
unit LCRBenefits;

interface

uses Windows, SysUtils, Classes,
 LCRConfig, LCRPWSRecords, LCRCosts, LCRGlobals,
 LCRMetricCollector, LCRResultsFile, SafewaterUncertBucket,
 Math, CodeSiteLogging, Generics.Collections;

type
 TBenType = (btVoluntary, btMandatory, btRequested);

 TLCRBenYears = class
 Year: array [1 .. 150] of double;
 end;

 TLCRBenByYear = class
 fTotYears: integer;
 fOutName: string;
 fBenYears: TObjectDictionary<string, TLCRBenYears>;
 Active: boolean;

 constructor create(aConfig: TLCRConfig; aName: string);
 procedure AddBen(aName: string);
 procedure UpdateBen(Yr: integer; const aName: string; aValue: double);
 procedure SaveResults;
 destructor Destroy; override;
 end;

 TBenRec = record
 C,L,POU,TPOU : double;
 Dummy: double;
 function Total() : double;
 procedure Abs();
 procedure AddValue(const v: double; const cat: Integer); // add to one field
base on cat
 procedure DiscountAndAddValue(const v: double; const cat: Integer; const DR:
double; const Yrs: integer); // add to one field base on cat
 procedure Multiply(const v: double);
 procedure Subtract(const r: TBenRec);
 procedure DivideBy(const v: double);
 procedure CalcAnnual(const DR: double; const r: TBenRec; const Yrs: integer);
 procedure CalcAnnualInPlace(const DR: double; const Yrs: integer);
 procedure AddMetrics(Outputs: TMetricList; Name,Option: string; DR: double;
IsDollar: boolean);
 end;

 TLCRBenefits = class
 private
 fConfig: TLCRConfig;

 fOutputs: TMetricList;
 fDummyProb: double;
 fYearsOfOutput: integer;
 fPWSID: string;
 fLowHigh, fRunVersion: integer;
 fBBYY: TLCRBenByYear;

 dYr, dA, dS: integer;
 bp1, bp2: integer;

 PWSBenefits: double;

 function CorrectBL(const BL: double; const Age, Sex: integer): double;
 function FCVD(const BL1, BL2: double; const Age, Sex: integer): double;
 function FADHD(const BL1, BL2: double): double;
 function FLBW(const BL1, BL2: double): double;
 function FIQLoss(const BL1, BL2: double): double;

 procedure AvgBL(const NewYears,Sex,Age,PBWin,FromBin,ToBin : integer; out
FBL,TBL: double);
 procedure SnapShot;
 procedure SnapDiff;
 public
 DummyProb, BenPop, Ben7, BenA, Ben11, Ben0: double;
 _IQLoss, _IQLossVal: TBenRec;
 _ADHD, _ADHDVal: TBenRec;
 _LBW, _LBWVal: TBenRec;
 _CVD, _CVDVal: TBenRec;

 //used for debugging
 _IQLossB, _IQLossValB: TBenRec;
 _ADHDB, _ADHDValB: TBenRec;
 _LBWB, _LBWValB: TBenRec;
 _CVDB, _CVDValB: TBenRec;

 IQLoss,CVD,ADHD,LBW: double;
 IQLossVal, CVDVal, TotBen, ADHDVal, LBWVal: double;

 // PBBlood by sex,age,bin
 BL: array [1 .. 2, 0 .. 80, 1 .. 32] of double;
 CVDRate: array [1 .. 2, 4 .. 8] of double;
 VSL, IQPointVal, ADHDCaseVal: double;

 FinalBins: array [1 .. 32] of double;
 DoDebugOUt, GotOne: boolean;

 UncertaintyVars: TUncertaintyStudy; // pointer to model level var - must be set

 procedure CalcBinMove(const FromBin, ToBin, Yr: integer; const Pop: double;

const CCT: boolean;
 BenType: TBenType; Proxy: boolean; AdhocDebug: boolean = false);

 constructor create(aConfig: TLCRConfig; aOutputMetrics: TMetricList;
 Uncertainty: TUncertaintyStudy; aOption: string);
 destructor Destroy; override;

 procedure CalcBenefitsNew(const A: TYearlyMovementMicro; const Wgt: double;
 const DoDebug: boolean; const aCosts: TLCRCosts; const P90CCT, P90LSL: array
of double;
 abp1, abp2: integer; SmallSystem: boolean; ProxySystem: boolean; const
OptionName: string);

 end;

 TBenefitsCollector = class
 private
 fConfig: TLCRConfig;
 fOutputs: TMetricList;
 fUncertainty: TUncertaintyStudy;
 fDummyProb: double;
 fLowHigh: integer;

 BenefitsBaseline: TLCRBenefits;
 BenefitsOption: TLCRBenefits;

 bp1, bp2: integer;
 public
 DummyProb, BenPop, Ben7, BenA, Ben11, Ben0: double;
 _IQLoss, _IQLossVal: TBenRec;
 _ADHD, _ADHDVal: TBenRec;
 _LBW, _LBWVal: TBenRec;
 _CVD, _CVDVal: TBenRec;

 IQLoss,CVD,ADHD,LBW: double;
 IQLossVal, CVDVal, TotBen, ADHDVal, LBWVal: double;

 EndingBins, StartingBins, FinalBins, EndingBinsCheck: array [1 .. 32] of double;
 BinMovements: TMovementMicro;

 DoDebugOUt: boolean;
 NewBenBins: boolean;

 procedure GenerateBenefits(aCosts: TLCRCosts; ProxySystem: boolean);
 constructor create(aConfig: TLCRConfig; aOutputMetrics: TMetricList;
 aUncertainty: TUncertaintyStudy);
 destructor Destroy; override;
 end;

implementation

var
 PBF, PBM, PBSens1, PBSens2, PBSens3: string;
 // just squeezing in blood leads for women of child bearing age here,...
 // from 6/23/23 sheet from Meghan
 BLCBA: array [1 .. 32] of double = (
 1.728,1.171,0.735,1.262,
 1.262,1.262,0.959,0.959,
 0.959,0.735,0.735,0.735,
 0.998,0.839,0.735,0.735,
 0.735,0.735,0.735,0.735,
 0.735,0.735,0.735,0.735,
 0.735,0.735,0.735,0.735,
 0.735,0.735,0.735,0.735
);
 // Income change from 1 iq point change in 2016 dollars) - Matt L email 7/29/2020
 IncomeDeltaAge: array [0 .. 80] of double = (
 0,0,0,0,0,0,0,0,0,0,
 -8,-3,-7,-4,-18,-36,75,53,-1891,-2685,874,1704,1405,
 1974,4243,6387,7682,8524,9431,10206,10774,11808,12315,13129,
 13778,14872,15658,16184,16781,17367,17788,18614,18865,19454,
 19958,20525,21185,21407,21926,22241,22273,22865,22810,23029,22782,
 22484,22174,21640,21131,20339,18978,17958,16313,14295,12830,10713,
 8979,7425,6329,5370,4437,3678,3287,2875,2596,2212,1952,1703,1525,1288,1071
);

function Discount(const Value: double; const Yrs: integer; const Rate: double):
double;
begin
 Result := Value / intpower((1 + Rate), Yrs);
end;

function Annualize(const DiscRate, Value, Years: double): double;
begin
 Result := Value * (DiscRate / (1 - Power((1 + DiscRate), -Years)));
end;

{ TLCRBenefits }

procedure TLCRBenefits.AvgBL(const NewYears, Sex,Age,PBWin,FromBin,ToBin : integer;
out FBL,TBL: double);
begin
 FBL:=0;
 TBL:=0;
 var ti := 0;
 var fi := 0;
 if (NewYears > PBWin) or (NewYears>=Age) then begin
 fi := max(0, Age - PBWin);
 while (fi <= Age) do begin
 TBL := TBL + BL[Sex, fi, ToBin];

 FBL := FBL + BL[Sex, fi, FromBin];
 inc(ti);
 inc(fi);
 end;
 end else begin
 // find old vs new blood lead
 var Old := Age - NewYears;
 var StartAge := max(0, Age - PBWin);
 var InOld := 0;

 for fi := StartAge to Age do begin
 if fi > Old then
 TBL := TBL + BL[Sex, fi, ToBin]
 else
 TBL := TBL + BL[Sex, fi, FromBin];
 FBL := FBL + BL[Sex, fi, FromBin];
 inc(ti);
 end;

 end;

 if ti > 0 then begin
 TBL := TBL / ti;
 FBL := FBL / ti;
 end else begin
 Codesite.Send('error bl avg:', age);
 end;

end;

procedure TLCRBenefits.CalcBinMove(const FromBin, ToBin, Yr: integer; const Pop:
double;
 const CCT: boolean; BenType: TBenType; Proxy: boolean; AdhocDebug: boolean =
false);
var
 FBL, TBL, CPop, iFBL, iTBL, tmpPop: double;
 valLBW1, valLBW2: double;
 vIQ, vCVD, vADHD, vLBW: double;
 Counted40: boolean;
 CountPop: double;

begin
 var PBWin := 10; //TODO should be in config
 BenPop := BenPop + Pop;
 FinalBins[ToBin] := FinalBins[ToBin] + Pop;

 var StartYear := Yr;
 var NewYears := 0;

 // Change to delay CCT moves by 2 years 08/25/20

 if CCT then
 StartYear := StartYear + 2;

 var ok := not GotOne;
 for var y:= StartYear to fConfig.YearsOfOutput do begin
 PWSBenefits := 0;
 for var S := 1 to 2 do begin
 for var A := 0 to 80 do begin
 CPop := Pop * fConfig.DefaultPopPct[S, A];
 NewYears := Y - StartYear;
 //blood lead average over window (and instant values)
 if FromBin > 16 then begin //hack for temporary filters
 iTBL := BL[S, A, FromBin];
 iFBL := BL[S, A, ToBin];
 AvgBL(NewYears,S,A,PBWin,ToBin,FromBin,FBL,TBL);
 end else begin
 iTBL := BL[S, A, ToBin];
 iFBL := BL[S, A, FromBin];
 // get averaged blood leads...
 AvgBL(NewYears,S,A,PBWin,FromBin,ToBin,FBL,TBL);
 end;

 //IQ
 if A = 6 then begin
 vIQ := FIQLoss(FBL, TBL) * CPop;
 if vIQ > 0 then begin
 Ben7 := Ben7 + CPop;
 end;
 if FromBin > 16 then vIQ := -vIQ;

 _IQLoss.AddValue(vIQ,trunc(GMoveBinLC[FromBin,ToBin]));
 _IQLossVal.DiscountAndAddValue(vIQ *
IQPointVal,trunc(GMoveBinLC[FromBin,ToBin]),fConfig.DiscountRate,y);

 PWSBenefits := PWSBenefits + vIQ;
 end;

 // low birth weight
 const escalator = 1.2032; // Go from 2016-2022
 if (A = 0) and (y > StartYear) then begin
 // counting newborns in every year of analysis. After first year
 tmpPop := Pop * fConfig.DefaultPopPct[S, A];

 vLBW := FLBW(BLCBA[FromBin], BLCBA[ToBin]) / 20;
 if FromBin > 16 then vLBW := -vLBW;

 // leaving this like this so it is clear what is going on....
 valLBW1 := 1519.3 * vLBW * 0.3 / 100 * tmpPop + // 2.5
 1139.26 * vLBW * 0.3 / 100 * tmpPop + // 3
 958.54 * vLBW * 0.5 / 100 * tmpPop + // 3.3

