensors are connected to the Control Room alarm panel's Programmable Logic Controllers (PLCs), and then to the Distributed Control System (DCS). The monitors are equipped with amber beacons. The beacon is activated at 10 ppm. The plant and AGI well horns are activated with a continuous warbling alarm at 10 ppm and a siren at 90 ppm. All monitoring equipment is Red Line brand. The Control Panel is a 24 Channel Monitor Box, and the fixed point H₂S Sensor Heads are model number RL-101.

The Plant will be able to monitor concentrations of H_2S via H_2S Analyzers in the following locations:

- Inlet gas of the combined stream from Winkler and Limestone
- Inlet sour liquid downstream of the slug catcher
- Outlet Sweet Gas to Red Hills 1
- Outlet Sweet Liquid to Red Hills Condensate Surge

The AGI system monitors can also be viewed on the PLC displays located at the Plant. These sensors are all shown on the plot plan (see **Figure 5.1-1**). This requires immediate action for any occurrence or malfunction. All H₂S sensors are calibrated monthly.

Personal and Handheld H₂S Monitors

All personnel working at the Plant wear personal H₂S monitors. The personal monitors are set to alarm and vibrate at 10 ppm. Handheld gas detection monitors are available at strategic locations around the Plant so that plant personnel can check specific areas and equipment prior to initiating maintenance or other work. The handheld gas detectors have sensors for oxygen, LEL (explosive hydrocarbon atmospheres), H₂S and carbon dioxide (CO₂)."

6.2 Leakage from Approved Not Yet Drilled Wells

Special precautions will be taken in the drilling of any new wells that will penetrate the injection zones as described in Section 5.2.1 for RH AGI #3 including more frequent monitoring during drilling operations (see **Table 6-1**). This applies to TND and other operators drilling new wells through the RH AGI injection zone within the MMA.

6.3 Leakage from Existing Wells

6.3.1 RH AGI Wells

As part of ongoing operations, TND continuously monitors and collects flow, pressure, temperature, and gas composition data in the data collection system. These data are monitored continuously by qualified technicians who follow response and reporting protocols when the system delivers alerts that data is not within acceptable limits.

To monitor leakage and wellbore integrity, two pressure and temperature gauges as well as Distributed Temperature Sensing (DTS) were deployed in TND's RH AGI #1 well. One gauge is designated to monitor the tubing ID (reservoir) pressure and temperature and the second gauge monitors the annular space between the tubing and the long string casing (**Figure 6.2-1**). A leak is indicated when both gauges start reading the same pressure. DTS is clamped to the tubing, and it monitors the temperature profiles of the annulus from 6,159 ft to surface. DTS can detect variation in the temperature profile events throughout the tubing and or casing. Temperature variation could be an indicator of leaks. Data from temperature and pressure gauges is recorded by an interrogator housed in an onsite control room. DTS (temperature) data is recorded by a separate interrogator that is also housed in the onsite control room. Data from both interrogators are transmitted to a remote location for daily real time or historical analysis.

If operational parameter monitoring and MIT failures indicate a CO_2 leak has occurred, TND will take actions to quantify the leak based on operating conditions at the time of the detection including pressure at the point of emission, flowrate at the point of emission, duration of the emission, and estimation of the size of the emission site.

F	HALLIBURTON Lucid Bed Ullis AGL4 WSD. Tray Gillen / Michael Ferrier						
Installation			Red Hills AGI 1 WSP - Troy Gillen / Michael Fo Lea County New Mexico Sales Rep - Lynn Talley (432) 63				
Installation Donth		Longth	lte	2/3/21 - 2/28/21 Tool Specialists: Carey Lehmann, Jonathan Pl	nillips, Jose	Vargas	
2		18.50	18.50	015.	KB		10
のためのない	20	22.90 64.05	4.40 41.15	1	20) Hanger Sub 3 1/2" 9.2# CRA VAMTOP x 7.7# VAM Ace Pin 19) 3 1/2" 7.7# VAM ACE 125K G3 Tubing (Slick Joint) Pan Eight Subs 8' 8' 6' 6' 4' 4' 2' 2'	7.000 3.500	3.000 3.035
	■1 8	103.97	39 . 92		18) 3 1/2" 7.7# VAM ACE 125K G3 Spaceout Subs	3.500	3.035
0.00	↓ 17	235.95	131.98	3	17) 3 1/2" 7.7# VAM ACE 125K G3 Tubing	3.500	3.035
100 M	16	241.95	6.00		16) 6' x 3 1/2" 7.7# CRA VAM ACE Box x 9.2# VAMTOP Pin	3.540	2.959
のため、彼	15	246.30	4.35		15) 3 1/2" NE HES SSSV Nickel Alloy 925 w/Alloy 825 Control Line 3 1/2" 9.2# VAMTOP Box x Pin	5.300	2.813
	14	252.29	5.99		14) 6' x 3 1/2" 9.2# CRA VAMTOP Box x 7.7# VAM ACE Pin	3.540	2.959
0.00	1	6,140.23	5,887.94	134	13) 3 1/2" 7.7# VAM ACE 125K G3 Tubing 12) 3 1/2" 7.7# VAM ACE Box x 9.2# VAMTOP Pin CRA Crossover	3.500 3.830	3.305 2.959
Set 2	11				11) 2.813" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy 925	4.073	2.813
の日本	10	6,153.72	13.49		10) 6' x 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy G3 Sub 13.49' Length Includes Line Items 10, 11 & 12	3.540	2.959
10.00	9	6.159 Tubina 6.162.6 Annular	P/T P/T	H	9) Baker PT Sensor Mandrel 3 1/2" 9.2# VAMTOP Box x Pin 6' VAMTOP 9.2# CRA Tubing Sub Above & Below Gauge Mdl	5.200	2.992
8-15-15-15-15-15-15-15-15-15-15-15-15-15-	8	6,161.23	7.51		8) 4.00" BWS Landed Seal Asmbly 9.2# VAM TOP Nickel Alloy 925 7.51' Length Includes Line Items 8 & 9	4.470	2.959
West Land		6,164.55	3.32		7) 7" 26-32# x 4.00" BWS Packer Nickel Alloy 925 Casing Collar @ 6,160.6' WL Measurement	5.875	4.000
たいのである	4 6	6,172.05	7.5		6) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5 .032	4.000
50.03	5	6,172.88	0.83		5) 4.00" PBR Adapter x 9.2# VAMTOP BxP Nickel Alloy 925	5.68 0	2.959
VE CO	4 4	6,181.19	8.31		4) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub Nickel Alloy G3	3.540	2.959
12.00	3	6 ,182.52	1.33		3) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy 925 #102204262	4.073	2.562
100.00	2	6,184.29	1.77		2) Straight Slot Locator Seal Assembly Above Top Of Packer	4.450	2.880
S.Co.	3 - 1		6,186.06		1) BWD Permanent Packer. WL Measured Depth Previously 6189'	5.875	4.000
10.00					1a) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5.660	2.965
Set 3	1a				1b) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
					1c) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel,	2.920	2.562
10.00					1d) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
読むの	↓ 1b				1e) 2.562" RN Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel	3.920	2.321
1000	1c				1f) Re-Entry Guide / POP	3.950	3.000
10.00	1d						
の日本	1e						
State and	■						

Figure 6.2-1: Well Schematic for RH AGI #1 showing installation of P/T sensors

	- 8	6,161.23	7.51	8) 4.00" BWS Landed Seal Asmbly 9.2# VAM TOP Nickel Alloy 925 7.51' Length Includes Line Items 8 & 9	4.470	2.959
	- 7	6,164.55	3.32	7) 7" 26-32# x 4.00" BWS Packer Nickel Alloy 925 Casing Collar @ 6,160.6' WL Measurement	5.875	4.000
Second .	6	6,172.05	7.5	6) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5.032	4.000
	5	6,172.88	0.83	5) 4.00" PBR Adapter x 9.2# VAMTOP BxP Nickel Alloy 925	5.680	2.959
200	4	6,181.19	8.31	4) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub Nickel Alloy G3	3.540	2.959
ALC:NO	3	6,182.52	1.33	3) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy 925 #102204262	4.073	2.562
	- 2	6,184.29	1.77	2) Straight Slot Locator Seal Assembly Above Top Of Packer	4.450	2.880
	- 1		6,186.06	1) BWD Permanent Packer. WL Measured Depth Previously 6189'	5.875	4.000
8 P	ALC: NO.			1a) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5.660	2.965
1989				1b) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
	1a			1c) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel,	2.920	2.562
	1000			1d) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
	10.00			1e) 2.562" RN Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel	3.920	2.321
	-1b			1f) Re-Entry Guide / POP	3.950	3.000
	1c			Jone De		
4	1d					
-	1e					
-	— 1f					

Figure 6.2-2: Well Schematic for RH AGI #3 showing intended installation of P/T sensors

6.3.2 Other Existing Wells within the MMA

The CO_2 monitoring network described in Section 7.3 and well surveillance by other operators of existing wells will provide an indication of CO_2 leakage. Additionally, groundwater and soil CO_2 flux monitoring locations throughout the MMA will also provide an indication of CO_2 leakage to the surface. See Sections 7.7 and 7.8 for details.

6.4 Leakage through the Confining / Seal System

As discussed in Section 5, it is very unlikely that CO_2 leakage to the surface will occur through the confining zone. Continuous operational monitoring of the RH AGI wells, described in Sections 6.3 and 7.5, will provide an indicator if CO_2 leaks out of the injection zone. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO_2 leakage to the surface. See Sections 7.7 and 7.8 for details.

If changes in operating parameters or other monitoring listed in **Table 6-1** indicate leakage of CO_2 through the confining / seal system, TND will take actions to quantify the amount of CO_2 released and take mitigative action to stop it, including shutting in the well(s) (see Section 6.8).

6.5 Leakage due to Lateral Migration

Continuous operational monitoring of the RH AGI wells during and after the period of the injection will provide an indication of the movement of the CO_2 plume migration in the injection zones. The CO_2 monitoring network described in Section 7.3, and routine well surveillance will provide an indicator if CO_2 leaks out of the injection zone. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO_2 leakage to the surface. See Sections 7.7 and 7.8 for details.

If monitoring of operational parameters or other monitoring methods listed in Table 6-1 indicates that the CO_2 plume extends beyond the area modeled in Section 3.8 and presented in Section 4, TND will reassess the plume migration modeling for evidence that the plume may have intersected a pathway for CO_2 release to the surface. As this scenario would be considered a material change per 40CFR98.448(d)(1), TND will submit a revised MRV plan as required by 40CFR98.448(d). See Section 6.8 for additional information on quantification strategies.

6.6 Leakage from Fractures and Faults

As discussed in Section 5, it is very unlikely that CO_2 leakage to the surface will occur through faults. However, if monitoring of operational parameters and the fixed in-field gas monitors indicate possible CO_2 leakage to the surface, TND will identify which of the pathways listed in this section are responsible for the leak, including the possibility of heretofore unidentified faults or fractures within the MMA. TND will take measures to quantify the mass of CO_2 emitted based on the operational conditions that existed at the time of surface emission, including pressure at the point of emission, flowrate at the point of emission, duration of the emission, and estimation of the size of the emission site. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO_2 leakage to the surface. See Sections 7.7 and 7.8 for details. See Section 6.8 for additional information on quantification strategies.

6.7 Leakage due to Natural / Induced Seismicity

In order to monitor the influence of natural and/or induced seismicity, TND will use the established NMTSO seismic network. The network consists of seismic monitoring stations that detect and locate seismic events. Continuous monitoring helps differentiate between natural and induced seismicity. The network surrounding the Red Hills Gas Processing Plant has been mapped on **Figure 5.6-1**. The monitoring network records Helicorder data from UTC (coordinated universal time) all day long. The data are plotted daily at 5pm MST (mountain standard time). These plots can be browsed either by station or by day. The data are streamed continuously to the New Mexico Tech campus and archived at the Incorporated Research Institutions for Seismology Data Management Center (IRIS DMC).

If monitoring of the NMTSO seismic monitoring stations, the operational parameters and the fixed infield gas monitors indicates surface leakage of CO_2 linked to seismic events, TND will assess whether the CO_2 originated from the RH AGI wells and, if so, take measures to quantify the mass of CO_2 emitted to the surface based on operational conditions at the time the leak was detected. See Section 7.6 for details regarding seismic monitoring and analysis. See Section 6.8 for additional information on quantification strategies.

6.8 Strategy for Quantifying CO₂ Leakage and Response

6.8.1 Leakage from Surface Equipment

For normal operations, quantification of emissions of CO₂ from surface equipment will be assessed by employing the methods detailed in Subpart W according to the requirements of 98.444(d) of Subpart RR. Quantification of major leakage events from surface equipment as identified by the detection techniques listed in Table 6-1 will be assessed by employing methods most appropriate for the site of the identified leak. Once a leak has been identified the leakage location will be isolated to prevent additional emissions to
the atmosphere. Quantification will be based on the length of time of the leak and parameters that existed at the time of the leak such as pressure, temperature, composition of the gas stream, and size of the leakage point. TND has standard operating procedures to report and quantify all pipeline leaks in accordance with the NMOCD regulations (New Mexico administrative Code 19.15.28 Natural Gas Gathering Systems). TND will modify this procedure to quantify the mass of carbon dioxide from each leak discovered by TND or third parties. Additionally, TND may employ available leakage models for characterizing and predicting gas leakage from gas pipelines. In addition to the physical conditions listed above, these models are capable of incorporating the thermodynamic parameters relevant to the leak thereby increasing the accuracy of quantification.

6.8.2 Subsurface Leakage

Selection of a quantification strategy for leaks that occur in the subsurface will be based on the leak detection method (Table 6-1) that identifies the leak. Leaks associated with the point sources, such as the injection wells, and identified by failed MITs, variations of operational parameters outside acceptable ranges, and in-well P/T sensors can be addressed immediately after the injection well has been shut in. Quantification of the mass of CO₂ emitted during the leak will depend on characterization of the subsurface leak, operational conditions at the time of the leak, and knowledge of the geology and hydrogeology at the leakage site. Conservative estimates of the mass of CO₂ emitted to the surface will be made assuming that all CO₂ released during the leak will reach the surface. TND may choose to estimate the emissions to the surface more accurately by employing transport, geochemical, or reactive transport model simulations.

Other wells within the MMA will be monitored with the atmospheric and CO_2 flux monitoring network placed strategically in their vicinity.

Nonpoint sources of leaks such as through the confining zone, along faults or fractures, or which may be initiated by seismic events and as may be identified by variations of operational parameters outside acceptable ranges will require further investigation to determine the extent of leakage and may result in cessation of operations.

6.8.3 Surface Leakage

A recent review of risk and uncertainty assessment for geologic carbon storage (Xiao et al., 2024) discussed monitoring for sequestered CO₂ leaking back to the surface emphasizing the importance of monitoring network design in detecting such leaks. Leaks detected by visual inspection, hand-held gas sensors, fixed infield gas sensors, atmospheric, and CO₂ flux monitoring will be assessed to determine if the leaks originate from surface equipment, in which case leaks will be quantified according to the strategies in Section 6.8.1, or from the subsurface. In the latter case, CO₂ flux monitoring methodologies, as described in Section 7.8, will be employed to quantify the surface leaks.

7 Strategy for Establishing Expected Baselines for Monitoring CO₂ Surface Leakage

TND uses the existing automatic distributed control system to continuously monitor operating parameters and to identify any excursions from normal operating conditions that may indicate leakage of CO₂. TND considers H₂S to be a proxy for CO₂ leakage to the surface and as such will employ and expand upon methodologies detailed in their H₂S Contingency plan to establish baselines for monitoring CO₂ surface leakage. The following describes TND's strategy for collecting baseline information.

7.1 Visual Inspection

TND field personnel conduct frequent periodic inspections of all surface equipment providing opportunities to assess baseline concentrations of H_2S , a proxy for CO_2 , at the Red Hills Gas Plant.

7.2 Fixed In-Field, Handheld, and Personal H₂S Monitors

Compositional analysis of TND's gas injectate at the Red Hills Gas Plant indicates an approximate H₂S concentration of 20% thus requiring TND to develop and maintain an H₂S Contingency Plan (Plan) according to the NMOCD Hydrogen Sulfide Gas Regulations, Rule 11 (19.15.11 NMAC). TND considers H₂S to be a proxy for CO₂ leaks at the plant. The Plan contains procedures to provide for an organized response to an unplanned release of H₂S from the plant or the associated RH AGI Wells and documents procedures that would be followed in case of such an event.

7.2.1 Fixed In-Field H₂S Monitors

The Red Hills Gas Plant utilizes numerous fixed-point monitors, strategically located throughout the plant, to detect the presence of H₂S in ambient air. The sensors are connected to the Control Room alarm panel's Programmable Logic Controllers (PLCs), and then to the DCS. Upon detection of H₂S at 10 ppm at any detector, visible amber beacons are activated, and horns are activated with a continuous warbling alarm. Upon detection of hydrogen sulfide at 90 ppm at any monitor, an evacuation alarm is sounded throughout the plant at which time all personnel will proceed immediately to a designated evacuation area.

7.2.2 Handheld and Personal H₂S Monitors

Handheld gas detection monitors are available at strategic locations around the plant so that plant personnel can check specific areas and equipment prior to initiating maintenance or other work. The handheld gas detectors have sensors for oxygen, LEL (explosive hydrocarbon atmospheres), H₂S and CO₂.

All personnel, including contractors who perform operations, maintenance and/or repair work in sour gas areas within the plant must wear personal H_2S monitoring devices to assist them in detecting the presence of unsafe levels of H_2S . Personal monitoring devices will give an audible alarm and vibrate at 10 ppm.

7.3 CO₂ Detection

In addition to the handheld gas detection monitors described above, New Mexico Tech, through a DOE research grant (DE-FE0031837 – Carbon Utilization and Storage Project of the Western USA (CUSP)), will assist TND in setting up a monitoring network for CO_2 leakage detection in the AMA as defined in Section 4.2. The scope of work for the DOE project includes field sampling activities to monitor CO_2/H_2S at the two RH AGI wells. These activities include periodic well (groundwater and gas) and atmospheric sampling from an area of 10 - 15 square miles around the injection wells. Once the network is set up, TND will assume responsibility for monitoring, recording, and reporting data collected from the system for the duration of the project.

7.4 Continuous Parameter Monitoring

The DCS of the plant monitors injection rates, pressures, and composition on a continuous basis. High and low set points are programmed into the DCS, and engineering and operations are alerted if a parameter is outside the allowable window. If a parameter is outside the allowable window, this will trigger further investigation to determine if the issue poses a leak threat. Also, see Section 6.2 for continuous monitoring of P/T in the well.

7.5 Well Surveillance

TND adheres to the requirements of NMOCC Rule 26 governing the construction, operation and closing of an injection well under the Oil and Gas Act. Rule 26 also includes requirements for testing and monitoring of Class II injection wells to ensure they maintain mechanical integrity at all times. Furthermore, NMOCC includes special conditions regarding monitoring, reporting, and testing in the individual permits for each injection well, if they are deemed necessary. TND's Routine Operations and Maintenance Procedures for the RH AGI wells ensure frequent periodic inspection of the wells and opportunities to detect leaks and implement corrective action.

7.6 Seismic (Microseismic) Monitoring Stations

TND has Installed a model TCH120-1 Trillium Compact Horizon Seismometer and a model CTR4-3S Centaur Digital Recorder to monitor for and record data for any seismic event at the Red Hills Gas Plant (see **Figure 7-1**). The seismic station meets the requirements of the NMOCC Order No. R-20916-H to "install, operate, and monitor for the life of the [Class II AGI] permit a seismic monitoring station or stations as directed by the Manager of the New Mexico Tech Seismological Observatory ("state seismologist") at the New Mexico Bureau of Geology and Mineral Resources."

In addition, data that is recorded by the State of New Mexico deployed seismic network within a 10-mile radius of the Red Hills Gas Plant will be analyzed by the New Mexico Bureau of Geology (NMBGMR), see **Figure 5.6-1**, and made publicly available. The NMBGMR seismologist will create a report and map showing the magnitudes of recorded events from seismic activity. The data is being continuously recorded. By examining historical data, a seismic baseline prior to the start of TAG injection can be well established and used to verify anomalous events that occur during current and future injection activities. If necessary, a certain period of time can be extracted from the overall data set to identify anomalous events during that period.

7.7 Groundwater Monitoring

New Mexico Tech, through the same DOE research grant described in Section 7.3 above, will monitor groundwater wells for CO₂ leakage which are located within the AMA as defined in Section 4.2. Water samples will be collected and analyzed on a monthly basis for 12 months to establish baseline data. After establishing the water chemistry baseline, samples will be collected and analyzed bi-monthly for one year and then quarterly. Samples will be collected according to EPA methods for groundwater sampling (U.S. EPA, 2015).

The water analysis includes total dissolved solids (TDS), conductivity, pH, alkalinity, major cations, major anions, oxidation-reduction potentials (ORP), inorganic carbon (IC), and non-purgeable organic carbon (NPOC). Charge balance of ions will be completed as quality control of the collected groundwater samples. See **Table 7.7-1**. Baseline analyses will be compiled and compared with regional historical data to determine patterns of change in groundwater chemistry not related to injection processes at the Red Hills Gas Plant. A report of groundwater chemistry will be developed from this analysis. Any water quality samples not within the expected variation will be further investigated to determine if leakage has occurred from the injection zone.

Parameters
рН
Alkalinity as HCO3- (mg/L)
Chloride (mg/L)
Fluoride (F-) (mg/L)
Bromide (mg/L)
Nitrate (NO3-) (mg/L)
Phosphate (mg/L)
Sulfate (SO42-) (mg/L)
Lithium (Li) (mg/L)
Sodium (Na) (mg/L)
Potassium (K) (mg/L)
Magnesium (Mg) (mg/L)
Calcium (Ca) (mg/L)
TDS Calculation (mg/L)
Total cations (meq/L)

Table 7.7-1: Groundwater Monitoring Parameters

Total anio	ons (meq/L)
Percent di	ifference (%)
ORI	P (mV)
IC ((ppm)
NPO	C (ppm)

7.8 Soil CO₂ Flux Monitoring

A vital part of the monitoring program is to identify potential leakage of CO₂ and/or brine from the injection horizon into the overlying formations and to the surface. One method that will be deployed is to gather and analyze soil CO₂ flux data which serves as a means for assessing potential migration of CO₂ through the soil and its escape to the atmosphere. By taking CO₂ soil flux measurements at periodic intervals, TND can continuously characterize the interaction between the subsurface and surface to understand potential leakage pathways. Actionable recommendations can be made based on the collected data.

Soil CO₂ flux will be collected on a monthly basis for 12 months to establish the baseline and understand seasonal and other variation at the Red Hills Gas Plant. After the baseline is established, data will be collected bi-monthly for one year and then quarterly.

Soil CO₂ flux measurements will be taken using a LI-COR LI-8100A flux chamber, or similar instrument, at pre planned locations at the site. PVC soil collars (8cm diameter) will be installed in accordance with the LI-8100A specifications. Measurements will be subsequently made by placing the LI-8100A chamber on the soil collars and using the integrated iOS app to input relevant parameters, initialize measurement, and record the system's flux and coefficient of variation (CV) output. The soil collars will be left in place such that each subsequent measurement campaign will use the same locations and collars during data collection.

Figure 7-1: Red Hills monitoring network of 32 CO₂ flux locations, 2 groundwater wells, and a seismic station developed by New Mexico Tech and Targa Resources to detect leakage during injection.

8 Site Specific Considerations for Determining the Mass of CO₂ Sequestered

Appendix 7 summarizes the twelve Subpart RR equations used to calculate the mass of CO₂ sequestered annually. **Appendix 8** includes the twelve equations from Subpart RR. Not all of these equations apply to TND's current operations at the Red Hills Gas Plant but are included in the event TND's operations change in such a way that their use is required.

Figure 3.6.1-2 shows the location of all surface equipment and points of venting listed in 40CFR98.232(d) of Subpart W that will be used in the calculations listed below.

8.1 CO₂ Received

Currently, TND receives gas to its Red Hills Gas Plant through six pipelines: Gut Line, Winkler Discharge, Red Hills 24" Inlet Loop, Greyhound Discharge, Limestone Discharge, and the Plantview Loop. The gas is processed as described in Section 3.8 to produce compressed TAG which is then routed to the wellhead and pumped to injection pressure through NACE-rated (National Association of Corrosion Engineers) pipeline suitable for injection. TND will use Equation RR-2 for Pipelines to calculate the mass of CO₂ received through pipelines and measured through volumetric flow meters. The total annual mass of CO₂ received through these pipelines will be calculated using Equation RR-3. Receiving flow meter r in the following equations corresponds to meters M1 and M2 in **Figure 3.6.1-**2.

$$CQ_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CQ_{2,p,r}}$$

where:

 $CQ_{2T,r}$ = Net annual mass of CO₂ received through flow meter r (metric tons).

- *Qr*,*p* = Quarterly volumetric flow through a receiving flow meter r in quarter p at standard conditions (standard cubic meters).
- $S_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (standard cubic meters).

^D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682.

 $C_{CQ_{2,p,r}}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (vol. percent CO₂, expressed as a decimal fraction).

p = Quarter of the year.

r = Receiving volumetric flow meter.

$$CQ_2 = \sum_{r=1}^{R} CQ_{2T,r}$$

(Equation RR-3 for Pipelines)

where:

- CO_2 = Total net annual mass of CO₂ received (metric tons).
- CO_{2,T.r} = Net annual mass of CO₂ received (metric tons) as calculated in Equation RR-1 or RR-2 for flow meter r.
- *r* = Receiving flow meter.

Although TND does not currently receive CO_2 in containers for injection, they wish to include the flexibility in this MRV plan to receive gas from containers. When TND begins to receive CO_2 in containers, TND will use Equations RR-1 and RR-2 for Containers to calculate the mass of CO_2 received in containers. TND will adhere to the requirements in 40CFR98.444(a)(2) for determining the quarterly mass or volume of CO_2 received in containers.

If CO_2 received in containers results in a material change as described in 40CFR98.448(d)(1), TND will submit a revised MRV plan addressing the material change.

8.2 CO₂ Injected

TND injects CO_2 into the existing RH AGI #1. Upon completion, TND will commence injection into RH AGI #3. Equation RR-5 will be used to calculate CO_2 measured through volumetric flow meters before being injected into the wells. Equation RR-6 will be used to calculate the total annual mass of CO_2 injected into both wells. The calculated total annual CO_2 mass injected is the parameter CO_{21} in Equation RR-12. Volumetric flow meter u in the following equations corresponds to meters M5 and M6 in **Figure 3.6.1-2**.

$$CQ_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CQ_{2,p,u}}$$

(Equation RR-5)

where:

 $CQ_{2,u}$ = Annual CO₂ mass injected (metric tons) as measured by flow meter u.

- *Q*_{*p*,*u*} = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter).
- D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682.

(Equation RR-2 for Pipelines)

 $C_{CQ_{2,p,u}} = CO_2$ concentration measurement in flow for flow meter u in quarter p (vol. percent CO₂, expressed as a decimal fraction).

p = Quarter of the year.

u = Volumetric flow meter.

$$CQ_1 = \sum_{u=1}^U CQ_{2,u}$$

where:

 CQ_{21} = Total annual CO₂ mass injected (metric tons) though all injection wells.

 $CQ_{2,u}$ = Annual CO₂ mass injected (metric tons) as calculated in Equation RR-4 or RR-5 for flow meter u.

u = Flow meter.

8.3 CO₂ Produced / Recycled

TND does not produce oil or gas or any other liquid at its Red Hills Gas Plant so there is no CO_2 produced or recycled.

8.4 CO₂ Lost through Surface Leakage

Equation RR-10 will be used to calculate the annual mass of CO_2 lost due to surface leakage from the leakage pathways identified and evaluated in Section 5 above. The calculated total annual CO_2 mass emitted by surface leakage is the parameter CO_{2E} in Equation RR-12 addressed in Section 8.6 below. Quantification strategies for leaks from the identified potential leakage pathways is discussed in Section 6.8.

$$CQ_{2E} = \sum_{x=1}^{X} CQ_{2,x}$$
 (Equation RR-10)

where:

 CQ_{2E} = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year.

 $CQ_{2,x}$ = Annual CO₂ mass emitted (metric tons) at leakage pathway x in the reporting year.

x = Leakage pathway.

8.5 CO₂ Emitted from Equipment Leaks and Vented Emissions

As required by 98.444(d) of Subpart RR, TND will assess leakage from the relevant surface equipment listed in Sections 98.233 and 98.234 of Subpart W. According to 98.233(r)(2) of Subpart W, the emissions factor listed in Table W-1A of Subpart W shall be used to estimate all streams of gases. Parameter CO_{2FI} in Equation RR-12 is the total annual CO_2 mass emitted or vented from equipment located between the flow meter for measuring injection quantity and the injection wellhead. A calculation procedure is provided in subpart W.

8.6 CO₂ Sequestered

Since TND does not actively produce oil or natural gas or any other fluid at its Red Hills Gas Plant, Equation RR-12 will be used to calculate the total annual CO₂ mass sequestered in subsurface geologic formations.

$$CQ_2 = CQ_2I - CQ_2E - CQ_2FI$$

(Equation RR-12)

(Equation RR-6)

- CO₂ = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CQ_{21} = Total annual CO₂ mass injected (metric tons) in the well or group of wells in the reporting year.

- CQ_{2E} = Total annual CO₂ mass emitted (metric tons) by surface leakage in the reporting year.
- CQ_{2FI} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of the GHGRP.

9 Estimated Schedule for Implementation of MRV Plan

The baseline monitoring and leakage detection and quantification strategies described herein have been established and data collected by TND and its predecessor, Lucid, for several years and continues to the present. TND will begin implementing this revised MRV plan as soon as it is approved by EPA. After RH AGI #3 is drilled, TND will reevaluate the MRV plan and if any modifications are a material change per 40CFR98.448(d)(1), TND will submit a revised MRV plan as required by 40CFR98.448(d).

10 GHG Monitoring and Quality Assurance Program

TND will meet the monitoring and QA/QC requirements of 40CFR98.444 of Subpart RR including those of Subpart W for emissions from surface equipment as required by 40CFR98.444(d).

10.1 GHG Monitoring

As required by 40CFR98.3(g)(5)(i), TND's internal documentation regarding the collection of emissions data includes the following:

- Identification of positions of responsibility (i.e., job titles) for collection of the emissions data
- Explanation of the processes and methods used to collect the necessary data for the GHG calculations
- Description of the procedures and methods that are used for quality assurance, maintenance, and repair of all continuous monitoring systems, flow meters, and other instrumentation used to provide data for the GHGs reported

10.1.1 General

<u>Measurement of CO_2 Concentration</u> – All measurements of CO_2 concentrations of any CO_2 quantity will be conducted according to an appropriate standard method published by a consensus-based standards organization or an industry standard practice such as the Gas Producers Association (GPA) standards. All measurements of CO_2 concentrations of CO_2 received will meet the requirements of 40CFR98.444(a)(3).