 640.49 * vLBW * 0.9 / 100 * tmpPop + // 4
 480.36 * vLBW * 1.3 / 100 * tmpPop + // 4.5
 360.2 * vLBW * 2.4 / 100 * tmpPop + // 5
 14.86 * vLBW * 4.1 / 100 * tmpPop + // 5.5
 14.61 * vLBW * 13.5 / 100 * tmpPop + // 6
 14.12 * vLBW * 33.2 / 100 * tmpPop + // 7
 13.66 * vLBW * 29.4 / 100 * tmpPop; // 8

 valLBW2 := 0.00 * vLBW * 0.3 / 100 * tmpPop + // 2.5
 593.17 * vLBW * 0.3 / 100 * tmpPop + // 3
 469.72 * vLBW * 0.5 / 100 * tmpPop + // 3.3
 271.85 * vLBW * 0.9 / 100 * tmpPop + // 4
 183.57 * vLBW * 1.3 / 100 * tmpPop + // 4.5
 123.74 * vLBW * 2.4 / 100 * tmpPop + // 5
 16.04 * vLBW * 4.1 / 100 * tmpPop + // 5.5
 14.34 * vLBW * 13.5 / 100 * tmpPop + // 6
 11.45 * vLBW * 33.2 / 100 * tmpPop + // 7
 9.12 * vLBW * 29.4 / 100 * tmpPop; // 8

 if vLBW > 0 then begin
 Ben0 := Ben0 + tmpPop;
 end;

 _LBW.AddValue(vLBW * 20 * tmpPop,trunc(GMoveBinLC[FromBin,ToBin]));
 _LBWVal.DiscountAndAddValue(escalator *(valLBW1 + 2 *
valLBW2),trunc(GMoveBinLC[FromBin,ToBin]),fConfig.DiscountRate,y);

 PWSBenefits := PWSBenefits + vLBW * 20 * tmpPop;
 end;

 // ADHD
 vADHD := 0;
 if (A = 7) and (fLowHigh = rtLow) then
 vADHD := FADHD(FBL, TBL) * CPop;

 if (A = 11) and (fLowHigh = rtHigh) then
 vADHD := FADHD(FBL, TBL) * CPop;

 if FromBin > 16 then vADHD := -vADHD;
 if vADHD<>0 then begin
 Ben11 := Ben11 + CPop;
 _ADHD.AddValue(vADHD,trunc(GMoveBinLC[FromBin,ToBin]));
 _ADHDVal.DiscountAndAddValue(vADHD *
ADHDCaseVal,trunc(GMoveBinLC[FromBin,ToBin]),fConfig.DiscountRate,y);

 PWSBenefits := PWSBenefits + vADHD;
 end;

 //CVD
 if A >= 40 then begin

 if fConfig.RunNoBLAveraging then
 vCVD := FCVD(iFBL, iTBL, A, S) * CPop
 else
 vCVD := FCVD(FBL, TBL, A, S) * CPop;
 // count this cohort pop once
 CountPop := 0;
 if (not Counted40) and (vCVD > 0) then begin
 BenA := BenA + CPop;
 Counted40 := true;
 CountPop := CPop;
 end;
 if FromBin > 16 then vCVD := -vCVD;

 _CVD.AddValue(vCVD,trunc(GMoveBinLC[FromBin,ToBin]));
 _CVDVal.DiscountAndAddValue(vCVD *
VSL,trunc(GMoveBinLC[FromBin,ToBin]),fConfig.DiscountRate,y);

 PWSBenefits := PWSBenefits + vCVD;
 end;
 end;
 end;

 if not LLL.Exists('PWSBenefit_' + fConfig.RunName) then
 LLL.L('PWSBenefit_' + fConfig.RunName,'PWSId,y,PWSBenefits');
 LLL.L('PWSBenefit_' + fConfig.RunName, fPWSID + ',' + y.ToString + ',' +
PWSBenefits.ToString);

 end; //through analyis years....
end;

function TLCRBenefits.CorrectBL(const BL: double; const Age, Sex: integer): double;
begin
 if BL < 0.76 then begin
 if trunc(Age / 10) = 4 then begin
 if Sex = 1 then
 Result := 0.92
 else
 Result := 1.07;
 end
 else if trunc(Age / 10) = 5 then begin
 if Sex = 1 then
 Result := 0.97
 else
 Result := 1.05;
 end
 else if trunc(Age / 10) = 6 then begin
 if Sex = 1 then
 Result := 0.99
 else

 Result := 1.05;
 end
 else if trunc(Age / 10) = 7 then begin
 if Sex = 1 then
 Result := 1.03
 else
 Result := 1.04;
 end
 else if Sex = 1 then
 Result := 1.03
 else
 Result := 1.04;
 end
 else

 if BL < 1.12 then begin
 if trunc(Age / 10) = 4 then begin
 if Sex = 1 then
 Result := 0.93
 else
 Result := 1.04;
 end
 else if trunc(Age / 10) = 5 then begin
 if Sex = 1 then
 Result := 0.96
 else
 Result := 1.04;
 end
 else if trunc(Age / 10) = 6 then begin
 if Sex = 1 then
 Result := 0.94
 else
 Result := 1.02;
 end
 else if trunc(Age / 10) = 7 then begin
 if Sex = 1 then
 Result := 0.98
 else
 Result := 1.05;
 end
 else if Sex = 1 then
 Result := 0.98
 else
 Result := 1.05;
 end
 else

 if BL < 1.71 then begin
 if trunc(Age / 10) = 4 then begin
 if Sex = 1 then

 Result := 0.93
 else
 Result := 1.05;
 end
 else if trunc(Age / 10) = 5 then begin
 if Sex = 1 then
 Result := 0.96
 else
 Result := 1.02;
 end
 else if trunc(Age / 10) = 6 then begin
 if Sex = 1 then
 Result := 0.95
 else
 Result := 1.03;
 end
 else if trunc(Age / 10) = 7 then begin
 if Sex = 1 then
 Result := 0.99
 else
 Result := 1.05;
 end
 else if Sex = 1 then
 Result := 0.99
 else
 Result := 1.05;
 end else

 begin
 if trunc(Age / 10) = 4 then begin
 if Sex = 1 then
 Result := 0.94
 else
 Result := 1.05;
 end
 else if trunc(Age / 10) = 5 then begin
 if Sex = 1 then
 Result := 0.94
 else
 Result := 1.01;
 end
 else if trunc(Age / 10) = 6 then begin
 if Sex = 1 then
 Result := 0.95
 else
 Result := 1.04;
 end
 else if trunc(Age / 10) = 7 then begin
 if Sex = 1 then
 Result := 0.98

 else
 Result := 1.04;
 end
 else if Sex = 1 then
 Result := 0.98
 else
 Result := 1.04;
 end;

 Result := Result * BL;
end;

procedure TLCRBenefits.SnapShot;
begin
 _IQLossB := _IQLoss;
 _ADHDB := _ADHD;
 _LBWB := _LBW;
 _CVDB := _CVD;
 _IQLossValB := _IQLossVal;
 _ADHDValB := _ADHDVal;
 _LBWValB := _LBWVal;
 _CVDValB := _CVDVal;
end;

procedure TLCRBenefits.SnapDiff;
begin
 _IQLossB.Subtract(_IQLoss);
 _ADHDB.Subtract(_ADHD);
 _LBWB.Subtract(_LBW);
 _CVDB.Subtract(_CVD);
 _IQLossValB.Subtract(_IQLossVal);
 _ADHDValB.Subtract(_ADHDVal);
 _LBWValB.Subtract(_LBWVal);
 _CVDValB.Subtract(_CVDVal);

 _IQLossB.Multiply(-1);
 _ADHDB.Multiply(-1);
 _LBWB.Multiply(-1);
 _CVDB.Multiply(-1);
 _IQLossValB.Multiply(-1);
 _ADHDValB.Multiply(-1);
 _LBWValB.Multiply(-1);
 _CVDValB.Multiply(-1);

end;

procedure TLCRBenefits.CalcBenefitsNew(const A: TYearlyMovementMicro; const Wgt:
double;
 const DoDebug: boolean; const aCosts: TLCRCosts; const P90CCT, P90LSL: array of

double;
 abp1, abp2: integer; SmallSystem: boolean; ProxySystem: boolean; const OptionName:
string);
var
 y, F, T: integer;
 DoCCT: boolean;
 BenType: TBenType;
begin
 bp1 := abp1;
 bp2 := abp2;
 _IQLoss := Default(TBenRec);
 _IQLossVal := Default(TBenRec);
 _ADHD := Default(TBenRec);
 _ADHDVal := Default(TBenRec);
 _LBW := Default(TBenRec);
 _LBWVal := Default(TBenRec);
 _CVD := Default(TBenRec);
 _CVDVal := Default(TBenRec);

 DoDebugOUt := DoDebug;

 BenPop := 0;
 Ben7 := 0;
 BenA := 0;
 Ben0 := 0;
 Ben11 := 0;
 fillchar(FinalBins, sizeof(FinalBins), 0);
 fPWSID := aCosts.CostingData.PWSid;

 for y := 0 to fConfig.YearsOfOutput do begin
 if y = 0 then begin
 continue;
 end;

 for F := low(A[y]) to high(A[y]) do begin
 for T := low(A[y, F]) to high(A[y, F]) do begin
 if A[y, F, T] = 0 then
 continue;
 DoCCT := true;
 if GMoveBinLC[F, T] > 1 then
 DoCCT := false;

 if OptionName = 'LCRI' then begin
 BenType := btMandatory;

{$IFDEF DEBUG}
SnapShot;
{$ENDIF}
 CalcBinMove(F, T, y, A[y, F, T] * Wgt, DoCCT, BenType, ProxySystem);

{$IFDEF DEBUG}
SnapDiff;
//SnapShot;
if not LLL.Exists('binben') then LLL.L('binben','pws,allpop,f,t,y,pop,'+
'_iqlossb.C,_iqlossb.L,_iqlossb.POU,_iqlossb.tpou,'+
'_cvdb.C,_cvdb.L,_cvdb.POU,_cvdb.tpou,'+
'_lbwb.C,_lbwb.L,_lbwb.POU,_lbwb.tpou,'+
'_adhdb.C,_adhdb.L,_adhdb.POU,_adhdb.tpou,'+
'_iqlossvalb.C,_iqlossvalb.L,_iqlossvalb.POU,_iqlossvalb.tpou,'+
'_cvdvalb.C,_cvdvalb.L,_cvdvalb.POU,_cvdvalb.tpou,'+
'_lbwvalb.C,_lbwvalb.L,_lbwvalb.POU,_lbwvalb.tpou,'+
'_adhdvalb.C,_adhdvalb.L,_adhdvalb.POU,_adhdvalb.tpou'
);
LLL.L('binben',format('%s,%d,%d,%d,%d,%g,'+
'%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,'+
'%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g'
,
[aCosts.CostingData.PWSid,aCosts.CostingData.Population,
f,t,y,A[y, F, T],
_iqlossb.C,_iqlossb.L,_iqlossb.POU,_iqlossb.tpou,
_cvdb.C,_cvdb.L,_cvdb.POU,_cvdb.tpou,
_lbwb.C,_lbwb.L,_lbwb.POU,_lbwb.tpou,
_adhdb.C,_adhdb.L,_adhdb.POU,_adhdb.tpou,
_iqlossvalb.C,_iqlossvalb.L,_iqlossvalb.POU,_iqlossvalb.tpou,
_cvdvalb.C,_cvdvalb.L,_cvdvalb.POU,_cvdvalb.tpou,
_lbwvalb.C,_lbwvalb.L,_lbwvalb.POU,_lbwvalb.tpou,
_adhdvalb.C,_adhdvalb.L,_adhdvalb.POU,_adhdvalb.tpou

]));

{$ENDIF}

 end else begin
 BenType := btMandatory;
 if DoCCT then begin
 if (P90CCT[y] <= bp2) then
 BenType := btVoluntary;
 end else begin
 if SmallSystem then begin
 if (P90LSL[y] <= bp2) then
 BenType := btRequested;
 end else begin
 if (P90LSL[y] <= bp1) then
 BenType := btRequested
 else if (P90LSL[y] <= bp2) then
 BenType := btVoluntary;
 end;
 end;

 CalcBinMove(F, T, y, A[y, F, T] * Wgt, DoCCT, BenType, ProxySystem);
 end;
 end;
 end;
 end;

 //total case count
 IQLoss := _IQLoss.Total;
 CVD := _CVD.Total;
 ADHD := _ADHD.Total;
 LBW := _LBW.Total;

 //annualize case count
 _IQLoss.DivideBy(fConfig.YearsOfOutput);
 _LBW.DivideBy(fConfig.YearsOfOutput);
 _ADHD.DivideBy(fConfig.YearsOfOutput);
 _CVD.DivideBy(fConfig.YearsOfOutput);
 //annualize dollars
 _IQLossVal.CalcAnnualInPlace(fConfig.DiscountRate, fConfig.YearsOfOutput);
 _LBWVal.CalcAnnualInPlace(fConfig.DiscountRate, fConfig.YearsOfOutput);
 _ADHDVal.CalcAnnualInPlace(fConfig.DiscountRate, fConfig.YearsOfOutput);
 _CVDVal.CalcAnnualInPlace(fConfig.DiscountRate, fConfig.YearsOfOutput);

 //totals dollars ...
 IQLossVal := _IQLossVal.Total;
 LBWVal := _LBWVal.Total;
 CVDVal := _CVDVal.Total;
 ADHDVal := _ADHDVal.Total;
 TotBen := IQLossVal + CVDVal + ADHDVal + LBWVal;

end;

function RCB(const c: integer): integer;
// this converts the BL table numbering to the Bin Numbering in pops.
begin
 // bin numbering has been corrected
 Result := c;
 exit;

 if c = 4 then
 Result := 1
 else if c = 7 then
 Result := 2
 else if c = 1 then
 Result := 3
 else if c = 5 then
 Result := 4
 else if c = 8 then
 Result := 5
 else if c = 2 then

 Result := 6
 else if c = 6 then
 Result := 7
 else if c = 9 then
 Result := 8
 else if c = 3 then
 Result := 9
 else
 Result := c;
end;

constructor TLCRBenefits.create;
var
 i, j, cMCL, cDR: integer;
 T, TL: TStringList;
 A: integer;
 v: double;
begin
 fConfig := aConfig;
 fOutputs := aOutputMetrics;
 fDummyProb := 1;
 DoDebugOUt := false;
 GotOne:=False;

 //TODO add messes here for other benefits....
 fBBYY := TLCRBenByYear.create(aConfig, aOption);
 fBBYY.AddBen('IQ CCT BP1');
 fBBYY.AddBen('IQ CCT BP2');
 fBBYY.AddBen('IQ LSLR Vol');
 fBBYY.AddBen('IQ LSLR Mand');
 fBBYY.AddBen('IQ LSLR Req');
 fBBYY.AddBen('IQ POU');

 fLowHigh := fConfig.RunType;
 fRunVersion := fConfig.RunVersion;

 fYearsOfOutput := fConfig.YearsOfOutput;
 UncertaintyVars := Uncertainty;

 fillchar(BL, sizeof(BL), 0);
 T := TStringList.create;
 TL := TStringList.create;

 T.Text := PBF;
 for i := 0 to T.Count - 1 do begin
 TL.CommaText := T[i];
 for j := 1 to 17 do begin
 BL[2, TL[0].ToInteger, RCB(j)] := TL[j].ToDouble;
 end;
 // bin 18-32 same as 17

 for var jj := 18 to 32 do
 BL[2, TL[0].ToInteger, RCB(jj)] := TL[17].ToDouble;
 end;

 T.Text := PBM;
 for i := 0 to T.Count - 1 do begin
 TL.CommaText := T[i];

 for j := 1 to 17 do begin
 BL[1, TL[0].ToInteger, RCB(j)] := TL[j].ToDouble;
 end;
 // bin 18-32 same as 17
 for var jj := 18 to 32 do
 BL[1, TL[0].ToInteger, RCB(jj)] := TL[17].ToDouble;
 end;

 if fConfig.ChildBLSens > 0 then begin
 if fConfig.ChildBLSens = 1 then
 T.Text := PBSens1
 else if fConfig.ChildBLSens = 2 then
 T.Text := PBSens2
 else
 T.Text := PBSens3;
 for i := 0 to 6 do begin
 TL.CommaText := T[i];
 for j := 1 to 17 do begin
 BL[1, TL[0].ToInteger, RCB(j)] := TL[j].ToDouble;
 BL[2, TL[0].ToInteger, RCB(j)] := TL[j].ToDouble;
 end;
 // bin 18 same as 17
 BL[1, TL[0].ToInteger, RCB(18)] := TL[17].ToDouble;
 BL[2, TL[0].ToInteger, RCB(18)] := TL[17].ToDouble;

 end;
 end;

 TL.Free;
 T.Free;

 // no high-low concept yet for valuation.
 // updating to 2021-22
 VSL := 12980000;

 if fConfig.IQValueSens = 1 then begin
 if Round(fConfig.DiscountRate * 100) / 100 = 0.03 then
 IQPointVal := 14936
 else
 IQPointVal := 3658;
 end else begin
 if Round(fConfig.DiscountRate * 100) / 100 = 0.03 then

 IQPointVal := 27336
 else
 IQPointVal := 6887;
 end;

 if fLowHigh=rtHigh then begin
 if Round(fConfig.DiscountRate * 100) / 100 = 0.03 then
 ADHDCaseVal := 228231
 else
 ADHDCaseVal := 203823;
 end else begin
 if Round(fConfig.DiscountRate * 100) / 100 = 0.03 then
 ADHDCaseVal := 202780
 else
 ADHDCaseVal := 155496;
 end;

 CVDRate[1, 4] := 0.00078592;
 CVDRate[1, 5] := 0.00218595;
 CVDRate[1, 6] := 0.00459819;
 CVDRate[1, 7] := 0.01080168;
 CVDRate[1, 8] := 0.01080168;

 CVDRate[2, 4] := 0.00037709;
 CVDRate[2, 5] := 0.00097204;
 CVDRate[2, 6] := 0.00221088;
 CVDRate[2, 7] := 0.00675097;
 CVDRate[2, 8] := 0.00675097;

 DoDebugOUt := false;

end;

destructor TLCRBenefits.Destroy;
begin
 fBBYY.Free;
 inherited;
end;

function TLCRBenefits.FIQLoss(const BL1, BL2: double): double;
begin
 if fLowHigh = rtHigh then begin
 // change 8/2/2023 meeting
 Result := 3.14 * ln(BL1 / BL2);
 end
 else if fLowHigh = rtLow then begin
 Result := 3.25 * ln((BL1 + 1) / (BL2 + 1));
 end
 else

 raise Exception.create('Unknown fLowHigh in FIQLoss');

end;

function TLCRBenefits.FLBW(const BL1, BL2: double): double;
begin
 Result := -27.4 * (Power(BL2, 0.5) - Power(BL1, 0.5));
end;

function TLCRBenefits.FADHD(const BL1, BL2: double): double;
var
 Brate, Beta, v: double;
begin
 Brate := 0.096;
 if fLowHigh = rtLow then
 Beta := 0.223
 else
 Beta := 0.588;

 v := Beta * (ln(BL1) - ln(BL2));
 Result := Brate - (Brate / ((1 - Brate) * exp(-v) + Brate));
 Result := Result * -1;
end;

function TLCRBenefits.FCVD(const BL1, BL2: double; const Age, Sex: integer): double;
var
 P1, P2: double;
begin
 P1 := BL1;
 P2 := BL2;

//(*stashed 7/20/23
 if fLowHigh = rtHigh then
 Result := CVDRate[Sex, Age DIV 10] * (1 - exp(0.96 * log10(P2 / P1)))
 else
 Result := CVDRate[Sex, Age DIV 10] * (1 - exp(0.36 * log10(P2 / P1)));
//*)
 (*
 if fLowHigh = rtHigh then begin
 if ((p1 > 1) and (p2 > 1)) or ((p1 < 1) and (p2 < 1)) then begin
 Result := CVDRate[Sex, Age DIV 10] * (1 - exp(0.96 * log10(P2 / P1)))
 end else begin
 p2 := 1;
 Result := CVDRate[Sex, Age DIV 10] * (1-exp(0.416922703 * (P2-P1)));
 end;
 end else begin
 if ((p1 > 1) and (p2 > 1)) or ((p1 < 1) and (p2 < 1)) then begin
 Result := CVDRate[Sex, Age DIV 10] * (1 - exp(0.36 * log10(P2 / P1)))
 end else begin
 p2 := 1;

 Result := CVDRate[Sex, Age DIV 10] * (1-exp(0.156346013 * (P2-P1)));
 end;
 end;
 *)
end;

{ TBenefitsCollector }

constructor TBenefitsCollector.create(aConfig: TLCRConfig; aOutputMetrics:
TMetricList;
 aUncertainty: TUncertaintyStudy);
var
 i, F, T: integer;
begin
 fConfig := aConfig;
 fOutputs := aOutputMetrics;
 fUncertainty := aUncertainty;
 fDummyProb := 1;

 fLowHigh := fConfig.RunType;

 DoDebugOUt := false;
 NewBenBins := false;

 bp1 := fConfig.PWS90PctBp1;
 bp2 := fConfig.PWS90PctBp2;

 if fConfig.RunDifference then begin
 BenefitsBaseline := TLCRBenefits.create(fConfig, fOutputs, fUncertainty,
'Baseline');
 BenefitsOption := TLCRBenefits.create(fConfig, fOutputs, fUncertainty,
fConfig.OptionName);
 end
 else if fConfig.RunBaselineOnly then
 BenefitsBaseline := TLCRBenefits.create(fConfig, fOutputs, fUncertainty,
'Baseline')
 else
 BenefitsOption := TLCRBenefits.create(fConfig, fOutputs, fUncertainty,
fConfig.OptionName);

 for F := low(BinMovements) to high(BinMovements) do begin
 for T := low(BinMovements[F]) to high(BinMovements[F]) do begin
 if GMoveBinLC[F, T] > 0 then begin
 fOutputs.AddOutputMetric(@BinMovements[F, T], @DummyProb, nil,
 'BinMove' + inttostr(F) + 'To' + inttostr(T), mtBenefitCounts, false,
false, false,
 fConfig.OptionName, 0, true);
 end;
 end;
 end;

 fOutputs.AddOutputMetric(@BenPop, @DummyProb, nil, 'BenefitsBinPopMove',
mtBenefitCounts, false,
 false, false, fConfig.OptionName, 0, true);

 fOutputs.AddOutputMetric(@BenA, @DummyProb, nil, 'BenefittingAdults',
mtBenefitCounts, false,
 false, false, fConfig.OptionName, 0, true);

 fOutputs.AddOutputMetric(@Ben7, @DummyProb, nil, 'Benefitting7', mtBenefitCounts,
false, false,
 false, fConfig.OptionName, 0, true);
 fOutputs.AddOutputMetric(@Ben0, @DummyProb, nil, 'Benefitting0', mtBenefitCounts,
false, false,
 false, fConfig.OptionName, 0, true);
 fOutputs.AddOutputMetric(@Ben11, @DummyProb, nil, 'Benefitting11',
mtBenefitCounts, false, false,
 false, fConfig.OptionName, 0, true);