<u>Measurement of CO₂ Volume</u> – All measurements of CO₂ volumes will be converted to the following standard industry temperature and pressure conditions for use in Equations RR-2 and RR-5, of Subpart RR of the GHGRP: Standard cubic meters at a temperature of 60 degrees Fahrenheit and at an absolute pressure of 1 atmosphere. TND will adhere to the American Gas Association (AGA) Report #3 – Orifice Metering.

10.1.2 CO_2 received.

Daily CO_2 received is recorded by totalizers on the volumetric flow meters on each of the pipelines listed in Section 8 using accepted flow calculations for CO_2 according to the AGA Report #3.

10.1.3 CO_2 injected.

Daily CO_2 injected is recorded by totalizers on the volumetric flow meters on the pipelines to the RH AGI #1 and #3 wells using accepted flow calculations for CO_2 according to the AGA Report #3.

10.1.4 CO_2 produced.

TND does not produce CO₂ at the Red Hills Gas Plant.

10.1.5 CO₂ emissions from equipment leaks and vented emissions of CO₂.

As required by 98.444(d), TND will follow the monitoring and QA/QC requirements specified in Subpart W of the GHGRP for equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead.

As required by 98.444(d) of Subpart RR, TND will assess leakage from the relevant surface equipment listed in Sections 98.233 and 98.234 of Subpart W. According to 98.233(r)(2) of Subpart W, the emissions factor listed in Table W-1A of Subpart W shall be used.

10.1.6 Measurement devices.

As required by 40CFR98.444(e), TND will ensure that:

- All flow meters are operated continuously except as necessary for maintenance and calibration
- All flow meters used to measure quantities reported are calibrated according to the calibration and accuracy requirements in 40CFR98.3(i) of Subpart A of the GHGRP.
- All measurement devices are operated according to an appropriate standard method published by a
 consensus-based standards organization or an industry standard practice. Consensus-based standards
 organizations include, but are not limited to, the following: ASTM International, the American National
 Standards Institute (ANSI), the American Gas Association (AGA), the Gas Producers Association (GPA),
 the American Society of Mechanical Engineers (ASME), the American Petroleum Institute (API), and the
 North American Energy Standards Board (NAESB).
- All flow meter calibrations performed are National Institute of Standards and Technology (NIST) traceable.

10.2 QA/QC Procedures

TND will adhere to all QA/QC requirements in Subparts A, RR, and W of the GHGRP, as required in the development of this MRV plan under Subpart RR. Any measurement devices used to acquire data will be operated and maintained according to the relevant industry standards.

10.3 Estimating Missing Data

TND will estimate any missing data according to the following procedures in 40CFR98.445 of Subpart RR of the GHGRP, as required.

- A quarterly flow rate of CO₂ received that is missing would be estimated using invoices, purchase statements, or using a representative flow rate value from the nearest previous time period.
- A quarterly CO₂ concentration of a CO₂ stream received that is missing would be estimated using invoices, purchase statements, or using a representative concentration value from the nearest previous time period.
- A quarterly quantity of CO₂ injected that is missing would be estimated using a representative quantity of CO₂ injected from the nearest previous period of time at a similar injection pressure.
- For any values associated with CO₂ emissions from equipment leaks and vented emissions of CO₂ from surface equipment at the facility that are reported in Subpart RR, missing data estimation procedures specified in subpart W of 40 CFR Part 98 would be followed.

10.4 Revisions of the MRV Plan

TND will revise the MRV plan as needed to reflect changes in monitoring instrumentation and quality assurance procedures; or to improve procedures for the maintenance and repair of monitoring systems to reduce the

frequency of monitoring equipment downtime; or to address additional requirements as directed by the USEPA or the State of New Mexico. If any operational changes constitute a material change as described in 40CFR98.448(d)(1), TND will submit a revised MRV plan addressing the material change. TND intends to update the MRV plan after RH AGI #3 has been drilled and characterized.

11 Records Retention

TND will meet the recordkeeping requirements of paragraph 40CFR98.3(g) of Subpart A of the GHGRP. As required by 40CFR98.3(g) and 40CFR98.447, TND will retain the following documents:

- (1) A list of all units, operations, processes, and activities for which GHG emissions were calculated.
- (2) The data used to calculate the GHG emissions for each unit, operation, process, and activity. These data include:
 - (i) The GHG emissions calculations and methods used
 - (ii) Analytical results for the development of site-specific emissions factors, if applicable
 - (iii) The results of all required analyses
 - (iv) Any facility operating data or process information used for the GHG emission calculations
- (3) The annual GHG reports.

(4) Missing data computations. For each missing data event, TND will retain a record of the cause of the event and the corrective actions taken to restore malfunctioning monitoring equipment.

(5) A copy of the most recent revision of this MRV Plan.

(6) The results of all required certification and quality assurance tests of continuous monitoring systems, fuel flow meters, and other instrumentation used to provide data for the GHGs reported.

(7) Maintenance records for all continuous monitoring systems, flow meters, and other instrumentation used to provide data for the GHGs reported.

(8) Quarterly records of CO₂ received, including mass flow rate of contents of container (mass or volumetric) at standard conditions and operating conditions, operating temperature and pressure, and concentration of these streams.

(9) Quarterly records of injected CO₂ including mass flow or volumetric flow at standard conditions and operating conditions, operating temperature and pressure, and concentration of these streams.

(10) Annual records of information used to calculate the CO₂ emitted by surface leakage from leakage pathways.

(11) Annual records of information used to calculate the CO_2 emitted from equipment leaks and vented emissions of CO_2 from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead.

(12) Any other records as specified for retention in this EPA-approved MRV plan.

12 Appendices

Appen	dix 1	TND	Wells

Well Name	API #	Location	County	Spud Date	Total Depth	Packer
Red Hills AGI #1	30-025-40448	1,600 ft FSL, 150 ft FEL Sec. 13, T24S, R33E, NMPM	Lea, NM	10/23/201 3	6,650 ft	6,170 ft
Red Hill AGI #3	30-025-51970	3,116 ft FNL, 1,159 ft FEL Sec. 13, T24S, R33E, NMPM	Lea, NM	9/13/2023	6,650 ft	5,700 ft

Figure Appendix 1-1: Schematic of TND RH AGI #1 Well

Figure Appendix 1-2: Proposed wellbore schematic for the TND RH AGI #3 Well

Appendix 2 Referenced Regulations

U.S. Code > Title 26. INTERNAL REVENUE CODE > Subtitle A. Income Taxes > Chapter 1. NORMAL TAXES AND SURTAXES > Subchapter A. Determination of Tax Liability > Part IV. CREDITS AGAINST TAX > Subpart D. Business Related Credits > Section 45Q - Credit for carbon oxide sequestration

New Mexico Administrative Code (NMAC) > Title 19 – Natural resources > Chapter 15 – Oil and Gas

19.15.1 NMAC	GENERAL PROVISIONS AND DEFINITIONS [REPEALED]
19.15.2 NMAC	GENERAL PROVISIONS FOR OIL AND GAS OPERATIONS
19.15.3 NMAC	RULEMAKING
19.15.4 NMAC	ADJUDICATION
19.15.5 NMAC	ENFORCEMENT AND COMPLIANCE
19.15.6 NMAC	TAX INCENTIVES
19.15.7 NMAC	FORMS AND REPORTS
19.15.8 NMAC	FINANCIAL ASSURANCE
19.15.9 NMAC	WELL OPERATOR PROVISIONS
19.15.10 NMAC	SAFETY
19.15.11 NMAC	HYDROGEN SULFIDE GAS
19.15.12 NMAC	POOLS
19.15.13 NMAC	COMPULSORY POOLING
19.15.14 NMAC	DRILLING PERMITS
19.15.15 NMAC	WELL SPACING AND LOCATION
19.15.16 NMAC	DRILLING AND PRODUCTION
19.15.17 NMAC	PITS, CLOSED-LOOP SYSTEMS, BELOW-GRADE TANKS AND SUMPS
19.15.18 NMAC	PRODUCTION OPERATING PRACTICES
19.15.19 NMAC	NATURAL GAS PRODUCTION OPERATING PRACTICE
19.15.20 NMAC	OIL PRORATION AND ALLOCATION
19.15.21 NMAC	GAS PRORATION AND ALLOCATION
19.15.22 NMAC	HARDSHIP GAS WELLS
19.15.23 NMAC	OFF LEASE TRANSPORT OF CRUDE OIL OR CONTAMINANTS
19.15.24 NMAC	ILLEGAL SALE AND RATABLE TAKE
19.15.25 NMAC	PLUGGING AND ABANDONMENT OF WELLS
19.15.26 NMAC	INJECTION
19.15.27 - 28 NMAC	[RESERVED] PARTS 27 - 28
19.15.29 NMAC	RELEASES

CHAPTER 15 - OIL AND GAS

19.15.30 NMAC	REMEDIATION
19.15.31 - 33 NMAC	[RESERVED] PARTS 31 - 33
19.15.34 NMAC	PRODUCED WATER, DRILLING FLUIDS AND LIQUID OIL FIELD WASTE
19.15.35 NMAC	WASTE DISPOSAL
19.15.36 NMAC	SURFACE WASTE MANAGEMENT FACILITIES
19.15.37 NMAC	REFINING
19.15.38 NMAC	[RESERVED]
19.15.39 NMAC	SPECIAL RULES
19.15.40 NMAC	NEW MEXICO LIQUIFIED PETROLEUM GAS STANDARD
19.15.41 - 102 NMAC	[RESERVED] PARTS 41 - 102
19.15.103 NMAC	SPECIFICATIONS, TOLERANCES, AND OTHER TECHNICAL REQUIREMENTS FOR COMMERCIAL WEIGHING AND MEASURING DEVICES
19.15.104 NMAC	STANDARD SPECIFICATIONS/MODIFICATIONS FOR PETROLEUM PRODUCTS
19.15.105 NMAC	LABELING REQUIREMENTS FOR PETROLEUM PRODUCTS
19.15.106 NMAC	OCTANE POSTING REQUIREMENTS
19.15.107 NMAC	APPLYING ADMINISTRATIVE PENALTIES
19.15.108 NMAC	BONDING AND REGISTRATION OF SERVICE TECHNICIANS AND SERVICE ESTABLISHMENTS FOR COMMERCIAL WEIGHING OR MEASURING DEVICES
19.15.109 NMAC	NOT SEALED NOT LEGAL FOR TRADE
19.15.110 NMAC	BIODIESEL FUEL SPECIFICATION, DISPENSERS, AND DISPENSER LABELING REQUIREMENTS [REPEALED]
19.15.111 NMAC	E85 FUEL SPECIFICATION, DISPENSERS, AND DISPENSER LABELING REQUIREMENTS [REPEALED]
19.15.112 NMAC	RETAIL NATURAL GAS (CNG / LNG) REGULATIONS [REPEALED]

Appendix 3 Water Wells

Water wells identified by the New Mexico State Engineer's files within two miles of the RH AGI wells; water wells within one mile are highlighted in yellow.

POD Number	County	Sec	Tws	Rng	UTME	UTMN	Distance (mi)	Depth Well (ft)	Depth Water (ft)	Water Column (ft)
C 03666 POD1	LE	13	245	33E	639132	3565078	0.31	650	390	260
C 03917 POD1	LE	13	245	33E	638374	3565212	0.79	600	420	180
C 03601 POD1	LE	23	24S	33E	638124	3563937	1.17			
C 02309	LE	25	24S	33E	639638	3562994	1.29	60	30	30
C 03601 POD3	LE	24	24S	33E	638142	3563413	1.38			
C 03932 POD8	LE	7	24S	34E	641120	3566769	1.40	72		
C 03601 POD2	LE	23	24S	33E	637846	3563588	1.44			
C 03662 POD1	LE	23	245	33E	637342	3564428	1.48	550	110	440
C 03601 POD5	LE	23	24S	33E	637988	3563334	1.48			
C 03601 POD6	LE	23	245	33E	637834	3563338	1.55			
C 03601 POD7	LE	23	245	33E	637946	3563170	1.58			
C 03600 POD2	LE	25	24S	33E	638824	3562329	1.78			
C 03602 POD2	LE	25	24S	33E	638824	3562329	1.78			
C 03600 POD1	LE	26	245	33E	637275	3563023	1.94			
C 03600 POD3	LE	26	245	33E	637784	3562340	2.05			

Appendix 4 Oil and Gas Wells within 2-mile Radius of the RH AGI Well Site

Note – a completion status of "New" indicates that an Application for Permit to Drill has been filed and approved but the well has not yet been completed. Likewise, a spud date of 31-Dec-99 is actually 12-31-9999, a date used by NMOCD databases to indicate work not yet reported.

ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
30-025- 08371	COSSATOT E 002	PRE-ONGARD WELL OPERATOR	OIL	DELAWARE VERTICAL	P & A	VERTICAL	5425	Yes
30-025- 25604	GOVERNMENT L COM 001	EOG RESOURCES INC	GAS	DELAWARE VERTICAL	P & A	VERTICAL	17625	No
30-025- 26369	GOVERNMENT L COM 002	EOG RESOURCES INC	GAS	DELAWARE VERTICAL	P & A	VERTICAL	14698	Yes
30-025- 26958	SIMS 001	BOPCO, L.P.	GAS	DELAWARE VERTICAL	P & A	VERTICAL	15007	Yes
30-025- 27491	SMITH FEDERAL 001	PRE-ONGARD WELL OPERATOR	OIL	DELAWARE VERTICAL	P & A	VERTICAL	15120	No
30-025- 29008	MADERA RIDGE 24 001	EOG RESOURCES INC	GAS	DELAWARE VERTICAL	TA	VERTICAL	15600	No
30-025- 29008	MADERA RIDGE 24 001	EOG RESOURCES INC	GAS	DELAWARE VERTICAL	TA	VERTICAL	15600	No
30-025- 40448	RED HILLS AGI 001	TARGA NORTHERN DELAWARE, LLC.	INJECTOR	DELAWARE VERTICAL	INJECTING	VERTICAL	6650	Yes
30-025- 40914	DECKARD FEE 001H	COG OPERATING LLC	OIL		PRODUCING	VERTICAL	10997	No
30-025- 40914	DECKARD FEE 001H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11034	No
30-025- 41382	DECKARD FEDERAL COM 002H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11067	Yes
30-025- 41383	DECKARD FEDERAL COM 003H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11162	Yes
30-025- 41384	DECKARD FEDERAL COM 004H	COG OPERATING LLC	OIL	3RD BONE SPRING	PRODUCING	HORIZONTAL	11103	Yes
30-025- 41666	SEBASTIAN FEDERAL COM 002H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10927	Yes
30-025- 41687	SEBASTIAN FEDERAL COM 001H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10944	Yes
30-025- 41688	SEBASTIAN FEDERAL COM 003H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11055	No
30-025- 43532	LEO THORSNESS 13 24 33 211H	MATADOR PRODUCTION COMPANY	GAS	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12371	No
30-025- 44442	STRONG 14 24 33 AR 214H	MATADOR PRODUCTION COMPANY	GAS	WOLFCAMP A LOWER	PRODUCING	HORIZONTAL	12500	No
30-025- 46154	LEO THORSNESS 13 24 33 221H	MATADOR PRODUCTION COMPANY	OIL	WOLFCAMP B UPPER	PRODUCING	HORIZONTAL	12868	No
30-025- 46282	LEO THORSNESS 13 24 33 AR 135H	MATADOR PRODUCTION COMPANY	OIL	3RD BONE SPRING SAND	PRODUCING	HORIZONTAL	12103	No

ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
30-025- 46517	BROADSIDE 13 W FEDERAL COM 001H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12213	No
30-025- 46518	BROADSIDE 13 24 FEDERAL COM 002H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 46519	BROADSIDE 13 24 FEDERAL COM 003H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP A LOWER	PRODUCING	HORIZONTAL	12320	Yes
30-025- 46985	SEBASTIAN FEDERAL COM 703H	COG OPERATING LLC	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12123	No
30-025- 46988	SEBASTIAN FEDERAL COM 704H	COG OPERATING LLC	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12142	No
30-025- 47869	JUPITER 19 FEDERAL COM 501H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11175	Yes
30-025- 47870	JUPITER 19 FEDERAL COM 502H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11141	Yes
30-025- 47870	JUPITER 19 FEDERAL COM 502H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11141	Yes
30-025- 47872	JUPITER 19 FEDERAL COM 403H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PRODUCING	HORIZONTAL	10584	No
30-025- 47872	JUPITER 19 FEDERAL COM 403H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PRODUCING	HORIZONTAL	10584	No
30-025- 47873	JUPITER 19 FEDERAL COM 309H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10250	No
30-025- 47873	JUPITER 19 FEDERAL COM 309H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10250	No
30-025- 47874	JUPITER 19 FEDERAL COM 506H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10950	No
30-025- 47875	JUPITER 19 FEDERAL COM 507H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11150	No
30-025- 47875	JUPITER 19 FEDERAL COM 507H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11150	No
30-025- 47876	JUPITER 19 FEDERAL COM 508H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11143	No
30-025- 47876	JUPITER 19 FEDERAL COM 508H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11143	No
30-025- 47877	JUPITER 19 FEDERAL COM 509H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11156	No
30-025- 47878	JUPITER 19 FEDERAL COM 510H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11102	No
30-025- 47908	JUPITER 19 FEDERAL COM 601H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes

ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
30-025-	JUPITER 19	EOG RESOURCES	OIL	2ND BONE	DUC	HORIZONTAL	0	Yes
47910	FEDERAL COM 702H	INC		SPRING SAND				
30-025- 47911	JUPITER 19 FEDERAL COM 705H	EOG RESOURCES INC	OIL	WOLFCAMP A LOWER	PERMITTED	HORIZONTAL	12290	No
30-025- 47912	JUPITER 19 FEDERAL COM 707H	EOG RESOURCES INC	OIL	WOLFCAMP B UPPER	PERMITTED	HORIZONTAL	12515	No
30-025- 47913	JUPITER 19 FEDERAL COM 708H	EOG RESOURCES INC	OIL	WOLFCAMP A LOWER	PERMITTED	HORIZONTAL	12477	No
30-025- 48239	JUPITER 19 FEDERAL COM 306H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10270	No
30-025- 48889	JUPITER 19 FEDERAL COM 701H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 48890	JUPITER 19 FEDERAL COM 703H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 49262	BROADSIDE 13 24 FEDERAL COM 004H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP B UPPER	PRODUCING	HORIZONTAL	12531	Yes
30-025- 49263	BROADSIDE 13 24 FEDERAL COM 015H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP B LOWER	PRODUCING	HORIZONTAL	12746	Yes
30-025- 49264	BROADSIDE 13 24 FEDERAL COM 025H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	3RD BONE SPRING	PRODUCING	HORIZONTAL	11210	Yes
30-025- 49474	RED HILLS AGI 002	TARGA NORTHERN DELAWARE, LLC.	INJECTOR	DELAWARE VERTICAL	Temporarily Abandoned	VERTICAL	17600	Yes

Appendix 5 References

Application for Authorization to Inject via Proposed Red Hills AGI #1 Well, Agave Energy Red Hills Gas Plant, Lea County, New Mexico; July 20, 2011; prepared by Geolex, Inc. for Agave Energy Company

Application for a Redundant Class II AGI Well, Lucid Energy Delaware, LLC; Red Hills AGI #2; August 8, 2019, prepared by Geolex, Inc. for Lucid Energy Delaware, LLC

Case No. 20779, Notice Regarding Hearing Exhibits, Application of Lucid Energy Delaware, LLC for Authorization to Inject, Lea County, New Mexico

Madalyn S. Blondes, Kathleen D. Gans, James J. Thordsen, Mark E. Reidy, Burt Thomas, Mark A. Engle, Yousif K. Kharaka, and Elizabeth L. Rowan, 2014. U.S. Geological Survey National Produced Waters Geochemical Database v2.1,

http://energy.usgs.gov/EnvironmentalAspects/EnvironmentalAspectsofEnergyProductionandUse/ProducedWaters. aspx

Boyle, T.B., Carroll, J.J., 2002. Study determines best methods for calculating acid-gas density. *Oil and Gas Journal* 100 (2): 45-53.

H₂S Contingency Plan, Targa Northern Delaware, August 2023, Red Hills Gas Processing Plant, Lea County, NM

Lambert, S.J., 1992. Geochemistry of the Waste Isolation Pilot Plant (WIPP) site, southeastern New Mexico, U.S.A. *Applied Geochemistry* 7: 513-531.

Luo, Ming; Baker, Mark R.; and LeMone, David V.; 1994, *Distribution and Generation of the Overpressure System, Eastern Delaware Basin, Western Texas and Southern New Mexico*, AAPG Bulletin, V.78, No. 9 (September 1994) p. 1386-1405.

Nicholson, A., Jr., Clebsch, A., Jr., 1961. *Geology and ground-water conditions in southern Lea County, New Mexico*. New Mexico Bureau of Mines and Mineral Resources, Ground-Water Report 6, 123 pp., 2 Plates.

Powers, D.W., Lambert, S. J., Shafer, S., Hill, L. R. and Weart, W. D., 1978., *Geological Characteristic Report, Waste Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico (SAND78-1596)*, Department 4510, Waste Management Technology, Sandia Laboratories, Albuquerque, New Mexico

Silver, B.A., Todd, R.G., 1969. Permian cyclic strata, northern Midland and Delaware Basins, west Texas and southeastern New Mexico, *The American Association of Petroleum Geologists Bulletin* 53: 2223- 2251.

US EPA, O., 2015, *Procedures for Groundwater Sampling in the Laboratory Services and Applied Science Division*: https://www.epa.gov/quality/procedures-groundwater-sampling-laboratory-services-and-applied-science-division (accessed September 2023).

Walsh, R., Zoback, M.D., Pasi, D., Weingarten, M. and Tyrrell, T., 2017, FSP 1.0: A Program for Probabilistic Estimation of Fault Slip Potential Resulting from Fluid Injection, User Guide from the Stanford Center for Induced and Triggered Seismicity, available from SCITS.Stanford.edu/software

Ward, R.F., Kendall, C.G.St.C., Harris, P.M., 1986. Upper Permian (Guadalupian) facies and their association with hydrocarbons – Permian Basin, west Texas and New Mexico. *The American Association of Petroleum Geologists Bulletin* 70: 239-262

Xiao, Ting et al. (2024). A review of risk and uncertainty assessment for geologic carbon storage. Renewable and Sustainable Energy Reviews 189 (2024) 113945

Appendix 6 Abbreviations and Acronyms

3D - 3 dimensional AGA – American Gas Association AMA – Active Monitoring Area AoR – Area of Review API – American Petroleum Institute CFR - Code of Federal Regulations C1 – methane C6 – hexane C7 - heptane CO₂ – carbon dioxide DCS - distributed control system EPA – US Environmental Protection Agency, also USEPA ft – foot (feet) GHGRP – Greenhouse Gas Reporting Program **GPA** – Gas Producers Association m - meter(s)md – millidarcy(ies) mg/I – milligrams per liter MIT - mechanical integrity test MMA – maximum monitoring area MSCFD- thousand standard cubic feet per day MMSCFD - million standard cubic feet per day MMstb - million stock tank barrels MRRW B – Morrow B MRV – Monitoring, Reporting, and Verification MT -- Metric tonne NIST - National Institute of Standards and Technology NMOCC - New Mexico Oil Conservation Commission NMOCD - New Mexico Oil Conservation Division PPM – Parts Per Million psia – pounds per square inch absolute QA/QC – quality assurance/quality control SCITS - Stanford Center for Induced and Triggered Seismicity Stb/d – stock tank barrel per day TAG – Treated Acid Gas TDS – Total Dissolved Solids TVD – True Vertical Depth TVDSS – True Vertical Depth Subsea UIC – Underground Injection Control USDW - Underground Source of Drinking Water

	Subpart RR Equation	Description of Calculations and Measurements [*]	Pipeline	Containers	Comments			
	RR-1	calculation of CO ₂ received and measurement of CO ₂ mass	through mass flow meter.	in containers. **				
CO ₂ Received	RR-2	calculation of CO ₂ received and measurement of CO ₂ volume	through volumetric flow meter.	in containers. ***				
	RR-3	summation of CO_2 mass received	summation of CO ₂ mass received through multiple meters.					
	RR-4	calculation of CO2 mass injected, mea	asured through mass flow me	ters.				
CO ₂ Injected	RR-5	calculation of CO ₂ mass injected, mea	asured through volumetric flo	w meters.				
	RR-6	summation of CO ₂ mass injected, as	calculated in Equations RR-4 a	and/or RR-5.				
	RR-7	calculation of CO ₂ mass produced / r mass flow meters.	calculation of CO ₂ mass produced / recycled from gas-liquid separator, measured through mass flow meters.					
CO ₂ Produced / Recycled	RR-8	calculation of CO ₂ mass produced / r volumetric flow meters.						
	RR-9	summation of CO₂ mass produced / r in Equations RR-7 and/or RR8.						
CO ₂ Lost to Leakage to the Surface	RR-10	calculation of annual CO ₂ mass emitt	ed by surface leakage					
CO₂ Sequestered	RR-11	calculation of annual CO ₂ mass seque any other fluid; includes terms for CO emitted from surface equipment bet emitted from surface equipment bet	Calculation procedures are provided in Subpart W of GHGRP for CO _{2FI} .					
	RR-12	calculation of annual CO ₂ mass seque or any other fluid; includes terms for from surface equipment between inj	Comments Comments Comments Calculation procedures are provided in Subpart W of GHGRP for CO _{2FI} . Calculation procedures are provided in Subpart W of GHGRP for CO _{2FI} .					

Appendix 7 TND Red Hills AGI Wells - Subpart RR Equations for Calculating CO₂ Geologic Sequestration

* All measurements must be made in accordance with 40 CFR 98.444 – Monitoring and QA/QC Requirements.

** If you measure the mass of contents of containers summed quarterly using weigh bill, scales, or load cells (40 CFR 98.444(a)(2)(i)), use RR-1 for Containers to calculate CO₂ received in containers for injection.

*** If you determine the volume of contents of containers summed quarterly (40 CFR 98.444(a)(2)(ii)), use RR-2 for Containers to calculate CO₂ received in containers for injection.

Appendix 8 Subpart RR Equations for Calculating Annual Mass of CO₂ Sequestered

RR-1 for Calculating Mass of CO₂ Received through Pipeline Mass Flow Meters

$$CQ_{T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * C_{CQ_{2,p,r}}$$

(Equation RR-1 for Pipelines)

where:

- $CQ_{2T,r}$ = Net annual mass of CO₂ received through flow meter r (metric tons).
- $Q_{r,p}$ = Quarterly mass flow through a receiving flow meter r in quarter p (metric tons).
- $S_{r,p}$ = Quarterly mass flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (metric tons).
- $C_{CQ_{2,p,r}}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (wt. percent CO₂, expressed as a decimal fraction).

p =Quarter of the year.

r = Receiving mass flow meter.

RR-1 for Calculating Mass of CO₂ Received in Containers by Measuring Mass in Container

$$CQ_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * C_{CQ_{2,p,r}}$$

(Equation RR-1 for Containers)

where:

 $CQ_{2T,r}$ = Net annual mass of CO₂ received in containers r (metric tons).

 $Q_{r,p}$ = Quarterly mass of contents in containers r in quarter p (metric tons).

- $S_{r,p}$ = Quarterly mass of contents in containers r redelivered to another facility without being injected into your well in quarter p (metric tons).
- $C_{CQ_{2,p,r}}$ = Quarterly CO₂ concentration measurement of contents in containers r in quarter p (wt. percent CO₂, expressed as a decimal fraction).

p = Quarter of the year.

r = Containers.

RR-2 for Calculating Mass of CO₂ Received through Pipeline Volumetric Flow Meters

$$CQ_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CQ_{2,p,r}}$$

(Equation RR-2 for Pipelines)

where:

- $CQ_{2T,r}$ = Net annual mass of CO₂ received through flow meter r (metric tons).
- *Qr*.*p* = Quarterly volumetric flow through a receiving flow meter r in quarter p at standard conditions (standard cubic meters).
- $S_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CQ_{2,p,r}}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (vol. percent CO₂, expressed as a decimal fraction).

p =Quarter of the year.

r = Receiving volumetric flow meter.

RR-2 for Calculating Mass of CO₂ Received in Containers by Measuring Volume in Container

$$CQ_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CQ_{2,p,r}}$$

(Equation RR-2 for Containers)

where:

 $CQ_{2T,r}$ = Net annual mass of CO₂ received in containers r (metric tons).

- *Qr*,*p* = Quarterly volume of contents in containers r in quarter p at standard conditions (standard cubic meters).
- *S*_{*r*,*p*} = Quarterly volume of contents in containers r redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO₂ received in containers at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CQ_{2,p,r}}$ = Quarterly CO₂ concentration measurement of contents in containers r in quarter p (vol. percent CO₂, expressed as a decimal fraction).

p = Quarter of the year.

r = Container.

RR-3 for Summation of Mass of CO₂ Received through Multiple Flow Meters for Pipelines

$$CQ_2 = \sum_{r=1}^{R} CQ_{2T,r}$$
 (Equation RR-3 for Pipelines)

where:

- CO_2 = Total net annual mass of CO₂ received (metric tons).
- CQ_{2,T.r} = Net annual mass of CO₂ received (metric tons) as calculated in Equation RR-1 or RR-2 for flow meter r.

r = Receiving flow meter.

RR-4 for Calculating Mass of CO₂ Injected through Mass Flow Meters into Injection Well

$$CQ_{2,u} = \sum_{p=1}^{4} Q_{p,u} * C_{CQ_{2,p,u}}$$
(Equation RR-4)

where:

 $CQ_{2,u}$ = Annual CO₂ mass injected (metric tons) as measured by flow meter u.

- $Q_{p,u}$ = Quarterly mass flow rate measurement for flow meter u in quarter p (metric tons per quarter).
- $C_{CQ_{2,p,u}}$ = Quarterly CO₂ concentration measurement in flow for flow meter u in quarter p (wt. percent CO₂, expressed as a decimal fraction).

p = Quarter of the year.

u = Mass flow meter.

RR-5 for Calculating Mass of CO₂ Injected through Volumetric Flow Meters into Injection Well

$$CQ_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CQ_{2,p,u}}$$
 (Equation RR-5)

where:

- $CQ_{2,u}$ = Annual CO₂ mass injected (metric tons) as measured by flow meter u.
- *Q*_{*p,u*} = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter).
- ^D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CQ_{2,p,u}} = CO_2$ concentration measurement in flow for flow meter u in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- *p* = Quarter of the year.
- *u* = Volumetric flow meter.