 _IQLoss.AddMetrics(fOutputs,'IQ
Point',fConfig.OptionName,fConfig.DiscountRate,false);
 _IQLossVal.AddMetrics(fOutputs,'IQ
Point',fConfig.OptionName,fConfig.DiscountRate,true);
 _CVD.AddMetrics(fOutputs,'CVD',fConfig.OptionName,fConfig.DiscountRate,false);
 _CVDVal.AddMetrics(fOutputs,'CVD',fConfig.OptionName,fConfig.DiscountRate,true);
 _ADHD.AddMetrics(fOutputs,'ADHD',fConfig.OptionName,fConfig.DiscountRate,false);
 _ADHDVal.AddMetrics(fOutputs,'ADHD',fConfig.OptionName,fConfig.DiscountRate,true);
 _LBW.AddMetrics(fOutputs,'LBW',fConfig.OptionName,fConfig.DiscountRate,false);
 _LBWVal.AddMetrics(fOutputs,'LBW',fConfig.OptionName,fConfig.DiscountRate,true);

 fOutputs.AddOutputMetric(@TotBen, @DummyProb, nil, 'Total Annual Benefits',
mtBenefitDollars,
 false, false, false, fConfig.OptionName, fConfig.DiscountRate, true);
 fOutputs.AddOutputMetric(@IQLossVal, @DummyProb, nil, 'IQ Point Annual',
mtBenefitDollars, false,
 false, false, fConfig.OptionName, fConfig.DiscountRate, true);
 fOutputs.AddOutputMetric(@ADHDVal, @DummyProb, nil, 'ADHD Annual',
mtBenefitDollars, false, false,
 false, fConfig.OptionName, fConfig.DiscountRate, true);
 fOutputs.AddOutputMetric(@CVDVal, @DummyProb, nil, 'CVD Annual', mtBenefitDollars,
false, false,
 false, fConfig.OptionName, fConfig.DiscountRate, true);
 fOutputs.AddOutputMetric(@LBWVal, @DummyProb, nil, 'LBW Annual', mtBenefitDollars,
false, false,
 false, fConfig.OptionName, fConfig.DiscountRate, true);

 fOutputs.AddOutputMetric(@IQLoss, @DummyProb, nil, 'IQ Point All', mtBenefitCases,
false,
 false, false, fConfig.OptionName, fConfig.DiscountRate, true);

 fOutputs.AddOutputMetric(@ADHD, @DummyProb, nil, 'ADHD All', mtBenefitCases,
false, false,
 false, fConfig.OptionName, fConfig.DiscountRate, true);
 fOutputs.AddOutputMetric(@CVD, @DummyProb, nil, 'CVD All', mtBenefitCases, false,
false,
 false, fConfig.OptionName, fConfig.DiscountRate, true);
 fOutputs.AddOutputMetric(@LBW, @DummyProb, nil, 'LBW All', mtBenefitCases, false,
false,
 false, fConfig.OptionName, fConfig.DiscountRate, true);

end;

destructor TBenefitsCollector.Destroy;
begin
 if fConfig.BenByYear then begin
 if assigned(BenefitsBaseline) then
 BenefitsBaseline.fBBYY.SaveResults;
 if assigned(BenefitsOption) then
 BenefitsOption.fBBYY.SaveResults;
 end;
 if assigned(BenefitsBaseline) then
 BenefitsBaseline.Free;
 if assigned(BenefitsOption) then
 BenefitsOption.Free;

 inherited;
end;

procedure TBenefitsCollector.GenerateBenefits(aCosts: TLCRCosts; ProxySystem:
boolean);
var
 i, F, T, y: integer;
 SmallSystem: boolean;
begin
 if ProxySystem then exit;

 SmallSystem := false;
 if (aCosts.CostingData.SystemType = 2) or // ntnc = 2
 (aCosts.CostingData.Population <= fConfig.SmallProxyPop) then
 SmallSystem := true;

 if fConfig.RunDifference then begin
 // acosts.CostingData.PWSid
 BenefitsBaseline.CalcBenefitsNew(aCosts.BaseCostSteps.GMoveBinMicro, 1,
DoDebugOUt, aCosts,
 aCosts.BaseCostSteps.pws90pctCCT_yr, aCosts.BaseCostSteps.pws90pctLSL_yr,
-100000, -100000,
 SmallSystem, ProxySystem, aCosts.Config.OptionName);
 BenefitsOption.CalcBenefitsNew(aCosts.ScenCostSteps.GMoveBinMicro, 1,
DoDebugOUt, aCosts,

 aCosts.ScenCostSteps.pws90pctCCT_yr, aCosts.ScenCostSteps.pws90pctLSL_yr, bp1,
bp2,
 SmallSystem, ProxySystem, aCosts.Config.OptionName);

 for i := low(FinalBins) to high(FinalBins) do begin
 FinalBins[i] := BenefitsOption.FinalBins[i] - BenefitsBaseline.FinalBins[i];
 StartingBins[i] := aCosts.ScenCostSteps.GMoveBin[0, i] -
aCosts.BaseCostSteps.GMoveBin[0, i];
 EndingBins[i] :=
aCosts.ScenCostSteps.GMoveBin[high(aCosts.ScenCostSteps.GMoveBin), i] -
 aCosts.BaseCostSteps.GMoveBin[high(aCosts.BaseCostSteps.GMoveBin), i];
 EndingBinsCheck[i] := aCosts.ScenCostSteps.GMoveBin[0, i];
 end;

 for y := low(aCosts.ScenCostSteps.GMoveBinMicro) to
high(aCosts.ScenCostSteps.GMoveBinMicro) do
 begin
 for F := low(aCosts.ScenCostSteps.GMoveBinMicro[y])
 to high(aCosts.ScenCostSteps.GMoveBinMicro[y]) do begin
 for T := low(aCosts.ScenCostSteps.GMoveBinMicro[y, F])
 to high(aCosts.ScenCostSteps.GMoveBinMicro[y, F]) do begin
 if y = low(aCosts.ScenCostSteps.GMoveBinMicro) then begin
 BinMovements[F, T] := aCosts.ScenCostSteps.GMoveBinTotal[F, T] -
 aCosts.BaseCostSteps.GMoveBinTotal[F, T];
 end;
 if aCosts.ScenCostSteps.GMoveBinMicro[y, F, T] < 0.01 then
 continue;
 EndingBinsCheck[F] := EndingBinsCheck[F] -
aCosts.ScenCostSteps.GMoveBinMicro[y, F, T];
 EndingBinsCheck[T] := EndingBinsCheck[T] +
aCosts.ScenCostSteps.GMoveBinMicro[y, F, T];
 end;
 end;
 end;

 BenPop := BenefitsOption.BenPop - BenefitsBaseline.BenPop;
 Ben7 := BenefitsOption.Ben7 - BenefitsBaseline.Ben7;
 Ben0 := BenefitsOption.Ben0 - BenefitsBaseline.Ben0;
 Ben11 := BenefitsOption.Ben11 - BenefitsBaseline.Ben11;
 BenA := BenefitsOption.BenA - BenefitsBaseline.BenA;

 _IQLoss := BenefitsOption._IQLoss;
 _IQLoss.Subtract(BenefitsBaseline._IQLoss);
 _IQLossVal := BenefitsOption._IQLossVal;
 _IQLossVal.Subtract(BenefitsBaseline._IQLossVal);

 _CVD := BenefitsOption._CVD;
 _CVD.Subtract(BenefitsBaseline._CVD);
 _CVDVal := BenefitsOption._CVDVal;
 _CVDVal.Subtract(BenefitsBaseline._CVDVal);

 _LBW := BenefitsOption._LBW;
 _LBW.Subtract(BenefitsBaseline._LBW);
 _LBWVal := BenefitsOption._LBWVal;
 _LBWVal.Subtract(BenefitsBaseline._LBWVal);

 _ADHD := BenefitsOption._ADHD;
 _ADHD.Subtract(BenefitsBaseline._ADHD);
 _ADHDVal := BenefitsOption._ADHDVal;
 _ADHDVal.Subtract(BenefitsBaseline._ADHDVal);

 IQLossVal := BenefitsOption.IQLossVal - BenefitsBaseline.IQLossVal;
 ADHDVal := BenefitsOption.ADHDVal - BenefitsBaseline.ADHDVal;
 CVDVal := BenefitsOption.CVDVal - BenefitsBaseline.CVDVal;
 LBWVal := BenefitsOption.LBWVal - BenefitsBaseline.LBWVal;
 TotBen := BenefitsOption.TotBen - BenefitsBaseline.TotBen;

 IQLoss := BenefitsOption.IQLoss - BenefitsBaseline.IQLoss;
 ADHD := BenefitsOption.ADHD - BenefitsBaseline.ADHD;
 CVD := BenefitsOption.CVD - BenefitsBaseline.CVD;
 LBW := BenefitsOption.LBW - BenefitsBaseline.LBW;

 end
 else if fConfig.RunBaselineOnly then begin
 BenefitsBaseline.CalcBenefitsNew(aCosts.BaseCostSteps.GMoveBinMicro, 1,
DoDebugOUt, aCosts,
 aCosts.BaseCostSteps.pws90pctCCT_yr, aCosts.BaseCostSteps.pws90pctLSL_yr,
-10000, -100000,
 SmallSystem, ProxySystem, aCosts.Config.OptionName);

 for i := low(FinalBins) to high(FinalBins) do begin
 FinalBins[i] := BenefitsBaseline.FinalBins[i];
 StartingBins[i] := aCosts.BaseCostSteps.GMoveBin[0, i];
 EndingBins[i] :=
aCosts.BaseCostSteps.GMoveBin[high(aCosts.BaseCostSteps.GMoveBin), i];
 EndingBinsCheck[i] := StartingBins[i];
 end;

 for y := low(aCosts.BaseCostSteps.GMoveBinMicro) to
high(aCosts.BaseCostSteps.GMoveBinMicro) do
 begin
 for F := low(aCosts.BaseCostSteps.GMoveBinMicro[y])
 to high(aCosts.BaseCostSteps.GMoveBinMicro[y]) do begin
 for T := low(aCosts.BaseCostSteps.GMoveBinMicro[y, F])
 to high(aCosts.BaseCostSteps.GMoveBinMicro[y, F]) do begin
 if y = low(aCosts.BaseCostSteps.GMoveBinMicro) then begin
 BinMovements[F, T] := aCosts.BaseCostSteps.GMoveBinTotal[F, T];
 end;
 if aCosts.BaseCostSteps.GMoveBinMicro[y, F, T] < 0.01 then
 continue;

 EndingBinsCheck[F] := EndingBinsCheck[F] -
aCosts.BaseCostSteps.GMoveBinMicro[y, F, T];
 EndingBinsCheck[T] := EndingBinsCheck[T] +
aCosts.BaseCostSteps.GMoveBinMicro[y, F, T];
 end;
 end;
 end;

 BenPop := BenefitsBaseline.BenPop;
 Ben7 := BenefitsBaseline.Ben7;
 Ben0 := BenefitsBaseline.Ben0;
 Ben11 := BenefitsBaseline.Ben11;
 BenA := BenefitsBaseline.BenA;

 end else begin
 BenefitsOption.CalcBenefitsNew(aCosts.ScenCostSteps.GMoveBinMicro, 1,
DoDebugOUt, aCosts,
 aCosts.ScenCostSteps.pws90pctCCT_yr, aCosts.ScenCostSteps.pws90pctLSL_yr, bp1,
bp2,
 SmallSystem, ProxySystem, aCosts.Config.OptionName);

 for i := low(FinalBins) to high(FinalBins) do begin
 FinalBins[i] := BenefitsOption.FinalBins[i];
 StartingBins[i] := aCosts.ScenCostSteps.GMoveBin[0, i];
 EndingBins[i] :=
aCosts.ScenCostSteps.GMoveBin[high(aCosts.ScenCostSteps.GMoveBin), i];
 EndingBinsCheck[i] := StartingBins[i];
 end;

 for y := low(aCosts.ScenCostSteps.GMoveBinMicro) to
high(aCosts.ScenCostSteps.GMoveBinMicro) do
 begin
 for F := low(aCosts.ScenCostSteps.GMoveBinMicro[y])
 to high(aCosts.ScenCostSteps.GMoveBinMicro[y]) do begin
 for T := low(aCosts.ScenCostSteps.GMoveBinMicro[y, F])
 to high(aCosts.ScenCostSteps.GMoveBinMicro[y, F]) do begin
 if y = low(aCosts.ScenCostSteps.GMoveBinMicro) then begin
 BinMovements[F, T] := aCosts.ScenCostSteps.GMoveBinTotal[F, T];
 end;
 if aCosts.ScenCostSteps.GMoveBinMicro[y, F, T] < 0.01 then
 continue;
 EndingBinsCheck[F] := EndingBinsCheck[F] -
aCosts.ScenCostSteps.GMoveBinMicro[y, F, T];
 EndingBinsCheck[T] := EndingBinsCheck[T] +
aCosts.ScenCostSteps.GMoveBinMicro[y, F, T];
 end;
 end;
 end;

 BenPop := BenefitsOption.BenPop;

 Ben7 := BenefitsOption.Ben7;
 Ben0 := BenefitsOption.Ben0;
 Ben11 := BenefitsOption.Ben11;
 BenA := BenefitsOption.BenA;

 end;

 //added this to keep from so much copy paste change code...
 if not fConfig.RunDifference then begin
 var B : TLCRBenefits;
 if fConfig.RunBaselineOnly then
 B := BenefitsBaseline
 else
 B := BenefitsOption;

 _IQLoss := B._IQLoss;
 _IQLossVal := B._IQLossVal;
 _CVD := B._CVD;
 _CVDVal := B._CVDVal;
 _LBW := B._LBW;
 _LBWVal := B._LBWVal;
 _ADHD := B._ADHD;
 _ADHDVal := B._ADHDVal;
 IQLossVal := B.IQLossVal;
 ADHDVal := B.ADHDVal;
 CVDVal := B.CVDVal;
 LBWVal := B.LBWVal;
 TotBen := B.TotBen;

 IQLoss := B.IQLoss;
 ADHD := B.ADHD;
 CVD := B.CVD;
 LBW := B.LBW;
 end;
end;

{ TLCRBenByYear }

procedure TLCRBenByYear.AddBen(aName: string);
begin
 fBenYears.Add(aName, TLCRBenYears.create);
end;

constructor TLCRBenByYear.create(aConfig: TLCRConfig; aName: string);
begin
 inherited create;
 fBenYears := TObjectDictionary<string, TLCRBenYears>.create([doOwnsValues]);
 fTotYears := aConfig.YearsOfOutput;
 Active := aConfig.BenByYear;
 fOutName := UserPath + aConfig.RunName + '_' + aName + '_BenByYear.csv';

end;

destructor TLCRBenByYear.Destroy;
begin
 fBenYears.Free;
 inherited;
end;

procedure TLCRBenByYear.SaveResults;
var
 M: array of array of double;
 S, ss, HL: string;
 i, j: integer;
 T: TLCRBenYears;
 TOut: TBufferedFileStream;
 DoIt: boolean;
begin
 if not Active then
 exit;
 setlength(M, fBenYears.Count, 150);
 HL := 'Year';
 i := 0;
 for S in fBenYears.Keys do begin
 HL := HL + ',' + S;
 T := fBenYears.Items[S];
 for j := 1 to 149 do begin
 M[i, j - 1] := T.Year[j];
 end;
 inc(i);
 end;
 TOut := TBufferedFileStream.create(fOutName, fmCreate);
 HL := HL + #13#10;
 TOut.WriteBuffer(HL[1], Length(HL) * sizeof(Char));
 for j := 1 to 150 do begin
 ss := j.ToString;
 DoIt := false;
 for i := 0 to fBenYears.Count - 1 do begin
 ss := ss + ',' + M[i, j - 1].ToString;
 if M[i, j - 1] <> 0 then
 DoIt := true;
 end;
 ss := ss + #13#10;
 if DoIt then
 TOut.WriteBuffer(ss[1], Length(ss) * sizeof(Char));
 end;
 TOut.Free;
end;

procedure TLCRBenByYear.UpdateBen(Yr: integer; const aName: string; aValue: double);
var

 T: TLCRBenYears;
 y: integer;
begin
 if not Active then
 exit;
 // IncomeDeltaAge is a total over 10 years....
 if fBenYears.TryGetValue(aName, T) then begin
 for y := 6 to high(IncomeDeltaAge) do begin
 T.Year[Yr + (y - 6)] := T.Year[Yr + (y - 6)] + aValue * (IncomeDeltaAge[y] /
10);
 end;
 end;
end;

{ TBenRec }

procedure TBenRec.Abs;
begin
 C := System.Abs(C);
 L := System.Abs(L);
 POU := System.Abs(POU);
 TPOU := System.Abs(TPOU);
end;

procedure TBenRec.AddMetrics(Outputs: TMetricList; Name, Option: string; DR: double;
 IsDollar: boolean);
begin
 var s: string;
 var DR2: double;
 var mt: integer;
 if IsDollar then begin
 s := Name + ' Annual';
 DR2 := DR;
 mt := mtBenefitDollars;
 end else begin
 s := Name + ' Annual Cases';
 DR2 := 0;
 mt := mtBenefitCases;
 end;

 Outputs.AddOutputMetric(@C, @Dummy, nil, s+'_CCT', mt, false,
 false, false, Option, DR2, true);
 Outputs.AddOutputMetric(@L, @Dummy, nil, s+'_LSLR', mt, false,
 false, false, Option, DR2, true);
 Outputs.AddOutputMetric(@TPOU, @Dummy, nil, s+'_TPOU', mt, false,
 false, false, Option, DR2, true);
 Outputs.AddOutputMetric(@POU, @Dummy, nil, s+'_POU', mt, false,
 false, false, Option, DR2, true);
end;

procedure TBenRec.AddValue(const v: double; const cat: Integer);
begin
 case cat of
 1: C := C + v;
 2: L := L + v;
 3: TPOU := TPOU + v;
 4: POU := POU + v;
 else
 CSL('bad cat addvalue:'+cat.ToString);
 end;
end;

procedure TBenRec.CalcAnnual(const DR: double; const r: TBenRec; const Yrs:
integer);
begin
 C := Annualize(DR, r.C, Yrs);
 L := Annualize(DR, r.L, Yrs);;
 POU := Annualize(DR, r.POU, Yrs);
 TPOU := Annualize(DR, r.TPOU, Yrs);
end;

procedure TBenRec.CalcAnnualInPlace(const DR: double; const Yrs: integer);
begin
 C := Annualize(DR, C, Yrs);
 L := Annualize(DR, L, Yrs);;
 POU := Annualize(DR, POU, Yrs);
 TPOU := Annualize(DR, TPOU, Yrs);
end;

procedure TBenRec.DiscountAndAddValue(const v: double; const cat: Integer;
 const DR: double; const Yrs: integer);
begin
 var tmpv := Discount(v, yrs, DR);
 case cat of
 1: C := C + tmpv;
 2: L := L + tmpv;
 3: TPOU := TPOU + tmpv;
 4: POU := POU + tmpv;
 else
 //? raise? - this shouldn't happen
 CSL('bad cat discountandaddvalue:'+cat.ToString);
 end;
end;

procedure TBenRec.DivideBy(const v: double);
begin
 C := C/v;
 L := L/v;
 POU := POU/v;
 TPOU := TPOU/v;

end;

procedure TBenRec.Multiply(const v: double);
begin
 C := C*v;
 L := L*v;
 POU := POU*v;
 TPOU := TPOU*v;
end;

procedure TBenRec.Subtract(const r: TBenRec);
begin
 C := C - R.C;
 L := L - R.L;
 POU := POU - R.POU;
 TPOU := TPOU - R.TPOU;
end;

function TBenRec.Total(): double;
begin
 Result := C + L + POU + TPOU;
end;

initialization

//blood leads from 6/8/23 and 6/21/23 spreadsheets from meghan

PBF:=
'0,3.476,2.269,0.962,2.487,2.487,2.487,1.720,1.720,1.720,0.962,0.962,0.962,1.798,1.3
33,0.962,0.962,0.962,0.962'+#13#10+
'1,2.435,1.830,1.130,1.886,1.886,1.886,1.513,1.513,1.513,1.130,1.130,1.130,1.562,1.3
14,1.130,1.130,1.130,1.130'+#13#10+
'2,2.612,1.905,1.158,1.996,1.996,1.996,1.559,1.559,1.559,1.158,1.158,1.158,1.641,1.3
44,1.158,1.158,1.158,1.158'+#13#10+
'3,2.456,1.775,1.153,1.917,1.917,1.917,1.503,1.503,1.503,1.153,1.153,1.153,1.570,1.3
28,1.153,1.153,1.153,1.153'+#13#10+
'4,2.437,1.792,1.134,1.917,1.917,1.917,1.501,1.501,1.501,1.134,1.134,1.134,1.571,1.3
15,1.134,1.134,1.134,1.134'+#13#10+
'5,2.573,1.864,1.186,1.991,1.991,1.991,1.531,1.531,1.531,1.186,1.186,1.186,1.618,1.3
64,1.186,1.186,1.186,1.186'+#13#10+
'6,2.287,1.630,0.977,1.758,1.758,1.758,1.350,1.350,1.350,0.977,0.977,0.977,1.410,1.1
71,0.977,0.977,0.977,0.977'+#13#10+
'7,2.528,1.825,1.066,1.973,1.973,1.973,1.476,1.476,1.476,1.066,1.066,1.066,1.556,1.2
82,1.066,1.066,1.066,1.066'+#13#10+
'8,1.464,1.072,0.765,1.136,1.136,1.136,0.922,0.922,0.922,0.765,0.765,0.765,0.95,0.83
8,0.765,0.765,0.765'+#13#10+
'9,1.399,1.025,0.733,1.086,1.086,1.086,0.883,0.883,0.883,0.733,0.733,0.733,0.909,0.8
03,0.733,0.733,0.733'+#13#10+
'10,1.281,0.939,0.671,0.995,0.995,0.995,0.809,0.809,0.809,0.671,0.671,0.671,0.832,0.
735,0.671,0.671,0.671'+#13#10+