RR-6 for Summation of Mass of CO₂ Injected into Multiple Wells

$$CQ_{2I} = \sum_{u=1}^{U} CQ_{2,u}$$
 (Equation RR-6)

where:

 CQ_{21} = Total annual CO₂ mass injected (metric tons) though all injection wells.

 $CQ_{2,u}$ = Annual CO₂ mass injected (metric tons) as calculated in Equation RR-4 or RR-5 for flow meter u.

u = Flow meter.

RR-7 for Calculating Mass of CO₂ Produced / Recycled from a Gas-Liquid Separator through Mass Flow Meters

$$CQ_{2,w} = \sum_{p=1}^{4} Q_{p,w} * C_{CQ_{2,p,w}}$$
 (Equation RR-7)

where:

 $CQ_{2,w}$ = Annual CO₂ mass produced (metric tons) through separator w.

- $Q_{p,w}$ = Quarterly gas mass flow rate measurement for separator w in quarter p (metric tons).
- $C_{CQ_{2,p,w}}$ = Quarterly CO₂ concentration measurement in flow for separator w in quarter p (wt. percent CO₂, expressed as a decimal fraction).

(Equation RR-8)

- p = Quarter of the year.
- w = Gas / Liquid Separator.

RR-8 for Calculating Mass of CO $_2$ Produced / Recycled from a Gas-Liquid Separator through Volumetric Flow Meters

$$CQ_{2,w} = \sum_{p=1}^{4} Q_{p,w} * D * C_{CQ_{2,p,w}}$$

where:

 $CO_{2,w}$ = Annual CO₂ mass produced (metric tons) through separator w.

- *Q*_{*p,w*} = Quarterly gas volumetric flow rate measurement for separator w in quarter p (standard cubic meters).
- D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CQ_{2,p,w}}$ = Quarterly CO₂ concentration measurement in flow for separator w in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- *w* = Gas / Liquid Separator.

RR-9 for Summation of Mass of CO₂ Produced / Recycled through Multiple Gas Liquid Separators

$$CQ_{2P} = (1+X) * \sum_{\nu=1}^{W} CQ_{2,\nu}$$
 (Equation RR-9)

where:

- CO_{2P} = Total annual CO₂ mass produced (metric tons) though all separators in the reporting year.
- Entrained CO₂ in produced oil or other liquid divided by the CO₂ separated through all separators in the reporting year (wt. percent CO₂ expressed as a decimal fraction).
- $CQ_{2,w}$ = Annual CO₂ mass produced (metric tons) through separator w in the reporting year as calculated in Equation RR-7 or RR-8.
- *w* = Flow meter.

RR-10 for Calculating Annual Mass of CO₂ Emitted by Surface Leakage

$$CQ_{2E} = \sum_{x=1}^{X} CQ_{2,x}$$
 (Equation RR-10)

where:

- CQ_{2E} = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year.
- $CQ_{2,x}$ = Annual CO₂ mass emitted (metric tons) at leakage pathway x in the reporting year.
- *x* = Leakage pathway.

RR-11 for Calculating Annual Mass of CO₂ Sequestered for Operators Actively Producing Oil or Natural Gas or Any Other Fluid

$$CQ_2 = CQ_2 - CQ_2 -$$

Where:

- CO₂ = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CQ_{2I} = Total annual CO₂ mass injected (metric tons) in the well or group of wells in the reporting year.
- CQ_{2P} = Total annual CO₂ mass produced (metric tons) in the reporting year.
- CO_{2E} = Total annual CO₂ mass emitted (metric tons) by surface leakage in the reporting year.
- CQ_{2FI} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of the GHGRP.
- CQ_{2FP} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the production wellhead and the flow meter used to measure production quantity, for which a calculation procedure is provided in subpart W of the GHGRP.

RR-12 for Calculating Annual Mass of CO₂ Sequestered for Operators NOT Actively Producing Oil or Natural Gas or Any Other Fluid

$$CQ_2 = CQ_2 - CQ_2 - CQ_2 FI$$
 (Equation RR-12)

- CO₂ = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CQ_{21} = Total annual CO₂ mass injected (metric tons) in the well or group of wells in the reporting year.
- CQ_{2E} = Total annual CO₂ mass emitted (metric tons) by surface leakage in the reporting year.
- CQ_{2FI} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of the GHGRP.

Appendix 9 P&A Records

	UNITED STATES	S HO	bbs, Ni	M 88240		FORM APPRO OM B No. 10044	VED)137
BU	JREAU OF LAND MAN	AGEMENT		-	5. Lease Ser	Expires: March 3 ial No.	1, 2007
SUNDRY I	NOTICES AND REP	PORTS ON	WELLS	3		NM-174	46
Do not use this abandoned well	6. If India	n, Allottee or Tri	be Name				
SUBMIT IN TRIP	LICATE- Other instr	ructions on r	everse	side.	7. If Unit o	or CA/Agreement	, Name and/or N
Oil Welt	Gas Well Other			* ' ,	8. Well Na	ame and No.	
2. Name of Operator EOG Resou	rces, Inc			-		Government "L	." Com #1
3a Address	and TV 20202	3b. Phone No. (include area	code)		30-025-0	- 2560
4. Location of Well (Footage, Sec., T.,	R. M. or Survey Description)	432-501-860			10. Field a	nd Pool, or Explo Bell Lake, Sout	ratory Area h Morrow
Unit Letter G, 1980 FNL, 198	0 FEL			ł	11. County	or Parish, State	
Section 18, Township 24-S, Ra	ange 34-E					Lea, New M	exico
12. CHECK APP	ROPRIATE BOX(ES) TO	INDICATE N	ATURE (OF NOTICE, RE	PORT, O	R OTHER DA	ATA
TYPE OF SUBMISSION			TYPE O	F ACTION			
Notice of Intent	Acidize	Deepen Fracture Treat		Production (Star Reclamation	t/Resume)	Water Shi	at-Off arity
Subsequent Report	Casing Repair	New Constru	ction	Recomplete		Other _	
Final Abandonment Notice		Plug and Aba	ndon 🖵	Temporarily Aba	ndon	<u> </u>	
following completion of the invol testing has been completed. Final determined that the site is ready fo	ved operations. If the operation Abandonment Notices shall be or final inspection.)	ide the Bond No. o results in a multiple filed only:after all p	on file with E e completion requirements	3LM/BIA. Required tor recompletion in s, including reclama	a new interv tion, have be	reports shall be f val, a Form 3160- een completed, an	iled within 30 day 4 shall be filed on d the operator has
 Notified Jim McCormic Cut 3 1/2' tbg at 11500; Circ hole w/MLF. Perf 4 holes at 9050, pre Perf 4 holes at 7000, pre Cut 10 3/4" csg at 5450, Spot 75sx, plug from 134 Spot 150sx, plug from 30- Clean location. Install d 	I and RU. Jug from 11500-3 , plug from 9100 , plug from 7050 om 5500-5350, V at 1143. g at 423.	11400, WO -8950, WO -6900, WO VOC Tag a	DC Tag at 11389. DC Tag @ 8938. DC Tag @ 6855. It 5336.			4 2005	
		P&A Complete	12-30-04		C	JAN	4 2005
 I hereby certify that the forego Name (Printed/Typed) Immet Booley 	ing is true and correct					GARY (PETROLEU	GOURLEY
	1		ue	Co	nsultant		
Signature		E	Date	12	/30/2004		
	オHIS SPACE FOR	FEDERAL C	OR STA	TE OFFICE	USE		
						_	
Approved by			Title			Date	

P&A Record for Government Com 001, API #30-025-25604

GWW 2

P&A Records for API #30-025-26958

Submit I Copy To Appropriate District State of New N	Mexico	Form C-103
District 1 – (575) 393-6161 Energy, Minerals and Na	atural Resources	Revised August 1, 2011
1625 N. French Dr., Hobbs, NM 88240 District II ~ (575) 748-1283		WELL API NO. 3002526958
811 S First St., Artesia, NM 88210 RECEIVEDSERVATIO	N DIVISION	5Indicate Type of Lease
District III – (505) 334-6178 1000 Rio Brazos Rd, Aztec, NM 87410	rancis Dr.	STATE 🔲 FEE 🖂
District IV - (505) 476-3460 AUG 16 201 Santa Fe, NM 1220 S St Francis Dr., Santa Fe, NM	87505	6. State Oil & Gas Lease No. SCR-389
87505 HOBDOLLU		
SUNDRY NOTICES AND REPORTS ON WELT DO NOT USE THIS FORM FOR PROPOSALS TO DRILL OR TO DEEPEN OR F DIFFERENT RESERVOIR USE "APPLICATION FOR PERMIT" (FORM C	LS PLUG BACK TO A C-101) FOR SUCH	7. Lease Name or Unit Agreement Name Sims
1. Type of Well: Oil Well \Box Gas Well \Box Other		8. Well Number #1
2. Name of Operator: Agave Energy Company		9. OGRID Number 147831
3. Address of Operator		10. Pool name or Wildcat
104 S. Fourth St., Artesia NM 88210 (575-748-4528)		Big Sinks Wolfcamp
4. Well Location		j
Unit Letter K: 1980feet from the	N line and	800feet from theEline
Section 13 Township 24S	Range 331	E NMPM Lea County
II. Elevation (Show whether D	DR, RKB, RT, GR, etc	.) Makajaran ing kasaran ing
	Mature of Mation	Dement on Other Dete
NOTICE OF INTENTION TO: PERFORM REMEDIAL WORK PLUG AND ABANDON CHANGE PLANS PULL OR ALTER CASING MULTIPLE COMPL DOWNHOLE COMMINGLE	Nature of Notice, SUE REMEDIAL WOF COMMENCE DR CASING/CEMEN	Report or Other Data BSEQUENT REPORT OF: RK ILLING OPNS. P AND A IT JOB
NOTICE OF INTENTION TO: PERFORM REMEDIAL WORK PLUG AND ABANDON TEMPORARILY ABANDON CHANGE PLANS PULL OR ALTER CASING MULTIPLE COMPL OWNHOLE COMMINGLE DTHER: 13. Describe proposed or completed operations. (Classly states of the	Nature of Notice, SUE REMEDIAL WOF COMMENCE DR CASING/CEMEN OTHER I RE NMOCC R-	Report or Other Data BSEQUENT REPORT OF: RK
12. Check Appropriate Box to Indicate NOTICE OF INTENTION TO: PERFORM REMEDIAL WORK PLUG AND ABANDON TEMPORARILY ABANDON CHANGE PLANS PULL OR ALTER CASING MULTIPLE COMPL DOWNHOLE COMMINGLE OTHER: 13. Describe proposed or completed operations. (Clearly state all of starting any proposed work). SEE RULE 19.15.7.14 NM/ proposed completion or recompletion The remediation of the Sims #1 well pursuant to NMOCC order v demobilized. The plugging was done pursuant to NMOCC order v demobilized. The plugging was done pursuant to NMOCC order with taker and E.L. Gonzales of the OCD District 1 office wh plugging diagram. When establishing a rate prior to squeezin reservoir as it was taking 3bbl/min on vacuum. This indicate reservoir will be smaller than anticipated and the reservoir co intended and permitted injection zone by any nearby wellbor the Sims#1. Please see attached wellbore sketch for plugging plug.	Nature of Notice, SUE REMEDIAL WOF COMMENCE DR CASING/CEMEN OTHER I Re NMOCC R- Il pertinent details, ar AC. For Multiple Co was completed on Au requirements and all a to approved the speci on g the Cherry Canyon es that the predicted i onditions act to preve res including the Gov g details of all plugs s	Report or Other Data BSEQUENT REPORT OF: BK CALTERING CASING CALING OPNS P AND A CILLING OPNS CILLING CASING CILLING CILLI
12. Check Appropriate Box to Indicate NOTICE OF INTENTION TO: PERFORM REMEDIAL WORK PLUG AND ABANDON FEMPORARILY ABANDON CHANGE PLANS PULL OR ALTER CASING MULTIPLE COMPL DOWNHOLE COMMINGLE OTHER: 13. Describe proposed or completed operations. (Clearly state al of starting any proposed work). SEE RULE 19.15.7.14 NM/ proposed completion or recompletion The remediation of the Sims #1 well pursuant to NMOCC order or demobilized. The plugging was done pursuant to NMOCC order or Whitaker and E.L. Gonzales of the OCD District 1 office wh plugging diagram. When establishing a rate prior to squeezin reservoir as it was taking 3bbl/min on vacuum. This indicate reservoir will be smaller than anticipated and the reservoir contended and permitted injection zone by any nearby wellbor the Sims#1. Please see attached wellbore sketch for plugging plug.	Nature of Notice, SUE REMEDIAL WOF COMMENCE DR CASING/CEMEN OTHER I Re <u>NMOCC R-</u> Il pertinent details, ar AC. For Multiple Co was completed on Au requirements and all a to approved the speci on g the Cherry Canyou es that the predicted i onditions act to preve res including the Gov g details of all plugs s	Report or Other Data BSEQUENT REPORT OF: BKALTERING CASING ILLING OPNSP AND A IT JOB plug to cement off Cherry Canyon per 13507 d give pertinent dates, including estimated da mpletions: Attach wellbore diagram of gust 15, 2011 and all equipment has been aspects of the effort were reported to Mark fics of the plugging as shown in the attached n, it is clear that the reservoir is an excellent njection plume for the Red Hills AGI #1 in th mt migration of injected acid gas out of the t#2, Govt#1 and Smith Federal #1 in addition set and amounts of cement squeezed for each
12. Check Appropriate Box to Indicate NOTICE OF INTENTION TO: PERFORM REMEDIAL WORK PLUG AND ABANDON TEMPORARILY ABANDON CHANGE PLANS PULL OR ALTER CASING MULTIPLE COMPL DOWNHOLE COMMINGLE OTHER: 13. Describe proposed or completed operations. (Clearly state al of starting any proposed work). SEE RULE 19.15.7.14 NM/ proposed completion or recompletion The remediation of the Sims #1 well pursuant to NMOCC order or demobilized. The plugging was done pursuant to NMOCC order or Whitaker and E.L. Gonzales of the OCD District 1 office wh plugging diagram. When establishing a rate prior to squeezin reservoir as it was taking 3bbl/min on vacuum. This indicate reservoir will be smaller than anticipated and the reservoir contended and permitted injection zone by any nearby wellbor the Sims#1. Please see attached wellbore sketch for plugging plug.	Nature of Notice, SUE REMEDIAL WOF COMMENCE DR CASING/CEMEN OTHER SRe <u>NMOCC R-</u> Il pertinent details, ar AC. For Multiple Co was completed on Au requirements and all a to approved the speci on gthe Cherry Canyou es that the predicted i onditions act to preve res including the Gov g details of all plugs s	Report or Other Data BSEQUENT REPORT OF: BKALTERING CASING ILLING OPNSP AND A IT JOB plug to cement off Cherry Canyon per 13507 Id give pertinent dates, including estimated da mpletions: Attach wellbore diagram of gust 15, 2011 and all equipment has been aspects of the effort were reported to Mark fics of the plugging as shown in the attached n, it is clear that the reservoir is an excellent njection plume for the Red Hills AGI #1 in th nt migration of injected acid gas out of the t#2, Govt#1 and Smith Federal #1 in addition set and amounts of cement squeezed for each
12. Check Appropriate Box to Indicate NOTICE OF INTENTION TO: PERFORM REMEDIAL WORK PLUG AND ABANDON IEMPORARILY ABANDON CHANGE PLANS PULL OR ALTER CASING MULTIPLE COMPL OOWNHOLE COMMINGLE OTHER: 13. Describe proposed or completed operations. (Clearly state al of starting any proposed work). SEE RULE 19.15.7.14 NM/ proposed completion or recompletion The remediation of the Sims #1 well pursuant to NMOCC order were demobilized. The plugging was done pursuant to NMOCC order with the reservoir as it was taking 3bbl/min on vacuum. This indicate reservoir will be smaller than anticipated and the reservoir contended and permitted injection zone by any nearby wellbor the Sims#1. Please see attached wellbore sketch for plugging plug.	Nature of Notice, SUE REMEDIAL WOF COMMENCE DR CASING/CEMEN OTHER Re NMOCC R- Il pertinent details, ar AC. For Multiple Co was completed on Au requirements and all a paproved the speci ng the Cherry Canyon es that the predicted i onditions act to preve res including the Gov g details of all plugs s	Report or Other Data BSEQUENT REPORT OF: RK

DAST	
SIGNATURE_	_ TITLE_ Consultant to Agave Energy Company _DATE August 16, 2012
Type or print nameAlberto A. Gutierrez, RG E-ma	il address:aag@geolex.com PHONE:505-842-8000
APPROVED BY:	THE DET MATE DATE 8-16-2012
/	

8/16/2012

P&A Records for API 30-025-08371

		7					~	5		\ \
		- đ	NEW	MEXI	CO OIL C	ONSER	ATION) COMMISSI	01	FORM C-103 (Rev 3-55)
1,	14		Submit t	SCEL	LANEOU	IS REP	ORTS 0	N WELLS	le 1706.)
Name of Company	Byard	l Bennett		2	Addre	20	7 7 West	Third, Ros	well,	New Mexico
Lease	Holla	nd	Wel	1 No. 1	Unit Letter H	Section 3	Township	24 South	Rang	° 33 East
Date Work Perform March 8,	ned 1961	Post Wi	ldest				County Le	a		
		тн	IS IS A	REPORT	OF: (Check	appropria	te block)			
Beginning D	rilling Operations	5] Casin] Remed	g Test an dial Work	nd Cement Jo	ь [] Other (I	Explain):		
Top of Rus Top of De Cement Pl	itler: 1245', laware Sand: 5375-542 340-390 Heavy m Job perfe Prior ver	Top of S 5210', bllows: 25 with 1 with 20 nud (2 c ormed an rbal appre	ait: 13 Total 1 15 sack sacks, ic wtr. id with oval o	392', B Depth: (s, 517 5 sact loss) iessed b f plugg	lase of Sc 5425', C 75-5240 w ks and ma between by Mr. Pa ging progr	ilt: 4930 Casing 8 arker pij all cent col, Poo am from)', Top c 5/8 set sacks, 13 pe set at nent plug of Drig C Mr. En	of Dela Ls at 365', 375–1425 t surface. is. Co. gbrecht, N	s: 5190 Hole with 2 New M	size 6 3/4 0 sacks, exico O C C .
Location Witnessed by	will be clea	ned and	levele	d as so Position	oon as pro	actical.	Company			
Location Witnessed by	will be clea Mr. Fred	ned and Pool	levele	d as so Position (# FOR F	Owner	uctical.	Company Ports o	ool Drig (Co.	
Location Witnessed by	will be clea <u>Mr. Fr</u> ed	ned and Pool FILL IN	levele BFL0	d as so Position W FOR F ORIG	Owner REMEDIAL	WORK RE	Company Pe PORTS ()	ool Drig (NLY	Co.	
Location Witnessed by D F Elev.	Mr. Fred	ned and Pool FILLIN	levele BFL0	d as so Pesition (W FOR F OR IG OR IG	Owner Remedial INAL WELL	WORK RE	Company Po PORTS () Producing	ool Drlg (NLY s Interval	Co.	mpletion Date
Location Witnessed by D.F. Elev. Tubing Dismeter	will be clea <u>Mr. Fred</u> T.D	Pool FILL IN Taking Dept	levele BFL0	d as so Pesition (W FOR F ORIG	Owner REMEDIAL INAL WELL	WORK RE DATA	Company Po PORTS () Producing Ler	ool Drlg (NLY s Interval Oil St	Co.	nipletion Date
Location Witnessed by D F Elev. Tubing Dismeter Perforsted Interve	Mr. Fred	Pool FILL IN Taking Dept	levele BFL0	d as so Pesition (W FOR F ORIG	Owner REMEDIAL INAL HELL	WORK RE DATA	Company Po PORTS 0 Producing Ler	ool Drlg (NLY s Interval Oil St	Co.	mpletion Date
Location Witnessed by D F Elev. Tubing Dismeter Perforsted Intervy Open Hole Intervy	Mr. Fred	Pool FILL IN Future Dept	levele BFL01	d as so Pesition (W FOR F ORIG	Owner REMEDIAL INAL WELL ON So	WORK RE DATA	Company Ports O Producing (er	ool Drlg (NLY s Interval Oil St	Co.	nipletion Date
Location Witnessed by D F Elev. Tubing Diameter Perforated Interva	Will be clea	ned and Pool FILL IN Lating Dept	levele BFL01	d as so Position W FOR F ORIG I' ICT) RESUL	Owner REMEDIAL INAL WELL OIT SIN DITS OF WOR	WORK RE DATA ring Diame	Company Ports () Producing (er (tion(s))	ool Drlg (NLY a Interval Oil St	Co.	nipletion Date
Location Witnessed by D F Elev. Tubing Dismeter Perforsted Interva Open Hole Interva Test	Will be clea Mr. Fred T.D (I(s) (I) (I) (I) (I) (I) (I) (I) (I	Pool FILL IN Fubing Dept	levele BFL0 th	d as so Pesition (W FOR F ORIG [1:47]	Owner REMEDIAL INAL WELL INAL WELL I	WORK RE DATA ting Diame	Company Ports O Producing (er tion(s) Production PD	OOI Drlg (NLY GINTERVAL OII St GOI Cubic fee	Co. Co ting Depu	npletion Date th Gas Well Potential MC F P D
Location Witnessed by D F Elev. Tubing Dismeter Perforated Interva Open Hole Interva Test Before Workover	Mr. Fred TD ((s) Date of Tes:	Pool FILL IN Taking Dept	levele BFL0 th	d as so Pesition (W FOR F ORIG [1:1:2] RESUL	Owner REMEDIAL INAL WELL ON SO Drodes TS OF WOR CFMD	WORK RE DATA ring Diame	Company PORTS 0 Producing Cer tion(s)	ool Drlg (NLY s Interval Oil St Gol Cubic tee	Co.	mpletion Date th Gas Well Potential MCEPD
Location Witnessed by D F Elev. Tubing Diameter Perforated Interve Open Hole Interva Dest Before Workover After Workover	Mr. Fred T.D ((s) Date of Tes:	ned and Pool FILL IN Taking Dept	levele BFL0 ch	d as so Position W FOR F ORIG	Owner REMEDIAL INAL WELL OIT SU Drodou TS OF WOR CEPTD	WORK RE DATA ting Diame	Company PORTS O Producing ter tion(s)	ool Drlg (NLY s Interval Oil St Cubic Ice	Co. Co ting Depu	mpletion Date th Gas Well Potential MCFPD
Location Witnessed by D F Elev. Tubing Dismeter Perforated Interve Open Hole Interve Open Hole Interve Morkover After Workover	Mr. Fred Mr. Fred T.D (I(s) Date of Tes: OIL CONSERVAT	ned and Pool FILL IN Tabing Dept Oil Prode BP1 I I I I I I I I I I I I I	leveler I BF LO th action b	d as so Pesition (W FOR F ORIG [1:1:1] RESUL	Owner REMEDIAL INAL WELL OUT SU OUT SU Production CEPPD	WORK RE DATA ting Diame ting Forma KOVER Water H B weby certif the best of	Company PORTS () Producing ter tion(s) Production PD	ool Drlg (NLY s Interval Oil St Cubia tee	Co. Co ting Depu R : Bbl	mpletion Date th (cas Well Potential MC F P D e is true and complet
Location Witnessed by D F Elev. Tubing Diameter Perforated Interva Open Hole Interva Workover After Workover After Workover After Title	Will be clea Mr. Fred T.D d(s)	ned and Pool FILL IN Tabung Dept Old Prode BPI FION COMMI	leveler BFL01 th ISSION	d as so Pesifion FOR F ORIG ITTOTI	Owner REMEDIAL INAL WELL OUT SU OUT SU Droduction CEPPID	work re bata ing Diame ing Forma KOVER Water H B teby certifier best cl	Company PORTS O Producing ter tion(s) Production PD y that the in m, knowled Company etf	ool Drlg (NLY Ginterval Oil St Cubic fee aformation gi	Co. Co. ting Deput R: Bbl ven abov	npletion Date th Gas Well Potential MC F PD

Request for Additional Information: Red Hills Gas Processing Plant November 16, 2023

Instructions: Please enter responses into this table and make corresponding revisions to the MRV Plan as necessary. Any long responses, references, or supplemental information may be attached to the end of the table as an appendix. This table may be uploaded to the Electronic Greenhouse Gas Reporting Tool (e-GGRT) in addition to any MRV Plan resubmissions.

No.	MRV Plan		EPA Questions	Responses
	Section	Page		
1.	Multiple	Multiple	 The submitted plan states: "This MRV plan is for RH AGI #1 and RH AGI #3" "RH AGI #2 is authorized to inject TAG" "RH AGI #2 well is temporarily abandoned as of the submission of this document" "Upon completion, TND will commence injection into RH AGI #2 and #3" "Daily CO2 injected is recorded by totalizers on the volumetric flow meters on the pipelines to the RH AGI #1 and #2 wells" Please clarify the status of RH AGI #2 throughout the MRV plan. E.g., do the MMA and AMA account for CO2 that may be injected through RH AGI #2? Is RH AGI #2 discussed as a potential leakage pathway in section 5? Why is meant by the statement, "This MRV plan is for RH AGI #1 and RH AGI #3"? 	The introduction of the revised MRV plan has been edited to state that RH AGI #2 is currently temporarily abandoned. Other references to RH AGI #2 have been edited to indicate clearly that it is temporarily abandoned or the references have been removed.

No.	MRV Plan		EPA Questions	Responses	
	Section	Page			
2.	1	4	"Targa Northern Delaware, LLC (TND) is currently authorized to inject a total of up to 13 million standard cubic feet per day (MMSCFD) of treated acid gas (TAG) in the Red Hills Acid Gas Injection #1 well (RH AGI #1) (American Petroleum Institute (API) 30-025-40448) and RH AGI #3 well (API # 30-025-51970) under the New Mexico Oil Conservation Commission (NMOCC)" Please clarify how the permitted injection volume is split between the RH AGI #1 and the RH AGI #3. Is this the combined volume, or the volume for each?	The revised MRV plan has been edited to clarify that each well is authorized to inject 13 MMSCFD.	
3.	3.5	24	"the closest water well is located 0.31 miles away and has a total depth of 650 ft (Figure 3.6-1; Appendix 3)." Please confirm whether this reference is directed towards the correct figure. We recommend confirming that all figure numbers and references are consistent throughout the MRV plan.	Figure numbers and references have been checked and corrected as necessary in the revised MRV plan.	
4.	3.6	27	We recommend expanding and clarifying the process flow diagram by including metering locations as relevant to subpart RR.	The process flow diagram, Figure 3.6.1-2, has been expanded and labeled to show flow meters and other surface equipment. Section 8 has been rewritten to clarify which surface components will be used in Subpart RR equations.	

No.	. MRV Plan		EPA Questions	Responses
	Section	Page		
5.	4.1	37	Per 40 CFR 98.449, maximum monitoring area is defined as equal to or greater than the area expected to contain the free phase CO ₂ plume until the CO ₂ plume has stabilized plus an all-around buffer zone of at least one-half mile. While the MRV plan identifies the MMA, please provide further explanation of whether the MMA meets the definitions in 40 CFR 98.449. For example, please specify whether the area is expected to contain the free phase CO ₂ plume once it has stabilized as required in the above definitions. When is the plume expected to stabilize?	This section of the revised MRV plan has been rewritten to address this.

No.	. MRV Plan		EPA Questions	Responses		
	Section	Page				
6.	4.2	37	 Per 40 CFR 98.449, active monitoring area is defined as the area that will be monitored over a specific time interval from the first year of the period (n) to the last year in the period (t). The boundary of the active monitoring area is established by superimposing two areas: (1) The area projected to contain the free phase CO₂ plume at the end of year t, plus an all around buffer zone of one-half mile or greater if known leakage pathways extend laterally more than one-half mile. (2) The area projected to contain the free phase CO₂ plume at the end of year t + 5. While the MRV plan identifies the AMA, please provide further explanation of whether the AMA meets the definitions in 40 CFR 98.449. For example, please specify whether CO₂ will remain in the unit boundaries at year t and year t+5 as required in the above definitions. Additionally, please ensure that any figures related to the AMA clearly identify the AMA. 	This section of the revised MRV plan has been rewritten to address this.		
No.	MRV Plan EPA Questions Section Page		EPA Questions	Responses		
-----	---	----	--	---	--	--
7.	5.1	38	 "To further minimize the likelihood of surface leakage of CO₂ from surface equipment, TND implements a schedule for regular inspection and maintenance of surface equipment." Please note that CO₂ leakage through surface equipment (CO2FI) in subpart RR is different from surface leakage (CO2E) and the two are calculated separately. In the MRV plan, please clarify that equipment leakage is not synonymous with "surface leakage" as defined under 40 CFR 98.449. For further guidance, please also reference 98.442 and 98.444(d). Please ensure that this issue is addressed throughout the MRV plan (we recommend checking Sections 5, 7 and 8). 	Section 5.1 has been rewritten in the revised MRV plan to focus on the risk mitigation measures in place to minimize CO ₂ emissions from surface equipment. Additionally, Section 8 has been rewritten to clearly show the distinction between the calculation of CO ₂ emitted by surface leakage (CO _{2E} in Equation RR-12) and CO ₂ emitted from equipment leaks and vented emissions (CO _{2FI} in Equation RR-12).		
8.	5.1	38	"TND considers the likelihood, magnitude, and timing of CO ₂ emission to the surface via this potential leakage pathway to be minimal." In addition to listing the possible leakage pathways and their monitoring strategies, please provide a clear characterization of the likelihood, magnitude, and timing of leakage specific to each potential leakage pathway. E.g., what is meant be the "timing" of leakage being "minimal"?	Each of the subsections of Section 5 has been rewritten in the revised MRV plan to provide a clear characterization of the likelihood, magnitude, and time of leakage specific to each identified leakage pathway. The National Risk Assessment Partnership (NRAP) tool was used to analyze the likelihood, magnitude and timing of leakage. Narrative from the NRAP analysis was included in various subsections of Section 5.		