'11,1.111,0.814,0.582,0.863,0.863,0.863,0.701,0.701,0.701,0.582,0.582,0.582,0.722,0.
637,0.582,0.582,0.582'+#13#10+
'12,1.001,0.733,0.523,0.777,0.777,0.777,0.631,0.631,0.631,0.523,0.523,0.523,0.649,0.
573,0.523,0.523,0.523'+#13#10+
'13,0.936,0.684,0.487,0.725,0.725,0.725,0.588,0.588,0.588,0.487,0.487,0.487,0.606,0.
534,0.487,0.487,0.487'+#13#10+
'14,0.902,0.658,0.468,0.698,0.698,0.698,0.565,0.565,0.565,0.468,0.468,0.468,0.582,0.
513,0.468,0.468,0.468'+#13#10+
'15,0.94,0.684,0.484,0.726,0.726,0.726,0.587,0.587,0.587,0.484,0.484,0.484,0.604,0.5
32,0.484,0.484,0.484'+#13#10+
'16,1.048,0.76,0.534,0.807,0.807,0.807,0.65,0.65,0.65,0.534,0.534,0.534,0.67,0.588,0
.534,0.534,0.534'+#13#10+
'17,1.158,0.836,0.585,0.889,0.889,0.889,0.714,0.714,0.714,0.585,0.585,0.585,0.736,0.
645,0.585,0.585,0.585'+#13#10+
'18,1.265,0.91,0.631,0.968,0.968,0.968,0.774,0.774,0.774,0.631,0.631,0.631,0.799,0.6
98,0.631,0.631,0.631'+#13#10+
'19,1.365,0.977,0.673,1.04,1.04,1.04,0.829,0.829,0.829,0.673,0.673,0.673,0.856,0.746
,0.673,0.673,0.673'+#13#10+
'20,1.456,1.037,0.709,1.106,1.106,1.106,0.878,0.878,0.878,0.709,0.709,0.709,0.907,0.
787,0.709,0.709,0.709'+#13#10+
'21,1.537,1.089,0.739,1.162,1.162,1.162,0.919,0.919,0.919,0.739,0.739,0.739,0.95,0.8
22,0.739,0.739,0.739'+#13#10+
'22,1.603,1.131,0.761,1.208,1.208,1.208,0.951,0.951,0.951,0.761,0.761,0.761,0.983,0.
849,0.761,0.761,0.761'+#13#10+
'23,1.654,1.16,0.774,1.241,1.241,1.241,0.972,0.972,0.972,0.774,0.774,0.774,1.007,0.8
66,0.774,0.774,0.774'+#13#10+
'24,1.687,1.177,0.778,1.26,1.26,1.26,0.983,0.983,0.983,0.778,0.778,0.778,1.018,0.873
,0.778,0.778,0.778'+#13#10+
'25,1.699,1.178,0.772,1.264,1.264,1.264,0.981,0.981,0.981,0.772,0.772,0.772,1.017,0.
869,0.772,0.772,0.772'+#13#10+
'26,1.714,1.184,0.77,1.271,1.271,1.271,0.983,0.983,0.983,0.77,0.77,0.77,1.02,0.869,0
.77,0.77,0.77'+#13#10+
'27,1.731,1.191,0.769,1.279,1.279,1.279,0.986,0.986,0.986,0.769,0.769,0.769,1.023,0.
87,0.769,0.769,0.769'+#13#10+
'28,1.745,1.196,0.767,1.286,1.286,1.286,0.987,0.987,0.987,0.767,0.767,0.767,1.025,0.
869,0.767,0.767,0.767'+#13#10+
'29,1.755,1.198,0.763,1.289,1.289,1.289,0.986,0.986,0.986,0.763,0.763,0.763,1.025,0.
866,0.763,0.763,0.763'+#13#10+
'30,1.762,1.198,0.757,1.29,1.29,1.29,0.984,0.984,0.984,0.757,0.757,0.757,1.023,0.862
,0.757,0.757,0.757'+#13#10+
'31,1.768,1.197,0.751,1.291,1.291,1.291,0.98,0.98,0.98,0.751,0.751,0.751,1.02,0.858,
0.751,0.751,0.751'+#13#10+
'32,1.774,1.197,0.746,1.292,1.292,1.292,0.978,0.978,0.978,0.746,0.746,0.746,1.018,0.
854,0.746,0.746,0.746'+#13#10+
'33,1.782,1.198,0.741,1.293,1.293,1.293,0.976,0.976,0.976,0.741,0.741,0.741,1.016,0.
85,0.741,0.741,0.741'+#13#10+
'34,1.79,1.199,0.737,1.296,1.296,1.296,0.974,0.974,0.974,0.737,0.737,0.737,1.015,0.8
47,0.737,0.737,0.737'+#13#10+
'35,1.8,1.201,0.733,1.299,1.299,1.299,0.974,0.974,0.974,0.733,0.733,0.733,1.015,0.84
5,0.733,0.733,0.733'+#13#10+

'36,1.811,1.204,0.73,1.304,1.304,1.304,0.974,0.974,0.974,0.73,0.73,0.73,1.016,0.843,
0.73,0.73,0.73'+#13#10+
'37,1.823,1.208,0.727,1.309,1.309,1.309,0.974,0.974,0.974,0.727,0.727,0.727,1.017,0.
842,0.727,0.727,0.727'+#13#10+
'38,1.836,1.212,0.725,1.315,1.315,1.315,0.975,0.975,0.975,0.725,0.725,0.725,1.019,0.
841,0.725,0.725,0.725'+#13#10+
'39,1.849,1.217,0.723,1.321,1.321,1.321,0.977,0.977,0.977,0.723,0.723,0.723,1.021,0.
841,0.723,0.723,0.723'+#13#10+
'40,1.862,1.221,0.721,1.326,1.326,1.326,0.978,0.978,0.978,0.721,0.721,0.721,1.022,0.
84,0.721,0.721,0.721'+#13#10+
'41,1.873,1.225,0.718,1.331,1.331,1.331,0.978,0.978,0.978,0.718,0.718,0.718,1.023,0.
839,0.718,0.718,0.718'+#13#10+
'42,1.887,1.229,0.716,1.337,1.337,1.337,0.979,0.979,0.979,0.716,0.716,0.716,1.025,0.
838,0.716,0.716,0.716'+#13#10+
'43,1.901,1.234,0.714,1.343,1.343,1.343,0.981,0.981,0.981,0.714,0.714,0.714,1.027,0.
838,0.714,0.714,0.714'+#13#10+
'44,1.915,1.24,0.712,1.35,1.35,1.35,0.983,0.983,0.983,0.712,0.712,0.712,1.03,0.838,0
.712,0.712,0.712'+#13#10+
'45,1.93,1.245,0.71,1.357,1.357,1.357,0.985,0.985,0.985,0.71,0.71,0.71,1.032,0.838,0
.71,0.71,0.71'+#13#10+
'46,1.944,1.251,0.708,1.364,1.364,1.364,0.987,0.987,0.987,0.708,0.708,0.708,1.035,0.
838,0.708,0.708,0.708'+#13#10+
'47,1.959,1.256,0.707,1.371,1.371,1.371,0.989,0.989,0.989,0.707,0.707,0.707,1.037,0.
838,0.707,0.707,0.707'+#13#10+
'48,1.974,1.262,0.705,1.378,1.378,1.378,0.991,0.991,0.991,0.705,0.705,0.705,1.04,0.8
38,0.705,0.705,0.705'+#13#10+
'49,1.989,1.267,0.703,1.386,1.386,1.386,0.993,0.993,0.993,0.703,0.703,0.703,1.043,0.
838,0.703,0.703,0.703'+#13#10+
'50,2,1.271,0.701,1.39,1.39,1.39,0.994,0.994,0.994,0.701,0.701,0.701,1.044,0.837,0.7
01,0.701,0.701'+#13#10+
'51,2.003,1.271,0.699,1.391,1.391,1.391,0.993,0.993,0.993,0.699,0.699,0.699,1.044,0.
836,0.699,0.699,0.699'+#13#10+
'52,2.005,1.271,0.697,1.391,1.391,1.391,0.992,0.992,0.992,0.697,0.697,0.697,1.042,0.
834,0.697,0.697,0.697'+#13#10+
'53,2.006,1.27,0.695,1.391,1.391,1.391,0.99,0.99,0.99,0.695,0.695,0.695,1.041,0.832,
0.695,0.695,0.695'+#13#10+
'54,2.007,1.269,0.692,1.39,1.39,1.39,0.989,0.989,0.989,0.692,0.692,0.692,1.04,0.83,0
.692,0.692,0.692'+#13#10+
'55,2.008,1.268,0.69,1.389,1.389,1.389,0.987,0.987,0.987,0.69,0.69,0.69,1.038,0.828,
0.69,0.69,0.69'+#13#10+
'56,2.009,1.267,0.688,1.389,1.389,1.389,0.986,0.986,0.986,0.688,0.688,0.688,1.037,0.
826,0.688,0.688,0.688'+#13#10+
'57,2.009,1.266,0.686,1.388,1.388,1.388,0.984,0.984,0.984,0.686,0.686,0.686,1.035,0.
824,0.686,0.686,0.686'+#13#10+
'58,2.009,1.265,0.683,1.387,1.387,1.387,0.982,0.982,0.982,0.683,0.683,0.683,1.033,0.
822,0.683,0.683,0.683'+#13#10+
'59,2.008,1.263,0.681,1.385,1.385,1.385,0.98,0.98,0.98,0.681,0.681,0.681,1.032,0.82,
0.681,0.681,0.681'+#13#10+
'60,2.008,1.262,0.679,1.384,1.384,1.384,0.978,0.978,0.978,0.679,0.679,0.679,1.03,0.8
18,0.679,0.679,0.679'+#13#10+