No.	MRV Plan		EPA Questions	Responses		
	Section	Page				
9.	5.3	39	"As shown in Figure 3.7-1 and detailed in Appendix 4 , there are several existing oil- and gas-related wells within the MMA as delineated in Section 4." Please ensure that the reference to Figure 3.7-1 is correct. We recommend ensuring that all figure numbers and references are consistent throughout the MRV plan. Additionally, please ensure that the description of the wells within the MMA is consistent. Figure 3.6-1 implies that there could be more than "several" wells are within the MMA.	This sentence has been rewritten in the revised MRV plan and the figure reference has been corrected. Figure 3.6.2-1 (newly numbered) and Figure 4.1-1 have been updated in the revised MRV plan to show the same vertical and horizontal wells with their trajectories within the MMA.		
10.	5.3	39	While the MRV plan addresses wells completed below and within the injection zone, please include a discussion of wells completed above the injection zone that could present potential pathways should CO ₂ migration through the seal occur (even if the likelihood of leakage through this pathway is determined to be low).	All wells within the MMA have been addressed in the revised MRV plan.		
11.	5.3	39	Please clarify whether all plugged and abandoned wells within the MMA have been evaluated in these sections.	All wells within the MMA have been addressed in subsection 5.3 and the corresponding NRAP analysis.		

No.	lo. MRV Plan		EPA Questions	Responses		
	Section	Page				
12.	5.3.2	39	 "Figure 4.1-1 shows that the modeled TAG plume extent after 30 years of injection and 5 years of post-injection stabilization does not extend to these well boreholes thereby indicating that these wells are not likely to be pathways for CO₂ leakage to the surface." Please clarify which wells are being referred to in this text. In the preceding text, several groups of wells are described based on depth. Figure 4.1-1 does not include many of these wells. Please ensure that the text is consistent with all figures shown throughout the MRV plan. 	The MRV plan has been revised for clarity. Figure 4.1-1 is being revised to show the same wells in Figure 3.6.2-1		
13.	5.7	42	Please elaborate on the risk of induced seismicity in this section. Will the facility take steps to ensure that seismicity is not induced?	Section 5.7 in the revised MRV plan has been rewritten to state that TND operates its injection wells at pressures below fracture opening pressures.		
14.	6	43	While the MRV plan mentions that the facility intends to quantify potential surface leakage, please provide example quantification strategies that may be applied for the surface leakage pathways identified in the plan.	Subsection 6.8 – Strategy for Quantifying CO ₂ Leakage and Response – has been added to Section 6 – Strategy for Detecting and Quantifying Surface Leakage of CO ₂ to provide examples of quantification strategies.		

No.	MRV Plan		EPA Questions	Responses		
	Section	Page				
15.	8.4	53	"Surface leakage of CO ₂ will be determined by employing the CO ₂ detection system described in Section 7.3 ."	Section 8.4 has been rewritten in the revised MRV plan to address this issue.		
			(https://www.ecfr.gov/current/title-40/chapter-I/subchapter- C/part-98/subpart-RR/section-98.443), quantification of surface leakage for use in Equation RR-12 must include any leakage detected and quantified by all methodologies in Section 7 of the MRV plan, not just Section 7.3 of the MRV plan. Please revise this section and ensure that all references to equations are consistent with the text in 40 CFR 98.443			
16.	8.5	53	"As required by 98.448(d) of Subpart RR, TND will assess leakage from the relevant surface equipment listed in Sections 98.233 and 98.234 of Subpart W"	The regulatory reference has been corrected in the revised MRV plan. The reference should be 98.444(d) not 98.448(d).		
	98.44 Pleas		98.448(d) of Subpart RR appears to be the incorrect citation. Please ensure all references to regulatory text are properly cited.			

MONITORING, REPORTING, AND VERIFICATION PLAN

Red Hills AGI #1 and AGI #3

Targa Northern Delaware, LLC (TND)

Table of Contents

1	I	Introduction				
2	F	Facility Information				
2.1 Reporter number						
	2.2	UIC injection well identification numbers	6			
	2.3	UIC permit class	6			
3	F	Project Description	6			
	3.1	General Geologic Setting / Surficial Geology	7			
	3.2	Bedrock Geology	7			
	Э	3.2.1 Basin Development	7			
	3	3.2.2 Stratigraphy	16			
	3	3.2.3 Faulting	21			
	3.3	Lithologic and Reservoir Characteristics	21			
	3.4	Formation Fluid Chemistry	24			
	3.5	Groundwater Hydrology in the Vicinity of the Red Hills Gas Plant.				
	3.6	Historical Operations				
	3	3.6.1 Red Hills Site	25			
	1	3.6.2 Operations within the MMA for the RH AGI Wells	27			
	37	Description of Injection Process	29			
	3.7 3.8	Reservoir Characterization Modeling	30			
4	0.С Г	Delineation of the Monitoring Areas	37			
-	- 1 1	MMA – Maximum Monitoring Area				
	4.1 12	$\Delta M\Delta = \Delta ctive Monitoring Area$				
5	<u>ح.ح</u>	dentification and Evaluation of Potential Leakage Pathways to the Surface	37			
5	51	Detential Leakage from Surface Equipment				
	5.2	Potential Leakage from Annroved Not Vet Drilled Wells	50			
	J.2	5 2 1 RH ΔGI #3	38			
	5	5.2.2 Horizontal Wells	20			
	۔ د ت	Detential Lookage from Existing Wolls	20			
	5.5	5.2.1 Well Completed in the Bell Canyon and Cherry Canyon Formations	20			
	-	5.5.1 Wells Completed in the Bene Spring (Welfsamp Zones	20			
	-	5.5.2 Wells Completed in the Bone Spring / Woncamp Zones	59			
	5	5.3.3 Wells Completed In the Siluro-Devonian Zone	40			
		5.3.4 Groundwater Wells	40			
	5.4	Potential Leakage through the Confining / Seal System	40			
	5.5	Potential Leakage due to Lateral Migration	40			
	5.6	Potential Leakage through Fractures and Faults	41			
c	5.7	Potential Leakage due to Natural / Induced Seismicity	42			
6	2	Strategy for Detecting and Quantifying Surface Leakage of CO ₂	43			
	6.1	Leakage from Surface Equipment	44			
	6.2	Leakage from Approved Not Yet Drilled Wells	45			
	6.3	Leakage from Existing Wells	45			
	e		45			
	e	5.3.2 Other Existing Wells within the MMA	47			
	6.4	Leakage through the Confining / Seal System	47			
	6.5	Leakage due to Lateral Migration	48			
	6.6	Leakage from Fractures and Faults	48			
_	6.7	Leakage due to Natural / Induced Seismicity	48			
7	_ S	strategy for Establishing Expected Baselines for Monitoring CO ₂ Surface Leakage	48			
	7.1	Visual Inspection	49			
	7.2	Fixed In-Field, Handheld, and Personal H_2S Monitors	49			

7.2	2.1	Fixed In-Field H ₂ S Monitors	
7.2	2.2	Handheld and Personal H ₂ S Monitors	
7.3	CO_2	Detection	
7.4	Cont	inuous Parameter Monitoring	
7.5	Well	Surveillance	
7.6	Seisr	nic (Microseismic) Monitoring Stations	50
7.7	Grou	Indwater Monitoring	50
7.8	Soil	CO ₂ Flux Monitoring	51
8 Sit	e Spe	cific Considerations for Determining the Mass of CO ₂ Sequestered	52
8.1	CO_{2}	Received	52
8.2	CO_2	Injected	53
8.3	$CO_2 \\$	Produced / Recycled	53
8.4	CO_2	Lost through Surface Leakage	53
8.5	CO ₂	Sequestered	53
9 Est	timat	ed Schedule for Implementation of MRV Plan	53
10 GH	IG M	onitoring and Quality Assurance Program	53
10.1	GHG	Monitoring	53
10	.1.1	General	54
10	.1.2	CO ₂ received	54
10	.1.3	CO2 injected	54
10	.1.4	CO ₂ produced	54
10	.1.5	CO ₂ emissions from equipment leaks and vented emissions of CO ₂ .	
10	.1.6	Measurement devices	
10.2	OA/	OC Procedures	
10.3	Estir	nating Missing Data	
10.4	Revi	sions of the MRV Plan	
11 Re	cords	Retention	
12 Ap	pend	lices	
Append	lix 1	TND Wells	
Append	lix 2	Referenced Regulations	61
Annend	lix 3	Water Wells	63
Annend	liv A	Oil and Gas Wells within 2-mile Radius of the RH AGI Well Site	
Append		Deferences	
Append		Abbreviations and Asronyms	
Append		TND Pod Hills ACI Walls Subpart PD Equations for Coloriating CO. Coologia Socialities	70 74
Append		The real mission of the subpart RK equations for Calculating CO ₂ deblogic sequestration	
Append		Suppart KK Equations for Calculating Annual Mass of CO ₂ Sequestered	
Append	iix 9	P&A Records	78

1 Introduction

Targa Northern Delaware, LLC (TND) is currently authorized to inject a total of up to 13 million standard cubic feet per day (MMSCFD) of treated acid gas (TAG) in the Red Hills Acid Gas Injection #1 well (RH AGI #1)(American Petroleum Institute (API) 30-025-40448) and RH AGI #3 well (API # 30-025-51970) under the New Mexico Oil Conservation Commission (NMOCC) Orders R-13507 – 13507F and Order R-20916H, respectively, at the Red Hills Gas Plant located approximately 20 miles NNW of Jal in Lea County, New Mexico (**Figure 1-1**). Although approved at 13 MMSCFD, RH AGI #1 is physically only capable of taking ~5 MMSCFD due to formation and surface pressure limitations.

The AGI wells were previously operated by Lucid Energy Delaware, LLC's ("Lucid"). TND acquired Lucid assets in 2022. Lucid received authorization to construct a redundant well, RH AGI #2 (API# 30-025-49474) under NMOCC Order R-20916-H, which is offset 200 ft to the north of RH AGI #1 and is temporarily abandoned in the Bell Canyon Formation. RH AGI #2 is authorized to inject TAG at a maximum daily injection rate of 13 MMSCFD into the Devonian and Upper Silurian Wristen and Fusselman Formations at depths of approximately 16,000 to 17,500 ft with a maximum surface injection pressure of approximately 4,838 pounds per square inch gauge (psig).

TND recently received approval from NMOCC for its C-108 application to drill, complete and operate a third acid gas injection well (RH AGI #3) in which TND requested an injection volume of up to 13 MMSCFD. Because AGI #1 does not have complete redundancy, having a greater permitted disposal volume will also increase operational reliability. The RH AGI #3 well is currently being drilled as a vertical well with its surface location at approximately 3,116 ft from the north line (FNL) and 1,159 ft from the east line (FEL) of Section 13. The depth of the proposed injection zones for this well are approximately 5,600 to 7,200 ft in the Bell Canyon and Cherry Canyon Formations. Analysis of the reservoir characteristics of these units confirms that they act as excellent closed-system reservoirs that will accommodate the future needs of TND for disposal of treated acid gas (H₂S and CO₂) from the Red Hills Gas Plant.

TND has chosen to submit this Monitoring, Reporting, and Verification (MRV) plan to EPA for approval according to 40CFR98.440(c)(1), Subpart RR of the Greenhouse Gas Reporting Program (GHGRP) for the purpose of qualifying for the tax credit in section 45Q of the federal Internal Revenue Code. TND intends to inject CO₂ for another 30 years.

Figure 1-1: Location of the Red Hills Gas Plant and Wells – RH AGI #1, RH AGI #2 (temporarily abandoned), and RH AGI #3

This MRV Plan contains twelve sections:

Section 1 is this Introduction.

Section 2 contains facility information.

Section 3 contains the project description.

Section 4 contains the delineation of the maximum monitoring area (MMA) and the active monitoring area (AMA), both defined in 40CFR98.449, and as required by 40CFR98.448(a)(1), Subpart RR of the GHGRP.

Section 5 identifies the potential surface leakage pathways for CO_2 in the MMA and evaluates the likelihood, magnitude, and timing of surface leakage of CO_2 through these pathways as required by 40CFR98.448(a)(2), Subpart RR of the GHGRP.

Section 6 describes the detection, verification, and quantification of leakage from the identified potential sources of leakage as required by 40CFR98.448(a)(3).

Section 7 describes the strategy for establishing the expected baselines for monitoring CO_2 surface leakage as required by 40CFR98.448(a)(4), Subpart RR of the GHGRP.

Section 8 provides a summary of the considerations used to calculate site-specific variables for the mass balance equation as required by 40CFR98.448(a)(5), Subpart RR of the GHGRP.

Section 9 provides the estimated schedule for implementation of this MRV Plan as required by 40CFR98.448(a)(7).

Section 10 describes the quality assurance and quality control procedures that will be implemented for each technology applied in the leak detection and quantification process. This section also includes a discussion of the procedures for estimating missing data as detailed in 40CFR98.445.

Section 11 describes the records to be retained according to the requirements of 40CFR98.3(g) of Subpart A of the GHGRP and 40CFR98.447 of Subpart RR of the GRGRP.

Section 12 includes Appendices supporting the narrative of the MRV Plan, including information required by 40CFR98.448(a)(6).

2 Facility Information

2.1 Reporter number

Greenhouse Gas Reporting Program ID is 553798

2.2 UIC injection well identification numbers

This MRV plan is for RH AGI #1 and RH AGI #3 (**Appendix 1**). The details of the injection process are provided in Section 3.7.

2.3 UIC permit class

For injection wells that are the subject of this MRV plan, the New Mexico Oil Conservation Division (NMOCD) has issued Underground Injection Control (UIC) Class II acid gas injection (AGI) permits under its State Rule 19.15.26 NMAC (see **Appendix 2**). All oil- and gas-related wells around the RH AGI wells, including both injection and production wells, are regulated by the NMOCD, which has primacy to implement the UIC Class II program.

3 Project Description

The following project description was developed by the Petroleum Recovery Research Center (PRRC) at New Mexico Institute of Mining and Technology (NMT) and the Department of Geosciences at the University of Texas Permian Basin (UTPB).

3.1 General Geologic Setting / Surficial Geology

The TND Red Hills Gas Plant is located in T 24 S R 33 E, Section 13, in Lea County, New Mexico, immediately adjacent to the RH AGI wells. (Figure 3.1-1). The plant location is within a portion of the Pecos River basin referred to as the Querecho Plains reach (Nicholson & Clebsch, 1961). This area is relatively flat and largely covered by sand dunes underlain by a hard caliche surface. The dune sands are locally stabilized with shin oak, mesquite, and some burr-grass. There are no natural surface bodies of water or groundwater discharge sites within one mile of the plant and where drainages exist in interdunal areas, they are ephemeral, discontinuous, dry washes. The plant site is underlain by Quaternary alluvium overlying the Triassic red beds of the Santa Rosa Formation (Dockum Group), both of which are local sources of groundwater.

Figure 3.1-1: Map showing location of TND Red Hills Gas Plant and RH AGI Wells in Section 13, T 24 S, R 33 E

3.2 Bedrock Geology

3.2.1 Basin Development

The Red Hills Gas Plant and the RH AGI wells are located at the northern margin of the Delaware Basin, a sub-basin of the larger, encompassing Permian Basin (**Figure 3.2-1**), which covers a large area of southeastern New Mexico and west Texas.

Figure 3.2-1: Structural features of the Permian Basin during the Late Permian. Location of the TND RH AGI wells is shown by the black circle. (Modified from Ward, et al (1986))

Figure 3.2-2 is a generalized stratigraphic column showing the formations that underlie the Red Hills Gas Plant and RH AGI wells site. The thick sequences of Permian through Cambrian rocks are described below. A general description of the stratigraphy of the area is provided in this section. A more detailed discussion of the injection zone and the upper and lower confining zones is presented in Section 3.3 below.

The RH AGI wells are in the Delaware Basin portion of the broader Permian Basin. Sediments in the area date back to the Cambrian Bliss Sandstone (Broadhead, 2017; **Figure 3.2-2**) and overlay Precambrian granites. These late Cambrian transgressive sandstones were the initial deposits from a shallow marine sea that covered most of North America and Greenland (**Figure 3.2-3**). With continued down warping and/or sea-level rise, a broad, relatively shallow marine basin formed. The Ellenburger Formation (0 - 1000 ft) is dominated by dolostones and limestones that were deposited on restricted carbonate shelves (Broadhead, 2017; Loucks and Kerans, 2019). Throughout this narrative, the numbers after the formations indicate the range in thickness for that unit. Tectonic activity near the end of Ellenburger deposition resulted in subaerial exposure and karstification of these carbonates which increased the unit's overall porosity and permeability.

AGE			CENTRAL BASIN PLATFORM- NORTHWEST SHELF		DELAWARE BASIN	
Cenozoic		Alluvium		Alluvium		
			Chinle Formation		Chinle Formation	
Triassic		5	Santa Rosa Sandstone		Santa Rosa Sandstone	
		[Dewey Lake Formation		Dewey Lake Formation	
	Lopingian		Rustler Formation		Rustler Formation	
	(Ochoan)	Salado Formation			Salado Formation	
					Castile Formation	
			Tansill Formation	dno	Lamar Limestone	
		Gro	Yates Formation	Gro	Bell Canyon Formation	
	Guadalupian	sia	Seven Rivers Formation	ıtair		
		Arte	Queen Formation	lour	Cherry Canyon Formation	
Permian			Grayburg Formation	Pe M		
rennan			San Andres Formation	lawai	Brushy Canyon Formation	
	a		Glorieta Formation	De		
	Cisuralian	0	Blinebry Mbr			
	(Leonardian)	Yes	Tubb Sandstone Mbr.			
		1	Drinkard Mbr.	Bone Spring Formation		
			Abo Formation			
	Wolfcampian	<u> </u>			Husse ("Malfaama") Em	
			Hueco ("woircamp") Fm.		nueco (woncamp) rm.	
	Virgilian	Cisco Formation			Cisco	
	Missourian		Canyon Formation		Canyon	
Pennsylvanian	Des Moinesian		Strawn Formation		Strawn	
	Atokan		Atoka Formation		Atoka	
	Morrowan	Morrow Formation		Morrow		
Mississinnian	Upper		Barnett Shale	Barnett Shale		
wississippian	Lower	"Mississippian limestone"			"Mississippian limestone"	
	Upper		Woodford Shale		Woodford Shale	
Devonian	Middle					
	Lower		Thirtyone Formation		Thirtyone Formation	
	Upper		Wristen Group		Wristen Group	
Silurian	Middle					
	Lower		Fusselman Formation		Fusselman Formation	
	Upper		Montoya Formation		Montoya Formation	
Ordovician	Middle		Simpson Group		Simpson Group	
	Lower	E	Ellenburger Formation		Ellenburger Formation	
Cambrian			Bliss Ss.		Bliss Ss.	
Precambrian		me	Miscellaneous igneous, etamorphic, volcanic rocks		Miscellaneous igneous, metamorphic, volcanic rocks	

Figure 3.2-2: Stratigraphic column for the Delaware basin, the Northwest Shelf and Central Basin Platform (modified from Broadhead, 2017).

During Middle to Upper Ordovician time, the seas once again covered the area and deposited the carbonates, sandstones and shales of the Simpson Group (0 – 1000 ft) and then the Montoya Formation (0 – 600 ft). This is the period when the Tobosa Basin formed due to the Pedernal uplift and development of the Texas Arch (**Figure 3.2-4A**; Harrington, 2019) shedding Precambrian crystalline clasts into the basin. Reservoirs in New Mexico are typically within deposits of shoreline sandstones (Broadhead, 2017). A subaerial exposure and karstification event followed the deposition of the Simpson Group. The Montoya Formation within the Tobosa Basin (Broadhead, 2017; Harrington and Loucks, 2019). The Montoya Formation consists of sandstones and dolomites and have also undergone karstification.

Figure 3.2-3: A subsidence chart from Reeves County, Texas showing the timing of development of the Tobosa and Delaware basins during Paleozoic deposition (from Ewing, 2019)

Figure 3.2-4: Tectonic Development of the Tobosa and Permian Basins. A) Late Mississippian (Ewing, 2019). Note the lateral extent (pinchout) for the lower Paleozoic strata. B) Late Permian (Ruppel, 2019a).

Siluro-Devonian formations consist of the Upper Ordovician to Lower Silurian Fusselman Formation (0 – 1,500 ft), the Upper Silurian to Lower Devonian Wristen Group (0 – 1,400 ft), and the Lower Devonian Thirtyone Formation (0 – 250 ft). The Fusselman Formation are shallow-marine platform deposits of dolostones and limestones (Broadhead, 2017; Ruppel, 2019b). Subaerial exposure and karstification associated with another unconformity at top of the Fusselman Formation as well as intraformational exposure events created brecciated fabrics, widespread dolomitization, and solution-enlarged pores and fractures (Broadhead, 2017). The Wristen and Thirtyone units appear to be conformable. The Wristen Group consists of tidal to high-energy platform margin carbonate deposits of dolostones, limestones, and cherts with minor siliciclastics (Broadhead, 2017; Ruppel, 2020a). The Thirtyone Formation is present in the southeastern corner of New Mexico and appears to be either removed by erosion or not deposited elsewhere in New Mexico (**Figure 3.2-5**). It is shelfal carbonate with varying amounts of chert nodules and represents the last carbonate deposition in the area during Devonian time (Ruppel et al., 2020a).

Figure 3.2-5 -- A subcrop map of the Thirtyone and Woodford formations. The Woodford (brown) lies unconformably on top of the Wristen Group where there is no Thirtyone sediments (yellow). Diagram is from Ruppel (2020).

The Siluro-Devonian units are saltwater injection zones within the Delaware Basin and are typically dolomitized, shallow marine limestones that have secondary porosity produced by subaerial exposure, karstification and later fracturing/faulting. These units will be discussed in more detail in **Section 3.2.2**.

The Devonian Woodford Shale, an un-named Mississippian limestone, and the Upper Mississippian Barnett Shale are seals for the underlying Siluro-Devonian strata. While the Mississippian recrystallized limestones have minor porosity and permeability, the Woodford and Barnett shales have extremely low porosity and

permeability and would be effective barriers to upward migration of acid gas out of the injection zone. The Woodford Shale (0 – 300 ft) ranges from organic–rich argillaceous mudstones with abundant siliceous microfossils to organic-poor argillaceous mudstones (Ruppel et al., 2020c). The Woodford sediments represent stratified deeper marine basinal deposits with their organic content being a function of the oxygenation within the bottom waters – the more anoxic the waters the higher the organic content.

The Mississippian strata within the Delaware Basin consists of an un-named carbonate member and the Barnett Shale and unconformably overlies the Woodford Shale. The lower Mississippian limestone (0 – 800 ft) are mostly carbonate mudstones with minor argillaceous mudstones and cherts. These units were deposited on a Mississippian ramp/shelf and have mostly been overlooked because of the reservoirs limited size. Where the units have undergone karstification, porosity may approach 4 to 9% (Broadhead, 2017), otherwise it is tight. The Barnett Shale (0 – 400 ft) unconformably overlies the Lower Mississippian carbonates and consists of Upper Mississippian carbonates deposited on a shelf to basinal, siliciclastic deposits (the Barnett Shale).

Pennsylvanian sedimentation in the area is influenced by glacio-eustatic sea-level cycles producing numerous shallowing upward cycles within the rock record; the intensity and number of cycles increase upward in the Pennsylvanian section. The cycles normally start with a sea-level rise that drowns the platform and deposits marine mudstones. As sea-level starts to fall, the platform is shallower and deposition switches to marine carbonates and coastal siliciclastic sediments. Finally, as the seas withdraw from the area, the platform is exposed causing subaerial diagenesis and the deposition terrestrial mudstones, siltstones, and sandstones in alluvial fan to fluvial deposits. This is followed by the next cycle of sea-level rise and drowning of the platform.

Pennsylvanian sedimentation is dominated by glacio-eustatic sea-level cycles that produced shallowing upward cycles of sediments, ranging from deep marine siliciclastic and carbonate deposits to shallow-water limestones and siliciclastics, and capping terrestrial siliciclastic sediments and karsted limestones. Lower Pennsylvanian units consist of the Morrow and Atoka formations. The Morrow Formation (0 - 2,000 ft) within the northern Delaware Basin was deposited as part of a deepening upward cycle with depositional environments ranging from fluvial/deltaic deposits at the base, sourced from the crystalline rocks of the Pedernal Uplift to the northwest, to high-energy, near-shore coastal sandstones and deeper and/or low-energy mudstones (Broadhead, 2017; Wright, 2020). The Atoka Formation (0-500 ft) was deposited during another sea-level transgression within the area. Within the area, the Atoka sediments are dominated by siliciclastic sediments, and depositional environments range from fluvial/deltas, shoreline to near-shore coastal barrier bar systems to occasional shallow-marine carbonates (Broadhead, 2017; Wright, 2020).

Middle Pennsylvanian units consist of the Strawn group (an informal name used by industry). Strawn sediments (250 - 1,000 ft) within the area consists of marine sediments that range from ramp carbonates, containing patch reefs, and marine sandstone bars to deeper marine shales (Broadhead, 2017).

Upper Pennsylvanian Canyon (0 – 1,200 ft) and Cisco (0 – 500 ft) group deposits are dominated by marine, carbonate-ramp deposits and basinal, anoxic, organic-rich shales.

Deformation, folding and high-angle faulting, associated with the Upper Pennsylvanian/Early Permian Ouachita Orogeny, created the Permian Basin and its two sub-basins, the Midland and Delaware basins (Hills, 1984; King, 1948), the Northwest Shelf (NW Shelf), and the Central Basin Platform (CBP; **Figures 3.2-4B**, **3.2-6**, **3.2-7**). The Permian "Wolfcamp" or Hueco Formation was deposited after the creation of the Permian Basin. The Wolfcampian sediments were the first sediments to fill in the structural relief (**Figure 3.2-6**). The Wolfcampian Hueco Group (~400 ft on the NW Shelf, >2,000 ft in the Delaware Basin) consists of shelf margin deposits ranging from barrier reefs and fore slope deposits, bioherms, shallow-water carbonate shoals, and basinal carbonate mudstones (Broadhead, 2017; Fu et al., 2020). Since deformation continued throughout the Permian, the Wolfcampian sediments were truncated in places like the Central Basin Platform (Figure 3.2-6).

Figure 3.2-6 -- Cross section through the western Central Basin Platform showing the structural relationship between the Pennsylvanian and older units and Permian strata (modified from Ward et al., 1986; from Scholle et al., 2007).

Figure 3.2-7 -- Reconstruction of southwestern United States about 278 million years ago. The Midland Basin (MB), Delaware Basin (DB) and Orogrande Basin (OB) were the main depositional centers at that time (Scholle et al., 2020).

Differential sedimentation, continual subsidence, and glacial eustasy impacted Permian sedimentation after Hueco deposition and produced carbonate shelves around the edges of deep sub-basins. Within the Delaware Basin, this subsidence resulted in deposition of roughly 12,000 ft of siliciclastics, carbonates, and evaporites (King, 1948). Eustatic sea-level changes and differential sedimentation played an important role in the distribution of sediments/facies within the Permian Basin (**Figure 3.2-2**). During sea-level lowstands, thousands of feet of siliciclastic sediments bypassed the shelves and were deposited in the basin. Scattered, thin sandstones and siltstones as well as fracture and pore filling sands found up on the shelves correlate to those lowstands. During sea-level highstands, thick sequences of carbonates were deposited by a "carbonate factory" on the shelf and shelf edge. Carbonate debris beds shedding off the shelf margin were transported into the basin (Wilson, 1977; Scholle et al., 2007). Individual debris flows thinned substantially from the margin to the basin center (from 100s feet to feet).

Unconformably overlying the Hueco Group is the Abo Formation (700 – 1,400 ft). Abo deposits range from carbonate grainstone banks and buildups along Northwest Shelf margin to shallow-marine, back-reef carbonates behind the shelf margin. Further back on the margin, the backreef sediments grade into intertidal carbonates to siliciclastic-rich sabkha red beds to eolian and fluvial deposits closer to the Sierra Grande and Uncompahgre uplifts (Broadhead, 2017, Ruppel, 2020b). Sediments basinward of the Abo margin are equivalent to the lower Bone Spring Formation. The Yeso Formation (1,500 – 2,500 ft), like the Abo Formation, consists of carbonate banks and buildups along the Abo margin. Unlike Abo sediments, the Yeso Formation contains more siliciclastic sediments associated with eolian, sabkha, and tidal flat facies (Ruppel, 2020b). The Yeso shelf sandstones are commonly subdivided into the Drinkard, Tubb, Blinebry, Paddock members (from base to top of section). The Yeso Formation is equivalent to the upper Bone Spring Formation. The Son at a siliciclastic horizons that formed because of changes in sea level; the carbonates during highstands, and siliciclastics during lowstands. Overlying the Yeso, are the clean, white eolian sandstones of the Glorietta Formation. It is a key marker bed in the region, both on outcrop and in the subsurface. Within the basin, it is equivalent to the lowermost Brushy Canyon Formation of the Delaware Mountain Group.

The Guadalupian San Andres Formation (600 – 1,600 ft) and Artesia Group (<1,800 ft) reflect the change in the shelf margin from a distally steepened ramp to a well-developed barrier reef complex. The San Andres Formation consists of supratidal to sandy subtidal carbonates and banks deposited a distally steepened ramp. Within the San Andres Formation, several periods of subaerial exposure have been identified that have resulted in karstification and pervasive dolomitization of the unit. These exposure events/sea-level lowstands are correlated to sandstones/siltstones that moved out over the exposed shelf leaving on minor traces of their presence on the shelf but formed thick sections of sandstones and siltstones in the basin. Within the Delaware Basin, the San Andres Formation is equivalent to the Brushy and lower Cherry Canyon Formations.

The Artesia Group (Grayburg, Queen, Seven Rivers, Yates, and Tansill formations, ascending order) is equivalent to Capitan Limestone, the Guadalupian barrier/fringing reef facies. Within the basin, the Artesia Group is equivalent to the upper Cherry and Bell Canyon formations, a series of relatively featureless sandstones and siltones. The Queen and Yates formations contain more sandstones than the Grayburg, Seven Rivers, and Tansill formations. The Artesia units and the shelf edge equivalent Capitan reef sediments represent the period when the carbonate factory was at its greatest productivity with the shelf margin/Capitan reef prograding nearly 6 miles into the basin (Scholle et al., 2007). The Artesia Group sediments were deposited in back-reef, shallow marine to supratidal/evaporite environments. Like the San Andres Formation, the individual formations were periodically exposed during lowstands.

The final stage of Permian deposition on the NW Shelf consists of the Ochoan/Lopingian Salado Formation (<2,800 ft, Nance, 2020). Within the basin, the Castile formation, a thick sequence (total thickness ~1,800 ft, Scholle et al., 2007) of cyclic laminae of deep-water gypsum/anhydrite interbedded with calcite and organics, formed due to the restriction of marine waters flowing into the basin. Gypsum/anhydrite laminae precipitated during evaporative conditions, and the calcite and organic-rich horizons were a result of seasonal "freshening" of the basin waters by both marine and freshwaters. Unlike the Castile Formation, the Salado Formation is a relatively shallow water evaporite deposit. Halite, sylvite, anhydrite, gypsum, and numerous potash minerals were precipitated. The Rustler Formation (500 ft , Nance, 2020) consists of gypsum/anhydrite, a few magnesitic and dolomitic limestone horizons, and red beds. These are mostly shallow marginal marine deposits and represents the last Permian marine deposits in the Delaware Basin.