'61,2.008,1.261,0.677,1.383,1.383,1.383,0.977,0.977,0.977,0.677,0.677,0.677,1.029,0.
816,0.677,0.677,0.677'+#13#10+
'62,2.008,1.26,0.675,1.382,1.382,1.382,0.976,0.976,0.976,0.675,0.675,0.675,1.027,0.8
15,0.675,0.675,0.675'+#13#10+
'63,2.007,1.259,0.674,1.381,1.381,1.381,0.974,0.974,0.974,0.674,0.674,0.674,1.026,0.
813,0.674,0.674,0.674'+#13#10+
'64,2.007,1.258,0.672,1.38,1.38,1.38,0.973,0.973,0.973,0.672,0.672,0.672,1.025,0.812
,0.672,0.672,0.672'+#13#10+
'65,2.007,1.257,0.67,1.379,1.379,1.379,0.971,0.971,0.971,0.67,0.67,0.67,1.023,0.81,0
.67,0.67,0.67'+#13#10+
'66,2.006,1.255,0.669,1.378,1.378,1.378,0.97,0.97,0.97,0.669,0.669,0.669,1.022,0.808
,0.669,0.669,0.669'+#13#10+
'67,2.006,1.254,0.667,1.377,1.377,1.377,0.969,0.969,0.969,0.667,0.667,0.667,1.021,0.
807,0.667,0.667,0.667'+#13#10+
'68,2.005,1.253,0.665,1.376,1.376,1.376,0.967,0.967,0.967,0.665,0.665,0.665,1.019,0.
805,0.665,0.665,0.665'+#13#10+
'69,2.005,1.252,0.664,1.375,1.375,1.375,0.966,0.966,0.966,0.664,0.664,0.664,1.018,0.
804,0.664,0.664,0.664'+#13#10+
'70,2.004,1.251,0.662,1.374,1.374,1.374,0.964,0.964,0.964,0.662,0.662,0.662,1.016,0.
802,0.662,0.662,0.662'+#13#10+
'71,2.003,1.249,0.66,1.372,1.372,1.372,0.962,0.962,0.962,0.66,0.66,0.66,1.014,0.8,0.
66,0.66,0.66'+#13#10+
'72,2.001,1.247,0.657,1.371,1.371,1.371,0.96,0.96,0.96,0.657,0.657,0.657,1.012,0.798
,0.657,0.657,0.657'+#13#10+
'73,2,1.245,0.655,1.369,1.369,1.369,0.958,0.958,0.958,0.655,0.655,0.655,1.01,0.796,0
.655,0.655,0.655'+#13#10+
'74,1.999,1.243,0.653,1.367,1.367,1.367,0.956,0.956,0.956,0.653,0.653,0.653,1.008,0.
794,0.653,0.653,0.653'+#13#10+
'75,1.997,1.241,0.651,1.365,1.365,1.365,0.954,0.954,0.954,0.651,0.651,0.651,1.006,0.
792,0.651,0.651,0.651'+#13#10+
'76,1.996,1.24,0.648,1.363,1.363,1.363,0.952,0.952,0.952,0.648,0.648,0.648,1.004,0.7
89,0.648,0.648,0.648'+#13#10+
'77,1.994,1.238,0.646,1.361,1.361,1.361,0.95,0.95,0.95,0.646,0.646,0.646,1.002,0.787
,0.646,0.646,0.646'+#13#10+
'78,1.992,1.236,0.644,1.359,1.359,1.359,0.948,0.948,0.948,0.644,0.644,0.644,1,0.785,
0.644,0.644,0.644'+#13#10+
'79,1.992,1.235,0.643,1.359,1.359,1.359,0.947,0.947,0.947,0.643,0.643,0.643,0.999,0.
784,0.643,0.643,0.643'+#13#10+
'80,1.992,1.235,0.643,1.359,1.359,1.359,0.947,0.947,0.947,0.643,0.643,0.643,0.999,0.
784,0.643,0.643,0.643'
 ;

PBM:=
'0,3.476,2.269,0.962,2.487,2.487,2.487,1.720,1.720,1.720,0.962,0.962,0.962,1.798,1.3
33,0.962,0.962,0.962,0.962'+#13#10+
'1,2.435,1.830,1.130,1.886,1.886,1.886,1.513,1.513,1.513,1.130,1.130,1.130,1.562,1.3
14,1.130,1.130,1.130,1.130'+#13#10+
'2,2.612,1.905,1.158,1.996,1.996,1.996,1.559,1.559,1.559,1.158,1.158,1.158,1.641,1.3
44,1.158,1.158,1.158,1.158'+#13#10+
'3,2.456,1.775,1.153,1.917,1.917,1.917,1.503,1.503,1.503,1.153,1.153,1.153,1.570,1.3

28,1.153,1.153,1.153,1.153'+#13#10+
'4,2.437,1.792,1.134,1.917,1.917,1.917,1.501,1.501,1.501,1.134,1.134,1.134,1.571,1.3
15,1.134,1.134,1.134,1.134'+#13#10+
'5,2.573,1.864,1.186,1.991,1.991,1.991,1.531,1.531,1.531,1.186,1.186,1.186,1.618,1.3
64,1.186,1.186,1.186,1.186'+#13#10+
'6,2.287,1.630,0.977,1.758,1.758,1.758,1.350,1.350,1.350,0.977,0.977,0.977,1.410,1.1
71,0.977,0.977,0.977,0.977'+#13#10+
'7,2.528,1.825,1.066,1.973,1.973,1.973,1.476,1.476,1.476,1.066,1.066,1.066,1.556,1.2
82,1.066,1.066,1.066,1.066'+#13#10+
'8,1.516,1.107,0.788,1.174,1.174,0.952,0.952,0.952,0.952,0.788,0.788,0.788,0.98,0.86
4,0.788,0.788,0.788'+#13#10+
'9,1.507,1.103,0.788,1.17,1.17,0.95,0.95,0.95,0.95,0.788,0.788,0.788,0.978,0.863,0.7
88,0.788,0.788'+#13#10+
'10,1.424,1.045,0.748,1.107,1.107,0.9,0.9,0.9,0.9,0.748,0.748,0.748,0.927,0.819,0.74
8,0.748,0.748'+#13#10+
'11,1.249,0.919,0.661,0.973,0.973,0.793,0.793,0.793,0.793,0.661,0.661,0.661,0.816,0.
722,0.661,0.661,0.661'+#13#10+
'12,1.104,0.814,0.588,0.862,0.862,0.704,0.704,0.704,0.704,0.588,0.588,0.588,0.724,0.
642,0.588,0.588,0.588'+#13#10+
'13,0.989,0.731,0.53,0.773,0.773,0.633,0.633,0.633,0.633,0.53,0.53,0.53,0.651,0.578,
0.53,0.53,0.53'+#13#10+
'14,0.904,0.67,0.487,0.708,0.708,0.581,0.581,0.581,0.581,0.487,0.487,0.487,0.597,0.5
31,0.487,0.487,0.487'+#13#10+
'15,0.895,0.664,0.483,0.702,0.702,0.576,0.576,0.576,0.576,0.483,0.483,0.483,0.592,0.
526,0.483,0.483,0.483'+#13#10+
'16,0.957,0.709,0.515,0.749,0.749,0.614,0.614,0.614,0.614,0.515,0.515,0.515,0.632,0.
561,0.515,0.515,0.515'+#13#10+
'17,1.026,0.759,0.55,0.802,0.802,0.657,0.657,0.657,0.657,0.55,0.55,0.55,0.676,0.6,0.
55,0.55,0.55'+#13#10+
'18,1.098,0.811,0.587,0.858,0.858,0.702,0.702,0.702,0.702,0.587,0.587,0.587,0.722,0.
64,0.587,0.587,0.587'+#13#10+
'19,1.172,0.864,0.623,0.914,0.914,0.746,0.746,0.746,0.746,0.623,0.623,0.623,0.768,0.
68,0.623,0.623,0.623'+#13#10+
'20,1.242,0.913,0.656,0.967,0.967,0.788,0.788,0.788,0.788,0.656,0.656,0.656,0.811,0.
717,0.656,0.656,0.656'+#13#10+
'21,1.305,0.956,0.684,1.013,1.013,0.824,0.824,0.824,0.824,0.684,0.684,0.684,0.848,0.
749,0.684,0.684,0.684'+#13#10+
'22,1.358,0.992,0.706,1.052,1.052,0.853,0.853,0.853,0.853,0.706,0.706,0.706,0.878,0.
774,0.706,0.706,0.706'+#13#10+
'23,1.4,1.019,0.72,1.081,1.081,0.873,0.873,0.873,0.873,0.72,0.72,0.72,0.9,0.791,0.72
,0.72,0.72'+#13#10+
'24,1.428,1.034,0.726,1.099,1.099,0.885,0.885,0.885,0.885,0.726,0.726,0.726,0.912,0.
8,0.726,0.726,0.726'+#13#10+
'25,1.438,1.037,0.723,1.102,1.102,0.884,0.884,0.884,0.884,0.723,0.723,0.723,0.912,0.
798,0.723,0.723,0.723'+#13#10+
'26,1.45,1.042,0.723,1.109,1.109,0.887,0.887,0.887,0.887,0.723,0.723,0.723,0.915,0.7
99,0.723,0.723,0.723'+#13#10+
'27,1.464,1.048,0.723,1.116,1.116,0.89,0.89,0.89,0.89,0.723,0.723,0.723,0.919,0.801,
0.723,0.723,0.723'+#13#10+
'28,1.475,1.053,0.722,1.122,1.122,0.892,0.892,0.892,0.892,0.722,0.722,0.722,0.921,0.

801,0.722,0.722,0.722'+#13#10+
'29,1.484,1.055,0.719,1.125,1.125,0.892,0.892,0.892,0.892,0.719,0.719,0.719,0.921,0.
799,0.719,0.719,0.719'+#13#10+
'30,1.489,1.055,0.715,1.126,1.126,0.89,0.89,0.89,0.89,0.715,0.715,0.715,0.92,0.796,0
.715,0.715,0.715'+#13#10+
'31,1.494,1.054,0.711,1.126,1.126,0.887,0.887,0.887,0.887,0.711,0.711,0.711,0.917,0.
792,0.711,0.711,0.711'+#13#10+
'32,1.498,1.054,0.706,1.126,1.126,0.884,0.884,0.884,0.884,0.706,0.706,0.706,0.915,0.
789,0.706,0.706,0.706'+#13#10+
'33,1.504,1.054,0.702,1.127,1.127,0.882,0.882,0.882,0.882,0.702,0.702,0.702,0.914,0.
786,0.702,0.702,0.702'+#13#10+
'34,1.51,1.054,0.698,1.129,1.129,0.881,0.881,0.881,0.881,0.698,0.698,0.698,0.912,0.7
83,0.698,0.698,0.698'+#13#10+
'35,1.517,1.056,0.695,1.131,1.131,0.88,0.88,0.88,0.88,0.695,0.695,0.695,0.912,0.781,
0.695,0.695,0.695'+#13#10+
'36,1.525,1.058,0.692,1.134,1.134,0.88,0.88,0.88,0.88,0.692,0.692,0.692,0.912,0.779,
0.692,0.692,0.692'+#13#10+
'37,1.534,1.06,0.69,1.138,1.138,0.88,0.88,0.88,0.88,0.69,0.69,0.69,0.913,0.778,0.69,
0.69,0.69'+#13#10+
'38,1.544,1.063,0.687,1.142,1.142,0.88,0.88,0.88,0.88,0.687,0.687,0.687,0.914,0.777,
0.687,0.687,0.687'+#13#10+
'39,1.554,1.067,0.686,1.146,1.146,0.881,0.881,0.881,0.881,0.686,0.686,0.686,0.915,0.
776,0.686,0.686,0.686'+#13#10+
'40,1.563,1.069,0.683,1.15,1.15,0.881,0.881,0.881,0.881,0.683,0.683,0.683,0.916,0.77
5,0.683,0.683,0.683'+#13#10+
'41,1.572,1.072,0.681,1.154,1.154,0.881,0.881,0.881,0.881,0.681,0.681,0.681,0.916,0.
774,0.681,0.681,0.681'+#13#10+
'42,1.582,1.075,0.678,1.158,1.158,0.882,0.882,0.882,0.882,0.678,0.678,0.678,0.917,0.
773,0.678,0.678,0.678'+#13#10+
'43,1.592,1.078,0.676,1.163,1.163,0.883,0.883,0.883,0.883,0.676,0.676,0.676,0.918,0.
772,0.676,0.676,0.676'+#13#10+
'44,1.603,1.082,0.675,1.167,1.167,0.884,0.884,0.884,0.884,0.675,0.675,0.675,0.92,0.7
72,0.675,0.675,0.675'+#13#10+
'45,1.614,1.086,0.673,1.172,1.172,0.885,0.885,0.885,0.885,0.673,0.673,0.673,0.922,0.
771,0.673,0.673,0.673'+#13#10+
'46,1.625,1.09,0.671,1.178,1.178,0.886,0.886,0.886,0.886,0.671,0.671,0.671,0.923,0.7
71,0.671,0.671,0.671'+#13#10+
'47,1.637,1.094,0.67,1.183,1.183,0.887,0.887,0.887,0.887,0.67,0.67,0.67,0.925,0.771,
0.67,0.67,0.67'+#13#10+
'48,1.648,1.098,0.668,1.188,1.188,0.889,0.889,0.889,0.889,0.668,0.668,0.668,0.927,0.
77,0.668,0.668,0.668'+#13#10+
'49,1.659,1.102,0.666,1.193,1.193,0.89,0.89,0.89,0.89,0.666,0.666,0.666,0.929,0.77,0
.666,0.666,0.666'+#13#10+
'50,1.667,1.104,0.665,1.196,1.196,0.89,0.89,0.89,0.89,0.665,0.665,0.665,0.929,0.769,
0.665,0.665,0.665'+#13#10+
'51,1.669,1.104,0.663,1.197,1.197,0.89,0.89,0.89,0.89,0.663,0.663,0.663,0.929,0.768,
0.663,0.663,0.663'+#13#10+
'52,1.671,1.104,0.661,1.197,1.197,0.889,0.889,0.889,0.889,0.661,0.661,0.661,0.928,0.
767,0.661,0.661,0.661'+#13#10+
'53,1.672,1.104,0.659,1.197,1.197,0.888,0.888,0.888,0.888,0.659,0.659,0.659,0.927,0.

765,0.659,0.659,0.659'+#13#10+
'54,1.673,1.103,0.658,1.197,1.197,0.887,0.887,0.887,0.887,0.658,0.658,0.658,0.926,0.
764,0.658,0.658,0.658'+#13#10+
'55,1.674,1.103,0.656,1.196,1.196,0.885,0.885,0.885,0.885,0.656,0.656,0.656,0.925,0.
762,0.656,0.656,0.656'+#13#10+
'56,1.674,1.102,0.654,1.195,1.195,0.884,0.884,0.884,0.884,0.654,0.654,0.654,0.924,0.
761,0.654,0.654,0.654'+#13#10+
'57,1.674,1.101,0.653,1.195,1.195,0.883,0.883,0.883,0.883,0.653,0.653,0.653,0.923,0.
759,0.653,0.653,0.653'+#13#10+
'58,1.674,1.1,0.651,1.194,1.194,0.881,0.881,0.881,0.881,0.651,0.651,0.651,0.921,0.75
8,0.651,0.651,0.651'+#13#10+
'59,1.674,1.099,0.649,1.193,1.193,0.88,0.88,0.88,0.88,0.649,0.649,0.649,0.92,0.756,0
.649,0.649,0.649'+#13#10+
'60,1.674,1.098,0.647,1.192,1.192,0.879,0.879,0.879,0.879,0.647,0.647,0.647,0.919,0.
755,0.647,0.647,0.647'+#13#10+
'61,1.674,1.097,0.646,1.191,1.191,0.877,0.877,0.877,0.877,0.646,0.646,0.646,0.917,0.
753,0.646,0.646,0.646'+#13#10+
'62,1.673,1.095,0.644,1.19,1.19,0.876,0.876,0.876,0.876,0.644,0.644,0.644,0.916,0.75
2,0.644,0.644,0.644'+#13#10+
'63,1.673,1.094,0.642,1.189,1.189,0.874,0.874,0.874,0.874,0.642,0.642,0.642,0.914,0.
75,0.642,0.642,0.642'+#13#10+
'64,1.672,1.093,0.64,1.188,1.188,0.873,0.873,0.873,0.873,0.64,0.64,0.64,0.913,0.748,
0.64,0.64,0.64'+#13#10+
'65,1.671,1.092,0.639,1.187,1.187,0.871,0.871,0.871,0.871,0.639,0.639,0.639,0.911,0.
747,0.639,0.639,0.639'+#13#10+
'66,1.671,1.09,0.637,1.185,1.185,0.87,0.87,0.87,0.87,0.637,0.637,0.637,0.91,0.745,0.
637,0.637,0.637'+#13#10+
'67,1.67,1.089,0.635,1.184,1.184,0.868,0.868,0.868,0.868,0.635,0.635,0.635,0.908,0.7
43,0.635,0.635,0.635'+#13#10+
'68,1.669,1.088,0.633,1.183,1.183,0.867,0.867,0.867,0.867,0.633,0.633,0.633,0.907,0.
742,0.633,0.633,0.633'+#13#10+
'69,1.668,1.086,0.632,1.182,1.182,0.865,0.865,0.865,0.865,0.632,0.632,0.632,0.905,0.
74,0.632,0.632,0.632'+#13#10+
'70,1.667,1.085,0.63,1.18,1.18,0.863,0.863,0.863,0.863,0.63,0.63,0.63,0.904,0.738,0.
63,0.63,0.63'+#13#10+
'71,1.666,1.083,0.628,1.178,1.178,0.861,0.861,0.861,0.861,0.628,0.628,0.628,0.902,0.
736,0.628,0.628,0.628'+#13#10+
'72,1.664,1.081,0.625,1.177,1.177,0.859,0.859,0.859,0.859,0.625,0.625,0.625,0.9,0.73
4,0.625,0.625,0.625'+#13#10+
'73,1.663,1.079,0.623,1.175,1.175,0.857,0.857,0.857,0.857,0.623,0.623,0.623,0.898,0.
732,0.623,0.623,0.623'+#13#10+
'74,1.661,1.077,0.621,1.173,1.173,0.855,0.855,0.855,0.855,0.621,0.621,0.621,0.896,0.
73,0.621,0.621,0.621'+#13#10+
'75,1.66,1.075,0.619,1.171,1.171,0.853,0.853,0.853,0.853,0.619,0.619,0.619,0.894,0.7
28,0.619,0.619,0.619'+#13#10+
'76,1.658,1.073,0.616,1.169,1.169,0.851,0.851,0.851,0.851,0.616,0.616,0.616,0.892,0.
725,0.616,0.616,0.616'+#13#10+
'77,1.656,1.071,0.614,1.167,1.167,0.849,0.849,0.849,0.849,0.614,0.614,0.614,0.89,0.7
23,0.614,0.614,0.614'+#13#10+
'78,1.655,1.069,0.612,1.165,1.165,0.847,0.847,0.847,0.847,0.612,0.612,0.612,0.887,0.

721,0.612,0.612,0.612'+#13#10+
'79,1.654,1.068,0.611,1.164,1.164,0.846,0.846,0.846,0.846,0.611,0.611,0.611,0.886,0.
72,0.611,0.611,0.611'+#13#10+
'80,1.654,1.068,0.611,1.164,1.164,0.846,0.846,0.846,0.846,0.611,0.611,0.611,0.886,0.
72,0.611,0.611,0.611'
;

PBSens1 :=
'0,3.612,2.349,1.152,2.566,2.566,2.566,1.724,1.724,1.724,1.152,1.152,1.152,1.853,1.3
59,0.968,0.968,0.968'+#13#10+
'1,2.468,1.826,1.228,1.926,1.926,1.926,1.517,1.517,1.517,1.228,1.228,1.228,1.573,1.3
34,1.141,1.141,1.141'+#13#10+
'2,2.645,1.881,1.250,2.047,2.047,2.047,1.570,1.570,1.570,1.250,1.250,1.250,1.644,1.3
56,1.177,1.177,1.177'+#13#10+
'3,2.473,1.812,1.242,1.952,1.952,1.952,1.537,1.537,1.537,1.242,1.242,1.242,1.604,1.3
37,1.155,1.155,1.155'+#13#10+
'4,2.480,1.813,1.219,1.937,1.937,1.937,1.514,1.514,1.514,1.219,1.219,1.219,1.574,1.3
19,1.138,1.138,1.138'+#13#10+
'5,2.656,1.876,1.254,2.032,2.032,2.032,1.577,1.577,1.577,1.254,1.254,1.254,1.632,1.3
71,1.188,1.188,1.188'+#13#10+
'6,2.340,1.650,1.071,1.756,1.756,1.756,1.369,1.369,1.369,1.071,1.071,1.071,1.432,1.1
94,0.982,0.982,0.982'
;

PBSens2 :=
'0,3.612,2.349,1.259,2.566,2.566,2.566,1.724,1.724,1.724,1.259,1.259,1.259,1.853,1.3
59,0.968,0.968,0.968'+#13#10+
'1,2.468,1.826,1.281,1.926,1.926,1.926,1.517,1.517,1.517,1.281,1.281,1.281,1.573,1.3
34,1.141,1.141,1.141'+#13#10+
'2,2.645,1.881,1.311,2.047,2.047,2.047,1.570,1.570,1.570,1.311,1.311,1.311,1.644,1.3
56,1.177,1.177,1.177'+#13#10+
'3,2.473,1.812,1.296,1.952,1.952,1.952,1.537,1.537,1.537,1.296,1.296,1.296,1.604,1.3
37,1.155,1.155,1.155'+#13#10+
'4,2.480,1.813,1.274,1.937,1.937,1.937,1.514,1.514,1.514,1.274,1.274,1.274,1.574,1.3
19,1.138,1.138,1.138'+#13#10+
'5,2.656,1.876,1.314,2.032,2.032,2.032,1.577,1.577,1.577,1.314,1.314,1.314,1.632,1.3
71,1.188,1.188,1.188'+#13#10+
'6,2.340,1.650,1.126,1.756,1.756,1.756,1.369,1.369,1.369,1.126,1.126,1.126,1.432,1.1
94,0.982,0.982,0.982';
;

PBSens3 :=
'0,3.156,2.119,0.980,2.234,2.234,2.234,1.608,1.608,1.608,0.980,0.980,0.980,1.675,1.2
61,0.980,0.980,0.980'+#13#10+
'1,2.228,1.679,1.141,1.778,1.778,1.778,1.441,1.441,1.441,1.141,1.141,1.141,1.485,1.2
68,1.141,1.141,1.141'+#13#10+
'2,2.350,1.749,1.160,1.849,1.849,1.849,1.479,1.479,1.479,1.160,1.160,1.160,1.523,1.3
26,1.160,1.160,1.160'+#13#10+
'3,2.254,1.690,1.142,1.777,1.777,1.777,1.438,1.438,1.438,1.142,1.142,1.142,1.494,1.2

91,1.142,1.142,1.142'+#13#10+
'4,2.270,1.711,1.156,1.772,1.772,1.772,1.446,1.446,1.446,1.156,1.156,1.156,1.485,1.2
83,1.156,1.156,1.156'+#13#10+
'5,2.341,1.774,1.195,1.870,1.870,1.870,1.512,1.512,1.512,1.195,1.195,1.195,1.541,1.3
15,1.195,1.195,1.195'+#13#10+
'6,2.097,1.527,1.001,1.602,1.602,1.602,1.276,1.276,1.276,1.001,1.001,1.001,1.317,1.1
25,1.001,1.001,1.001';
;

end.