The Rustler Formation was followed by terrestrial sabkha red beds of the Dewey Lake Formation (~350', Nance, 2020), ending Permian deposition in the area.

Beginning early in the Triassic, uplift and the breakup of Pangea resulted in another regional unconformity and the deposition of non-marine, alluvial Triassic sediments (Santa Rosa Sandstone and Chinle Formation). They are unconformably overlain by Cenozoic alluvium (which is present at the surface). Cenozoic Basin and Range tectonics resulted in the current configuration of the region and reactivated numerous Paleozoic faults.

3.2.2 Stratigraphy

The Permian rocks found in the Delaware Basin are divided into four series, the Ochoa (most recent, renamed Lopingian), Guadalupian, Leonardian (renamed Cisuralian), and Wolfcampian (oldest) (**Figure 3.2-2**). This sequence of shallow marine carbonates and thick, basinal siliciclastic deposits contains abundant oil and gas resources. The Delaware Basin high porosity sands are the main source of oil within New Mexico. In the area around the Red Hills AGI wells, Permian strata are mainly basin deposits consisting of sandstones, siltstones, shales, and lesser amounts of carbonates. Besides production in the Delaware Mountain Group, there is also production, mainly gas, in the basin Bone Spring Formation, a sequence of carbonates and siliciclastics. The injection and confining zones for RH AGI #1 and #3 are discussed below.

CONFINING/SEAL ROCKS

Permian Ochoa Series. The youngest of the Permian sediments, the Ochoan- or Lopingian-aged deposits, consists of evaporites, carbonates, and red beds. The Castile Formation is made of cyclic laminae of deepwater gypsum/anhydrite beds interlaminated with calcite and organics. This basin-occurring unit can be up to 1,800 ft thick. The Castile evaporites were followed by the Salado Formation (~1,500 ft thick). The Salado Formation is a shallow water evaporite deposit, when compared to the Castile Formation, and consists of halite, sylvite, anhydrite, gypsum, and numerous potash/bittern minerals. Salado deposits fill the basin and lap onto the older Permian shelf deposits. The Rustler Formation (up to 500 ft, Nance, 2020) consists of gypsum/anhydrite, a few magnesitic and dolomitic limestone horizons, and red beds. These are mostly shallow marginal marine deposits and represents the last Permian marine deposits in the Delaware Basin. The Ochoan evaporitic units are superb seals (usually <1% porosity and <0.01 mD permeability) and are the reason that the Permian Basin is such a hydrocarbon-rich region despite its less than promising total organic carbon (TOC) content.

INJECTION ZONE

Permian Guadalupe Series. Sediments in the underlying Delaware Mountain Group (descending, Bell Canyon, Cherry Canyon, and Brushy Canyon formations) are marine units that were deposited within the basin at depths that varied due to numerous changes in sea-level due to eustacy and tectonics. Most of the Delaware Mountain Group is dominated by siliciclastic sediments. The quartz-rich sands are fine grained to silt sized and poorly cemented. Deposition occurred within submarine fan complexes encircling the Delaware Basin margin. These deposits are associated with submarine canyons incising the carbonate platform and turbidite channels, splays, and levee/overbank deposits (Figure 3.2.2-1), as well as debris flows formed by the failure of the carbonate margin and density currents. Isolated coarse-grained to boulder-sized carbonate debris flows and grain falls within the lowstand clastic sediments likely resulted from erosion and failure of the shelf margin during sea-level lowstands or slope failure to tectonic activity (earthquakes). Density current deposits formed by the basin waters being stratified. The basal waters were likely stratified and so dense, that turbidity flows containing sands, silts and clays were unable to displace those bottom waters and instead flowed out over the density interface (Figure 3.2.2-2). Eventually, the entrained sediments would settle out in a constant rain of sediment forming laminated deposits with little evidence of traction (bottom flowing) deposition. These siliciclastic deposits represent sea-level lowstand deposits. Interbedded with the very thick lowstand sequences are thin, deep-water limestones and mudstones that are thickest around the edge (toe-of-slope) of the basin and thin to the basin center (**Figure 3.2.2-3**). The limestones are dark, finely crystalline, radiolarian-rich micrites to biomicrites. These highstand deposits are a combination of suspension and pelagic sediments that also thin towards the basin center. These relatively thin units are time equivalent to the massive highstand carbonate deposits on the shelf.

Figure 3.2.2-1 – A diagram of typical Delaware Mountain Group basinal siliciclastic deposition patterns (from Nance, 2020). The channel and splay sandstones have the best porosity, but some of the siltstones also have potential as injection zones.

Figure 3.2.2-2 – Harms' (1974) density overflow model explains the deposition of laminated siliciclastic sediments in the Delaware Basin. Low density sand-bearing fluids flow over the top of dense, saline brines at the bottom of the basin. The sands gradually drop out as the flow loses velocity creating uniform, finely laminated deposits (from Scholle et al., 2007).

Figure 3.2.2-3 – The impact of sea-level fluctuations (also known as reciprocal sedimentation) on the depositional systems within the Delaware Basin. A) A diagrammatic representation of sea-level variations impact on deposition. B) Model showing basin-wide depositional patterns during lowstand and highstand periods (from Scholle et al., 2007).

The top of the Guadalupian Series is the Lamar Limestone, which is the source of hydrocarbons found in underlying Delaware Sand (an upper member of the Bell Canyon Formation). The Bell Canyon Formation is roughly 1,000 ft thick in the Red Hills area and contains numerous turbidite input points around the basin margin (**Figures 3.2.2-3, 3.2.2-4**). During Bell Canyon deposition, the relative importance of discrete sand sources varied (Giesen and Scholle, 1990), creating network of channel and levee deposits that also varied in their size and position within the basin. Based on well log analyses, the Bell Canyon 2 and 3 had the thickest sand deposits.

Figure 3.2.2-4 – These maps of Bell Canyon Formation were created by measuring sandstone thicknesses on well logs in four regionally correlatable intervals (from Giesen and Scholle, 1990 and unpublished thesis research). The red circle on the last map surrounds the Red Hills area.

Like the Bell Canyon and Brushy Canyon formations, the Cherry Canyon Formation is approximately 1,300 ft thick and contains numerous turbidite source points. Unlike the Bell Canyon and Brushy Canyon deposits, the channel deposits are not as large (Giesen and Scholle, 1990), and the source of the sands appears to be dominantly from the eastern margin (**Figure 3.2.2-5**). Cherry Canyon 1 and 5 have the best channel development and the thickest sands. Overall, the Cherry Canyon Formation, on outcrop, is less influenced by traction current deposition than the rest of the Delaware Mountain Group deposits and is more influenced by sedimentation by density overflow currents (**Figure 3.2.2-2**). The Brushy Canyon has notably more discrete channel deposits (**Figure 3.2.2-6**) and coarser sands than the Cherry Canyon and Bell Canyon. The Brushy Canyon Formation is approximately 1,500 ft thick.

Figure 3.2.2-5– These maps of Cherry Canyon Formation were created by measuring sandstone thicknesses on well logs in five regionally correlatable intervals (from Giesen and Scholle, 1990 and unpublished thesis research). Unlike the Bell Canyon sandstones, the Cherry Canyon sands are thinner and contain fewer channels. The red circle on the last map surrounds the Red Hills area.

Within the Delaware Mountain Group in the Red Hills area, the Bell Canyon and Cherry Canyon have the best porosity (averaging 15 – 25 % within channel/splay sandstones) and permeability (averaging 2-13 mD) than the Brushy Canyon (~14% porosity, an <3 mD).

UNDERLYING CONFINING ZONE

Permian Leonard Series. The Leonardian/Cisuralian Series, located beneath the Guadalupian Series sediments, is characterized by >3,000 ft of basin-deposited carbonate and siliciclastic sediments of the Bone Spring Formation. The Bone Spring Formation is more carbonate rich than the Delaware Mountain Group deposits, but the sea-level-driven cycles of sedimentation and the associated depositional environments are similar with debris flows, turbidites, and pelagic carbonate sediments. The Bone Spring Formation contains both convential and unconventional fields within the Delaware Basin in both the sandstone-rich and carbonate-rich facies. Most of these plays usually occur within toe-of-slope carbonate and siliciclastic deposits or the turbidite facies in the deeper sections of the basin (Nance and Hamlin, 2020). The upper most Bone Spring is usually dense carbonate mudstone with limited porosity and low porosity.

3.2.3 Faulting

In this immediate area of the Permian Basin, faulting is primarily confined to the lower Paleozoic section, where seismic data shows major faulting and ancillary fracturing-affected rocks only as high up as the base of the lower Woodford Shale (**Figures 3.2-4 and 3.2-5**). Faults that have been identified in the area are normal faults associated with Ouachita related movement along the western margin of the Central Platform to the east of the RH AGI well site. The closest identified fault lies approximately 1.5 miles east of the Red Hills site and has approximately 1,000 ft of down-to-the-west structural relief. Because these faults are confined to the lower Paleozoic unit well below the injection zone for the RH AGI wells, they will not be discussed further.

3.3 Lithologic and Reservoir Characteristics

Based on the geologic analyses of the subsurface at the Red Hills Gas Plant, the uppermost portion of the Cherry Canyon Formation was chosen for acid gas injection and CO₂ sequestration for RH AGI #1 and the uppermost Delaware Mountain Group (the Bell Canyon and Cherry Canyon Formations) for RH AGI #3.

For RH AGI #1, this interval includes five high porosity sandstone units (sometimes referred to as the Manzanita) and has excellent caps above, below and between the individual sandstone units. There is no local production in the overlying Delaware Sands pool of the Bell Canyon Formation. There are no structural features or faults that would serve as potential vertical conduits. The high net porosity of the RH AGI #1 injection zone indicates that the injected H₂S and CO₂ will be easily contained close to the injection well.

For RH AGI #3, this interval has been expanded to include the five porosity zones in the Cherry Canyon sandstone as well as the sandstone horizons in the overlying Bell Canyon Formation. In the Bell Canyon Formation there are several potential high porosity sandstones, that if present in the well, would be excellent, injection zones similar to the depositional environments of the Cherry Canyon sandstones. The thickest sand is commonly referred to as the Delaware Sand within the Delaware Basin. The Delaware sand is productive, but it is not locally. Most of the sand bodies in the Bell Canyon and Cherry Canyon formations are surrounded by shales or limestones, forming caps for the injection zones. There are no structural features or faults that would serve as potential vertical conduits, and the overlying Ochoan evaporites form an excellent overall seal for the system. Even if faulting existed, the evaporites (Castile and Salado) would self-seal and prevent vertical migration out of the Delaware Mountain Group.

The geophysical logs were examined for all wells penetrating the Bell Canyon and Cherry Canyon formations within a three-mile radius of the RH AGI wells as well as 3-D seismic data. There are no faults visible within the Delaware Mountain Group in the Red Hills area. Within the seismic area, the units dip gently to the southeast with approximately 200 ft of relief across the area. Heterogeneities within both the Bell Canyon and Cherry Canyon sandstones, such as turbidite and debris flow channels, will exert a significant control over the porosity and permeability within the two units and fluid migration within those sandstones. In addition, these channels are frequently separated by low porosity and permeability siltstones and shales (Figure 3.2.2-1) as well as being encased by them. Based on regional studies (Giesen and Scholle, 1990 and Figures 3.2.2-4, 3.2.2-5), the preferred orientation of the channels, and hence the preferred fluid migration pathways, are roughly from the east to the west.

The porosity was evaluated using geophysical logs from nearby wells penetrating the Cherry Canyon Formation. **Figure 3.3-1** shows the Resistivity (Res) and Thermal Neutron Porosity (TNPH) logs from 5,050 ft to 6,650 ft and includes the proposed injection interval. Five clean sands (>10% porosity and <60 API gamma units) are targets for injection within the Cherry Canyon formation and potentially another 5 sands with >10% porosity and <60 API gamma units were identified. Ten percent was the minimum cut-off considered for adequate porosity for injection. The sand units are separated by lime mudstone and shale beds with lateral continuity. The high porosity sand units exhibit an average porosity of about 18.9%; taken over the average thickness of the clean sand units within ½ mile of the RH AGI #1. There is an average of 177 ft with an irreducible water (S_{wir}) of 0.54 (see Table 1 of the RH AGI #1 permit application). Many of the sands are very porous (average porosity of > 22%) and it is anticipated that for these more porous sands, the S_{wir} may be too high. The effective porosity (Total Porosity – Clay Bound Water) would therefore also be higher. As a result, the estimated porosity ft (PhiH) of approximately 15.4 porosity-ft should be considered to be a minimum. The overlying Bell Canyon Formation has 900 ft of sands and intervening tight limestones, shales, and calcitic siltstones with porosities as low as 4%, but as mentioned above, there are at least 5 zones with a total thickness of approximately 460 ft and containing 18 to 20% porosity. The proposed injection interval is located more than 2,650 ft above the Bone Spring Formation, which is the next production zone in the area.

Figure 3.3-1: Geophysical logs from the Bell Canyon and the Upper Cherry Canyon from the Government L Com #002 well, located 0.38 miles from the RH AGI #1 Well. The blue intervals are Bell Canyon porosity zones, and the yellow intervals are Cherry Canyon porosity zones.

3.4 Formation Fluid Chemistry

A chemical analysis (**Table 3.4-1**) of water from Federal 30 Well No. 2 (API 30-025-29069), approximately 3.9 miles away, indicates that the formation waters are highly saline (180,000 ppm NaCl) and compatible with the proposed injection.

Sp. Gravity	1.125 @ 74°F	Resistivity	0.07 @ 74°F
рН	7	Sulfate	1,240
Iron	Good/Good	Bicarbonate	2,135
Hardness	45,000	Chloride	110,000
Calcium	12,000	NaCl	180,950
Magnesium	3,654	Sod. & Pot.	52,072

Table 3.4-1: Formation fluid analysis for Cherry Canyon Formation from Federal 30 Well No. 2

Table extracted from C-108 Application to Inject by Ray Westall Associated with SWD-1067 – API 30-025-24676. Water analysis for formation water from Federal 30 #2 Well (API 30-025-29069), depth 7,335-7,345 ft, located 3.9 miles from RH AGI #1 well.

3.5 Groundwater Hydrology in the Vicinity of the Red Hills Gas Plant

Based on the New Mexico Water Rights Database from the New Mexico Office of the State Engineer, there are 15 freshwater wells located within a two-mile radius of the RH AGI wells, and only 2 water wells within one mile; the closest water well is located 0.31 miles away and has a total depth of 650 ft (**Figure 3.6-1; Appendix 3**). All water wells within the two-mile radius are shallow, collecting water from about 60 to 650 ft depth, in Alluvium and the Triassic redbeds. The shallow freshwater aquifer is protected by the surface and intermediate casings and cements in the RH AGI wells (**Figures Appendix 1-1 and Appendix 1.2**). While the casings and cements protect shallow freshwater aquifers, they also serve to prevent CO₂ leakage to the surface along the borehole.

Figure 3.5-1: Reported Water Wells within the MMA for the RH AGI Wells.

3.6 Historical Operations

3.6.1 Red Hills Site

On July 20, 2010, Agave Energy Company (Agave) filed an application with NMOCD to inject treated acid gas into an acid gas injection well. Agave built the Red Hills Gas Processing Plant and drilled RH AGI #1 in 2012-13. However, the well was never completed and never put into service because the plant was processing only sweet gas (no H₂S). Lucid purchased the plant from Agave in 2016 and completed the RH AGI #1 well. TND acquired Lucid's Red Hills assets in 2022. **Figure 3.6.1-1** shows the location of fixed H₂S and lower explosive limit (LEL) detectors in the immediate vicinity of the RH AGI wells. **Figure 3.6.1-2** shows a process block flow diagram.

Figure 3.6.1-1: Diagram showing the location of fixed H₂S and lower explosive limit (LEL) detectors in the immediate vicinity of the RH AGI wells.

Figure 3.6.1-2: Process Block Flow diagram showing components from sour treaters to AGI wells.

3.6.2 Operations within the MMA for the RH AGI Wells

NMOCD records identify a total of 39 oil- and gas-related well records within the MMA for the RH AGI wells (see **Appendix 4**). **Figure 3.6-1** shows the geometry of producing and injection wells within the MMA for the RH AGI wells. **Appendix 4** summarizes the relevant information for those wells. All active production in this area is targeted for the Bone Spring and Wolfcamp zones, at depths of 8,900 to 11,800 ft, the Strawn (11,800 to 12,100 ft) and the Morrow (12,700 to 13,500 ft). All of these productive zones lie at more than 2,000 ft below the RH AGI #1 and AGI #3 injection zone.

Figure 3.6-1: Location of all oil- and gas-related wells within the MMA for the RH AGI wells. Both the surface hole locations (SHL) and bottom hole locations (BHL) are labeled on the figure.

3.7 Description of Injection Process

The Red Hills Gas Plant, including the existing RH AGI #1 well, is in operation and staffed 24-hours-a-day, 7-days-a week. The plant operations include gas compression, treating and processing. The plant gathers and processes produced natural gas from Lea and Eddy Counties in New Mexico. Once gathered at the plant, the produced natural gas is compressed, dehydrated to remove the water content, and processed to remove and recover natural gas liquids. The processed natural gas and recovered natural gas liquids are then sold and shipped to various customers. The inlet gathering lines and pipelines that bring gas into the plant are regulated by U.S. Department of Transportation (DOT), National Association of Corrosion Engineers (NACE) and other applicable standards which require that they be constructed and marked with appropriate warning signs along their respective rights-of-way. TAG from the plant's sweeteners will be routed to a central compressor facility, located west of the well head. Compressed TAG is then routed to the wells via high-pressure rated lines. **Figure 3.7-1** is a schematic of the AGI facilities.

The approximate composition of the TAG stream is: 80% CO₂, 20% H_2S , with Trace Components of $C_1 - C_6$ (methane – hexane) and Nitrogen. The anticipated duration of injection is 30 years.

Figure 3.7-1: Schematic of surface facilities and RH AGI wells at the Red Hills Gas Processing Plant

3.8 Reservoir Characterization Modeling

The modeling and simulation focused on the Bell Canyon and Cherry Canyon formations as the main injection target zone for acid gas storage. The RH AGI #1 well (API 30-025-40448) and the RH AGI #3 well (API 30-025-51970) are the approved injectors for treated acid gas injection by NMOCD and will serve as the injection wells in the model under approved disposal timeframe and maximum allowable injection pressure. RH AGI #1 well is completed in the Cherry Canyon formation between 6,230 feet to 6,583 feet (MD). The RH AGI #3 well will be completed in both the Bell Canyon and Cherry Canyon formations between approximately 5,245 feet to 6,645 feet (MD).

Schlumberger's Petrel[®] (Version 2023.1) software was used to construct the geological models used in this work. Computer Modeling Group (CMG)'s CMG-GEM[®] (Version 2023.10) was used in the reservoir simulations presented in this MRV plan. CMG-WINPROP[®] (Version 2023.10) was used to perform PVT calculation through Equation of States and properties interactions among various compositions to feed the hydrodynamic modeling performed by CMG-GEM[®]. The hydrodynamical model considered aqueous, gaseous, and supercritical phases, and simulates the storage mechanisms including structural trapping, residual gas trapping, and solubility trapping. Injected TAG may exist in the aqueous phase as dissolved state and the gaseous phase as supercritical state. The model was validated through matching the historical injection data of RH AGI #1 well and will be reevaluated periodically as required by the State permitting agency.

The static model is constructed with well tops and licensed 3D seismic data to interpret and delineate the structural surfaces of a layer within the caprock (Lamar Limestone) and its overlaying, underlying formations. The geologic model covers a 3.5-mile by 3.3-mile area. No distinctive geological structures such as faults are identified within the geologic model boundary. The model is gridded with 182 x 167 x 18, totaling 547,092 cells. The average grid dimension of the active injection area is 100 feet square. **Figure 3.8-1** shows the simulation model in 3D view. The porosity and permeability of the model is populated through existing well logs. The range of the porosity is between 0.01 to 0.31. The initial permeability are interpolated between 0.02 to 155 millidarcy (mD), and the vertical permeability anisotropy was 0.1. **(Figure 3.8-2 and Figure 3.8-3)**. These values are validated and calibrated with the historical injection data of RH AGI #1 well since 2018 as shown in **Figures 3.8-4, 3.8-5, and 3.8-6**.

The simulation model is calibrated with the injection history of RH AGI #1 well since 2018. Simulation studies were further performed to estimate the reservoir responses when predicting TAG injection for 30 years through both RH AGI #1 well (2018 – 2048) and RH AGI #3 (2024 - 2054). RH AGI #2 well is temporarily abandoned as of the submission of this document. RH AGI #1 is simulated to inject with the average rate of the last 5 years, 1.2 MMSCF, in the prediction phase. RH AGI #3 is simulated to inject with permitted injection rate, 13 MMSCF, with 1,767 psi maximum surface injection pressure constraint approved by State agency. The simulation terminated at year 2084, 30 years after the termination of all injection activities, to estimate the maximum impacted area during post injection phase.

During the calibration period (2018 – 2023), the historical injection rates were used as the primary injection control, and the maximum bottom hole pressures (BHP) are imposed on wells as the constraint, calculated based on the approved maximum injection pressure. This restriction is also estimated to be less than 90% of the formation fracture pressure calculated at the shallowest perforation depth of each well to ensure safe injection operations. The reservoir properties are tuned to match the historical injection until it was reasonably matched. **Figure 3.8-4** shows that the historical injection rates from the RH AGI #1 well in the Cherry Canyon Formation. **Figure 3.8-5** shows the BHP response of RH AGI #1 during the history matching phase.

During the forecasting period, linear cumulative injection behavior indicates that the Cherry Canyon and Bell Canyon formations received the TAG stream freely. **Figure 3.8-6** shows the cumulative disposed H₂S and CO₂ of each AGI injectors separately in gas mass. The modeling results indicate that the Cherry Canyon and Bell Canyon formations are capable of safely storing and containing the proposed gas volume without violating the permitted

rate and pressure. **Figure 3.8-7** shows the gas saturation represented TAG plume at the end of 30-year forecasting in 3D view. **Figure 3.8-8** shows the extent of the plume migration in a map view at 4 key time steps. It can be observed that the size of the TAG is very limited and mainly stayed within Targa's Red Hills facility at the end of injection. In the year 2084, after 30 years of monitoring, the injected gas remained trapped in the reservoir and there was no significant migration of TAG footprint observed, compared to that at the end of injection.

In summary, after careful reservoir engineering review and numerical simulation study, our analysis shows that the Bell Canyon and Cherry Canyon formations can receive treated acid gas (TAG) at the proposed injection rate and permitted maximum surface injection pressure permitted by New Mexico Oil Conservation Committee. The formation will safely contain the injected TAG volume within the proposed injection and post-injection timeframe. The proposed injection well will allow for the sequestration while preventing associated environmental impacts.

Figure 3.8-1: 3D view of the simulation model of the Red Hills AGI #1 and #3 AGI wells, containing Salado-Castile formation, Lamar limestone, Bell Canyon, and Cherry Canyon formations. Color legends represents the elevation of layers.

Figure 3.8-2: Porosity estimation using available well data for the simulation domain.

Figure 3.8-3: Permeability estimation using available well data for simulation domain.

Figure 3.8-4: shows the historical injection rate and total gas injected from Red Hills AGI #1 well (2018 to 2023)

Figure 3.8-5: shows the historical bottom hole pressure response from Red Hills AGI #1 well (2018 to 2023)

Figure 3.8-6: shows the prediction of cumulative mass of injected CO₂ and H₂S of Red Hills AGI #1 and #3 wells (2018 to 2054).

Figure 3.8-7: shows the free phase TAG (represented by gas saturation) at the end of 30-year post-injection monitoring (2054) in 3D view.

Figure 3.8-8: shows the free phase TAG plume at year 2030, 2035, 2045, 2055 (1-year end of injection) in a map view.

4 Delineation of the Monitoring Areas

In determining the monitoring areas below, the extent of the TAG plume is equal to the superposition of plumes in any layer for any of the model scenarios described in Section 3.8.

4.1 MMA – Maximum Monitoring Area

As defined in Subpart RR, the MMA is equal to or greater than the area expected to contain the free phase CO_2 plume until the CO_2 plume has stabilized plus an all-around buffer zone of at least one-half mile. **Figures 4.1-1** shows the MMA as defined by the most conservative extent of the TAG plume at year 2054 plus a 1/2-mile buffer.

4.2 AMA – Active Monitoring Area

TND intends to define the AMA as the same area as the MMA.

Figure 4.1-1: Active monitoring area (AMA) for TND Red Hills AGI #1, #2 (temporarily abandoned) and #3 wells at the end of injection (2054, purple polygon) and 5 years post-monitoring (2059, maroon polygon). Maximum monitoring area (MMA) is shown in red shaded area.

5 Identification and Evaluation of Potential Leakage Pathways to the Surface

Subpart RR at 40 CFR 448(a)(2) requires the identification of potential surface leakage pathways for CO_2 in the MMA and the evaluation of the likelihood, magnitude, and timing of surface leakage of CO_2 through these pathways.

Through the site characterization required by the NMOCD C-108 application process for Class II injection wells, the geologic characterization presented in Section 3, and the reservoir modeling described in Section 3.9, TND has identified and evaluated the following potential CO₂ leakage pathways to the surface.

5.1 Potential Leakage from Surface Equipment

Due to the corrosive nature of CO₂ and H₂S, there is a potential for leakage from surface equipment at sour gas facilities. To minimize this potential for leakage, the construction, operation, and maintenance of gas plants follows industry standards and relevant regulatory requirements. Additionally, NMAC 19.15.26.10 requires injection well operators to operate and maintain "surface facilities in such a manner as will confine the injected fluids to the interval or intervals approved and prevent surface damage or pollution resulting from leaks, breaks or spills."

To further minimize the likelihood of surface leakage of CO_2 from surface equipment, TND implements a schedule for regular inspection and maintenance of surface equipment. To further minimize the magnitude and duration (timing) of detected gas leaks to the surface, TND implements several methods for detecting gas leaks at the surface. Detection is followed up by immediate response. These methods are described in more detail in sections 6 and 7.

Figure 3.6.1-1 is a schematic (taken from the Red Hills H₂S Contingency Plan) of the surface equipment at the Red Hills Gas Plant showing the location of the fixed H₂S monitors the number of which is greater in the vicinity of the sour gas plant, the sour gas pipeline, and the RH AGI wells.

Due to the required continuous monitoring of the gas processing systems, TND considers the likelihood, magnitude, and timing of CO_2 emission to the surface via this potential leakage pathway to be minimal. Detection and quantification of any leaks from surface equipment is described in Section 6.1 below.

5.2 Potential Leakage from Approved, Not Yet Drilled Wells

5.2.1 RH AGI #3

TND is currently drilling the RH AGI #3 well within the MMA. To minimize the likelihood of leaks from new wells, NMAC 19.15.26.9 regarding the casing and cementing of injection wells requires operators to case injection wells "with safe and adequate casing or tubing so as to prevent leakage and set and cement the casing or tubing to prevent the movement of formation or injected fluid from the injection zone into another injection zone or to the surface around the outside of the casing string." To minimize the magnitude and duration (timing) of CO_2 leakage to the surface, NMAC 19.15.16.12 requires the use of "blowout preventers in areas of high pressure at or above the projected depth of the well." These requirements apply to any other new well drilled within the MMA for this MRV plan.

TND realizes that when they drill the RH AGI #3, they will be drilling into a reservoir in which they have been injecting H₂S and CO₂ for many years. Therefore, for safety purposes, they will be implementing enhanced safety protocols to ensure that no H₂S or CO₂ escapes to the surface during the drilling of RH AGI #3. Enhanced measures include:

- Using managed pressure drilling equipment and techniques thereby minimizing the chance of any gas from entering the wellbore
- Using LCM (loss control material) at a higher-than-normal rate to fill in the pockets of the wellbore thereby minimizing the chance of gas from entering the wellbore while drilling
- Monitoring H₂S at surface at many points to assure operators that we are successfully keeping any possible gas pressures from impacting the drilling operation
- Employing a high level of caution and care while drilling through a known H₂S injection zone, including use of slower drilling processes and more vigilant mud level monitoring in the returns while drilling into the RH AGI #1 injection zone

Due to these safeguards and the continuous monitoring of Red Hills wells operating parameters by the distributed control system (DCS), TND considers the likelihood, magnitude, and timing of CO₂ emissions to the surface via this potential leakage pathway to be minimal. Detection and quantification of any emissions from the Red Hills AGI wells are described in Section 6.3.1 below.

5.2.2 Horizontal Wells

The table in **Appendix 3** and **Figure 4.1-1** shows a number of horizontal wells in the area, many of which have approved permits to drill but which are not yet drilled. If any of these wells are drilled through the Bell Canyon injection zone for RH AGI #3 and the Cherry Canyon injection zone for RH AGI #1, they will be required to take special precautions to prevent leakage of TAG minimizing the likelihood of CO₂ leakage to the surface. This requirement will be made by NMOCD in regulating applications for permit to drill (APD) and in ensuring that the operator and driller are aware that they are drilling through an H₂S injection zone in order to access their target production formation. NMAC 19.15.11 for Hydrogen Sulfide Gas includes standards for personnel and equipment safety and H₂S detection and monitoring during well drilling, completion, well workovers, and well servicing operations all of which apply for wells drilled through the RH AGI wells TAG plume.

Due to the safeguards described above and the fact there are no proposed wells for which the surface hole location (SHL) lies within the simulated TAG plume, TND considers the likelihood, magnitude, and timing of CO₂ emissions to the surface via these horizontal wells to be minimal. Detection and quantification of any leaks from the proposed horizontal wells are described in Section 6.3.2 below.

5.3 Potential Leakage from Existing Wells

As shown in **Figure 3.7-1** and detailed in **Appendix 4**, there are several existing oil- and gas-related wells within the MMA as delineated in Section 4.

5.3.1 Well Completed in the Bell Canyon and Cherry Canyon Formations

The only wells completed in the Bell Canyon and Cherry Canyon Formations within the MMA are the RH AGI #1 and #3 wells and the COSSATOT E 002 well (API # 30-025-08371) which was completed at a depth of 5,425 ft. This well is within the Red Hills facility boundary and is plugged and abandoned (see **Appendix 9** for plugging and abandonment (P&A) record). **Appendix 1** includes schematics of the RH AGI wells construction showing multiple strings of casing all cemented to surface. Injection of TAG occurs through tubing with a permanent production packer set above the injection zone.

Due to the robust construction of the RH AGI wells and the plugging of the well 30-025-08371 above the Bell Canyon, TND considers the likelihood, magnitude, and timing of CO₂ emission to the surface via this potential leakage pathway to be minimal. Detection and quantification of any leaks from RH AGI wells and well 30-025-08371 are described in Section 6.3 below.

5.3.2 Wells Completed in the Bone Spring / Wolfcamp Zones

Several wells are completed in the Bone Spring and Wolfcamp production zones as described in Section 3.6.2. These productive zones lie more than 2,000 ft below the RH AGI wells injection zone minimizing the likelihood of communication between the RH AGI well injection zones and the Bone Spring / Wolfcamp production zones. Construction of these wells includes surface casing set at 1,375 ft and cemented to surface and intermediate casing set at the top of the Bell Canyon at depths of from 5,100 to 5,200 ft and cemented through the Permian Ochoan evaporites, limestone and siltstone (**Figure 3.2-2**) providing zonal isolation preventing TAG injected into the Bell Canyon and Cherry Canyon formations through RH AGI wells from leaking upward along the borehole in the event the TAG plume were to reach these wellbores. **Figure 4.1-1** shows that the modeled TAG plume extent after 30 years of injection and 5 years of post-injection stabilization does not extend to these well boreholes thereby indicating that these wells are not likely to be pathways for CO₂ leakage to the surface.

Due to the construction of these wells and the fact that the modeled TAG plume does not reach the SHL of these wells, TND considers the likelihood, magnitude, and timing of CO₂ emissions to the surface via this

potential leakage pathway to be minimal. Detection and quantification of any leaks from these wells are described in Section 6.3 below.

5.3.3 Wells Completed in the Siluro-Devonian Zone

One well penetrated the Devonian at the boundary of the MMA - EOG Resources, Government Com 001, API # 30-025-25604, TVD = 17,625 ft, 0.87 miles from RH AGI #3. This well was drilled to a total depth of 17,625 ft on March 5, 1978, but plugged back to 14,590 ft, just below the Morrow, in May of 1978. Subsequently, this well was permanently plugged and abandoned on December 30, 2004, and approved by NMOCD on January 4, 2005 (see **Appendix 9** for P&A records). The approved plugging provides zonal isolation for the Bell Canyon and Cherry Canyon injection zones minimizing the likelihood that this well will be a pathway for CO₂ emissions to the surface from either injection zone.

Due to the location of this well at the edge of the MMA, TND considers the likelihood, magnitude, and timing of CO₂ emissions to the surface via this potential leakage pathway to be minimal. Detection and quantification of any leaks attributed to this well are described in Section 6.3 below.

5.3.4 Groundwater Wells

Figure 3.6-1 shows 15 water wells within a 2-mile radius of the RH AGI wells, only 2 of which are within a 1mile radius of and within the MMA for the RH AGI wells. The deepest ground water well is 650 ft deep (**Table 3.6-1**). The evaporite sequence of the Permian Ochoan Salado and Castile Formations (see Section 3.2.2) provides an excellent seal between these groundwater wells and the Cherry Canyon injection zone of the RH AGI #1 well. Therefore, it is unlikely that these two groundwater wells are a potential pathway of CO₂ leakage to the surface. Nevertheless, the CO₂ surface monitoring and groundwater monitoring described in Sections 6 and 7 will provide early detection of CO₂ leakage followed by immediate response thereby minimizing the magnitude of CO₂ leakage volume via this potential pathway.

Due to the shallow depth of the groundwater wells within the MMA relative to the depth of the RH AGI wells, TND considers the likelihood, magnitude, and timing of CO₂ emissions to the surface via this potential leakage pathway to be minimal. Detection and quantification of CO₂ in groundwater is described in the groundwater monitoring in Section 7.7 below.

5.4 Potential Leakage through the Confining / Seal System

The site characterization for the injection zone of the RH AGI wells described in Sections 3.2.2 and 3.3 indicates a thick sequence of Permian Ochoan evaporites, limestone, and siltstones (**Figure 3.2-2**) above the Bell Canyon and Cherry Canyon Formations and no evidence of faulting. Therefore, it is unlikely that TAG injected into the Bell Canyon and Cherry Canyon Formations will leak through this confining zone to the surface. Limiting the injection pressure to less than the fracture pressure of the confining zone will minimize the likelihood of CO_2 leakage through this potential pathway to the surface.

Due to the thick sequence of Permian Ochoan evaporites overlying the injection zone for the RH AGI wells, TND considers the likelihood, magnitude, and timing of CO₂ emissions to the surface via this potential leakage pathway to be minimal. Detection and quantification of any surface emissions attributed to leakage through the confining zone are described in Section 6.4 below.

5.5 Potential Leakage due to Lateral Migration

The characterization of the sand layers in the Cherry Canyon Formation described in Section 3.3 states that these sands were deposited by turbidites in channels in submarine fan complexes, each sand is encased in low porosity and permeability fine-grained siliciclastics and mudstones with lateral continuity. Regional consideration of their depositional environment suggests a preferred orientation for fluid and gas flow would be south-to-north along the channel axis. However, locally the high net porosity of the RH AGI #1 and

#2 injection zones indicates adequate storage capacity such that the injected TAG will be easily contained close to the injection well, thus minimizing the likelihood of lateral migration of TAG outside the MMA due to a preferred regional depositional orientation.

Lateral migration of the injected TAG was addressed in detail in Section 3.3. Therein it states that the units dip gently to the southeast with approximately 200 ft of relief across the area. Heterogeneities within both the Bell Canyon and Cherry Canyon sandstones, such as turbidite and debris flow channels, will exert a significant control over the porosity and permeability within the two units and fluid migration within those sandstones. In addition, these channels are frequently separated by low porosity and permeability siltstones and shales as well as being encased by them. Based on regional studies, the preferred orientation of the channels, and hence the preferred fluid migration pathways, are roughly from the east to the west.

Based on the discussion of the channeled sands in the injection zone TND considers the likelihood, magnitude, and timing of CO_2 emissions to the surface via this potential leakage pathway to be possible. Detection and quantification of any emissions attributed to lateral migration to a surface leakage pathway are described in Section 6.5 below.

5.6 Potential Leakage through Fractures and Faults

Prior to injection, a thorough geological characterization of the injection zone and surrounding formations was performed (see Section 3) to understand the geology as well as identify and understand the distribution of faults and fractures. **Figure 5.6-1** shows the fault traces in the vicinity of the Red Hill plant. The faults shown on **Figure 5.6-1** are confined to the Paleozoic section below the injection zone for the RH AGI wells. No faults were identified in the confining zone above the Bell Canyon and Cherry Canyon injection zone for the RH AGI wells.

Due to the lack of evidence of faults above the confining zone for the RH AGI wells, TND considers the likelihood, magnitude, and timing of CO₂ emissions to the surface via this potential leakage pathway to be minimal. Detection and quantification of any leaks attributed to any heretofore unidentified faults or fractures are described in Section 6.6 below.

Figure 5.6-1: New Mexico Tech Seismological Observatory (NMTSO) seismic network close to the operations, recent seismic events, and fault traces (2022-2023). Note: Fault traces are from Horne et al 2021 for faults in the Paleozoic.

5.7 Potential Leakage due to Natural / Induced Seismicity

The New Mexico Tech Seismological Observatory (NMTSO) monitors seismic activity in the state of New Mexico. A search of the database shows no recent seismic events close to the Red Hills operations. The closest recent, as of 4 September 2023, seismic events are:

- 7.5 miles, 2022-09-03, Magnitude 3
- 8 miles, 2022-09-02, Magnitude 2.23
- 8.6 miles, 2022-10-29, Magnitude 2.1

Figure 5.6-1 shows the seismic stations and recent seismic events in the area around the Red Hills site.

Due to the distance between the Red Hills AGI wells and the recent seismic events and the magnitude of the events, TND considers the likelihood, magnitude, and timing of CO_2 emissions to the surface via this potential leakage pathway to be minimal. Monitoring of seismic events in the vicinity of the Red Hills AGI wells is discussed in Section 6.7.

6 Strategy for Detecting and Quantifying Surface Leakage of CO₂

Subpart RR at 40 CFR 448(a)(3) requires a strategy for detecting and quantifying surface leakage of CO₂. TND will employ the following strategy for detecting, verifying, and quantifying CO₂ leakage to the surface through the potential pathways for CO₂ surface leakage identified in Section 5. TND considers H₂S to be a proxy for CO₂ leakage to the surface and as such will employ and expand upon methodologies detailed in their H₂S Contingency plan to detect, verify, and quantify CO₂ surface leakage. **Table 6-1** summarizes the leakage monitoring of the identified leakage pathways. Monitoring will occur for the duration of injection and the 5-year post-injection period.

Potential Leakage Pathway	Detection Monitoring
Surface Equipment	 Distributed control system (DCS) surveillance of plant operations Visual inspections Inline inspections Fixed in-field gas monitors/CO₂ monitoring network Personal and hand-held gas monitors
New RH AGI Well	 Vigilant monitoring of fluid returns during drilling Multiple gas monitoring points around drilling operations – personal and hand-held gas monitors
Existing RH AGI Well	 DCS surveillance of well operating parameters Visual inspections Mechanical integrity tests (MIT) Fixed in-field gas monitors/CO₂ flux monitoring network Personal and hand-held gas monitors In-well P/T sensors Groundwater monitoring
Fractures and Faults	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring
Confining Zone / Seal	• DCS surveillance of well operating parameters

Table 6.1: Summary of Leak Detection Monitoring

Potential Leakage Pathway	Detection Monitoring
	 Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring
Natural / Induced Seismicity	DCS surveillance of well operating parametersSeismic monitoring
Lateral Migration	 DCS surveillance of well operating parameters Fixed in-field gas monitors/CO₂ flux monitoring network Groundwater monitoring
Additional Monitoring	Groundwater monitoringSoil flux monitoring

6.1 Leakage from Surface Equipment

TND implements several tiers of monitoring for surface leakage including frequent periodic visual inspection of surface equipment, use of fixed in-field and personal H₂S sensors, and continual monitoring of operational parameters.

Leaks from surface equipment are detected by TND field personnel, wearing personal H₂S monitors, following daily and weekly inspection protocols which include reporting and responding to any detected leakage events. TND also maintains in-field gas monitors to detect H₂S and CO₂. The in-field gas monitors are connected to the DCS housed in the onsite control room. If one of the gas detectors sets off an alarm, it would trigger an immediate response to address and characterize the situation.

The following description of the gas detection equipment at the Red Hills Gas Processing Plant was extracted from the H₂S Contingency Plan:

"Fixed Monitors

The Red Hills Plant has numerous ambient hydrogen sulfide detectors placed strategically throughout the Plant to detect possible leaks. Upon detection of hydrogen sulfide at 10 ppm at any detector, visible beacons are activated, and an alarm is sounded. Upon detection of hydrogen sulfide at 90 ppm at any detector, an evacuation alarm is sounded throughout the Plant at which time all personnel will proceed immediately to a designated evacuation area. The Plant utilizes fixed-point monitors to detect the presence of H₂S in ambient air. The sensors are connected to the Control Room alarm panel's Programmable Logic Controllers (PLCs), and then to the Distributed Control System (DCS). The monitors are equipped with amber beacons. The beacon is activated at 10 ppm. The plant and AGI well horns are activated with a continuous warbling alarm at 10 ppm and a siren at 90 ppm. All monitoring equipment is Red Line brand. The Control Panel is a 24 Channel Monitor Box, and the fixed point H₂S Sensor Heads are model number RL-101.

The Plant will be able to monitor concentrations of H_2S via H_2S Analyzers in the following locations:

- Inlet gas of the combined stream from Winkler and Limestone
- Inlet sour liquid downstream of the slug catcher
- Outlet Sweet Gas to Red Hills 1

• Outlet Sweet Liquid to Red Hills Condensate Surge

The AGI system monitors can also be viewed on the PLC displays located at the Plant. These sensors are all shown on the plot plan (see **Figure 5.1-1**). This requires immediate action for any occurrence or malfunction. All H₂S sensors are calibrated monthly.

Personal and Handheld H2S Monitors

All personnel working at the Plant wear personal H₂S monitors. The personal monitors are set to alarm and vibrate at 10 ppm. Handheld gas detection monitors are available at strategic locations around the Plant so that plant personnel can check specific areas and equipment prior to initiating maintenance or other work. The handheld gas detectors have sensors for oxygen, LEL (explosive hydrocarbon atmospheres), H₂S and carbon dioxide (CO₂)."

TND's internal operational documents and protocols detail the steps to be taken to verify leaks of H₂S.

Quantification of CO₂ emissions from surface equipment and components will be estimated according to the requirements of 98.444(d) of Subpart RR as discussed in Sections 8.4 and 10.4. Furthermore, if CO₂ surface emissions are indicated by any of the monitoring methods listed in Table 6.1, TND will quantify the mass of CO₂ emitted based on the operational conditions that existed at the time of surface emission, including pressure at the point of emission, flowrate at the point of emission, duration of the emission, and estimation of the size of the emission site. TND has standard operating procedures to report and quantify all pipeline leaks in accordance with the NMOCD regulations (New Mexico administrative Code 19.15.28 Natural Gas Gathering Systems). TND will modify this procedure to quantify the mass of carbon dioxide from each leak discovered by TND or third parties.

6.2 Leakage from Approved Not Yet Drilled Wells

Special precautions will be taken in the drilling of any new wells that will penetrate the injection zones as described in Section 5.2.1 for RH AGI #3 including more frequent monitoring during drilling operations. This applies to TND and other operators drilling new wells through the RH AGI injection zones.

6.3 Leakage from Existing Wells

6.3.1 RH AGI Wells

As part of ongoing operations, TND continuously monitors and collects flow, pressure, temperature, and gas composition data in the data collection system. These data are monitored continuously by qualified technicians who follow response and reporting protocols when the system delivers alerts that data is not within acceptable limits.

To monitor leakage and wellbore integrity, two pressure and temperature gauges as well as Distributed Temperature Sensing (DTS) were deployed in TND's RH AGI #1 well. One gauge is designated to monitor the tubing ID (reservoir) pressure and temperature and the second gauge monitors the annular space between the tubing and the long string casing (**Figure 6.2-1**). A leak is indicated when both gauges start reading the same pressure. DTS is clamped to the tubing, and it monitors the temperature profiles of the annulus from 6,159 ft to surface. DTS can detect variation in the temperature profile events throughout the tubing and or casing. Temperature variation could be an indicator of leaks. Data from temperature and pressure gauges is recorded by an interrogator housed in an onsite control room. DTS (temperature) data is recorded by a separate interrogator that is also housed in the onsite control room. Data from both interrogators are transmitted to a remote location for daily real time or historical analysis.

If operational parameter monitoring and MIT failures indicate a CO₂ leak has occurred, TND will take actions to quantify the leak based on operating conditions at the time of the detection including pressure at the point of emission, flowrate at the point of emission, duration of the emission, and estimation of the size of the emission site.

F	IALLIBU	RTON			Lucid Red Hills AGI 1 WSP. Tray Gillen / Michael Ed	orrior	
	Installat	ion		Lea	County New Mexico Sales Rep - Lynn Talley (432) 63	1-4626	
	Installation	Donth	Longth	lte	2/3/21 - 2/28/21 Tool Specialists: Carey Lehmann, Jonathan Pl	nillips, Jose	Vargas
2		18.50	18.50	015.	KB		10
のためのない	20	22.90 64.05	4.40 41.15	1	20) Hanger Sub 3 1/2" 9.2# CRA VAMTOP x 7.7# VAM Ace Pin 19) 3 1/2" 7.7# VAM ACE 125K G3 Tubing (Slick Joint) Pan Eight Subs 8' 8' 6' 6' 4' 4' 2' 2'	7.000 3.500	3.000 3.035
	■1 8	103.97	39 . 92		18) 3 1/2" 7.7# VAM ACE 125K G3 Spaceout Subs	3.500	3.035
0.00	↓ 17	235.95	131.98	3	17) 3 1/2" 7.7# VAM ACE 125K G3 Tubing	3.500	3.035
100 M	16	241.95	6.00		16) 6' x 3 1/2" 7.7# CRA VAM ACE Box x 9.2# VAMTOP Pin	3.540	2.959
のため、彼	15	246.30	4.35		15) 3 1/2" NE HES SSSV Nickel Alloy 925 w/Alloy 825 Control Line 3 1/2" 9.2# VAMTOP Box x Pin	5.300	2.813
	14	252.29	5.99		14) 6' x 3 1/2" 9.2# CRA VAMTOP Box x 7.7# VAM ACE Pin	3.540	2.959
0.00	1	6,140.23	5,887.94	134	13) 3 1/2" 7.7# VAM ACE 125K G3 Tubing 12) 3 1/2" 7.7# VAM ACE Box x 9.2# VAMTOP Pin CRA Crossover	3.500 3.830	3.305 2.959
Set 2	11				11) 2.813" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy 925	4.073	2.813
の日本	10	6,153.72	13.49		10) 6' x 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy G3 Sub 13.49' Length Includes Line Items 10, 11 & 12	3.540	2.959
10.20	9	6.159 Tubina 6.162.6 Annular	P/T P/T	H	9) Baker PT Sensor Mandrel 3 1/2" 9.2# VAMTOP Box x Pin 6' VAMTOP 9.2# CRA Tubing Sub Above & Below Gauge Mdl	5.200	2.992
8-15-15-15-15-15-15-15-15-15-15-15-15-15-	8	6,161.23	7.51		8) 4.00" BWS Landed Seal Asmbly 9.2# VAM TOP Nickel Alloy 925 7.51' Length Includes Line Items 8 & 9	4.470	2.959
Notet Land		6,164.55	3.32		7) 7" 26-32# x 4.00" BWS Packer Nickel Alloy 925 Casing Collar @ 6,160.6' WL Measurement	5.875	4.000
たいのである	4 6	6,172.05	7.5		6) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5 .032	4.000
50.03	5	6,172.88	0.83		5) 4.00" PBR Adapter x 9.2# VAMTOP BxP Nickel Alloy 925	5.68 0	2.959
VE CO	4 4	6,181.19	8.31		4) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub Nickel Alloy G3	3.540	2.959
12.00	3	6 ,182.52	1.33		3) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy 925 #102204262	4.073	2.562
00.000	2	6,184.29	1.77		2) Straight Slot Locator Seal Assembly Above Top Of Packer	4.450	2.880
S. Carl	3 - 1		6,186.06		1) BWD Permanent Packer. WL Measured Depth Previously 6189'	<mark>5.87</mark> 5	4.000
10.00					1a) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5.660	2.965
Set	1a				1b) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
					1c) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel,	2.920	2.562
10.00					1d) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
読むの	↓ 1b				1e) 2.562" RN Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel	3.920	2.321
1000	1c				1f) Re-Entry Guide / POP	3.950	3.000
10.00	1d						
の日本	1e						
State and	1 f						

Figure 6.2-1: Well Schematic for RH AGI #1 showing installation of P/T sensors

	- 8	6,161.23	7.51	8) 4.00" BWS Landed Seal Asmbly 9.2# VAM TOP Nickel Alloy 925 7.51' Length Includes Line Items 8 & 9	4.470	2.959
	- 7	6,164.55	3.32	7) 7" 26-32# x 4.00" BWS Packer Nickel Alloy 925 Casing Collar @ 6,160.6' WL Measurement	5.875	4.000
1	- 6	6,172.05	7.5	6) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5.032	4.000
	5	6,172.88	0.83	5) 4.00" PBR Adapter x 9.2# VAMTOP BxP Nickel Alloy 925	5.680	2.959
-	4	6,181.19	8.31	4) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub Nickel Alloy G3	3.540	2.959
SWOTH -	3	6,182.52	1.33	3) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel Alloy 925 #102204262	4.073	2.562
	- 2	6,184.29	1.77	2) Straight Slot Locator Seal Assembly Above Top Of Packer	4.450	2.880
	- 1		6,186.06	1) BWD Permanent Packer. WL Measured Depth Previously 6189'	5.875	4.000
	NO.			1a) 4.00" x 8' PBR Nickel Alloy 925 4 3/4"-8 UN 2A Pin x Pin	5.660	2.965
	u diver			1b) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
	1a			1c) 2.562" R Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel,	2.920	2.562
	1000			1d) 8' x 3 1/2" 9.2# VAMTOP BxP Tbg Sub , 925	3.520	2.989
	10.00			1e) 2.562" RN Nipple 3 1/2" 9.2# VAMTOP Box x Pin Nickel	3.920	2.321
1	1b			1f) Re-Entry Guide / POP	3.950	3.000
	1c					
- T	1d					
■ 100 million	1e					
	1f					

Figure 6.2-2: Well Schematic for RH AGI #3 showing intended installation of P/T sensors

6.3.2 Other Existing Wells within the MMA

The CO₂ monitoring network described in Section 7.3 and well surveillance by other operators of existing wells will provide an indication of CO₂ leakage. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO₂ leakage to the surface. See Sections 7.7 and 7.8 for details.

6.4 Leakage through the Confining / Seal System

As discussed in Section 5, it is very unlikely that CO₂ leakage to the surface will occur through the confining zone. Continuous operational monitoring of the RH AGI wells, described in Sections 6.3 and 7.5, will provide an indicator if CO₂ leaks out of the injection zone. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO₂ leakage to the surface. See Sections 7.7 and 7.8 for details.

If changes in operating parameters or other monitoring listed in Table 6.1 indicate leakage of CO_2 through the confining / seal system, TND will take actions to quantify the amount of CO_2 released and take mitigative action to stop it, including shutting in the well(s).

6.5 Leakage due to Lateral Migration

Continuous operational monitoring of the RH AGI wells during and after the period of the injection will provide an indication of the movement of the CO₂ plume migration in the injection zones. The CO₂ monitoring network described in Section 7.3, and routine well surveillance will provide an indicator if CO₂ leaks out of the injection zone. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO₂ leakage to the surface. See Sections 7.7 and 7.8 for details.

If monitoring of operational parameters or other monitoring methods listed in Table 6.1 indicates that the CO_2 plume extends beyond the area modeled in Section 3.8 and presented in Section 4, TND will reassess the plume migration modeling for evidence that the plume may have intersected a pathway for CO_2 release to the surface. As this scenario would be considered a material change per 40CFR98.448(d)(1), TND will submit a revised MRV plan as required by 40CFR98.448(d).

6.6 Leakage from Fractures and Faults

As discussed in Section 5, it is very unlikely that CO_2 leakage to the surface will occur through faults. However, if monitoring of operational parameters and the fixed in-field gas monitors indicate possible CO_2 leakage to the surface, TND will identify which of the pathways listed in this section are responsible for the leak, including the possibility of heretofore unidentified faults or fractures within the MMA. TND will take measures to quantify the mass of CO_2 emitted based on the operational conditions that existed at the time of surface emission, including pressure at the point of emission, flowrate at the point of emission, duration of the emission, and estimation of the size of the emission site. Additionally, groundwater and soil flux monitoring locations throughout the MMA will also provide an indication of CO_2 leakage to the surface. See Sections 7.7 and 7.8 for details.

6.7 Leakage due to Natural / Induced Seismicity

In order to monitor the influence of natural and/or induced seismicity, TND will use the established NMTSO seismic network. The network consists of seismic monitoring stations that detect and locate seismic events. Continuous monitoring helps differentiate between natural and induced seismicity. The network surrounding the Red Hills Gas Processing Plant has been mapped on **Figure 5.6-1**. The monitoring network records Helicorder data from UTC (coordinated universal time) all day long. The data are plotted daily at 5pm MST (mountain standard time). These plots can be browsed either by station or by day. The data are streamed continuously to the New Mexico Tech campus and archived at the Incorporated Research Institutions for Seismology Data Management Center (IRIS DMC).

If monitoring of the NMTSO seismic monitoring stations, the operational parameters and the fixed infield gas monitors indicates surface leakage of CO_2 linked to seismic events, TND will assess whether the CO_2 originated from the RH AGI wells and, if so, take measures to quantify the mass of CO_2 emitted to the surface based on operational conditions at the time the leak was detected. See Section 7.6 for details regarding seismic monitoring and analysis.

7 Strategy for Establishing Expected Baselines for Monitoring CO₂ Surface Leakage

TND uses the existing automatic distributed control system to continuously monitor operating parameters and to identify any excursions from normal operating conditions that may indicate leakage of CO₂. TND considers H₂S to be a proxy for CO₂ leakage to the surface and as such will employ and expand upon methodologies detailed in their H₂S Contingency plan to establish baselines for monitoring CO₂ surface leakage. The following describes TND's strategy for collecting baseline information.

7.1 Visual Inspection

TND field personnel conduct frequent periodic inspections of all surface equipment providing opportunities to assess baseline concentrations of H₂S, a proxy for CO₂, at the Red Hills Gas Plant.

7.2 Fixed In-Field, Handheld, and Personal H₂S Monitors

Compositional analysis of TND's gas injectate at the Red Hills Gas Plant indicates an approximate H₂S concentration of 12% thus requiring TND to develop and maintain an H₂S Contingency Plan (Plan) according to the NMOCD Hydrogen Sulfide Gas Regulations, Rule 11 (19.15.11 NMAC). TND considers H₂S to be a proxy for CO₂ leaks at the plant. The Plan contains procedures to provide for an organized response to an unplanned release of H₂S from the plant or the associated RH AGI Wells and documents procedures that would be followed in case of such an event.

7.2.1 Fixed In-Field H₂S Monitors

The Red Hills Gas Plant utilizes numerous fixed-point monitors, strategically located throughout the plant, to detect the presence of H₂S in ambient air. The sensors are connected to the Control Room alarm panel's Programmable Logic Controllers (PLCs), and then to the DCS. Upon detection of H₂S at 10 ppm at any detector, visible amber beacons are activated, and horns are activated with a continuous warbling alarm. Upon detection of hydrogen sulfide at 90 ppm at any monitor, an evacuation alarm is sounded throughout the plant at which time all personnel will proceed immediately to a designated evacuation area.

7.2.2 Handheld and Personal H₂S Monitors

Handheld gas detection monitors are available at strategic locations around the plant so that plant personnel can check specific areas and equipment prior to initiating maintenance or other work. The handheld gas detectors have sensors for oxygen, LEL (explosive hydrocarbon atmospheres), H₂S and CO₂.

All personnel, including contractors who perform operations, maintenance and/or repair work in sour gas areas within the plant must wear personal H₂S monitoring devices to assist them in detecting the presence of unsafe levels of H₂S. Personal monitoring devices will give an audible alarm and vibrate at 10 ppm.

7.3 CO₂ Detection

In addition to the handheld gas detection monitors described above, New Mexico Tech, through a DOE research grant (DE-FE0031837 – Carbon Utilization and Storage Project of the Western USA (CUSP)), will assist TND in setting up a monitoring network for CO_2 leakage detection in the AMA as defined in Section 4.2. The scope of work for the DOE project includes field sampling activities to monitor CO_2/H_2S at the two RH AGI wells. These activities include periodic well (groundwater and gas) and atmospheric sampling from an area of 10 - 15 square miles around the injection wells. Once the network is set up, TND will assume responsibility for monitoring, recording, and reporting data collected from the system for the duration of the project.

7.4 Continuous Parameter Monitoring

The DCS of the plant monitors injection rates, pressures, and composition on a continuous basis. High and low set points are programmed into the DCS, and engineering and operations are alerted if a parameter is outside the allowable window. If a parameter is outside the allowable window, this will trigger further investigation to determine if the issue poses a leak threat. Also, see Section 6.2 for continuous monitoring of P/T in the well.

7.5 Well Surveillance

TND adheres to the requirements of NMOCC Rule 26 governing the construction, operation and closing of an injection well under the Oil and Gas Act. Rule 26 also includes requirements for testing and monitoring of Class II injection wells to ensure they maintain mechanical integrity at all times. Furthermore, NMOCC includes special conditions regarding monitoring, reporting, and testing in the individual permits for each injection well, if they are

deemed necessary. TND's Routine Operations and Maintenance Procedures for the RH AGI wells ensure frequent periodic inspection of the wells and opportunities to detect leaks and implement corrective action.

7.6 Seismic (Microseismic) Monitoring Stations

TND has Installed a model TCH120-1 Trillium Compact Horizon Seismometer and a model CTR4-3S Centaur Digital Recorder to monitor for and record data for any seismic event at the Red Hills Gas Plant (see **Figure 7-1**). The seismic station meets the requirements of the NMOCC Order No. R-20916-H to "install, operate, and monitor for the life of the [Class II AGI] permit a seismic monitoring station or stations as directed by the Manager of the New Mexico Tech Seismological Observatory ("state seismologist") at the New Mexico Bureau of Geology and Mineral Resources."

In addition, data that is recorded by the State of New Mexico deployed seismic network within a 10-mile radius of the Red Hills Gas Plant will be analyzed by the New Mexico Bureau of Geology (NMBGMR), see **Figure 5.6-1**, and made publicly available. The NMBGMR seismologist will create a report and map showing the magnitudes of recorded events from seismic activity. The data is being continuously recorded. By examining historical data, a seismic baseline prior to the start of TAG injection can be well established and used to verify anomalous events that occur during current and future injection activities. If necessary, a certain period of time can be extracted from the overall data set to identify anomalous events during that period.

7.7 Groundwater Monitoring

New Mexico Tech, through the same DOE research grant described in Section 7.3 above, will monitor groundwater wells for CO₂ leakage which are located within the AMA as defined in Section 4.2. Water samples will be collected and analyzed on a monthly basis for 12 months to establish baseline data. After establishing the water chemistry baseline, samples will be collected and analyzed bi-monthly for one year and then quarterly. Samples will be collected according to EPA methods for groundwater sampling (U.S. EPA, 2015).

The water analysis includes total dissolved solids (TDS), conductivity, pH, alkalinity, major cations, major anions, oxidation-reduction potentials (ORP), inorganic carbon (IC), and non-purgeable organic carbon (NPOC). Charge balance of ions will be completed as quality control of the collected groundwater samples. See **Table 7.7-1**. Baseline analyses will be compiled and compared with regional historical data to determine patterns of change in groundwater chemistry not related to injection processes at the Red Hills Gas Plant. A report of groundwater chemistry will be developed from this analysis. Any water quality samples not within expected variation will be further investigated to determine if leakage has occurred from the injection horizon.

Parameters
рН
Alkalinity as HCO3- (mg/L)
Chloride (mg/L)
Fluoride (F-) (mg/L)
Bromide (mg/L)
Nitrate (NO3-) (mg/L)
Phosphate (mg/L)
Sulfate (SO42-) (mg/L)
Lithium (Li) (mg/L)
Sodium (Na) (mg/L)
Potassium (K) (mg/L)
Magnesium (Mg) (mg/L)

Table 7.7-1: Groundwater Monitoring Parameters

Calcium (Ca) (mg/L)
TDS Calculation (mg/L)
Total cations (meq/L)
Total anions (meq/L)
Percent difference (%)
ORP (mV)
IC (ppm)
NPOC (ppm)

7.8 Soil CO₂ Flux Monitoring

A vital part of the monitoring program is to identify potential leakage of CO₂ and/or brine from the injection horizon into the overlying formations and to the surface. One method that will be deployed is to gather and analyze soil CO₂ flux data which serves as a means for assessing potential migration of CO₂ through the soil and its escape to the atmosphere. By taking CO₂ soil flux measurements at periodic intervals, TND can continuously characterize the interaction between the subsurface and surface to understand potential leakage pathways. Actionable recommendations can be made based on the collected data.

CO₂ soil flux will be collected on a monthly basis for 12 months to establish the baseline and understand seasonal and other variation at the Red Hills Gas Plant. After the baseline is established, data will be collected bi-monthly for one year and then quarterly.

CO₂ soil flux measurements will be taken using a LI-COR LI-8100A flux chamber, or similar instrument, at pre planned locations at the site. PVC soil collars (8cm diameter) will be installed in accordance with the LI-8100A specifications. Measurements will be subsequently made by placing the LI-8100A chamber on the soil collars and using the integrated iOS app to input relevant parameters, initialize measurement, and record the system's flux and coefficient of variation (CV) output. The soil collars will be left in place such that each subsequent measurement campaign will use the same locations and collars during data collection.

US EPA, O., 2015, Procedures for Groundwater Sampling in the Laboratory Services and Applied Science Division: https://www.epa.gov/quality/procedures-groundwater-sampling-laboratory-services-and-applied-science-division (accessed September 2023).

Figure 7-1: Red Hills monitoring network of 32 CO₂ flux locations, 2 groundwater wells, and a seismic station developed by New Mexico Tech and Targa Resources to detect leakage during injection.

8 Site Specific Considerations for Determining the Mass of CO₂ Sequestered

Appendix 7 summarizes the twelve Subpart RR equations used to calculate the mass of CO₂ sequestered annually. **Appendix 8** includes the twelve equations from Subpart RR. Not all of these equations apply to TND's current operations at the Red Hills Gas Plant but are included in the event TND's operations change in such a way that their use is required.

8.1 CO₂ Received

Currently, TND receives gas to its Red Hills Gas Plant through six pipelines: Gut Line, Winkler Discharge, Red Hills 24" Inlet Loop, Greyhound Discharge, Limestone Discharge, and the Plantview Loop. The gas is processed as described in Section 3.8 to produce compressed TAG which is then routed to the wellhead and pumped to injection pressure through NACE-rated (National Association of Corrosion Engineers) pipeline suitable for injection. TND will use Equation RR-2 for Pipelines to calculate the mass of CO₂ received through pipelines and measured through volumetric flow meters. The total annual mass of CO₂ received through these pipelines will be calculated using Equation RR-3.

Although TND does not currently receive CO_2 in containers for injection, they wish to include the flexibility in this MRV plan to receive gas from containers. When TND begins to receive CO_2 in containers, TND will use Equations

RR-1 and RR-2 for Containers to calculate the mass of CO_2 received in containers. TND will adhere to the requirements in 40CFR98.444(a)(2) for determining the quarterly mass or volume of CO_2 received in containers.

If CO_2 received in containers results in a material change as described in 40CFR98.448(d)(1), TND will submit a revised MRV plan addressing the material change.

8.2 CO₂ Injected

TND injects CO_2 into the existing RH AGI #1. Upon completion, TND will commence injection into RH AGI #2 and #3. Equation RR-5 will be used to calculate CO_2 measured through volumetric flow meters before being injected into the wells. Equation RR-6 will be used to calculate the total annual mass of CO_2 injected into both wells. The calculated total annual CO_2 mass injected is the parameter CO_{21} in Equation RR-12.

8.3 CO₂ Produced / Recycled

TND does not produce oil or gas or any other liquid at its Red Hills Gas Plant so there is no CO_2 produced or recycled.

8.4 CO₂ Lost through Surface Leakage

Surface leakage of CO_2 will be determined by employing the CO_2 detection system described in Section 7.3. Equation RR-10 will be used to calculate the annual mass of CO_2 lost due to surface leakage from the leakage pathways identified and evaluated in Section 5 above. The calculated total annual CO_2 mass emitted by surface leakage is the parameter CO_{2E} in Equation RR-12.

8.5 CO₂ Sequestered

Since TND does not actively produce oil or natural gas or any other fluid at its Red Hills Gas Plant, Equation RR-12 will be used to calculate the total annual CO₂ mass sequestered in subsurface geologic formations.

As required by 98.448(d) of Subpart RR, TND will assess leakage from the relevant surface equipment listed in Sections 98.233 and 98.234 of Subpart W. According to 98.233(r)(2) of Subpart W, the emissions factor listed in Table W-1A of Subpart W shall be used to estimate the parameter CO_{2FI} in Equation RR-12, the total annual CO_2 mass emitted or vented from equipment located between the flow meter for measuring injection quantity and the injection wellhead.

9 Estimated Schedule for Implementation of MRV Plan

The baseline monitoring and leakage detection and quantification strategies described herein have been established and data collected by TND and its predecessor, Lucid, for several years and continues to the present. TND will begin implementing this revised MRV plan as soon as it is approved by EPA. After RH AGI #3 is drilled, TND will reevaluate the MRV plan and if any modifications are a material change per 40CFR98.448(d)(1), TND will submit a revised MRV plan as required by 40CFR98.448(d).

10 GHG Monitoring and Quality Assurance Program

TND will meet the monitoring and QA/QC requirements of 40CFR98.444 of Subpart RR including those of Subpart W for emissions from surface equipment as required by 40CFR98.444(d).

10.1 GHG Monitoring

As required by 40CFR98.3(g)(5)(i), TND's internal documentation regarding the collection of emissions data includes the following:

- Identification of positions of responsibility (i.e., job titles) for collection of the emissions data
- Explanation of the processes and methods used to collect the necessary data for the GHG calculations

• Description of the procedures and methods that are used for quality assurance, maintenance, and repair of all continuous monitoring systems, flow meters, and other instrumentation used to provide data for the GHGs reported

10.1.1 General

<u>Measurement of CO_2 Concentration</u> – All measurements of CO_2 concentrations of any CO_2 quantity will be conducted according to an appropriate standard method published by a consensus-based standards organization or an industry standard practice such as the Gas Producers Association (GPA) standards. All measurements of CO_2 concentrations of CO_2 received will meet the requirements of 40CFR98.444(a)(3).

<u>Measurement of CO₂ Volume</u> – All measurements of CO₂ volumes will be converted to the following standard industry temperature and pressure conditions for use in Equations RR-2 and RR-5, of Subpart RR of the GHGRP: Standard cubic meters at a temperature of 60 degrees Fahrenheit and at an absolute pressure of 1 atmosphere. TND will adhere to the American Gas Association (AGA) Report #3 – Orifice Metering.

10.1.2 CO₂ received.

Daily CO₂ received is recorded by totalizers on the volumetric flow meters on each of the pipelines listed in Section 8 using accepted flow calculations for CO₂ according to the AGA Report #3.

10.1.3 CO₂ injected.

Daily CO₂ injected is recorded by totalizers on the volumetric flow meters on the pipelines to the RH AGI #1 and #2 wells using accepted flow calculations for CO₂ according to the AGA Report #3.

10.1.4 CO₂ produced.

TND does not produce CO₂ at the Red Hills Gas Plant.

10.1.5 CO₂ emissions from equipment leaks and vented emissions of CO₂.

As required by 98.444(d), TND will follow the monitoring and QA/QC requirements specified in Subpart W of the GHGRP for equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead.

As required by 98.444(d) of Subpart RR, TND will assess leakage from the relevant surface equipment listed in Sections 98.233 and 98.234 of Subpart W. According to 98.233(r)(2) of Subpart W, the emissions factor listed in Table W-1A of Subpart W shall be used.

10.1.6 Measurement devices.

As required by 40CFR98.444(e), TND will ensure that:

- All flow meters are operated continuously except as necessary for maintenance and calibration
- All flow meters used to measure quantities reported are calibrated according to the calibration and accuracy requirements in 40CFR98.3(i) of Subpart A of the GHGRP.
- All measurement devices are operated according to an appropriate standard method published by a
 consensus-based standards organization or an industry standard practice. Consensus-based standards
 organizations include, but are not limited to, the following: ASTM International, the American National
 Standards Institute (ANSI), the American Gas Association (AGA), the Gas Producers Association (GPA),
 the American Society of Mechanical Engineers (ASME), the American Petroleum Institute (API), and the
 North American Energy Standards Board (NAESB).
- All flow meter calibrations performed are National Institute of Standards and Technology (NIST) traceable.

10.2 QA/QC Procedures

TND will adhere to all QA/QC requirements in Subparts A, RR, and W of the GHGRP, as required in the development of this MRV plan under Subpart RR. Any measurement devices used to acquire data will be operated and maintained according to the relevant industry standards.

10.3 Estimating Missing Data

TND will estimate any missing data according to the following procedures in 40CFR98.445 of Subpart RR of the GHGRP, as required.

- A quarterly flow rate of CO₂ received that is missing would be estimated using invoices, purchase statements, or using a representative flow rate value from the nearest previous time period.
- A quarterly CO₂ concentration of a CO₂ stream received that is missing would be estimated using invoices, purchase statements, or using a representative concentration value from the nearest previous time period.
- A quarterly quantity of CO₂ injected that is missing would be estimated using a representative quantity of CO₂ injected from the nearest previous period of time at a similar injection pressure.
- For any values associated with CO₂ emissions from equipment leaks and vented emissions of CO₂ from surface equipment at the facility that are reported in Subpart RR, missing data estimation procedures specified in subpart W of 40 CFR Part 98 would be followed.

10.4 Revisions of the MRV Plan

TND will revise the MRV plan as needed to reflect changes in monitoring instrumentation and quality assurance procedures; or to improve procedures for the maintenance and repair of monitoring systems to reduce the frequency of monitoring equipment downtime; or to address additional requirements as directed by the USEPA or the State of New Mexico. If any operational changes constitute a material change as described in 40CFR98.448(d)(1), TND will submit a revised MRV plan addressing the material change. TND intends to update the MRV plan after RH AGI #3 has been drilled and characterized.

11 Records Retention

TND will meet the recordkeeping requirements of paragraph 40CFR98.3(g) of Subpart A of the GHGRP. As required by 40CFR98.3(g) and 40CFR98.447, TND will retain the following documents:

- (1) A list of all units, operations, processes, and activities for which GHG emissions were calculated.
- (2) The data used to calculate the GHG emissions for each unit, operation, process, and activity. These data include:
 - (i) The GHG emissions calculations and methods used
 - (ii) Analytical results for the development of site-specific emissions factors, if applicable
 - (iii) The results of all required analyses
 - (iv) Any facility operating data or process information used for the GHG emission calculations
- (3) The annual GHG reports.

(4) Missing data computations. For each missing data event, TND will retain a record of the cause of the event and the corrective actions taken to restore malfunctioning monitoring equipment.

(5) A copy of the most recent revision of this MRV Plan.

(6) The results of all required certification and quality assurance tests of continuous monitoring systems, fuel flow meters, and other instrumentation used to provide data for the GHGs reported.

(7) Maintenance records for all continuous monitoring systems, flow meters, and other instrumentation used to provide data for the GHGs reported.

(8) Quarterly records of CO₂ received, including mass flow rate of contents of container (mass or volumetric) at standard conditions and operating conditions, operating temperature and pressure, and concentration of these streams.

(9) Quarterly records of injected CO_2 including mass flow or volumetric flow at standard conditions and operating conditions, operating temperature and pressure, and concentration of these streams.

(10) Annual records of information used to calculate the CO₂ emitted by surface leakage from leakage pathways.

(11) Annual records of information used to calculate the CO_2 emitted from equipment leaks and vented emissions of CO_2 from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead.

(12) Any other records as specified for retention in this EPA-approved MRV plan.

12 Appendices

Appendix 1 TND Wells

Well Name	API #	Location	County	Spud Date	Total Depth	Packer
Red Hills AGI #1	30-025-40448	1,600 ft FSL, 150 ft FEL Sec. 13, T24S, R33E, NMPM	Lea, NM	10/23/201 3	6,650 ft	6,170 ft
Red Hill AGI #3	30-025-51970	3,116 ft FNL, 1,159 ft FEL Sec. 13, T24S, R33E, NMPM	Lea, NM	9/13/2023	6,650 ft	5,700 ft

Figure Appendix 1-1: Schematic of TND RH AGI #1 Well

Figure Appendix 1-2: Proposed wellbore schematic for the TND RH AGI #3 Well

Appendix 2 Referenced Regulations

U.S. Code > Title 26. INTERNAL REVENUE CODE > Subtitle A. Income Taxes > Chapter 1. NORMAL TAXES AND SURTAXES > Subchapter A. Determination of Tax Liability > Part IV. CREDITS AGAINST TAX > Subpart D. Business Related Credits > Section 45Q - Credit for carbon oxide sequestration

New Mexico Administrative Code (NMAC) > Title 19 – Natural resources > Chapter 15 – Oil and Gas

19.15.1 NMAC	GENERAL PROVISIONS AND DEFINITIONS [REPEALED]
19.15.2 NMAC	GENERAL PROVISIONS FOR OIL AND GAS OPERATIONS
19.15.3 NMAC	RULEMAKING
19.15.4 NMAC	ADJUDICATION
19.15.5 NMAC	ENFORCEMENT AND COMPLIANCE
19.15.6 NMAC	TAX INCENTIVES
19.15.7 NMAC	FORMS AND REPORTS
19.15.8 NMAC	FINANCIAL ASSURANCE
19.15.9 NMAC	WELL OPERATOR PROVISIONS
19.15.10 NMAC	SAFETY
19.15.11 NMAC	HYDROGEN SULFIDE GAS
19.15.12 NMAC	POOLS
19.15.13 NMAC	COMPULSORY POOLING
19.15.14 NMAC	DRILLING PERMITS
19.15.15 NMAC	WELL SPACING AND LOCATION
19.15.16 NMAC	DRILLING AND PRODUCTION
19.15.17 NMAC	PITS, CLOSED-LOOP SYSTEMS, BELOW-GRADE TANKS AND SUMPS
19.15.18 NMAC	PRODUCTION OPERATING PRACTICES
19.15.19 NMAC	NATURAL GAS PRODUCTION OPERATING PRACTICE
19.15.20 NMAC	OIL PRORATION AND ALLOCATION
19.15.21 NMAC	GAS PRORATION AND ALLOCATION
19.15.22 NMAC	HARDSHIP GAS WELLS
19.15.23 NMAC	OFF LEASE TRANSPORT OF CRUDE OIL OR CONTAMINANTS
19.15.24 NMAC	ILLEGAL SALE AND RATABLE TAKE
19.15.25 NMAC	PLUGGING AND ABANDONMENT OF WELLS
19.15.26 NMAC	INJECTION
19.15.27 - 28 NMAC	[RESERVED] PARTS 27 - 28
19.15.29 NMAC	RELEASES

CHAPTER 15 - OIL AND GAS

19.15.30 NMAC	REMEDIATION
19.15.31 - 33 NMAC	[RESERVED] PARTS 31 - 33
19.15.34 NMAC	PRODUCED WATER, DRILLING FLUIDS AND LIQUID OIL FIELD WASTE
19.15.35 NMAC	WASTE DISPOSAL
19.15.36 NMAC	SURFACE WASTE MANAGEMENT FACILITIES
19.15.37 NMAC	REFINING
19.15.38 NMAC	[RESERVED]
19.15.39 NMAC	SPECIAL RULES
19.15.40 NMAC	NEW MEXICO LIQUIFIED PETROLEUM GAS STANDARD
19.15.41 - 102 NMAC	[RESERVED] PARTS 41 - 102
19.15.103 NMAC	SPECIFICATIONS, TOLERANCES, AND OTHER TECHNICAL REQUIREMENTS FOR COMMERCIAL WEIGHING AND MEASURING DEVICES
19.15.104 NMAC	STANDARD SPECIFICATIONS/MODIFICATIONS FOR PETROLEUM PRODUCTS
19.15.105 NMAC	LABELING REQUIREMENTS FOR PETROLEUM PRODUCTS
19.15.106 NMAC	OCTANE POSTING REQUIREMENTS
19.15.107 NMAC	APPLYING ADMINISTRATIVE PENALTIES
19.15.108 NMAC	BONDING AND REGISTRATION OF SERVICE TECHNICIANS AND SERVICE ESTABLISHMENTS FOR COMMERCIAL WEIGHING OR MEASURING DEVICES
19.15.109 NMAC	NOT SEALED NOT LEGAL FOR TRADE
19.15.110 NMAC	BIODIESEL FUEL SPECIFICATION, DISPENSERS, AND DISPENSER LABELING REQUIREMENTS [REPEALED]
19.15.111 NMAC	E85 FUEL SPECIFICATION, DISPENSERS, AND DISPENSER LABELING REQUIREMENTS [REPEALED]
19.15.112 NMAC	RETAIL NATURAL GAS (CNG / LNG) REGULATIONS [REPEALED]

Appendix 3 Water Wells

Water wells identified by the New Mexico State Engineer's files within two miles of the RH AGI wells; water wells within one mile are highlighted in yellow.

POD Number	County	Sec	Tws	Rng	UTME	UTMN	Distance (mi)	Depth Well (ft)	Depth Water (ft)	Water Column (ft)
C 03666 POD1	LE	13	245	33E	639132	3565078	0.31	650	390	260
C 03917 POD1	LE	13	245	33E	638374	3565212	0.79	600	420	180
C 03601 POD1	LE	23	245	33E	638124	3563937	1.17			
C 02309	LE	25	245	33E	639638	3562994	1.29	60	30	30
C 03601 POD3	LE	24	245	33E	638142	3563413	1.38			
C 03932 POD8	LE	7	245	34E	641120	3566769	1.40	72		
C 03601 POD2	LE	23	245	33E	637846	3563588	1.44			
C 03662 POD1	LE	23	245	33E	637342	3564428	1.48	550	110	440
C 03601 POD5	LE	23	245	33E	637988	3563334	1.48			
C 03601 POD6	LE	23	245	33E	637834	3563338	1.55			
C 03601 POD7	LE	23	245	33E	637946	3563170	1.58			
C 03600 POD2	LE	25	245	33E	638824	3562329	1.78			
C 03602 POD2	LE	25	245	33E	638824	3562329	1.78			
C 03600 POD1	LE	26	245	33E	637275	3563023	1.94			
C 03600 POD3	LE	26	245	33E	637784	3562340	2.05			

Appendix 4 Oil and Gas Wells within 2-mile Radius of the RH AGI Well Site

Note – a completion status of "New" indicates that an Application for Permit to Drill has been filed and approved but the well has not yet been completed. Likewise, a spud date of 31-Dec-99 is actually 12-31-9999, a date used by NMOCD databases to indicate work not yet reported.

ΑΡΙ	Well Name	Operator	Well Type	Reported Formation	Well Status	Trajectory	TVD (ft)	Within MMA
30-025- 08371	COSSATOT E 002	PRE-ONGARD WELL OPERATOR	OIL	DELAWARE VERTICAL	P & A	VERTICAL	5425	Yes
30-025- 25604	GOVERNMENT L COM 001	EOG RESOURCES INC	GAS	DELAWARE VERTICAL	P & A	VERTICAL	17625	No
30-025- 26369	GOVERNMENT L COM 002	EOG RESOURCES INC	GAS	DELAWARE VERTICAL	P & A	VERTICAL	14698	Yes
30-025- 26958	SIMS 001	BOPCO, L.P.	GAS	DELAWARE VERTICAL	P & A	VERTICAL	15007	Yes
30-025- 27071	PRE-ONGARD WELL 001	PRE-ONGARD WELL OPERATOR	OIL	DELAWARE VERTICAL	PERMIT CANCELLED	VERTICAL	0	No
30-025- 27491	SMITH FEDERAL 001	PRE-ONGARD WELL OPERATOR	OIL	DELAWARE VERTICAL	P & A	VERTICAL	15120	No
30-025- 28869	PRE-ONGARD WELL 001	PRE-ONGARD WELL OPERATOR	OIL	DELAWARE VERTICAL	PERMIT CANCELLED	VERTICAL	0	No
30-025- 29008	MADERA RIDGE 24 001	EOG RESOURCES INC	GAS	DELAWARE VERTICAL	TA	VERTICAL	15600	No
30-025- 29008	MADERA RIDGE 24 001	EOG RESOURCES INC	GAS	DELAWARE VERTICAL	ТА	VERTICAL	15600	No
30-025- 40448	RED HILLS AGI 001	TARGA NORTHERN DELAWARE, LLC.	INJECTOR	DELAWARE VERTICAL	INJECTING	VERTICAL	6650	Yes
30-025- 40914	DECKARD FEE 001H	COG OPERATING LLC	OIL		PRODUCING	VERTICAL	10997	No
30-025- 40914	DECKARD FEE 001H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11034	No
30-025- 41382	DECKARD FEDERAL COM 002H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11067	Yes
30-025- 41383	DECKARD FEDERAL COM 003H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11162	Yes
30-025- 41384	DECKARD FEDERAL COM 004H	COG OPERATING LLC	OIL	3RD BONE SPRING	PRODUCING	HORIZONTAL	11103	Yes
30-025- 41666	SEBASTIAN FEDERAL COM 002H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10927	Yes
30-025- 41687	SEBASTIAN FEDERAL COM 001H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10944	Yes
30-025- 41688	SEBASTIAN FEDERAL COM 003H	COG OPERATING LLC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11055	No
30-025- 43532	LEO THORSNESS 13 24 33 211H	MATADOR PRODUCTION COMPANY	GAS	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12371	No
30-025- 44442	STRONG 14 24 33 AR 214H	MATADOR PRODUCTION COMPANY	GAS	WOLFCAMP A LOWER	PRODUCING	HORIZONTAL	12500	No
30-025- 46154	LEO THORSNESS 13 24 33 221H	MATADOR PRODUCTION COMPANY	OIL	WOLFCAMP B UPPER	PRODUCING	HORIZONTAL	12868	No

30-025- 46282	LEO THORSNESS 13 24 33 AR 135H	MATADOR PRODUCTION COMPANY	OIL	3RD BONE SPRING SAND	PRODUCING	HORIZONTAL	12103	No
30-025- 46517	BROADSIDE 13 W FEDERAL COM 001H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12213	No
30-025- 46518	BROADSIDE 13 24 FEDERAL COM 002H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 46519	BROADSIDE 13 24 FEDERAL COM 003H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP A LOWER	PRODUCING	HORIZONTAL	12320	Yes
30-025- 46985	SEBASTIAN FEDERAL COM 703H	COG OPERATING LLC	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12123	No
30-025- 46986	SEBASTIAN FEDERAL COM 602H	COG OPERATING LLC	OIL	3RD BONE SPRING	PERMIT EXPIRED	HORIZONTAL	11661	No
30-025- 46988	SEBASTIAN FEDERAL COM 704H	COG OPERATING LLC	OIL	WOLFCAMP A UPPER	PRODUCING	HORIZONTAL	12142	No
30-025- 47476	NED PEPPER 18 TB FEDERAL COM 001H	MARATHON OIL PERMIAN LLC	OIL		PERMIT EXPIRED	HORIZONTAL	0	Yes
30-025- 47477	NED PEPPER 18 TB FEDERAL COM 004H	MARATHON OIL PERMIAN LLC	OIL		PERMIT EXPIRED	HORIZONTAL	0	Yes
30-025- 47478	NED PEPPER 18 WA FEDERAL COM 002H	MARATHON OIL PERMIAN LLC	OIL	WOLFCAMP B UPPER	PERMIT EXPIRED	HORIZONTAL	12641	Yes
30-025- 47479	NED PEPPER 18 WA FEDERAL COM 009H	MARATHON OIL PERMIAN LLC	OIL	WOLFCAMP B UPPER	PERMIT EXPIRED	HORIZONTAL	12552	Yes
30-025- 47480	NED PEPPER 18 WXY FEDERAL COM 006H	MARATHON OIL PERMIAN LLC	OIL	WOLFCAMP A LOWER	PERMIT EXPIRED	HORIZONTAL	12485	Yes
30-025- 47869	JUPITER 19 FEDERAL COM 501H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11175	Yes
30-025- 47870	JUPITER 19 FEDERAL COM 502H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11141	Yes
30-025- 47870	JUPITER 19 FEDERAL COM 502H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11141	Yes
30-025- 47871	JUPITER 19 FEDERAL COM 503H	EOG RESOURCES INC	OIL	3RD BONE SPRING	PERMIT EXPIRED	HORIZONTAL	11368	Yes
30-025- 47872	JUPITER 19 FEDERAL COM 403H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PRODUCING	HORIZONTAL	10584	No
30-025- 47872	JUPITER 19 FEDERAL COM 403H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PRODUCING	HORIZONTAL	10584	No
30-025- 47873	JUPITER 19 FEDERAL COM 309H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10250	No
30-025- 47873	JUPITER 19 FEDERAL COM 309H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10250	No
30-025- 47874	JUPITER 19 FEDERAL COM 506H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	10950	No

30-025- 47875	JUPITER 19 FEDERAL COM 507H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11150	No
30-025- 47875	JUPITER 19 FEDERAL COM 507H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11150	No
30-025- 47876	JUPITER 19 FEDERAL COM 508H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11143	No
30-025- 47876	JUPITER 19 FEDERAL COM 508H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11143	No
30-025- 47877	JUPITER 19 FEDERAL COM 509H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11156	No
30-025- 47878	JUPITER 19 FEDERAL COM 510H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PRODUCING	HORIZONTAL	11102	No
30-025- 47908	JUPITER 19 FEDERAL COM 601H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 47910	JUPITER 19 FEDERAL COM 702H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	DUC	HORIZONTAL	0	Yes
30-025- 47911	JUPITER 19 FEDERAL COM 705H	EOG RESOURCES INC	OIL	WOLFCAMP A LOWER	PERMITTED	HORIZONTAL	12290	No
30-025- 47912	JUPITER 19 FEDERAL COM 707H	EOG RESOURCES INC	OIL	WOLFCAMP B UPPER	PERMITTED	HORIZONTAL	12515	No
30-025- 47913	JUPITER 19 FEDERAL COM 708H	EOG RESOURCES INC	OIL	WOLFCAMP A LOWER	PERMITTED	HORIZONTAL	12477	No
30-025- 48056	JUPITER 19 FEDERAL COM 602H	EOG RESOURCES INC	OIL		PERMIT EXPIRED	HORIZONTAL	0	Yes
30-025- 48057	JUPITER 19 FEDERAL COM 603H	EOG RESOURCES INC	OIL		PERMIT EXPIRED	HORIZONTAL	0	No
30-025- 48058	JUPITER 19 FEDERAL COM 604H	EOG RESOURCES INC	OIL		PERMIT EXPIRED	HORIZONTAL	0	No
30-025- 48059	JUPITER 19 FEDERAL COM 704H	EOG RESOURCES INC	OIL	WOLFCAMP A LOWER	PERMIT EXPIRED	HORIZONTAL	12310	No
30-025- 48060	JUPITER 19 FEDERAL COM 706H	EOG RESOURCES INC	OIL	WOLFCAMP A LOWER	PERMIT EXPIRED	HORIZONTAL	12308	No
30-025- 48224	JUPITER 19 FEDERAL COM 201H	EOG RESOURCES INC	OIL	LOWER AVALON	PERMIT EXPIRED	HORIZONTAL	9982	Yes
30-025- 48225	JUPITER 19 FEDERAL COM 202H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PERMIT EXPIRED	HORIZONTAL	10762	Yes
30-025- 48226	JUPITER 19 FEDERAL COM 203H	EOG RESOURCES INC	OIL	LOWER AVALON	PERMIT EXPIRED	HORIZONTAL	10079	Yes
30-025- 48227	JUPITER 19 FEDERAL COM 204H	EOG RESOURCES INC	OIL	LOWER AVALON	PERMIT EXPIRED	HORIZONTAL	9984	Yes
30-025- 48228	JUPITER 19 FEDERAL COM 205H	EOG RESOURCES INC	OIL	LOWER AVALON	PERMIT EXPIRED	HORIZONTAL	10023	Yes

30-025- 48229	JUPITER 19 FEDERAL COM 206H	EOG RESOURCES INC	OIL	LOWER AVALON	PERMIT EXPIRED	HORIZONTAL	10100	Yes
30-025- 48230	JUPITER 19 FEDERAL COM 207H	EOG RESOURCES INC	OIL	LOWER AVALON	PERMIT EXPIRED	HORIZONTAL	9949	No
30-025- 48231	JUPITER 19 FEDERAL COM 208H	EOG RESOURCES INC	OIL	MIDDLE AVALON	PERMIT EXPIRED	HORIZONTAL	9882	No
30-025- 48232	JUPITER 19 FEDERAL COM 209H	EOG RESOURCES INC	OIL	MIDDLE AVALON	PERMIT EXPIRED	HORIZONTAL	9881	No
30-025- 48233	JUPITER 19 FEDERAL COM 210H	EOG RESOURCES INC	OIL	MIDDLE AVALON	PERMIT EXPIRED	HORIZONTAL	9886	No
30-025- 48234	JUPITER 19 FEDERAL COM 301H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PERMIT EXPIRED	HORIZONTAL	10675	Yes
30-025- 48235	JUPITER 19 FEDERAL COM 302H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PERMIT EXPIRED	HORIZONTAL	10724	Yes
30-025- 48236	JUPITER 19 FEDERAL COM 303H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PERMIT EXPIRED	HORIZONTAL	10675	Yes
30-025- 48237	JUPITER 19 FEDERAL COM 304H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PERMIT EXPIRED	HORIZONTAL	10716	Yes
30-025- 48238	JUPITER 19 FEDERAL COM 305H	EOG RESOURCES INC	OIL	2ND BONE SPRING	PERMIT EXPIRED	HORIZONTAL	10582	No
30-025- 48239	JUPITER 19 FEDERAL COM 306H	EOG RESOURCES INC	OIL	1ST BONE SPRING	PRODUCING	HORIZONTAL	10270	No
30-025- 48889	JUPITER 19 FEDERAL COM 701H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 48890	JUPITER 19 FEDERAL COM 703H	EOG RESOURCES INC	OIL	2ND BONE SPRING SAND	PERMITTED	HORIZONTAL	0	Yes
30-025- 49262	BROADSIDE 13 24 FEDERAL COM 004H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP B UPPER	PRODUCING	HORIZONTAL	12531	Yes
30-025- 49263	BROADSIDE 13 24 FEDERAL COM 015H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	WOLFCAMP B LOWER	PRODUCING	HORIZONTAL	12746	Yes
30-025- 49264	BROADSIDE 13 24 FEDERAL COM 025H	DEVON ENERGY PRODUCTION COMPANY, LP	OIL	3RD BONE SPRING	PRODUCING	HORIZONTAL	11210	Yes
30-025- 49474	RED HILLS AGI 002	TARGA NORTHERN DELAWARE, LLC.	INJECTOR	DELAWARE VERTICAL	Temporarily Abandoned	VERTICAL	17600	Yes
Appendix 5 References

Application for Authorization to Inject via Proposed Red Hills AGI #1 Well, Agave Energy Red Hills Gas Plant, Lea County, New Mexico; July 20, 2011; prepared by Geolex, Inc. for Agave Energy Company

Application for a Redundant Class II AGI Well, Lucid Energy Delaware, LLC; Red Hills AGI #2; August 8, 2019, prepared by Geolex, Inc. for Lucid Energy Delaware, LLC

Case No. 20779, Notice Regarding Hearing Exhibits, Application of Lucid Energy Delaware, LLC for Authorization to Inject, Lea County, New Mexico

Madalyn S. Blondes, Kathleen D. Gans, James J. Thordsen, Mark E. Reidy, Burt Thomas, Mark A. Engle, Yousif K. Kharaka, and Elizabeth L. Rowan, 2014. U.S. Geological Survey National Produced Waters Geochemical Database v2.1,

http://energy.usgs.gov/EnvironmentalAspects/EnvironmentalAspectsofEnergyProductionandUse/ProducedWaters. aspx

Boyle, T.B., Carroll, J.J., 2002. Study determines best methods for calculating acid-gas density. *Oil and Gas Journal* 100 (2): 45-53.

H₂S Contingency Plan, Targa Northern Delaware, August 2023, Red Hills Gas Processing Plant, Lea County, NM

Lambert, S.J., 1992. Geochemistry of the Waste Isolation Pilot Plant (WIPP) site, southeastern New Mexico, U.S.A. *Applied Geochemistry* 7: 513-531.

Luo, Ming; Baker, Mark R.; and LeMone, David V.; 1994, *Distribution and Generation of the Overpressure System, Eastern Delaware Basin, Western Texas and Southern New Mexico*, AAPG Bulletin, V.78, No. 9 (September 1994) p. 1386-1405.

Nicholson, A., Jr., Clebsch, A., Jr., 1961. *Geology and ground-water conditions in southern Lea County, New Mexico*. New Mexico Bureau of Mines and Mineral Resources, Ground-Water Report 6, 123 pp., 2 Plates.

Powers, D.W., Lambert, S. J., Shafer, S., Hill, L. R. and Weart, W. D., 1978., *Geological Characteristic Report, Waste Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico (SAND78-1596)*, Department 4510, Waste Management Technology, Sandia Laboratories, Albuquerque, New Mexico

Silver, B.A., Todd, R.G., 1969. Permian cyclic strata, northern Midland and Delaware Basins, west Texas and southeastern New Mexico, *The American Association of Petroleum Geologists Bulletin* 53: 2223-2251.

Walsh, R., Zoback, M.D., Pasi, D., Weingarten, M. and Tyrrell, T., 2017, FSP 1.0: A Program for Probabilistic Estimation of Fault Slip Potential Resulting from Fluid Injection, User Guide from the Stanford Center for Induced and Triggered Seismicity, available from SCITS.Stanford.edu/software

Ward, R.F., Kendall, C.G.St.C., Harris, P.M., 1986. Upper Permian (Guadalupian) facies and their association with hydrocarbons – Permian Basin, west Texas and New Mexico. *The American Association of Petroleum Geologists Bulletin* 70: 239-262

Appendix 6 Abbreviations and Acronyms

3D - 3 dimensional AGA – American Gas Association AMA – Active Monitoring Area AoR – Area of Review **API – American Petroleum Institute** CFR - Code of Federal Regulations C1 – methane C6 – hexane C7 - heptane CO₂ – carbon dioxide DCS - distributed control system EPA – US Environmental Protection Agency, also USEPA ft – foot (feet) GHGRP – Greenhouse Gas Reporting Program GPA – Gas Producers Association m - meter(s)md – millidarcy(ies) mg/I – milligrams per liter MIT – mechanical integrity test MMA – maximum monitoring area MSCFD- thousand standard cubic feet per day MMSCFD - million standard cubic feet per day MMstb - million stock tank barrels MRRW B – Morrow B MRV – Monitoring, Reporting, and Verification MT -- Metric tonne NIST - National Institute of Standards and Technology NMOCC - New Mexico Oil Conservation Commission NMOCD - New Mexico Oil Conservation Division PPM – Parts Per Million psia – pounds per square inch absolute QA/QC – quality assurance/quality control SCITS - Stanford Center for Induced and Triggered Seismicity Stb/d – stock tank barrel per day TAG – Treated Acid Gas TDS – Total Dissolved Solids TVD – True Vertical Depth **TVDSS** – True Vertical Depth Subsea UIC – Underground Injection Control USDW - Underground Source of Drinking Water

	Subpart RR Equation	Description of Calculations and Measurements [*]	Pipeline	Containers	Comments
	RR-1	calculation of CO ₂ received and measurement of CO ₂ mass	through mass flow meter.	in containers. **	
CO ₂ Received	RR-2	calculation of CO_2 received and measurement of CO_2 volume	through volumetric flow meter.	in containers. ***	
	RR-3	summation of CO ₂ mass received	through multiple meters.		
	RR-4	calculation of CO ₂ mass injected, mea			
CO ₂ Injected	RR-5	calculation of CO ₂ mass injected, mea			
	RR-6	RR-6 summation of CO_2 mass injected, as calculated in Equations RR-4 and/or RR-5.			
	RR-7	calculation of CO ₂ mass produced / r mass flow meters.			
CO ₂ Produced / Recycled	RR-8	calculation of CO ₂ mass produced / revolumetric flow meters.			
	RR-9	summation of CO ₂ mass produced / r in Equations RR-7 and/or RR8.			
CO ₂ Lost to Leakage to the Surface	RR-10	calculation of annual CO ₂ mass emitt			
CO₂ Sequestered	RR-11	calculation of annual CO ₂ mass seque any other fluid; includes terms for CC emitted from surface equipment bet emitted from surface equipment bet	Calculation procedures are provided in Subpart W of GHGRP for CO _{2FI} .		
	RR-12	calculation of annual CO ₂ mass seque or any other fluid; includes terms for from surface equipment between inj	Calculation procedures are provided in Subpart W of GHGRP for CO _{2FI} .		

Appendix 7 TND Red Hills AGI Wells - Subpart RR Equations for Calculating CO₂ Geologic Sequestration

* All measurements must be made in accordance with 40 CFR 98.444 – Monitoring and QA/QC Requirements.

** If you measure the mass of contents of containers summed quarterly using weigh bill, scales, or load cells (40 CFR 98.444(a)(2)(i)), use RR-1 for Containers to calculate CO₂ received in containers for injection.

*** If you determine the volume of contents of containers summed quarterly (40 CFR 98.444(a)(2)(ii)), use RR-2 for Containers to calculate CO₂ received in containers for injection.

Appendix 8 Subpart RR Equations for Calculating Annual Mass of CO₂ Sequestered

RR-1 for Calculating Mass of CO₂ Received through Pipeline Mass Flow Meters

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * C_{CO_{2,p,r}}$$
(Equation RR-1 for Pipelines)

where:

 $CO_{2T,r}$ = Net annual mass of CO₂ received through flow meter r (metric tons).

- $Q_{r,p}$ = Quarterly mass flow through a receiving flow meter r in quarter p (metric tons).
- $S_{r,p}$ = Quarterly mass flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (metric tons).
- $C_{CO_{2,p,r}}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (wt. percent CO₂, expressed as a decimal fraction).
- p =Quarter of the year.

r = Receiving mass flow meter.

RR-1 for Calculating Mass of CO₂ Received in Containers by Measuring Mass in Container

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * C_{CO_{2,p,r}}$$

(Equation RR-1 for Containers)

where:

 $CO_{2T,r}$ = Net annual mass of CO₂ received in containers r (metric tons).

 $Q_{r,p}$ = Quarterly mass of contents in containers r in quarter p (metric tons).

- $S_{r,p}$ = Quarterly mass of contents in containers r redelivered to another facility without being injected into your well in quarter p (metric tons).
- $C_{CO_{2,p,r}}$ = Quarterly CO₂ concentration measurement of contents in containers r in quarter p (wt. percent CO₂, expressed as a decimal fraction).

p = Quarter of the year.

r = Containers.

RR-2 for Calculating Mass of CO₂ Received through Pipeline Volumetric Flow Meters

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$

(Equation RR-2 for Pipelines)

where:

 $CO_{2T,r}$ = Net annual mass of CO₂ received through flow meter r (metric tons).

- $Q_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r in quarter p at standard conditions (standard cubic meters).
- $S_{r,p}$ = Quarterly volumetric flow through a receiving flow meter r that is redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO_{2,p,r}}$ = Quarterly CO₂ concentration measurement in flow for flow meter r in quarter p (vol. percent CO₂, expressed as a decimal fraction).

p = Quarter of the year.

r = Receiving volumetric flow meter.

RR-2 for Calculating Mass of CO₂ Received in Containers by Measuring Volume in Container

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$
(Equation RR-2 for Containers)

where:

 $CO_{2T,r}$ = Net annual mass of CO₂ received in containers r (metric tons).

- $Q_{r,p}$ = Quarterly volume of contents in containers r in quarter p at standard conditions (standard cubic meters).
- $S_{r,p}$ = Quarterly volume of contents in containers r redelivered to another facility without being injected into your well in quarter p (standard cubic meters).
- D = Density of CO₂ received in containers at standard conditions (metric tons per standard cubic meter): 0.0018682.

 $C_{CO_{2,p,r}}$ = Quarterly CO₂ concentration measurement of contents in containers r in quarter p (vol. percent CO₂, expressed as a decimal fraction).

p =Quarter of the year.

r = Container.

RR-3 for Summation of Mass of CO2 Received through Multiple Flow Meters for Pipelines

$$CO_2 = \sum_{r=1}^{R} CO_{2T,r}$$
 (Equation RR-3 for Pipelines)

where:

 CO_2 = Total net annual mass of CO_2 received (metric tons).

CO_{2,T.r} = Net annual mass of CO₂ received (metric tons) as calculated in Equation RR-1 or RR-2 for flow meter r.

r = Receiving flow meter.

RR-4 for Calculating Mass of CO₂ Injected through Mass Flow Meters into Injection Well

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * C_{CO_{2,p,u}}$$
 (Equation RR-4)

where:

 $CO_{2,u}$ = Annual CO₂ mass injected (metric tons) as measured by flow meter u.

 $Q_{p,u}$ = Quarterly mass flow rate measurement for flow meter u in quarter p (metric tons per quarter).

 $C_{CO_{2,p,u}}$ = Quarterly CO₂ concentration measurement in flow for flow meter u in quarter p (wt. percent CO₂, expressed as a decimal fraction).

- *p* = Quarter of the year.
- *u* = Mass flow meter.

RR-5 for Calculating Mass of CO₂ Injected through Volumetric Flow Meters into Injection Well

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$
 (Equation RR-5)

where:

 $CO_{2,u}$ = Annual CO₂ mass injected (metric tons) as measured by flow meter u.

 $Q_{p,u}$ = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter).

D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682.

 $C_{CO_{2,p,u}} = CO_2$ concentration measurement in flow for flow meter u in quarter p (vol. percent CO₂, expressed as a decimal fraction).

- p = Quarter of the year.
- *u* = Volumetric flow meter.

RR-6 for Summation of Mass of CO₂ Injected into Multiple Wells

$$CO_{2I} = \sum_{u=1}^{U} CO_{2,u}$$
 (Equation RR-6)

where:

 CO_{21} = Total annual CO₂ mass injected (metric tons) though all injection wells.

 $CO_{2,u}$ = Annual CO₂ mass injected (metric tons) as calculated in Equation RR-4 or RR-5 for flow meter u.

u = Flow meter.

RR-7 for Calculating Mass of CO₂ Produced / Recycled from a Gas-Liquid Separator through Mass Flow Meters

$$CO_{2,w} = \sum_{p=1}^{4} Q_{p,w} * C_{CO_{2,p,w}}$$
 (Equation RR-7)

where:

 $CO_{2,w}$ = Annual CO₂ mass produced (metric tons) through separator w.

 $Q_{p,w}$ = Quarterly gas mass flow rate measurement for separator w in quarter p (metric tons).

- $C_{CO_{2,p,w}}$ = Quarterly CO₂ concentration measurement in flow for separator w in quarter p (wt. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- w = Gas / Liquid Separator.

RR-8 for Calculating Mass of CO₂ Produced / Recycled from a Gas-Liquid Separator through Volumetric Flow Meters

$$CO_{2,w} = \sum_{p=1}^{4} Q_{p,w} * D * C_{CO_{2,p,w}}$$

(Equation RR-8)

where:

 $CO_{2,w}$ = Annual CO₂ mass produced (metric tons) through separator w.

- $Q_{p,w}$ = Quarterly gas volumetric flow rate measurement for separator w in quarter p (standard cubic meters).
- D = Density of CO_2 at standard conditions (metric tons per standard cubic meter): 0.0018682.
- $C_{CO_{2,p,w}}$ = Quarterly CO₂ concentration measurement in flow for separator w in quarter p (vol. percent CO₂, expressed as a decimal fraction).
- p = Quarter of the year.
- *w* = Gas / Liquid Separator.

RR-9 for Summation of Mass of CO₂ Produced / Recycled through Multiple Gas Liquid Separators

$$CO_{2P} = (1 + X) * \sum_{w=1}^{W} CO_{2,w}$$

where:

- CO_{2P} = Total annual CO₂ mass produced (metric tons) though all separators in the reporting year.
- Entrained CO₂ in produced oil or other liquid divided by the CO₂ separated through all separators in the reporting year (wt. percent CO₂ expressed as a decimal fraction).
- $CO_{2,w}$ = Annual CO₂ mass produced (metric tons) through separator w in the reporting year as calculated in Equation RR-7 or RR-8.
- *w* = Flow meter.

RR-10 for Calculating Annual Mass of CO₂ Emitted by Surface Leakage

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$
 (Equation RR-10)

where:

 CO_{2E} = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year.

 $CO_{2,x}$ = Annual CO₂ mass emitted (metric tons) at leakage pathway x in the reporting year.

(Equation RR-9)

RR-11 for Calculating Annual Mass of CO₂ Sequestered for Operators Actively Producing Oil or Natural Gas or Any Other Fluid

$$CO_2 = CO_{2I} - CO_{2P} - CO_{2E} - CO_{2FI} - CO_{2FP}$$
 (Equation RR-11)

Where:

- *CO*₂ = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CO_{2I} = Total annual CO₂ mass injected (metric tons) in the well or group of wells in the reporting year.
- CO_{2P} = Total annual CO₂ mass produced (metric tons) in the reporting year.
- CO_{2E} = Total annual CO₂ mass emitted (metric tons) by surface leakage in the reporting year.
- CO_{2FI} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of the GHGRP.
- CO_{2FP} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the production wellhead and the flow meter used to measure production quantity, for which a calculation procedure is provided in subpart W of the GHGRP.

RR-12 for Calculating Annual Mass of CO₂ Sequestered for Operators NOT Actively Producing Oil or Natural Gas or Any Other Fluid

$$CO_2 = CO_{2I} - CO_{2E} - CO_{2FI}$$
 (Equation RR-12)

- CO₂ = Total annual CO₂ mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- CO_{2I} = Total annual CO₂ mass injected (metric tons) in the well or group of wells in the reporting year.
- CO_{2E} = Total annual CO₂ mass emitted (metric tons) by surface leakage in the reporting year.
- CO_{2FI} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of the GHGRP.

Appendix 9 P&A Records

Form 3160-5 April 2004) ,	UNITED STATES	s Ho	bbs, NM 88240	ve.	FORM APPROVED
•	JEPARTMENT OF THE BUREAU OF LAND MAN	INTERIOR		5 1	Expires: March 31, 2007
SUNDRY	NOTICES AND REI	PORTS ON	WELLS	5. Lease Sen	NM-17446
Do not use ti abandoned w	his form for proposals t ell. Use Form 3160-3 ()	o drill or to APD) for suc	re-enter an h proposais.	6. If Indian	Allottee or Tribe Name
SUBMIT IN TR	IPLICATE- Other inst	ructions on i	reverse side.	7. If Unit o	CA/Agreement, Name and/or N
1. Type of Well Oil Well	Gas Well Other		e 1		
2. Name of Operator FOC Pro-		· · · · · · · · · · · · · · · · · · ·		8. Well Na G	ne and No. overnment "L" Com #1
a Address	ources, Inc	3b Phone No.	(includa man code)	9. API We	11 No. 30-025-0
P.O. Box 2267, M	432-561-86	10	10. Field an	d Pool, or Exploratory Area	
4. Location of Well (Footage, Sec., T., R., M., or Survey Description)					ell Lake, South Morrow
Unit Letter G, 1980 FNL, 1 Section 18, Township 24-S,	980 FEL Range 34-E			11. County	Lea. New Mexico
12. CHECK A	PPROPRIATE BOX(ES) TO	INDICATE N	ATURE OF NOTIOF	REPORT OF	OTHER DATA
TYPE OF SUBMISSION			TYPE OF ACTION		
	Acidize	Deepen	Production (S	Start/Resume)	Water Shut-Off
Notice of Intent	Alter Casing	Fracture Trea	t Reclamation		Well Integrity
Subsequent Report	Casing Repair	New Constru			Other
Final Abandonment Notice	Convert to Injection	Plug and Aba	indon Temporarily . Water Dispos	Abandon al	<u></u>
testing has been completed. Fi determined that the site is read	nal Abandonment Notices shall be y for final inspection.)	filed only after all	requirements, including recla	in in a new interva	I, a Form 3160-4 shall be filed or n completed, and the operator has
					APPROVE
 Notified Jim McCorn Cut 3 1/2 the ot 1150 	tick w/BLM 24 hrs prior to Mi	I and RU.			
3. Circ hole w/MLF.	o, spor 50sx CLass "H" cmt, p	lug from 11500-	11400, WOC Tag at 1138	89 .	14.11 4
 Perf 4 holes at 9050, p Perf 4 holes at 7000, p 	ress up to 2000 PSI, spot 75sx, press up to 2000 PSI, spot 75sx	, plug from 9100 plug from 7050	-8950, WOC Tag @ 8938	B.	JAN 472005
6. Cut 10 3/4" csg at 54	i0, L/D csg, spot 150sx, plug fr	om 5500-5350, \	WOC Tag at 5336.		Ű.
8. Spot 150sx, plug from	1500-1200 (1-Salt) WOC Tag 1 650-450 (20" Shoe) WOC Tag	at 1143. g at 423.		<u></u>	GARY GOURTEN
9. Spot 20sx, plug from 10. Clean location. Insta	30-Surf. li dry hole marker 12-30-04.				APPROVE
		P&A Complete	. 12-30-04		-
				C	JAN 4 2005
				/	GARY GOURLEY
 14. I hereby certify that the fore Name (Printed/Typed) 	going is true and correct			1	·도가정()) 도니에서 사고 드는
14. Thereby certify that the fore Name (Prinied/Typed) Jimpr Bagley	going is true and correct		itle	Consultant	ETROLEUM ENGINE
14. Thereby certify that the for Name (Printed/Typed) Jimpry Bagtey Signature	going is true and correct	T	itle Date	Consultant	ETROLEUM ENGINEI
14. Thereby certify that the fore Name (Printed/Typed) JimpryBagley Signature	egoing is true and correct	T FEDERAL C	itle Date DR STATE OFFIC	Consultant 12/30/2004 E USE	E I KOLEUM ENGINEI
14. I hereby certify that the for Name (Printed/Typed) Jimpr Bagley Signature	egoing is true and correct	T I FEDERAL C	itle Date DR STATE OFFIC	Consultant 12/30/2004 E USE	
14. I hereby certify that the for Name (Printed/Typed) Jimper Bagley Signature	egoing is true and correct	T FEDERAL (itte Date DR STATE OFFIC	Consultant 12/30/2004 E USE	Ate
14. Thereby certify that the for Name (Printed/Typed) Jimprf Bagley Signature Approved by Conditions of approval, if any, are certify that the applicant holds lega which would entitle the applicant to	egoing is true and correct	T FEDERAL C does not warrant of the subject lease	itte Date Titte Titte Office	Consultant 12/30/2004 E USE	Atte

P&A Record for Government Com 001, API #30-025-25604

GWW 2

P&A Records for API #30-025-26958

Submit I Copy To Appropriate District Office	State of New Me	exico	Form C-103
District I – (575) 393-6161 1625 N. French Dr., Hobbs, NM 88240 District II., (575) 748-1283	Energy, Minerals and Natu	iral Resources	WELL API NO.
811 S First St, Artesia, NM 88210 REC	SERVED SERVATION	DIVISION	5. Indicate Type of Lease
District III – (505) 334-6178 1000 Rio Brazos Rd , Aztec, NM 87410	1220 South St. Fran	ncis Dr.	STATE FEE
District IV - (505) 476-3460 AUG 1220 S St Francis Dr , Santa Fe, NM 87505	16 2012 Santa Fe, NM 87	/505	6. State Oil & Gas Lease No. SCR-389
SUNDRY NOTICE SUNDRY NOTICE (DO NOT USE THIS FORM FOR PROPOSAL DIFFERENT RESERVOIR USE "APPL	S AND REPORTS ON WELLS S TO DRILL OR TO DEEPEN OR PLI ICATION FOR PERMIT" (FORM C-10	UG BACK TO A DI) FOR SUCH	7. Lease Name or Unit Agreement Name Sims
PROPOSALS)	s Well 🔀 Other		8. Well Number #1
2. Name of Operator: Agave Energy (Company		9. OGRID Number
3. Address of Operator			14/831 10. Pool name or Wildcat
104 S. Fourth St., Artesia NM 88210 (575-748-4528)		Big Sinks Wolfcamp
4. Well Location			<u>د</u> د
Unit LetterK:	_1980_feet from theN	line and	800feet from theEline
Section 13	Township 24S	Range 33E	NMPM Lea County
174 - 18	T. Elevation (Snow whether DR,	KKB, KI, GK, elc.	
12. Check App	propriate Box to Indicate N	ature of Notice,	Report or Other Data
		REMEDIAL WOR	
TEMPORARILY ABANDON		COMMENCE DRI	
		CASING/CEMEN	Т ЈОВ 🗍
OTHER:			plug to cement off Cherry Canyon per
13. Describe proposed or complete	d operations. (Clearly state all p	pertinent details, and	d give pertinent dates, including estimated date
proposed completion or recom	oletion	. For Multiple Co	inpietions. Attach wendore diagram of
The remediation of the Sims #1 we	I pursuant to NMOCC order wa	s completed on Aug	gust 15, 2011 and all equipment has been
demobilized. The plugging wa	s done pursuant to NMOCD req	uirements and all a	spects of the effort were reported to Mark
nlugging diagram When estab	the OCD District 1 office who a dishing a rate prior to squeezing	the Cherry Canyon	it is clear that the reservoir is an excellent
reservoir as it was taking 3bbl/	min on vacuum. This indicates	that the predicted in	jection plume for the Red Hills AGI #1 in this
reservoir will be smaller than a	nticipated and the reservoir con-	ditions act to prever	it migration of injected acid gas out of the
Intended and permitted injection the Sims#1 Please see attache	n zone by any nearby wellbores d wellbore sketch for plugging (including the Govt letails of all plugs s	#2, Govt#1 and Smith Federal #1 in addition to et and amounts of cement squeezed for each
plug.	a nemotic sketch for pragging c	iotano or an prago o	et and amounts of comon squeezed for each
· · · · ·			· · · · · · · · · · · ·
I hereby certify that the information abo	ve is true and complete to the be	est of my knowledg	e and belief.
SIGNATURE_	TITLE_ Cons	ultant to Agave En	ergy Company _DATE August 16, 2012
Type or print nameAlberto A. Gutie	errez, RG E-mail address:	aag@geolex.com	PHONE:505-842-8000
For State Use Only			·
APPROVED BY	THE. N	st noz	- DATE 8-16-2017
Conditions of Approval (if any):			1.6 /012
			AUG

8/16/2012

P&A Records for API 30-025-08371

i stationer de la companya de		N N	EW MEXI	CO OIL C	ONSERV	ATION O		М	FORM C-103
1 (c)	3 A A A A A A A A A A A A A A A A A A A	(Submi	MISCEL	LANEOU	S REPC)RTS 01	N WELLS	1706)	(Rev 3-55)
Name of Company	, Byard	Bennett	A	Addre	ss 20	7 West 1	Third, Rosw	vell, t	New Mexico
Lease	Hollar	nd	Well No. 1	Unit Letter	Section 13	Township 2	4 South	Range	33 East
Date Work Perform March 8,	med 961	Pool Wildes	ť			iouniy Le	a		
		THIS IS	A REPORT	OF: (Check	appropriat	e block)			
Beginning D	rilling Operations	: [_] Ca:	sing Test an medial Work	nd Cement Jo	b [] Other (E	(xplain):		
Cement P Location	lugs set as fo 5375-542 340-390 Heavy m Job perfo Prior vert will be clear	llows: 25 with 15 sc with 20 sack ud (4 cc with ormed and with bal approval ned and leve	icks, 517 is, 5 sact ir. loss) itnessed k of plugg led as sc	5-5240 w ks and ma between by Mr. Pa jing progra	ith 20 s irker pip all cem bol, Poo am from ctical.	acks, 13 ent set at ent plug I Drlg C Mr. Eng	875–1425 w surface. s. o. gbrecht, Ne	ith 20 w Me	sacks, xico O.C.C.
Witnessed by	Mr. Fred	Pag	Position	~		ompany			
		1001		Owner		Po	ool Drlg Co	o.	
		FILL IN BEI	DW FOR F	Owner REMEDIAL	WORK RE	PORTS OF	ool Drlg Co NLY	o.	
DF Elev.	T D	FILL IN BEI	OW FOR	Owner REMEDIAL INAL WELL	WORK RE	PORTS OF	Dol Drlg Co NLY Interval	o. Com	pletion Date
D F Elev. Tubing Diameter	T D	FILL IN BEL	OW FOR F ORIG	Owner REMEDIAL INAL WELL	WORK RE DATA ing Diamet	Ports () Producing Producing	Dol Drlg Co NLY Interval Oil Strir	Com I Com	pletion Date
D F Elev. Tubing Dismeter Perforsted Intervi	T D	FILL IN BEI	OW FOR F ORIG	Owner REMEDIAL INAL HELL Oit Sir	WORK RE DATA	PORTS () Producing er	Dol Drlg Co NLY Interval Oil Strir	Cons	pletion Date
D F Elev, Tubing Diameter Perforated Intervi Open Hole Intervi	T D el(s)	FILL IN BEI	OW FOR F ORIG	Owner REMEDIAL INAL WELL Oil Str Disolat	WORK RE DATA ing Diamet	Ports 0/ Producing er ion(s)	ool Drlg Co NLY Interval Oil Strir	Com I Com	pletion Date
D F Elev. Tubing Diameter Perforated Intervi Open Hole Intervi	T () e l(s)	FILL IN BEI	OW FOR F ORIG	Owner REMEDIAL INAL WELL Off Str Drotter TS OF WOR	WORK RE DATA ing Diamet ing Format KOVER	PC PORTS 0/ Producing er ion(s)	ool Drlg Co NLY Interval Oil Strir	Com I Com 1g Depth	pletion Date
D F Elev. Tubing Diameter Perforated Intervi Open Hole Intervi Test	TD al(s) al Date of Tes:	FILL IN BEI Tubing Depth Tubing Depth	RESUL	Owner REMEDIAL INAL WELL O Oil Sir Protector TS OF WOR	ing Diamet KOVER	Producing er ion(s)	ODI Drlg Co NLY Interval OII Strir GOR Cubic teet	Com Ig Depth Bbl	pletion Date Gas Well Potential MC F P D
D F Elev. Tubing Diameter Perforated Intervi Open Hole Intervi Test Before Workover	TD al(s) al Date of Tes:	FILL IN BEI Tubing Depth Tubing Depth	RESUL	Owner REMEDIAL INAL WELL Oil Str Diolator TS OF WOR CEPED	WORK RE DATA ing Diamet ing Format KOVER	Producing Producing er ion(s) oduction	OI Drlg Co NLY Interval Oil Strir GOR Cubi. teet	Com Ig Depth Bbl	Detion Date Date Gas Well Potential MCEPD
D F Elev. Tubing Diameter Perforated Intervi Open Hole Intervi Tesr Before Workover After Workover	T D al(s) al Date of Tes:	FILL IN BEI Tubing Depth Tubing Depth	RESUL	Owner REMEDIAL INAL WELL O Off Str Droduc TS OF WCR Production C 5 2 D	WORK RE DATA ing Diamet ing Format KOVER	PC PORTS () Producing er ion(s) er	OI Drlg Co NLY Interval Oil Strir GOR Cubic tee:	Com Ig Depth Bbl	pletion Date Gas Well Potential MCEPD
D F Elev. Tubing Diameter Perforated Intervi Open Hole Intervi Test Before Workover After Workover	TD pl(s) al Date of Tes: OIL CONSERVAT	FILL IN BEI Tubing Depth Tubing Depth Off Production BPD	RESUL	Owner REMEDIAL INAL WELL OIL Str Diolastron TS OF WOR CEPED	work re DATA ing Diamet ing Format KOVER Water Pi Di U	Producing Producing er ion(s) that the in is knowled	Oil Drig Co NLY Interval Oil Strin Cubic feet	Com Ig Depth Bbl	pletion Date Gas Well Potential MCEPD
D F Elev. Tubing Diameter Perforated Intervi Open Hole Intervi Desr Before Workover After Workover After Workover After Workover	TD Pl(s) al Date of Tes: OIL CONSERVAT Sche. M.	FILL IN BEI Fill IN BEI Tubung Depth Coll Production BPD TON COMMISSION Cleme	RESUL N	Owner REMEDIAL INAL WELL OUT Sur Droduc TS OF WOR Production C 5 (2D)	MORK RE DATA ing Diamet ing Format KOVER Actes How certify the best of m	Producing Producing er ion(s) that the ir is knowled, where the interval of the interval	Oil Drlg Co NLY Interval Oil Strin GOR Cubic tee:	Com ag Depth Bbl	pletion Date pletion Date Gas Well Potential MC F P D is true and complet.